Survivability Analysis of Networked Systems

Somesh Jha

joint work with Oleg Sheyner and Jeannette Wing

Computer Sciences Department University of Wisconsin Madison, WI

Relationship to analyzing compositions of COTS

- A system is typically composed of several COTS components
 - (step 1) analyze components individually
 - (step 2) inputs
 - » vulnerabilities of individual components
 - » connectivity information
 - output
 - » attack graph for the entire system
 - » how can intruder exploit vulnerabilities in individual hosts to achieve their desired goal?
- Analogy to networks
 - hosts ISA components
 - networks ISA system composed of components

- What if
 - a cyberhacker brings down the nation's power grid?
 - an act of Mother Nature causes the international banking network to fail?
- Critical infrastructures
 - Utilities: gas, electricity, nuclear, water, ...
 - Communications: telephone, networks, ...
 - Transportation: airlines, railways, highways, ...
 - Medical: emergency services, hospitals, ...
 - Financial: banking, trading, ...

Survivability

- A system is survivable if it can continue to provide end services despite the presence of faults.
- Faults
 - Accidental or malicious
 - Not necessarily independent
 - \Rightarrow Finer-grained reliability analysis is required.
- Service-oriented
 - Exploit semantics of application
 - \Rightarrow Not all network nodes and links are treated equally.

Foundational Questions

- What is the difference between models for survivability and those for
 - Fault-tolerant distributed systems?
 - Secure systems?
- Our starting point:
 - Independence assumption goes out the window.
 - Cost must be included in the equation.

Simple Example: A Banking System

Overview of Our Method

Phase 1

- Processes
 - Nodes and links are processes (i.e., FSMs)
 - banks, money centers, federal reserve banks, and links
 - Communication via shared variables (i.e., finite queues)
 - representing channels, and hence interconnections.
- Failures
 - Faults represented by special state variable
 - fault:{normal, failed, intruded}
 - Links and banks can fail at any time
 - Failed link blocks all traffic.
 - Failed bank routes all checks to an arbitrarily chosen money center.
 - Money centers and federal reserve banks do not fail.

Survivability Properties

- Fault-related
 - Money never deposited into wrong account.
 - AG(¬error)
- Service-related
 - A check issued eventually clears.
 - AG(checkIssued \rightarrow AF(checkCleared))

Scenario Graphs

- Given a state machine, M, and a property, P, a scenario graph is a concise representation of the set of traces of M with respect to P.
 - P = fault property
 - A fault scenario graph represents all system traces that end in a state that does not satisfy P.
 - P = service property
 - A service success (fail) scenario graph represents all system traces in which an issued service successfully finishes (fails to finish).

Output: Fault Scenario Graph

Intuition:

- Each "counterexample" spit out by the model checker is a scenario.
- Survivability property gives a slice of the model.

Each path is a scenario of how a *fault* can occur.

Survivability Properties

- Fault-related
 - Money never deposited into wrong account.
 - AG(¬error)
- Service-related
 - A check issued eventually clears.
 - AG(checkIssued \rightarrow AF(checkCleared))

A Service Success Scenario Graph

A Service Fail Scenario Graph

Overview of Method

Phase 2: Reliability Analysis (in a Nutshell)

- Annotations = Probabilities
 - Use Bayesian Networks to model dependence of events.
- Symbolic
 - Use symbolic probabilities
 - high, medium, low
 - Use NDFA theory to compute scenario set.
- Continuous
 - Use numeric probabilities
 - [0.0, 1.0]
 - Use Markov Decision Processes to model both nondeterministic and probabilistic transitions.

Intrusion Detection System Case Study

- Done by Oleg Sheyner in consultation with Lincoln Labs.
- Motivated by hand drawn poster of attack scenarios.
- So far, only a simplistic analysis for second part of method.

Example of Attack Tree Developed by a Professional Red Team

Somesh Jha

Multistage Network Penetration

Goal: Gain root access to host ip₂.

Attack Arsenal

Always Detected

Х

0 sshd buffer overflow: remotely get root
1 ftp .rhosts file: establish trust between hosts
2 remote login: exploit trust between hosts
3 local buffer overflow: locally get root

X X X

Scenario-Generating Properties

• Don't care about detection

– AG (adversary.privilege[2] < root)</p>

• Want stealth

- AG ((adversary.privilege[2] < root) or (IDS.detected))</pre>

NuSMV Encoding

- Network
 - 1 attack host, 2 target hosts with services
 - 3x3 connectivity matrix
 - existence of routing path
 - ability to connect to ftp and ssh services
 - 3x3 trust matrix
- Adversary
 - Privilege levels for each host
- Attacks
 - 4 attacks
 - some have multiple flavors

- NuSMV Statistics
 - 82 bits of state (2⁸² states)
 < 40K representation nodes
 ~7000 reachable states
- 2 sec runtime on 1GHz Pentium III
- 8MB of memory used

Goal: Get Root, Avoiding Detection

Each attack "exists" with probability P_e

- Add a boolean constant for each attack to the model indicating whether the attack exists
- Splits scenario graph into a "forest" of graphs.

Scenario Graph: Adding Uncertainty

Green – Initial States Blue – Attacker Undetected Red – Attacker Detected

No sshd attack

All attacks

Questions:

What is the probability that the attacker will succeed? What is the probability that the attacker will be detected?

Scalability

- Expanded case study
 - ✓ 5 hosts
 - ✓ 4 new attacks
 - \checkmark legitimate users
 - ✓ background traffic
 - ✤ high priority
 - $\boldsymbol{\textbf{\textbf{\$}}}$ low priority
 - ✓ multiple firewall configurations

- NuSMV runtime: 4.5 hours
- ~ 6000 nodes in scenario graph

Two Other Case Studies (by Somesh Jha)

- Trading floor model of major investment bank (being "sanitized")
 - 10K lines of NuSMV
 - half-million nodes in scenario graph
 - 50 threat scenarios
 - 45 found by system
 - 5 new threat scenarios found
 - With independence assumption, too many misses.

- B2B e-commerce NYC start-up
 - 50K lines of Statecharts
 - 2 million lines of NuSMV beyond capability of tool

Open Research Questions

- Understanding Survivability
 - What is an appropriate logic for describing survivability properties?
 - How can you design a system for survivability?
- Analysis Technique
 - Scalability: What new data structures, abstraction techniques, compositional reasoning will let us handle larger state spaces?
 - Tools: What combination of tools can further automate the analysis?
 - Linear programming packages, theorem provers, ...
 - Applicability: How applicable is the CMDP model for other application domains?
 - Can they be applied to embedded and autonomous systems?