
Strengthening Self-Checksumming
via Self-Modifying Code

Jonathon T. Giffin, Mihai Christodorescu, Louis Kruger

Computer Sciences Department
University of Wisconsin

{giffin,mihai,lpkruger}@cs.wisc.edu







6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 4

Self-Checksumming
• Program contains code to checksum parts of its 

own code.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 5

Self-Checksumming
• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-checking, checksumming
components

• Testers and correctors [Horne et al. 2001]

• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 6

The attacker cannot identify all relevant 
checksum code within the protected program.

The attacker runs the protected program at full 
speed or with only a reasonable slowdown.

Self-checksumming programs execute on a 
commodity von Neumann machine.

Assumptions



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 7

Memory Architectures

von Neumann architecture

• Unified code & data memory

• Memory addresses unique

[von Neumann 1945]

Code

Data

RAM
v1

v2

v3

v4



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 8

Memory Architectures

Harvard architecture

• Separate code & data memory

• Memory addresses duplicated

[Aiken & Hopper 1946]
Code

Data

I-RAM

D-RAM
v1

v2

v2



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 9

Page-Replication Attack

Code

Data

RAM

CPU
Write

Fetch

Read

[Wurster et al. 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 10

Page-Replication Attack

Code

Data

Code

I-RAM

D-RAM

CPU

Fetch

Read

Write

RAM

[Wurster et al. 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 11

Page-Replication Attack

Code

Code

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

[Wurster et al. 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 12

Attack Detection
Observation:

Writes to code affect program differently 
depending upon memory architecture

Use self-modifying code to detect 
page-replication attack



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 13

Self-Modifying Code

Data

RAM

CPU
Write

Fetch

Read
I1



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 14

Self-Modifying Code

Data

RAM

CPU
Write

Fetch

Read
I2

Both read & fetch use 
the rewritten instruction I2



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 15

Attack Detection

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

I1

I1



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 16

Attack Detection

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

I2

I1

Read / fetch mismatch detects 
page-replication attack



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 17

Resistance to Attack

Data

I-RAM

D-RAM

CPU
Write

Genuine

Altered

I2

Attacker splits writes to code
to update both D-RAM & I-RAM

I2



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 18

Code

Code

Resistance to Attack
• Split writes requires attacker 

to emulate writes to code
– Efficiently done via memory 

page protection bits

Data

Heap

RAM



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 19

Data

Heap
Code

Code

Code

Code

Code

Data

Data
Code

Heap

Heap

Resistance to Attack
• Split writes requires attacker 

to emulate writes to code
– Efficiently done via memory 

page protection bits

• Make code writes appear 
identical to data writes
– Interleave code and data

– Successful attack requires 
emulation of all writes

RAM



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 20

Drawbacks
• Increases debugging complexity

– Add self-modifying code in final development stage

• Requires writable code pages
– Use alternative attack detection/prevention 

techniques

• Harvard caches must be kept consistent



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 21

Cache Coherency

Code

Data

RAM

CPU
Write

Fetch

Read



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 22

Cache Coherency

Code

Data

RAM

CPU
Write

Fetch

Read

D-Cache

I-Cache



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 23

Performance Impact

0

100

200

300

400

500

600

700

800

900

1000

T
im

e 
(n

s)

Athlon XP Pentium 4 Pentium 3 PPC G4 UltraSPARC 3



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 24

Conclusions
Self-modifying code …

… detects page-replication attacks …

… efficiently …

… in a way robust up to emulation attacks …

… restoring the previous viability 
of self-checksumming.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 25

Questions?

Contact the authors:

Jonathon T. Giffin giffin@cs.wisc.edu

Mihai Christodorescu mihai@cs.wisc.edu

Louis Kruger lpkruger@cs.wisc.edu

Computer Sciences Department
University of Wisconsin


