
Strengthening Self-Checksumming
via Self-Modifying Code

Jonathon T. Giffin, Mihai Christodorescu, Louis Kruger

Computer Sciences Department
University of Wisconsin

{giffin,mihai,lpkruger}@cs.wisc.edu



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 2

Problem 1
Detect malicious modifications to code



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 3

Problem 1
Detect malicious modifications to code



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 4

Solution: Self-Checksumming
Program contains code to checksum 

parts of its own code.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 5

Solution: Self-Checksumming
• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 

• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-modifying checksumming
components

• Testers and correctors [Horne et al. 2001]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 6

Problem 2
Is the checksummed & validated code 

actually the code executed?



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 7

Normal Memory Accesses

Code

Data

RAM

CPU
Write

Fetch

Read



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 8

Page-Replication Attack

Code

Data

Code

I-RAM

D-RAM

CPU

Fetch

Read

Write

RAM

[Wurster et al. 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 9

Page-Replication Attack

Code

Code

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write

[Wurster et al. 2005]

x86: Set DS & CS registers
to different memory segments



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 10

Page-Replication Attack

Code

Code

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write

[Wurster et al. 2005]

SPARC: Fill D-TLB and I-TLB entries
at same virtual address with
different physical addresses



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 11

Page-Replication Attack

Code

Code

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

[Wurster et al. 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 12

Solution
Observation:

Writes to code affect program differently 
when a page-replication attack is underway

Use self-modifying code to detect 
page-replication attack



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 13

Solution
1. Overwrite instruction I1 at address v with 

new instruction I2 that alters control-flow

2. Read back the value at v

3. Execute the instruction at v



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 14

Attack Detection

Data

RAM

CPU
Write

Fetch

Read
I1

No attack: Code alteration 
visible to both data read

& instruction fetch



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 15

Attack Detection

Data

RAM

CPU
Write

Fetch

Read
I2

No attack: Code alteration 
visible to both data read

& instruction fetch



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 16

Attack Detection

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

I1

I1

Page-replication attack:
Read / fetch mismatch



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 17

Attack Detection

Data

I-RAM

D-RAM

CPU

Fetch

Read

Write
Genuine

Altered

I2

I1

Page-replication attack:
Read / fetch mismatch



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 18

Solution
1. Overwrite instruction I1 at address v with 

new instruction I2 that alters control-flow

2. Read back the value at v

3. Execute the instruction at v

No AttackAttackI2

AttackAttackI1

I2I1

Value read

Control-flow
path followed



Self-Checksumming
and Reality

Jonathon T. Giffin, Mihai Christodorescu, Louis Kruger

Computer Sciences Department
University of Wisconsin

{giffin,mihai,lpkruger}@cs.wisc.edu



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 20

Taking Stock
… So self-checksumming works again, right?

No.

Self-checksumming will always fail
in current, realistic threat models.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 21

Problem 3
Attackers first remove checksum code,

then maliciously modify program



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 22

Solution: Redefine the Threat
The attacker cannot identify all relevant 

checksum code within the protected program.

“cannot identify” “cannot reverse engineer”

Obfuscate



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 23

Solution: Redefine the Threat
• Network of guards [Chang & Atallah 2001]

– Many overlapping checksumming components 

• Integrity Verification Kernels [Aucsmith 1996]

– Multithreaded, self-modifying checksumming
components

• Testers and correctors [Horne et al. 2001]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 24

Solution: Redefine the Threat
The attacker cannot identify all relevant 

checksum code within the protected program.

The attacker can reverse engineer 
& modify any non-checksumming code…

…but the attacker cannot reverse engineer
& remove the checksum computation code.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 25

Realistic Threats

The attacker can understand and
arbitrarily alter any code in the program.

[Madou et al. DRM 2005]



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 26

Root Problem
No trust base.

Process

Malicious
Operating System

Malicious
CPU



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 27

Root Problem
No trust base.

Self-checksumming will inherently
and always fail in such an environment.



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 28

Root Problem
No trust base.

“Software alone never gets you assurance.”

“Need independent processor & address space.”

-- Brian Snow, 9:29 AM today



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 29

Solution
Trusted computing; remote verification

Process

Malicious
Operating System

TPM +
CPU

Trusted Verifier

Trusted
Operating System

Trusted
CPU

Signed
Checksum



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 30

Solution
Trusted computing; remote verification

Process

Malicious
Operating System

TPM +
CPU

Trusted hardware alone
is insufficient:

Malicious OS or malicious
process can alter or remove 

local verification routines



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 31

Solution
Trusted computing; remote verification

Remote verification alone
is insufficient:

Malicious OS can again mount
page-replication attacks



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 32

Conclusions
• Strengthening self-checksumming via self-

modifying code
– Detects page-replication attack

• Fundamental attacks against self-
checksumming remain valid

• Trusted hardware + remote verification needed 
for secure checksum validation



6 December 2005 Strengthening Self-Checksumming via Self-Modifying Code 33

Questions?

Contact the authors:

Jonathon T. Giffin giffin@cs.wisc.edu

Mihai Christodorescu mihai@cs.wisc.edu

Louis Kruger lpkruger@cs.wisc.edu

Computer Sciences Department
University of Wisconsin


