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Self-Checksumming
• Program contains code to checksum parts of its 

own code.
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Self-Checksumming
• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-checking, checksumming
components

• Testers and correctors [Horne et al. 2001]

• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 
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The attacker cannot identify all relevant 
checksum code within the protected program.

The attacker runs the protected program at full 
speed or with only a reasonable slowdown.

Self-checksumming programs execute on a 
commodity von Neumann machine.

Assumptions
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Memory Architectures

von Neumann architecture

• Unified code & data memory

• Memory addresses unique

[von Neumann 1945]
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Memory Architectures

Harvard architecture

• Separate code & data memory

• Memory addresses duplicated

[Aiken & Hopper 1946]
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Page-Replication Attack
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Page-Replication Attack
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Page-Replication Attack
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Attack Detection
Observation:

Writes to code affect program differently 
depending upon memory architecture

Use self-modifying code to detect 
page-replication attack
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Self-Modifying Code

Data

RAM

CPU
Write

Fetch

Read
I1



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 14

Self-Modifying Code
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Attack Detection
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Attack Detection
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Resistance to Attack

Data

I-RAM

D-RAM

CPU
Write

Genuine

Altered

I2

Attacker splits writes to code
to update both D-RAM & I-RAM

I2



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 18

Code

Code

Resistance to Attack
• Split writes requires attacker 

to emulate writes to code
– Efficiently done via memory 

page protection bits
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Resistance to Attack
• Split writes requires attacker 

to emulate writes to code
– Efficiently done via memory 

page protection bits

• Make code writes appear 
identical to data writes
– Interleave code and data

– Successful attack requires 
emulation of all writes

RAM
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Drawbacks
• Increases debugging complexity

– Add self-modifying code in final development stage

• Requires writable code pages
– Use alternative attack detection/prevention 

techniques

• Harvard caches must be kept consistent
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Cache Coherency

Code

Data

RAM

CPU
Write

Fetch

Read



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 22

Cache Coherency
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Performance Impact
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Conclusions
Self-modifying code …

… detects page-replication attacks …

… efficiently …

… in a way robust up to emulation attacks …

… restoring the previous viability 
of self-checksumming.
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Questions?
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