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Problem 1
Detect malicious modifications to code
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Solution: Self-Checksumming
Program contains code to checksum 

parts of its own code.
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Solution: Self-Checksumming
• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 

• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-modifying checksumming
components

• Testers and correctors [Horne et al. 2001]
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Problem 2
Is the checksummed & validated code 

actually the code executed?
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Page-Replication Attack
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Page-Replication Attack
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x86: Set DS & CS registers
to different memory segments
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Page-Replication Attack
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SPARC: Fill D-TLB and I-TLB entries
at same virtual address with
different physical addresses
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Page-Replication Attack
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Solution
Observation:

Writes to code affect program differently 
when a page-replication attack is underway

Use self-modifying code to detect 
page-replication attack
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Solution
1. Overwrite instruction I1 at address v with 

new instruction I2 that alters control-flow

2. Read back the value at v

3. Execute the instruction at v
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Attack Detection
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Attack Detection
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Attack Detection
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Attack Detection
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Solution
1. Overwrite instruction I1 at address v with 

new instruction I2 that alters control-flow

2. Read back the value at v

3. Execute the instruction at v
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Taking Stock
… So self-checksumming works again, right?

No.

Self-checksumming will always fail
in current, realistic threat models.
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Problem 3
Attackers first remove checksum code,

then maliciously modify program
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Solution: Redefine the Threat
The attacker cannot identify all relevant 

checksum code within the protected program.

“cannot identify” “cannot reverse engineer”

Obfuscate
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Solution: Redefine the Threat
• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 

• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-modifying checksumming
components

• Testers and correctors [Horne et al. 2001]
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Solution: Redefine the Threat
The attacker cannot identify all relevant 

checksum code within the protected program.

The attacker can reverse engineer 
& modify any non-checksumming code…

…but the attacker cannot reverse engineer
& remove the checksum computation code.
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Realistic Threats

The attacker can understand and
arbitrarily alter any code in the program.

[Madou et al. DRM 2005]
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Root Problem
No trust base.

Process

Malicious
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Root Problem
No trust base.

Self-checksumming will inherently
and always fail in such an environment.
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Root Problem
No trust base.

“Software alone never gets you assurance.”

“Need independent processor & address space.”

-- Brian Snow, 9:29 AM today
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Solution
Trusted computing; remote verification

Process

Malicious
Operating System

TPM +
CPU

Trusted Verifier

Trusted
Operating System

Trusted
CPU

Signed
Checksum



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 30

Solution
Trusted computing; remote verification

Process

Malicious
Operating System

TPM +
CPU

Trusted hardware alone
is insufficient:

Malicious OS or malicious
process can alter or remove 

local verification routines
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Solution
Trusted computing; remote verification

Remote verification alone
is insufficient:

Malicious OS can again mount
page-replication attacks
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Conclusions
• Strengthening self-checksumming via self-

modifying code
– Detects page-replication attack

• Fundamental attacks against self-
checksumming remain valid

• Trusted hardware + remote verification needed 
for secure checksum validation



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 33

Questions?
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