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Online Auctioning

Huge volume: eBay hosted 440,100,000 new
Istings in Q2 2005
n this talk: trustworthiness of online auctioning

Why do we buy in an online auction?
A. to find a rare/collectable item

B. to find a bargain; commodity at a “good” price

eBay financial report (expected 2005).
— Clothing & Accessories --- $3.3 billion (2nd)
— Consumer Electronics --- $3.2 billion (3rd)
— Computers --- $2.9 billion (4th)

Data suggests that most people use eBay to find bargains



Finding a Bargain is Tricky

 Inherently untrustworthy environment:
— Pseudonymous sellers
— Pseudonymous buyers
— Delivery? Warranty? Quality?

* Reputation system: a tool to establish trust



Finding a Bargain is Tricky

@ Great product as advertized Great E Bay'er | A++++

@ Great seller, extra quick shipping thanks A++++

@ Fast serice many thanks A++++++++H++++H++H+HHH+HH++

e eBay’s reputation system provides little help
— Based on feedback: vulnerable to “poisoning” attack



Finding a Bargain is Tricky
@ ANMOTHER GREAT DEAL I |'WILL BE BACK 1l
@ WORKS GREAT Il GREAT DEALERI My GOD | Can't SPELLI
@ WORKS GREAT | DREAT DEALLER!
@ WORKS GREAT | DREAT DEALLER!

@ WORKS GREAT || DREAT DEALLER!

e eBay’s reputation system provides little help
— Based on feedback: vulnerable to “poisoning” attack
— Does not provide information on price



Finding a Bargain is Tricky

100%

% of positive 90% ,/7 90% of.s_ellers: 50% of_s_ellers:
feedback 80% Positive Positive
feedback feedback
0% 1 > 97.3% > 99 4%
60% | | ; |
0% 20% 40% 60% 80% 100%

% of sellers (1545 sellers with more than 10 auctions)

e eBay’s reputation system provides little help
— Based on feedback: vulnerable to “poisoning” attack
— Does not provide information on price
— Does not differentiate among the majority of sellers



Goals

o Alice—a buyer, Bob—a seller

 Develop a trustwortny mechanism that helps Alice:

— Achieve her goal: what are the chances that Alice can
find a bargain in Bob’s auctions?

— Warn her from fraudulent activities: are the prices in
Bob’s auctions artificially inflated?

— Provide her assurance against poisoning attack: why
should Alice trust the mechanism?



Contributions

* A reputation system that helps buyers avoid
sellers who seem to be inflating prices

— Formulated the “seem to be inflating prices” as an
anomaly detection problem

— Business level anomaly detection: the basic events are
auctions, bidding.

— Behavioral system: based on how human behave/act
rather than on people feedback.

e Only a first step, some goals still ahead



Outline

e Motivation: find a bargain and avoid fraud

e Contributions: anomaly detection system to
identify price inflating sellers:
— The N model
— The M model
— The P model

e Case studies



Auctioning 101

Pseudonymous sellers and bidders

Auctions end after a predefined time (e.g., 7 days)
Highest bid wins

Seller sets minimum starting bid

Shilling: a group of bidders that place fake bids to
Inflate the final price
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Methodology

o Collect data from eBay

— three weeks of data in the category: Laptop Parts &
Accessories

— 127,815 auctions, 12,331 sellers,

— 604 high-volume sellers: posted more than 14 auctions
controls 60% of the market

» Use statistical model to predict seller behavior
— 95% of the sellers are “normal”
— 5% are abnormal, or suspicious
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Step 1: Average Number of Bids

 What is an indication that prices are high?
— high number of bids

e Goal: identify sellers with abnormally high

number of bids
s« 9504 of high-volume
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Number of auctions for seller
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Outline

e Motivation: find a bargain and avoid fraud

e Contributions: anomaly detection system to
identify price inflating sellers:

— The N model: a seller is suspicious If they post many
auctions that attract many bids

— The M model
— The P model

e Reputation example
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Step 2: Average Minimum Starting Bid
e Legitimate explanation for high number of bids:
low minimum starting bid

« Goal: identify sellers with abnormally high
number of bids and high minimum bid

 Problem: how do you know that the minimum bid
IS high?

Relative minimum _ WInning_bid —minimum_bid
bid (RMB) ) winning_bid

15



Step 2: The M Model
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Step 3: Bidders’ Profile of a Seller

« Fraudulent explanation for high number of bids:
shilling

o Goal: identify group of bidders that repeatedly
bid and lose in a seller’s auctions

e Suspicious seller:
— N: sellers with abnormally high number of bids and
— M: high starting bid and
— P: has a group of bidders that repeatedly bid and lose
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Bidder Presence Curve

100

801

Participated *
auctions % ol

20

- | = = = Bidder presence

0 10 20 30 40 50 60 70 80 90 100

Bidders %



Bidder Presence/WIin Curves
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Bidder Presence/Win Curves
(Normal case)
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10% of the bidders participated in 20% of
the auctions and won 20% of the times

20



Outline

e Motivation: find a bargain and avoid fraud

e Contributions: anomaly detection system to
identify price inflating sellers:

— The N model: a seller is suspicious If they post many
auctions that attract many bids

— The M model: a seller is suspicious if they attract
many bids and start with high minimum bid

— The P model: a seller is suspicious if they have a
group of bidders that repeatedly participate and lose

e Reputation example
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Results Summary

e 54 sellers classified as
abnormal with respect
to at least one model

e 3 sellers classified as
abnormal with respect
to all three models

 No confirmed fraud
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Summary

e Trust: do we get what we expected?

* Reputation system as anomaly detection
— Attempt to identify price inflation
— Work at the business level
— Consider poisoning attack (see paper)

Thank you.
Questions?
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