
Hardware-Driven Evolution in Storage Software

by

Zev Weiss

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2018

Date of final oral examination: June 8, 2018



ii

The dissertation is approved by the following members of the Final Oral
Committee:
Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Michael M. Swift, Professor, Computer Sciences
Karthikeyan Sankaralingam, Professor, Computer Sciences
Johannes Wallmann, Associate Professor, Mead Witter School
of Music





i

© Copyright by Zev Weiss 2018
All Rights Reserved



ii

To my parents,
for their endless support,
and my cousin Charlie,

one of the kindest people I’ve ever known.



iii

Acknowledgments

I have taken what might be politely called a “scenic route”
of sorts through grad school. While Ph.D. students more
focused on a rapid graduation turnaround time might find
this regrettable, I am glad to have done so, in part because it
has afforded me the opportunities to meet and work with so
many excellent people along the way.

I owe debts of gratitude to a large cast of characters:
To my advisors, Andrea and Remzi Arpaci-Dusseau. It

is one of the most common pieces of wisdom imparted on
incoming grad students that one’s relationship with one’s
advisor (or advisors) is perhaps the single most important
factor in whether these years of your life will be pleasant or
unpleasant, and I feel exceptionally fortunate to have ended up



iv

with the advisors that I’ve had. I have always been granted
plenty of independence, but also given the guidance and
suggestions to point me in a useful direction when I’ve gotten
stuck. Andrea’s thorough, thoughtful feedback on paper drafts
(and of course this very document) has been invaluable. Her
CS402 program was a rewarding, enjoyable experience (even
though I unfortunately missed the semesters when she was
actually around running it herself), and provides a wonderful
service to Madison schools and their students. I am glad
Remzi happened to notice my shenanigans in 537 projects
(and deem them acceptable, even when they were horrifying),
and in spite of them still provide me the opportunity to teach
the same course some years later. I will miss our weekly
meetings, especially the ones that veered off course.

To Ed Almasy and Rachael Bower, fearless co-directors of
the Internet Scout Research Group, who welcomed me into
their wonderful work environment, where I happily remained
through nearly my entire career as a grad student.

To Rustam Lalkaka, officemate and co-sysadmin at Scout,
who perhaps unintentionally ended up responsible for a large
part of how the rest of my time here at UW-Madison has un-
folded by suggesting that I take CS537 from Remzi. (“Who?”
I said. “He’s cool, you won’t regret it”, he replied, propheti-
cally.)



v

To Corey Halpin, with whom I have shared countless
lengthy and enjoyable conversations on many matters, but
most often a shared (excellent!) taste in software.

To Johannes Wallmann, for guiding me through my music
minor, running an excellent jazz program at the UW School
of Music, and bravely serving on a CS dissertation defense
committee!

To Karu Sankaralingam and Mike Swift, for the interesting
courses they’ve taught (and taught well), and for agreeing to
listen to me defend this dissertation.

To Tyler Harter – the only student coauthor I’ve worked
with in my time here, but as excellent a coauthor as one could
hope for, with a remarkable knack for presenting complex
topics in clear, comprehensible ways. To Jun He, who has
endured me as an officemate for longer than anyone else,
providing numerous interesting discussions along the way.
And to all the other members of the Arpaci-Dusseau group
I’ve worked with and learned so much from over the last seven
years: Ram Alagappan, Leo Arulraj, Vijay Chidambaram,
Thahn Do, Aishwarya Ganesan, Joo Yung Hwang, Sudarsun
Kannan, Samer al-Kiswany, Jing Liu, Lanyue Lu, Yuvraj
Patel, Thanu Pillai, Kan Wu, Suli Yang, Yiying Zhang, Yupu
Zhang, and Dennis Zhou.

To the friends I’ve made in the department here: Ben



vi

Bramble, Mark Coatsworth, Adam Everspaugh, Thomas
Griebel, Rob Jellinek, Kevin Kowalski, Ben Miller, Evan Rad-
koff, Will Seale, Brent Stephens, Venkatanathan Varadarajan,
Ara Vartanian. The diverse discussions, project collabora-
tions, beers on the terrace, and other adventures many and
varied have been a pleasure.

To the people I worked with at Fusion-io: Sriram Subra-
manian, Swaminathan Sundararaman, Nisha Talagala, and
the members of the Clones team. I thoroughly enjoyed my
time there, and am grateful for the honor of being granted, via
custom-emblazoned sweatshirt, the status of “intern emeritus”
when I left to return to Madison.

To the many people of SimpleMachines, where there’s
never a dull moment, and where almost everything is good.

To Angela Thorpe for being so helpful with administrative
questions and deftly coordinating the CS graduate program –
especially critical for those among us who perhaps fall slightly
toward the less-organized end of the spectrum.

To Eric Siereveld for skillfully directing the UW Latin Jazz
Ensemble the two years I was fortunate enough to play in
it, and Josh Agterberg, Andrew Baldwin, Rachel Heuer, and
Will Porter for providing a wonderful ensemble to perform
with for my minor recital.

To Michaela Vatcheva, for so many interesting times and



vii

conversations, and for getting me to (after sufficient prodding)
finally join the sailing club – my only regret is that I took so
long to heed this advice.

To Amy De Simone for befriending me when I had just
moved to a new and unfamiliar city, and bringing me along
on walks with her dog.

To Becky, for her patience and encouragement, especially
in these last few weeks.

And to my sister, Samara, and parents, Alan and Cheryl,
for their love and support.



viii



ix

Contents

Contents ix

List of Figures xv

Abstract xxvii

1 Introduction 1
1.1 Trace Replay in the Multicore Era . . . 1
1.2 Advanced Virtualization for Flash Storage 6
1.3 Cache-Compact Filesystems for NVM . 10
1.4 Overview . . . . . . . . . . . . . . . . . 16

2 Accurate Trace Replay for Multithreaded Applica-
tions 19



x

2.1 Introduction . . . . . . . . . . . . . . . . 21
2.2 Trace Mining . . . . . . . . . . . . . . . 29

2.2.1 Trace Inputs . . . . . . . . . . . 31
2.2.2 Inference . . . . . . . . . . . . . 32

2.3 ROOT: Ordering Heuristics . . . . . . . 36
2.3.1 Trace Model . . . . . . . . . . . 37
2.3.2 Ordering Rules . . . . . . . . . . 40

2.4 ARTC: System-Call Replay . . . . . . . 45
2.4.1 Goals . . . . . . . . . . . . . . . 45
2.4.2 ROOT with System-Call Traces 47
2.4.3 Implementation . . . . . . . . . . 52

2.5 Evaluation . . . . . . . . . . . . . . . . . 61
2.5.1 Semantic Correctness: Magritte . 64
2.5.2 Performance Accuracy . . . . . . 67

2.6 Case Study: Magritte . . . . . . . . . . . 80
2.6.1 fsync Semantics . . . . . . . . . 82

2.7 Related Work . . . . . . . . . . . . . . . 84
2.8 Conclusion . . . . . . . . . . . . . . . . 86

3 Storage Virtualization for Solid-State Devices 89
3.1 Introduction . . . . . . . . . . . . . . . . 90
3.2 Background . . . . . . . . . . . . . . . . 97
3.3 Structure . . . . . . . . . . . . . . . . . 99
3.4 Interfaces . . . . . . . . . . . . . . . . . 101

3.4.1 Range Operations . . . . . . . . 101



xi

3.4.2 Complementary Properties . . . 103
3.5 Implementation . . . . . . . . . . . . . . 105

3.5.1 Log Structuring . . . . . . . . . . 105
3.5.2 Metadata Persistence . . . . . . 106
3.5.3 Space Management . . . . . . . . 107

3.6 Garbage Collection . . . . . . . . . . . . 109
3.6.1 Design Considerations . . . . . . 109
3.6.2 Possible Approaches . . . . . . . 111
3.6.3 Design . . . . . . . . . . . . . . . 116
3.6.4 Scanner . . . . . . . . . . . . . . 118
3.6.5 Cleaner . . . . . . . . . . . . . . 121
3.6.6 Techniques and Optimizations . 124

3.7 Case Studies . . . . . . . . . . . . . . . 132
3.7.1 Snapshots . . . . . . . . . . . . . 132
3.7.2 Deduplication . . . . . . . . . . . 137
3.7.3 Single-Write Journaling . . . . . 138

3.8 GC Evaluation . . . . . . . . . . . . . . 144
3.8.1 Garbage Collection in Action . . 144
3.8.2 GC Capacity Scaling . . . . . . . 147

3.9 Conclusion . . . . . . . . . . . . . . . . 148

4 Cache-Conscious Filesystems for Low-Latency Storage151
4.1 Introduction . . . . . . . . . . . . . . . . 153
4.2 Filesystem Cache Access Patterns . . . . 155
4.3 DenseFS . . . . . . . . . . . . . . . . . . 169



xii

4.3.1 Data Cache Compaction . . . . . 170
4.3.2 Instruction Cache Compaction . 178
4.3.3 A Second Generation . . . . . . . 184

4.4 Evaluation . . . . . . . . . . . . . . . . . 193
4.4.1 Microbenchmark results . . . . . 193
4.4.2 DenseFS1 application results: grep197
4.4.3 DenseFS2 application results: SQLite198

4.5 Related Work . . . . . . . . . . . . . . . 205
4.6 Conclusion . . . . . . . . . . . . . . . . 208

5 Conclusions 211
5.1 Increasing Core Counts and Trace Replay 212
5.2 Flash and Storage Virtualization . . . . 214
5.3 NVM and Filesystem Cache Behavior . 214
5.4 Future Work . . . . . . . . . . . . . . . . 216
5.5 Final Thoughts . . . . . . . . . . . . . . 218

Bibliography 221



xiii





xv

List of Figures

2.1 Techniques for I/O-space inference. Active tracing
perturbs timing by artificially delaying specific
events so as to observe which other events are
affected; passive tracing allows all events to occur
at their natural pace. . . . . . . . . . . . . . . . . 33

2.2 Example action series. A snippet from a simple
system-call trace for two threads is shown in 2.2(a).
Beneath each event, a comment lists the resource
touched by each system call. 2.2(b) shows the
action series corresponding to each resource that
appears in the trace. . . . . . . . . . . . . . . . . 39



xvi

2.3 Ordering Rules. a1 < a2 means action a1 must
be replayed before action a2. acts[create] and
acts[delete] represent acts[first] and acts[last], re-
spectively, when the first action in a series is a
create or when the last action is a delete. When
this is not the case, the constraint does not apply. 42

2.4 Examples of valid and invalid orderings. Each
square represents an action. Different colors rep-
resent consecutive generations of the same name.
Thick borders indicate creation and deletion events. 44

2.5 Replay modes. Circles represent reasonable ways
to apply rules to resources; filled circles are modes
currently supported by ARTC. thread_seq is al-
ways required; path_stage and path_name must
be applied jointly. All supported rules except
program_seq are enforced by default. . . . . . . . 47



xvii

2.6 ARTC Components. From the source system we
collect an initial snapshot of filesystem state and
a trace of application system calls. The ARTC
compiler translates these into C code representing
a set of static data structures that are compiled
into a shared library. The ARTC replayer then
loads this library and uses the data inside it to
initialize the filesystem and replay the trace on the
target system. . . . . . . . . . . . . . . . . . . . . 53

2.7 Replay failure rates. The number of event-replay
failures in each trace is shown for a completely un-
constrained multithreaded replay (UC), temporally-
ordered replay (TO), single-threaded replay (ST),
and ARTC, all in AFAP mode. Each data point
is the largest failure count observed in five runs.
The rightmost column shows the total number of
replayed actions in the trace. . . . . . . . . . . . 63

2.8 Microbenchmarks. Effect of feedback loops on
accuracy. Labels on the original-program bars
indicate running times for the original program on
the target system. Labels on other bars indicate a
percentage error relative to the original. . . . . . 68



xviii

2.9 Varying anticipation. Throughput achieved by
executions with varying slice_sync values. Per-
formance is shown for the original program and
three replays of two traces (source slice_sync
values of 1ms and 100ms). . . . . . . . . . . . . . 72

2.10 LevelDB fillsync replays. On each plot, a base-
line shows how long the original program runs on
the target platform. Bars near this line indicate
an accurate replay. . . . . . . . . . . . . . . . . . 74

2.11 LevelDB readrandom replays. On each plot, a
baseline shows how long the original program runs
on the target platform. Bars near this line indicate
an accurate replay. . . . . . . . . . . . . . . . . . 75

2.12 LevelDB timing error distribution. This figure
shows the distribution of timing errors for the 98
replays performed in each mode. . . . . . . . . . 76



xix

2.13 LevelDB dependency graph. A directed graph
showing replay dependencies enforced by ARTC’s
resource-aware ordering (solid red) and temporal
ordering (dashed blue). Green horizontal edges
indicate thread ordering; thus each row of nodes
represents a thread. The ordering of the nodes in
the horizontal direction is based on their ordering
in the original trace. All calls in this window of
time are preads; each node is labeled with the
number of the file descriptor accessed by the call. 78

2.14 Concurrency. System-call overlap achieved by dif-
ferent replays of a 4-thread LevelDB readrandom
trace on ext4 with a single HDD. . . . . . . . . . 79

2.15 Magritte thread-time components on ext4, HDD
vs. SSD. The vertical axis of the SSD graph is
scaled to match that of the HDD graph. . . . . . . 81

2.16 fsync latency. Latencies are shown at the 10th,
50th, 95th, and 99th percentiles for xfs, and HFS+
with two different fsync replay modes. . . . . . . 83



xx

3.1 ANViL’s position in the storage stack. While the
backing device used to provide ANViL’s physical
storage space is not required to be flash, it is
explicitly designed to operate in a flash-friendly
manner and is intended for use with SSDs (or
arrays thereof). . . . . . . . . . . . . . . . . . . . 100

3.2 Segment life cycle. Segments in the states shaded
green are immutable and managed entirely by the
GC; written and candidate segments are managed
by the scanner while those in the ready for cleaning
state are managed by the cleaner. . . . . . . . . . . 117

3.3 The ANViL garbage collection process. Starting
from the initial state in 1©, 2© through 6© illus-
trate the actions of the scanner and the cleaner in
reclaiming a segment. . . . . . . . . . . . . . . . 122

3.4 Time to copy files of various sizes via standard cp
with both a cold and a warm page cache, and using
a special ANViL ioctl in our modified version of
ext4. . . . . . . . . . . . . . . . . . . . . . . . . . 135



xxi

3.5 Random write IOPS on ANViL and LVM, both in
isolation and with a recently-activated snapshot.
The baseline bars illustrate ANViL’s raw I/O per-
formance. Its relatively low performance at small
queue depths is due to the overhead incurred by
its metadata updates. . . . . . . . . . . . . . . . 136

3.6 Transactions via address remapping. By using an
application-managed scratch area, atomic transactional
updates can be implemented using range operations.
At 1© the system is in its initial pre-transaction state,
with logical blocks L1, L2, and L3 each mapped to
blocks containing the initial versions of the relevant
data. Between 1© and 2©, new versions of these blocks
are written out to logical addresses in a temporary
scratch area (L4, L5, and L6). Note that these inter-
mediate writes do not have to be performed atomically.
Once the all writes to the temporary locations in the
scratch area have completed, a single atomic vectored
range-move operation remaps the new blocks at L4, L5,
and L6 to L1, L2, and L3, respectively, transitioning
the system into state 3©, at which point the transaction
is fully committed. The recovery protocol in the event
of a mid-transaction failure is simply to discard the
scratch area. . . . . . . . . . . . . . . . . . . . . . 140



xxii

3.7 Data journaling write throughput with ANViL-
optimized ext4a compared to unmodified ext4.
Each bar is labeled with absolute write bandwidth
(MiB/second). . . . . . . . . . . . . . . . . . . . . 143

3.8 Steady-state GC activity. This figure shows the op-
eration of the GC under a steady, intense, random-
write workload starting from a freshly-initialized
(empty) state. As the overall space utilization
grows, the rate limiter allocates an increasing frac-
tion of the backing device’s I/O bandwidth to
garbage collection, eventually reaching a stable
equilibrium at which the garbage collector reclaims
segments at roughly the same rate as they are al-
located to accommodate incoming write requests. 145

3.9 GC capacity scaling. We populate the device with
some data and alter the GC to clean segments
even though they contain only live data. The cost
in time and mappings scanned thus represents the
time spent by the GC in moving all of the data
that was originally written. . . . . . . . . . . . . 146



xxiii

3.10 Scanner scalability. This figure illustrates the scal-
ability of the GC’s multithreaded scanning, show-
ing scanning performance at varying thread counts.
The scanner achieves near-linear scaling up to 12
threads (the number of CPU cores on the test sys-
tem). The dashed line represents perfect linear
scaling extrapolated from the measured perfor-
mance of a single thread. . . . . . . . . . . . . . 148

4.1 Cachemaps of metadata operations on btrfs. . . . . 157

4.2 Cachemaps of metadata operations on ext4. . . . 158

4.3 Cachemaps of metadata operations on f2fs. . . . 159

4.4 Cachemaps of metadata operations on xfs. . . . . 160

4.5 Cachemaps of metadata operations on tmpfs. . . . 161

4.6 Cgstack flame graphs of the components contribut-
ing to the code footprints of Linux filesystems. . 166

4.7 The 56-byte DenseFS inode structure. File data
is stored in a red-black interval tree of contiguous
extents (data.chunks); directory entries are kept
in a simple linked list (data.dirents). . . . . . . 175

4.8 In-memory inode sizes of Linux filesystems. 576
bytes of each inode is consumed by the generic
VFS struct inode embedded within it. . . . . . 176



xxiv

4.9 Data cachemaps of DenseFS, before and after
cache-compaction optimizations. The hatched
green regions near the tops of the packed cachemaps
indicate cache footprint eliminated by the optimiza-
tions described in Section 4.3. . . . . . . . . . . . . 177

4.10 Instruction cachemaps of DenseFS, before and af-
ter cache-compaction optimizations. The hatched
green regions near the tops of the packed cachemaps
indicate cache footprint eliminated by the optimiza-
tions described in Section 4.3. . . . . . . . . . . . . 181

4.11 Cgstack flame graphs showing the code footprint of
densefs in comparison to those of Linux filesystems.183

4.12 32-byte DenseFS2 inode structure. The __lock_metaidx_size
field contains three sub-fields as indicated by its
name: a 1-bit spinlock, a 16-bit index into the
global <uid, gid, mode> table, and a 47-bit size.
These are extracted and updated by a set of helper
functions that perform the requisite shifting and
masking. . . . . . . . . . . . . . . . . . . . . . . . 190



xxv

4.13 Microbenchmark performance results. The verti-
cal axis shows the relative increase in time spent
executing user-mode code when regular calls to
the given system call on the given filesystem are in-
serted (i.e. the performance penalty of the syscall
on user-mode execution). The horizontal axis
shows the data and instruction cache footprints
(both are adjusted in tandem) of the user-mode
code executed between system calls. . . . . . . . 194

4.14 User- and kernel-mode CPU cycle counts for grep
-r on a 750MB directory tree. . . . . . . . . . . . . 197

4.15 User- and kernel-mode CPU cycle counts for SQLite
random-insert benchmark with the unix-none vfs,
C version. . . . . . . . . . . . . . . . . . . . . . . . 201

4.16 User- and kernel-mode CPU cycle counts for SQLite
random-insert benchmark with the unix-none vfs,
Python version. . . . . . . . . . . . . . . . . . . . 202

4.17 User- and kernel-mode CPU cycle counts for SQLite
random-insert benchmark with the unix-dotfile
vfs, C version. . . . . . . . . . . . . . . . . . . . . 203

4.18 User- and kernel-mode CPU cycle counts for SQLite
random-insert benchmark with the unix-dotfile
vfs, Python version. . . . . . . . . . . . . . . . . 204





xxvii

Abstract

As technology improves, changes in hardware drive corre-
sponding adaptations in software. This thesis examines the
hardware-driven evolution of both applications and system
software as they relate to the matter of data storage in modern
computing systems.

The move from single-processor systems to ones with
numerous CPU cores executing in parallel has motivated
applications to make increasing use of multithreading. The
resulting nondeterminism introduces new difficulties to the
common technique of evaluating storage system performance
by replaying traces of application execution. We present
the ROOT technique and implementation of it, ARTC, to
address this challenge and provide a trace replay system for



xxviii

multithreaded applications that is both reliable and accurate
in its performance projections.

Storage hardware has also undergone major changes in
recent years, with traditional hard-disk drives increasingly dis-
placed by flash-based SSDs, and even more recently emerging
nonvolatile memory technologies. This shift drives the need
for new software to manage these new devices and provide
useful storage features and functionality, such as file cloning
and deduplication, in a manner well-suited to the characteris-
tics of the new hardware. Here we present ANViL, a storage
virtualization system that provides these features in a novel
way developed expressly for flash storage.

The dramatic difference in the performance characteristics
of emerging storage technologies relative to the much slower
mechanical devices they are replacing, however, also shines
a new and unflattering light on the performance of storage
software. Much of this software dates from the era of the
hard-disk drive, when CPU cycles were often considered es-
sentially “free” in comparison to the long latencies of disk
operations. This performance imbalance made it easy to do
relatively expensive things in software, safe in the knowledge
that their performance cost would be hidden by the much
slower storage devices they managed. However, as the perfor-
mance gap between CPUs and storage hardware narrows, the



xxix

CPU execution performance of software in the storage stack
becomes increasingly critical. For this problem we present
DenseFS, a prototype filesystem with the explicit aim of min-
imizing its use of CPU cache resources in an effort to not
only run efficiently itself, but also to reduce its impact on
application performance.

These pieces exemplify how software evolution in response
to changes in hardware occurs, but also how it differs as the
hardware in question becomes increasingly well-established.
Multicore CPUs have been commodity items for over a decade
and are now nearly unavoidably ubiquitous; we examine a
delayed, second-order effect of this change on a specialized
area of storage software, as its more immediate effects have
been studied since it was a younger technology. Flash has been
widespread for some time, but is not yet so deeply ingrained
in the hardware landscape; here we examine one part of the
ecosystem of storage software that is still in the process of
adapting to suit the new hardware. Finally, NVM technologies
are just beginning to arrive; the major, first-order questions it
raises, such as what an NVM-oriented filesystem might look
like, are thus still being addressed. Taken together then, these
three components illustrate different stages in the chronology
of how software’s hardware-driven evolution has occurred, and
how we expect it is likely to continue.



1

1

Introduction

As computing hardware evolves over time, its interfaces typ-
ically maintain backward compatibility so as not to disrupt
the operation of existing software. In order to fully exploit
the potential of improved hardware, however, software in both
applications and operating systems must also adapt. This
thesis explores such hardware-driven software evolution in the
specific context of storage systems.

1.1 Trace Replay in the Multicore Era

As clock frequencies and serial CPU performance have gradu-
ally plateaued, performance improvements in recent genera-
tions of CPUs have come largely from increasing parallelism



2

in the form of ever-growing numbers of CPU cores [13]. Off-
the-shelf, consumer-grade desktops and laptops in 2018 are
typically equipped with between two and eight CPU cores;
servers often offer dozens. In order to make use of this added
processing power, application code for tasks that would pre-
viously have been implemented with fewer threads (or per-
haps only one) has evolved to employ increasing numbers of
threads [106].

The adoption of multithreading in applications has intro-
duced significant new questions and problems, including the
difficulty of writing programs that avoid race conditions and
deadlocks [32, 43, 124, 133], how to debug multithreaded pro-
grams effectively [18, 85, 103], and how to avoid performance
bottlenecks that limit scalability [19, 24]. Specific incarnations
of these problems, particularly regarding issues of performance
and scalability, have also arisen in the area of storage systems,
and have been the subject of prior research [20, 100, 109, 160].

Here we examine a second-order effect of multithreaded ap-
plications on storage systems, specifically in their interactions
with trace replay, a popular and useful technique commonly
used in evaluating the performance of storage software and
hardware. The nondeterministic behavior of multithreaded
applications poses a problem for trace replay: the behavior of
the application (particularly in the ordering of its filesystem



3

operations between different threads) can be highly dependent
on the particular performance characteristics of the system
on which it runs. This dependency means that a simple trace
replay that does not exhibit nondeterminism similar to that
of the original application itself can result in behavior that
diverges substantially from that of the actual application
running on the same system.

We explore this problem in detail and present a novel tech-
nique, Resource-Oriented Ordering for Trace replay (ROOT),
to address it by safely preserving the nondeterminism of mul-
tithreaded applications during replay. The ROOT approach
uses automated analysis of the events recorded in a trace to
examine the set of resources accessed by each event and then
construct a graph of inter-event dependencies. Since we apply
this technique to Unix system calls (and particularly filesys-
tem operations), we focus on filesystem-related resources, such
as files and path names. The resulting dependency graph can
then be used during replay to allow it to perform actions in
different orders than the one recorded in the trace, preserving
the multithreading nondeterminism of the original program,
while still maintaining the semantics of the original ordering
in the trace.

We present an implementation of ROOT called ARTC (an
Approximate-Replay Trace Compiler) that performs nondeter-



4

ministic replay of multithreaded Unix system call traces across
a variety of Unix-like operating systems. We evaluate ARTC
in two key areas, its semantic correctness and its performance
accuracy, and compare it to three simpler approaches to the
problem, one which reorders more freely than ARTC and two
that conservatively disallow any reordering.

To evaluate semantic correctness, we use ARTC to replay
a suite of complex traces of modern multithreaded desktop
applications [56] and measure its error rate (the number of
deviations from the operation results recorded in the original
trace). We find that ARTC achieves a nearly identical degree
of semantic correctness to the order-preserving replay modes,
while the less constrained mode often fails catastrophically.

We then continue our evaluation using a series of micro-
and macro-benchmarks to measure ARTC’s performance accu-
racy – specifically, how closely it matches the performance of
the original program when system parameters are changed. To
illustrate feedback effects between systems and applications
(where the performance characteristics of the system affects
the behavior of applications running on it), we run a set of
microbenchmarks, each aimed at a specific parameter. In
each case, ARTC responds appropriately as the parameter is
adjusted, accurately tracking the performance of the original
program re-executed with the same adjustment, deviating by



5

at most 5%. In contrast, the other replay strategies we evalu-
ate frequently yield wildly inaccurate performance estimates,
often erring by 15-50%, and in some cases far more. We
then extend our performance accuracy evaluation with two
LevelDB workloads. With seven system configurations, we
evaluate the full cross-product with one configuration as the
trace source and another as the replay target, comparing per-
formance of the trace replay against the original program on
the target system. Here we again find that ARTC performs
much more accurately than other replay methods, achiev-
ing a median timing discrepancy of 7.6%, with the median
inaccuracy of next closest method being 19.1%.

By embracing the nondeterminism of multithreaded ap-
plications, we have demonstrated a trace replay methodology
that improves on the state of the art. Our replay uses careful
analysis to permit safely-constrained reordering, allowing it to
achieve superior replication of the behavior and performance
of real applications. ROOT and ARTC thus help trace re-
play for storage systems to adapt to the requirements of the
multicore era.



6

1.2 Advanced Virtualization for Flash
Storage

For many years hard-disk drives (HDDs) were the dominant
technology in storage hardware [8]. During this period, a great
deal of software in the storage stack was developed around
the particular characteristics of hard disks, such as filesystems
and databases with layouts optimized for the specifics of
disk geometries [92, 96, 98] and I/O scheduling algorithms
designed to maximize the throughput of read/write heads
seeking across spinning platters [63, 69, 127, 149].

In the last decade, however, hard disks are being broadly
supplanted by solid-state storage devices (SSDs) with funda-
mentally different characteristics [50, 83, 102]. NAND flash,
to take one common example, cannot be directly overwritten;
it requires that a large contiguous block of data be erased
before any data within it can be rewritten, and each such pro-
gram/erase cycle puts physical wear on the storage chip itself,
shortening its remaining useful life [102]. To compensate for
added complexities such as these, however, solid-state storage
offers far lower access latencies than HDD storage.

The advent of a new storage technology that both in-
troduces a significant leap in performance and changes the
nature of what constitutes a desirable I/O pattern presents



7

a problem for storage software. As long as storage interfaces
are maintained in a backwards-compatible manner, existing
software components continue to function, and do achieve
performance gains, but as they are designed primarily around
the parameters of an entirely different family of hardware
devices they are unlikely to be optimally suited for the newer
hardware technology they are suddenly paired with. This
mismatch drives a need for redesigned software that takes
into account the characteristics of the new hardware to better
utilize its performance potential and avoid premature device
wear-out [23, 71, 79, 81].

With ANViL we present such a redesigned component of
the storage stack. ANViL is a block-level storage virtualization
system designed for modern high-performance flash hardware.
It builds upon its basic underlying flash-friendly structure
to provide a feature set that extends the conventional block-
I/O interface with a small set of new operations that offer a
great deal of added power while remaining simple and easy
to integrate into existing systems.

ANViL is based on a log-structured, redirect-on-write
design; the added complexity and expense of direct over-
writes in flash storage make this an advantageous strategy
for flash-oriented storage systems [79, 155, 159]. It extends
its address-translation layer, however, to allow a many-to-one



8

address map and allows filesystems and applications running
above it to directly manipulate ranges of this map with clone,
move, and delete operations that augment the conventional
read/write block storage interface. We details these range
operations and the implementation of ANViL, going into
particular depth regarding its garbage collector (GC).

The ANViL GC faces a more challenging problem than
the GCs of most log-structured storage systems due to the
many-to-one nature of the address map in combination with
the scale and performance levels at which ANViL is target to
operate. To address this challenge we have designed and im-
plemented a specialized GC comprised of two components, the
scanner and the cleaner, counterparts to the mark and sweep
phases often used in tracing GCs in programming-language
implementations [147], the unlike a mark-and-sweep collector,
our scanner and cleaner operate concurrently and continu-
ously instead of in serialized phases. The GC incorporates
a variety of optimizations and specialized implementation
techniques, including multithreading with dynamic work par-
titioning, pipelining, and a hook mechanism analogous to
the write barriers used in programming-language GCs. Our
evaluation demonstrates that the GC can keep up with the
demands placed on it by heavy foreground write traffic, and
exhibits near-linear performance scaling as data quantities



9

and the population of the address map increase.

After detailing ANViL’s implementation, we then demon-
strate the utility of the extension to the standard block in-
terface provided by its range operations. We show how the
clone operation can be used to, with only a few hundred lines
of code, implement support for low-cost file snapshots and
deduplication in ext4 – a relatively conventional update-in-
place filesystem not designed with such features in mind. We
also demonstrate how the same operation can be easily used
to provide volume snapshots in the style of LVM [58], but
with a far smaller penalty on the volume’s post-snapshot I/O
performance. As a final case study, we show how ANViL’s
range move operation can be used to implement a powerful
transactional-commit mechanism that eliminates the usual
cost of writing data twice, and can be easily incorporated into
existing transactional systems such as journaling filesystems;
we demonstrate by integrating it into ext4’s jbd2 journaling
layer. In addition to improving performance and reducing
wear on flash cells by avoiding the transactional double-write
penalty, utilizing this mechanism can even simplify the sur-
rounding filesystem code by eliminating the need for complex
recovery procedures.

We have designed ANViL’s structure and I/O patterns
to mesh well with the fundamental characteristics of NAND



10

flash devices. The address-remapping layer that is central
to its flash-friendly design can be exposed via a set of small
extensions to the block-I/O interface to enable the storage
virtualization layer to provide a new dimension of functionality
to applications and filesystems. ANViL thus provides an
example of how storage virtualization can be updated to be
better matched to the solid-state storage hardware that is
now widespread.

1.3 Cache-Compact Filesystems for
NVM

While the relatively high-performance flash SSDs targeted by
ANViL have taken over a large (and still-growing) fraction of
the storage-hardware market, it appears that the landscape of
storage hardware may be about to undergo another major shift
with the arrival of nonvolatile memory (NVM) in the form of
technologies such as phase-change memory and memristors [45,
54, 130]. These devices offer the persistence of hard disks
or SSDs, but provide a memory-like interface (operating via
simple load and store CPU instructions as opposed to the
block I/O interface used by most existing persistent storage
devices) and access latencies closer to those of DRAM than
of existing persistent storage devices. While actual NVM



11

hardware has only recently become available and hence has
not thus far seen widespread adoption, the questions of its
integration into storage systems has nevertheless been the
subject of research in the last few years.

The drastically reduced access latencies of NVM invert
the performance assumptions of existing storage software to
an even greater degree than did the arrival of SSDs. Cur-
rent filesystem designs targeted at the relatively high per-
formance of flash in comparison to magnetic disks may still
impose excessive software overhead, rendering the system
incapable of utilizing the full performance of its storage hard-
ware. Research efforts to address this problem have consid-
ered major restructuring of storage software, such as moving
filesystems into user-level code, or even into storage devices
themselves [27, 74, 111, 142, 144].

Another aspect of NVM hardware to which existing soft-
ware is not well-matched stems from its byte-addressable,
memory-style interface. Hard disks and SSDs provide an
interface by which software can perform read and write op-
erations in relatively large, fixed-size units (typically 512 or
4096 bytes), and guarantee the atomicity of individual block
writes in the event of a power loss. NVM, in contrast, is
accessed by software in the same manner it addresses regu-



12

lar (volatile) memory: byte by byte.1 This interface change
presents an incompatibility with the consistency mechanisms
in current storage stacks, which are often reliant on the larger
atomic-write capability provided by block-oriented I/O de-
vices [97, 113, 137]. A variety of methods to solve this prob-
lem for filesystems have been the subject of research in recent
years [39, 150, 152], as have techniques to address analogous
problems that arise in application code [21, 35, 139].

We examine a specific aspect of filesystems relating to the
high performance of NVM hardware. As latencies decrease,
storage-intensive applications that had previously been bottle-
necked by the relatively slow performance of storage hardware
may instead find CPU time an increasingly limiting factor
on their performance. This inversion makes both the raw
CPU execution performance of storage software and its effects
on the performance of application code suddenly much more
critical.

With this in mind, we first analyze the behavior of current
filesystems with regard to one of the most critical hardware
resources for execution performance: the CPU cache. We
perform a detailed study of the cache footprints and access
patterns of five existing Linux filesystems (btrfs, ext4, f2fs, xfs,
and tmpfs). Using instruction-level dynamic execution tracing

1Though the NVM hardware itself, sitting outside the CPU’s cache
hierarchy, will see cache-line-granularity accesses.



13

of the end-to-end kernel code paths of various filesystem
operations, we gather data for both instruction and data
memory accesses and construct detailed visualizations of the
results, finding that most filesystem operations have data
cache footprints that displace most of the first-level cache
state in current CPUs, and even larger instruction cache
footprints that often exceed the size of the L1 instruction
cache by 50% or more. Further, a large fraction of these cache
footprints, especially in the instruction cache, see little to no
reuse of the accessed cache lines, indicating inefficient use of
the cache hardware (which optimizes for access patterns that
exhibit a greater degree of temporal locality).

In order to gain a better high-level understanding of the
sources of the code footprints of these operations, we con-
dense the detailed source-level stack traces collected at each
instruction in our traces into coarse-grained stack traces that
indicate the provenance of each instruction in terms of major
categories of code (such as memory allocation, the page cache,
or journaling) instead of by individual lines of source code. In
examining the resulting data, we see that major, “unavoidable”
components (those common to all filesystems), such as the
VFS layer and page cache, are responsible for a substantial
fraction of overall code footprint across all filesystems.

With this knowledge, we then proceed to implement and



14

evaluate a filesystem design, DenseFS, that makes optimiza-
tion of its cache usage its primary goal. DenseFS aims to not
only achieve high performance execution of its own filesystem
operations, but also to improve the execution performance of
application code by reducing the cache pollution incurred by
its operations. To avoid some of the major sources of increased
code size, we begin by implementing DenseFS outside of the
usual framework of kernel components in which filesystems
typically operate (the VFS, page cache, etc.), instead intro-
ducing a set of DenseFS-specific system calls. We describe a
variety of techniques we have employed to further compact its
code and data structures byte by byte and cache line by cache
line. The result is a highly compact filesystem; the total code
footprints of its operations in most cases occupy less space
than the code footprints of the VFS code alone for the same
operations in the existing filesystems we evaluate.

We then evaluate the performance of DenseFS using a
microbenchmark and a recursive grep, each using DenseFS’s
mirror set of system calls instead of the standard filesystem
operations such as open, read, and stat. Our microbench-
mark enables precise measurements of the impact of filesystem
operations on the CPU performance of user code with vary-
ing code and data working-set sizes. We use it to measure
the performance cost incurred by incorporating filesystem



15

operations into otherwise system-call-free code, and find that
the performance impact of DenseFS is in almost all cases
much lower than any other filesystem, often incurring only
a 10-20% loss where other filesystems cause degradations of
50-150%. Our experiments with grep show large reductions
in kernel execution times as well as improvements of 13-18%
in user-mode CPU performance.

This version of DenseFS, however, suffers from a severe
practical drawback in requiring applications to use a special
set of dedicated DenseFS system calls. To address this short-
coming, we then implement DenseFS2, which is slightly more
integrated into the rest of the kernel – just enough to be
accessed via the existing standard file-access system calls, but
still avoiding the bulk of the VFS layer by quickly detecting
DenseFS2 operations and shunting control to it early in the
call relevant code paths. This arrangement makes evaluating
performance with other applications much easier, as they no
longer require any special treatment to access their data via
DenseFS2. We are then able to perform further performance
evaluation with an unmodified SQLite benchmark program.
On this workload DenseFS2 reduces overall execution time by
20-80% across all configurations we evaluate, and increases
user-mode CPU performance (IPC) by 9-82%.

While it is currently a prototype filesystem with an array



16

of practical difficulties, DenseFS clearly demonstrates the
importance of filesystem cache behavior to overall performance.
With appropriate refinement, we hope that some of its ideas
might one day help filesystems for low-latency NVM devices
better exploit the performance potential of their hardware
resources.

1.4 Overview

Here we provide a broad summary of the contents of the
following chapters so as to provide an overview of the research
presented in the remainder of this dissertation.

In Chapter 2 we present our work in the area of multi-
threaded trace replay with ROOT and ARTC. We explain the
principles of the ROOT analysis and replay methodology and
present the implementation of our ROOT-based trace replay
tool, ARTC, and the results of our evaluation of ARTC’s cor-
rectness and performance. My own contributions to this work
are the constrained nondeterministic replay approach formu-
lated as ROOT, the development of the ARTC replay system,
and, in collaboration with Tyler Harter, the evaluation of
ARTC.

In Chapter 3 we present ANViL, our flash-oriented storage
virtualization system. We detail ANViL’s design and organi-



17

zation, with particular attention to the challenging problem
of its garbage collection. We demonstrate, with a series of
case studies, how its range operations can be easily integrated
into existing software to provide a variety of useful features,
and evaluate the scalability of its garbage collector. I con-
tributed the development of the ANViL garbage collector,
assistance with the design and implementation of other parts
of ANViL (developed by the Advanced Development Group
at Fusion-io and later SanDisk), and the evaluation of the
system presented herein.

In Chapter 4 we present our cache-optimized, NVM-targeted
filesystem, DenseFS. We begin with our trace-based analy-
sis of existing filesystems; we then present the design and
implementation of DenseFS, as well as a second-generation
version that addresses the primary shortcoming of the first by
integrating into existing system calls. We evaluate these imple-
mentations with an assortment of targeted microbenchmarks
and application programs. The design, implementation, and
evaluation of DenseFS presented here are my own individual
work.

Finally, Chapter 5 concludes with a summary of the con-
tributions of this dissertation and some discussion of possible
future research that could extend the work presented here.





19

2

Accurate Trace Replay for
Multithreaded Applications

Trace replay is an important tool in the systems researcher’s
toolbox. In instrumenting a running system to collect a de-
tailed record of its actions (a trace) and then later synthesizing
the execution of those same recorded actions (replaying the
trace), we have a useful technique by which we can repro-
duce a system’s behavior in a controlled environment for
purposes such as performance analysis, optimization, and
debugging. Much existing work in the area of trace replay,
however, operates under the assumption that the most faithful
reproduction of the behavior of the original system is one that
replays recorded actions in the trace exactly as they appear
therein. While this assumption is intuitively reasonable and



20

may be entirely correct in simple cases, it begins to break
down when applied to more complex systems, particularly
those that exhibit nondeterministic behavior.

With the rise of ubiquitous multicore CPUs, software has
begun to increasingly incorporate multiple threads in order
to take advantage of the available hardware. Multithreading
is, however, one of the best-known sources of nondetermin-
ism in computing systems, which complicates the problem
of trace replay. Tracing two runs of the same multithreaded
program on the same system is highly likely to produce two
different-looking traces, as the actions performed by multiple
concurrently-executing threads are interleaved in different or-
ders. Traces taken from the same program on distinct systems
(for example, ones with different performance characteristics)
will likely diverge even more. Replaying such a trace strictly
as it was recorded, then, will not accurately reproduce the
naturally nondeterministic behavior of the original program.

In this chapter we devise a new trace replay methodology,
ROOT, to address this problem, and present an implementa-
tion of this methodology called ARTC. We describe the details
of how ROOT allows some reordering of actions recorded in
a trace, but constrains this reordering via resource-based
analysis so as not to violate the semantics of the trace. We
then evaluate ARTC in comparison to some less sophisticated



21

methods of trace replay and find that it achieves a high de-
gree of semantic correctness, while also providing a much
better reproduction of the original program’s performance
characteristics than do the simpler replay methods.

2.1 Introduction

Quantitatively evaluating storage is a key part of developing
new systems, exploring research ideas, and making informed
purchasing decisions. Because running actual applications
on a variety of storage stacks can be a painful process, it is
common to collect statistics or traces on a single system in
order to understand an application [16, 42, 64, 82, 107, 120,
126, 146, 153].

Trace replay is a useful technique for evaluating the perfor-
mance of different systems [9, 72, 76, 84, 95, 105, 135]. Here
we focus particularly on the use of trace replay for perfor-
mance prediction. A trace of a running application may be
collected on one system (the source) and replayed on another
(the target) in order to predict how the original application
would perform on the target system. Trace replay can be a
valuable tool in evaluating potential system changes such as
upgrading hardware, switching to a different filesystem, or
simply adjusting a configuration parameter.



22

There are a variety of points within the storage stack at
which traces can be collected and replayed. These are typi-
cally at well-defined interfaces between different software or
hardware components. For example, in a distributed storage
system, one might trace requests as they arrive at a server
via the network [41], and replay the resulting trace by gen-
erating network packets encoding the recorded requests and
sending them to the server from a synthetic client application.
Tracing and replay of program behavior can be performed
at the system call interface – the boundary layer between
applications and the operating system [99]. Another major
boundary layer in the storage stack, the block interface at
which filesystems issue raw I/O requests to their underlying
storage devices, can also be used as point of introspection
for tracing [135]; replay in this case is typically performed
by a specialized application accessing a block device directly
instead of via a filesystem.

Different interfaces in the storage stack have advantages
and disadvantages as potential points for trace collection and
replay. As a general rule, tracing at a given point allows
replay of those traces to be used in evaluating changes in
components that sit “downstream” of that point in the stack.
To illustrate in the context of the examples above, a trace
of network requests made to a server in a distributed system



23

could be used to evaluate any software or hardware compo-
nent within the server, because all of those components may
play a role in servicing the requests recorded in the trace. In
the same system, a trace of the system calls made by the
process on the server receiving and servicing those requests
could be used in evaluating changes to the local filesystem
or storage hardware on the server, but not, for example, a
change to the server process itself that allows it to service
some requests from an in-memory cache without accessing
the local filesystem, because the system call trace has already
captured (and thus frozen) that aspect of the server process’s
behavior. Continuing downward, a block-level trace addition-
ally captures the behavior of the filesystem and page cache,
and would thus not be useful in measuring the performance of
a different filesystem or the effects of dedicating more RAM
for use in the page cache, but could still be used to evaluate
changes in the block layers of the storage system, such as the
relative performance of different RAID array configurations.

Performing tracing and replay at higher points in the
storage stack is thus appealing in broadening the scope of
the underlying components that such traces can be used to
evaluate. Higher-level traces are not without their downsides,
however, as moving the traced interface higher in the stack also
constrains the applicability of the traces. A network-request-



24

level trace of a distributed system would only be applicable for
replay in the context of a distributed storage system (and in
practice, given the specificity of network protocols, likely only
that specific system). Similarly, a system call trace from a
Unix-like operating system would be of little use in attempting
to replicate the behavior of the application by replaying it
on Windows (or would at least require substantial amount of
additional development effort for the replay to “translate” the
operations in the trace to match the semantics of a different
system call API). In this regard, the relatively low-level block
layer trace is highly general, as the same simple, standard
block storage interface is ubiquitous across the overwhelming
majority of widely-deployed operating and storage systems.

We find that replaying traces at the system-call level
provides the best balance of the breadth of contexts in which
it is applicable and the scope of the system components it
can be used to evaluate. While the Unix system call interface
does not encompass all the world’s operating systems (and
there exist subtle variations even among nominally Unix-
like systems, as detailed in Section 2.4.3), it is a reasonably
standardized, consistent API in wide use across a variety of
segments of the computing industry, being popular on server,
desktop, and mobile platforms. It is thus applicable to a
multitude of applications, while also sitting atop a rich system



25

of underlying components that it can be used to measure.

At first it might seem that trace replay would offer easy
insight into an application’s performance on an alternate stor-
age stack, since the actions replayed are precisely the actions
the real application performed. However, this glosses over the
nondeterminism of multithreaded applications, which have
become increasingly prevalent with the advent of multicore
CPU hardware. In such applications, while the ordering of
operations within each individual thread may be fixed, there
is no single fixed global order of operations across all threads.
Even on the same system, two executions of the same pro-
gram may produce slightly differing orderings of events; when
comparing across different systems the likelihood of two runs
of a multithreaded program issuing system calls in the exact
same global order becomes vanishingly small [47, 99].

Furthermore, a complex feedback relationship exists be-
tween applications and the systems on which they run: the
behavior of each both affects and depends on the behavior
of the other. The ordering and timing of the requests issued
to the system by the application affects the manner in which
the system performs them, but the ordering and timing of
system’s completion of those requests then also affects the
manner in which the application issues subsequent requests.

For a simple example of the effects of feedback between



26

systems and applications, consider an application with two
threads, each of which independently performs two consecutive
synchronous reads. If Thread 1 and Thread 2 issue their first
reads concurrently, one system might complete Thread 1’s read
first, allowing it to issue its second read well before Thread
2 can request its own second read; another system running
the same program may instead complete Thread 2’s first read
before Thread 1’s, resulting in the opposite ordering of the
second read from each thread. Extrapolating effects of this
nature throughout the entire execution of large programs with
many threads, it is clear that realistic replay of multithreaded
traces is complex, and simplistic approaches that adhere too
closely to the exact behavior recorded in a given trace will
not accurately reflect the actual behavior of real programs
across different systems.

In evaluating the quality of different approaches to trace
replay for performance prediction, we use two main criteria:
semantic correctness and performance accuracy. The former
measures how well the semantics of the operations recorded
in the trace are reproduced by the replay; the latter measures
how close the replay’s performance on the target system
predicts that of the original program.

In some trace replay scenarios, semantic correctness is
nearly trivial; for example, there is little difficulty in replicat-



27

ing the semantics of a single sequential stream of block-I/O
requests. With system-call replay, however, semantic cor-
rectness is less simple: files of appropriate sizes must exist
at appropriate locations, possibly with extended attributes
and other metadata correctly initialized. Considering mul-
tithreaded traces with the possibility of system calls being
reordered between threads introduces further complexity: if
an open and a read in two different threads are reordered
with respect to each other, leading the read to attempt to
access data from a file that is not yet open, the read may fail
with EBADF, deviating from the semantics of what occurred
in the original application.

Trace-replay tools should reflect the characteristics of
applications, including the ordering dependencies of their
execution. Two types of artifacts can provide information
about the dependencies of an application: the original program
itself, and traces of its execution. Unfortunately, application
source code is often unavailable, and deriving full, application-
level semantic dependencies from a single trace collected on
one system is generally not possible. However, the ways in
which programs manage storage resources, as recorded in a
trace, can provide hints about a program’s dependencies. We
propose a new technique for extracting these hints from a trace
and utilizing them for replay: Resource-Oriented Ordering for



28

Trace replay (ROOT). The ROOT approach is to observe the
ordering of the actions that involve each individual resource
in a trace and apply a similar ordering to the corresponding
actions during replay.

We have built a new tool, ARTC (an “Approximate-Replay
Trace Compiler”), that implements the ROOT approach to
replaying system-call traces of multithreaded applications.
ARTC constrains replay based on resource-management hints
extracted from a trace. In order to extract meaningful hints,
ARTC uses a detailed Unix filesystem model and knowledge
of over 80 system calls to infer the complex relationships
between actions and resources. For example, awareness of
symbolic links allows ARTC to track all of the pathnames
that refer to a given file resource; similarly, a directory-tree
model allows ARTC to determine the entire set of resources
that are affected by directory rename operations.

We use ARTC to automatically generate a new cross-
platform benchmark suite, Magritte, from 34 traces of Apple
desktop applications [56]. Because many of these traces con-
tain OS X-specific system calls, we employ novel emulation
techniques for 19 different calls, allowing replay of the traces
on other systems.

We compare ARTC against three simpler replay strate-
gies: a single-threaded approach, a multithreaded replay that



29

disallows reordering, and an unconstrained multithreaded re-
play with no synchronization between threads. We use the
complex Magritte workloads to evaluate semantic correctness,
finding that ARTC achieves error rates nearly identical to
those of the more heavily constrained replays. For timing
accuracy, we demonstrate the weaknesses of the simple replay
methods with microbenchmarks designed to illustrate behav-
ioral feedback effects in the storage stack involving workload
parallelism, disk parallelism, cache size, and I/O scheduling.
In these experiments we show that simple replay methods can
produce highly inaccurate performance predictions, in some
cases estimating execution times as low as 19% and as high
as 705% of those of the original program on the same system.
We also replay traces of an embedded database, and find that
ARTC reduces average timing error from 21.3% (for the most
accurate alternative) to 10.6%.

2.2 Trace Mining

We now consider what types of information can be extracted
from traces for the purpose of replay. A single trace provides
a sequence of actions in a certain order that the program may
generate when run on a specific system with a given set of
inputs. Ideally, however, we would like to infer the entire



30

space of action orderings that the program could produce
when run with those same inputs. We refer to this as the I/O
space of a particular combination of a program and its input.
For example, a trace of simple program might provide the
following ordering of actions:

create directory "/a"
open file "/b" as file descriptor 3
read 512 bytes from file descriptor 3
close file descriptor 3

This particular trace represents a single known-valid point
in the I/O space of that program with that input. It is however
possible that the same program run with the same input on a
different system (or even simply in another execution on the
same system) might, for example, open "/b" before creating
the directory "/a" instead of after doing so; this would be a
manifestation of another point in its I/O space. To achieve
accurate replay we aim to infer points in the I/O space beyond
those presented in the available trace data.

Depending on the type and quantity of the available traces,
different techniques may be used to infer the I/O space, and
different degrees of accuracy will be achievable. We now define
various types of trace data that may be available (Section 2.2.1)



31

and describe three inference techniques, including our new
technique, ROOT (Section 2.2.2).

2.2.1 Trace Inputs

There are three key attributes of parallel trace data: the num-
ber of traces, whether the collection of the traces was active or
passive, and whether or not the traces include synchronization
information.

First, some inference techniques require many traces. Each
trace represents one point in the I/O space of the application;
observing many points makes it easier to guess the shape of
the whole space. Unfortunately, collecting many traces on
the same system will tend to explore only certain areas of the
whole I/O space.

Second, traces may be collected either passively or actively.
Passive tracing simply records an application’s I/O actions,
doing nothing to interfere. In contrast, active tracing may
perturb I/O; certain operations may be artificially slowed so
as to observe the resulting effects on the timing of subsequent
I/O actions. The active method thus allows direct deduction
of dependencies and methodical exploration of the I/O space.

Third, traces may consist of only calls that occur at the
boundary of an external storage interface; alternately, they
may also include synchronization operations internal to the



32

program itself. Details about internal synchronization may
reveal certain dependencies; for example, if two I/O requests
at different times were both issued while a given lock was
held, we could infer that an ordering in which the two I/O
requests are issued concurrently is not a valid point in the I/O
space. Internal program logic also affects ordering, however,
so tracing locking operations is not a complete solution.

2.2.2 Inference

We now describe three I/O-space inference techniques, includ-
ing ROOT, based on three different types of trace information.
These are summarized in Figure 2.1.

Figure 2.1(a) illustrates a deductive inference approach
based on active tracing. Active traces allow methodical ex-
ploration of the I/O space via controlled experimentation.
//Trace is an example of an active-tracing tool [99]. An I/O
space can be determined by collecting numerous traces, ar-
tificially slowing different requests each time, and observing
which other requests are delayed as a result. While this is
an elegant approach, it is inconvenient and time consuming
to collect many traces, especially at the slowed speed. In
production systems, delaying I/O in this manner may be
unacceptable, and collecting traces multiple times with the
same input may not be possible.



33

I/O SpaceActive Trace
?

Passive Trace

(a) deductive inference

??
??

??
???

??
?
? ?

?
?

?
?

?
?

? ??

?
?
??
?
?

??
?

?
??

(b) statistical inference

?

(c) hint-based inference (ROOT)

Figure 2.1: Techniques for I/O-space inference. Active tracing
perturbs timing by artificially delaying specific events so as to
observe which other events are affected; passive tracing allows
all events to occur at their natural pace.



34

Figure 2.1(b) illustrates a statistical inference approach
based on passive tracing. Some debugging tools use this
approach to infer the causal relations between RPC calls [6],
though we are not aware of any trace replay systems that take
this approach. This approach has the advantage that traces
are much easier to collect and doing so does not artificially
degrade performance (beyond the overhead of the tracing
itself, that is). However, it is likely that much of the I/O
space will not be explored unless traces are collected in many
different environments.

Figure 2.1(c) shows the goal of the ROOT approach: to
infer as much as possible about an I/O space given a single
passively-collected trace with no details about application-
internal synchronization details. Inferring anything about an
I/O space given a single data point might seem challenging;
however, the resource access patterns of even a single trace can
provide useful hints about the I/O space. For example, if a
program performs two reads from the same file, the reads may
use the same file descriptor for both requests, or different file
descriptors. The use of different file descriptors may indicate
that the reads are unrelated, and hence could be replayed in
a different order, or even concurrently.

While a human reading through a trace would likely be
able to infer more application-level logic than an automated



35

tool, creating benchmarks via manual trace inspection would
be an unpleasant task. Thus we propose a new approach
called ROOT: Resource-Oriented Ordering for Trace replay.
ROOT defines a trace model, making it easier to create tools
that reason about traces. ROOT also defines a notation
for expressing the “hints” a human reading a trace might
use to make a reasonable guess about the target program’s
dependency properties. The details of ROOT are provided in
Section 2.3.

The ROOT approach can sometimes make incorrect in-
ferences – its inferences are, ultimately, based only on hints,
which can be misinterpreted. We do not attempt to make
more accurate inferences than the deductive or statistical
methods; those techniques have the advantage of being based
on a great deal more data. The ROOT approach is useful
when a realistic benchmark is desired, but trace data from the
original application is limited. Such cases are common, such
as when studying traces of production systems, where inputs
may be uncontrollable and the overheads of active tracing are
unacceptable. Furthermore, it is already relatively uncommon
for companies to collect and share traces; motivating them
to collect active traces or enough traces to apply statistical
inference may be infeasible.

One weakness of ROOT is that it assumes the I/O space



36

will consist of different orderings of a single set of I/O actions.
Given a series of actions in a trace, it is reasonable to infer
how they might be reordered; however, it is essentially impos-
sible to correctly guess that a program sometimes generates
a certain request if that request never actually appears in
the available trace data. We do not view this limitation as
problematic; inference based on methodical exploration could
hypothetically deduce I/O spaces consisting of a varying set
of actions, but existing tools based on this approach (e.g.,
//Trace) have the same limitation.

2.3 ROOT: Ordering Heuristics

By enforcing an approximately-correct partial ordering on
replay actions, replay tools can generate realistic I/O that
resembles the original program’s behavior. In this section,
we define ROOT’s hint-based ordering rules for replay. Our
constraints are oriented around resources, such as files, paths,
and threads. The key idea is that the set of actions involving
a given resource should be replayed in a similar order as in the
original trace. If all actions in a trace interact with the same
resource, then replay will be highly constrained, but if there
is little overlap between the resources touched by different
actions, there will be little constraint on the replay order.



37

Although resource-oriented ordering is simple in theory,
real storage systems have complex, many-to-many relation-
ships between actions and resources; some types of actions
(e.g., directory renames) can impact an arbitrarily large set
of resources (e.g., paths). The relationship between an action
and the resources it touches cannot be inferred by looking at
the trace record for the action by itself. Rather, inferring the
relationships requires a trace model that considers each action
in the context of the entire trace and an initial snapshot of
system state.

We will now describe a general trace model applicable to
traces from a variety of storage systems (e.g., key-value stores
or file systems), define and intuitively justify several rules
that can be applied to a trace to obtain a partial ordering of
actions with which to guide replay, and describe ARTC’s use
of our trace model and ordering rules to replay system-call
traces.

2.3.1 Trace Model

A trace contains a totally-ordered series of actions. The types
of actions are system specific; a key-value store might have
put, get, and delete actions, whereas a file system might
have opens, reads, and writes. Each action interacts with
one or more resources; threads, keys, values, paths, and files



38

are examples of resources.

A simple file rename across directories might involve five
resources: the thread performing the rename, source and
destination paths, and the directories containing these paths.
Conceptually, an action series is associated with each resource,
consisting of all the actions related to the resource in the order
they occurred in the original execution. All our rules are based
on action series; it is, however, unnecessary to ever materialize
such lists.

Some resources point to other resources. For example, a
path might point to a directory, which in turn might point to
other paths. Some actions that touch a resource also touch
all other resources it transitively points to.

Some resources have names that appear in the trace. A file
resource does not itself have a name, but it might be pointed
to by a path, which does. The same name might apply to
different resources at different points in a trace; for example,
“3” could be a name designating different file descriptors at
different times. Our model differentiates uses of the same
name with generation numbers, increasing integers associated
with each such use, which together with a name uniquely
identify a resource.

Figure 2.2 provides an example showing how action series
are derived from a system-call trace. The series for thread



39

1 [T1] mkdir("/a/b")            = 0
  Resources:
  T1,dirA,dirB,path(/a/b)
2 [T1] open("/a/b/c",CREATE)    = 3
  T1,dirB,file1,path(/a/b/c),fd3
3 [T1] write(3, ...)            = 8
  T1,file1,fd3
4 [T1] close(3)                 = 0
  T1,file1,fd3
5 [T1] rename("/a/b", "/a/old") = 0
  T1,dirA,dirB,file1,four paths...
6 [T2] open("/x/y/z")           = 3
  T2,dirY,file2,path(/x/y/z),fd3
7 [T2] open("/a/b")             = 4
  T2,dirA,file3,path(/a/b),fd4

 

thread(T1)
thread(T2)
dirA
dirB
dirY
file1
file2
file3
path(/a/b)@1
path(/a/b)@2
path(/a/b/c)@1
path(/a/old)@1
path(/a/old/c)@1
path(/x/y/z)@1
fd3@1
fd3@2
fd4@1

 

1,2,3,4,5
6,7
1,5,7
1,2,5
6
2,3,4
6
7
1,5
7
2,5
5
5
6
2,3,4
6
7

Resource

...

(a) Example Trace (b) Action Series

Actions

Figure 2.2: Example action series. A snippet from a simple
system-call trace for two threads is shown in 2.2(a). Beneath
each event, a comment lists the resource touched by each
system call. 2.2(b) shows the action series corresponding to
each resource that appears in the trace.



40

T1 is simply the set of actions executed by the thread (1,
2, 3, 4, 5), in the order they were executed. The series
for dirA (1, 5, 7) is the set of actions that accessed dirA,
in the order they occurred. Note that action series do not
distinguish between subjects (e.g., threads) and objects (e.g.,
directories). The figure also shows different action series for
fd3@1 and fd3@2. This “name@generation” notation is used
to distinguish between resources when the same name is used
for different resources at different times. Here, 3 is a shared
name for the file descriptors created in actions 2 and 6.

2.3.2 Ordering Rules

Section 2.2.2 suggested that how a program manages resources,
as shown in a trace, provides hints about its I/O space. Given
a trace model, we can now discuss these hints more formally
and define our replay rules.

The rules we define determine an I/O space for a replay
benchmark. Ideally, the I/O space for the benchmark will be
similar to that of the original application. However, there are
two ways in which we might deviate from this goal.

First, a rule might be excessively restrictive, resulting in
overconstraint. In this case, the replay’s I/O space omits
points that would be present in the I/O space of the original
program. For example, a hypothetical rule that (perhaps in



41

a heavy-handed attempt to prevent runtime errors during
replay) serialized all file creation and deletion operations
would necessarily preclude any replay ordering involving any
concurrency between multiple operations of this type, even if
the original program might happily perform them that way.

Second, a rule might be insufficiently restrictive, resulting
in underconstraint. In this case, the replay I/O space may
contain an ordering for an I/O set that the original I/O
space does not contain. Underconstraint could arise if, for
example, a replay did not enforce the ordering requirement
that a read from a file descriptor occurs only after that file
descriptor has been opened, leading to multiple forms of
potential runtime misbehavior (the read either failing with an
EBADF error or successfully reading data from a different open
file that happened to share the same file descriptor number).

We say that a stronger rule A subsumes a weaker rule B
if the orderings allowed by rule A are a strict subset of those
allowed by rule B. In this case, if B causes overconstraint, A
will as well. Likewise, if A allows underconstraint, B will as
well.

We have identified three rules based on action series that
are useful for replay; these are summarized in Figure 2.3.
The first rule, stage ordering, simply says that an action
that creates a resource must be played before any uses of the



42

Rule Definition

Stage acts[create] < acts[i] < acts[delete]
Sequential acts[i] < acts[i+1]
Name N@G.acts[last] < N@(G+1).acts[first]

Figure 2.3: Ordering Rules. a1 < a2 means action a1 must
be replayed before action a2. acts[create] and acts[delete]
represent acts[first] and acts[last], respectively, when the first
action in a series is a create or when the last action is a delete.
When this is not the case, the constraint does not apply.

resource, and also that any uses of the resource must be played
before a deletion. The intuition behind stage ordering is that
when we observe a successful event in a trace, we assume the
program took some action to ensure success, so replay should
do likewise.

The second rule, sequential ordering, forces all actions
involving a resource to replay in the same order as in the
original trace. Sequential ordering is a stronger constraint,
subsuming stage ordering, but may lead to overconstraint.
For example, if multiple reads from the same file all touch the
same resource, it may in fact be correct to allow these reads
to be reordered during replay, but sequential ordering would
disallow this. In contrast, stage ordering might be too weak:
reordering two reads from the same file could be incorrect if



43

the first retrieves indexing information and the second relies
on the result of the first to determine where in the file to read
from. The intuition behind sequential ordering is that data
dependencies may be more likely when actions access the same
resources rather than disjoint sets of resources; constraints
should be tighter in such cases.

The third rule, name ordering, requires that the action
series of different generations of the same name are neither
overlapped nor reordered during replay. Sequential- and name-
ordering each allow some orderings not allowed by the other.
The intuition behind name ordering is that when a program-
mer reuses the same name for different resources, the resources
are likely related.

Figure 2.4(a) shows an example trace of actions on two
resources, A and B, that use the same name at different
times. Figure 2.4(b) gives an example replay ordering, and
Figure 2.4(c) describes how the replay would violate different
ROOT rules. The replay of generation A is allowed by stage
ordering because the sequence begins and ends with create and
delete actions, respectively, but violates sequential ordering
because the two middle actions (A2 and A3) are reordered.
The replay of generation B violates stage ordering because the
deletion action is not last, and thus also violates sequential
ordering. Finally, actions belonging to generation B start



44

1A1 3A32A2 4A4 1B1 2B2 3B3 4B4
(a) Original trace order

1A1 3A3 2A2 4A4B1 B2 3B34B4
(b) Replay order

Stage Sequential Name

Generation A none A3 < A2
B1 < A4

Generation B B4 < B3 B4 < B3

(c) Violations

Figure 2.4: Examples of valid and invalid orderings. Each
square represents an action. Different colors represent consec-
utive generations of the same name. Thick borders indicate
creation and deletion events.

replaying before A is finished, which violates name ordering
since A and B are different generations of the same name.

Because rules vary in strength, one must decide which
rules to apply to which resources when employing ROOT.
In 2.4.2, we describe ARTC’s default use of the rules for
Unix filesystem resources and the reasoning for each. More
broadly, however, we suggest three guidelines for applying the



45

rules in a new context. First, domain knowledge should be
used. For example, if it is known that a programmer generally
intentionally chooses names for a certain resource (e.g., a
path name), name ordering should apply, but if the names are
chosen arbitrarily, name ordering might cause overconstraint.
Second, the costs of different types of mistakes should be
taken into account; overconstraining a replay might skew the
timings of certain actions, but underconstraining might cause
the actions to fail, and thus finish instantly. Third, if many
actions fail during replay, underconstraint is a likely cause.

2.4 ARTC: System-Call Replay

We now describe ARTC, a benchmarking tool that applies
the ROOT approach to system-call trace replay on Unix file
systems. We now discuss goals for the tool (2.4.1), demon-
strate how the three ROOT rules abstractly defined in the
previous section concretely apply to Unix file systems (2.4.2),
and detail our implementation (2.4.3).

2.4.1 Goals

The aim of ARTC is to be a broadly applicable storage bench-
marking tool, offering a flexible set of parameters while re-
maining easy to use.



46

Portability: ARTC attempts to support realistic cross-
platform replay. Because traces from one system often include
system calls that are not supported on others, ARTC emulates
these calls, issuing the most similar call (or combination of
calls) on the target system.

Ease of use: ARTC benchmarks make it simple for end
users to apply them to a file system. All that is required
for basic use is the compiled benchmark and a directory in
which to run the benchmark (perhaps the mountpoint of a
file system to be evaluated). There is no need to describe
a benchmark using a specialized configuration language or
determine the values of non-default parameters to measure
the performance of a file system. Also, ARTC makes it easy
to create new benchmarks by supporting standard tracing
tools that are often pre-installed in Unix environments (e.g.,
strace).

Flexibility: ARTC provides a variety of optional tuning
parameters, controlling how initialization is done, the speed
at which actions are replayed, the ability to disable specific
ordering constraints, and how certain actions are emulated
during cross-platform replay.

Correctness: ARTC attempts to generate benchmarks
with nondeterministic behaviors resembling the nondetermin-
ism of the original applications as closely as possible given the



47

Resource Stage Sequential Name

program •
thread req•req
file ◦ •
path joint•joint ◦ joint•joint
fd • •
aiocb • ◦ ◦

Figure 2.5: Replay modes. Circles represent reasonable
ways to apply rules to resources; filled circles are modes cur-
rently supported by ARTC. thread_seq is always required;
path_stage and path_name must be applied jointly. All sup-
ported rules except program_seq are enforced by default.

information available in the traces. Despite this nondetermin-
ism, ARTC’s ordering constraints enforce that the replay’s
semantics should match those of the original trace as closely
as possible.

2.4.2 ROOT with System-Call Traces

We now discuss the application of ROOT to system-call traces.
We consider six types of resources: programs, threads, files,
paths, file descriptors (FDs), and asynchronous I/O control
blocks (AIOCBs). We focus on single-process replay, so all
the actions in a trace are associated with a single program
resource, as well as one of the many thread resources. Many



48

actions will access file resources via paths and file-descriptor
resources. Finally, AIOCBs are used to manage asynchronous
I/O on file descriptors; AIOCBs point to file descriptors.

Figure 2.5 shows which rules could reasonably be applied
to which resources and which are supported by ARTC’s replay
modes. Though all supported constraints except program_seq
are enforced by default, ARTC allows any combination of
ordering modes to be selected for replay, with two restrictions.
First, sequential ordering is always applied to threads; second,
for paths, stage and name ordering may only be applied jointly.
A discussion of the replay modes follows:

Programs: All actions in a trace involve a single program
resource. Applying sequential ordering to the program repre-
sents the program_seq replay mode. program_seq is ARTC’s
strongest replay mode, subsuming all other modes; however,
program_seq forces a total ordering on replay, typically re-
sulting in severe overconstraint (the performance impact of
program_seq is demonstrated in 2.5). Stage ordering does
not make sense for the program resource because no action in
the trace can be said to “create” the program; name ordering
is irrelevant as there are not multiple generations of program
resources in a single trace.

Threads: Each action in a trace is performed by ex-
actly one thread resource. ARTC always enforces thread_seq



49

mode, as it has no simple way to reorder actions within a
thread during replay. In general, the order of actions per-
formed by a single thread provides a good hint about program
structure. Some patterns, however, such as thread pools, are
clear exceptions; ARTC cannot infer these types of program
structures. However, we are not aware of any other replay
tools that can do so without additional details about program
internals. Stage and name ordering do not apply to threads
for the same reasons they do not apply to programs.

Files: We define a file as the data associated with a
specific piece of metadata, such as an inode number. Inode
numbers, however, do not appear in our traces, so the existence
of files is only implicit. An accurate filesystem model that
considers symbolic links, hard links, and the behavior of
various system calls allows us to determine when different
paths (or file descriptors) refer to the same file, as well as
when the same path name refers to different files at different
times. Because files do not appear explicitly in traces, name
ordering is irrelevant. Stage and sequential ordering apply,
though; ARTC supports the latter with file_seq, a fairly
strongly-constrained replay mode. When other resources
refer to files, as they often do, file_seq subsumes stage or
sequential ordering when applied to those resources. However,
the rules for the following resources do prevent some orderings



50

file_seq allows, such as when name ordering is relevant or
when the resources refer to directories rather than regular
files.

Paths: Path resources point to file resources and have
names that appear in traces. All our ordering rules could
be applied to paths; ARTC supports the joint application
of stage and name ordering with path_stage+ mode. We
do not support stage ordering without name ordering; doing
so would require the use of substitute names during replay.
For example, if a trace shows that a path "foo" referred to
different files at different times, replay would have to either
prevent concurrent access to those files during replay (i.e., use
name ordering), or use substitute names (e.g., "foo1" and
"foo2").

Applying stage ordering to paths assumes that when a
trace action makes a successful access to a path, the program
must have taken some measure to ensure its success. We
believe this is a good hint in general, but it may sometimes
cause overconstraint. For example, programs may use the
stat call (which fails when a path does not exist) to determine
whether a path exists. If a stat call succeeds during the
original execution, it may be a coincidence; during replay,
if certain actions finish sooner than they did during trace
collection, it may be correct to replay a stat call sooner, even



51

if the call would fail.

Similarly, applying name ordering assumes that different
files are related if they use the same path name at different
times. Because programmers or users choose most path names,
we believe this to be a meaningful hint. While this is usually
the case, one common exception is when path names are
chosen arbitrarily (e.g., names for temporary files). In this
case, path_stage+ may lead to overconstraint, but we suspect
this situation is rare in practice since random file names are
not generally chosen from a small set of possibilities and hence
are unlikely to collide with each other.

File descriptors: Successfully opening a path produces
a file descriptor (FD), which acts as another type of pointer to
a file. ARTC supports stage ordering (fd_stage mode) and
sequential ordering (fd_seq mode) for FDs. Although FDs
have integer names that appear in a trace, these names are
usually chosen by the operating system, so they provide no
hints about the I/O space; thus, name ordering is of no real
use for FDs. Additionally, since FD names are small integers,
they can be easily remapped using a simple array, allowing
descriptors that used the same name in the original trace to
coexist simultaneously during replay.

Asynchronous I/O control blocks: Asynchronous I/O
may be performed by wrapping a file descriptor in an asyn-



52

chronous I/O control block (AIOCB) structure and submit-
ting it in a request to the file system. Because file descriptors
point directly to files, AIOCBs point indirectly to files. ARTC
supports stage ordering for AIOCBs with aio_stage mode.
Applying sequential ordering could also be potentially useful,
even though ARTC does not currently support it.

2.4.3 Implementation

Figure 2.6 show an overview of the main components of ARTC.
Given a system-call trace and an initial file-tree snapshot col-
lected on a source system, the ARTC compiler automatically
generates a benchmark. The ARTC replayer uses the file-tree
snapshot to initialize on the target machine an equivalent
filesystem tree in which the actions in the trace are replayed.
Filesystem APIs vary slightly across systems, so ARTC emu-
lates recorded actions via the closest equivalent on the target
machine when necessary, supporting replay on Linux, Mac
OS X, FreeBSD, and Illumos.

ARTC’s implementation consists of approximately 12,000
lines of C and 4,000 lines of bison and flex grammars (as
measured by wc -l), and is capable of replaying over 80
different system calls. A significant portion of the code is
shared between the ARTC compiler and the ARTC replayer,
but the two components comprise roughly equal fractions of



53

/

A

B

X

ZY

Trace: Source System

ARTC
Compiler

C Compiler
ARTC

Replayer
C files

shared
library

Replay: Target System

fsync(3) = 0
...

Emulation

fcntl(3, F_FULLFSYNC)
...

A

B

X

ZY

benchdir

/

M

Figure 2.6: ARTC Components. From the source system we
collect an initial snapshot of filesystem state and a trace of
application system calls. The ARTC compiler translates these
into C code representing a set of static data structures that
are compiled into a shared library. The ARTC replayer then
loads this library and uses the data inside it to initialize the
filesystem and replay the trace on the target system.



54

the code size.

Compilation

ARTC currently supports strace output and a special dtrace-
generated format used by the iBench traces (see 2.5.1), but
trace parsing is cleanly separated from the core processing
functionality, so ARTC can be readily extended to support
new input formats. However, the core functionality assumes
the following information will be available for each system
call in the trace:

• Entry/return timestamps

• Numeric ID of issuing thread

• Type of call (e.g., open, read, etc.)

• Parameters passed

• Return value

Some system-call parameters are not actually required;
for example, ARTC ignores the buffer pointers passed to
read. While our trace model could theoretically treat buffer
pointers as another type of resource, we suspect buffer reuse
would make it impossible to derive meaningful hints from the
additional information.



55

In addition to a trace of actions, ARTC requires an initial
snapshot of the parts of the filesystem tree that the program
accesses. It is unnecessary to record actual file contents in the
snapshot; however, it is important to record the contents of
directories, the sizes of files, and references made by symbolic
links. Having an accurate model for symbolic links is crucial
to enforcing the file_seq rule. Even when the same file is
accessed via different paths, file_seq must constrain the
accesses to be replayed in the same order as in the trace.

Given a trace and an initial snapshot, ARTC automatically
generates C code, which is then compiled into a shared library.
The shared library is later loaded by a general tool for replay
(2.4.3). The generated code consists of tables of static data
(arrays of structs) describing the resources and actions in the
trace. We chose to generate C code as a simple way to serialize
the replay information; generating input files that the replay
program parses would work as well, though using pre-built
data structures saves the runtime overhead of parsing a more
generic input format.

Initialization

Before replay, it is necessary to restore the initial state snap-
shot in the directory where the benchmark will execute. Dur-
ing this stage, ARTC creates the necessary directories, popu-



56

lating them with files of the appropriate size containing arbi-
trary data, and creates any necessary symbolic links. Some
special files (such as /dev/random) are created as symlinks to
the corresponding special files in the target’s root filesystem.

Because initialization may take much longer than the
actual replay of some traces, ARTC can perform a delta init
that is useful when most of the init files are already in place
(e.g., the file tree was previously initialized, and a prior replay
only slightly modified the tree). Delta init only creates, deletes,
or changes of the sizes of existing files as necessary to restore
the initial state.

Initialization is not a major focus of our work, but ARTC
could be extended to use initial snapshots with richer infor-
mation about invisible filesystem state. For example, for a
log-based file system, replay speed will depend greatly on the
order in which the initial files are created. A more sophisti-
cated initialization could account for this, and even reproduce
the fragmentation that occurs due to aging in real-world
deployments [5, 129].

ARTC also includes options that make it easy to initialize
overlaid filesystem trees based on the snapshots for multiple
traces, so that multiple traces can be replayed concurrently.
For example, one could use Magritte (2.6), our benchmark
suite of Apple desktop applications, to run a workload similar



57

to a user browsing photos in iPhoto while listening to music
in iTunes.

Replay

ARTC’s replayer is the component that actually performs
system-call replay, enforcing the enabled ordering modes while
doing so. Although our discussion of ordering modes has
been in terms of action series, ARTC, like the programs
that generate the traces to begin with, does not need to
explicitly materialize such lists. Rather, ARTC enforces rules
using standard synchronization primitives and the dependency
information determined by the compiler. Each system call
(action) includes a condition variable that other threads can
wait on if an action they are about to replay is dependent
on that action. For example, before a given thread replays
an action that uses a certain file descriptor, it checks if the
open call that created that file descriptor has already been
replayed, and if not, waits on the open action’s condition
variable. When the replay of an action completes, the thread
that replayed it performs a broadcast operation on the action’s
condition variable in order to wake any threads that may be
waiting on it.

Stage ordering: except for a resource’s create action, all
other actions will wait on the create action before replaying,



58

enforcing that it is the first of that resource’s associated actions
to replay. Delete actions have a dependency on each other use
of the resource, though for space-efficiency reasons our current
implementation uses a separate structure for the resource with
a count of remaining uses and a condition variable of its own.

Sequential ordering: Each action belongs to the action
series of one or more events. For each such series, the action
in question has a dependency on the previous action in the
series, and correspondingly waits for its completion before
proceeding with its own replay.

Name ordering: When an action is the first of a new
generation of a resource on which name ordering is applied, it
has a dependency on the last event of the preceding generation,
and waits for it to complete.

We use this resource and action bookkeeping to enforce all
ordering rules except thread_seq and program_seq. Because
sequential ordering is always enabled for threads, we simply
use a replay thread for every thread that appeared in the
original trace. Each of these threads loops over its own actions
from the original trace, playing each one in order once all its
dependencies are satisfied. When program_seq is used, all
trace actions are instead replayed from a single replay thread
in the order in which they appeared in the original trace.

Besides enforcing ordering rules during replay, ARTC is



59

also capable of considering timings from the original trace.
For example, the original trace might show that even after all
the inferred dependencies for an action are satisfied, the action
is executed after some time interval, which we call predelay.
Predelay may be due to computation. It is not our goal to have
a sophisticated model of computation, but ARTC provides
some basic options for incorporating predelay during replay.
ARTC may ignore predelay (AFAP, or as-fast-as-possible
mode), sleep for the predelay time (natural-speed mode),
or use some multiple of predelay, perhaps based on CPU
utilization information (if available). Given our simplistic
model of computation, we do not expect ARTC to produce
accurate timings for compute-bound workloads.

After finishing replay of the entire trace, the replayer out-
puts basic timing information, such as the elapsed wall-clock
time, as well as detailed data about why a replay performed
the way it did, such as per-thread timing reports and laten-
cies for each call. Additionally, details about the similarity of
system-call return values during replay to return values during
trace collection are generated (i.e., the semantic accuracy of
the replay), providing indications of possible underconstraint.



60

Emulation

Supporting cross-platform replay is challenging, as each Unix-
like platform has its own slightly distinct API for filesystem
access. For such system calls, there are usually near equiv-
alents on other platforms, but occasionally a call provides
a unique primitive. In order to support such calls, ARTC
converts them to pseudo-calls. During replay, ARTC emulates
pseudo-calls by using the most similar system calls available,
sometime executing multiple calls on the target system to
emulate a single call on the source system.

ARTC performs emulation for 19 different calls. 11 of these
cases are for special metadata-access APIs (e.g., extended
attributes); not only do the names of the calls differ in these
cases, but some systems support parameters and options not
supported by others. When emulating these calls, we simply
ignore such parameters.

Another three cases pertain to filesystem hints; in par-
ticular, prefetching, caching, and preallocation hints are all
treated slightly differently on each platform. Linux, Mac OS
X and Illumos generally offer equivalent functionality, though
sometimes via different APIs; emulation for these is straight-
forward. On FreeBSD, however, we simply ignore some of
these calls where analogous APIs are not available. Three
more emulations are required for obscure, undocumented Mac



61

OS X system calls, that appear to be metadata related and
are hence emulated with small metadata accesses.

Another case addresses a difference in fsync semantics
on different systems. Linux filesystems typically force data to
persistent storage when fsync is called, but on Mac OS X se-
mantics are different, and data is merely flushed to the device,
which may cache it in volatile memory; fcntl(F_FULLFSYNC)
is necessary to achieve true durability. When replaying traces
collected from Linux on a Mac, a replay option determines
which semantics are used to emulate fsync.

The final case is the exchangedata call, a unique atomicity
primitive provided by Mac OS X. Given two files, exchangedata
performs an atomic swap such that each file’s inode points
to the other file’s data, preserving inode numbers and other
metadata. Although there is no truly atomic equivalent on
other platforms, we emulate this via a link and two renames.

2.5 Evaluation

We evaluate ARTC by establishing its preservation of semantic
correctness and comparing its performance accuracy with a
set of simpler strategies.

The simplest approach we compare against is single-threaded
replay, which issues all calls in the trace from a single replay



62

thread in the same order in which they were issued in the
trace. This approach precludes not only reordering but also
any concurrency between system calls. Temporally-ordered
replay also issues calls during replay in the order they were
issued during tracing, but uses one replay thread per traced
thread, so calls that overlapped during tracing may be issued
concurrently during replay. While it permits some concur-
rency, this approach allows no real reordering to occur during
replay. Unconstrained replay falls at the opposite end of the
ordering spectrum, employing multiple threads but enforcing
no synchronization between them. This approach allows max-
imal reordering (within the constraints of thread_seq, which
is still implicitly enforced) but is vulnerable to race conditions
involving shared resources.

All of these replay strategies are actually implemented
as alternative modes of operation of ARTC’s replayer. Var-
ious command-line flags can be specified to disable multi-
threading (for single-threaded replay), enable enforcement of
the program_seq rule (providing temporally-ordered replay),
or disable enforcement of all rules (providing unconstrained
replay). References to ARTC replay in the remainder of
this section refer specifically to ARTC running in its default
mode of operation (multiple threads, with all rules except
program_seq enforced).



63

Failed Events
Trace UC TO ST ARTC Total Events

iMovie
add1 51 3 3 3 24,655

export1 4,538 5 5 5 42,697
import1 4,437 7 7 7 35,733
start1 43 2 2 2 21,375

iPhoto

delete400 298 2 2 2 472,393
duplicate400 53,226 2 2 2 210,612

edit400 881,714 2 2 2 1,660,736
import400 377,873 3 3 7 827,964
start400 74 2 2 2 35,547
view400 76,375 2 2 2 278,217

iTunes

album1 549 0 0 0 9,671
importmovie1 56 0 0 0 5,290
importsmall1 1,459 0 0 0 10,739

movie1 2,578 0 0 0 9,507
startsmall1 3 0 0 0 5,466

Keynote

create20 269 0 0 0 36,434
createphoto20 733 2 2 2 38,549

play20 0 0 0 0 28,822
playphoto20 208 0 0 0 30,055

ppt20 4 0 0 0 51,620
pptphoto20 4 0 0 0 126,506

start20 0 0 0 0 17,775

Numbers
createcol5 59 0 0 0 15,069

open5 0 0 0 0 12,028
start5 0 0 0 0 10,067
xls5 0 0 0 0 14,544

Pages

create15 36 4 4 4 16,520
createphoto15 401 4 4 4 56,024

doc15 4 4 4 4 15,696
docphoto15 139 4 4 4 205,566

open15 4 4 4 4 15,091
pdf15 4 4 4 4 15,213

pdfphoto15 106 4 4 4 54,488
start15 4 4 4 4 13,927

Figure 2.7: Replay failure rates. The number of event-replay
failures in each trace is shown for a completely unconstrained
multithreaded replay (UC), temporally-ordered replay (TO),
single-threaded replay (ST), and ARTC, all in AFAP mode.
Each data point is the largest failure count observed in five
runs. The rightmost column shows the total number of re-
played actions in the trace.



64

2.5.1 Semantic Correctness: Magritte

We evaluate the semantic correctness of ARTC’s replay by
examining its behavior with 34 traces of Apple’s iLife and
iWork desktop application suites [56]. The complex inter-
thread dependencies and frequent metadata accesses found
in these traces make them an excellent correctness stress
test. We also believe these traces are useful beyond this
evaluation, and so we release the compiled traces as a new
benchmarking suite called Magritte.1 Before presenting the
results, we describe some of the difficulties we encountered in
the process of replaying these traces:

Special files: Some of the traces include reads from
/dev/random, which resulted in extremely slow reads on Linux
(tens of seconds for less than a hundred bytes of data). On
Mac OS X, /dev/random is a non-blocking source of random
bytes, whereas on Linux, reads from /dev/random block when
the kernel judges that its entropy pool is depleted. We solve
this by creating /dev/random as a symlink to /dev/urandom,
which does not block, when replaying on Linux.

External bugs: We encountered some behaviors on Mac
OS X that appear to simply be kernel bugs. Calling close

1Magritte is named for the 20th-century Belgian artist René Magritte,
who created a number of paintings prominently featuring apples, most
notably The Son of Man in 1964.



65

on a file descriptor returned from shm_open, for example,
consistently reports failure with EINVAL, which is not listed in
its documentation. Interestingly, the call appears to succeed,
since subsequent opens then return file descriptors re-using
the same value. ARTC generally outputs warnings when re-
played calls do not conform to its expectations, but sometimes
suppresses them in cases such as this.

Missing trace details: There are a handful of sequences
in the traces for iTunes that show system calls of the form
open(path, O_CREAT|O_EXCL) executing successfully, but at
points where prior events in the trace would indicate that
path should already exist. While we cannot be entirely sure of
the cause of this, it may be due to a mistake in the collection
of the traces from the original applications. ARTC handles
these by simply replaying them without the O_EXCL flag.

After addressing these issues, we replayed the traces with
each of the four modes. In order to amplify concurrency
and best exercise each mode’s enforcement of the trace’s
semantics, we performed these replays in AFAP mode on an
SSD-backed ext4 file system, and did not clear the system page
cache between each benchmark’s initialization and execution.
Figure 2.7 shows the number of errors in trace replay for
each replay mode; with the exception of iphoto_edit400,
the failure counts for single-threaded and temporally-ordered



66

modes are identical to those of ARTC on all traces. Each
reported error count is the largest number of errors observed
over five replays of the trace.

Although unconstrained replay is semantically correct
when replaying some traces (e.g., keynote_start20), many
replays produce thousands of errors; on iphoto_edit400 over
half the trace’s events replay incorrectly. Not only are the fail-
ure rates for ARTC and the other highly constrained modes
several orders of magnitude lower, further investigation reveals
that almost none of ARTC’s errors are due to invalid reorder-
ing. Rather, except for four failures in iphoto_import400,
all of ARTC’s failures are due to a lack of extended attribute
initialization information in the iBench traces; replay initial-
ization thus does not create these attributes, and replayed
calls attempting to access them fail. The four failures caused
by reordering in iphoto_import400 are due to an edge case
involving a directory rename un-breaking a broken symlink,
which ARTC’s filesystem model does not currently handle,
causing it to miss some path dependencies and thus allow
some invalid reorderings.

Given the unconstrained mode’s extreme error rate, we do
not consider it a viable option, and thus do not consider it in
the remainder of our evaluation. We do not use Magritte for
the performance accuracy aspect of our evaluation because



67

the workloads are interactive and thus not consistently I/O-
bound, an operating mode ARTC does not focus on modeling
accurately.

2.5.2 Performance Accuracy

Here we employ micro- and macro-benchmarks to evaluate
ARTC’s performance accuracy, which we find is substantially
better than that of the simpler single-threaded and temporally-
ordered replay methods.

Microbenchmarks

In this section, we use microbenchmarks to explore feedback
effects between workloads and storage systems, showing how
each naturally affects the other. In one experiment, we adjust
the degree of parallelism in the workload and show how the
storage system takes advantage of the additional flexibility
offered by increased queue depths. In three further experi-
ments we construct feedback loops, changing aspects of the
storage system in ways that should change the workload’s
behavior. We experiment with varying disk parallelism, cache
size, and I/O scheduler slice size. We show that in each of
these scenarios ARTC adapts in a natural way, but the simpler
single-threaded and temporally-ordered replay methods do
not.



68

original program
single-threaded replay

temporally-ordered replay
ARTC replay

1 reader 2 readers 8 readers
0

1

2

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

31
.3

s
+5

%
+9

%
+3

%

59
.3

s +2
0%

+1
6%

+6
%

19
3.

3s
+5

7%
+3

3%
+5

%

(a) workload parallelism

2xHDD to 1xHDD 1xHDD to 2xHDD
0

1

2

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

59
.3

s +2
3%

+1
6%

+5
%

44
.2

s
+5

4%
+1

7%
+2

%

(b) disk parallelism

4GB to 1.5GB 1.5GB to 4GB
0

1

2

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

47
.8

s +3
3%

+3
3%

+2
%

35
.0

s
+2

%
+2

%
+0

%

(c) cache size

100ms to 1ms 1ms to 100ms
0

1

2

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e

11
7.

3s
-8

1%
-8

1%
+1

%

22
.2

s
+6

05
%

+1
71

%
+0

%

(d) scheduler slice size

Figure 2.8: Microbenchmarks. Effect of feedback loops on ac-
curacy. Labels on the original-program bars indicate running
times for the original program on the target system. Labels on
other bars indicate a percentage error relative to the original.



69

Workload parallelism: For our first experiment, we
wrote a simple program the spawns a variable number of
threads, each of which reads 1000 randomly selected 4KB
blocks from its own 1GB file. We ran and traced the program
with 1, 2, and 8 threads. We then performed single-threaded,
temporally-ordered, and ARTC replays of each trace. The
timing results for the three traces are indicated by the three
groups of bars in Figure 2.8(a). Within each group, the first
bar indicates the time it takes the original program to run,
and the next three bars indicate how long each of the replay
methods take. If replay is accurate, the bars in each group
will be similar in size to the first bar of the group.

Figure 2.8(a) shows that going from 1 to 2 readers increases
execution time from 31.3s to 59.3s, slightly less than double.
Going from 1 reader to 8 performs 8× as much I/O, but
execution time increases only 6.2×, to 193.3s. The sub-linear
slowdown is due to the increased I/O queue depths of the
more parallel workload giving the I/O scheduler and disk
more freedom to optimize access patterns, increasing average
throughput. These optimizations change the order in which
I/O requests complete, which in turn affects the subsequent
pattern of requests issued by the program. ARTC’s replay
adapts to these optimizations similarly, and thus achieves a
mere 5% error in elapsed time on the 8-thread workload. The



70

simpler replay methods, however, are not so flexible, and thus
overestimate elapsed time by 57% and 33%.

Disk parallelism: Here we compare accuracy when trac-
ing on a single-disk source and replaying on a two-disk RAID
0 target with a 512KB chunk size (and vice versa). We use the
same simple program as above, running with two threads. Fig-
ure 2.8(b) shows ARTC is accurate moving in either direction
(2-5% error), and temporal ordering achieves accuracy similar
to the 2-thread case of Figure 2.8(a), but single-threaded
replay does significantly worse when replaying the single-disk
trace on the RAID, as its serial nature renders it incapable of
exploiting the array’s increased I/O parallelism.

Cache size: The program for this experiment has two
threads and is similar to the previously used program with one
difference: Thread 1 sequentially reads its entire file before
entering the random-read loop. For both tracing and replay,
we use a two-disk RAID 0 and 4GB of memory. To limit
the cache size during tracing and replay, we run a utility
that simply pins 2.5GB of its address space in RAM, leaving
only 1.5GB for the cache and other OS needs. The results of
tracing with a normal cache and replaying with a small cache
(and vice versa) are shown in Figure 2.8(c). ARTC is accurate
for both source/target combinations, but the simpler methods
are accurate only for replay on the 4GB target, producing



71

timings that are 33% too long for the 1.5GB target.

In the trace collected on the 4GB system, Thread 1’s
random reads are all cache hits, and thus all finish long
before the vast majority of Thread 2’s reads are issued. On a
target with a 1.5GB cache, most of Thread 1’s reads become
cache misses, but the simple replay methods wait for Thread
1 to finish before issuing most of Thread 2’s requests; this
prevents the system from taking advantage of the RAID
array’s I/O parallelism. In the other direction (1.5GB source
to 4GB target), the simple replay methods are accurate. This
asymmetry arises because when replaying the 1.5GB source
system’s trace on the 4GB target, all of Thread 1’s random
reads are cache hits, so playing them at the wrong time does
not degrade performance.

Scheduler slice size: Here we tune Linux’s Completely
Fair Queuing (CFQ) I/O scheduler to explore a tradeoff be-
tween efficiency and fairness. The CFQ scheduler implements
anticipation [69] by giving threads slices of time during which
requests are serviced. A large slice means the scheduler will
attempt to increase throughput by servicing many requests
from the same thread before switching to a different thread, at
the cost of increasing the latencies seen by other threads. The
length of these slices can be adjusted by tuning the scheduler’s
slice_sync parameter; we experiment with values of 1ms



72

0 20 40 60 80 100
slice_sync

0

20

40

60

80

100

120

140

160

se
co

nd
s

ARTC (1)
ARTC (100)
original

single-threaded (1)
single-threaded (100)

temporally-ordered (1)
temporally-ordered (100)

Figure 2.9: Varying anticipation. Throughput achieved by
executions with varying slice_sync values. Performance is
shown for the original program and three replays of two traces
(source slice_sync values of 1ms and 100ms).

and 100ms. In our microbenchmark program, two threads
compete for I/O throughput, each performing sequential 4KB
reads from separate large files. Figure 2.8(d) shows that both
simple replays dramatically overestimate performance when
decreasing slice_sync from 100ms to 1ms, and even more
drastically underestimate it when moving in the opposite
direction. ARTC, however, is extremely accurate in both
scenarios.

Figure 2.9 shows the inaccuracy of the simpler replays in
greater detail, comparing the original program’s performance
to each of the three replays on both 100ms and 1ms traces.



73

While ARTC predicts the performance of the target system
flawlessly, the simple replay methods tend to predict tim-
ings that reflect the performance of the source system rather
than that of the target. When a trace is collected with a
large slice_sync, it will show long periods of time servicing
requests from a single thread. During replay, even with a
smaller slice, a simple replay method will only submit requests
from the thread that dominated that period; this effectively
reproduces the source system’s scheduling decisions at the
application level on the target.

Macrobenchmarks

In this section, we stress ARTC’s ability to make accurate
timing predictions by tracing and replaying the file I/O of
LevelDB, an embedded key-value database employed in stor-
age systems such as Ceph and Riak [17, 68]. We evaluated
49 different source/target combinations, exploring various file
systems (ext3, ext4, jfs, xfs) and hardware configurations. For
each combination, we compare ARTC against single-threaded
and temporally-ordered replay, as in Section 2.5.2. We run two
benchmark workloads distributed with LevelDB, fillsync
and readrandom, each with 8 threads; fillsync threads in-
sert records into an empty database, and readrandom threads
randomly read keys from a pre-populated database.



74

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(a) Replays on ext3

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(b) Replays on ext4

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(c) Replays on ext4 (dual-HDD
RAID-0)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

1

2

El
ap

se
d 

tim
e

(d) Replays on ext4 (SSD)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(e) Replays on ext4 (1.5GB cache)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

10

20

El
ap

se
d 

tim
e

(f) Replays on jfs

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

20

40

El
ap

se
d 

tim
e

(g) Replays on xfs

single-threaded
temporally-ordered
ARTC

Figure 2.10: LevelDB fillsync replays. On each plot, a
baseline shows how long the original program runs on the
target platform. Bars near this line indicate an accurate
replay.



75

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

50

El
ap

se
d 

tim
e

(a) Replays on ext3

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(b) Replays on ext4

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(c) Replays on ext4 (dual-HDD
RAID-0)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

1

El
ap

se
d 

tim
e

(d) Replays on ext4 (SSD)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(e) Replays on ext4 (1.5GB cache)

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(f) Replays on jfs

ext3 ext4 ext4
(SSD)

ext4
(1.5GB)

ext4
(RAID)

jfs xfs

Source system

0

25

50

El
ap

se
d 

tim
e

(g) Replays on xfs

single-threaded
temporally-ordered
ARTC

Figure 2.11: LevelDB readrandom replays. On each plot, a
baseline shows how long the original program runs on the
target platform. Bars near this line indicate an accurate
replay.



76

0 20 40 60 80 100 120
Timing error (%)

0

50

100

Nu
m

be
r o

f r
ep

la
ys

single-threaded (median: 39.1%)
ARTC (median: 7.6%)
temporally-ordered (median: 19.1%)

Figure 2.12: LevelDB timing error distribution. This figure
shows the distribution of timing errors for the 98 replays
performed in each mode.

Figures 2.10 and 2.11 show performance accuracy results
for each source/target combination on the fillsync and
readrandom workloads, respectively. The default hardware
configuration used a 4GB cache size and a single HDD, though
some system configurations used different parameters (SSD
or dual-HDD RAID-0 instead of a single HDD, 1.5GB cache
size instead of 4GB) where noted in the figures.

For fillsync, results are largely uniform (and accurate)
across replay modes on all source/target combinations, though
replays on xfs do exhibit a slightly greater degree of variation.
When multiple LevelDB threads want to issue writes, all
writes are issued by one thread; the others simply hand off
their data to it. The resulting I/O pattern is essentially that
of a simple single-threaded write workload, so simple replay



77

methods are not at a disadvantage. For readrandom, however,
both simple methods significantly overestimate execution time
in every case. ARTC sometimes overestimates and sometimes
underestimates, but its errors tend to be much smaller.

Figure 2.12 shows the distribution of timing errors across
all replays. ARTC does best at avoiding extreme inaccu-
racy; among the least accurate 10% of each method’s replays,
ARTC averages 28.7% error, compared to 52.9% for tempo-
ral ordering and 113.3% for single-threaded replay. Across
all replays, temporal ordering and single-threaded replays
achieve mean timing errors of 21.3% and 43.5%, respectively,
whereas ARTC’s replays average within 10.6% of the original
program’s execution time.

Simple replay methods overestimate readrandom’s execu-
tion time due to a lack of ordering flexibility, as shown in
Figure 2.13, a dependency graph of a representative period of
time in a trace of a 4-thread LevelDB readrandom workload.
Note that there are many more ARTC resource-dependency
edges than are shown in this subgraph; however, these edges
tend to be between nodes (system calls) that are separated by
a long period of time and thus do not fit in the window of time
shown here (only edges whose endpoints are both within that
span of time are included). Over the entire trace, there are
9135 temporal-ordering edges and 6408 ARTC edges. How-



78

T1 497

T2 215

T3 569

T4 45 409

127

664

190

301

174

41

478

160

664

158 506

158

426

432

Figure 2.13: LevelDB dependency graph. A directed graph
showing replay dependencies enforced by ARTC’s resource-
aware ordering (solid red) and temporal ordering (dashed
blue). Green horizontal edges indicate thread ordering; thus
each row of nodes represents a thread. The ordering of the
nodes in the horizontal direction is based on their ordering in
the original trace. All calls in this window of time are preads;
each node is labeled with the number of the file descriptor
accessed by the call.

ever, what gives ARTC’s replay its flexibility is not having
slightly fewer dependency edges, but much more importantly
having far longer edges. Measured in time between calls in
the original trace, the average temporal-ordering edge is 10ms,
whereas ARTC’s average edge length is 8.9 seconds.

Figure 2.14 shows how enforcing the edges in Figure 2.13
affects when requests are issued during replay. Representative
two-second samples are shown for the original program, ARTC
replay, and temporally-ordered replay in parts (a), (b), and
(c), respectively, run on a single HDD with ext4 with a 4GB



79

14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00
Time (seconds)

1

2

3

4

Th
re

ad
s

(a) Original program. 3.88 system calls outstanding on average.

14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00
Time (seconds)

1

2

3

4

Th
re

ad
s

(b) ARTC replay. 3.64 system calls outstanding on average.

14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00
Time (seconds)

1

2

3

4

Th
re

ad
s

(c) Temporally-ordered replay. 2.33 system calls outstanding on average.

Figure 2.14: Concurrency. System-call overlap achieved by
different replays of a 4-thread LevelDB readrandom trace on
ext4 with a single HDD.



80

page cache. For each subfigure, each of the four threads is
represented by a row, with grey rectangles indicating spans
of time spent in system calls issued by those threads. We
observe that in the original program, each thread almost
always has an outstanding request, giving the scheduler and
disk plenty of flexibility. The replays deviate from this in that
some gaps between system calls are visible where the replay
threads spent time waiting for ordering dependencies to be
satisfied. ARTC, however, shown in Figure 2.14(b), suffers far
fewer such stalls than the temporally-ordered replay shown in
Figure 2.14(c), achieving 94% of the system-call concurrency
shown in Figure 2.14(a), in contrast to temporal ordering’s
60%.

2.6 Case Study: Magritte

Here we demonstrate the use of the Magritte benchmark suite
to evaluate the relative performance characteristics of two
storage systems, using ARTC’s detailed output to determine
what types of operations dominate thread-time during replay.
Thread-time is a measure of time used by individual threads,
and will usually be greater than wall-clock time since threads
typically run concurrently (for example, two threads running
concurrently for two seconds yields four thread-seconds). Fig-



81

fsync read stat open other wait

0.0

0.1

0.2

SS
D

ad
d1

ex
po

rt1
im

po
rt1

st
ar

t1
de

le
te

40
0

du
pl

ica
te

40
0

ed
it4

00
im

po
rt4

00
st

ar
t4

00
vi

ew
40

0
al

bu
m

1
im

po
rtm

ov
ie

1
im

po
rts

m
al

l1
m

ov
ie

1
st

ar
ts

m
al

l1
cr

ea
te

20
cr

ea
te

ph
ot

o2
0

pl
ay

20
pl

ay
ph

ot
o2

0
pp

t2
0

pp
tp

ho
to

20
st

ar
t2

0
cr

ea
te

co
l5

op
en

5
st

ar
t5

xl
s5

cr
ea

te
15

cr
ea

te
ph

ot
o1

5
do

c1
5

do
cp

ho
to

15
op

en
15

pd
f1

5
pd

fp
ho

to
15

st
ar

t1
5

iMovie iPhoto iTunes Keynote Numbers Pages

0.0

0.2

0.4

0.6

0.8

1.0

HD
D

Figure 2.15: Magritte thread-time components on ext4, HDD
vs. SSD. The vertical axis of the SSD graph is scaled to match
that of the HDD graph.



82

ure 2.15 shows a breakdown of how thread-time is spent when
replaying on a disk and an SSD. Both times are normalized
to HDD thread-time.

The SSD plot indicates a thread-time speedup of 5-20× for
most applications. Many of the categories with a significant
presence for the HDD experiments also have a significant
presence on the SSD; however, time spent waiting for fsyncs
is much less significant.

The applications each show distinct patterns. When run on
disk, thread time in iPhoto and iTunes tends to be dominated
by fsync; Numbers and Keynote, on the other hand, are
dominated by reads and stat-family calls (e.g., stat, lstat,
etc.). iMovie and Pages are divided across a greater number
of categories.

2.6.1 fsync Semantics

fsync semantics vary across Unix implementations, so on sys-
tems where multiple versions are available, ARTC provides an
option to select which to use during replay. This capability is
particularly useful for cross-platform replay. On Linux, fsync
typically flushes data to persistent storage, whereas on Mac
OS X, fsync only flushes data to the storage device, which
may merely store the data in a volatile cache. While unusual,
OS X’s fsync implementation does technically conform to the



83

10 50 95 99 10 50 95 99 10 50 95 99
xfs hfs+ (fsync) hfs+ (F_FULLFSYNC)

Filesystems, Percentiles

0

50

100

La
te

nc
y 

(m
s)

2us
11ms

36ms
48ms

1us 5us 988us 8ms 9us

66ms

112ms
137ms

Figure 2.16: fsync latency. Latencies are shown at the 10th,
50th, 95th, and 99th percentiles for xfs, and HFS+ with two
different fsync replay modes.

POSIX definition of fsync, which leaves its precise behavior
implementation-defined [114]. However, we question the util-
ity of the “become durable at some arbitrary, unknown point
in the future” semantics OS X’s fsync provides, since it does
not appear to differ meaningfully from the semantics an ap-
plication achieves by calling only write. To achieve true data
safety on OS X, an application must use the non-standard
fcntl(F_FULLFSYNC) command.

To explore the implications of these two different semantics,
we use the iphoto_delete400 benchmark, which calls fsync
over 20,000 times. We replay this trace on Linux with xfs,
and with both the default and safe (F_FULLFSYNC) semantics
on Mac OS X with HFS+. Figure 2.16 presents some of
the detailed statistics reported by ARTC, which include the



84

latency of every fsync call.
fsync on xfs has a median latency of 11ms, about the

time necessary for a disk seek. fsyncs at the 10th percentile
return immediately, but this is because iPhoto called fsync
without performing any writes first, reflecting the tendency of
applications to perform unnecessary, inefficient operations [56].
The timings for HFS+ when fsync is replayed with default
semantics show that latencies are, as expected, clearly too
fast for data to be saved persistently; 95% of the calls finish
in under 1 millisecond. When replaying the benchmark with
the safe semantics, though, latencies are long enough as to
not cast doubt on whether the data was durably written.

2.7 Related Work

The use of a compiler to transform multithreaded filesystem
traces for replay is somewhat similar to previous work by
Joukov et al. [72]. Their trace compiler, however, is used
primarily as an optimization to reduce runtime processing
overhead during replay (which they perform at the VFS level,
making it closely tied to operating system specifics). While
ARTC’s compilation does provide similar benefits, it is more
focused on trace analysis and inferring event dependencies.
Further, their replay system is designed to preserve the timing



85

of the original trace, whereas ARTC’s entire raison d’être is
to allow flexibility in that regard.

In other work on I/O trace replay, Anderson et al. ar-
gue for maximum accuracy, since even slight deviations can
produce significant behavioral changes [9]. Tarasov et al.,
however, argue for merely approximate replay based on gen-
eral workload characteristics [135]. Our work falls somewhere
in between: we replay the exact I/O set in the original trace,
though we allow variations in ordering, much like real mul-
tithreaded applications. While ARTC may not necessarily
produce exactly the same behavior from one run to the next,
it more realistically emulates the behavior of real applications
(which are likewise not necessarily consistent across runs).

Different approaches have been suggested for mining in-
formation from traces. Aguilera et al. perform statistical
analysis on passive RPC traces to infer inter-call causality [6]
for debugging purposes. Mesnier et al.’s //Trace uses active
tracing, perturbing I/O in order to deduce dependencies be-
tween operations [99], and incorporates this information into
its replay. ROOT also attempts to infer dependency infor-
mation from traces, but we rely on hints to glean as much
information as possible from a single data point.

Scribe [77] is a replay tool that also partially orders replay
events based on resources. Unlike ARTC, Scribe is oriented



86

more toward debugging and diagnostics than performance
analysis, and thus aims for perfect reproduction of the ap-
plication’s in-memory state. This level of detail necessitates
intricate platform-specific kernel instrumentation for trac-
ing and replay (which must be done on the same platform),
whereas ARTC operates purely with system calls, allowing
cross-platform replay and simple trace collection with existing
tools.

2.8 Conclusion

Trace replay is a highly useful tool for storage performance
analysis. Useful trace replay has been made more difficult,
however, by the trends of hardware development leading to
increasing CPU core counts and the corresponding increase
in the use of multithreading in applications. We have pro-
posed ROOT, a new approach to trace replay that embraces
the nondeterminism of multithreaded applications by infer-
ring inter-thread dependency information from a single trace,
maximizing the utility of often-scarce trace data. We have
presented ARTC, our implementation of ROOT that applies
its ideas to Unix system-call traces, and shown that it pro-
vides faithful reproduction of a trace’s semantics while also
achieving accurate performance predictions. With Magritte,



87

we have also demonstrated how ARTC can be used to auto-
mate the generation of realistic benchmark suites. Together,
these contributions provide an answer to the question of how
to adapt trace replay techniques for the challenges of the
multicore era.





89

3

Storage Virtualization
for Solid-State Devices

Storage virtualization has become an important tool in many
datacenter and enterprise environments [65, 117, 128]. Via the
time-honored technique of adding a layer of indirection, soft-
ware can flexibly provision storage resources from consolidated
hardware, multiplexing it among an array of consumers. This
approach provides simpler management and configuration
by centralizing it, and improves utilization and overall effi-
ciency by decreasing the waste resulting from over-provisioned
hardware [122, 128].

While there have been efforts at flash-oriented updates
to virtualization in the storage stack [71], the designs of
most existing storage virtualization systems predate flash’s



90

widespread adoption, and are not structured to take full ad-
vantage of it. In this chapter we present ANViL, an effort to
rethink storage virtualization systems in the context of high
performance flash storage hardware. We describe ANViL’s
design and implementation, with particular attention to the
challenges of its internal space management (garbage collec-
tion). We also demonstrate how its expanded capabilities can
be used to provide not only conventional storage virtualiza-
tion functionality such as volume snapshots, but also more
sophisticated features like file cloning, and atomic commits
without the penalty of writing data twice.

3.1 Introduction

Hard disk drives (HDDs) served as the storage workhorse of
the computing industry for decades. They provide a simple
interface by which software can read and write fixed size
blocks of data in a single large, flat array. Their inherent
mechanical nature, however – spinning platters and seeking
actuator arms – incurs access latencies orders of magnitude
longer than than the timescales of CPU operations. A CPU
might sit idle for millions of cycles waiting for the drive to
position its actuator arm at the right track and its rotate its
platters such that the appropriate location on the disk passes



91

under the read/write head. The slowness of disk access is
thus well established as one of the most common bottlenecks
constraining overall system performance.

The rise of solid-state storage devices (SSDs) in the last
decade, however, has substantially reduced this constraint.
While the fundamental storage technology (most commonly
NAND flash) has existed for longer, storage capacities were
too small and costs too high to make it a viable competitor to
the venerable spinning disk. Over time though, flash capac-
ities have grown and costs have decreased [83]; accordingly,
SSDs have gradually captured a larger and larger fraction
of the storage market, and as of 2018 are commonplace in
both consumer computing hardware (as primary storage) and
datacenters (as either primary storage or an intermediate
layer between DRAM and HDDs [2, 15, 125]).

SSDs offer much lower access latencies than HDDs while
filling the same basic role in computing systems, but the fun-
damental differences in the underlying technology do show
through in other ways. In its most raw form, data stored
in NAND flash cannot be overwritten directly. Instead, the
region of storage must first be explicitly erased before being
rewritten with new contents. Complicating this process fur-
ther is the coarse granularity of the erase operation: whereas
reads and writes may be performed in units of pages (a unit



92

distinct from a page of virtual memory, but of a compara-
ble size at perhaps 4KiB), the unit of space cleared by an
erase operation (an erase block) is typically much larger –
perhaps 512KiB. Additionally, each such program/erase cy-
cle performed incurs physical wear on the storage cells in
block it is performed on. Each erase block can thus only
endure a limited number of program/erase cycles before it
fails permanently and must be taken out of service.

If exposed directly to system software, these additional
complications would render flash storage incompatible with
existing software written for the simpler HDD interface, re-
quiring a large amount of code to be rewritten and thus
presenting a major barrier to the adoption of the newer, faster
technology. To sidestep this problem, most SSDs incorporate
a flash translation layer (FTL) – a piece of on-device firmware
that keeps the flash-specific complexity internal to the SSD
and presents a simpler HDD-style read/write interface to the
host system.

By providing this convenient abstraction, FTLs have al-
lowed SSDs to be easily integrated into existing storage stacks
while requiring little to no modification of software. However,
while FTLs provide the necessary compatibility shim, the dif-
ferent characteristics of SSDs can nevertheless leak through,
often manifesting as undesirable performance variations in



93

applications that do not exhibit “flash-friendly” access pat-
terns [59]. Thus, while compatibility can be easily achieved,
fully exploiting the potential of newer storage technologies still
requires restructuring of some software in the storage stack
to better match the properties of the underlying hardware.

As the trend of flash storage increasing in capacity and de-
creasing in cost continues, ever-greater quantities of data are
being stored in flash, which in turn drives increasing demand
for storage features and functionality like those found in tra-
ditional disk-based storage systems. Prior work has observed
the impact of flash on storage architectures while also noting
that flash presents new challenges in the implementation of
classic storage system features and the expectations placed
on them [75, 79, 125, 131, 161].

At the same time, studies have observed that flash presents
an opportunity to rethink the overall architecture of the I/O
stack, with designs that reuse powerful primitive functions to
create composable data services [1, 71, 88, 90, 108, 125]. For
example, studies such as FlashTier [125], NVMKV [90] and
DFS [71] demonstrate that log-structured stores, which are
already well-suited to flash, can also provide address-mapping
capabilities which facilitate the implementation of applications
and common data services (such as snapshots) with relatively
little effort and minimal redundancy in the I/O stack.



94

Address-mapping in storage systems fits well as a major
component of storage virtualization, a piece of the storage
stack ripe for modernization for the flash era. Virtualization
of many forms has been widely employed as a technique for
managing and exploiting the available resources in computing
systems, from memory and processors to entire machines [3, 10,
12, 25, 38, 49, 116]. Virtual memory in particular has enabled
numerous features and optimizations, including the mmap(2)
interface to file I/O, shared libraries, efficient fork(2), zero-
copy I/O, and page sharing between virtual machines [11, 145].

Storage virtualization, however, while conceptually sim-
ilar to memory virtualization, has typically been of limited
use to applications, focusing instead on storage management
by introducing an abstraction between the physical storage
layout and the logical device as presented to a host or applica-
tion using it [40, 58, 141]. Features and functionality enabled
by storage virtualization, such as deduplication, replication,
and thin-provisioning, remain hidden behind the block device
interface. While highly useful, the features of existing storage
virtualization systems are primarily limited to administrative
functionality, such as defining and provisioning volumes, offer-
ing nothing to actual applications beyond standard read and
write operations. As others have shown, these limitations in
storage virtualization result in sub-optimal application perfor-



95

mance and duplication of functionality across different layers
in the storage stack [37, 46, 91, 108].

Some of the limits of storage virtualization have been
addressed in recent research on FTLs, with new machinery
proposed to support features such atomic writes, persistent
trim, and sparse addressing [80, 91, 104, 108, 125]. These
extensions enable applications to better leverage the virtual-
ization already built into the FTL and also enable the removal
of redundant functionality across system layers, resulting in
improved flash write endurance and application-level perfor-
mance [71, 108].

We propose a simple yet powerful set of primitives based on
fine-grained address remapping at both the block and extent
level. As we will show, fine-grained address remapping pro-
vides the flexibility needed to benefit applications while still
retaining the generality necessary to provide the functionality
offered by existing virtualized volume managers. By allowing
the host to manipulate the block-level logical-to-physical ad-
dress map with clone, move, and delete operations, we enable
storage virtualization to more closely resemble virtualized
memory in its fine-grained flexibility and broad utility, though
in a manner adapted to the needs of persistent storage.

We illustrate the utility of our approach by developing the
Advanced Non-volatile storage Virtualization Layer (ANViL),



96

a prototype implementation of fine-grained address remapping
as a stacking block device driver, to efficiently implement both
file and volume snapshots, deduplication, and single-write
journaling. More specifically, we demonstrate how ANViL
can provide high performance volume snapshots, offering as
much as a 7× performance improvement over an existing
copy-on-write implementation of this feature. We show how
ANViL can be used to allow common, conventional filesystems
to easily add support for file-level snapshots without requiring
any radical redesign. We also demonstrate how it can be
leveraged to provide a performance boost of up to 50% for
transactional commits in a journaling filesystem.

We also address in detail one of the foremost challenges
of implementing ANViL, namely that of space management
(garbage collection). The combination of large scale, high
performance requirements, and the feature set provided by
ANViL make the task of tracking exactly what data is and is
not referenced (and reclaiming space from data that is not)
a difficult one. ANViL’s garbage collection (GC) employs
a novel approach to tackle this problem, borrowing ideas
from the world of programming language implementations
and adapting them to the domain of storage systems.



97

3.2 Background

Existing storage virtualization systems focus their feature
sets primarily on functionality “behind” the block interface,
offering features like replication, thin-provisioning, and volume
snapshots geared toward simplified and improved storage
administration [40, 141]. They offer little, however, in the way
of added functionality to the consumers of the block interface:
the filesystems, databases, and other applications that actually
access data from the virtualized storage. Existing storage
technologies, particularly those found in flash devices, offer
much of the infrastructure necessary to provide more advanced
storage virtualization that could provide a richer interface
directly beneficial to applications.

At its innermost physical level, flash storage does not
offer the simple read/write interface of conventional hard
disk drives (HDDs), around which existing storage software
has been designed. While reads can be performed simply, a
write (or program) operation must be preceded by a relatively
slow and energy-intensive erase operation on a larger erase
block (often hundreds of kilobytes), before which any live data
in the erase block must be copied elsewhere. FTLs simplify
integration of this more complex interface into existing systems
by adapting the native flash interface to the simpler HDD-style
read/write interface, hiding the complexity of program/erase



98

cycles from other system components and making the flash
device appear essentially as a faster HDD. In order to achieve
this, FTLs typically employ log-style writing, in which data is
never overwritten in-place, but instead appended to the head
of a log [121]. The FTL then maintains an internal address-
remapping table to track which locations in the physical log
correspond to which addresses in the logical block address
space provided to other layers of the storage stack [53, 132].

Such an address map provides the core machinery that
would be necessary to provide more sophisticated storage
virtualization, but its existence is not exposed to the host
system, preventing its capabilities from being fully exploited.
A variety of primitives have been proposed to better expose
the internal power of flash translation layers and similar log
and remapping style systems, including atomic writes, sparse
addressing (thin provisioning), persistent TRIM, and cache-
friendly garbage collection models [91, 104, 108, 125, 156].
These have been shown to be valuable to a range of appli-
cations from filesystems to databases, key-value stores, and
caches.



99

3.3 Structure

ANViL is a layer incorporated into the block level of the
storage stack. Much like software RAID or the Linux device-
mapper subsystem [57], it presents a virtual block device for
use by layers above it in the storage stack, and itself runs on
top of another lower-level block device (such as a bare SSD
or a RAID array of SSDs).

The block device it presents exposes a 48-bit logical block
address space, yielding 128PiB with a 512-byte block size.
ANViL maps portions of this address space to corresponding
regions of the physical block address space provided by the
backing device beneath it. This mapping is done at block
granularity, combining contiguous regions into a single extent
for data in multi-block write requests.

A given logical address can be either mapped or unmapped.
A read of a mapped address returns the data stored at the
corresponding physical address. A read of an unmapped
address simply returns a block of zeros, much like a read
of a hole in a sparse file. Write requests are handled in a
redirect-on-write fashion, detailed later in Section 3.5.1.



100

0 248-1

0 capacity
ANViLPhysical blocks

Logical address space

Volume
Management

Filesystems Applications

Backing
Device

. . .

. . .

Figure 3.1: ANViL’s position in the storage stack. While
the backing device used to provide ANViL’s physical storage
space is not required to be flash, it is explicitly designed to
operate in a flash-friendly manner and is intended for use with
SSDs (or arrays thereof).



101

3.4 Interfaces

Address-remapping structures exist in FTLs and storage en-
gines that provide thin provisioning and other storage virtual-
ization functions today [4, 53]. While ANViL’s flash-oriented,
log-structured design is the underlying reason for the exis-
tence of this remapping machinery, going a step further and
exposing it to applications and filesystems is a key design
decision that allows it to significantly expand the functionality
provided to higher-level software by its storage stack, enabling
straightforward implementation of features like file cloning
and efficient atomic transactions.

In this section we describe the range operations via which
ANViL allows direct manipulation of its internal address map,
and a set of complementary properties that enhance their
general utility and applicability.

3.4.1 Range Operations

ANViL’s interface augments the traditional block-I/O read
and write operations with three additional range operations:
clone, move, and delete.

Range clone: clone(src, len, dst): The range clone
operation instantiates new mappings in a given range of log-
ical address space (the destination range) that point to the



102

same physical addresses mapped at the corresponding logical
addresses in another range (the source range); upon comple-
tion the two ranges share storage space. A read of an address
in one range will return the same data as would be returned
by a read of the corresponding address in the other range.
This operation can be used to quickly relocate data from one
location to another without incurring the time, space, and
I/O bandwidth costs of a simplistic read-and-rewrite copy
operation. A range clone applied to the logical address space
providing storage for a volume can thus be used to easily
implement a volume-snapshot feature. Similarly, a filesystem
need only internally allocate a corresponding region of logical
address space and issue a range clone of a file’s data blocks
to provide a space- and I/O-efficient file-snapshot operation.
(These use-cases are examined in greater detail in Section 3.7.)

Range move: move(src, len, dst): The range move op-
eration is similar to a range clone, but leaves the source logical
address range unmapped. This operation has the effect of ef-
ficiently transferring data from one location to another, again
avoiding the overheads of reading in data and writing it back
out to a new location. In combination with the durability and
atomicity properties described in Section 3.4.2, this provides
a mechanism via which transactional storage systems such as
relational databases and journaling filesystems can implement



103

an efficient transaction commit protocol that does not require
writing transaction data twice (see Section 3.7).

Range delete: delete(src, len): The range delete op-
eration simply unmaps a range of the logical address space,
effectively deleting whatever data had been present there.
This operation is similar to the TRIM or DISCARD operation
offered by existing SSDs. However, unlike TRIM or DISCARD,
which are merely advisory, the stricter range delete opera-
tion guarantees that upon acknowledgment of completion
the specified logical address range is persistently unmapped.
Range deletion is conceptually similar to the persistent TRIM
operation defined in prior work [70, 104]. In ANViL it is
additionally intended to be used in tandem with the range
clone operation for features such as snapshot management
(so that existing snapshots can be removed when no longer
needed).

3.4.2 Complementary Properties

While giving the host system the ability to manipulate the
storage address map is the primary aim of our proposed
interface, other properties complement our interfaces nicely
and make them more useful in practice for real-world storage
systems.



104

Sparse addressing (thin provisioning): In conventional
storage devices, the logical space exposed to the host system is
mapped one-to-one to the (advertised) physical capacity of the
device. However, the existence of the range clone operation
implies that the address map must be many-to-one. Thus,
in order to retain the ability to utilize the available storage
capacity, the logical address space must be expanded beyond
the actual storage capacity of the device – in other words,
the device must be thin-provisioned or sparse. The size of
the logical address space, now decoupled from the physical
capacity of the device, determines the upper limit on the total
number of cloned mappings that may exist for a given block.

Durability: The effects of a range operation must be crash-
safe in the same manner that an ordinary data write is: once
acknowledged as complete, the alteration to the address map
must persist across a crash or power loss. This requirement
implies that the metadata modification must be synchronously
persisted, and thus that each range operation implies a write
to the underlying physical storage media.

Atomicity: Because it provides significant added utility for
applications in implementing semantics such as transactional
updates, we propose that a vector of range operations may
be submitted as a single atomic batch, guaranteeing that



105

after a crash or power loss, the effects of either all or none of
the requested operations will remain persistent upon recov-
ery. Log-structuring (described in Section 3.5.1) makes this
relatively simple to implement.

3.5 Implementation

In this section we describe the implementation of our proto-
type, the Advanced Non-volatile storage Virtualization Layer
(ANViL), a Linux kernel module that acts as a generic stack-
ing block device driver. ANViL runs on top of single storage
devices as well as RAID arrays of multiple devices and is
equally at home on either. It is not a full FTL, but it bears a
strong resemblance to one. Though an implementation within
the context of an existing host-based FTL would have been
a possibility, we chose instead to build ANViL as a separate
layer to simplify development.

3.5.1 Log Structuring

In order to support the previously-described set of operations
(Section 3.4), ANViL is implemented as a log-structured block
device. Every range operation is represented by a note writ-
ten to the log specifying the point in the logical ordering of
updates at which it was performed. The note also records the



106

alterations to the logical address map that were performed;
this simplifies reconstruction of the device’s metadata after a
crash.

Each incoming write is redirected to a new physical lo-
cation, regardless of whether the written-to logical address
had been mapped or unmapped. Updates to a given logical
range thus do not affect other logical ranges which might
share physical data; the written address is decoupled from
the physical block containing the shared data while the other
logical addresses mapped to it retain that mapping.

Similarly to LFS [121], physical space on the backing
device is managed in large segments (ANViL’s default to
128MiB). Each individual segment is written sequentially and
a log is maintained that links them together in chronological
order. Once a segment has been fully written, it is made
immutable.

3.5.2 Metadata Persistence

Whenever ANViL receives a write request, before acknowledg-
ing completion it must store in non-volatile media not only
the data requested to be written, but also any updates to its
own internal metadata necessary to guarantee that it will be
able to read the block back even after a crash or power loss.
The additional metadata is small (24 bytes per write request,



107

independent of size), but due to being a stacked layer of the
block I/O path, writing an additional 24 bytes would require
it to write out another entire block. Done naïvely, the extra
blocks would incur an immediate 100% write amplification
for a workload consisting of single-block writes, harming both
performance and flash device lifespan. However, for a work-
load with multiple outstanding write requests (a write I/O
queue depth greater than one), metadata updates for multiple
requests can be batched together into a single block write,
amortizing the metadata update cost across multiple writes.

ANViL thus uses an adaptive write batching algorithm,
which, upon receiving a write request, waits for a small period
of time to see if further write requests arrive, increasing the
effectiveness of this metadata batching optimization, while
balancing the time spent waiting for another write with impact
on the latency of the current write.

3.5.3 Space Management

Space on the backing device is allocated at block granularity
for incoming write requests. When a write overwrites a logical
address that was already written and thus mapped to an
existing backing-device address, the new write is allocated
a new physical address on the backing device and the old
mapping for the logical address is deleted and replaced by a



108

mapping to the new backing device address. When no map-
pings to a given block of the backing device remain, that block
becomes “dead” or invalid, and its space may be reclaimed.
However, in order to maintain large, contiguous regions of
free space in the backing device so as to allow for sequential
writing, freeing individual blocks as they become invalid is not
a good approach for ANViL. Instead, the minimum unit of
space reclamation is one segment (which functions somewhat
analogously to an erase block in an FTL).

A background garbage collector continuously searches for
segments of backing device space that are under-utilized (i.e.
have a large number of invalid blocks). When such a segment
is found, its remaining live blocks are copied into a new
segment (appended at the current head of the log as with
a normal write), any logical addresses mapped to them are
updated to point to the new location they have been written
out to, and finally the entire segment is returned to the space
allocator for reuse. Achieving effective garbage collection is
critically important and was one of the primary challenges in
implementing ANViL; its design is discussed in detail later in
the following section.



109

3.6 Garbage Collection

This section details the design and implementation of ANViL’s
garbage collector (GC). The requirements for ANViL’s GC
are different than those of a conventional SSD, primarily due
to its many-to-one address map [121]. A GC for a traditional
log-structured storage system like the one described in LFS
is simple, with each block referenced by at most one logical
location. Since ANViL aims to support much richer function-
ality, a single physical data block may be referred to by more
than one logical address, with the number of references to a
single physical location ideally limited only by the available
physical storage capacity. We now outline the major factors
in the design of the ANViL garbage collector and discuss why
traditional GC techniques are not directly applicable.

3.6.1 Design Considerations

Capacity scaling: The capacities of modern storage sys-
tems are continually growing, and now often offer many ter-
abyte (if not a petabyte or more) of storage. The ability to
scale gracefully to large storage capacities is thus a require-
ment for the ANViL GC.



110

Reference scaling: Heavy use of the advanced storage
virtualization capabilities offered by ANViL’s range operations
can result in large numbers of references to physical data
blocks. For example, a user of a storage array might wish to
retain nightly snapshots of a volume for backup or auditing
purposes, resulting in many repeated references to the same
underlying physical data blocks for infrequently-modified files.
We do not wish to artificially limit the extent to which these
features can be used, so it is important that ANViL’s GC be
able to handle data with essentially arbitrarily many references.
It must also not impede the instantiation of new references
to existing data as it operates.

Performance predictability: Performance is improving
with every generation of non-volatile memory devices, with
a single modern flash drive capable of delivering hundreds of
thousands to millions of I/O operations per second (IOPS).
Moreover, users and applications expect predictable perfor-
mance from storage systems; the ANViL GC should thus
strive to avoid incurring unpredictable fluctuations in perfor-
mance. Additionally, background GC activity must be able
to keep up with the rate of foreground operations so as not
to accumulate a backlog of pending space-reclamation work.



111

Memory consumption: Memory is always a precious re-
source and the design of the GC must to be conscientious
in its use of it. The design should be able to handle large-
scale storage systems (in both capacity and reference count)
without requiring enormous quantities of RAM. Frugality
with memory is especially necessary if the design is to be
applicable in an “off-load” device in which an ANViL-like
layer were implemented in device firmware instead of in the
host system’s OS. The GC’s design thus may need to make
compromises that trade off CPU and GC efficiency against
memory consumption where necessary.

3.6.2 Possible Approaches

There are many different ways of implementing garbage col-
lection for log-structured storage systems. We now examine
some existing approaches and explain their applicability (or
lack thereof) in the context of ANViL.

Bitmaps

Bitmaps, a time-honored strategy for space-management in
storage systems [96, 121], are perhaps the most obvious poten-
tial approach to GC. With bitmaps, tracking which blocks are
in use and which are free is straightforward. While bitmaps
are efficient in both memory consumption and CPU utilization,



112

they are insufficient to track the in-use/free status of physical
blocks in the context of ANViL’s many-to-one address map.
For example, a simple set-on-map, clear-on-unmap bitmap-
management algorithm would be inaccurate if one were to
simply clone a live block’s mapping to a new logical address
and then unmap the original address (the block would have a
live reference but its bitmap state would incorrectly indicate
it as being free).

Reference Counting

Alternatively, a garbage collector could employ an array of
reference counts to track the number of mappings to each
block. In fact, a bitmap is simply a special case of a reference
count array with single-bit (saturating) reference counts. If
we generalize the bitmap approach to use multi-bit reference
counts, we can address the inaccuracy problem inherent to
bitmaps tracking a many-to-one address map, using a simple
increment-on-map, decrement-on-unmap reference count man-
agement algorithm. This approach, however, raises a follow-on
question to which there is no clear, obviously-correct answer:
how large should these reference counts be? Larger reference
counts require more memory to store, but smaller ones im-
pose undesirable limitations on the use of the special features
offered by ANViL. Further, even setting aside this particular



113

question, reference counts still do not address a significant
need for the ANViL GC. The GC in a multi-reference log-
structured system must be able to determine not only how
many references to a given physical block exist, but also where
those mappings are in the logical address space so that it can
update them after copying data to a new location. Regardless
of their size, reference counts simply cannot provide this in-
formation, meaning that in addition to its expense in DRAM
consumption, this would be at best an incomplete solution.

Reverse Map

To overcome the limitations of reference counts, one could
expand the GC’s metadata-tracking to use a full reverse map
(mapping each physical address in the backing device to the
set of all logical addresses that are mapped to it) in addition
to the primary forward map structure. This strategy would
provide all the information provided by reference counts and,
depending on its exact implementation, would likely avoid
imposing arbitrary limits on the number of references to a
given block. Most importantly, a full reverse map would also
be able to supply the necessary information for the GC to
update the (forward) address map after moving data to a
new physical location. However, a reverse map would require
at least as much additional DRAM space as the forward



114

map, and likely more, since the data structure mapped to
by each physical address would be a set that would have to
support reasonably efficient insertion and deletion. The cost
of implementing this would simply be unacceptably high in
terms of DRAM consumption in addition to the extra book-
keeping work it incur in the performance critical foreground
I/O path to keep the reverse map up to date.

Mark and Sweep

Mark and sweep is a garbage collection approach in the cate-
gory of tracing GCs [147]. Tracing collectors determine the
liveness of data by evaluating its reachability starting from a
set of roots. Tracing GC is most widely known for its applica-
tion in the context of programming language implementations,
such as Java virtual machines and interpreters for dynamic
languages [48, 140]. In these collectors, the managed data
items are allocated objects in memory and the reachability
graph is determined by following pointers starting from a set
of root pointers on the stack and in global memory.

Mark and sweep, as its name suggests, consist of two
phases. In the mark phase, the collector performs a com-
plete reachability analysis on the entire object graph. In
programming-language GCs, this involves following all point-
ers in the root set and recursively continuing with pointers



115

within the pointed-to objects, marking each object traversed
in this manner. This marking determines the entire set of
transitively reachable (and thus live) objects; any object not
in this set is thus “dead” (unreferenced). Once the mark phase
is complete, the ensuing sweep phase then simply reclaims all
unmarked objects.

In addition to programming-language GCs, however, mark
and sweep has also been explored in the context of storage
systems [28, 52, 73]. Deduplication systems, for example, have
used mark and sweep to improve single node scalability [52],
and BigTable employs a mark and sweep based garbage col-
lector to cleanup its SSTables [28]. Likewise, despite being a
storage system, ANViL’s feature set gives it some properties
(most notably the potential for data items with large numbers
of references) that resemble those of programming-language
runtimes.

ANViL’s garbage collector thus takes a hybrid approach
that is based on the mark and sweep strategy, but augments
it with bitmaps to aid in selecting reclamation targets, and
partial, ephemeral reverse maps to provide it with the infor-
mation necessary to relocate data while avoiding the excessive
memory consumption of a full reverse map.



116

3.6.3 Design

ANViL’s GC is, at its core, a mark and sweep based collector,
though the reference graph that it traverses has a simpler
structure than the reference graphs found in language run-
times. The root set consists of all the mapped addresses in
the logical block address space, but because physical data
blocks cannot contain pointers directly to other physical data
blocks, no recursion is needed in the traversal of the graph. A
physical block may contain references to other data blocks (as
would be found in filesystem metadata, for example, where
an inode contains pointers to a file’s data blocks), but such
references can only exist via logical addresses, because the
physical address space is entirely internal to ANViL and is
not visible to higher levels of the storage stack. Because all
logical addresses are already in the root set, physical blocks
transitively referenced by them would already be found by
the mark phase anyway, so a single step from a logical address
to the corresponding physical address is all that is needed (a
scan of the block’s data to search for additional pointers is
not necessary).

The ANViL GC is thus split into two primary components,
which we call the scanner and the cleaner, mirroring the mark
and sweep phases, respectively. We use different terminology
for these components because in ANViL they are not separate



117

phases executed in series, but actually both run continuously
and concurrently; their operation is detailed in Sections 3.6.4
and 3.6.5.

Clean

Head of log

Candidate

Ready for
cleaning

Scanner constructs
reverse map

Cleaner moves data,
updates forward map,

issues TRIM
Selected for writing

Space exhausted

Selected for reclamation

Written
Empty

Writeable

Read-only

Figure 3.2: Segment life cycle. Segments in the states shaded
green are immutable and managed entirely by the GC; written
and candidate segments are managed by the scanner while
those in the ready for cleaning state are managed by the
cleaner.

Figure 3.2 provides a high-level illustration of the cycle
of segment-granularity space management in the ANViL GC.



118

Segments start out in the clean state, available for use and
containing no valid data. When one is selected to receive
incoming data from a write request, it becomes the head of the
log, and is written sequentially until full. When completely
filled with data, it is handed off to the GC and another
segment is selected as the new head of the log. Depending on
the amount of data in the segment that becomes invalid over
time, it may eventually become a potential reclamation target
(a candidate). If it is selected as a candidate, the next scan
cycle will construct a reverse map for it, after which it is ready
for cleaning. It is then handed off to the cleaner, which copies
its remaining live data forward into a new segment (whichever
is the head of the log at that point in time), updates the
forward map to refer to the new locations of the moved blocks,
and finally performs a TRIM operation on the entire segment.
At this point the segment is clean again and is returned to
the pool of free space. At any given time, most segments in
the system will be in either the clean or written states, and
exactly one segment will be the current head of the log.

3.6.4 Scanner

The task of the scanner is to select and prepare segments (the
contiguous 128MiB regions in which ANViL manages physical
space) for reclamation. Segments to be garbage collected may



119

contain both valid and invalid data. Ideally, segments selected
to be reclaimed would be empty or nearly so, as this minimizes
the amount of data that must copied forward, reducing write
amplification [121]. ANViL’s scanner consists of a set of
background threads that periodically traverse the forward
address map, inspecting mappings of valid data blocks to
select segments for potential cleaning. This work is split into
two phases, candidate selection and candidate preparation.

The first phase of the scanner, candidate selection, scans
through the forward map to identify segments that fall below
the desired data-validity threshold (the number of data blocks
within them that are referenced and thus still live). This
task is accomplished using a bitmap for each segment. These
bitmaps start out with all bits clear at the beginning of
the candidate selection scan cycle. For each valid mapping
encountered during the traversal of the forward map, the
scanner sets a bit in the corresponding segment’s bitmap
indicating that the block referenced by that mapping is in
use. The bitmaps constructed during this phase are shown in
Stage 2 of Figure 3.3. At the end of the pass, the number of
set bits in each segment’s bitmap gives an indication of how
much valid data remains in that segment.

This metric is not necessarily completely accurate, because
concurrent foreground operations (such as overwrites or range



120

deletes) that occur during the scan cycle can cause blocks that
were live at the beginning of the scan to become invalid by
the end of it. It does provide an upper bound on data validity,
however, because blocks that are invalid cannot become live
again until after the containing segment has been fully garbage
collected and released back to the free space pool by the GC. A
mapping to a physical block (of which one or more must exist
for the block to be live) can only be instantiated by a write or
a clone or move range operation. Writes are always directed
to the segment at the head of the log, which is not tracked by
the GC. Range operations operate purely within the logical-
address namespace and thus can only refer to physical blocks
indirectly via logical addresses mapped to them. An invalid
block (one with no mappings in the logical address space)
in a GC-tracked segment thus cannot be affected by any
foreground operations.

The second phase of the scanner, candidate preparation,
constructs reverse maps for each selected candidate segment.
It performs another full pass of the forward address map; when
it encounters a mapping whose physical data block resides in
a segment that has been selected as a candidate for cleaning,
it inserts the logical address into the segment’s reverse map,
adding it to the set of addresses mapped to that physical
block. This phase is shown in Stage 3 of Figure 3.3.



121

The scanner ultimately determines the overall write ampli-
fication introduced in the system: a poor choice of candidate
segments may lead to inefficient space reclamation as well
as device wear-out caused by excessive writing. The scanner
also implicitly limits the throughput of the cleaner (which
performs the actual reclamation of space): if the scanner is not
producing segments selected and prepared for collection, the
cleaner cannot reclaim any space. The speed and the accuracy
of the scanner are thus critical to ANViL’s operation.

3.6.5 Cleaner

The second component of ANViL’s GC, the cleaner, is re-
sponsible for the actual reclamation of unused space in the
segments selected by the scanner. For each segment the scan-
ner prepares for collection, the cleaner must move all valid
data remaining in the segment to a new physical location
and then update the forward map accordingly. The cleaner
divides this process into three steps.

Copy-forward: The cleaner must relocate all valid data (if
any) in a candidate segment to a new location on the log before
it can reclaim the segment. To relocate data, the cleaner first
issues reads to all valid data blocks identified by the scanner.
These reads can be issued in parallel, taking advantage of the



122

1 01 1 1 0 0 01 1

(selected as candidate)
2

C
a
n
d
id

a
te

se
le

ct
io

n

Pe: {Lg, Lh}

Pf: {Li}

(ready for cleaning)

3

C
a
n
d
id

a
te

p
re

p
a
ra

ti
o
n

La Lc Ld

PcPa

Logical

Physical Pg PiPh

Le

Pb Pd

Lf Lg Lh

Pe

Lb

Pf

Li

Segment 0
(written)

Segment 1
(ready for cleaning)

Segment 2
(head of log)

4

C
o
p
y-

fo
rw

a
rd

La Lc Ld

PcPa

Logical

Physical Pg PiPh

Le

Pb Pd

Lf Lg LhLb Li

Segment 0
(written)

Segment 1
(ready for cleaning)

Segment 2
(head of log)

5

Fo
rw

a
rd

-m
a
p

u
p
d
a
te

La Lc Ld

PcPa

Logical

Physical Pg PiPh

Le

Pb Pd

Lf Lg LhLb Li

Segment 0
(written)

Segment 1
(clean)

Segment 2
(head of log)

6

S
e
g
m

e
n
t

re
cl

a
m

a
ti

o
n

La Lc Ld

PcPa

Logical

Physical Pg

Le

Pb Pd

Lf Lg Lh

Pe

Lb

Pf

Li

Segment 0
(written)

Segment 1
(written)

Segment 2
(head of log)

1

In
it

ia
l

st
a
te

Figure 3.3: The ANViL garbage collection process. Starting
from the initial state in 1©, 2© through 6© illustrate the actions
of the scanner and the cleaner in reclaiming a segment.



123

high degree of internal parallelism offered by high-performance
flash storage devices. When these reads complete, the cleaner
allocates new space at the current head of the log and writes
the data out at this new locations. During this step the
data blocks being moved remain valid and available in their
original locations, so concurrent foreground reads can still
safely access them there. This process is shown in Stage 4 of
Figure 3.3.

Forward-map update: The cleaner updates the forward
address map only after the segment’s valid data has been
successfully written out to its new location. In the window of
time between the completion of the write to the new location
and the segment being freed (which only occurs after all
forward-map updates have been performed), both the old and
new locations of the data are valid and either may be safely
used to service reads. Thus, even with multiple discontiguous
blocks of valid data to be moved, the forward map can be
updated one mapping at a time without introducing any gaps
during which invalid data could be seen, or having to lock out
foreground I/O requests. The results of this step are shown
in Stage 5 of Figure 3.3.

Segment reclamation: After the forward map has been
fully updated for all the valid data blocks within the segment



124

being cleaned, the cleaner issues a TRIM request to the
backing device for the segment’s physical space and finally
returns it to the space allocator for reuse. While the TRIM is
not strictly necessary, it helps to lighten the workload of the
internal garbage collection in the FTLs of the underlying flash
devices providing ANViL’s backing storage. After the TRIM
operation is performed, the segment’s old data no longer exists
and any reference to a data block within the segment would
be invalid; this possibility is avoided by delaying the TRIM
operation until all forward-map updates (and any outstanding
foreground read requests that may have been issued to the
region) have completed. This step produces the state depicted
in Stage 6 of Figure 3.3.

3.6.6 Techniques and Optimizations

While the description above outlines the general structure of
the ANViL GC, its implementation incorporates a number
of additional features; these are described in the following
subsections.

Multithreaded Scanning

The work of a scan cycle is entirely CPU-bound (it performs
no I/O) and potentially large, due to ANViL’s vast logical
address space into which physical storage can be mapped. It



125

is amenable to parallelization though, and hence the scanner
is multithreaded, taking advantage of the large numbers of
processor cores available in recent generations of CPUs. Each
thread is given a subset of the logical address space to scan.
Exactly how to partition the logical address space among these
threads, however, is a somewhat more difficult question than
it might at first appear. The logical address space is sparsely
populated, and the scanner only traverses addresses that are
actually present in the forward map. In order to spread
work evenly among scanner threads, each thread should scan
approximately the same number of mappings. The scanner,
however, has no high-level overview of the distribution of
mapped addresses within the logical address space and as
such it is not trivial to divide up the work into equal-sized
parts when beginning a scan cycle.

To address this issue, the scanner employs a dynamic work
reassignment algorithm. The key insight enabling this algo-
rithm is that there is no actual need for the division of logical
address space between threads to be statically determined at
the start of each scan cycle. When any thread finishes its as-
signed work, it sets a global flag requesting that the remaining
scanning work be redistributed. Each running thread checks
this flag periodically, and upon observing it being set, records
the progress it has made in its own assigned portion of the



126

address space and then waits at a barrier. When all threads
have reached the barrier, a designated leader thread then re-
partitions the remaining work to distribute parts of it to any
idle threads. The scanner threads are then released from the
barrier and begin scanning their newly-reassigned portions of
the address space, repeating the reassignment process when
any threads finish their work, until all populated regions of
the logical address space have been scanned.

Pipelined Scanning

While the scanner is split into two phases and the second phase
(candidate preparation) is dependent on the first (candidate
selection), this dependency only exists for each individual
segment. Thus, as a performance optimization, the two scan
phases are pipelined – that is, they are run concurrently for
different segments. On any given scan cycle (full traversal of
the forward address map), the scanner can be performing the
work of the first scan on one set of segments and the work for
the second on another (disjoint) set of segments, effectively
pipelining them.

Pipelined scanning does increase the “latency” of the
reclamation of any individual segment, since it must take two
complete trips through the scanner, and each of these trips is
slightly slower due to combining the work of the two phases.



127

Latency is not an important metric for ANViL, however. GC
throughput is much more critical, and is aided by pipelined
scanning, because the cleaner can be provided with newly
prepared segments for reclamation at the end of every scan
cycle instead of only every other cycle.

Selective Segment Tracking

The scanner is responsible for constructing reverse maps for
each candidate segment, which are used by the cleaner in
the process of reclaiming the selected segments. As discussed
earlier in this section, reverse maps are expensive; a full-
system reverse map would incur significant memory bloat. It
is thus important to control the memory consumption of these
maps, which is affected by not only how many segments are
selected as candidates, but also which specific segments are
chosen.

The amount of memory required for a given segment’s
reverse map is a function of how many data blocks in the
segment are valid and how many logical mappings exist that
refer to those blocks. The bitmaps built by the scanner during
its candidate-selection phase provide an upper bound on the
number of valid data blocks (though they do not provide any
indication of how many mappings to them it encountered).
In order to control memory consumption, the scanner thus



128

limits the total number of segments it selects as candidates,
preferring those with the least amount of valid data within
them. In addition to reducing the memory consumed by
candidate segment reverse maps, this also reduces the amount
of I/O that must be done by the cleaner in its copy-forward
step to relocate the valid data out of the segment before
freeing it.

GC Notifications from Foreground I/O

Because the ANViL garbage collector operates concurrently
with normal I/O activity, it is entirely possible that fore-
ground operations can invalidate information recorded by
the GC as it prepares to reclaim a segment. ANViL thus
inserts “hooks” into the foreground I/O paths for writes and
range operations to notify the GC of any changes made –
this is directly analogous to the write barriers used in some
programming-language GCs [147]. We use these hooks both
for maintaining correctness and for a small optimization to
reduce write amplification.

Once the scanner has selected a segment as a candidate
and then completed the subsequent pass to construct the re-
verse map for it, the segment waits for some period of time to
be processed by the cleaner (which may still be busy reclaim-
ing other segments from a previous pass). If in that window



129

of time any changes are made to the set of logical addresses
mapped to physical blocks in that segment, however, the
segment’s reverse map becomes stale. If new mappings to ex-
isting data are added via a range clone, those mappings (being
absent from the reverse map) would not be properly updated
by the cleaner, and thus would refer to invalid locations after
the segment is freed. Similarly, existing mappings removed by
a range delete operation would be incorrectly reinstantiated
by the cleaner if the corresponding entries in the segment’s
reverse map were still present. For this reason, the code paths
of foreground operations that mutate the forward map include
hooks (our form of write barriers) to perform the necessary
corresponding update to the GC’s data structures. The hook
functions check if any affected physical block addresses belong
to a segment that has been selected for cleaning, and if so
perform the necessary updates to that segment’s reverse map.

While maintaining semantic correctness is the most critical
function of these notifications, they also provide an oppor-
tunity for a small optimization in the GC that can help to
eliminate unnecessary writes to the backing device. Garbage
collection unavoidably leads to some degree of write amplifica-
tion in log-structured storage systems; a large body of existing
work describes various techniques to reduce it [121, 154, 155].
With the structure of ANViL’s GC, however, the same vulner-



130

able window of time described above can also lead to needless
I/O by the cleaner. If a write or range delete were to remove
the last remaining mapping to a previously-valid physical data
block, any I/O done by the cleaner to read its contents and
re-write them to a new location would be wasted, since there
would be no mappings to it remaining in the forward map
(it is no longer live). By avoiding such unnecessary I/O, the
updates to the GC’s reverse maps via the hooks in the fore-
ground operation paths can also reduce write amplification,
improving both performance and increasing the lifespan of
the underlying flash device.

Concurrency and Rate Limiting

A major design goal of the ANViL GC is to be as concurrent
as possible, strongly preferring some amount of continuous
background activity to outright pauses for garbage collection,
avoiding the “stop-the-world” approach sometimes employed
in programming-language GCs. The cleaner’s forward-copying
of valid data in segments selected for cleaning necessarily
interferes with foreground I/O traffic by consuming some of
the backing device’s available bandwidth. ANViL limits the
impact of this activity using explicit rate-limiting of the GC’s
I/O. The job of the rate limiter is to decide what fraction
of the total available bandwidth should be granted to GC



131

activity, and to then enforce that limit.

The fraction of I/O bandwidth the rate limiter allows the
GC to use is a function of the total space utilization in the
system, measured as a segment-granularity fraction of the
capacity of the backing device (the number of segments not
currently free divided the total number of segments). There
are two key thresholds in this metric. The first is a simple
activation threshold below which all GC activity is disabled
(our experiments have put this threshold at 50%). Once overall
space utilization rises above this level, garbage collection is
enabled and granted a fraction of the backing device’s I/O
bandwidth that increases with increasing space utilization.
The intent of this design is that as utilization increases the
system will reach a stable equilibrium point at which the rate
of the GC’s space reclamation is well-matched to the rate of
incoming write traffic. And while the GC and rate-limiter
are designed to avoid this situation, there does exist a second
threshold, when ANViL’s available physical storage capacity
is all but completely exhausted, at which point it will as a last
resort enter a “panic” mode that actually halts foreground
write traffic so as to allow the GC to use all available I/O
bandwidth while it attempts to recover and return to normal
operation.



132

3.7 Case Studies

Here we demonstrate the generality and utility of ANViL and
its range operations by implementing, with relatively little
effort, a number of features useful to other components across
a broad range of the storage stack, including volume managers
(enabling simple and efficient volume snapshots), filesystems
(easily-integrated file snapshots), and transactional storage
systems such as relational databases (allowing transactional
updates without the double-write penalty). All measurements
reported in this section were performed on an HP DL380p
Gen8 server with two six-core (12-thread) 2.5GHz Intel Xeon
processors and a 785GB Fusion-io ioDrive2, running Linux
3.4.

3.7.1 Snapshots

Snapshots are an important feature of modern storage systems
and have been implemented at different layers of the storage
stack from filesystems to block devices [131]. ANViL easily
supports snapshots at multiple layers; here we demonstrate
file- and volume-level snapshots.



133

File Snapshots

File-level snapshots enable applications to checkpoint the state
of individual files at arbitrary points in time, but are only
supported by a few recent filesystems [93]. Many widely-used
filesystems, such as ext4 [94] and xfs [134], do not offer file-level
snapshots, due to the significant design and implementation
complexity it would incur.

ANViL enables filesystems to support file-level snapshots
with minimal implementation effort and no changes to any
internal data structures. Snapshotting individual files is sim-
plified with the range clone operation, as all the filesystem
needs to do is allocate a region of the address space of its
backing block device (a region of ANViL logical address space)
and issue a range operation to clone the address mappings
from the existing file into the newly-allocated space [62]. The
semantics this provides at the filesystem level are essentially
identical to those of filesystems with built-in snapshot sup-
port, such as btrfs and zfs – the contents of the two files are
identical and share the same physical storage, but writes to
either one are transparently redirected to new physical loca-
tions without disturbing the contents of the other. The only
slight semantic difference is in apparent space consumption –
even though the data of the cloned files is in fact stored in
the same physical blocks, as seen by the filesystem (and tools



134

examining it, such as du and df) the files appear to consume
space independently of each other, since the filesystem cannot
directly observe them being mapped to the same space in
ANViL’s backing device. However, given ANViL’s inherent
nature as a thin-provisioned storage system, some differences
from “normal” intuitive space accounting are expected. If
such apparent (if not actual) space consumption were to be
problematic, for example in a filesystem making heavy use
of file cloning, the natural solution would be to simply ex-
pand the allocation of ANViL’s thin-provisioned logical space
dedicated to the filesystem, allowing the filesystem plenty of
apparent (logical) space in which to operate.

With just a few hundred lines of code, we have added
an ioctl to ext4 to allow a zero-copy implementation of the
cp command, providing an efficient (in both space and time)
file-snapshot operation. Figure 3.4 shows, for varying file sizes,
the time taken to copy a file using the standard, unmodified
cp on an ext4 filesystem mounted on an ANViL device in
comparison to the time taken to copy the file using our special
range-clone ioctl. Unsurprisingly, the range-clone based file
copy is dramatically faster than the conventional read-and-
write approach used by the unmodified cp, copying larger
files in orders of magnitude less time. Additionally, unlike
standard cp, the range-clone based implementation shares



135

128 256 512 1024 2048
File size (MB)

0

2

4

6

8

El
ap

se
d 

tim
e 

(s
)

0.44
0.91

1.74

3.46

6.90

0.24 0.48
0.96

1.83

3.44

0.01 0.01 0.02 0.03 0.06

cp (cold)
cp (warm)
ANViL ioctl

Figure 3.4: Time to copy files of various sizes via standard cp
with both a cold and a warm page cache, and using a special
ANViL ioctl in our modified version of ext4.

physical space between copies, making it also vastly more
storage efficient.

Volume Snapshots

Volume snapshots are similar to file snapshots, but even sim-
pler to implement. We merely identify the range of blocks that
represent a volume and clone it into a new range of logical
address space, to which a volume manager can then provide
access as an independent volume.

Volume snapshots via range-clones offer much better per-
formance than the snapshot facilities offered by some existing
systems, such as Linux’s built-in volume manager, LVM. LVM



136

1 2 4 8 16 32 64 128 256
Outstanding write requests (queue depth)

0
25
50
75

100
125
150
175

Ki
lo

-IO
PS

 (4
KB

 w
rit

es
)

LVM baseline
LVM snapshot
ANViL baseline
ANViL snapshot

Figure 3.5: Random write IOPS on ANViL and LVM, both in
isolation and with a recently-activated snapshot. The baseline
bars illustrate ANViL’s raw I/O performance. Its relatively
low performance at small queue depths is due to the overhead
incurred by its metadata updates.

snapshots are slow (somewhat notoriously so), because they
operate via copy-on-write of large extents of data (2MiB by
default) for each extent that is written to in the original vol-
ume from which the snapshot was taken. To quantify this, we
measure the performance of random writes at varying queue
depths on an LVM volume and on ANViL, both with and
without a recently-created snapshot. In Figure 3.5, we see
that while the LVM volume suffers a dramatic performance
hit when a snapshot is active, ANViL sees little change in
performance, since it instead uses its innate redirect-on-write
mechanism. While this experiment was performed at a rela-



137

tively low space utilization level and hence does not reflect the
performance impact of garbage collection, the performance
impact of GC activity is in the contention for physical I/O
bandwidth it adds, and hence would be expected to affect
both the baseline and snapshot cases equally.

3.7.2 Deduplication

Data deduplication is often employed to eliminate data re-
dundancy and better utilize storage capacity by identifying
pieces of identical data and collapsing them together to share
the same physical space. Deduplication can be implemented
easily using a range clone operation. As with snapshots, dedu-
plication can be performed at different layers of the storage
stack. Here we show how block-level deduplication can be
easily supported by a filesystem running on top of an ANViL
device.

Extending the same ioctl used to implement file snap-
shots, we add an optional flag to specify that the filesystem
should, as a single atomic operation, read the two indicated
file ranges and then conditionally perform a range clone if and
only if they contain identical data. This operation provides a
base primitive that can be used as the underlying mechanism
for a userspace deduplication tool, with the atomicity neces-
sary to allow it to operate safely in the presence of possible



138

concurrent file modifications. Without this locking it would
risk losing data written to files in a time-of-check-to-time-of-
use race between the deduplicator observing that two block
ranges are identical (the check) and then actually perform-
ing the range-copy operation (the use). While the simplistic
proof-of-concept deduplication system we have is unable to
detect previously-deduplicated blocks and avoid re-processing
them, the underlying mechanism could be employed by a more
sophisticated offline deduplicator without this drawback (or
even, with appropriate plumbing, an online one).

3.7.3 Single-Write Journaling

Journaling is widely used to provide atomicity to multi-block
updates and thus ensure the consistency of metadata (and
sometimes data) in systems such as databases and filesys-
tems. Such techniques are required because storage devices
typically do not provide any atomicity primitives beyond the
all-or-nothing behavior guaranteed for a single-block write.
Unfortunately, journaling causes each journaled update to
be performed twice: once to the journal region and then to
the final “home” location of the data. In the event of a fail-
ure, such as a system crash or power loss, updates that have
been committed to the journal are replayed at recovery time
and applied the the corresponding primary persistent data



139

structures, and uncommitted updates are simply discarded.
ANViL, however, can leverage its redirect-on-write nature
and internal metadata management to support a multi-block
atomic write operation, even across discontiguous regions of
the logical address space. With this capability, we can avoid
the double-write penalty of journaling and thus improve both
performance and the lifespan of the flash device.

By making a relatively small modification to a journaling
filesystem, we can use a vectored atomic range move operation
to achieve this optimization. When the filesystem would
write the commit block for a journal transaction, it instead
issues a single vector of range moves to atomically relocate
all metadata (and/or data) blocks in the journal transaction
to their “home” locations in the main filesystem. Figure 3.6
illustrates an atomic commit operation via range moves. This
approach is similar to Choi et al.’s JFTL [31], though unlike
JFTL the much more general framework provided by ANViL
is not tailored specifically to journaling filesystems.

Using range moves in this way obviates the need for a sec-
ond write to copy each block to its primary location, since the
range move has already materialized them there, eliminating
the double-write penalty inherent to conventional journaling.
This technique is equally applicable to metadata journaling
and full data journaling; with the latter this means that a



140

Time

L1 = P1

L2 = P2

L3 = P3

Log

L1 L2 L3

P1 P2 P3

Logical

Physical

L1 L2 L3

P1 P2 P3

Logical

Physical P1’

L4 L5 L6

P2’ P3’

L1 L2 L3

P1 P2 P3

Logical

Physical P1’ P2’ P3’

Forward Map

1

2

3

1

2

3

write L4, write L5, write L6

move: L4 ⇒ L1, L5 ⇒ L2, L6 ⇒ L3

L4 = P1’

L5 = P2’

L6 = P3’

move:

L4 ⇒ L1

L5 ⇒ L2

L6 ⇒ L3

Figure 3.6: Transactions via address remapping. By using an
application-managed scratch area, atomic transactional updates
can be implemented using range operations. At 1© the system is in
its initial pre-transaction state, with logical blocks L1, L2, and L3
each mapped to blocks containing the initial versions of the relevant
data. Between 1© and 2©, new versions of these blocks are written
out to logical addresses in a temporary scratch area (L4, L5, and L6).
Note that these intermediate writes do not have to be performed
atomically. Once the all writes to the temporary locations in the
scratch area have completed, a single atomic vectored range-move
operation remaps the new blocks at L4, L5, and L6 to L1, L2, and
L3, respectively, transitioning the system into state 3©, at which
point the transaction is fully committed. The recovery protocol
in the event of a mid-transaction failure is simply to discard the
scratch area.



141

filesystem can achieve the stronger consistency properties of-
fered by data journaling without paying the penalty of the
doubling of write traffic incurred by journaling without range
moves. By halving the amount of data written to the backing
device, the lifespan of flash storage chips is also increased due
to the smaller number of program/erase cycles incurred.

Implementing transactional commits via range-move op-
erations also obviates the need for any journal recovery at
mount time, since any transaction that has committed will
need no further processing or I/O, and any transaction in
the journal that has not completed should not be replayed
anyway (for consistency reasons). This simplification would
allow the elimination of over 700 lines of relatively intricate
journal-recovery code from the jbd2 codebase that provides
ext4’s journaling machinery.

In effect, this approach to atomicity simply exposes to the
application (the filesystem, in this case) the internal operations
necessary to stitch together a vectored atomic write operation
from more primitive operations: the application writes its
buffers to a region of scratch space (the journal), and then,
once all of the writes have completed, issues a single vectored
atomic range move to put each block in its desired final
location.

We have implemented single-write journaling in ext4’s



142

jbd2 journaling layer; it took approximately 100 lines of new
code and allowed the removal of over 900 lines of existing
commit and recovery code. Figure 3.7 shows the performance
results for write throughput in data journaling mode of a
process writing to a file in varying chunk sizes and calling
fdatasync after each write. In all cases, ext4a (our modi-
fied, ANViL-optimized version of ext4) achieves substantially
higher throughput than the baseline ext4 filesystem.

At small write sizes the relative performance advantage
of ext4a is larger, because in addition to eliminating the
double-write of file data, the recovery-free nature of single-
write journaling also obviates the need for writing the start
and commit blocks of each journal transaction; for small
transactions the savings from this are proportionally larger.
At larger write sizes, the reason that the performance gain
is less than the doubling that might be expected (due to
halving the amount of data written) is that despite consisting
purely of synchronous file writes, the workload is actually
insufficiently I/O-bound. The raw performance of the storage
device is high enough that CPU activity in the filesystem
consumes approximately 50% of the workload’s execution
time; jbd2’s kjournald thread (which performs all journal
writes) is incapable of keeping the device utilized, and its
single-threadedness means that adding additional userspace



143

4 8 16 32 64 128 256 512
Write size (KB)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d 
th

ro
ug

hp
ut

10 18 28 47 68 88 109 129

19

29
49

71 101
123

144
146

ext4
ext4a

Figure 3.7: Data journaling write throughput with ANViL-
optimized ext4a compared to unmodified ext4. Each bar is
labeled with absolute write bandwidth (MiB/second).

I/O threads to the workload does little to increase device I/O
bandwidth utilization.

The mechanism underlying single-write journaling could be
more generally applied to most forms of write-ahead logging,
such as that employed by relational database management
systems [108].



144

3.8 GC Evaluation

ANViL is a complex system (approximately 100K lines of
code), with garbage collection contributing significantly to its
complexity. In this section, we examine the GC specifically.
In doing so, we dissect the various aspects that contribute to
the cost of reclaiming a segment and evaluate how the GC
scales with large storage capacities and numbers of references
to the same data. The experiments in this section were
performed using SuSE Linux Enterprise Server SP2 with a 3.0
Linux kernel, running on an HP DL380 server with 64GiB of
RAM, two 6-core (12-thread) Intel Xeon processors, and a 1.2
TB SanDisk ioMemory PCIe flash drive as ANViL’s backing
storage.

3.8.1 Garbage Collection in Action

Here we demonstrate the basic operation of the ANViL GC,
including how it ramps up its activity as device utilization
increases. To illustrate this behavior, we artificially reduce the
capacity of the backing device to 320 GB. We ran a workload
using fio [14] with 32 threads each writing 10GiB of data
in 512B blocks, with an overwrite ratio of 50%. Figure 3.8
shows the progress of the system over time.

Initially, when device utilization is low, the GC is granted



145

0

1

2

3

Foreground IOPS
(million)

0

1

2

3

0

50

100

0

50

100

0

0.5

1.0

0 50 100 150 200 250 300
0

10

20

Utilization
(percent)

Backing-device IOPS
(million)

Rate Limiting
(percent)

Blocks Moved
(million)

Segments

Time (seconds)

Writes Reads

Writes Reads

User GC

Allocated Reclaimed

Figure 3.8: Steady-state GC activity. This figure shows the
operation of the GC under a steady, intense, random-write
workload starting from a freshly-initialized (empty) state. As
the overall space utilization grows, the rate limiter allocates
an increasing fraction of the backing device’s I/O bandwidth
to garbage collection, eventually reaching a stable equilibrium
at which the garbage collector reclaims segments at roughly
the same rate as they are allocated to accommodate incoming
write requests.



146

Data Mappings GC Time (seconds)

128M 3,712 0.3
8G 266,952 28.3

64G 2,152,134 179.4
128G 4,037,073 363.7

Figure 3.9: GC capacity scaling. We populate the device with
some data and alter the GC to clean segments even though
they contain only live data. The cost in time and mappings
scanned thus represents the time spent by the GC in moving
all of the data that was originally written.

only a small fraction of the available I/O bandwidth and
hence foreground traffic proceeds at essentially full throttle.
Once space utilization crosses 50%, the rate limiter begins
increasing the GC’s bandwidth allocation and the cleaner
starts performing significant I/O to move data blocks out
of reclaimed segments, as can be seen at approximately 60
seconds. At approximately 120 seconds, we observe that the
system as a whole has reached a sustainable steady state,
with the GC keeping up with the incoming write stream, as
evidenced by the roughly equal rates of segment allocation
and reclamation.



147

3.8.2 GC Capacity Scaling

It is important for the GC to scale up gracefully when ANViL
is used to store large volumes of data. To evaluate this,
we measure the time taken by the GC to reclaim the valid
data from a set of segments. In these experiments, we issue
4KiB sequential writes to the device and allow the GC to
start processing after all the writes complete. We modify
the scanner’s candidate-selection code to make it reclaim
any segment, regardless of its utilization. In this particular
experiment, as we have no overwrites in our initial workload,
each segment contains entirely valid data. Figure 3.9 shows the
number of mappings traversed during the scan and the time
taken by the GC to scan and clean all the written segments;
the scan time increases roughly linearly with the quantity of
data.

The scanner’s throughput can be increased substantially
by parallelizing the scan across multiple threads. To measure
this, we wrote 128 MiB of data to ANViL (one segment’s
worth) and created 10,000 snapshots of it (to populate the
forward map with as many mappings as would be used for
1.28TiB of non-snapshotted data). We then measured the
performance of the scanner (the rate at which it traverses the
forward map) with varying numbers of threads. The results
in Figure 3.10 show that the multithreaded scanner is highly



148

scalable, allowing ANViL to scale to large numbers of data
references by making use of the plentiful CPU cores of modern
systems.

0 2 4 6 8 10 12
Scanner Threads

0

5

10

15

20

25

Sc
an

 R
at

e
(m

illi
on

s o
f m

ap
pi

ng
s p

er
 se

co
nd

)

Figure 3.10: Scanner scalability. This figure illustrates the
scalability of the GC’s multithreaded scanning, showing scan-
ning performance at varying thread counts. The scanner
achieves near-linear scaling up to 12 threads (the number
of CPU cores on the test system). The dashed line repre-
sents perfect linear scaling extrapolated from the measured
performance of a single thread.

3.9 Conclusion

The case studies presented in this chapter demonstrate that
with a simple but powerful block-address remapping mecha-
nism, a single log-structured storage layer can provide appli-



149

cations and filesystems above it with both high performance
and a flexible storage substrate. The clone, move, and delete
range operations with which ANViL augments the conven-
tional block-I/O interface provide a great deal of added utility
to higher-level software while remaining simple to integrate.

We have demonstrated how these operations can be used to
enable, with relatively minor changes to an existing codebase,
efficient implementations of an assortment of storage features.
The clone operation can create a volume snapshot without
compromising I/O performance, deduplicate file contents, or
implement an accelerated file-copy operation that can run
over 100 times faster than the standard cp command. The
vectored move operation can enable single-write transactional
commits, which we have shown can provide as much as a
90% performance increase in write throughput when applied
to ext4’s data journaling mode (while also simplifying the
existing code).

Beyond its immediate utility to applications, however,
ANViL is designed for modern hardware. Its GC’s multi-
threaded scanner takes advantage of plentiful CPU cores to
improve its throughput and decrease the amount of time
required to scan through its logical address space, and the
scanner’s performance scales up gracefully as more CPUs
are added. ANViL’s I/O patterns harmonize well with the



150

characteristics of flash storage devices. All writes issued to
its backing storage are gathered together into large, sequen-
tial streams. Its GC also utilizes the available internal I/O
parallelism of high-performance SSDs by issuing batches of
concurrent read requests when internally relocating data. Its
avoidance of small random writes in combination with the
GC’s cleaner regularly issuing large TRIM requests help to
ease the workload on the internal GCs of the underlying flash
devices, keeping them running smoothly. ANViL is thus a
storage virtualization system well-suited to the types of hard-
ware that have become prevalent in the landscape of modern
computing.



151

4

Cache-Conscious Filesystems
for Low-Latency Storage

The filesystem is a venerable abstraction that has endured
over decades of development and numerous generations of
hardware and software. The familiar Unix-style structure of
variable-size files containing arbitrary byte arrays organized
in a hierarchical directory tree has now existed for over half of
the entire history of digital electronic computing as we know
it today [118]. Its model is highly general while still being
conceptually simple – low-level enough to serve as a substrate
for arbitrary storage in programmatic use, high-level enough
for direct access by human users to be comfortable. The
filesystem abstraction has thus become deeply entrenched in
modern computing systems, and appears highly unlikely to



152

be replaced anytime in the near future.

While the interface of the filesystem abstraction has en-
dured, however, the methods with which it is implemented
have evolved considerably, with myriad designs for filesystem
internals proposed and implemented over the years [22, 62, 79,
96, 118, 121, 134]. Though these implementations often differ
from one another quite radically, a common aspect is the na-
ture of the hardware for which they are designed: block-based
storage devices accessed via (to varying degrees) relatively
high-latency asynchronous operations. Now, however, an en-
tirely new class of persistent storage hardware, not matching
this description at all, appears poised to present the next
major jump forward in storage technology: NVM (nonvolatile
memory) devices are byte-addressable and provide low-latency
access via regular load and store CPU instructions.

The arrival of this new and dissimilar technology thus
raises the question of how best to implement the traditional
filesystem abstraction on top of it. Given its much lower access
latencies, the CPU utilization of the software providing this
abstraction becomes a much more important factor than it has
been with slower block storage hardware. In this chapter we
examine one particularly critical aspect of CPU performance,
cache behavior, in the context of filesystem design for NVM
hardware.



153

4.1 Introduction

Storage device speeds have increased considerably with the
widespread adoption of flash in system that previously had em-
ployed hard disk drives [71, 79]. With the increasing availabil-
ity of non-volatile memory (NVM) technologies [45, 54, 130],
systems with persistent storage accessible with DRAM-like
latencies may soon be widespread. With these dramatic
improvements in the performance of storage hardware, the
overhead incurred by the software managing it becomes more
and more significant and storage-intensive applications that
were previously I/O-bound become increasingly CPU-bound.
This transition has led to research efforts into techniques
like kernel-bypass filesystems [27, 111, 142–144] and in-device
filesystems [74].

One of the most important factors in the CPU performance
of a workload is its hit rate in the CPU cache [7, 44, 78], a
hardware resource shared by both the application and the
operating system’s storage stack. This sharing means that in
addition to the performance of filesystem code itself, the de-
sign and implementation of performance-conscious filesystems
should also give consideration to the effects of cache pollution
– that performing filesystem operations perturbs the delicate
cache state needed to achieve good performance in executing
non-filesystem code.



154

However, filesystem research thus far has spent little effort
on this facet of the storage stack. Software design decisions
both small and large, as well as phenomena such as code align-
ment that are not typically consciously decided by software
developers (but can be controlled by a programmer who is
aware of them), can play a significant role in a filesystem’s
cache behavior.

In order to examine and experiment with its impact on
application performance, in this chapter we study the cache
footprints and access patterns of different Linux filesystems.
We then develop an experimental filesystem, DenseFS, with
the explicit aim of having a compact cache footprint, and
evaluate the performance benefits of the reduced pollution of
application cache state that this smaller footprint provides.
With targeted microbenchmarking we find that in comparison
to an array of existing Linux filesystems, DenseFS can dramat-
ically reduce the performance impact of the cache pollution
caused by filesystem operations, in some cases reducing a
150% overhead to merely 20%. Using a real-world program,
we find that using DenseFS in place of other existing filesys-
tems can achieve a 37-65× reduction in L1 instruction cache
misses, providing a 13% to 18% improvement in user-mode
CPU performance.

The remainder of this chapter is organized as follows.



155

In Section 4.2 we investigate the cache behavior of exist-
ing Linux filesystems. Section 4.3 presents the design and
implementation of DenseFS, as well as a more integrated
second-generation version of it. Section 4.4 we evaluate the
performance of both versions of DenseFS in comparison to
other filesystems. Finally, Section 4.6 concludes.

4.2 Filesystem Cache Access Patterns

We begin with an investigation of the cache behavior of oper-
ations in existing Linux filesystems. We aim to determine, for
both data and instruction accesses, the overall sizes of their
cache footprints, how efficiently they utilize the cache (degree
of reuse, whether bytes fetched into the cache go unaccessed
and thus wasted), and what the main sources of their cache
footprints are. We examine btrfs, ext4, f2fs, xfs, and tmpfs.
The first four are the main persistent filesystems currently in
widespread use (to varying degrees) on servers, desktops, and
mobile devices running Linux. The final filesystem we analyze,
tmpfs, is a non-persistent in-memory filesystem which has
been discussed by Linux developers as a possible basis for
NVM filesystem support [101].

By scripting gdb attached to the kernel running in a
virtual machine, we collect instruction-level dynamic traces



156

of btrfs, ext4, f2fs, xfs, and tmpfs performing an assortment
of metadata operations. We trace the entire kernel-mode
execution of each system call, recording for each instruction
its address and size, the addresses and sizes of any data
memory accesses it performs, and the full symbolic stack
backtrace (the function name, source file, and line number for
each stack frame).

Our first analysis processes these traces by aggregating all
instruction and data memory accesses at byte granularity and
counting the number of times each individual byte is accessed.
We continue along the path of prior research in using heatmaps
for visualizing cache access patterns [33, 138, 157] with a
special heatmap we term a cachemap (see Figures 4.1-4.4).
Each row of cells in a cachemap represents a single cache line
(64 bytes), with each cell representing one byte of memory.
The vertical axis serves simply to order cache lines by virtual
address, though it is not generally contiguous (only cache
lines that were accessed at least once are shown). The color
of each cell provides a log-scale indication of how many times
that byte was accessed1 throughout the entire trace (with
white representing the special value zero).

1The program that generates these cachemaps also offers an interac-
tive mode in which the user can click on a cell to see the full backtrace of
every point at which that byte was accessed, making it easier to identify
opportunities for potential optimizations.



157

0 32 64
0

100

200

300

400

500

600

700

800

Instruction

0 32 64
0

50

100

150

200

250

300

350
Data

100

101

102

100

101

102

(a) creat

0 32 64
0

200

400

600

800

1000

Instruction

0 32 64
0

50

100

150

200

250

300

350

Data

100

101

102

100

101

102

(b) unlink a 4KiB file

0 32 64
0

100

200

300

400

500

600

700

Instruction

0 32 64
0

50

100

150

200

250

Data

100

101

102

100

101

102

(c) rename

0 32 64
0

100

200

300

400

500

600

700

Instruction

0 32 64
0

50

100

150

200

250
Data

100

101

102

100

101

(d) fallocate 1MiB of data

Figure 4.1: Cachemaps of metadata operations on btrfs.



158

0 32 64
0

100

200

300

400

500

600

700
Instruction

0 32 64
0

50

100

150

200

250

Data

100

101

102

100

101

102

(a) creat

0 32 64
0

100

200

300

400

500

600

700

800

Instruction

0 32 64
0

50

100

150

200

250

300
Data

100

101

102

100

101

102

(b) unlink a 4KiB file

0 32 64
0

100

200

300

400

Instruction

0 32 64
0

25

50

75

100

125

150

175

Data

100

101

100

101

(c) rename

0 32 64
0

100

200

300

400

500

Instruction

0 32 64
0

25

50

75

100

125

150

175

200
Data

100

101

100

101

102

(d) fallocate 1MiB of data

Figure 4.2: Cachemaps of metadata operations on ext4.



159

0 32 64
0

100

200

300

400

500

600

700
Instruction

0 32 64
0

50

100

150

200

250

300

350

Data

100

101

102

100

101

102

(a) creat

0 32 64
0

100

200

300

400

500

600

Instruction

0 32 64
0

50

100

150

200

250

Data

100

101

102

100

101

102

103

(b) unlink a 4KiB file

0 32 64
0

50

100

150

200

250

300

350

400

Instruction

0 32 64
0

20

40

60

80

100

120

140

160

Data

100

101

102

100

101

102

(c) rename

0 32 64
0

50

100

150

200

250

Instruction

0 32 64
0

20

40

60

80

100

120

Data

100

101

102

100

101

102

103

(d) fallocate 1MiB of data

Figure 4.3: Cachemaps of metadata operations on f2fs.



160

0 32 64
0

200

400

600

800

1000
Instruction

0 32 64
0

50

100

150

200

250

300

350

400

Data

100

101

102

103

100

101

(a) creat

0 32 64
0

200

400

600

800

1000

Instruction

0 32 64
0

100

200

300

400

Data

100

101

102

100

101

102

(b) unlink a 4KiB file

0 32 64
0

100

200

300

400

500

600

700

Instruction

0 32 64
0

50

100

150

200

250

Data

100

101

102

100

101

(c) rename

0 32 64
0

100

200

300

400

500

600

700

800
Instruction

0 32 64
0

50

100

150

200

250

Data

100

101

102

100

101

(d) fallocate 1MiB of data

Figure 4.4: Cachemaps of metadata operations on xfs.



161

0 32 64
0

50

100

150

200

250

300

350
Instruction

0 32 64
0

20

40

60

80

100

120

140
Data

100

101

100

101

(a) creat

0 32 64
0

50

100

150

200

250

300

Instruction

0 32 64
0

20

40

60

80

100

120

Data

100

2 × 100

3 × 100

4 × 100

6 × 100

101

100

101

(b) unlink a 4KiB file

0 32 64
0

50

100

150

200

250
Instruction

0 32 64
0

20

40

60

80

100
Data

100

101

100

101

(c) rename

0 32 64
0

50

100

150

200

Instruction

0 32 64
0

50

100

150

200

250

300

350

400
Data

100

101

102

100

101

102

103

(d) fallocate 1MiB of data

Figure 4.5: Cachemaps of metadata operations on tmpfs.



162

We begin at a high level: looking at the sizes of overall
cache footprints, it is clear that all of these operations will
significantly perturb the first-level caches, if not displace their
contents entirely. Current generations of x86 processors have
L1 instruction and data caches of 32KB each (512 64-byte
cache lines). Of the twenty operations in our cachemaps, thir-
teen show instruction cache footprints that exceed the size of
the L1 cache. The data cache footprints are generally roughly
half the size of the code footprints, with twelve operations
exhibiting data footprints over half the size of the L1 cache.
Executing operations like these will thus significantly disturb
warm L1 cache state built up by an application during its
execution, degrading its performance after the system call
completes until the application’s working set can be brought
back into the cache.

We see in these cachemaps that many data cache accesses
are relatively wasteful in that they drag an entire 64-byte
line into the cache (displacing another one, which may have
contained useful application working-set data) only to provide
a small handful of bytes, often for a single, isolated memory
access. Accesses of this sort exhibit neither the spatial nor the
temporal locality for which caches are optimized, and hence
make poor use of them.

The instruction access patterns shown in our cachemaps



163

indicate a different inefficiency in their cache utilization. In-
struction fetches, due to execution being inherently sequential
by default (in the absence of branches), are somewhat less
wasteful in that a smaller number of bytes in each cache line
go unused on average. However, despite this spatial locality,
the prevalence of dark blue cells in the instruction cachemaps
indicate that there is relatively little temporal locality (reuse
of already-cached instructions); given the larger size of the in-
struction cache footprint this is still not a particularly effective
use of hardware resources.

One of the more eye-catching features of these cachemaps
is that every data-cache map shows a densely- and heavily-
accessed region of perhaps ten to twenty cache lines that stands
out from everything else: this is simply the C execution stack,
which exhibits cache-friendly behavior with its high degree of
spatial and temporal locality. While it may in some cases be
possible to reduce the stack footprint of a given sequence of
code, the reuse of the same stack space by different function
calls means that reducing the overall stack footprint is unlikely
to happen anywhere but at the outermost (leaf) levels of the
call tree, and only when the stack is at its deepest, making the
stack an unpromising area for efforts toward cache-footprint
optimization.

In many data cachemaps (for example, around cache line



164

225 of Figure 4.1(b), cache line 180 of Figure 4.2(a), and cache
line 300 of Figure 4.4(b)) we see regions of similarly-patterned
accesses to a number of cache lines. This phenomenon occurs
as a result of the memory layout of common data struc-
tures, such as struct inode and struct kmem_cache. Cer-
tain code paths will access certain specific subsets of the
members of common structs such as these, often leaving other
members untouched. The clear visualization of these pat-
terns provided by our cachemaps can make it easy to identify
opportunities for memory layout micro-optimizations, such
as rearranging the layout of struct kmem_cache such that
the members that are needed by the performance-critical
common-case allocation path are grouped into a single cache
line instead of spanning two lines.

A particular case that stands out visually is tmpfs’s fallocate
operation, shown in Figure 4.5(d). Whereas the other filesys-
tems examined have extent-based data structures that allow
them to efficiently allocate large, contiguous regions of space,
tmpfs operates only on individual pages (4KiB each). When
allocating a large amount of space, it thus needs to execute
the same page-allocation code many times (allocating single
4KiB pages 256 times to satisfy a 1MiB fallocate request),
leading to a much higher degree of instruction reuse, as well
as the dense, patterned data accesses it exhibits as it ac-



165

cesses members of the data structures representing the pages
it allocates.

Due to their larger sizes, we focus first on optimizing
instruction cache footprint. We wish to gain a high-level
understanding of what software components are the main
contributors to the overall size of that footprint so as to guide
our efforts to reduce it. The low-level nature of instruction
traces and the cachemaps we have examined thus far, however,
makes it difficult to discern the major sources of instruction
cache footprint. In order to look at our trace data from a
vantage point more appropriate for this analysis, we condense
our instruction traces into coarse-grained stack traces, or
cgstacks and visualize each of them in the form of a flame
graph [51].

A cgstack is a simplified view of the stack backtrace of
a given instruction. Given an instruction’s stack backtrace,
we transform it into a cgstack by mapping each frame, pro-
gressing from callers to callees, to one of a set of designated
code categories based on the file in which that function is
defined (for example, functions in mm/slab.c are mapped to
the “malloc” category, while fs/file.c is mapped to the “vfs”
category). If the category classification of a given stack frame
has not yet been seen in the corresponding cgstack thus far,
that category is then added to the top of the cgstack. The re-



166

vfs fs malloc pagecache journal lib synchronization quota

bt
rfs

ex
t4

f2
fs

xf
s

0 5 10 15 20 25 30 35
Code Size (KiB)

tm
pf

s

(a) creat

bt
rfs

ex
t4

f2
fs

xf
s

0 5 10 15 20 25 30 35 40
Code Size (KiB)

tm
pf

s

(b) unlink a 4KiB file

bt
rfs

ex
t4

f2
fs

xf
s

0 5 10 15 20 25
Code Size (KiB)

tm
pf

s

(c) rename

bt
rfs

ex
t4

f2
fs

xf
s

0 5 10 15 20 25
Code Size (KiB)

tm
pf

s

(d) fallocate 1MiB of data

Figure 4.6: Cgstack flame graphs of the components contribut-
ing to the code footprints of Linux filesystems.



167

sult is effectively a high-level statement about the provenance
of each instruction. For example, for a given instruction that
statement may be that the instruction’s presence in the trace
is attributable to page cache code called by VFS code. After
transforming each instruction’s stack trace into a cgstack in
this way, we then weight each cgstack by the size of the in-
struction and aggregate the data together, producing a flame
graph for each trace (see Figure 4.6).

Of the two journaling filesystems examined, we see that in
all cases xfs’s journaling code occupies a much larger footprint
than that of the corresponding ext4 code (4.8-5.2×). This dis-
parity aligns with expectations, as ext4’s jbd2 layer performs
simpler physical journaling [148], whereas xfs employs a more
complex hybrid logical/physical journaling scheme [30].

In almost all cases the footprint of the VFS code (and
other non-filesystem-specific code transitively executed by it)
is quite uniform, with overall footprint differences between
filesystems stemming entirely from filesystem-specific code
(the “fs” category). The one evident exception is the unlink
operation on xfs. This difference is simply an artifact of
the fact that xfs is the only filesystem of these five that
does not define its own evict_inode operation, instead using
the default implementation provided by the vfs. However,
the evict_inode operations employed by btrfs, ext4, and



168

f2fs all (amidst other, filesystem-specific work) call the same
truncate_inode_pages_final function called by the default
VFS code path that xfs uses, so the code that is ultimately
executed is largely similar, despite being invoked via a different
path.

Over a quarter of tmpfs’s code footprint (2.8KiB of its
10KiB) for the fallocate operation comes from memory-
allocation code (the “malloc” category). This composition is
a natural result of tmpfs being a memory-based filesystem;
allocating space for file data is thus internally a memory-
allocation operation. (This is another manifestation of the
same phenomenon described earlier in our cachemap analysis,
in which tmpfs’s memory access patterns for fallocate look
markedly different from any other operation.)

While these cgstack flame graphs do show variations be-
tween different filesystems, they also make it clear that com-
mon, non-filesystem-specific infrastructure such as the VFS
and page cache play a significant role in overall code footprint.
Armed with this knowledge, we set out to construct a new
filesystem with the aim of maximizing cache density, in part
by keeping it disentangled from the conventional filesystem
framework. The resulting filesystem is called DenseFS, and is
detailed in Section 4.3.



169

4.3 DenseFS

DenseFS is a small in-memory Linux filesystem implemented
in approximately 2500 lines of code. Our initial aim with
DenseFS is not to provide a full-featured, robust, “real” filesys-
tem, but rather an experimental system to explore the po-
tential performance benefits (both in the speed of its own
execution and in its impact on the user-mode performance of
applications using it) of a filesystem with a greatly reduced
cache footprint, even if that comes at some costs in practicality
and ease of use by applications. It has not been optimized for
scalability and lacks a number of features normally expected
of any modern filesystem, such as crash-consistency, symlinks,
and mmap support.

Given the results of our analysis in Section 4.2 showing
that the VFS and page cache code are significant contributors
to the large code footprints of existing filesystems, DenseFS
is not integrated into the “normal” Linux VFS layer and does
not use its page cache. This design choice is at the root
of its primary practical difficulty: the standard file-access
system calls (open, read, unlink, etc.) cannot be used to
access it. Instead, it offers its own parallel set of system calls
(dfs_open, dfs_read, dfs_rename, and so forth) with the
same arguments, but which operate on files in the DenseFS
namespace. DenseFS file descriptors are distinct from (and not



170

interchangeable with) normal file descriptors, but otherwise
operate similarly. Alongside its existing file descriptor table
and working directory, each process thus gains a separate
DenseFS file descriptor table and DenseFS working directory.

Within its set of special system calls, however, DenseFS
has familiar features. Directory entries, inodes, and a su-
perblock are represented with C structs, with pointers link-
ing them together in the same overall structure as is found
in most Unix-style filesystems. These structs are allocated in
memory, but instead of using the general-purpose in-kernel
memory allocation routines (Linux’s kmalloc family of calls),
it instead performs one large allocation for the entire (fixed)
capacity of the filesystem when it is mounted and then allo-
cates its own internal structures within that region of memory
(mimicking what would be done in a true NVM filesystem).

4.3.1 Data Cache Compaction

In keeping with DenseFS’s aims of being compact, some famil-
iar structures are implemented differently than in conventional
filesystems, in particular its inode. A straightforward inode
structure for an in-memory filesystem like DenseFS might
closely resemble the stat struct used in the standard stat
system call, and indeed this was our initial starting point
with DenseFS. With a few additional fields needed internally



171

(a spinlock, a reference count for open files, and a union of
pointers for directory entries and file data), this simple im-
plementation, however, yields a 112-byte inode – larger than
desired for a cache-dense filesystem. With that as a starting
point we made a series of optimizations to reduce the size of
the DenseFS inode structure.

Fewer, smaller timestamps: The stat struct uses the
bulky 16-byte struct timespec (with separate second and
nanosecond fields) to represent the file’s atime, mtime, and
ctime timestamps. We start by simply replacing these with
the Linux kernel’s internal 8-byte ktime_t (a single nanosec-
ond value), and removing the atime member entirely, since
access times are rarely actually used by applications and hence
filesystems are frequently mounted with the noatime option
anyway. This change saves 32 bytes by reducing the space
spent on timestamps from 48 bytes to 16, with only a slight
compromise in functionality.

Zero-byte inode numbers: Inode numbers are also rela-
tively little-used, though unlike the inode’s atime the only
information they encode is a unique identifier, which can thus
be removed without any compromise in functionality or se-
mantics. Instead of storing an inode number in each inode,
DenseFS’s stat call instead populates the st_ino field with



172

a value derived from the in-memory address of the inode itself.
In order to allow for these synthetic inode numbers to remain
persistent (were DenseFS operating on real nonvolatile mem-
ory), we subtract the base address of the DenseFS memory
region to form an offset instead of a raw pointer value, and
then XOR this offset with a secret key stored in the DenseFS
superblock in order to avoid leaking potentially-sensitive meta-
data to userspace [36]. This change saves eight bytes in the
DenseFS inode struct, with no sacrifices in functionality or
performance.

Out-of-line metadata deduplication: This optimization
is based on the observation that the user, group, and mode
fields contain little entropy. Even in filesystems containing
many millions of files, there may be only a few hundred
unique combinations of these three fields, so encoding this near-
duplicate information in every individual inode is an inefficient
use of space. In DenseFS we thus compress this information by
keeping a filesystem-wide table of <uid, gid, mode> tuples
and replacing the corresponding three entries in the inode
struct with a single 16-bit index into this table. By replacing
three 32-bit fields with 16 bits, this optimization saves another
10 bytes, though it is a compromise in multiple ways.

While the <uid, gid, mode> metadata itself no longer
takes up space in the inode, it is still just as large in the global



173

table, and accessing it there will still require bringing another
line into the cache. However, many inode accesses (such data
read and write operations via open file descriptors) simply
do not need to use this metadata, so the cost of of accessing
another cache line in the global table is not incurred. Addi-
tionally, operations that read this information from multiple
inodes (such as a rename, or a path lookup traversing multiple
levels in the directory hierarchy) will commonly access the
same locations in the table for multiple inodes, reusing the
same cache line instead of multiplying the cache-footprint
overhead. And while DenseFS does not currently implement
this, the entries in the table could also be organized for local-
ity (for example, putting entries for the same user near each
other) so that even operations that don’t access exactly the
same entry are likely to access ones in the same cache line.

This approach also imposes an additional performance
cost on update operations, which now need to determine the
correct index to use for a given <uid, gid, mode> combi-
nation, and in the uncommon case of setting one that does
not already exist somewhere in the filesystem, add an entry
for it to the global table. In the current implementation of
DenseFS, determining the index for a given metadata tuple is
done via a simple linear search; in a more production-ready
implementation this could be optimized with a TLB-like cache



174

of recently-used entries, possibly in combination with a more
sophisticated data structure.

Special-cased "." and ".." directory entries: We made
one additional data cache optimization unrelated to the layout
of the DenseFS inode struct itself that reduces the number
of cache lines accessed during path lookups. The initial im-
plementation treated each directory’s "." and ".." entries
no differently than any others; given the simple linear-search
directories DenseFS employs, this incurs additional cache-line
accesses to check them during lookup operations in each di-
rectory. To avoid these extra accesses we instead modified the
directory-search code, adding an explicit special-case check
for these names instead of actually materializing them in each
directory’s list of entries.

Results

With all of these optimizations applied and with some addi-
tional savings from reordering a few inode fields to eliminate
padding bytes, we achieve an important goal: at 56 bytes, the
DenseFS inode struct is now small enough to be contained
entirely in a single cache line. The entire layout of the result-
ing inode structure is shown in Figure 4.7. For comparison,
Figure 4.8 shows the sizes of the in-memory inode structures



175

struct densefs_inode {
uint16_t nlink; /* 2 bytes */
metaidx_t meta_idx; /* 2 bytes */
refcount_t refcount; /* 4 bytes */
off_t size; /* 8 bytes */
ktime_t mtime; /* 8 bytes */
ktime_t ctime; /* 8 bytes */
spinlock_t lock; /* 4 bytes */
/* 4-byte hole for alignment */
union {

struct list_head {
struct list_head *next;
struct list_head *prev;

} dirents;
struct rb_root {

struct rb_node *rb_node;
} chunks;

} data; /* 16 bytes */
};

Figure 4.7: The 56-byte DenseFS inode structure. File data
is stored in a red-black interval tree of contiguous extents
(data.chunks); directory entries are kept in a simple linked
list (data.dirents).



176

Filesystem In-memory inode size (bytes)

btrfs 1,064
ext4 1,056
f2fs 928
xfs 920

tmpfs 680

Figure 4.8: In-memory inode sizes of Linux filesystems. 576
bytes of each inode is consumed by the generic VFS struct
inode embedded within it.

for the five existing Linux filesystems we have evaluated. Over
half of the size of these inode structures is due to the fact
that each of them embeds an instance of the Linux VFS
layer’s 576-byte struct inode. Note, however, that while
these structures are large, relatively few of their members are
typically accessed by a given operation, so the effective impact
on cache footprint is less dramatic than these raw sizeof
numbers might imply.

The resulting decrease in data cache footprint can be
seen in the cachemaps in Figure 4.9. The creat, unlink,
and rename operations see reductions of 10 to 11 cache lines
each, or 17-19%. These reductions are proportional to the
depth of the file paths on which they operate; in these traces
our benchmark program was configured to access files four



177

0 32 64
0

10

20

30

40

50

60

Data
(base)

0 32 64
0

10

20

30

40

50

60

Data
(packed)

100

101

100

101

(a) creat

0 32 64
0

10

20

30

40

50

Data
(base)

0 32 64
0

10

20

30

40

50

Data
(packed)

100

101

100

101

(b) unlink a 4KiB file

0 32 64
0

10

20

30

40

50

60

Data
(base)

0 32 64
0

10

20

30

40

50

60

Data
(packed)

100

101

100

101

(c) rename

0 32 64
0

20

40

60

80

100

120

Data
(base)

0 32 64
0

20

40

60

80

100

120

Data
(packed)

100

2 × 100

3 × 100

4 × 100

6 × 100

100

101

102

(d) fallocate 1MiB of data

Figure 4.9: Data cachemaps of DenseFS, before and after
cache-compaction optimizations. The hatched green regions
near the tops of the packed cachemaps indicate cache footprint
eliminated by the optimizations described in Section 4.3.



178

directory levels deep in the filesystem. In combination with
the starting directory (the DenseFS root) and the file itself,
this implies accessing six inodes in total. The savings in the
optimized version are thus proportional to two cache lines
per level of the path lookup (one from the inode accessed at
each level fitting in a single line instead of two, and one from
avoiding accessing the "." and ".." directory entries), though
this is slightly offset by the additional access to the out-of-line
metadata in the global <uid, gid, mode> table. fallocate,
however, does not see any benefit from these optimizations,
because it operates on a file descriptor instead of a path (and
thus performs no directory lookups), so the one-line reduction
from the compacted inode is balanced by the additional access
to its external <uid, gid, mode> metadata.

4.3.2 Instruction Cache Compaction

To compact DenseFS’s code footprint, we first traced its exe-
cution of various calls and produced corresponding cachemaps
as in Section 4.2. Guided by these cachemaps, we then applied
three varieties of manual adjustments to help the executed
code fit into fewer cache lines.

Function alignment: This optimization is the most fre-
quently applicable and hence the most impactful technique.



179

The function current_kernel_time64, used in updating in-
ode timestamps, provides an excellent example of it. The
function’s code is only 58 bytes long, short enough to fit in
a single cache line, but its starting address is offset from the
cache-line boundary such that it spills over into the next line,
causing its execution to displace one more line than it truly
requires. By annotating it to be aligned on a 64-byte bound-
ary, we avoid this pitfall and keep it contained in a single
cache line. It would be simple to use a compiler flag to apply
this alignment constraint globally to all functions, but this
is not necessarily always beneficial, as will be shown in our
discussion of function ordering below.

Branch hinting: The opportunity for this optimization
arises when the compiler arranges code suboptimally for a
conditional such as an if block. Consider a simple example
with an if block with a small body and no else clause.
A straightforward compilation of the code might put the
body of the if block “inline” with the surrounding code
preceded by a conditional branch that skips over it when the
condition is false. If the condition is rarely true, however, this
results in wasted space in the instruction cache – the bytes for
those instructions are brought into the cache alongside their
neighboring instructions, but are never executed. If the bias
of the condition is known, a more optimal compilation would



180

instead place the body of the if block in a relatively far-off
location after the main “hot” body of the function and branch
to it (and then back) in the unlikely case that its condition is
true. By identifying occurrences like this (which are visible as
small gaps of white in our cachemaps), we can sometimes add
appropriate annotations to such if conditions and squeeze
out a few more precious bytes of wasted cache space.

Function ordering: In one case we observed a cluster of
three functions, one 30 bytes, one 37, and one 28 bytes
(strcpy, strcmp, and strlen, respectively). Despite totaling
only 95 bytes, they nevertheless spanned four cache lines –
256 bytes worth of space. One of the two extra “wasted” lines
was due to suboptimal alignment of strlen causing its code
to spill onto a second line, but even after addressing that the
trio of string functions that should have fit easily in two lines
still consumed three. Despite being defined in the same source
file, their relatively distant locations within that file led to
the corresponding layout in memory not condensing them
together as would be desirable for compactness. In this case,
cache-line-aligning all three functions individually would still
reduce cache density by the same token – separating closely-
related pieces of code. By simply reordering the functions
to bring them together in the source file that defines them
(lib/string.c), we were able to achieve the desired result of



181

0 32 64
0

10

20

30

40

50

60

70

Instruction
(base)

0 32 64
0

10

20

30

40

50

60

70

Instruction
(packed)

100

101

100

101

(a) creat

0 32 64
0

10

20

30

40

50

60

Instruction
(base)

0 32 64
0

10

20

30

40

50

60

Instruction
(packed)

100

101

100

101

(b) unlink a 4KiB file

0 32 64
0

10

20

30

40

50

60

70

Instruction
(base)

0 32 64
0

10

20

30

40

50

60

70

Instruction
(packed)

100

101

102

100

101

102

(c) rename

0 32 64
0

5

10

15

20

25

30

35

40

Instruction
(base)

0 32 64
0

5

10

15

20

25

30

35

40

Instruction
(packed)

100

101

102

100

101

102

(d) fallocate 1MiB of data

Figure 4.10: Instruction cachemaps of DenseFS, before and
after cache-compaction optimizations. The hatched green
regions near the tops of the packed cachemaps indicate cache
footprint eliminated by the optimizations described in Sec-
tion 4.3.



182

fitting all three into two cache lines.

Figure 4.10 shows the effects of the code-compaction tech-
niques described in this section. While the cache-footprint
savings provided by these optimizations are small, unlike some
of the data-cache optimizations they are essentially “free”,
with no tradeoffs in the functionality of the filesystem. The
code-packing optimizations have the disadvantage, however,
of being relatively fragile – small code changes can render a
carefully-applied manual optimization moot. A more realisti-
cally maintainable option would be to have optimizations like
these applied automatically by the compiler, perhaps via a
form of profile-guided optimization [112, 115, 158].

Figure 4.11 shows the overall compactness of DenseFS in
relation to the same Linux filesystems shown in Figure 4.6.
Relative to them, DenseFS reduces code size dramatically,
occupying a footprint 3.3-6.4× smaller than even the smallest
existing Linux filesystem. In three of the four system calls
examined (creat, unlink, and rename), DenseFS’s code foot-
print in its entirety is smaller than the footprint of the VFS
code alone in each other filesystem (2.7-3.0KiB, as compared
to 3.7-4.8KiB of VFS code). The exception is fallocate,
which operates on an already-open file descriptor (whereas
creat, unlink, and rename operate on files by path), and
thus has less work to do in the VFS before being dispatched



183

vfs fs malloc pagecache journal lib synchronization quota

bt
rfs

ex
t4

f2
fs

xf
s

tm
pf

s

0 5 10 15 20 25 30 35
Code Size (KiB)

de
ns

ef
s

(a) creat

bt
rfs

ex
t4

f2
fs

xf
s

tm
pf

s

0 5 10 15 20 25 30 35 40
Code Size (KiB)

de
ns

ef
s

(b) unlink a 4KiB file

bt
rfs

ex
t4

f2
fs

xf
s

tm
pf

s

0 5 10 15 20 25
Code Size (KiB)

de
ns

ef
s

(c) rename

bt
rfs

ex
t4

f2
fs

xf
s

tm
pf

s

0 5 10 15 20 25
Code Size (KiB)

de
ns

ef
s

(d) fallocate 1MiB of data

Figure 4.11: Cgstack flame graphs showing the code footprint
of densefs in comparison to those of Linux filesystems.



184

into filesystem-specific code. Even in this case, however, at
1.5KiB DenseFS’s code footprint is only 16% of that of the
next most compact filesystem (f2fs, at 9.4KiB).

4.3.3 A Second Generation

The main practical drawback of DenseFS as presented thus
far is its lack of integration with existing filesystem interfaces.
This segregation manifests in its implementation, requiring
dedicated code to manage its own special file descriptor table,
but more problematically in requiring applications to use
specialized DenseFS system calls to access it. While in some
simple cases this can be made to happen transparently via
an external shim layer such as an LD_PRELOAD library, this
approach rapidly hits its limits when applications do non-
trivial or unexpected things with their file descriptors (even
something as simple as using dup2 to duplicate an existing
file descriptor at a specific desired number).

Thus, to avoid the necessity of modifying applications or
employing such fragile shim layers to support DenseFS, we
wish to better integrate it with the kernel’s existing filesystem
code. We achieve this with a second-generation implementa-
tion of DenseFS called DenseFS2. (The initial design is hence-
forth correspondingly referred to as DenseFS1.) DenseFS2
uses much of the same core code as DenseFS1, but makes



185

some modifications to existing kernel code in order to allow
it to be accessed via normal, non-DenseFS-specific filesystem
syscalls and store its file descriptors in each process’s existing
file descriptor table alongside “normal” ones.

The mechanism we use for this hinges on the simple tech-
nique of “borrowing” a bit from a pointer to distinguish
between VFS and DenseFS2 objects at runtime. Given the
alignment requirements for a particular data structure, it is
guaranteed that all pointers to an instance of such a data struc-
ture will have some number of bits at their least-significant
end that are all zeros. These bits can then be used to encode
auxiliary information; when the pointed-to data needs to be
referenced, it can be by simply masking off the borrowed
low bits and dereferencing the resulting (original) pointer.
This technique, often referred to a tagged pointer, is com-
monly used in software such as programming language in-
terpreters [48, 67], and even elsewhere in the Linux VFS, in
which a single unsigned long is used to store both a pointer
to a struct file and two metadata flags pertaining to it
(DenseFS2 essentially just borrows one additional bit in this
same value).

DenseFS2 uses this borrowed pointer bit to add a layer
of indirection to some key functions in the Linux VFS. Most
prominently, the function fdget, used to retrieve a struct



186

file pointer corresponding to a given file descriptor number,
is altered to instead return a pointer to a new type, struct
qfile. A struct qfile is itself a dummy struct with no
members; it simply serves as a unique pointer type to clarify
exactly what the semantics of each variable are in the code
that handles them. A pointer to a struct qfile is in fact a
pointer to either a regular Linux struct file or a pointer
to its DenseFS2 counterpart; the two are distinguished by the
borrowed flag in its lower bits. Each point in the VFS code
that retrieves a file object from a file descriptor thus checks
this bit and either continues on to the regular VFS code or
instead dispatches the requested operation to its DenseFS2
equivalent. Because the transition from a struct qfile to a
struct file or an DenseFS2 file is simply a bit manipulation
(as opposed to an actual indirection through memory, i.e. a
pointer dereference), this layer of indirection imposes little
additional overhead.

This mechanism addresses the VFS/DenseFS2 demulti-
plexing problem for filesystem access via file descriptors, but
there is still a corresponding problem for access via path
names. DenseFS2 solves this by reserving a special path pre-
fix, "@@" (two “at” signs), to indicate that the path name
following it should be looked up within DenseFS2. DenseFS2
is thus still not fully integrated into the regular filesystem (it



187

cannot be mounted as a subtree at an arbitrary location), but
instead lives in its own neighboring parallel namespace. This
arrangement is somewhat incongruous in the world of Unix-
like filesystems, being more analogous to the notion of “drive
letters” in the Windows filesystem. Nevertheless, it provides
a vastly simpler mechanism for application interoperability
than the original DenseFS’s set of dedicated system calls.
By intercepting execution from existing filesystem syscalls,
DenseFS2 allows applications to use it without modification,
simply by specifying "@@"-prefixed paths to access.

Smaller Inodes

DenseFS2 also includes some further efforts at data cache
footprint reduction via inode compaction. While some com-
promises were made to achieve the 56-byte inode structure
used in DenseFS1 (Figure 4.7), there are still some opportu-
nities for additional size reduction.

The data union stores a pointer to a red-black tree of data
chunks for regular files (8 bytes) or a linked list of entries
for directories (two pointers, or 16 bytes). DenseFS2’s usage
of directory entries does not require the last entry to be
immediately accessible, however, so we can instead use an
instance of struct hlist_head, which contains only a single
pointer to the first entry in the list. Because the dirents



188

member was the larger of its two members, this shrinks the
data union (and thus the entire DenseFS2 inode structure)
by 8 bytes.

Another alternative data structure that, like struct hlist_head,
is already available in the Linux kernel is the bit spinlock
– a spinlock implementation that provides mutual exclusion
semantically equivalent to a normal spinlock, but uses only
a single bit of memory instead of the 32 used for the default
spinlock implementation. Though it is documented as being
significantly slower than the normal spinlock and may aggra-
vate scalability bottlenecks in situations where there is heavy
contention between CPU cores for access to shared inodes, in
order to pursue the primary goal of compactness we eliminate
the spinlock_t and instead borrow the highest bit of the
8-byte size field to serve as the new lock for DenseFS2’s
inode structure, saving another four bytes.

Borrowing a bit from size field in this way leaves 63 bits
in which to represent a file’s size. This representation is still
enough to support files up to nearly 8EiB (9,223,372,036,854,775,807
bytes) in size, far larger than seems likely be useful for the
foreseeable future. We thus opt to compromise a little further
on this parameter and borrow another 16 bits from it,2 into

2The common usage of the term “borrowing” for this practice in pro-
gramming is curious, implying a promise that the bits will be “returned”
at some point in the future. Unfortunately for the rightful owners of such



189

which we move the meta_idx field (the index into the global
<uid, gid, mode> table). The remaining 47 bits are still
sufficient for a healthy 128TiB maximum file size.

Along similar lines, the 8-byte mtime and ctime fields,
consuming an increasing fraction of the remaining size of the
DenseFS2 inode as the rest of it shrinks, are next on the list to
sacrifice spare bits. At the least-significant end of these fields,
the ktime_t type’s nanosecond resolution is a convenient
feature, but is likely more precise than is required for most
workloads. At the most-significant end lie a handful of bits
that will remain zero for centuries to come – 264 nanoseconds
amount to over 584 years. We thus sacrifice some bits from
both the low and the high ends of this field, giving up some
range and some precision. We discard 21 of the rightmost
bits and 3 of the leftmost, leaving a 40-bit timestamp field
representing a roughly 73-year range at a resolution of slightly
over 2 milliseconds. This new representation is implemented
as a struct with two members (one byte and four bytes), to
which we apply GCC’s packed type attribute to ensure it
does not contain any padding bytes (which it otherwise would
to pad its size out to a multiple of four bytes for alignment
purposes).

The final DenseFS2 inode structure is shown in Figure 4.12.

bits, this promise is rarely kept.



190

struct densefs2_time {
uint32_t __low; /* 4 bytes */
uint8_t __high; /* 1 byte */

} __attribute__((packed));

struct densefs2_inode {
uint16_t nlink; /* 2 bytes */
struct densefs2_time mtime; /* 5 bytes */
struct densefs2_time ctime; /* 5 bytes */
refcount_t refcount; /* 4 bytes */
unsigned long __lock_metaidx_size; /* 8 bytes */
union {

struct hlist_head {
struct hlist_node *first;

} dirents;
struct rb_root {

struct rb_node *rb_node;
} chunks;

} data; /* 8 bytes */
};

Figure 4.12: 32-byte DenseFS2 inode structure. The
__lock_metaidx_size field contains three sub-fields as in-
dicated by its name: a 1-bit spinlock, a 16-bit index into
the global <uid, gid, mode> table, and a 47-bit size. These
are extracted and updated by a set of helper functions that
perform the requisite shifting and masking.



191

With all of these additional inode compactions applied, we
reach another key threshold: 32 bytes, allowing a single data
cache line to contain two complete DenseFS2 inodes. With
this step arises a micro-scale version of the locality problem
that many existing disk-oriented filesystems (such as FFS [96])
grapple with. Now that multiple inodes fit in each cache line,
careful placement of “related” inodes (those which are likely
to exhibit temporal locality in their access patterns) in the
same cache lines could potentially yield a benefit for opera-
tions that access both. One could, for example, co-locate a
directory inode and an inode pointed to by one of its entries
in the same cache line, reducing the data cache footprint of
path lookups that traverse both. However, with space for only
one extra inode to be added alongside another, the ratio of
implementation complexity to the expected benefit of doing so
seems unappealingly high, and DenseFS2 does not currently
make any particular effort to exploit this potential. However,
given the nature of its allocation patterns (specifically, that
consecutive allocations generally tend to be placed in neigh-
boring locations), access patterns that mirror the order of file
and directory creation patterns may tend to serendipitously
benefit from this cache locality anyway.

By borrowing some bits from from the pointers in the
data union and compromising further on range or resolution



192

in some combination of the link count, reference count, times-
tamps, maximum file size, and maximum supported number of
distinct <uid, gid, mode> table entries, the inode structure
could potentially be reduced in size even further. 44 bits of
the data pointer union would probably need to remain (given
alignment and the virtual address format, up to 20 could be
borrowed on current x86-64 systems), and one bit is required
for the spinlock.3 For a given target inode size, this would
then leave a fixed number of bits to allocate at the will of
the designer between the remaining fields. In a specialized
use-case in which more significant sacrifices could be made in
some of these fields,4 it may be feasible to achieve an inode
size that would allow three or, aggressively, possibly even four
inodes to fit in a single 64-byte cache line. Increasing the
number of inodes per cache line would increase both the ease
and the potential benefit of efforts to cluster specific inodes
for locality as described above.

3Assuming the retention of a fine-grained locking strategy; switching
to a single global lock could eliminate this field entirely, but the sacrifice
seems likely to be too large for a savings of a single bit.

4Such a filesystem could, for example, offer mkfs options to allow the
administrator to determine the functionality limitations their system can
live with.



193

4.4 Evaluation

We evaluate DenseFS1’s effectiveness in reducing overall cache
pollution using a finely-parameterized synthetic microbench-
mark to measure system call impact on user-mode CPU per-
formance. We have also performed experiments running real
applications (grep and SQLite) on DenseFS1 and DenseFS2;
the results of all of these experiments are presented in this
section. All measurements were taken with an Intel Xeon
E5-2670 CPU running a 4.13-series Linux kernel.

4.4.1 Microbenchmark results

Our microbenchmark tool exercises a single system call at a
time, and offers the ability to execute an amount of user-mode
“think-time” code in between each instance of the system call.
This user-mode code is JIT-compiled before the main loop,
and is parameterized to allow adjustment of its instruction
and data cache footprints. The microbenchmark reports fine-
grained performance statistics for the system call and the
user-mode code independently.

Using this tool, we executed system calls and measured
the performance of the user code while varying its cache foot-
print, and comparing the results against the performance
of executing the same user code with no system calls at all.



194

btrfs densefs1 ext4 f2fs tmpfs xfs

0 10 20 30 40 50
User-mode I&D-cache footprints (KiB each)

1.0

1.5

2.0

2.5

3.0

Us
er

-m
od

e 
ex

ec
ut

io
n 

tim
e 

ra
tio

(a) creat

0 10 20 30 40 50
User-mode I&D-cache footprints (KiB each)

1.0

1.5

2.0

2.5

3.0

Us
er

-m
od

e 
ex

ec
ut

io
n 

tim
e 

ra
tio

(b) unlink a 4KiB file

0 10 20 30 40 50
User-mode I&D-cache footprints (KiB each)

1.0

1.5

2.0

2.5

3.0

Us
er

-m
od

e 
ex

ec
ut

io
n 

tim
e 

ra
tio

(c) rename

0 10 20 30 40 50
User-mode I&D-cache footprints (KiB each)

1.0

1.5

2.0

2.5

3.0

Us
er

-m
od

e 
ex

ec
ut

io
n 

tim
e 

ra
tio

(d) fallocate 1MiB of data

Figure 4.13: Microbenchmark performance results. The verti-
cal axis shows the relative increase in time spent executing
user-mode code when regular calls to the given system call on
the given filesystem are inserted (i.e. the performance penalty
of the syscall on user-mode execution). The horizontal axis
shows the data and instruction cache footprints (both are
adjusted in tandem) of the user-mode code executed between
system calls.



195

This comparison allows us to directly measure the system
call’s impact on the performance of user-mode execution. Fig-
ure 4.13 shows the results; a datapoint at 2.0 on the vertical
axis means that a user-mode workload with instruction and
data working-set sizes indicated by the horizontal position
of the datapoint required twice as long to execute when the
filesystem operation in question was inserted between itera-
tions.

In almost all cases in these graphs, DenseFS1 incurs the
smallest penalty on user-mode performance, in many cases by
a wide margin. The fallocate graph (Figure 4.13(d)) is the
furthest outlier in this regard. While the DenseFS1 line in this
graph is still the lowest at most working set sizes, it is generally
by a narrower margin, and there are points at which it is not.
While this is not ideal, it is consistent with the data from our
previous analyses. Figure 4.9(d) shows that for this operation
DenseFS1’s data cache footprint is significantly larger than
for its other operations; this is an artifact of its simple but
inefficient bitmap-based space allocation (an aspect of the
filesystem’s current implementation that is not conducive to
its goals). Additionally, f2fs in some cases beating DenseFS1
is consistent the data in Figure 4.6(d), where f2fs showed
the smallest code footprint of the existing Linux filesystems
– slightly smaller even than tmpfs, which has a relatively



196

compact code footprint for fallocate but a data footprint
of 413 cache lines (Figure 4.5(d)) in comparison to f2fs’s 127
(Figure 4.3(d)).

The trend across all four operations is for a peak in relative
execution-time penalty at a working-set size of 32KiB. This
peak makes intuitive sense; at that size, the system-call free
user code still fits in the L1 caches, but occupies them entirely.
Introducing competition for that cache space in the form of
system calls thus pushes the combined workload into expe-
riencing relatively frequent cache misses, where previously
there were few to none. Beyond this size the performance
penalty of the added filesystem operations tapers off, as the
user-mode code already exceeds the capacity of the L1 caches
and thus will already be experiencing misses of its own, so
the additional ones incurred by the cache perturbation from
the system calls are a less dramatic difference.

The expected performance advantage of DenseFS1 over
other filesystems thus decreases as application working set
size exceeds the capacity of the L1 caches. Even among the
rightmost datapoints in Figure 4.13, however, DenseFS1’s ad-
vantage is still noticeable, incurring execution-time increases
of only 1-2% where some other filesystems are still imposing
penalties 10-20%.



197

btrfs ext4 f2fs xfs tmpfs densefs1
Filesystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cy
cle

s (
bi

llio
n)

user
kernel

Figure 4.14: User- and kernel-mode CPU cycle counts for
grep -r on a 750MB directory tree.

4.4.2 DenseFS1 application results: grep

To evaluate DenseFS1’s performance on a real-world program,
we ran version 3.1 of GNU grep, using an LD_PRELOAD library
to redirect its system calls to their DenseFS1 equivalents. We
ran grep recursively over a directory tree containing 242,272
files and 17,180 directories totaling roughly 750MB of space as
measured by du --apparent-size (varying slightly between
filesystems due to differences in the space consumption of
directories); execution-time results are shown in Figure 4.14.
Before taking measurements of each filesystem we ran the
workload on it once to warm up the page cache so as to make
the measured executions operate entirely out of memory and
thus be completely CPU bound. Using perf stat, we found
that DenseFS1 is highly effective at reducing L1 instruction



198

cache misses. Whereas xfs suffered 84.1M misses on this
workload (the most of the five other filesystems tested) and
tmpfs 49.0M (the least), DenseFS1 incurred only 1.3M, a
reduction of 97% relative to tmpfs (all measurements averaged
over five runs each). This improvement allowed grep’s user-
mode IPC to increase 13% over tmpfs and 18% over xfs.

4.4.3 DenseFS2 application results: SQLite

DenseFS2 being accessible via standard system calls makes it a
far simpler target on which to execute an arbitrary application
– no source code modifications or LD_PRELOAD hacks are needed.
Here we use this flexibility to run an unmodified benchmark
using SQLite, a popular embedded SQL database employed in
a wide variety of systems, including major mobile operating
systems, web browsers, and embedded systems [60]. The
benchmark is a simple workload, based on one previously
used in a study of SSD performance [59], that transactionally
inserts random keys into a two-column key-value table.

As DenseFS2’s feature set is not entirely at parity with
those of existing filesystems, our benchmark issues a pair
of PRAGMA statements to configure SQLite so as to level the
playing field. First, since we aim to evaluate performance op-
erating on memory-like storage and hence the fsync family of
operations are no-ops on DenseFS2, we disable all such dura-



199

bility system calls so that all file accesses remain in-memory
operations. Second, we override the default SQLite “vfs”5

setting. By default SQLite uses file locking operations for
concurrency control. DenseFS2, however, does not implement
any form of file locking, so we instead configure SQLite to
use one of two alternate vfs settings that do not require it.
The unix-dotfile vfs uses a dedicated lock file (actually
a lock directory) instead of explicit locking operations; the
unix-none vfs simply omits all locking operations, relying on
the assumption that no other processes will be concurrently
accessing the database. We additionally experiment with
four different settings of SQLite’s journal_mode parameter
(off, truncate, delete and persist), which cause it to use
different filesystem operations in its commit protocol [61].

In order to study the effects on different patterns of user-
mode execution, we have implemented the same benchmark in
both C and Python (the latter executed using version 3.6.5 of
the CPython interpreter, both using version 3.21.0 of SQLite).
Python’s sqlite3 module is written in C and hence calls the
native SQLite library code fairly directly for the bulk of its
work. The bytecode interpretation of the benchmark’s Python
code, however, is still a sufficient fraction of overall execution

5Note that while it is conceptually similar, the “vfs” referred to here
is a configurable abstraction internal to SQLite itself and completely
independent of the kernel VFS layer discussed elsewhere in this chapter.



200

to lead to a nontrivial difference in the executed user-mode
code; the Python version of the benchmark program executes
41-48% more user instructions than the C version to perform
the same number of operations.

Figures 4.15 through 4.18 show performance results of
both versions of our benchmark performing 16,384 insert
operations on the five Linux filesystems we have studied and
DenseFS2. As expected, comparing the C and Python versions
of the benchmark, we see that in similar configurations they
consume similar numbers of kernel-mode CPU cycles, differing
primarily in their usage of user-mode CPU time. In all cases,
however, DenseFS2 achieves overall performance significantly
higher than any other filesystem we have evaluated.

In the closest case (the smallest speedup of DenseFS2 over
any other filesystem), DenseFS2 reduces the Python bench-
mark’s execution time by nearly 20% in comparison to f2fs
with journaling disabled (the off mode) and the unix-none
vfs (Figure 4.16(a)). This case demonstrating the smallest
performance gain makes sense; with no lock-directory creation
and deletion, no filesystem activity for journaling operations,
and the added user-mode overhead of the Python interpreter,
it is proportionally the least filesystem-intensive of the con-
figurations we measured. Despite this, DenseFS2 neverthe-
less achieves its overall overall speedup not only by reducing



201

user kernel

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cy
cle

s (
bi

llio
n)

(a) journal mode: off

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Cy
cle

s (
bi

llio
n)

(b) journal mode: truncate

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

Cy
cle

s (
bi

llio
n)

(c) journal mode: delete

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cy
cle

s (
bi

llio
n)

(d) journal mode: persist

Figure 4.15: User- and kernel-mode CPU cycle counts for
SQLite random-insert benchmark with the unix-none vfs, C
version.



202

user kernel

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Cy
cle

s (
bi

llio
n)

(a) journal mode: off

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

Cy
cle

s (
bi

llio
n)

(b) journal mode: truncate

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

6

Cy
cle

s (
bi

llio
n)

(c) journal mode: delete

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cy
cle

s (
bi

llio
n)

(d) journal mode: persist

Figure 4.16: User- and kernel-mode CPU cycle counts for
SQLite random-insert benchmark with the unix-none vfs,
Python version.



203

user kernel

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cy
cle

s (
bi

llio
n)

(a) journal mode: off

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

Cy
cle

s (
bi

llio
n)

(b) journal mode: truncate

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

6

Cy
cle

s (
bi

llio
n)

(c) journal mode: delete

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

Cy
cle

s (
bi

llio
n)

(d) journal mode: persist

Figure 4.17: User- and kernel-mode CPU cycle counts for
SQLite random-insert benchmark with the unix-dotfile vfs,
C version.



204

user kernel

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

Cy
cle

s (
bi

llio
n)

(a) journal mode: off

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

6

Cy
cle

s (
bi

llio
n)

(b) journal mode: truncate

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

6

7

Cy
cle

s (
bi

llio
n)

(c) journal mode: delete

btrfs ext4 f2fs xfs tmpfs densefs2
Filesystem

0

1

2

3

4

5

Cy
cle

s (
bi

llio
n)

(d) journal mode: persist

Figure 4.18: User- and kernel-mode CPU cycle counts for
SQLite random-insert benchmark with the unix-dotfile vfs,
Python version.



205

kernel-mode execution time, but also by allowing increased
user-mode performance. The benchmark executes the same
user-mode code on all filesystems, but achieves 8.8% higher
IPC with DenseFS2 than with f2fs.

A much more dramatic effect can be seen at the opposite
end of the spectrum, with the C version of the benchmark
running with the delete journal mode and the unix-dotfile
vfs (Figure 4.17(c)). Here we see the benchmark executing
nearly five times faster on DenseFS2 than it does on btrfs and
xfs, and still nearly twice as fast as on tmpfs (the fastest of
the existing filesystems). Further, in comparison to f2fs, the
benchmark’s user-mode IPC increases by 81.7% when run on
DenseFS2 (from 0.43 to 0.78). tmpfs fares better in user IPC
at 0.6, though it is still well short of DenseFS2’s user-mode
performance.

4.5 Related Work

DenseFS is not the first filesystem to optimize for the com-
pactness of its data structures. Two examples of existing
Linux filesystems which also do this are cramfs [136] and
squashfs [86, 87], both of which aim to provide a read-only
filesystem using as little storage as possible. These filesystems
are designed primarily for use in small embedded systems



206

where being able to use a smaller EEPROM or flash chip
can provide a significant reduction in per-unit costs. They
thus differ from DenseFS in that their space optimizations are
applied to the data structures that represent the filesystem
as stored in the underlying persistent media rather than their
in-memory counterparts – by nature of being implemented
through the main Linux VFS layer, they use the same in-
memory inode structures, directory entries (dentries), and so
forth as any other Linux filesystem. Additionally, most of
their space optimization is oriented toward reducing the space
consumption of file data by compressing it (as opposed to
DenseFS’s focus on metadata). Nevertheless, some of the com-
paction techniques used in DenseFS are similar to techniques
used in cramfs and squashfs.

In order to reduce the space consumption of its inodes,
cramfs omits some fields, sacrificing not just access timestamps
as DenseFS does, but all timestamps entirely, as well as link
counts (though multiple hard links to the same inode can still
be safely allowed due to the read-only nature of the filesystem).
Additionally, somewhat analogously to DenseFS’s sacrifice
of some resolution and range in using five-byte timestamps,
cramfs shrinks the inode uid and gid fields from their full 32-bit
form to 16 and 8 bits respectively, simply truncating any bits
beyond that. It also stores file size in a 24-bit field, imposing



207

a 16MiB limit on maximum file size.6 In combination, these
design choices allow cramfs to fit its inodes in 12 bytes.

Squashfs was developed somewhat later than cramfs and
employs a more sophisticated design that aims to address some
of cramfs’s shortcomings. It provides a single 32-bit timestamp
per inode (which, due to it also being read-only, acts as both
the ctime and mtime fields), a 32-bit link-count field, and
increases maximum file size to approximately 2TiB. It also
employs a scheme similar to the global <uid, gid, mode>
table used in DenseFS, but uses it only for uids and gids, and
keeps the two separate, storing a distinct index for each. While
this does not directly exploit the strong correlation between
uids and gids as DenseFS’s unified table does, squashfs’s
inode tables are compressed in bulk using a general-purpose
compression algorithm (whereas cramfs compresses only file
data), reducing the information redundancy in the final form
of the inodes. Due to the compression, squashfs’s inodes are
not a single fixed size, but consume only 8 bytes on average.

Prior research has proposed techniques for improved cache
locality by automated means such as compiler optimizations [26,
29, 66, 112, 115, 151]. While these approaches should be able
to achieve similar benefits to what we have done to compact

6While this would be problematic for a general-purpose filesystem, it
is not necessarily unreasonable for the small embedded systems for which
cramfs is designed.



208

DenseFS’s code footprint (and the techniques described in
Section 4.3.2 are indeed the same ones these tools automate),
DenseFS’s data cache optimizations are more aggressive than
what can be feasibly performed by an automated tool, because
they are deeply dependent on the specific semantics of the
operation of a filesystem, and sometimes involve small com-
promises in functionality. Existing work has also investigated
cache-conscious storage systems [55, 89] in a standalone con-
text. However, the nature of a local filesystem sharing a cache
with application code presents an interesting and different
context, in which optimization for absolute compactness is of
greater importance (so as to reduce pollution incurred on ar-
bitrary application code sharing the same cache). DenseFS’s
global <uid, gid, mode> table closely resembles a structure
used in Microsoft’s NTFS filesystem to reduce the on-disk
space consumption of its security descriptors [123]; our tech-
nique here is effectively the CPU-cache analog of this sort of
compression.

4.6 Conclusion

We have performed a detailed analysis of the memory access
patterns of existing Linux filesystems, and found that their
cache footprints are generally large enough to cause significant



209

disturbance to application L1 cache state. We have then
shown with DenseFS (versions 1 and 2) that it is possible to
implement a filesystem with a much smaller cache footprint
than found in existing filesystems. Further, we have seen
demonstrated with an array of performance measurements
that our cache-compact filesystem can improve performance
not only by performing filesystem operations faster, but also
by reducing the cache pollution it incurs. We have shown
that this has a significant positive effect on the performance
of user-mode application code, producing IPC improvements
of 8.1-81.7% in the execution of the same user code.

Our initial implementation of DenseFS (DenseFS1) made
some trade-offs in functionality in an effort to reduce its code
footprint as much as possible. The revised design of DenseFS2,
however, attains most of the same benefit while remaining
compatible with existing software, providing the same system
call interface as existing filesystems while offering sizable
performance improvements over them.

Both versions of DenseFS, however, are research proto-
types that are far from being able to take the place of an exist-
ing filesystem in any real-world usage. Addressing DenseFS’s
shortcomings in the areas of scalability and feature support
while retaining as much of its compactness as possible could
be a promising direction for future research.





211

5

Conclusions

Many significant developments in storage software over the
years have been driven by changes in the landscape of contem-
porary hardware. In the late 1980s, while inexpensive hard
disks were readily available, they were becoming increasingly
unable to keep up with the much more rapidly improving
performance of CPUs and memory. This disparity led to the
development of RAID [110], which utilized multiple disks in
tandem to achieve large improvements in I/O performance and
reliability. A few years later, the widening gap between ran-
dom and sequential disk I/O performance and growing RAM
capacities enabling more caching of disk contents gave rise to
LFS [121], which redesigned traditional filesystem data struc-
tures to produce more sequential I/O patterns that utilized a



212

greater fraction of the available disk bandwidth, leaning on
large in-memory caches to maintain good read performance.
Later, as technology improvements brought disk sizes into
ranges where multi-terabyte arrays were commonplace, ca-
pacities grew large enough that the frequency of “random”
data corruption (due to hardware bit-errors or bugs in disk
firmware and device drivers) could become problematic. Con-
cerns about such corruption brought about the development
of filesystems like ZFS [22] and btrfs [93, 119] that employ full
checksumming of all data and metadata to protect against
such faults, and integrated RAID to reduce rebuild times
after a drive failure. More recently, the integration of cheap
commodity flash storage into billions of consumers’ mobile
devices has driven the need for filesystems like F2FS [79] that
are tailored for this class of hardware. As the state of the
art in computing hardware has continued to evolve, the work
presented in this dissertation continues in this vein.

5.1 Increasing Core Counts and Trace
Replay

The effects of increasing CPU core counts in relation to filesys-
tems have been studied in previous work [24, 34, 100]. In
Chapter 2, we explored a second-order effect of this trend



213

on storage systems via changes in application software. The
availability of larger numbers of processors has led to appli-
cations tending to employ correspondingly larger numbers
of threads, making their I/O patterns not only much more
complex, but also highly nondeterministic, which presents a
difficult problem for trace replay. Trace replay is a popular
technique for evaluating the performance of storage systems,
but its utility hinges critically on being able to accurately
mimic the behavior of real applications; with complex, non-
deterministic multithreaded applications, simplistic replay
strategies cannot achieve this.

The ROOT approach and our prototype implementation
ARTC address this problem with a novel technique using
semantic analysis of the resources referred to in a trace to
construct a dependency graph, and use this graph to allow
replay to safely diverge from the ordering of events recorded in
the trace. This flexibility preserves the nondeterminism of the
original application, and our experiments have demonstrated
that this allows it to provide a higher-fidelity reproduction of
actual application behavior than other replay techniques can
achieve.



214

5.2 Flash and Storage Virtualization

In Chapter 3, we demonstrated with ANViL a storage vir-
tualization system designed for the high-performance flash
devices that have seen widespread adoption in recent years.
ANViL’s design aims to produce I/O patterns that mesh well
with the characteristics of the flash storage beneath it; by
exposing the address-remapping it uses in doing so, it pro-
vides a simple but rich extended block storage interface to the
applications and filesystems above it. We focus particularly
on the techniques employed in ANViL’s garbage collector to
deal with the challenges of its many-to-one block address map,
scale and performance requirements, and concurrency with
foreground I/O activity.

We have shown how the range operations ANViL provides
as extensions to the block interface are powerful primitives
that can be easily used to implement a number of useful fea-
tures such as snapshots, file cloning, and efficient transactional
updates.

5.3 NVM and Filesystem Cache
Behavior

Chapter 4 looks forward to the near future of storage hard-
ware, in which emerging nonvolatile memory technologies



215

appear poised to become increasingly common. These de-
vices offer dramatic reductions in access latencies, upending
the performance assumptions underlying many components
of contemporary storage software stacks, and filesystems in
particular. We present as prototype filesystems redesigned in
light of this change two forms of DenseFS, a more agressive ini-
tial version with its own bespoke system calls that allow it to
remain completely disentangled from existing filesystem code,
and a slightly more pragmatic, compatible design that hooks
into existing system calls while reusing as little of their code
as possible. While achieving high performance in executing
filesystem operations is important, these filesystems addition-
ally focus on another facet of overall system performance in
aiming to minimize their impact on the execution performance
of application code. They do so by keeping their footprints
in the CPU cache as compact as possible, reducing the cache
pollution incurred by performing filesystem operations.

Our experiments have shown that DenseFS achieves excel-
lent performance, not only in the speed of its own operations,
but also in improving the overall CPU performance seen by
application code. By virtue of it being far less destructive to-
ward application cache state, applications running on DenseFS
often see their user-mode IPC improve by large ratios. These
results have demonstrated the importance of filesystem cache



216

behavior to overall system performance. While our current
DenseFS implementation is not itself a viable filesystem, we
hope that the performance phenomena it demonstrates will
be considered in the design and implementation of future
filesystems developed for low-latency storage.

5.4 Future Work

While the work presented in this dissertation has been suffi-
cient to evaluate the ideas and systems described therein and
demonstrate their effectiveness, as is so often the case with
research, answering some questions in turn raises additional
ones.

ROOT and ARTC demonstrate the potential of non-order-
preserving trace replay, but there remain details of its opera-
tion that would be worthy of further research. For example,
while we have demonstrated that the overconstraint caused by
simpler (strictly-ordered) replay methods leads to performance
inaccuracy, we have not attempted to analyze the degree to
which ARTC’s more flexible replay might underconstrain (or
potentially still even overconstrain) replay relative to the ac-
tual application-level semantics of the original program. And
whatever the amount, could it be reduced and more accurate
replay be achieved with traces that included additional infor-



217

mation, such as records of thread synchronization operations?
ROOT and ARTC are a step forward in multithreaded trace
replay, but there is much road yet to be traversed.

ANViL provides a powerful flash-oriented storage virtu-
alization platform, though its address-remapping structure,
with data blocks shared by multiple logical address, leaves
a number of unsolved problems. How might secure deletion
be implemented? How should space accounting be handled
with multiple users of the same physical space? How could
an application such as a deduplicator determine whether two
identical-looking blocks are in fact already sharing the same
physical space? While ANViL is useful in its current form,
questions such as these would likely need to be answered
before a design of its nature could be reasonably put into
real-world use.

DenseFS raises a number of interesting follow-on ques-
tions. While it has clearly shown the importance of filesystem
cache behavior in overall system performance, a more detailed
examination of exactly which factors have what effects could
be enlightening (for example, the various different compaction
techniques, or the relative effectiveness of instruction and data
cache footprint reduction). Additionally, a variety of practical
problems lie between the current state of DenseFS and a
real-world filesystem, such as the question of how to extend



218

DenseFS to achieve better scalability and provide features like
crash consistency, ideally while retaining as much compactness
as possible. Could techniques like profile-guided optimization
be used to automate some compaction optimizations so as to
achieve a less delicately-arranged, more maintainable code-
base? If questions like these can be addressed, a DenseFS-like
filesystem might one day be useful in improving application
and overall system performance with real NVM hardware.

5.5 Final Thoughts

While the three pieces presented in Chapters 2 through 4
all study evolutions in software brought about by changes
in hardware, the relative chronology of the specific hardware
changes to which they each relate provides an interesting
perspective.

Multicore CPUs have been commonplace for over a decade,
and hence the effects we studied in Chapter 2 are of a some-
what delayed, downstream nature. The waves caused by this
particular hardware change have had to time to ripple outward,
and here we study an echo of them. Application software itself
adapted to make use of multicore CPUs via more aggressive
use of multithreading; with ROOT and ARTC we in turn
address the effects of that change and the new challenges they



219

present for the tools we use to evaluate storage systems.

Flash storage is now a commodity item, but it has not
been established as such for as long as have multicore CPUs.
Thus in Chapter 3 the problem we address is more a part
of the general retooling of software components across the
storage stack – a process that has been well underway for
years, but is still decidedly ongoing.

Nonvolatile memory, however, is just beginning to arrive.
There are not yet any well-established answers to the question
of the “right” way to integrate and manage NVM in the
storage stack. Research in this area thus tends to be of a
highly speculative, experimental nature; Chapter 4 contains
our own contribution to just this sort of experimentation.

These three points form a line that is nicely illustrative of a
general pattern in the chronology of hardware-driven software
evolution. When a significant shift in hardware is just on
the horizon, green-field research around it busily searches
for novel ways for software to accommodate and exploit it.
After the initial splash of its arrival, its waves propagate
outward as adoption becomes widespread and surrounding
areas of software gradually adapt to it. Finally, once it is well-
established and truly ubiquitous, smaller waves resulting from
it, perhaps reflected off of other software components, become
interesting research problems in their own right. This pattern



220

seems likely to continue well into the future as hardware
technology improves, software evolves to adapt to it, and the
cycle of renewal continues.



221

Bibliography

[1] Native Flash Support for Applications.
http://www.flashmemorysummit.com/.

[2] ioCache. http://www.fusionio.com/products/iocache,
2012.

[3] Keith Adams and Ole Agesen. A Comparison of Soft-
ware and Hardware Techniques for x86 Virtualization.
In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS XIII), Seattle, Washing-
ton, March 2008.

[4] Nitin Agarwal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.



222

Design Tradeoffs for SSD Performance. In Proceedings
of the USENIX Annual Technical Conference (USENIX
’08), Boston, Massachusetts, June 2008.

[5] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Generating Realistic Impressions for
File-System Benchmarking. In Proceedings of the 7th
USENIX Symposium on File and Storage Technologies
(FAST ’09), San Francisco, California, February 2009.
USENIX Association.

[6] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,
Patrick Reynolds, and Athicha Muthitacharoen. Per-
formance Debugging for Distributed Systems of Black
Boxes. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), Bolton
Landing, New York, October 2003. ACM.

[7] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill,
and David A. Wood. DBMSs on a Modern Processor:
Where Does Time Go? In Proceedings of the 25th
International Conference on Very Large Data Bases,
VLDB ’99, pages 266–277, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[8] Dave Anderson. You Don’t Know Jack About Disks.
ACM Queue, 1(4):20–30, June 2003.



223

[9] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and
Ram Swaminathan. Buttress: A Toolkit for Flexible
and High Fidelity I/O Benchmarking. In Proceedings of
the 3rd USENIX Symposium on File and Storage Tech-
nologies (FAST ’04), San Francisco, California, April
2004. USENIX Association.

[10] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Manage-
ment of Parallelism. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP
’91), Pacific Grove, California, October 1991.

[11] Andrea Arcangeli, Izik Eidus, and Chris Wright. In-
creasing memory density by using KSM. In Ottawa
Linux Symposium, 2009.

[12] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces. Arpaci-
Dusseau Books, 2014.

[13] Krste Asanovic, Ras Bodik, Bryan Christopher Catan-
zaro, Joseph James Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William Lester Plishker,
John Shalf, Samuel Webb Williams, and Katherine A.
Yelick. The Landscape of Parallel Computing Research:



224

A View from Berkeley. Technical report, University of
California, Berkeley, 2006.

[14] Jens Axboe. fio: Flexible I/O Tester. http://git.
kernel.dk/cgit/fio/.

[15] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and
Larry L. Peterson. HashCache: Cache Storage for the
Next Billion. In Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI’09, 2009.

[16] Mary G. Baker, John H. Hartman, Michael D. Kupfer,
Ken W. Shirriff, and John K. Ousterhout. Measurements
of a Distributed File System. In Proceedings of the
13th ACM Symposium on Operating Systems Principles
(SOSP ’91), Pacific Grove, California, October 1991.
ACM.

[17] Seth Benton. LevelDB in Riak 1.2. http://basho.com/
posts/technical/leveldb-in-riak-1-2/.

[18] Tom Bergan, Owen Anderson, Joseph Devietti, Luis
Ceze, and Dan Grossman. CoreDet: A Compiler and
Runtime System for Deterministic Multithreaded Execu-
tion. In Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages

http://git.kernel.dk/cgit/fio/
http://git.kernel.dk/cgit/fio/
http://basho.com/posts/technical/leveldb-in-riak-1-2/
http://basho.com/posts/technical/leveldb-in-riak-1-2/


225

and Operating Systems, ASPLOS XV, pages 53–64, New
York, NY, USA, 2010. ACM.

[19] Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-
mofe, and Paul R. Wilson. Hoard: A Scalable Memory
Allocator for Multithreaded Applications. In Proceedings
of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS IX, pages 117–128, New York, NY, USA,
2000. ACM.

[20] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux Block IO: Introducing Multi-
queue SSD Access on Multi-core Systems. In Proceedings
of the 6th International Systems and Storage Confer-
ence, SYSTOR ’13, pages 22:1–22:10, New York, NY,
USA, 2013. ACM.

[21] Hans-J. Boehm and Dhruva R. Chakrabarti. Persistence
Programming Models for Non-volatile Memory. In Pro-
ceedings of the 2016 ACM SIGPLAN International Sym-
posium on Memory Management, ISMM 2016, pages
55–67, New York, NY, USA, 2016. ACM.

[22] Jeff Bonwick and Bill Moore. ZFS: The Last
Word in File Systems. http://opensolaris.org/os/
community/zfs/docs/zfs_last.pdf, 2007.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf


226

[23] Dhruba Borthakur. RocksDB: A persistent key-value
store. http://rocksdb.org, 2014.

[24] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao,
Aleksey Pesterev, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. An Analysis of Linux Scalabil-
ity to Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implemen-
tation, OSDI’10, pages 1–16, Berkeley, CA, USA, 2010.
USENIX Association.

[25] Edouard Bugnion, Scott Devine, and Mendel Rosen-
blum. Disco: Running Commodity Operating Sys-
tems on Scalable Multiprocessors. In Proceedings of
the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’97), pages 143–156, Saint-Malo, France,
October 1997.

[26] Brad Calder, Chandra Krintz, Simmi John, and Todd
Austin. Cache-conscious Data Placement. In Proceedings
of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS VIII, pages 139–149, 1998.

[27] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing
Safe, User Space Access to Fast, Solid State Disks. In



227

ASPLOS XVII: Proceedings of the Seventeenth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY,
USA, 2012. ACM. 415125.

[28] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Michael Burrows, Tushar
Chandra, Andrew Fikes, and Robert Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), pages 205–218,
Seattle, Washington, November 2006.

[29] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus.
Cache-Conscious Structure Layout. In Proceedings of
the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, PLDI ’99, pages
1–12, 1999.

[30] Dave Chinner. XFS Delayed Logging Design.
https://www.kernel.org/doc/Documentation/
filesystems/xfs-delayed-logging-design.txt.

[31] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. JFTL:
A Flash Translation Layer Based on a Journal Remap-
ping for Flash Memory. ACM Transactions on Storage
(TOS), 4(4), February 2009.

https://www.kernel.org/doc/Documentation/filesystems/xfs-delayed-logging-design.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs-delayed-logging-design.txt


228

[32] Sung-Eun Choi and E. Christopher Lewis. A Study of
Common Pitfalls in Simple Multi-threaded Programs.
In Proceedings of the Thirty-first SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’00, pages 325–329, New York, NY, USA, 2000. ACM.

[33] A.N.M. Imroz Choudhury. Visualizing Program Memory
Behavior Using Memory Reference Traces. PhD thesis,
University of Utah, 2012.

[34] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The Scal-
able Commutativity Rule: Designing Scalable Software
for Multicore Processors. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 1–17, 2013.

[35] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memo-
ries. In Proceedings of the 16th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVI), pages 105–118,
Newport Beach, California, March 2011.



229

[36] Kees Cook. Kernel Address Space Layout Randomiza-
tion. Linux Security Summit, 2013.

[37] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Bridging the Information
Gap in Storage Protocol Stacks. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’02),
pages 177–190, Monterey, California, June 2002.

[38] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris,
Alex Ho, Ian Pratt, Andrew Warfield, Paul Barham, and
Rolf Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing, New
York, October 2003.

[39] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System Software for Persistent Mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, pages 15:1–15:15,
2014.

[40] John K. Edwards, Daniel Ellard, Craig Everhart, Robert
Fair, Eric Hamilton, Andy Kahn, Arkady Kanevsky,
James Lentini, Ashish Prakash, Keith A. Smith, and
Edward Zayas. FlexVol: Flexible, Efficient File Volume



230

Virtualization in WAFL. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’08), Boston,
Massachusetts, June 2008.

[41] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo
Seltzer. Passive NFS Tracing of Email and Research
Workloads. In Proceedings of the 2nd USENIX Confer-
ence on File and Storage Technologies, FAST ’03, pages
203–216, Berkeley, CA, USA, 2003. USENIX Associa-
tion.

[42] Daniel Ellard and Margo Seltzer. New NFS Tracing
Tools and Techniques for System Analysis. In Pro-
ceedings of the 17th Annual Large Installation System
Administration Conference (LISA ’03), San Diego, Cal-
ifornia, October 2003. USENIX Association.

[43] Dawson Engler and Ken Ashcraft. RacerX: Effective,
Static Detection of Race Conditions and Deadlocks.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 237–252,
New York, NY, USA, 2003. ACM.

[44] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the Clouds: A Study



231

of Emerging Scale-out Workloads on Modern Hardware.
In Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVII, pages
37–48, 2012.

[45] Annie Foong and Frank Hady. Storage as fast as rest of
the System. In 2016 IEEE 8th International Memory
Workshop, Paris, France, May 2016.

[46] Gregory R. Ganger. Blurring the Line Between OSes
and Storage Devices. Technical Report CMU-CS-01-166,
Carnegie Mellon University, December 2001.

[47] Gregory R. Ganger and Yale N. Patt. Using System-
Level Models to Evaluate I/O Subsystem Designs. IEEE
Transactions on Computers, June 1998.

[48] Adele Goldberg and David Robson. Smalltalk-80: the
Language and its Implementation. Addison-Wesley,
1983.

[49] R.P. Goldberg. Survey of Virtual Machine Research.
IEEE Computer, 7(6):34–45, 1974.

[50] Jim Gray and Bob Fitzgerald. Flash Disk Opportunity
for Server Applications. ACM Queue, 6(4):18–23, July
2008.



232

[51] Brendan Gregg. The Flame Graph. ACM Queue,
14(2):10:91–10:110, March 2016.

[52] Fanglu Guo and Petros Efstathopoulos. Building a
High-performance Deduplication System. In USENIX
Annual Technical Conference, 2011.

[53] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: a Flash Translation Layer Employing Demand-
Based Selective Caching of Page-Level Address Map-
pings. In Proceedings of the 14th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XIV), pages
229–240, Washington, DC, March 2009.

[54] Frank T. Hady, Annie Foong, Bryan Veal, and
Dan Williams. Platform Storage Performance With
3D XPoint Technology. Proceedings of the IEEE,
105(9):1822–1833, 2017.

[55] Richard A. Hankins and Jignesh M. Patel. Data Morph-
ing: An Adaptive, Cache-conscious Storage Technique.
In Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03, pages
417–428, 2003.



233

[56] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. A File
is Not a File: Understanding the I/O Behavior of Apple
Desktop Applications. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP
’11), Cascais, Portugal, October 2011. ACM.

[57] Red Hat. Device-mapper Resource Page. https://
sourceware.org/dm/.

[58] Red Hat. LVM2 Resource Page. http://www.
sourceware.org/lvm2/.

[59] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Contract
of Solid State Drives. In EuroSys ’17, Belgrade, Serbia,
April 2017.

[60] D. Richard Hipp. Most Widely Deployed SQL Database
Engine. https://www.sqlite.org/mostdeployed.
html.

[61] D. Richard Hipp. Pragma statements supported by
SQLite. https://www.sqlite.org/pragma.html.

[62] Dave Hitz, James Lau, and Michael Malcolm. File
System Design for an NFS File Server Appliance. In

https://sourceware.org/dm/
https://sourceware.org/dm/
http://www.sourceware.org/lvm2/
http://www.sourceware.org/lvm2/
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/pragma.html


234

Proceedings of the USENIX Winter Technical Confer-
ence (USENIX Winter ’94), San Francisco, California,
January 1994.

[63] Micha Hofri. Disk Scheduling: FCFS vs. SSTF Re-
visited. Communications of the ACM, 23(11):645–653,
November 1980.

[64] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and Performance
in a Distributed File System. ACM Transactions on
Computer Systems, February 1988.

[65] Lan Huang, Gang Peng, and Tzi-cker Chiueh. Multi-
dimensional Storage Virtualization. In Proceedings of
the Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’04/Per-
formance ’04, pages 14–24, 2004.

[66] Wen-mei W. Hwu and Pohua P. Chang. Achieving
High Instruction Cache Performance with an Optimiz-
ing Compiler. In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, ISCA
’89, pages 242–251, 1989.



235

[67] Roberto Ierusalimschy and Luiz Henrique De Figueiredo.
The Implementation of Lua 5.0. Journal of Universal
Computer Science, 2005.

[68] Inktank Storage, Inc. KeyValueStore Config Refer-
ence. http://docs.ceph.com/docs/hammer/rados/
configuration/keyvaluestore-config-ref/.

[69] Sitaram Iyer and Peter Druschel. Anticipatory schedul-
ing: A disk scheduling framework to overcome decep-
tive idleness in synchronous I/O. In Proceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 117–130, Banff, Canada, October
2001.

[70] Nikolaus Jeremic, Gero Mühl, Anselm Busse, and Jan
Richling. Enabling TRIM Support in SSD RAIDs. Tech-
nical report, Department of Computer Science, Univer-
sity of Rostock, 2011.

[71] William K. Josephson, Lars A. Bongo, David Flynn,
and Kai Li. DFS: A File System for Virtualized Flash
Storage. In Proceedings of the 8th USENIX Conference
on File and Storage Technologies, FAST’10, 2010.

[72] Nikolai Joukov, Timothy Wong, and Erez Zadok. Ac-
curate and Efficient Replaying of File System Traces.

http://docs.ceph.com/docs/hammer/rados/configuration/keyvaluestore-config-ref/
http://docs.ceph.com/docs/hammer/rados/configuration/keyvaluestore-config-ref/


236

In Proceedings of the 4th USENIX Symposium on File
and Storage Technologies (FAST ’05), San Francisco,
California, December 2005. USENIX Association.

[73] Niels Christian Juul and Eric Jul. Comprehensive and
robust garbage collection in a distributed system. In
Memory Management, pages 103–115. Springer, 1992.

[74] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and
Gopinath Palani. Designing a True Direct-access File
System with DevFS. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies, FAST’18,
pages 241–255, 2018.

[75] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO Complying SSDs Through OPS Isolation. In 13th
USENIX Conference on File and Storage Technologies
(FAST 15), pages 183–189, Santa Clara, CA, February
2015. USENIX Association.

[76] Michael Kluge, Andreas Knüpfer, Matthias Müller, and
Wolfgang E. Nagel. Pattern Matching and I/O Replay
for POSIX I/O in Parallel Programs. In Proceedings of
the 15th International Euro-Par Conference on Parallel
Processing, Euro-Par ’09. Springer-Verlag, 2009.



237

[77] Oren Laadan, Nicolas Viennot, and Jason Nieh. Trans-
parent, Lightweight Application Execution Replay on
Commodity Multiprocessor Operating Systems. In SIG-
METRICS ’10, New York, NY, June 2010. ACM.

[78] Alvin R. Lebeck and David A. Wood. Cache Profiling
and the SPEC Benchmarks: A Case Study. Computer,
27(10):15–26, October 1994.

[79] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies, FAST’15, pages 273–
286, 2015.

[80] Edward K. Lee and Chandramohan A. Thekkath. Petal:
Distributed Virtual Disks. In Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS VII), Cambridge, Massachusetts, October 1996.

[81] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim,
and Junghwan Kim. FlexFS: A Flexible Flash File
System for MLC NAND Flash Memory. In Proceedings
of the 2009 Conference on USENIX Annual Technical
Conference, USENIX’09, 2009.



238

[82] Andrew W. Leung, Shankar Pasupathy, Garth Good-
son, and Ethan L. Miller. Measurement and Analysis
of Large-Scale Network File System Workloads. In
Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ’08), Boston, Massachusetts, June 2008.
USENIX Association.

[83] Adam H. Leventhal. A File System All Its Own. Com-
munications of the ACM, 56(5):64–67, May 2013.

[84] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei
Yang, and Ming Zhang. CloudProphet: Towards Appli-
cation Performance Prediction in Cloud. In SIGCOMM
’11, Toronto, Canada, August 2011. ACM.

[85] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.
Dthreads: Efficient Deterministic Multithreading. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 327–336,
2011.

[86] Phillip Lougher. An Overview of the SquashFS
filesystem. https://elinux.org/images/3/32/
Squashfs-elce.pdf.

[87] Phillip Lougher. SQUASHFS 4.0 FILESYSTEM.

https://elinux.org/images/3/32/Squashfs-elce.pdf
https://elinux.org/images/3/32/Squashfs-elce.pdf


239

https://www.kernel.org/doc/Documentation/
filesystems/squashfs.txt.

[88] Youyou Lu, Jiwu Shu, and Wei Wang. ReconFS: A
Reconstructable File System on Flash Storage. In Pro-
ceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14), pages 75–88, Santa
Clara, CA, 2014. USENIX.

[89] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-value Storage.
In Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 183–196, New
York, NY, USA, 2012. ACM.

[90] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. NVMKV: A Scal-
able, Lightweight, FTL-aware Key-Value Store. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 207–219, Santa Clara, CA, July 2015.
USENIX Association.

[91] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, Raju Rangaswami, Sushma Devendrappa,
Bharath Ramsundar, and Sriram Ganesan. NVMKV: A
Scalable and Lightweight Flash Aware Key-Value Store.
In 6th USENIX Workshop on Hot Topics in Storage and

https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt


240

File Systems (HotStorage 14), Philadelphia, PA, June
2014. USENIX Association.

[92] K. Maruyama and S. E. Smith. Optimal Reorganization
of Distributed Space Disk Files. Communications of the
ACM, 19(11):634–642, November 1976.

[93] Chris Mason. Btrfs Design. http://oss.oracle.
com/projects/btrfs/dist/documentation/
btrfs-design.html, 2011.

[94] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The New Ext4 Filesystem: Current Status and
Future Plans. In Ottawa Linux Symposium (OLS ’07),
Ottawa, Canada, July 2007.

[95] J. May. Pianola: A Script-based I/O Benchmark. In
Petascale Data Storage Workshop, November 2008.

[96] Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A Fast File System for UNIX.
ACM Trans. Comput. Syst., 2(3):181–197, August 1984.

[97] Marshall Kirk McKusick and Gregory R. Ganger. Soft
Updates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem. In Proceedings

http://oss.oracle.com/projects/btrfs/dist/documentation/btrfs-design.html
http://oss.oracle.com/projects/btrfs/dist/documentation/btrfs-design.html
http://oss.oracle.com/projects/btrfs/dist/documentation/btrfs-design.html


241

of the USENIX Annual Technical Conference (USENIX
’99), Monterey, California, June 1999.

[98] L. W. McVoy and S. R. Kleiman. Extent-like Perfor-
mance from a UNIX File System. In Proceedings of
the USENIX Winter Technical Conference (USENIX
Winter ’91), pages 33–43, Dallas, Texas, January 1991.

[99] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasi-
van, Julio Lopez, James Hendricks, Gregory R. Ganger,
and David O’Hallaron. //TRACE: Parallel Trace Re-
play with Approximate Causal Events. In Proceedings
of the 5th USENIX Symposium on File and Storage
Technologies (FAST ’07), San Jose, California, February
2007. USENIX Association.

[100] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding Manycore Scalability of File
Systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 71–85, Denver, CO, 2016.
USENIX Association.

[101] Andrew Morton. Re: [PATCH v10 00/21] Support ext4
on NV-DIMMs. https://lwn.net/Articles/610182/.

[102] Mark Moshayedi and Patrick Wilkison. Enterprise SSDs.
ACM Queue, 6(4):32–39, July 2008.



242

[103] Satish Narayanasamy, Gilles Pokam, and Brad Calder.
BugNet: Continuously Recording Program Execution
for Deterministic Replay Debugging. In Proceedings of
the 32nd Annual International Symposium on Computer
Architecture, ISCA ’05, pages 284–295, Washington, DC,
USA, 2005. IEEE Computer Society.

[104] David Nellans, Michael Zappe, Jens Axboe, and David
Flynn. ptrim() + exists(): Exposing New FTL Primi-
tives to Applications. In Proceedings of the Non-Volatile
Memory Workshop, NVMW ’11, 2011.

[105] Michael Noeth, Prasun Ratn, Frank Mueller, Martin
Schulz, and Bronis R. de Supinski. ScalaTrace: Scalable
Compression and Replay of Communication Traces for
High-Performance Computing. Journal of Parallel and
Distributed Computing, August 2009.

[106] Kunle Olukotun and Lance Hammond. The Future of
Microprocessors. ACM Queue, 3(7):26–29, September
2005.

[107] John K. Ousterhout, Hervé Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James G. Thompson.
A Trace-driven Analysis of the UNIX 4.2 BSD File
System. In Proceedings of the 10th ACM Symposium on



243

Operating System Principles (SOSP ’85), Orcas Island,
Washington, December 1985. ACM.

[108] Xiangyong Ouyang, David W. Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond
Block I/O: Rethinking Traditional Storage Primitives.
In HPCA, pages 301–311. IEEE Computer Society, 2011.

[109] Swapnil V. Patil, Garth A. Gibson, Sam Lang, and Milo
Polte. GIGA+: Scalable Directories for Shared File Sys-
tems. In Proceedings of the 2nd International Workshop
on Petascale Data Storage: Held in Conjunction with
Supercomputing ’07, PDSW ’07, pages 26–29, New York,
NY, USA, 2007. ACM.

[110] David A. Patterson, Garth Gibson, and Randy H. Katz.
A Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’88, pages 109–116, 1988.

[111] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System
is the Control Plane. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’14), Broomfield, Colorado, October 2014.



244

[112] Karl Pettis and Robert C. Hansen. Profile guided code
positioning. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and
Implementation, PLDI ’90, pages 16–27, 1990.

[113] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Ap-
plications. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

[114] POSIX.1-2008. The Open Group Base Specifications.
Also published as IEEE Std 1003.1-2008, July 2008.

[115] Alex Ramirez, Luiz André Barroso, Kourosh Ghara-
chorloo, Robert Cohn, Josep Larriba-Pey, P. Geoffrey
Lowney, and Mateo Valero. Code Layout Optimizations
for Transaction Processing Workloads. In Proceedings of
the 28th Annual International Symposium on Computer
Architecture, ISCA ’01, pages 155–164, 2001.

[116] Richard Rashid, Avadis Tevanian, Michael Young, David
Golub, Robert Baron, David Black, William Bolosky,
and Jonathan Chew. Machine-Independent Virtual



245

Memory Management for Paged Uniprocessor and Mul-
tiprocessor Architectures. In Proceedings of the 2nd
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS IV), pages 31–39, Palo Alto, California, 1991.

[117] Erik Riedel. Storage Systems: Not Just a Bunch of
Disks Anymore. ACM Queue, 1(4):32–41, June 2003.

[118] Dennis M. Ritchie and Ken Thompson. The UNIX
Time-Sharing System. Communications of the ACM,
17(7), July 1974.

[119] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. Transactions on Storage,
9(3):9:1–9:32, August 2013.

[120] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson.
A Comparison of File System Workloads. In Proceedings
of the USENIX Annual Technical Conference (USENIX
’00), San Diego, California, June 2000. USENIX Associ-
ation.

[121] Mendel Rosenblum and John Ousterhout. The Design
and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, 10(1):26–52,
February 1992.



246

[122] Kostadis Roussos. Storage Virtualization Gets Smart.
ACM Queue, 5(6):38–44, September 2007.

[123] Mark Russinovich. Inside Win2K NTFS, Part
1. https://msdn.microsoft.com/en-us/library/
ms995846.aspx.

[124] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs. ACM
Trans. Comput. Syst., 15(4):391–411, November 1997.

[125] Mohit Saxena, Michael M. Swift, and Yiying Zhang.
FlashTier: A Lightweight, Consistent and Durable Stor-
age Cache. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages
267–280, 2012.

[126] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evalu-
ating Performance and Energy in File System Server
Workloads. In Proceedings of the 8th USENIX Sympo-
sium on File and Storage Technologies (FAST ’10), San
Jose, California, February 2010. USENIX Association.

[127] Margo Seltzer, Peter Chen, and John Ousterhout. Disk
Scheduling Revisited. In Proceedings of the USENIX

https://msdn.microsoft.com/en-us/library/ms995846.aspx
https://msdn.microsoft.com/en-us/library/ms995846.aspx


247

Winter Technical Conference (USENIX Winter ’90),
pages 313–323, Washington, D.C, January 1990.

[128] Aameek Singh, Madhukar Korupolu, and Dushmanta
Mohapatra. Server-storage Virtualization: Integration
and Load Balancing in Data Centers. In Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing,
SC ’08, 2008.

[129] Keith A. Smith and Margo I. Seltzer. File System
Aging - Increasing the Relevance of File System Bench-
marks. In Proceedings of the 1997 Joint International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS/PERFORMANCE ’97), Seat-
tle, Washington, June 1997. ACM.

[130] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stew-
art, and R. Stanley Williams. The Missing Memristor
Found. Nature, 453:80–83, 2008.

[131] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a Flash with
ioSnap. In Proceedings of the Ninth European Confer-
ence on Computer Systems, EuroSys ’14, 2014.



248

[132] Kyoungmoon Sun, Seungjae Baek, Jongmoo Choi,
Donghee Lee, Sam H. Noh, and Sang Lyul Min. LTFTL:
Lightweight Time-shift Flash Translation Layer for
Flash Memory Based Embedded Storage. In Proceedings
of the 8th ACM International Conference on Embedded
Software, EMSOFT ’08, 2008.

[133] Herb Sutter and James Larus. Software and the Concur-
rency Revolution. ACM Queue, 3(7):54–62, September
2005.

[134] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in
the XFS File System. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’96), San Diego,
California, January 1996.

[135] V. Tarasov, K. S. Kumar, J. Ma, D. Hildebrand,
A. Povzner, G. Kuenning, and E. Zadok. Extracting
Flexible, Replayable Models from Large Block Traces.
In Proceedings of the 10th USENIX Symposium on File
and Storage Technologies (FAST ’12), San Jose, CA,
February 2012. USENIX Association.

[136] Linus Torvalds and Nicolas Pitre. Cramfs - cram a
filesystem onto a small ROM. https://www.kernel.
org/doc/Documentation/filesystems/cramfs.txt.

https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt


249

[137] Stephen C. Tweedie. Journaling the Linux ext2fs Filesys-
tem. In The Fourth Annual Linux Expo, Durham, NC,
USA, May 1998.

[138] E. van der Deijl, G. Kanbier, O. Temam, and E. D.
Granston. A Cache Visualization Tool. Computer,
30(7):71–78, Jul 1997.

[139] Shivaram Venkataraman, Niraj Tolia, Parthasarathy
Ranganathan, and Roy H. Campbell. Consistent
and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX
Symposium on File and Storage Technologies (FAST
’11), San Jose, California, February 2011.

[140] Bill Venners. Inside the Java virtual machine. McGraw-
Hill, Inc., 1996.

[141] Veritas. Features of VERITAS Volume Manager for Unix
and VERITAS File System. http://www.veritas.com/
us/products/volumemanager/whitepaper-02.html,
July 2005.

[142] Haris Volos, Sanketh Nalli, Sankaralingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena,
and Michael M. Swift. Aerie: Flexible File-system In-
terfaces to Storage-class Memory. In Proceedings of

http://www.veritas.com/us/products/volumemanager/whitepaper-02.html
http://www.veritas.com/us/products/volumemanager/whitepaper-02.html


250

the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 14:1–14:14, New York, NY, USA,
2014. ACM.

[143] Haris Volos and Michael Swift. Storage Systems for
Storage-Class Memory. In Proc. of Annual Non-Volatile
Memories Workshop (NVMW’11), 2011.

[144] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight Persistent Memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS XVI), Newport Beach,
California, March 2011.

[145] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’02), Boston, Massachusetts, December 2002.

[146] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of Backup Workloads in Production
Systems. In Proceedings of the 10th USENIX Sympo-
sium on File and Storage Technologies (FAST ’12), San
Jose, California, February 2012. USENIX Association.



251

[147] Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Proceedings of the International Workshop on
Memory Management, IWMM ’92, pages 1–42, London,
UK, 1992. Springer-Verlag.

[148] Darrick J. Wong. Ext4 Disk Layout. https://ext4.
wiki.kernel.org/index.php/Ext4_Disk_Layout.

[149] Bruce L. Worthington, Gregory R. Ganger, and Yale N.
Patt. Scheduling Algorithms for Modern Disk Drives. In
Proceedings of the 1994 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems,
SIGMETRICS ’94, pages 241–251, 1994.

[150] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A
File System for Storage Class Memory. In Proceedings
of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
2011.

[151] Youfeng Wu. Ordering Functions for Improving Memory
Reference Locality in a Shared Memory Multiprocessor
System. In Proceedings of the 25th Annual International
Symposium on Microarchitecture, MICRO 25, pages 218–
221, 1992.

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout


252

[152] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main Mem-
ories. In Proceedings of the 14th Usenix Conference on
File and Storage Technologies, FAST’16, pages 323–338,
Berkeley, CA, USA, 2016. USENIX Association.

[153] Neeraja J. Yadwadkar, Chiranjib Bhattacharyya,
K. Gopinath, Thirumale Niranjan, and Sai Susarla. Dis-
covery of Application Workloads from Network File
Traces. In Proceedings of the 8th USENIX Symposium
on File and Storage Technologies (FAST ’10), San Jose,
California, February 2010. USENIX Association.

[154] Jingpei Yang, Ned Plasson, Greg Gillis, and Nisha Tala-
gala. HEC: Improving Endurance of High Performance
Flash-based Cache Devices. In Proceedings of the 6th
International Systems and Storage Conference, page 10.
ACM, 2013.

[155] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
and Swaminathan Sundararaman. Don’t Stack Your
Log On My Log. In 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads
(INFLOW 14), Broomfield, CO, Oct 2014. USENIX
Association.



253

[156] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
Swaminathan Sundararaman, and Robert Wood. HEC:
Improving Endurance of High Performance Flash-based
Cache Devices. In Proceedings of the 6th International
Systems and Storage Conference, SYSTOR ’13, 2013.

[157] Y. Yu, K. Beyls, and E. H. D’Hollander. Visualizing
the Impact of the Cache on Program Execution. In Pro-
ceedings Fifth International Conference on Information
Visualisation, pages 336–341, 2001.

[158] Pengfei Yuan, Yao Guo, and Xiangqun Chen. Experi-
ences in Profile-guided Operating System Kernel Opti-
mization. In Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys ’14, pages 4:1–4:6, 2014.

[159] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS:
A Log-Structured File System to Exploit the Internal
Parallelism of Flash Devices. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 87–100,
Denver, CO, 2016. USENIX Association.

[160] Da Zheng, Randal Burns, and Alexander S. Szalay. A
Parallel Page Cache: IOPS and Caching for Multicore
Systems. In Presented as part of the 4th USENIX Work-
shop on Hot Topics in Storage and File Systems, Boston,
MA, 2012. USENIX.



254

[161] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E. Priebe, and Alexander S. Szalay.
Flashgraph: Processing billion-node graphs on an array
of commodity ssds. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, February 2015. USENIX Association.


	Contents
	List of Figures
	Abstract
	Introduction
	Trace Replay in the Multicore Era
	Advanced Virtualization for Flash Storage
	Cache-Compact Filesystems for NVM
	Overview

	Accurate Trace Replay for Multithreaded Applications
	Introduction
	Trace Mining
	Trace Inputs
	Inference

	ROOT: Ordering Heuristics
	Trace Model
	Ordering Rules

	ARTC: System-Call Replay
	Goals
	ROOT with System-Call Traces
	Implementation

	Evaluation
	Semantic Correctness: Magritte
	Performance Accuracy

	Case Study: Magritte
	fsync Semantics

	Related Work
	Conclusion

	Storage Virtualization for Solid-State Devices
	Introduction
	Background
	Structure
	Interfaces
	Range Operations
	Complementary Properties

	Implementation
	Log Structuring
	Metadata Persistence
	Space Management

	Garbage Collection
	Design Considerations
	Possible Approaches
	Design
	Scanner
	Cleaner
	Techniques and Optimizations

	Case Studies
	Snapshots
	Deduplication
	Single-Write Journaling

	GC Evaluation
	Garbage Collection in Action
	GC Capacity Scaling

	Conclusion

	Cache-Conscious Filesystems for Low-Latency Storage
	Introduction
	Filesystem Cache Access Patterns
	DenseFS
	Data Cache Compaction
	Instruction Cache Compaction
	A Second Generation

	Evaluation
	Microbenchmark results
	DenseFS1 application results: grep
	DenseFS2 application results: SQLite

	Related Work
	Conclusion

	Conclusions
	Increasing Core Counts and Trace Replay
	Flash and Storage Virtualization
	NVM and Filesystem Cache Behavior
	Future Work
	Final Thoughts

	Bibliography

