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Abstract

COOPERATIVE DATA PROTECTION
Yupu Zhang

Storage systems employ various techniques to protect user data from hardware fail-
ures and software defects. These techniques, while effective in their own domains,
fail to provide comprehensive protection. In this dissertation, we identify the prob-
lem of isolated protectionin both local storage systems and cloud storage services,
and proposecooperative data protectionto address this problem.

In the �rst half of this dissertation (on local storage systems), we present a study
of the effects of disk and memory corruption on ZFS, a modern commercial �le
system with numerous reliability mechanisms. Through careful and thorough fault
injection, we show that ZFS is robust to a wide range of disk faults, but because
of its isolated integrity checks that only cover on-disk data, it is less resilient to
memory corruption, which can lead to corrupt data being returned to applications
or system crashes.

To solve this problem, we introduce �exible end-to-end dataintegrity, which
enables all components along the I/O path (e.g., page cache,�le system) to handle
checksums cooperatively. Each component is able to alter its protection scheme to
meet the performance and reliability demands of the system.We apply this new
concept to ZFS and build Zettabyte-Reliable ZFS (Z2FS). Z2FS provides dynami-
cal tradeoffs between performance and protection and offers Zettabyte Reliability,
which is at most one undetected corruption per Zettabyte of data read. We develop
an analytical framework to evaluate reliability; the protection approaches in Z2FS
are built upon the foundations of the framework. For comparison, we implement
a straight-forward End-to-End ZFS (E2ZFS) with the same protection scheme for
all components. Through analysis and experiment, we show that Z2FS is able to
achieve better overall performance than E2ZFS, while still offering Zettabyte Reli-
ability.

In the second half of this dissertation (on cloud storage services), we analyze
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how reliable cloud-based synchronization services are in the face of local corrup-
tion and crashes. We perform fault injection experiments onseveral popular syn-
chronization services and local �le systems, and �nd that despite the excellent re-
liability that the cloud back-end provides, the loose coupling of these services and
local �le systems makes synchronized data more vulnerable than users might be-
lieve. Local corruption may be propagated to the cloud, polluting all copies on
other devices, and a crash or untimely shutdown may lead to inconsistency be-
tween a local �le and its cloud copy. Even without these failures, these services
cannot provide causal consistency.

To solve this problem, we present ViewBox, an integrated synchronization ser-
vice and local �le system that provides freedom from data corruption and incon-
sistency. ViewBox detects these problems using ext4-cksum, a modi�ed version of
ext4, and recovers from them using a user-level daemon, cloud helper, to fetch cor-
rect data from the cloud. To provide a stable basis for recovery, ViewBox employs
the view manager on top of ext4-cksum. The view manager creates and exposes
views, consistent in-memory snapshots of the �le system, which the synchroniza-
tion client then uploads. Our experiments show that ViewBoxdetects and recovers
from both corruption and inconsistency, while incurring minimal overhead.
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Chapter 1

Introduction

People are generating tremendous amount of data everyday. By some estimates,
there were 2.8 Zettabytes of data created in 2012, and the amount of data is ex-
pected to double by 2015 [115]. Not only governments and corporations, but also
regular persons have contributed to this data explosion, bystoring musics, photos,
videos, and even email messages. Regardless of where data isplaced, in a personal
computer, an enterprise server, or the cloud, the underlying storage systems are
responsible for preserving data correctly for a long time.

Unfortunately, storage systems are built upon imperfect hardware and software;
hardware errors, crash, and software bugs all can corrupt data. Rare events in
hard drives such as dropped writes or misdirected writes leave stale or corrupt data
on disk [3, 23, 89, 92]. Bits in memory get �ipped due to chip defects [63, 71,
97] or radiation [75, 133]. Untimely crash, if not handled properly, can lead to
inconsistent data in the �le system [37, 129]. Software bugsare also a source of data
corruption, arising from low-level device drivers [111], system kernels [38, 47], and
�le systems [125, 126]. Even worse, design �aws are not uncommon and can lead
to serious data loss or corruption [69].

As storage systems have evolved over the years, designers have developed var-
ious mechanisms to handle some of the aforementioned problems. Besides the
built-in hardware ECC in hard drives, many modern �le systems support high-level
checksums to detect corruption [29, 91, 104], and some of them even provide repli-
cas inside the �le system to facilitate recovery [29]. Underneath the �le system,
RAID is widely used to provide redundancy for recovery [86].Nowadays, backing
up data to the cloud is also an appealing solution to preservedata [67]. In case of
crash or power loss, �le systems usually apply techniques such as journaling [116],
soft updates [50], or copy-on-write [62], to provide metadata or data consistency.
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However, these protection techniques, while effectively protecting data in their
own domains, fail to provide comprehensive data protectionfor the entire system.
As one example, many of the techniques are able to detect and recover from disk
corruption, but they cannot protect in-memory data [131]. As another example,
cloud storage services usually protect its data using checksums and tend to store
multiple copies, but if the local �le system exposes corruptdata, corruption may be
propagated to the cloud, and thus pollute all the replicas [129].

All these failures occur due toisolated protectionin storage systems, and we
proposecooperative data protectionto solve these problems. The goals of this dis-
sertation are two-fold: �rst, to examine the threats to dataprotection in current stor-
age systems due to isolated protection; second, to develop techniques that enable
components in storage systems to work cooperatively to provide comprehensive
data protection.

We address the goals of this dissertation in two aspects: local storage systems
and cloud storage services. For local storage systems, we �rst analyze the impact
of disk corruption and memory corruption on a modern �le system, ZFS, and show
that memory corruption is largely ignored and poses great harm to data integrity
[131]. Then, we build Z2FS, which embraces a new protection scheme called �ex-
ible end-to-end data integrity and provides protection to both in-memory and on-
disk data without sacri�cing much performance [130]. For cloud storage services,
especially cloud-based �le synchronization services, we �rst examine how disk
corruption and system crashes could lead to the propagationof bad data across all
synchronized devices [129]. Then we develop ViewBox, an integrated �le sys-
tem and synchronization service that provides data integrity, crash consistency, and
even causal consistency for both local and cloud data [127].The following sections
elaborate on each of these contributions of the dissertation.

1.1 Cooperative Data Protection in Local Storage

One of the primary challenges faced by storage systems is to protect data despite
the presence of imperfect components in the storage stack. In the �rst part of the
dissertation, we focus on data protection in local storage systems. Speci�cally,
we �rst use ZFS as an example and show that its isolated integrity check does
not protect data in memory. Then, we propose and apply �exible end-to-end data
integrity to ZFS to achieve cooperative data protection.
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1.1.1 Data Protection Analysis of ZFS

File and storage systems have evolved various techniques tohandle corruption.
Different types of checksums can be used to detect when corruption occurs [25,
29, 104, 109], and redundancy, likely in mirrored or parity-based form [86], can be
applied to recover from corruption. While such techniques are not foolproof [69],
they clearly have made �le systems more robust to disk corruption.

Unfortunately, the effects ofmemory corruptionon data integrity have been
largely ignored in �le system design. Hardware-based memory corruption occurs
as both transientsoft errorsand repeatablehard errorsdue to a variety of radia-
tion mechanisms [27, 75, 133], and recent studies have con�rmed their presence in
modern systems [72, 84, 97]. Software can also cause memory corruption; bugs can
lead to “wild writes” into random memory contents [34], thuspolluting memory;
studies con�rm the presence of software-induced memory corruptions in operating
systems [2, 5, 14, 124].

To study how robust modern �le systems are to disk and memory corruption,
we analyze a state-of-the-art �le system, ZFS [29], by performing fault injection
tests representative of realistic disk and memory corruptions. We choose ZFS for
our analysis because it is a modern and mature commercial �lesystem with nu-
merous robustness features, including end-to-end checksums, data replication, and
transactional updates; the result, according to the designers, is “provable data in-
tegrity” [29].

In our analysis, we �nd that ZFS is indeed robust to a wide range of disk cor-
ruptions, thus partially con�rming that many of its design goals have been met.
However, we also �nd that ZFS often fails to maintain data integrity in the face of
memory corruption. In many cases, ZFS is either unable to detect the corruption,
returns bad data to the user, or simply crashes.

1.1.2 Z2FS: Zettabyte Reliability with Flexible End-to-end Data In-
tegrity

A more comprehensive approach to data protection should embrace the “end to
end” philosophy [94]. In this approach, checksums are generated by an application
and percolate through the entire storage system. When reading data, the application
can check whether the calculated checksum matches the stored checksum, thus
improving data integrity.

Unfortunately, the straight-forward end-to-end approachhas two drawbacks.
The �rst is performance; depending on the cost of checksum calculation, perfor-
mance can suffer when repeatedly accessing data from the in-memory page cache.
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The second istimeliness; if a data block is corrupted in memory before being
�ushed to disk, the corruption can only be detected when it islater read by an
application, which is likely too late to recover from the corruption.

To address these issues, we propose a concept called�exible end-to-end data
integrity. We argue that it is not necessary for all components on the I/O path to use
the same checksum. By carefully choosing a different checksum for each compo-
nent (and perhaps altering said checksum over time), the system can deliver better
performance while still maintaining a high level of protection. By enabling all
components to handle checksums cooperatively, the system can detect and recover
from corruption in time.

To explore this �exible approach, we design and implement �exible end-to-
end data integrity within ZFS, resulting in a new variant which we call Zettabyte-
reliable ZFS (Z2FS). Z2FS exposes checksums to the application, and passes check-
sums through the page cache down to the disk system, thus enabling end-to-end
veri�cation. Z2FS uses two techniques to provide �exible data protection. The �rst
is checksum chaining, which carefully orders the generation of new checksum and
the veri�cation of old checksum such that there is no vulnerability window for data
when it crosses domains (e.g., when moving from a stronger on-disk checksum to
a weaker but more performant in-memory one). The second ischecksum switching,
which enables a component (e.g., memory) to switch the checksum it is using dy-
namically, thus preserving a high level of reliability for blocks that remain resident
for extended periods of time. For comparison, we also develop End-to-End ZFS
(E2ZFS), which embraces the straight-forward end-to-end protection and uses only
one type of checksum for both the page cache and disk.

Underlying Z2FS is an analytical framework that enables us to understand reli-
ability of storage systems against data corruption. The framework takes models of
devices and checksums used in a storage system as input, and calculates the prob-
ability of undetected data corruption when reading a data block from the system as
a reliability metric. We de�neZettabyte Reliability, one undetected corruption per
Zettabyte read, as a reliability goal of storage systems. Guided by the reliability
goal, we use the framework to provide rationale behind �exible end-to-end data
integrity.

Through fault injection experiments, we show that Z2FS is able to detect and
recover from corruption that occurs to a block in memory before it is �ushed to disk
in the write path. Using both controlled benchmarks as well as real-world traces,
we demonstrate that Z2FS is able to meet or exceed the performance of E2ZFS
while still providing Zettabyte reliability. Especially for workloads dominated by
warm reads, Z2FS ourperforms E2ZFS by up to 17%.
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1.2 Cooperative Data Protection across Local and Cloud
Storage

With the emergence of cloud storage, especially in the form of cloud-based �le
synchronization services, local �le systems are now connected to the cloud, and
user data becomes synchronized and replicated on multiple devices. These services
are great additions to local �le systems and provide better protection for user data,
but the loose coupling of these services and the �le systems actually puts data
in danger in various ways. In the second part of the dissertation, we focus on
new challenges to data protection across local and cloud storage. We �rst conduct
an analysis of various �le synchronization services and show how they propagate
corrupt and inconsistent data to the cloud. Then, we build ViewBox, an integrated
synchronization service and �le system in which the underlying �le system works
cooperatively with the �le synchronization service to provide comprehensive data
protection.

1.2.1 Data Protection Analysis of Cloud Storage Services

File synchronization services occupy a unique design pointbetween distributed �le
systems, like NFS [95] or Coda [68], and �le backup services,like Mozy [8] or
Data Domain [132]. Like the former, �le synchronization services provide a means
for users to access their �les on any machine connected to theservice. Like the lat-
ter, however, �le synchronization services propagate local changes asynchronously,
and often provide a means to restore previous versions of �les. Furthermore, they
are only loosely integrated with the �le system, allowing them to be portable across
a wide range of devices.

While the automatic propagation of �les as they are modi�ed is no doubt key
to these services' success, the perceived reliability and consistency they provide is
also instrumental to their appeal. The Dropbox tour goes as far as to state that “none
of your stuff will ever be lost” [44]. Unfortunately, the loose coupling of cloud
synchronization services with the underlying �le system gives the lie to this claim.
While the data stored remotely is generally robust, local client software is unable to
distinguish between deliberate modi�cations and unintentional errors, potentially
causing corruption to automatically propagate to all machines associated with a
user. Thus, despite the presence of multiple redundant copies, synchronization
destroys the user's data.

To understand this “false sense of security”, we perform fault injections exper-
iments on several popular cloud-based synchronization services. We �rst examine
how these services can silently propagate data corruption to all synchronized de-
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vices, and then show how these services cannot guarantee data consistency with the
underlying �le system after a crash. Furthermore, we show that a stronger level of
inconsistency, causal inconsistency, may occur and thus cause even more harm to
both local and cloud data.

1.2.2 ViewBox: Integrating File Systems with Cloud StorageServices

The analysis reveals that the root cause of data protection failures is the loose cou-
pling of synchronization services and local �le systems, and they take equal re-
sponsibilities for these failures. Therefore, we develop ViewBox, a system that
integrates local �le system and cloud-based synchronization services to provide
better data integrity, crash consistency, and recoverability.

ViewBox synchronizes data between the local machine and thecloud through
views, in-memory snapshots of the local synchronized folder. ViewBox relies on
three primary components to guarantee the correctness of views: ext4-cksum, the
view manager, and the cloud helper. Ext4-cksum serves as thelocal �le system,
which is able to detect corrupt and inconsistent data through data checksumming.
Atop ext4-cksum, we place the view manager, a �le system extension that creates
views and exposes views to the synchronization client. The view manager provides
consistency throughcloud journalingby creating views at �le-system epochs and
uploading views to the cloud. To reduce the overhead of maintaining views, the
view manager employsincremental snapshottingby keeping only deltas (changed
data) in memory since the last view. Finally, in case of corruption or crash, View-
Box uses an independent user-space daemon, the cloud helper, to interact with the
server-backend and utilize the views on the cloud to restorethe system to a correct
state.

We build ViewBox with two �le synchronization services: Dropbox [44], one
of the most popular synchronization services to date, and Sea�le [99], an open
source synchronization service based on GIT [52]. Through reliability experiments,
we demonstrate that ViewBox detects and recovers from localdata corruption, thus
preventing the corruption's propagation. We also show thatupon a crash, ViewBox
successfully rolls back the local �le system state to a previously uploaded view,
restoring it to a causally consistent image. By comparing ViewBox to Dropbox or
Sea�le running atop unmodi�ed ext4, we �nd that ViewBox incurs less than 5%
overhead across a set of workloads. In some cases, ViewBox even improves the
synchronization time by 30%.
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1.3 Summary of Contributions / Outline

Below is a summary of the contributions of the dissertation,which also serves as
an outline for the rest of the dissertation:

� Threats to Data Protection: Chapter 2 provides background on various
threats to data protection in existing storage systems: disk corruption, mem-
ory corruption, and crashes.

� Cooperative Data Protection in Local Storage:In Chapter 3, we present
an empirical analysis of the reliability of ZFS in the face ofdisk and memory
corruption. Then, in Chapter 4, we propose the concept of �exible end-to-end
data integrity, introduce an analytical framework to provide the rationale be-
hind the concept, and implement Z2FS, which provides comprehensive data
protection (from both disk and memory corruption). The concept, frame-
work, and techniques used in implementing Z2FS, all together demonstrate
a holistic way to think about the performance-reliability tradeoff in storage
systems, which is the �rst major contribution of the dissertation.

� Cooperative Data Protection across Local and Cloud Storage: Chapter 5
presents an analysis of data protection failures (focusingon disk corruption
and crash) when �le synchronization services are running ontop of current
�le systems. Chapter 6 describes our solution to the found problems, View-
Box, an integrated �le system and synchronization servicesthat synchronizes
data based on �le-system views. Both the analysis and the solution serve as
the second major contribution of this dissertation.

� Related Work: Chapter 7 summarizes previous research efforts on protect-
ing data in storage systems.

� Conclusion and Future Work: Chapter 8 concludes this dissertation, �rst
summarizing our work and highlighting the lessons learned,and then dis-
cussing various avenues for future work that arise from our research.
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Chapter 2

Threats to Data Protection

This chapter provides the motivation for the dissertation by describing various
threats to data protection in storage systems. Speci�cally, we focus on two types
of threats, data corruption and data inconsistency. Data corruption occurs mostly
due to hardware failures and software bugs, and we describe why it happens, how
frequently it occurs, and how systems try to deal with it in Section 2.1. Data incon-
sistency, on the other hand, usually results from the �le system's improper handling
during an untimely system crash or reboot. We discuss how �lesystems provide
consistency and why data consistency is not always guaranteed in Section 2.2.

2.1 Data Corruption

We now discuss data corruption in detail. Although it can occur at any place in a
storage system, we only focus on corruption on disk and in memory, because both
are the major media for long-term data storage and accesses.

2.1.1 Disk Corruption

We de�ne disk corruption as a state when any data accessed from disk does not have
the expected contents due to some problem in the storage stack. This is different
from latent sector errors, not-ready-condition errors andrecovered errors [22] in
disk drives, where there is an explicit noti�cation from thedrive about the error
condition.
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Why It Happens

Disk corruption happens due to many reasons originating at different layers of the
storage stack. Errors in the magnetic media lead to the problem of “bit-rot” where
the magnetic properties of a single bit or few bits are damaged. Spikes in power,
erratic arm movements, and scratches in media can also causecorruption in disk
blocks [19, 98, 113]. On-disk ECC catches many (but not all) of these corruption.

Errors are also induced due to bugs in complex drive �rmware (modern drives
contain hundreds of thousands of lines of �rmware code [89]). Some reported
�rmware problems include a misdirected write where the �rmware accidentally
writes to the wrong location [118] or a lost write (or phantomwrite) where the
disk reports a write as completed when in fact it never reaches the disk [109]. Bus
controllers have also been found to incorrectly report diskrequests as complete or
to corrupt data [55, 117].

Finally, software bugs in operating systems are also potential sources of cor-
ruption. Buggy device drivers can issue disk requests with bad parameters or
data [38, 47, 111]. Software bugs in the �le system itself cancause incorrect data
to be written to disk.

How Frequently It happens

Disk corruption are prevalent across a broad range of moderndrives. There is much
anecdotal evidence of corruption in hard disks [25, 109, 118]. In 2008, in a study
of 1.53 million disk drives over 41 months [23], Bairavasundaram et al. show that
more than 400,000 blocks had checksum mismatches, 8% of which were discov-
ered during RAID reconstruction, creating the possibilityof real data loss. They
also found that nearline disks develop checksum mismatchesan order of magnitude
more often than enterprise class disk drives.

How to Handle It

Systems use a number of techniques to handle disk corruption. We discuss some of
the most widely used techniques along with their limitations.
Checksums: Checksums are small pieces of data computed over data blocks with
a speci�c function and are used to verify data integrity. Foron-disk data integrity,
checksums are stored or updated on disk during write operations and read back to
verify the block or sector contents during reads.

Many storage systems have used checksums for on-disk data integrity, such as
Tandem NonStop [25] and NetApp Data ONTAP [109]. Similar checksumming
techniques have also been used in �le systems [29, 91].
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However, Krioukov et al. show that checksumming, if not carefully integrated
into the storage system, can fail to protect against complexfailures such as lost
writes and misdirected writes [69]. Further, checksummingdoes not protect against
corruption that happens due to bugs in software, typically in large code bases [38,
125].
Redundancy: Redundancy in on-disk structures also helps to detect and,in some
cases, recover from disk corruption. For example, some B-Tree �le systems such
as ReiserFS [30] store page-level information in each internal page in the B-Tree.
Thus, a corrupt pointer that does not connect pages in adjacent levels is caught
by checking this page-level information. Similarly, ext2 [32] and ext3 [116] use
redundant copies of superblock and group descriptors to recover from corruption.

However, it has been shown that many of these �le systems still sometimes
fail to detect corruption, leading to greater problems [89]. Further, Gunawi et al.
show instances where ext2/ext3 �le system checkers fail to use available redundant
information for recovery [57].
RAID : Another popular technique is to use a RAID storage system [86] underneath
the �le system. However, RAID is designed to tolerate the loss of a certain number
of disks or blocks (e.g., RAID-5 tolerates one, and RAID-6 two) and it may not
be possible with RAID alone to accurately identify the block(in a stripe) that is
corrupted. Secondly, some RAID systems have been shown to have �aws where a
single block loss leads to data loss or silent corruption [69]. Finally, not all systems
incorporate multiple disks, which limits the applicability of RAID.

2.1.2 Memory Corruption

We de�ne memory corruption as the state when the contents accessed from the main
memory have one or more bits changed from the expected value (from a previous
store to the location). From the software perspective, it may not be possible to
distinguish memory corruption from disk corruption on a read of a disk block.

Why It Happens

Errors in the memory chip are one source of memory corruption. Memory errors
can be classi�ed assoft errorswhich randomly �ip bits in RAM without leaving
any permanent damage, andhard errorswhich corrupt bits in a repeatable manner
due to physical damage.

Researchers have discovered radiation mechanisms that cause errors in semi-
conductor devices at terrestrial altitudes. Nearly three decades ago, May and Woods
found that if an alpha particle penetrates the die surface, it can cause a random,
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single-bit error [75]. Zeigler and Lanford found that cosmic rays can also disrupt
electronic circuits [133]. More recent studies and measurements con�rm the effect
of atmospheric neutrons causing single event upsets (SEU) in memories [83, 84].

Memory corruption can also happen due to software bugs. The use of unsafe
languages like C and C++ makes software vulnerable to bugs such as dangling
pointers, buffer over�ows and heap corruption [28], which can result in seemingly
random memory corruption.

How Frequently It Happens

Early studies and measurements on memory errors provided evidence of soft errors.
Data collected from a vast storehouse of data at IBM over a 15-year period [84]
con�rmed the presence of errors in RAM and that the upset rates increase with
elevation, indicating atmospheric neutrons as the likely cause.

In 2009, a measurement-based study of memory errors in a large �eet of com-
modity servers over a period of 2.5 years [97], Schroeder et al. observe DRAM er-
ror rates that are orders of magnitude higher than previously reported, with 25,000
to 70,000 FIT per Mbit (1 FIT equals 1 failure in 109 device hours). They also
�nd that more than 8% of the DIMMs they examined (from multiple vendors, with
varying capacities and technologies) were affected by bit errors each year. Finally,
they also provide strong evidence that memory errors are dominated by hard errors,
rather than soft errors.

Another study [72] of production systems including 300 machines for a multi-
month period found 2 cases of suspected soft errors and 9 cases of hard errors
suggesting the commonness of hard memory faults.

Besides hardware errors, software bugs that lead to memory corruption are
widely extant. Reports from the Linux Kernel Bugzilla Database [5], USCERT Vul-
nerabilities Notes Database [14], CERT/CC advisories [2],as well as other anec-
dotal evidence [34] show cases of memory corruption happening due to software
bugs.

How to Handle It

Systems use both hardware and software techniques to handlememory corruption.
Below, we discuss the most relevant hardware and software techniques.
ECC: Traditionally, memory systems have employed Error Correction Codes [35]
to correct memory errors. Unfortunately, ECC is unable to address all soft-error
problems. Studies found that the most commonly-used ECC algorithms called
SEC/DED (Single Error Correct/Double Error Detect) can recover from only 94%
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of the errors in DRAMs [48]. Further, many consumer systems do not use ECC
protection in order to reduce cost [59].

More sophisticated techniques like Chipkill [64] have beenproposed to with-
stand multi-bit failure in DRAMs. However, such techniquesare expensive and
have been restricted to proprietary server systems, leaving the problem of memory
corruption open in commodity systems.
Programming models and tools: Another approach to deal with memory errors
is to use recoverable programming models [80] at different levels (�rmware, op-
erating system, and applications). However, such techniques require support from
hardware to detect memory corruption. Further, a holistic change in software is
required to provide recovery solution at various levels.

Much effort has also gone into detecting software bugs that cause memory cor-
ruption. Tools such as metal [58] and CSSV [42] apply static analysis to detect
memory corruption. Others such as Purify [61] and SafeMem [90] use dynamic
monitoring to detect memory corruption at runtime. However, as discussed previ-
ously, software-induced memory corruption still remains aproblem.

2.2 Data Inconsistency

The problem of data inconsistency usually occurs due to �le system failing to pro-
vide strong consistency guarantee upon a crash. File systems maintains various
metadata structures to organize data. Performing a single �le system operation,
such as write(), usually involves changes to several metadata structures. For exam-
ple, appending a block to a �le in ext3 requires at least threeblocks to be written to
disk: a data bitmap block, an inode block, and the data block.In order to correctly
apply such an operation to the on-disk �le system image, all these blocks must be
written to disk as a whole. However, when crash occurs, it is possible that some of
the changes do not make to the disk. For instance, if the data block is not written,
the �le would point to garbage data, resulting indata inconsistency. If the data
bitmap block is not written, the actual status of the data block (used by the inode)
does not match the bitmap (free), which leads tometadata inconsistency.

File system developers have been using several techniques to address the con-
sistency problem. One simple approach is to let the inconsistency occur and then
use a tool, usually called �le system checker (fsck) [76], to�x the inconsistency.
This approach can �x metadata inconsistency in most cases, but it cannot, for ex-
ample, detect the data inconsistency case mentioned above.Therefore, many �le
systems have built-in mechanism to prevent inconsistency in runtime, and the most
common technique is journaling. Journaling, or write-ahead logging, provides con-
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sistency by grouping multiple updates into transactions, which are �rst written to
a circular log and then later checkpointed to their �xed location in the �le sys-
tem. Journaling is quite popular, seeing use in ext3 [116], ext4 [73], XFS [110],
HFS+ [21], and NTFS [79]. Recording all data and metadata in the log can pro-
vide data consistency, but doing so doubles all write traf�cin the system. Thus,
normally, these �le systems only journal metadata, which can lead to inconsisten-
cies in �le data upon recovery, even if the �le system carefully orders its data and
metadata writes (as in ext4's ordered mode, for instance).

Data inconsistency can be avoided entirely using copy-on-write, but it is an
infrequently used solution. Copy-on-write never overwrites data or metadata in
place; thus, if a crash occurs mid-update, the original state will still exist on disk,
providing a consistent point for recovery. Implementing copy-on-write involves
substantial complexity, however, and only recent �le-systems, like ZFS [29] and
btrfs [91], support it for personal use.

2.3 Summary

Modern storage systems are facing great challenges in protecting data. Disk errors,
memory bit �ips, and software bugs can all corrupt data. The combination of un-
timely crash and imperfect crash handling of �le system may lead to data inconsis-
tency. We have presented some existing mechanisms to deal with these problems,
but unfortunately they are still separated techniques and cannot provide compre-
hensive data protection. In the following chapters we will show why they fail to
protect data in local �le systems as well as cloud storage services, and explore new
cooperative techniques to maintain data integrity and consistency.
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Chapter 3

Data Protection Analysis of Local
File Systems

Disk corruption is one of the primary sources for unreliability in data storage. As
�le systems have evolved over the years, designers have focused on this problem
and devised techniques to deal with it [29, 86, 104]. Unfortunately, memory cor-
ruption has been ignored and poses a growing threat to data integrity. As discussed
in Section 2.1.2, recent studies measured increasing memory error rate due to hard-
ware faults, and various bug reports show the occurrence of memory corruption due
to software bugs.

The problem of memory corruption is critical for �le systemsthat cache a great
deal of data in memory for performance. Almost all modern �lesystems use a
page cache or buffer cache to store copies of on-disk data andmetadata in mem-
ory. Moreover, frequently-accessed data and important metadata may be cached
in memory for long periods of time, making them more susceptible to memory
corruption.

In this chapter, we ask: how robust are modern local �le systems to disk and
memory corruptions? To answer this query, we perform a series of fault injection
experiments on ZFS to study how it responds to disk and memorycorruptions. Be-
fore we go into details about the experiments, we �rst we provide some background
on ZFS in Section 3.1. Then, we present our analysis of data protection in ZFS with
disk and memory corruptions in Section 3.2 and Section 3.3, respectively. Finally,
Section 3.4 gives an analysis of the probabilities of different failure scenarios in
ZFS due to memory errors.
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3.1 Background

ZFS is a state-of-the-art �le system from Sun (now Oracle) which takes a uni�ed
approach to data management. ZFS provides data integrity, transactional consis-
tency, scalability, and a multitude of useful features suchas snapshots, copy-on-
write clones, and simple administration [29]. In this section, we �rst present a
high-level overview of ZFS, focusing on the reliability mechanisms. Then, we dis-
cuss the disk layout of ZFS in detail and illustrate how ZFS organizes metadata and
data through a on-disk walkthrough. Finally, we brie�y discuss in-memory data
structures.

3.1.1 ZFS Overview

ZFS claims to provide provable data integrity by using techniques like checksums,
replication, and transactional updates. Further, the use of a pooled storage in ZFS
lends it additional RAID-like reliability features. In thewords of the designers,
ZFS is the “The Last Word in File Systems.” We now describe thereliability mech-
anisms in ZFS.
Checksums for data integrity checking: ZFS maintains data integrity by using
checksums for on-disk blocks. The checksums are kept separate from the cor-
responding blocks by storing them in the parent blocks. ZFS provides for these
parental checksums of blocks by using a generic block pointer structure to address
all on-disk blocks.

The block pointer structure contains the checksum of the block it references.
Before using a block, ZFS calculates its checksum and veri�es it against the stored
checksum in the block pointer. The checksum hierarchy formsa self-validating
Merkle tree [78]. With this mechanism, ZFS is able to detect silent data corruption,
such as bit rot, phantom writes, and misdirected reads and writes.
Replication for data recovery: Besides using RAID techniques (described below),
ZFS provides for recovery from disk corruption by keeping replicas of certain “im-
portant” on-disk blocks. Each block pointer contains pointers to up to three copies
of the block being referenced. By default ZFS stores multiple copies for metadata
(three copies for pool metadata and two copies for �le systemmetadata) and one
copy for data. Upon detecting a corruption due to checksum mismatch, ZFS uses a
redundant copy with a correctly-matching checksum.
COW transactions for atomic updates: ZFS maintains data consistency in the
event of system crashes by using a copy-on-write transactional update model. ZFS
manages all metadata and data as objects. Updates to all objects are grouped to-
gether as a transaction group. To commit a transaction groupto disk, new copies
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are created for all the modi�ed blocks (in a Merkle tree). Theroot of this tree
(the uberblock) is updated atomically, thus maintaining an always-consistent disk
image. In effect, the copy-on-write transactions along with block checksums (in a
Merkle tree) preclude the need for journaling [120], thoughZFS occasionally uses
a write-ahead log for performance reasons.
Storage pools for additional reliability: ZFS provides additional reliability by
enabling RAID-like con�guration for devices using a commonstorage pool for
all zfs instances. ZFS presents physical storage to �le systems in the form of a
storage pool (calledzpool). A storage pool is made up ofvirtual devices(vdev).
A virtual device could be a physical device (e.g., disks) or alogical device (e.g., a
mirror that is constructed by two disks). This storage pool can be used to provide
additional reliability by using devices as RAID arrays. ZFSprovides automatic
repairs in mirrored con�gurations and provides a disk scrubbing facility to detect
latent sector errors.

3.1.2 ZFS On-disk Organization

ZFS organizes its metadata and data into a two level architecture, as shown in
Figure 3.1. The zfs level contains on-disk structures that are used to represent a
zfs instance, such as a �le system, a snapshot, or a clone. Thezpool level maintains
data structures that keep track of all �le system instances and their relationship. We
now discuss some of these basic on-disk structures and theirusage in ZFS.

Basic Structures

Block pointers: A block pointer is the basic structure in ZFS for addressinga
block on disk and connecting different structures. It provides a generic mechanism
to keep parental checksums and replicas of on-disk blocks. Figure 3.2 shows the
block pointer used by ZFS. As shown, the block pointer contains up to three block
addresses, called DVAs (data virtual addresses), each pointing to a different block
having the same contents. These are referred to asditto blocks. The number of
DVAs varies depending on the importance of the block. The current policy in ZFS
is that there is one DVA for user data, two DVAs for �le system metadata, and
three DVAs for global metadata across all �le system instances in the pool [81]. As
discussed earlier, the block pointer also contains a singlecopy of the checksum of
the block being pointed to.
Objects: All blocks on disk are organized in objects. Physically, anobject is repre-
sented on disk by a structure calleddnode phys t (hereafter referred to asdnode).
A dnode contains an array of up to three block pointers, each of which points to



18

dnode

dnode

dnodednodezpool

zfs

dnode uberblock

vdev label

object set block

dnode block

data block 

indirect block

dnode

dnode

dnode

dnode

LEGEND

Figure 3.1:ZFS Two-level Layout The �gure shows the two-level layout of ZFS on-
disk structures.

either a leaf block (e.g., a data block) or an indirect block (full of block pointers).
These blocks pointed to by the dnode form a block tree. A dnodealso contains a
bonus buffer at the end, which stores an object-speci�c datastructure for different
types of objects. For example, a dnode of a �le object contains a structure called
znode phys t (znode) in the bonus buffer, which stores �le attributes such as ac-
cess time, �le mode and size of the �le. The dnode then points to a block tree with
data blocks at the leaf level, as shown in Figure 3.1.

Object sets: Object sets are used in ZFS to group related objects. An example
of a object set is a �le system, which contains �le objects anddirectory objects
belonging to this �le system. An object set is represented bya structure called
objset phys t , which consists of a meta dnode and a ZIL (ZFS Intent Log)
header. The meta dnode points to a group of dnode blocks; dnodes representing
the objects in this object set are stored in these dnode blocks. The object de-
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Figure 3.2:Block pointer The �gure shows how the block pointer structure points to (up
to) three copies of a block (ditto blocks), and keeps a singlechecksum.

Level Object Name Simpli�ed Explanation

zpool

MOS dnode A dnode object that contains dnode blocks, which store dnodes
representing pool-level objects.

Object directory A ZAP object whose blocks contain name-value pairs referenc-
ing further objects in the MOS object set.

Dataset It represents an object set (e.g., a �le system) and tracks its rela-
tionships with other object sets (e.g., snapshots and clones).

Dataset directory It maintains an active dataset object along with its child datasets.
It has a reference to a dataset child map object. It also maintains
properties such as quotas for all datasets in this dataset directory.

Dataset child map A ZAP object whose blocks hold name-value pairs referencing
child dataset directories.

zfs

FS dnode A dnode object that contains dnode blocks, which store dnodes
representing �lesystem-level objects.

Master node A ZAP object whose blocks contain name-value pairs referenc-
ing further objects in this �le system.

File An object whose blocks contain �le data.
Directory A ZAP object whose blocks contain name-value pairs referenc-

ing �les and directories inside this directory.

Table 3.1:Summary of ZFS objects visitedThe table presents a summary of all ZFS
objects visited in the walkthrough, along with a simpli�ed explanation. Note that ZAP
stands for ZFS Attribute Processor. A ZAP object is used to store name-value pairs.

scribed by the meta dnode is called “dnode object”. The ZIL header points to a
list of blocks, which holds transaction records for ZFS's logging mechanism. The
objset phys t structure is stored in anobjset block.
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Datasets: An object set is eventually encapsulated by a zpool-level object called
dataset. A dataset could be a �le system, a clone, or a snapshot. A dataset contains
statistics such as the space consumption of an object set, and tracks its relationship
with other related datasets. For example, a �le system dataset maintains the inter-
dependency between the �le system and its snapshots and clones. A dataset is
represented by a dnode with adsl dataset phys t structure in the bonus �eld.
The dnode itself does not point to the objset block; it is thedsl dataset phys t
structure that contains a block pointer referencing the objset block.
Uberblock: As shown in Figure 3.1, all zpool-level objects form another object
set and the corresponding objset block is pointed to by a rootblock pointer in an
uberblock. An uberblock (similar to a superblock) is used to provide access to the
current pool data and verify its integrity. The uberblock isself-checksummed and
updated atomically.
Vdev label: Each physical vdev is labeled with avdev labelthat describes this
device and other related virtual devices. Four copies of thelabel are stored in each
physical vdev to provide redundancy and a two-stage update mechanism is used to
guarantee that there is always a valid vdev label in the device [108]. Every vdev
label contains an array of uberblocks; updating an uberblock involves writing the
new uberblock to the next entry in the array (in a round robin fashion) and mark the
new entry the active uberblock. Therefore, if a crash occursduring the update, ZFS
will always fall back to the previous uberblock, thus guaranteeing consistency.

On-disk Layout

Next, we present more details on ZFS on-disk layout. This overview will help
the reader to understand the range of our fault injection experiments presented in
later sections. A complete description of ZFS on-disk structures can be found else-
where [108].

For the purpose of illustration, we demonstrate the steps that ZFS takes to locate
a �le system and to locate �le data in it in a simple storage pool. Figure 3.3 shows
the on-disk layout of the simpli�ed pool with a sample �le system called “myfs”,
along with the sequence of objects and blocks accessed by ZFS. A summary of
all visited objects is described in Table 3.1. Note that we skip the details of how
in-memory structures are set up and assume that data and metadata are not cached
in memory to begin with.
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Figure 3.3:ZFS On-disk Walk The �gure illustrates a walkthrough of on-disk structures of ZFS to locate a data block in a �le
system “myfs”. Zpool contains a sample �le system named “myfs”. All data structures are shown by rounded boxes, and blocks are
shown by rectangular boxes. Solid arrows point to allocatedblocks and dotted arrows represent references to objects inside blocks.
The legend at the top shows the types of on-disk blocks and their contents.
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As shown in the �gure, four copies of vdev labels are located at �xed locations
on the disk (two each at the start and end). The active uberblock is found in any
one of the labels (step 1). The uberblock points to a meta object set (MOS) (step
2), which is an object set holding pool-wide information fordescribing and man-
aging relationships between various �le system instances.Since MOS is pool-wide
metadata, there are three copies of the block containing it.

A special object in MOS called the object directory is used tokeep track of
further zpool-level objects (step 3 and 4). The object directory contains references
(object numbers) to various other objects in the object set.One of these references
is the root dataset directory (step 5). A dataset directory encapsulates a group of
related datasets and maintains their common properties, such as quota, block size,
checksum algorithm, etc. Every zfs in zpool has a corresponding dataset directory.
A dataset directory always has a single “active dataset”, which represents the active
zfs instance; other datasets are its snapshots, clones, etc. Therefore, the root dataset
directory represents the root �le system in the pool and it isused to access all child
dataset directories.

The root dataset directory points to a dataset child map object (step 6), which
contains references to all child dataset directories, including “myfs” (step 7). Fi-
nally, the dataset directory of “myfs” is found (step 8) and the active dataset of the
directory points to the current “myfs” �le system (step 9). The object set pointed
to by this dataset contains further �le-system speci�c metadata structures (step 10).
Since the objset block is zfs-level metadata, ZFS keeps two copies of the block. The
“myfs” object set further points to several layers of indirect blocks which eventually
lead to a large array of dnodes describing �le system objects(step 11-13). Since all
these blocks are also �le-system speci�c metadata, there are two copies of all the
indirect blocks as well as the dnode blocks at the leaf level.

There is a special object called master node for each �le system. It contains
references to the root directory of a �le system (step 14). The root directory is then
traversed to �nd further child directories and �les in the “myfs” �le system (step
15-17). Finally, the �le objects contain the block pointersto their corresponding
data blocks (step 18).

3.1.3 ZFS In-memory Structures

ZFS in-memory structures can be classi�ed into two categories: those that exist in
the page cache and those that are in memory outside of the pagecache; for conve-
nience we call the latterin-heapstructures. Whenever a disk block is accessed, it
is loaded into memory. Disk blocks containing data and metadata are cached in the
ARC page cache [77], and stay there until evicted. Data blocks are stored only in
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Figure 3.4:Lifecycle of a block This �gure illustrates one example of the lifecycle of
a block. The left half represents the read timeline and the right half represents the write
timeline. The black dotted line is a protection boundary, below which a block is protected
by the checksum, otherwise unprotected.

the page cache, while most metadata structures are stored inboth the page cache (as
copies of on-disk structures) and the heap. Note that block pointers inside indirect
blocks are also metadata, but they only reside in the page cache. Uberblocks and
vdev labels, on the other hand, only stay in the heap.

To help the reader understand the vulnerability of ZFS to memory corruptions
discussed in later sections, Figure 3.4 illustrates one example of the lifecycle of
a block (i.e., how a block is read from and written asynchronously to disk). To
simplify the explanation, we consider a pair of blocks in which the target block to
be read or written is pointed to by a block pointer contained in the parental block.
The target block could be a data block or a metadata block. Theparental block
could be an indirect block (full of block pointers), a dnode block (array of dnodes,
each of which contains block pointers), or an object set block (a dnode is embedded
in it). The user of the block could be a user-level application or ZFS itself. Note
that only the target block is shown in the �gure.

At �rst, the target block is read from disk to memory. For read, there are two
scenarios, as shown in the left half of Figure 3.4. On the �rstread of a target block,
it is read from the disk and immediately veri�ed against the checksum stored in the
block pointer in the parental block. Then the target block isreturned to the user.
On a subsequent read of a block already in the page cache, the read request gets the
cached block from the page cache directly, without verifying the checksum.

In both cases, after the read, the target block stays in the page cache until
evicted. The block remains in the page cache for an unboundedinterval of time
depending on many factors such as the workload and the cache replacement policy.

After some time, the block is updated. The write timeline is illustrated in the
right half of Figure 3.4. All updates are �rst done in the pagecache and then �ushed
to disk. Thus before the updates occur, the target block is either in the page cache
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already or just loaded to the page cache from disk. After the write, the updated
block stays in the page cache for at most 30 seconds and then itis �ushed to disk.

During the �ush, a new physical block is allocated and a new checksum is
generated for the dirty target block. The new disk address and checksum are then
written to the block pointer contained in the parental block, thus making it dirty.
After the target block is written to the disk, the �ush procedure continues to allocate
a new block and calculate a new checksum for the parental block, which in turn
dirties its subsequent parental block. Following the updates of block pointers along
the tree (solid arrows in Figure 3.3), it �nally reaches the uberblock which is self-
checksummed. After the �ush, the target block is kept in the page cache until it is
evicted.

3.2 On-disk Data Integrity in ZFS

In this section, we analyze the robustness of ZFS against disk corruptions. Our aim
is to �nd whether ZFS can maintain data integrity under a variety of disk corruption
scenarios. Speci�cally, we wish to �nd if ZFS can detect and recover from all disk
corruptions in data and metadata and how ZFS reacts to multiple block corruptions
at the same time. Through experiments, we �nd that ZFS is ableto detect all and
recover from most disk corruptions.

3.2.1 Methodology

Now we present the methodology of our reliability analysis of ZFS against disk
corruptions. We discuss our fault injection framework �rstand then present our
test procedures and workloads.

Fault Injection Framework

Our experiments are performed on a 64-bit Solaris Express Community Edition
(build 108) virtual machine with 2GB memory. We use ZFS pool version 14 and
ZFS �le system version 3. We run ZFS on top of a single disk for our experiments.

To emulate disk corruptions, we developed a fault injectionframework consist-
ing of a pseudo-driver to perform fault injection on disk blocks and an application
for controlling the experiments. The pseudo-driver is a standard Solaris layered
driver that interposes between the ZFS virtual device and the disk driver beneath.
We analyze the behavior of ZFS by looking at return values, checking system logs,
and tracing system calls.
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Test Procedure and Workloads

In our tests, we wanted to understand the behavior of ZFS to disk corruptions on
different types of blocks. We injected faults by �ipping bits at random offsets in
disk blocks. Since we used the default setting in ZFS for compression (metadata
compressed and data uncompressed), our fault injection tests corrupted compressed
metadata and uncompressed data blocks on disk. We injected faults on nine differ-
ent classes of ZFS on-disk blocks and for each class, we corrupted a single copy as
well as all copies of blocks.

In our fault injection experiments on pool-wide and �le system level metadata,
we used “mount” and “remount” operations as our workload. The “mount” work-
load indicates that the target block is corrupted with the pool exported and “myfs”
not mounted, and we subsequently mount it. This workload forces ZFS to use on-
disk copies of metadata. The “remount” workload indicates that the target block is
corrupted with “myfs” mounted and we subsequently umount and mount it. ZFS
uses in-memory copies of metadata in this workload.

For injecting faults in �le and directory blocks in a �le system, we used two
simple operations as workloads: “create �le” creates a new �le in a directory, and
“read �le” reads a �le's contents.

3.2.2 Results and Observations

The results of our fault injection experiments are shown in Table 3.2. The table
reports the results of experiments on pool-wide metadata and �le system metadata
and data. It also shows the results of corrupting a single copy as well as all copies
of blocks. We now explain the results in detail in terms of theobservations we
made from our fault injection experiments.

Observation 1: ZFS detects all corruptions due to the use of checksums. In
our fault injection experiments on all metadata and data, wefound that bad data
was never returned to the user because ZFS was able to detect all corruptions due
to the use of checksums in block pointers. The parental checksums are used in ZFS
to verify the integrity of all the on-disk blocks accessed. The only exception are
uberblocks, which do not have parent block pointers. Corruptions to the uberblock
are detected by the use of checksums inside the uberblock itself.

Observation 2: ZFS gracefully recovers from single metadata block corrup-
tions. For pool-wide metadata and �le system wide metadata, ZFS recovered from
disk corruptions by using the ditto blocks. ZFS keeps three ditto blocks for pool-
wide metadata and two for �le system metadata. Hence, on single-block corruption
to metadata, ZFS was successfully able to detect the corruption and use other avail-
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zpool

vdev label1 R R E R
uberblock R R E R
MOS object set block R R E R
MOS dnode block R R E R

zfs

myfs object set block R R E R
myfs indirect block R R E R
myfs dnode block R R E R
dir ZAP block R R E E
�le data block E E

1 excluding the uberblocks contained in it.

Table 3.2: On-disk corruption analysis The table shows the results of on-disk ex-
periments. Each cell indicates whether ZFS was able to recover from the corruption (R),
whether ZFS reported an error (E), whether ZFS returned bad data to the user (B), or
whether the system crashed (C). Blank cells mean that the workload was not exercised for
the block.

able correct copies to recover from it; this is shown by the cells (R) in the “Single
ditto” column for all metadata blocks.

Observation 3: ZFS does not recover from data block corruptions. For data
blocks belonging to �les, ZFS was not able to recover from corruptions. ZFS de-
tected the corruption and reported an error on reading the data block. Since ZFS
does not keep multiple copies of data blocks by default, thisbehavior is expected;
this is shown by the cells (E) for the �le data block.

Observation 4: In-memory copies of metadata help ZFS to recover from se-
rious multiple block corruptions. In an active storage pool, ZFS caches metadata
in memory for performance. ZFS performs operations on thesecached copies of
metadata and writes them to disk on transaction group commits. These in-memory
copies of metadata, along with periodic transaction commits, help ZFS recover
from multiple disk corruptions.

In the “remount” workload that corrupted all copies of uberblock, ZFS recov-
ered from the corruptions because the in-memory copy of the active uberblock
remains as long as the pool exists. The in-memory copy is subsequently written
to a new disk block in a transaction group commit, making the old corrupted copy
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void. Similar results were obtained when corrupting other pool-wide metadata and
�le system metadata, and ZFS was able to recover from these multiple block cor-
ruptions (R).

Observation 5: ZFS cannot recover from multiple block corruptions affect-
ing all ditto blocks when no in-memory copy exists. For �le system metadata, like
directory ZAP blocks, ZFS does not always keep an in-memory copy unless the di-
rectory has been accessed. Thus, on corruptions to both ditto blocks, ZFS reported
an error. This behavior is shown by the results (E) for directories indicating for
the “create �le” and “read �le” operations. Note that we performed these corrup-
tions without �rst accessing the directory, so that there were no in-memory copies.
Similarly, in the “mount” workload, when the pool was inactive (exported) and
thus no in-memory copies existed, ZFS was unable to recover from multiple disk
corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclusion that an active storage
pool is likely to tolerate more serious disk corruptions than an inactive one.

In summary, ZFS successfully detects all corruptions and recovers from them
as long as one correct copy exists. The in-memory caching andperiodic �ushing of
metadata on transaction commits help ZFS recover from serious disk corruptions
affecting all copies of metadata. For user data, ZFS does notkeep redundant copies
and is unable to recover from corruptions. ZFS, however, detects the corruptions
and reports an error to the user.

3.3 In-memory Data Integrity in ZFS

Although ZFS was not speci�cally designed to tolerate memory corruptions, we
still would like to know how ZFS reacts to memory corruptions, i.e., whether ZFS
can detect and recover from a single bit �ip in data and metadata blocks. In this
section, we perform a series of fault injection experimentsto study the behavior of
ZFS in the presence of memory corruptions. We �nd that ZFS hasno precautions
for memory corruptions: bad data blocks are returned to the user or written to disk,
�le system operations fail, and many times the whole system crashes.

3.3.1 Methodology

Now we discuss the fault injection framework and the test procedure and work-
loads. The injection framework is similar to the one used foron-disk experiments.
The only difference is the pseudo-driver, which in this case, interacts with the ZFS
stack by calling internal functions to locate the in-memorystructures.
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Test Procedure and Workloads

Object Data Structures Workload
MOS
dnode

dnodet, dnodephys t
zfs create,
zfs destroy,
zfs rename,
zfs list,
zfs mount,
zfs umount

Object
directory

dnodet, dnodephys t,
mzapphys t, mzapent phys t

Dataset dnodet, dnodephys t,
dsl datasetphys t

Dataset
directory

dnodet, dnodephys t,
dsl dir phys t

Dataset
child map

dnodet, dnodephys t,
mzapphys t, mzapent phys t

FS dnode dnodet, dnodephys t zfs umount,
path traversalMaster

node
dnodet, dnodephys t,
mzapphys t, mzapent phys t

File dnodet, dnodephys t,
znodephys t

open, close, lseek, read,
write, access, link, unlink,
rename, truncate
(chdir, mkdir, rmdir)

Dir dnodet, dnodephys t,
znodephys t,
mzapphys t, mzapent phys t

Table 3.3:Summary of Tested ObjectsThe table presents a summary of all ZFS ob-
jects corrupted in our in-memory analysis, along with theirdata structures and the work-
loads exercised on them.

We wished to �nd out the behavior of ZFS in response to corruptions in differ-
ent in-memory objects. Since all data and metadata in memoryare uncompressed,
we performed a controlled fault injection in various objects. For metadata, we ran-
domly �ipped a bit in each individual �eld of the structure separately; for data, we
randomly corrupted a bit in a data block of a �le in memory. We repeated each fault
injection test �ve times. We performed fault injection tests on nine different types
of objects at two levels (zfs and zpool) and exercised different set of workloads as
listed in Table 3.3. Table 3.4 shows all data structures inside the objects and all the
�elds we corrupted during the experiments.

For data blocks, we injected bit �ips at an appropriate time as described below.
For reads, we �ipped a random bit in the data block after it wasloaded to the page
cache; then we issued a subsequent read() on that block to seeif ZFS returned the
corrupted block. In this case, the read() call fetched the block from the page cache.
For writes, we corrupted the block after the write() call �nished but before the target
block was written to the disk.
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Data Structure Fields
dnodet dn nlevels, dnbonustype,

dn indblkshift, dnnblkptr,
dn datablkszsec, dnmaxblkid,
dn compress, dnbonuslen,
dn checksum,
dn type

dnodephys t dn nlevels, dnbonustype,
dn indblkshift, dnnblkptr,
dn datablkszsec, dnmaxblkid,
dn compress, dnbonuslen,
dn checksum, dntype, dnused,
dn �ags,

mzapphys t mz block type, mzsalt
mzapent phys t mzevalue, mzename
znodephys t zp mode, zpsize, zplinks,

zp �ags, zp parent
dsl dir phys t dd headdatasetobj,

dd child dir zapobj,
dd parentobj

dsl datasetphys t ds dir obj

Table 3.4:Summary of Tested Data structures and FieldsThe table lists all �elds
we corrupted in the in-memory experiments.mzap phys t and mzap ent phys t are
metadata stored in ZAP blocks. The last three structures areobject-speci�c structures
stored in the dnode bonus buffer.

For metadata, in our fault injection experiments, we covered a broad range
of metadata structures (totally 16 core objects/structures). To reduce the sample
space for experiments to more interesting cases, we made twochoices. First, we
always injected faults to the in-memory structure after it was accessed by the �le
system, so that both the in-heap version and page cache version already exist in the
memory. Second, among the in-heap structures, we only corrupted thednode t
structure (in-heap version ofdnode phys t ). The dnode structure is the most
widely used metadata structure in ZFS and every object in ZFSis represented by a
dnode. Hence, we anticipate that corrupting the in-heap dnode structure will cover
many interesting cases.

3.3.2 Results and Observations

We present the results of our in-memory experiments in Table3.5. As shown, ZFS
fails to catch data block corruptions due to memory errors inboth read and write
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experiments. Single bit �ips in metadata blocks not only lead to returning bad data
blocks, but also cause more serious problems like failure ofoperations and system
crashes. Note that Table 3.5 only shows cases with apparent problems. In other
cases that are either indicated by a dot (.) in the result cells or not shown at all in
Table 3.5, the corresponding operation either did not access the corrupted �eld or
completed successfully with the corrupted �eld. However, in all cases, ZFS did not
correct the corrupted �eld.

Next we present our observations on ZFS behavior and user-visible results.
The �rst �ve observations are about ZFS behavior and the last�ve observations are
about user-visible results of memory corruptions.

Observation 1: ZFS does not use the checksums in the page cache along
with the blocks to detect memory corruptions.Checksums are the �rst guard for
detecting data corruption in ZFS. However, when a block is already in the page
cache, ZFS implicitly assumes that it is protected against corruptions. In the case
of reads, the checksum is veri�ed only when the block is beingread from the disk.
Following that, as long as the block stays in the page cache, it is never checked
against the checksum, despite the checksum also being in thepage cache (in the
block pointer contained in its parental block). The result is that ZFS returns bad
data to the user on reads.

For writes, the checksum is generated only when the block is being written to
disk. Before that, the dirty block stays in the page cache with an outdated checksum
in the block pointer pointing to it. If the block is corruptedin the page cache before
it is �ushed to disk, ZFS calculates a checksum for the bad block and stores the new
checksum in the block pointer. Both the block and its parental block containing the
block pointer are written to disk. On subsequent reads of theblock, it passes the
checksum veri�cation and is returned to the user.

Moreover, since the detection mechanisms already fail to detect memory cor-
ruptions, recovery mechanisms such as ditto blocks and the mirrored zpool are not
triggered to recover from the damage.

The results in Table 3.5 indicate that when a data block was corrupted, the
application that issued a read() or write() request was returned bad data (B), as
shown in the last row. When metadata blocks were corrupted, ZFS accessed the
corrupted data structures and thus behaved wrongly, as shown by other cases in the
result table.
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File Dir MOS dnode Dataset directory
Dataset
childmap

Dataset

Structure Field O R W A U N T O A L U N T M C D c d r l m u c d r l m u c d r c d r l m

dnodet

dn type . . . . . . . . . . . . . . . . C C C C C C . . . . . . . . . . . . . .
dn indblkshift . BC . . C . . . . E E E . E . E . . . . . . . . . . . . . . . . . . . .
dn nlevels . . C . . . C . . C C C . C . C C C C C C C . . . . . . C C C C C C. .
dn checksum . . C . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dn compress . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dn maxblkid . . . . . . C . . . . . . . . C . . . . . . . . . . . . . . . . . . . .

dnodephys t

dn indblkshift . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dn nlevels . BC C . C . . . . . . . . . . C . . . . . . . . . . . . . C . . . . . .
dn nblkptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . .
dn bonuslen . . C . . . . . . . . . . . . . . . . . . . . C . . . . . . . . C . . .
dn maxblkid . B . . C . C . . . . . . . . C . . . . . . . C . . . . . C . . C . . .

znodephys t
zp size . . . . . . . . . . . . . . E
zp �ags E . . E . E E E E E E E E E E E

dsl dir phys t
dd headdatasetobj E E E E . .
dd child dir zapobj EC EC EC EC ECC

dsl datasetphys t ds dir obj . E E . .
data block B B

Table 3.5: In-memory corruption results The table shows our memory corruption results. The operations exercised are
O(open), R(read), W(write), A(access), L(link), U(unlink), N(rename), T(truncate), M(mkdir), C(chdir), D(rmdir),c(zfs create), d(zfs
destroy), r(zfs rename), l(zfs list), m(zfs mount) and u(zfs umount). Each result cell indicates whether the system crashed (C), whether
the operation failed with wrong results or with a misleadingmessage (E), whether a bad data block was returned (B) or whether the
operation completed (.). Large blanks mean that the operations are not applicable.
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Observation 2: The window of vulnerability of blocks in the page cache is
unbounded.As Figure 3.4 shows, after a block is loaded into the page cache by
�rst read, it stays there until evicted. During this interval, if a corruption happens to
the block, any subsequent read will get the corrupted block because the checksum
is not veri�ed. Therefore, as long as the block is in the page cache (unbounded), it
is susceptible to memory corruptions.

Observation 3: Since checksums are created when blocks are written to disk,
any corruption to blocks that are dirty (or will be dirtied) is written to disk per-
manently on a �ush. As described in Section 3.1, dirty blocks in the page cache
are written to disk during a �ush. During the �ush, any dirty block will further
cause updates of all its parental blocks; a new checksum is then calculated for each
updated block and all of them are �ushed to disk. If a memory corruption happens
to any of those blocks before a �ush (above the black dotted line before G in Fig-
ure 3.4), the corrupted block is written to disk with a new checksum. The checksum
is thus valid for the corrupted block, which makes the corruption permanent. Since
the window of vulnerability is long (30 seconds), and there are many blocks that
will be �ushed to disk in each �ush, we conjecture that the likelihood of memory
corruption leading to permanent on-disk corruptions is high.

We did a block-based fault injection to verify this observation. We injected a
single bit �ip to a dirty (or to-be-dirtied) block before a �ush; as long as the �ipped
bit in the block was not overwritten by subsequent operations, the corrupted block
was written to disk permanently.

Observation 4: Dirtying blocks due to updating �le access time increases the
possibility of making corruptions permanent. By default, access time updates are
enabled in ZFS; therefore, a read-only workload will updatethe access time of any
�le accessed. Consequently, when the structure containingthe access time (znode)
goes inactive (or when there is another workload that updates the znode), ZFS
writes the block holding the znode to disk and updates and writes all its parental
blocks. Therefore, any corruption to these blocks will become permanent after the
�ush caused by the access time update. Further, as mentionedearlier, the time
interval when the corruption could happen is unbounded.

Observation 5: For most metadata blocks in the page cache, checksums are
not valid and thus useless in detecting memory corruptions.By default, most meta-
data blocks such as indirect blocks and dnode blocks are compressed on disk. Since
the checksums for these blocks are used to prevent disk corruptions, they are only
valid for compressed blocks, which are calculated after they are compressed dur-
ing writes and veri�ed before they are decompressed during reads. When metadata
blocks are in the page cache, they are uncompressed. Therefore, the checksums
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contained in the corresponding block pointers are useless.

Observation 6: When metadata is corrupted, operations fail with wrong re-
sults, or give misleading error messages (E).For example, whenzp flags in
dnode phys t for a �le object was corrupted, open() may return an error code
EACCES (permission denied). The case occurred when the 41st bit of zp flags
was �ipped from 0 to 1, which signi�es that the �le is quarantined by an anti-virus
software. Therefore, open() was incorrectly denied, giving an error code EACCES.
The calls access(), rename() and truncate() also failed forthe same reason.

Another example of a misleading error message happened whendd head dataset obj
in dsl dir phys t for a dataset directory object was corrupted. In this case, “zfs
create” failed to create a new �le system under the parent �lesystem represented by
the corrupted object. ZFS gave a misleading error message saying that the parent
�le system did not exist. ZFS gave similar error messages in other cases (E) under
“Dataset directory” and “Dataset”.

Observation 7: Many corruptions lead to a system crash (C).For exam-
ple, whendn nlevels (the height of the block tree pointed to by the dnode) in
dnode phys t for a �le object was corrupted and the �le was read, the system
crashed due to a NULL pointer dereference. In this case, ZFS used the wrong
value ofdn nlevels to traverse the block tree of the �le object and obtained an
invalid block pointer. Therefore, the block size obtained from the block pointer
was an arbitrary value, which was then used to index into an array whose size was
much less than the value. As a result, the system crashed whena NULL pointer
was dereferenced.

Observation 8: The read() system call may return bad data.As shown in
Table 3.5, for metadata corruptions, there were three caseswhere read() gave bad
data block to the user. In these cases, ZFS simply trusted thevalue of the corrupted
�eld and used it to traverse the block tree pointed to by the dnode, thus returning
bad blocks. For example, whendn nlevels in dnode phys t for a �le object
was changed from 3 to 1, ZFS gave an incorrect block to the useron a read request
for the �rst block of the �le. The bad block was returned because ZFS assumed that
the tree only had one level, and incorrectly returned an indirect block to the user.
Such cases where wrong blocks are returned to the user also have the potential for
security vulnerabilities.

Observation 9: There is no recovery for corrupted metadata.In the cases
where no apparent error happened (as indicated by a dot or notshown) and the
operation was not meant to update the corrupted �eld, the corruption remained in
the metadata block in the page cache.

In summary, ZFS fails to detect and recover from memory corruptions. Check-
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sums in the page cache are not used to protect the integrity ofblocks. Therefore, bad
data blocks are returned to the user or written to disk. Moreover, corrupted meta-
data blocks are accessed by ZFS and lead to operation failureand system crashes.

3.4 Probability Analysis of Memory Corruption

In this section, we present a preliminary analysis of the likelihood of different fail-
ure scenarios due to memory errors in a system using ZFS. Speci�cally, given that
one random bit in memory is �ipped, we compute the probabilities of four scenar-
ios: reading corrupt data (R), writing corrupt data (W), crashing/hanging (C) and
running successfully to completion (S). These probabilities help us to understand
how severely �le system data integrity is affected by memorycorruptions and how
much effort �le system developers should make to add extra protection to maintain
data integrity.

3.4.1 Methodology

We apply fault-injection techniques to perform the analysis. Considering one run
of a speci�c workload as a trial, we inject a �xed number number of random bit
�ips to the memory and record how the system reacts. By doing multiple trials,
we measure the number of trials where each scenario occurs, thus estimating the
probability of each scenario given that certain number of bits are �ipped. Then,
we calculate the probability of each scenario given the occurrence of one single bit
�ip.

We have extended our fault injection framework to conduct the experiments.
We replaced the pseudo-driver with a user-level “injector”which injects random
bit �ips to the physical memory. We used �lebench [107] to generate complex
workloads. We modi�ed �lebench such that it always writes prede�ned data blocks
(e.g., full of 1s) to disk. Therefore, we can check every readoperation to verify that
the returned data matches the prede�ned pattern. We can alsoverify the data written
to disk by checking the contents of on-disk �les.

We used the framework as follows. For a speci�c workload, we ran 100 trials.
For each trial, we used the injector to generate 16 random bit�ips at the same time
when the workload has been running for 3 minutes. We then keptthe workload
running for 5 minutes. Any occurrence of reading corrupt data (R) was reported.
When the workload was done, we checked all on-disk �les to seeif there was any
corrupt data written to the disk (W). Since we only verify write operations after each
run of a workload, some intermediate corrupt data might havebeen overwritten and
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thus the actual number of occurrence of writing corrupt datacould be higher than
measured here. We also logged whether the system hung or crashed (C) during
each trial, but we did not determine if it was due to corruption of ZFS metadata or
other kernel data structures.

It is important to notice that we injected 16 bit �ips in each trial because it let
us observe a suf�cient number of failure trials in 100 trials. However, we apply the
following calculation to derive the probabilities of different failure scenarios given
that 1 bit is �ipped.

3.4.2 Calculation

We usePk (X ) to represent the probability of scenarioX given thatk random bits
are �ipped, in which X could be R, W, C or S. Therefore,Pk ( �X ) = 1 � Pk (X ) is
the probability of scenarioX not happening given thatk bits are �ipped. In order
to calculateP1(X ), we �rst measurePk (X ) using the method described above and
then deriveP1(X ) from Pk (X ), as explained below.

� MeasurePk (X ) Given thatk random bit �ips are injected in each trial, we
denote the total number of trials asN and the number of trials in which
scenarioX occurs at least once asNX . Therefore,

Pk (X ) =
NX

N

� Derive P1(X ) Assumek bit �ips are independent, then we have

Pk ( �X ) = ( P1( �X ))k ; whenX = R; W or C

Pk (X ) = ( P1(X ))k ; whenX = S

SubstitutingPk ( �X ) = 1 � Pk (X ) into the equations above, we can get,

P1(X ) = 1 � (1 � Pk (X ))
1
k ; whenX = R; W or C

P1(X ) = ( Pk (X ))
1
k ; whenX = S

3.4.3 Results

The analysis is performed on the same virtual machine as mentioned in Section 3.2.1.
The machine is con�gured with 2GB memory and a single disk running ZFS. We
�rst ran some controlled micro-benchmarks (e.g., sequential read) to verify that the
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Workload P16(R) P16(W ) P16(C) P16(S)
varmail 9% [4, 17] 0% [0, 3] 5% [1, 12] 86% [77, 93]
oltp 26% [17, 36] 2% [0, 8] 16% [9, 25] 60% [49, 70]
webserver 11% [5, 19] 20% [12, 30] 19% [11, 29] 61% [50, 71]
�leserver 69% [58, 78] 44% [34, 55] 23% [15, 33] 28% [19, 38]

Workload P1(R) P1(W ) P1(C) P1(S)
varmail 0.6%[0.2, 1.2] 0% [0, 0.2] 0.3%[0.1, 0.8] 99.1%[98.4, 99.5]
oltp 1.9%[1.2, 2.8] 0.1%[0, 0.5] 1.1%[0.6, 1.8] 96.9%[95.7, 97.8]
webserver 0.7%[0.3, 1.3] 1.4%[0.8, 2.2] 1.3%[0.7, 2.1] 97.0%[95.8, 97.9]
�leserver 7.1%[5.4, 9.0] 3.6%[2.5, 4.8] 1.6%[1.0, 2.5] 92.4%[90.2, 94.2]

Table 3.6:P16(X ) and P1(X ) The upper table presents percentage values of the prob-
abilities and 95% con�dence intervals (in square brackets)of reading corrupt data (R),
writing corrupt data (W), crash/hang and everything being �ne (S), given that 16 bits are
�ipped, on a machine of 2GB memory. The lower table gives the derived percentage values
given that 1 bit is corrupted. The working set size of each workload is less than 2GB; the
average amount of page cache consumed by each workload afterthe bit �ips are injected
is 31MB (varmail), 129MB (oltp), 441MB (webserver) and 915MB (�leserver).

methodology and the calculation is correct (the result is not shown due to limited
space). Then, we chose four workloads from �lebench: varmail, oltp, webserver
and �leserver, all of which were exercised with their default parameters. A detailed
description of these workloads can be found elsewhere [107].

Table 3.6 provides the probabilities and con�dence intervals given that 16 bits
are �ipped and the derived values given that 1 bit is �ipped. Note that for each
workload, the sum ofPk (R), Pk (W ), Pk (C) andPk (S) is not necessary equal to
1, because there are cases where multiple failure scenariosoccur in one trial.

From the lower table in Table 3.6, we see that a single bit �ip in memory causes
a small but non-negligible percentage of runs to experiencefailure. For all work-
loads, the probability of reading corrupt data is greater than 0.6% and the probabil-
ity of crashing or hanging is higher than 0.3%. The probability of writing corrupt
data varies widely from 0 to 3.6%. Our results also show that in most cases, when
the working set size is less than the memory size, the more page cache the workload
consumes, the more likely that a failure would occur if one bit is �ipped.

In summary, when a single bit �ip occurs, the chances of failure scenarios hap-
pening can not be ignored. Therefore, efforts should be madeto preserve data
integrity in memory and prevent these failures from happening.
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3.5 Summary

In this chapter, we analyzed a state-of-the-art �le system,ZFS, to study the im-
plications of disk and memory corruptions to data integrity. We used carefully
controlled fault injection experiments to simulate realistic disk and memory errors
and presented our observations about ZFS behavior and its robustness.

While the reliability mechanisms in ZFS are able to provide reasonable robust-
ness against disk corruptions, memory corruptions still remain a serious problem
to data integrity. Our results for memory corruptions indicate cases where bad
data is returned to the user, operations silently fail, and the whole system crashes.
Our probability analysis shows that one single bit �ip has small but non-negligible
chances to cause failures such as reading/writing corrupt data and system crashing.

We argue that �le systems should be designed with comprehensive data protec-
tion. File systems should not only provide protection against disk corruptions, but
also aim to protect data from memory corruptions, which may require cooperation
from the page cache and even user-level applications.
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Chapter 4

Z2FS: Cooperative Data
Protection in Local Storage

Many features that storage systems provide require great care and coordination
across the many layers of the system (e.g., performance), but integrity checks for
data protection generally remain isolated within individual components. For ex-
ample, as shown in Chapter 3, ZFS uses checksums to protect on-disk block, but
fails to extend the checksums to protect in-memory data; hard disks have built-in
ECC for each sector [22], but the ECCs are rarely exposed to the upper-level sys-
tem; TCP uses Internet checksums to protect data payload [11], but only during the
transmission. When data is transferred across components,data is not protected
and thus may become silently corrupted.

A comprehensive approach is to apply the straight-forward end-to-end data pro-
tection [94], where high-level applications generate and verify checksums for their
data such that the checksums protect data throughout the entire I/O stack. This
approach does provide better data protection, but it suffers the performance and
timeliness problems, as discussed in Chapter 1.

To address both problems, we propose a new concept called�exible end-to-
end data integrity. With this concept, all components on the I/O path are aware of
the checksum, and different components can choose different type of checksum,
depending on the reliability characteristics (e.g., failure rate) and performance re-
quirements (e.g., throughput) of the component. Then, we develop an analytical
framework to provide rationale for the new concept. Speci�cally, the framework is
able to evaluate and compare the reliability of different storage systems, and help to
choose proper checksums for different components. Finally, guided by the frame-
work, we build Zettabyte-reliable ZFS (Z2FS) by applying �exible end-to-end data
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protection to ZFS. Z2FS is able to provide Zettabyte Reliability while performing
comparably to ZFS.

The rest of the chapter is organized as follows. In Section 4.1, we introduce the
framework for evaluating reliability of storage systems. We then present the design
of Z2FS in Section 4.2 and discuss some implementation issues in Section 4.3.
Finally, we evaluate Z2FS in Section 4.4.

4.1 Reliability of Storage Systems with Data Corruption

We now present a framework to analyze the reliability of storage systems with data
corruption. The framework uses analytical models for each type of device and
checksum in a system to calculate a reliability metric in terms of the probability of
undetected data corruption.

4.1.1 Overview

The reliability of a storage system can be evaluated based onhow likely corruption
would occur. There are two types of corruption: detected andundetected (silent
data corruption, SDC). Detected corruption is the case the system is built to detect
and may recover from, but SDC is what the system is not prepared for. SDC does
more harm in that it would be treated as correct data and may further pollute other
good data (e.g., RAID reconstruction with corrupted data).Therefore, we focus on
the probability of SDC in a storage system. To quantify how likely a SDC would
occur, we use the probability of undetected data corruption(udc) when reading a
data block from the systemPsys� udc as a reliability metric.

Psys� udc for a storage system depends on various devices, each of which may
experience corruptions caused by different factors. Each device may employ dif-
ferent types of hardware protection and the upper-level system or application may
add extra protection mechanisms. Therefore, we propose a framework that takes
a ground-up approach to derive the system-level reliability metric from underlying
devices.

The framework consists of models for devices and checksums.All models are
built around the basic storage unit, a data block ofb bits. For a raw deviceD
(with its own hardware-level checksum), we are interested in how likely corruption
would occur to a block and escape from the detection of the device's checksum
(Pc(D )). To detect such corruption, high-level (software) checksums are usually
applied on top of a raw device (henceafter, we will use “checksum” to indicate the
high-level checksum). Each data block has a checksum ofk bits. For a checksum
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C and deviceD , we focus on the device-level probability of undetected corruption
(Pudc(D; C )) when the checksum is used to protect a data block on the device.

Devices with different checksums are connected in various ways to form the
whole system. A data block can pass through or stay in severaldevices from the
time it is born to the time it is accessed. By considering all possible corruption
scenarios during this time period, we calculate the overallprobability of undetected
data corruption when reading the data block from the system (Psys� udc).

4.1.2 Models for Devices and Checksums

To demonstrate how to apply the framework, we present modelsfor devices and
checksums that will be used throughout the chapter. We make assumptions (e.g.,
independence of bit errors) to simplify our models such thatwe can focus on rea-
soning about the reliability of storage systems within the framework; discussion on
more complex and accurate models is beyond the scope of this chapter.

Device Model

We consider two types of devices, hard disks (dsk) and memory (mem) , and one
type of corruption: random bit �ip. We assume the block sizebis 32768 bits (4KB).

Hard Disks Hard disks are a long-term storage medium for data, and are known
to be unreliable. Hard disks can exhibit unusual behaviors because of hardware
faults such as latent sector errors [22, 96]. These errors can usually be detected by
disk ECC. The less-likely but more harmful silent data corruption may come from
hardware bit rot, buggy �rmware, or mechanic faults (such asdropped writes and
misdirected writes [23, 92]), causing random bit �ips and block corruption. These
errors are not detectable by disk ECC.

Bit error rate (BER) is often used to characterize the reliability of a hard disk.
BER is de�ned as the number of bit errors divided by the total number of bits trans-
ferred and often refers to detected bit error (by disk ECC). For silent corruption,
we are more interested in the undetected bit error rate (UBER), which is the rate
of errors that have escaped from ECC. Assuming each bit errorin a data block is
independent and the number of bit errors follows a binomial distribution, the prob-
ability of an undetected bit �ip is equal to UBER. Assuming there is at most one
�ip for each bit, the probability ofi bit �ips in a b-bit block is:

Pc(dsk; i) =
�

b
i

�
(UBER) i (1 � UBER)b� i
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Therefore, the probability of corruption in a block is the sum of the probabilities of
all possible bit �ips (from exactly 1 bit �ip to exact b bit �ips):

Pc(dsk) =
bX

i =1

�
b
i

�
(UBER) i (1 � UBER)b� i

While BER is often reported by disk manufactures, ranging from 10� 14 to 10� 16,
there is no published data on UBER. Rozier et al. estimated that the rate of un-
detected disk error caused by far-off track writes and hardware bit corruption is
between10� 12 and10� 13 [92]. Although we do not know the percentage of errors
caused by either fault, we conservatively assume that most are bit errors and thus
we pick 10� 12 as the UBER for current disks. In our study, we choose a wider
range for UBER, from10� 10 to 10� 20, to cover more reliability levels. To simplify
the presentation, we de�ne thedisk reliability indexas� log10(UBER).

Memory Memory (DRAM) is mainly used to cache data for performance. Bit
�ips are the main corruption type, probably due to chip faults or external radiation
[75, 133]. Earlier studies show that memory errors can occurat a rate of 10 to 360
errors/year/GB [83, 84, 100] and suspect that most errors are soft errors, which are
transient. However, recent studies show that memory errorsoccur more frequently
[63, 71, 97] and are probably dominated by hard errors (actual device defects). If a
memory module has ECC or more complex codes such as chipkill [64], then both
soft errors and hard errors within the capability of the codes can be detected or
corrected. However, corruption caused by software bugs [106] are not detectable
by these hardware codes.

For memory, the error rate is usually measured as failure in time (FIT) per
Mbit. Assuming each failure is a bit �ip, 1 FIT/Mbit means there is one bit �ip
in one billion hours per Mbit. Assuming each bit �ip is independent and the same
bit can only experience one �ip, we model the number of bit �ips in ab-bit block
during a time periodt as a Poisson distribution with a constant failure rate� er-
rors/second/bit. Therefore, the probability ofi bit �ips in a b-bit block during time
t is:

Pc(mem; i; t ) =
e� b�t (b�t ) i

i !
Summing up the probabilities of all possible bit corruptions, we have:

Pc(mem; t) =
bX

i =1

e� b�t (b�t ) i

i !
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Previous studies reported FIT/Mbit as low as 0.56 [72] and ashigh as 167,066 [63].
Converting to errors/second/bit gives the range for� , from 1:48� 10� 19 (� min ) to
4:42 � 10� 14 (� max ). In this chapter, we choose6:62 � 10� 15 (� mid ) as the error
rate of non-ECC memory; it is derived from 25,000 FIT/Mbit, which is the lower
bound of the DRAM error rate measured in a recent study [97]. We pick � min

as the error rate of ECC memory, because most errors would have been detected
by ECC. We use� log10(� ) as thememory reliability index. The corresponding
indices for� min , � mid , and� max are 18.8, 14.2, and 13.4.

Checksum Model

The effectiveness of a checksum is measured by the probability of undetected cor-
ruption given an error rate. It is usually dif�cult, sometimes impossible, to have
an accurate model for the probability, because of the complexity of errors and the
data-dependency property of some checksums. Therefore, weapply an analytic
approach to evaluate checksums for random bit �ips.

We focus on two types of checksum: xor (64-bit) and Fletcher (256-bit). Ex-
clusive or checksums (xor) are calculated by XORing each �xed-sized chunk of a
data block. For example, a 64-bit xor checksum over a 4KB datablock is com-
puted by XORing every 64-bit of data in the block. The xor checksum is very fast
to calculate, but it can only detect one bit error. On the other hand, Flecther check-
sum is more complex, which involves calculating two checksums at a time. For
instance, to compute a 256-bit Fletcher checksum from a 4KB block, the block is
�rst divided into an array of 128-bit data chunks (d1; d2; :::; d256), and two 128-bit
checksums (s1 ands2) are initialized with 0. Then for every data chunkdi (i from
1 to 256),s1 ands2 are calculated using one's complement addition as follows:
s1 = ( s1 + di ) mod2128 ands2 = ( s2 + s1) mod2128. Finally, the two checksums
are concatenated to form the Fletcher checksum of the block.Fletcher checksum
is slower to compute than xor, but it can detect all 1-bit errors and 2-bit errors in a
4KB block.

Our approach to model both checksums is similar to the one used in a recent
study on checksums for embedded control networks [74]. The idea is based on
Hamming Distance (HD). A checksumC with HD=n can detect all bit errors up
to n � 1 bits, but there is at least one case ofn bit �ips that is undetectable by the
checksum. We useF (C) to represent the fraction ofn bit �ips that are undetectable
by checksumC. Then, the probability of undetectablen bit �ips is Pc(D; n ) �
F (C), in which Pc(D; n ) is the probability ofn bit �ips on deviceD . The actual
Pudc is the sum of the probabilities of undetectable bit �ips fromn to b(the size of
the block isbbits). Since the occurrence of more thann bit �ips is highly unlikely,
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Reliability Score Reliability Goal Psys� udc

8.4 Terabyte 3:73 � 10� 9

11.4 Petabyte 3:64 � 10� 12

14.4 Exabyte 3:55 � 10� 15

17.5 Zettabyte 3:46 � 10� 18

Table 4.1:Reliability ScoresThis table lists a mapping from reliability scores to differ-
ent reliablity goals.

the probability of undetectedn bit �ips dominatesPudc [74]. Therefore, we have
the approximation ofPudc(D; C ) = Pc(D; n ) � F (C).

The value ofPc(D; n ) can be easily calculated based on the model of each
device, so the key parameter isF (C). Assuming the block size isb bits and the
checksum size isk bits, there is an analytical formula for xor [74]:F (xor ) =

b� k
k(b� 1) . Since the HD for xor is 2, we have:Pudc(D; xor ) = Pc(D; 2) � b� k

k(b� 1) .
But for Fletcher (HD=3), we can only get an approximation [10]: F (F letcher) =
4:16 � 10� 20. Therefore,Pudc(D; F letcher ) = Pc(D; 3) � (4:16 � 10� 20).

4.1.3 CalculatingPsys� udc

Based on previous models, given the con�guration of a storage system, we can
calculatePsys� udc by summing up the probabilities of every silent corruption sce-
nario during the time from the data being generated to it being read. We de�ne
the reliability scorefor a system as� log10(Psys� udc); higher scores mean better
reliability.

Finding all scenarios that lead to a silent corruption is tricky. In reality, it is
possible that multiple devices corrupt the same data when itis transferred through
or stored on them. In this chapter, we assume that in each scenario, there is only
one corruption from when a data block is born to when it is readfrom the system.
One reason is that data corruption is rare - multiple corruptions to the same data
block are unlikely. Another reason is that with this assumption, we do not have to
reason about complex interactions of corruption from multiple devices, which may
require more advanced modeling techniques.

Determining whether a value ofPsys� udc is good enough for a storage system
is not easy. Ideally, the best value ofPsys� udc is 0, but this is impossible. In
reality, Psys� udc is a tradeoff between reliability and performance; it should be
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Cfg Cfg Index
Num Name Mem Dsk Description

1 low-end 13.4 10 worst mem & dsk
2 consumer 14.2 12 non-ECC mem & regular dsk
3 enterprise 18.8 12 ECC mem & regular dsk
4 server 18.8 20 ECC mem & best dsk

Table 4.2:Sample System Con�gurationsThis table shows four con�gurations of a
local �le system that we will study throughout the dissertation.

low enough such that SDC is extremely rare, but at the same time it should not
hinder the system's performance. In this chapter, we useZettabyte Reliabilityas a
reliability goal of storage systems. Zettabyte reliability means that there is at most
one SDC when reading one Zettabyte data from a storage system. With our models,
assuming the block size and the IO size is 4KB, this goal translates toPsys� udc =
Pgoal = 3 :46 � 10� 18, which in terms of a reliability score is 17.5. Intuitively,
we can map other reliability scores to similar reliability metrics, as shown in Table
4.1. Note that the numerical value of the reliability goal may differ depending
on the accuracy of the assumptions and models, and it may not be precise; our
purpose is to use it as a way to demonstrate how to make proper tradeoffs between
performance and protection in a storage system.

4.1.4 Example: NCFS

To illustrate how to apply the framework to evaluate the reliability of a storage
system, we use a local �le system with no checksum (NCFS) as anexample. We
focus on four con�gurations of the system, as listed in Table4.2. Within the range
for each index, we use the minimum value to represent the worst memory or disks
which may be faulty or prone to corrupting data. We use the maximum disk index
to represent disks that are much more reliable than regular disks.

The timeline of a data block from being generated to being accessed is shown
in Figure 4.1. A writer application generates the block att0. The block stays in
memory untilt1 when it is �ushed to disk. The block is then read into memory
at t2 and �nally accessed by a reader application att3. The residency time of the
block in writer's memory and reader's memory ist1 � t0 andt3 � t2 respectively.
To simplify the model and also because most �le systems �ush dirty blocks to disk
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Figure 4.1:Timeline of a Data Block in NCFSThis �gure shows timeline of a block
from being generated by the writer (t0) to being read by the reader (t3) in NCFS. The
timeline consists of three parts: writer in memory, storage(disk), and reader in memory.
The name of the checksum used to protect data during each timeperiod is listed in the
parentheses on the right of the device name.

at regular time intervals (usually 30 seconds), we assumet1 � t0 to be 30 seconds
for all blocks in this chapter.

Based on the “one corruption” assumption, there are three scenarios that will
lead to silent data corruption: corruption that occurs in the reader's memory, disk,
or the writer's memory. Therefore,Psys� udc for NCFS is approximately the sum
of the probabilities of corruption in each device:

PNCFS� udc = Pc(mem; t resident ) + Pc(dsk)

+ Pc(mem; 30)

wheret resident = t3 � t2 is the residency time (in seconds) of the block in the
reader's memory and 30 is the residency time of it in the writer's memory.Psys� udc

is a function of three variables: the reliability indices ofmemory and disk in the
system, and the residency timet resident .

The reliability score of NCFS (t resident = 1) is shown in Figure 4.2, with the
four con�gurations marked as “� ”. We chooset resident = 1 because it represents
a best case (approximately) for reliability and we will discuss the sensitivity of
reliability score tot resident in Section 4.2.3.

As one can see from the �gure, when either the disk or the memory reliability
index is low, corruption on that device dominates the reliability score. For example,
when the disk reliability index is 12, the reliability scoreof the system almost does
not change when the memory reliability index varies; both con�g 2 (consumer)
and con�g 3 (enterprise) have a score of 7.4 (even worse than Terabyte reliability).
But when the disk is more reliable, memory corruption startsto dominate and the
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Figure 4.2:NCFS Reliability Score (t resident = 1) This �gure illustrates a contour
plot of the reliability score of NCFS. Darker color means lower score - worse reliability.
Four points marked with a “� ” represent the four sample con�gurations: low-end (1),
consumer (2), enterprise (3), server (4).

reliability score increases as the memory reliability index increases. When both
reliability indices are high, NCFS with con�g 4 (server) hasthe best reliability
score of 12.8 (a little better than Petabyte), still less than the Zettabyte reliability
goal (17.5).

4.2 From ZFS to Z2FS

To explore end-to-end concepts in a �le system, we now present two variants of
ZFS: E2ZFS, which takes the straight-forward end-to-end approach, and Z2FS,
which employs �exible end-to-end data integrity. Speci�cally, we show how ZFS,
a modern �le system with strong protection against disk corruption, can be further
hardened with end-to-end data integrity to protect data allthe way from application
to disk, achieving Zettabyte reliability with better performance.

4.2.1 ZFS: the Original ZFS

ZFS is a state-of-the-art open source �le system originallycreated by Sun Mi-
crosystems with many reliability features. ZFS provides data integrity by using
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Figure 4.3:Timeline of a Data Block in ZFS This �gure shows timeline of a block
in ZFS. The name of the checksum used to protect data during each time period is listed in
the parentheses on the right of the device name. None means nochecksum is used.

checksums, data recovery with replicas, and consistency with a copy-on-write trans-
actional model [29]. In addition, other mechanisms such as pooled storage, inline
deduplication, snapshots, and clones, provide ef�cient data management.

Problem

One important feature that distinguishes ZFS from most other �le systems is that
ZFS provides protection from disk corruption by using checksums. ZFS maintains
a disk checksum(Fletcher, by default) for each disk block and keeps the checksum
in a block pointer structure. As shown in Figure 4.3, when ZFSwrites a block to
disk at t1, it generates a Fletcher checksum. When ZFS reads the block back, it
veri�es the checksum and places it in the page cache. In this manner, ZFS is able
to detect many kinds of corruption caused by disk faults, such as bit rot, phantom
writes, and misdirected reads and writes [29].

However, Chapter 3, as well as some anecdotal evidence [9, 16, 17], shows that
ZFS is vulnerable to memory corruption. The checksum in ZFS is only veri�ed and
generated at the boundary of memory and disk; once a block is cached in memory,
the checksum is never veri�ed again. Applications could read bad data from the
page cache without knowing that it is corrupted. Even worse,if a dirty data page
is corrupted before the new checksum is generated, the bad data will get to disk
permanently with a matching checksum and later reads will not be able to detect
the corruption.
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Figure 4.4:ZFS Reliability Score (t resident = 1) This �gure illustrates a contour plot
of the reliability score of ZFS. Darker color means lower score - worse reliability. Four
points marked with a “� ” represent the four sample con�gurations: low-end (1), consumer
(2), enterprise (3), server (4).

Reliability Analysis

We apply the framework introduced in Section 4.1 to calculate the reliability score
for ZFS. Similar to NCFS, there are three scenarios that cause SDC:

PZFS� udc = Pc(mem; t resident )

+ Pudc(dsk; F letcher)

+ Pc(mem; 30)

Because ZFS has on-disk blocks protected by Fletcher, only undetected corruption
contributes toPZFS� udc.

Figure 4.4 depicts the reliability score of ZFS. With Fletcher protecting data on
disk, the reliability score is now dominated by memory corruption. However, the
reliability score is not improved much, due to the lack of protection of in-memory
data. Both con�g 3 (enterprise) and con�g (server) 4 have thehighest reliability
score of 12.8 (above Petabyte reliability), but they are still below the Zettabyte
reliability goal (17.5). It is interesting to see that con�g4 (server) in ZFS has the
same best reliability score as itself in NCFS, which indicates that when both the
disk and memory reliability indices are the highest, memorycorruption is more
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severe than disk corruption. Therefore, we need to protect data in memory.

4.2.2 E2ZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and on disk must be pro-
tected. One way to achieve this is to apply the straight-forward end-to-end concept.
In common practice, the writer generates an application-level checksum for the data
block and sends both the checksum and data to the �le system. Because the page
cache and the �le system are not aware of the checksum, the writer usually uses a
portion of the data block to store the checksum. When the reader reads back the
block, it can verify the checksum portion to ensure the integrity of the data portion.
The checksum protects the data block all the way from the writer to the reader.

Because ZFS already maintains a checksum for each on-disk block in the block
pointer, we do not have to append the application checksum ontop of ZFS's check-
sum. Instead, we can simply store the application checksum in the block pointer,
replacing the original disk checksum. Therefore, we only have to expose the check-
sum to the reader and writer, and make sure the page cache and the �le system are
oblivious to the checksum.

Implementation

To achieve the straight-forward end-to-end data integrity, we make the following
changes to ZFS, transforming it into E2ZFS.

First, we attach checksums to all buffers along the I/O path:user buffer, data
page and disk block. Since ZFS already providesdisk checksumfor each disk
block, we addmemory checksumto the user buffer and the data page. It enables
the system to pass checksums between the application and disk. Since only one
checksum algorithm is used throughout the system, the memory checksum and the
disk checksum are the same as the application-generated checksum, assuming the
user buffers are always aligned to data pages. We will discuss the alignment issue
in Section 4.3. E2ZFS currently supports both xor and Fletcher, but only one can
be used at a time.

Second, we enhance the existing read/write system calls with a new argument
to transfer checksums between user and kernel space. The newargument is a buffer
containing all checksums corresponding to the blocks in theuser buffer. On reads,
the application receives both data and checksum, and thus isable to verify the
integrity of data. On writes, the application must generatea checksum for each
data block, and send both the data block and checksum throughthe new system
call.
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dsk!(Fletcher/xor)
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Figure 4.5:Timeline of a Data Block in E2ZFS This �gure shows timeline of a block
in E2ZFS. E2ZFS uses the same checksum (either xor or Fletcher) all the way through.

Finally, we modify the checksum handling at the boundary of memory and disk
such that the checksum is always passed through this boundary without any extra
processing. E2ZFS simply stores both data and checksum on disk and does not
generate or verify the checksum. In this way, only the applications (reader and
writes) are responsible of verifying and generating the checksums, thus providing
the straight-forward end-to-end data integrity.

Reliability Analysis

The timeline of a data block from writer to reader is shown in Figure 4.5. E2ZFS
uses one type of checksum (xor or Fletcher) all the way through. The writer gener-
ates the checksum for the data block att0, and passes both the checksum and data
block to the �le system. Both are then written to disk att1 and read back att2. The
reader receives them att3 and veri�es the checksum.

In E2ZFS, only undetected corruption during each time period causes a SDC;
detected corruption would be caught by the checksum veri�cation performed by
the reader. The probability of undetected data corruption is:

PE2ZFS� udc = Pudc(mem; F letcher=xor; t resident )

+ Pudc(dsk; F letcher=xor)

+ Pudc(mem; F letcher=xor; 30)

The reliability scores of E2ZFS (xor) and E2ZFS (Fletcher) are shown in Figure
4.6(a) and Figure 4.6(b). Overall, E2ZFS (Fletcher) has the best reliability, with
all scores above the reliability goal. E2ZFS (xor) can meet the goal only when
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(a) E2ZFS (xor)
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(b) E2ZFS (Fletcher)

Figure 4.6:E2ZFS Reliability Score (t resident = 1) These �gures illustrate contour
plots of the reliability score of E2ZFS (xor) and E2ZFS (Fletcher). Four points marked with
a “ � ” represent the four sample con�gurations: low-end (1), consumer (2), enterprise (3),
server (4).

System TP (MB/s) Normalized TP
ZFS 656.67 100%
E2ZFS (Fletcher) 558.22 85%
E2ZFS (xor) 639.89 97%

Table 4.3: Overhead of Checksum CalculationThis table shows the through-
put of sequentially reading a 1GB �le from the page cache in ZFS, E2ZFS (xor), and
E2ZFS(Fletcher).

both disk and memory are more reliable. Con�g 4 (server) has ascore of 27.8
while both con�g 2 (consumer) and con�g 3 (enterprise) have ascore of 17.1 (just
short of Zettabyte reliability). Comparing both �gures, when the disk corruption
dominates (with an index below 12), E2ZFS (Fletcher) is much better than E2ZFS
(xor), showing that Fletcher is clearly a better checksum for protecting blocks on
disk.
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Performance Issues

E2ZFS (xor) is less reliable than E2ZFS (Fletcher), but it offers better performance,
especially when the reader is reading data from memory. Table 4.3 shows the
throughput of reading a 1GB �le from the page cache. As one cansee, ZFS has
the best throughput because there is no checksum calculation involved. E2ZFS
with Fletcher suffers a throughput drop of 15%. In contrast,E2ZFS (xor) is able to
achieve a throughput just 3% less than ZFS, with the checksum-on-copy optimiza-
tion [39], which calculates the xor checksum while data is copied between kernel
space and user space. The checksum-on-copy technique can beapplied easily and
ef�ciently due to the simplicity of xor checksum, but may notbe a good option for
stronger and more complex checksums such as Fletcher.

4.2.3 Z2FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward end-to-end approach. Besides
the performance problem as shown above, it also suffers fromuntimely recovery:
neither the page cache nor the �le system is able to verify thechecksum to detect
corruption in time. To handle both problems, we build Z2FS on top of the changes
we have made in E2ZFS by further applying the concept of �exible end-to-end data
integrity. For the timeliness problem, a simple �x is to add an extra veri�cation
when the data is being �ushed to disk and when the data is beingread from disk.
For the performance problem, however, more analysis and techniques are required.
We will focus on the performance problem in this section and discuss the timeliness
problem in Section 4.3.

In this section, we will introduce two operation modes in Z2FS: static mode, in
which checksums are changed only across components (e.g., between memory and
disk), and dynamic mode, where checksums are even changed overtime.

Static Mode with Checksum Chaining

Looking at the reliability score and performance �gures of E2ZFS, a natural ques-
tion one may ask is: can we combine E2ZFS (xor) and E2ZFS (Fletcher) to make
a system with better performance while still meeting the reliability goal? To an-
swer this question, we introduce the static mode of Z2FS, Z2FS (static), a hybrid
of E2ZFS (xor) and E2ZFS (Fletcher) that uses xor as the memory checksum and
Fletcher as the disk checksum. In static mode, Z2FS must perform a checksum con-
version at the cache-disk boundary. To handle the conversion correctly, we develop
a technique calledChecksum Chaining, which carefully changes the checksum to
avoid any vulnerable window.
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Figure 4.7: Timeline of a Data Block in Z2FS with Checksum ChainingThis
�gure shows timeline of a block in Z2FS with checksum chaining, which is applied att1
andt2.

Z2FS (static) converts the checksum from xor to Fletcher when writing data
to disk. With checksum chaining, it must generate the Fletcher checksumbefore
verifying the xor checksum. In this way, the creation of the new Fletcher checksum
occurs before the last use (veri�cation) of the old xor checksum; the coverage of
the new and old checksums overlaps. It is as if the two checksums are chained
to each other. A successful veri�cation of the xor checksum indicates that with
high probability, the Fletcher checksum was generated overthe correct data and
thus Fletcher checksum is correct. If the order of generating Fletcher and verifying
xor is reversed, there is a vulnerable window in between. If the data is corrupted
in the window, the new Fletcher checksum will be calculated over the corrupted
data, resulting in silent corruption, because the checksumactually “matches” the
bad data.

The timeline of a data block in Z2FS with checksum chaining is shown in Fig-
ure 4.7. On the write path, the writer generates an xor checksum at �rst. When the
block is being written to disk, Z2FS generates a Fletcher checksum using check-
sum chaining and sends the Fletcher checksum and data to disk. On the read path,
Z2FS generates an xor checksum using checksum chaining when reading the data
block from disk, and then passes it to the reader along with the data block. The
reader �nally veri�es the xor checksum. As a side effect of checksum chaining,
the xor checksum is veri�ed at the cache-disk boundary on thewrite path and the
Fletcher checksum is veri�ed on the read path, which helps tocatch any detectable
corruption in time.

With checksum chaining, Z2FS has to generate an xor checksum for each data
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Figure 4.8:Timeline of a Data Block in Z2FS (static)This �gure shows timeline of a
block in Z2FS (static). When there are two checksums during a time period, the underlined
checksum is the primary checksum, as de�ned in Section 4.2.3.

block when reading it from disk, which may affect the performance. In fact, the
same xor checksum already existed when the data block was �rst written by the
application. Instead of regenerating the xor checksum on every read, Z2FS simply
stores both the xor checksum and the Fletcher checksum on disk when writing a
data block, and then when reading it, both checksums are available. The Fletcher
checksum is called theprimary checksum, because it is the required disk checksum.
By grouping both checksums and storing them on disk, Z2FS skips the generation
of xor checksum on the read path, thus improving the performance. Note that Z2FS
still need to verify the primary checksum (Fletcher) when reading a block from
disk.

Reliability Analysis of Static Mode

Figure 4.8 shows an updated timeline for Z2FS (static) with this optimization. The
probability of undetected corruption for Z2FS (static) is:

PZ2FS� udc = Pudc(mem; xor; t resident )

+ Pudc(dsk; xor&F letcher)

+ Pudc(mem; xor; 30)

Note that the corruption on disk must be undetectable by bothxor and Fletcher.
Since the block will be checked against the Fletcher checksum att2 and against the
xor checksum att3, if either checksum catches the corruption, there will not be a
silent data corruption.
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Figure 4.9: Reliability Score (t resident = 1) of Z2FS (static) This graph is a
contour plot of the reliability score of Z2FS (static). Darker color means lower score -
worse reliability. Four points marked with a “� ” represent the four sample con�gurations:
low-end (1), consumer (2), enterprise (3), server (4).

The reliability score of Z2FS (static) att resident = 1 is shown in Figure 4.9.
Since on-disk blocks are protected by Fletcher, memory corruption dominates.
When memory corruption is severe with an index less than 13.7, the reliability
score is below the goal. As the memory reliability index increases, the reliability
score increases and becomes above the goal. However, ast resident increases, the
reliability score will decrease and at some point it is possible to drop below the
goal.

To �nd out when we should use Z2FS (static), we focus on memory reliability
andt resident . We take a close look at three cases based on the memory reliability
index: 13.4 (� max = 1 :99� 10� 14), 14.2 (� mid = 6 :62� 10� 15), and 18.8 (� min =
1:48 � 10� 19). Since Figure 4.9 shows that memory corruption dominates,the
value of the disk reliability index in each case does not affect the reliability score.
Therefore, we �x the disk reliability index at 10 for the �rstcase, and at 12 for
second and third case; the three cases now correspond to con�g 1, 2 and 3 (low-
end, consumer, and enterprise). Figure 4.10(a), Figure 4.10(b), and Figure 4.10(c)
illustrate the reliability score of Z2FS (static) versus residency time in all three
cases.

In Figure 4.10(c) where the memory reliable index is maximum, the reliability
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Figure 4.10:Reliability Score vst resident in Z2FS These �gures show the relation-
ship between reliability score and residency time in Z2FS. The �rst three are for the static
mode, and the last for the dynamic mode, in which the checksumswitching occurs at 92
seconds.

score is above the goal and they will intersect after about seven weeks (not shown).
It indicates that xor is probably strong enough for data in memory; Z2FS (static)
�ts right into this case.

In contrast, when the index is minimum as shown in Figure 4.10(a), the whole
line of Z2FS is below the goal. It shows that xor is not strong enough to protect data
in memory. To handle this extreme case, Z2FS (static) skips checksum chaining and
uses Fletcher all the way through, but keeps the extra veri�cation at the boundary of
memory and disk. In this way, Z2FS (static) can provide the same level of reliability
as E2ZFS (Fletcher).

The most interesting case is shown in Figure 4.10(b) with a memory reliability
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Figure 4.11:Timeline of a Data Block in Z2FS (dynamic)This �gure shows time-
line of a block in Z2FS (dynamic). The memory checksum is switched from xor to Fletcher
at tswitch .

index of 14.2. When the residency time is less than 92 seconds, Z2FS is able to keep
the reliability score above the goal. However, after then the score drops below the
goal and slowly converges to E2ZFS (xor). In this case, in order to make sure the
reliability score is always above the goal, Z2FS may need to change to a stronger
checksum at some point when data stays longer in memory.

Dynamic Mode with Checksum Switching

To prevent the reliability score from dropping below the goal as the residency time
increases, we apply a technique calledChecksum Switchingto Z2FS (static). The
idea behind checksum switching is simple. On the read path, there are already
two checksums on disk: xor and Fletcher. Z2FS can simply read both checksums
into memory; for the �rsttswitch seconds, Z2FS uses xor as theweaker memory
checksumand then switch to Fletcher as thestronger memory checksumaftertswitch

seconds. It is just a simple change of checksum and there is noextra overhead. We
call this mode Z2FS (dynamic).

Reliability Analysis of Dynamic Mode

Figure 4.11 shows the timeline of a block in Z2FS (dynamic mode). The static
mode is essentially a special case of dynamic mode with a extremely large value of
tswitch such thatt3 is always in betweent2 andtswitch .
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Calculating Psys� udc Depending on whethert3 is before or aftertswitch , we
have:

PZ2FS� udc = Pudc(mem; xor; t resident )

+ Pudc(dsk; xor&F letcher)

+ Pudc(mem; xor; 30)

wheret3 = t2 + t resident is betweent2 andtswitch , and:

PZ2FS� udc = Pudc(mem; F letcher; t resident )

+ Pudc(dsk; F letcher)

+ Pudc(mem; xor; 30)

wheret3 = t2 + t resident is greater thantswitch .

Determining tswitch By replacingt resident in the �rst formula with tswitch , we
can solve fortswitch from the equation below:

PZ2FS� udc = Pgoal

With the Zettabyte reliability goalPgoal = 3 :46 � 10� 18 and � mid , we have
tswitch = 92. Figure 4.10(d) shows the reliability score of Z2FS in dynamic mode.
As we can see from the �gure, checksum switching occurs at 92 seconds so that
the score afterwards is still above the goal.

By varying both the disk and memory reliability index, we have Figure 4.12
showing the values oftswitch that are required to meet the goal of Zettabyte reli-
ability. When the memory reliability index is high (� = � min , e.g., con�g 3 and
4), tswitch is about seven weeks; in this case, Z2FS (static) is strong enough, which
also offers the best performance. When the memory reliability index is extremely
low (e.g., con�g 1), Z2FS (static) keeps using Fletcher as both disk and memory
checksum to provide the best reliability. When the memory reliability index is in
between (e.g., con�g 2), Z2FS (dynamic) strikes a nice balance between reliability
and performance by switching the checksum attswitch .

4.3 Discussion

We now discuss three technical issues when implementing Z2FS: checksum chain-
ing, application integration, and error handling.
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Figure 4.12:tswitch of Z2FS (dynamic)This �gure shows a contour plot of the required
switching time to provide Zettabyte reliability in Z2FS (dynamic), with respect to different
disk and memory reliability index. The z axis is the base 10 logarithm oftswitch in seconds.
Four points marked with a “� ” represent the four sample con�gurations: low-end (1),
consumer (2), enterprise (3), server (4).

Symbol Description
X a data object, could beORG or DST
X:data the data of the objectX
X:cksum the checksum of objectX
X:size the size ofX:data
X:alg the checksum algorithm forX:cksum
S size of moved data
m(X ) moved data inX
o(X ) overwritten data inX
r (X ) remaining data inX
g(cksum; alg; data) generatecksum usingalg overdata
v(cksum; alg; data) verify cksum usingalg overdata

Table 4.4:Model Notation for Checksum Chaining The table depicts all notations
used to describe the model for checksum chaining.
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o(DST)

ORG.cksum DST.cksum

r(ORG)
r(DST)
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ORG.size

Figure 4.13:An Example of the NotationsThis �gure shows some of the notations
in a data movement example. Small squares and triangles represent checksums. Differ-
ent shapes of checksum symbol indicates the algorithm or thevalue of the checksum are
different. Each big rectangle represents a data object overwhich a checksum is calcu-
lated. Heavy-shaded squares represent the moved data and light-shaded squared represent
overwritten data.

4.3.1 Checksum Chaining

So far, we have assumed the user buffer is always aligned to page size. In fact,
checksum chaining does support generic requests with arbitrary offset and size,
which is implemented in Z2FS through checksum-ware interfaces. Before we talk
about the new interfaces, we �rst we propose a simple model tocharacterize all
scenarios where checksum chaining could apply when data is moved across buffers.

Notations In the model, data is always protected by a checksum. We use a data
object to represent a piece of data and a corresponding checksum. Data in different
data objects can be of different sizes and the checksum algorithms can also differ.
Therefore, a data object has four properties:data, cksum, size andalg.

Data movement is de�ned here as a piece of data moved from the origin data
objectORG to destination data objectDST . The moved data fromORG is repre-
sented bym(ORG), and the overwritten data inDST is represented byo(DST ).
The moved and overwritten data is of sizeS. In some cases,S may not be the same
asORG:size or DST:size; some portion of data inORG is not moved and some
portion of data inDST is not overwritten. The remaining data is represented by
r (ORG) or r (DST ). All notations are explained in Figure 4.4 and illustrated in
Figure 4.13.
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During the data movement,m(ORG) is copied fromORG to DST and the
checksum ofDST is updated. Checksum chaining is thus de�ned as follows: as-
sumingD is the data stored inDST after the data movement, the newDST:cksum
is calculated overD beforethe integrity ofD is veri�ed usingORG:cksum and
the old DST:cksum. A special case of checksum chaining is whenORG and
DST are of the same size, andORG andDST use the same checksum algorithm.
In this case,ORG:cksum is copied toDST:cksum directly when the moved data,
without any recalculation. We call this special case checksum forwarding.

Checksum forwarding is straightforward and has no overheadexcept the copy-
ing of the checksum, but it has strict requirements for the alignment and checksum
algorithms of the moved data,ORG andDST . In contrast, checksum chaining
can be applied in any scenario, but it has the overhead of one or more checksum
calculations.

In checksum chaining, the order of new checksum generation and old check-
sum veri�cation must not be reversed. IfDST:cksum is calculated AFTERD is
veri�ed, there is a vulnerable window in between. If the datais corrupted in this
time window, the newDST:cksum will be calculated using corrupt data. This
is a type of silent corruption which is undetectable using the new checksum be-
cause the checksum actually “matches” the corrupted data. With the correct order,
a successful veri�cation indicates thatDST:cksum is generated over the correct
data and thus can be trusted. Because the creation ofDST:cksum occurs before
the last use ofORG:cksum and oldDST:cksum, the coverage of new and old
checksums overlaps; it is as if two checksums are chained to each other.

Five Cases of Checksum Chaining Data movement is not just a simple data
copy operation. Transferring a piece of data from its initial origin to its �nal desti-
nation usually involves multiple copies through differentlayers of the system. The
alignment and size of the moved data, as well as the size and checksum algorithm
of ORG andDST in all layers are important factors. Depending on theS, and
alg andsize of bothORG andDST objects, data movement can be classi�ed into
the following �ve cases, as shown in Figure 4.14. For each case, we �rst give the
condition these properties must satisfy and then describe when and how checksum
forwarding or chaining is applied in detail.
Case 1:Aligned Data Movement (Same Checksum Algorithms)

ORG:alg == DST:alg and
S == ORG:size == DST:size

One example of Case 1 is transferring data blocks between thepage cache and
disk when both components use the same checksum. The size of adata page is



63

ORG DST

Case 1

ORG DST

Case 2

ORG DST

Case 3

ORG DST

Case 4

ORG DST

Case 5

overwritten data checksum moved data
V

G

ORG DST

Case 1'

V VG

VG VG V VG V

checksum generation 
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Figure 4.14:Cases of Checksum ChainingThis �gure shows �ve typical cases of data
movement. In Case 1, 10and 2, the moved data is aligned withORG andDST . In Case 3,
4 and 5, the moved data is not aligned withORG, DST or both, respectively. The size of
moved data could be the same asDST:size as in Case 1, 2 and 3, or different as in Case
4 and 5. The sequence of checksum chaining is shown as G and V operations in each case.
The number of these operations is used as an estimate of the overhead.

usually the same as a disk block, and data is always moved in full between them.
In this case, all data inORG is copied toDST . Since the checksum algorithms

are the same for both objects, one can apply checksum forwarding:

(1) DST:data  ORG:data
(2) DST:cksum  ORG:cksum

Before moving forward to Case 2, we introduce Case 10, a more reliable version
of Case 1 with an extra veri�cation, as shown in Figure 4.14. Because checksum
forwarding does not detect any corruption, doing such a veri�cation provides an
opportunity of early detection and in-time recovery. Otherwise, if the data is al-
ready corrupted, it will not be detected until the next time the data is accessed and
veri�cation is performed. In fact, this is a tradeoff between reliability and perfor-
mance. With the overhead of one extra veri�cation, possiblecorruptions can be
detected early and repaired in time.
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Note that Case 1 has the lowest overhead, because there is no checksum calcu-
lation involved. For Case 10, as well as the next four cases, one can estimate the
overhead by counting the number of checksum operations (generation and veri�-
cation) needed in each case. Each of these operations are shown in Figure 4.14 as
a circled G or V, respectively. To accurately measure the overhead, one needs to
consider the size of data as well as the speed of the checksum algorithm.
Case 2:Aligned Data Movement (Different Checksum Algorithms)

ORG:alg 6= DST:alg and
S == ORG:size == DST:size

In this case, since the checksum algorithms are different,DST:cksum must be
calculated usingDST:alg. Checksum chaining should be applied:

(1) g(DST:cksum; DST:alg; ORG:data)
(2) v(ORG:cksum; ORG:alg; ORG:data)
(3) DST:data  ORG:data

Case 3Unaligned Data Movement (Partial-to-Full)
ORG:buf 6= DST:buf and
ORG:size > DST:size and
S == ORG:size

A good example of Case 3 is an application reading data from the page cache
into a user buffer, with an offset not aligned to the block size (page size). In this
example,ORG is a data page andDST is a user buffer. The moved data is just a
portion of the full block stored in the page.

In this case,DST:data is overwritten by a partial amount ofORG:data. Irre-
spective of the checksum algorithms used byORG andDST , checksum chaining
must be applied. A correct order is:

(1) g(DST:cksum; DST:alg; m(DST ))
(2) v(ORG:cksum; ORG:alg; ORG:data)
(3) DST:data  m(ORG)

Note that in (1) the checksum is calculated only over the moved data inORG, while
in (2) the veri�cation is performed using all data inORG, becauseORG:cksum
covers all its data and there is no checksum for the moved data. Therefore, for the
sameS, the overhead of this case is actually higher than Case 2.

All cases introduced so far have one commonality: the original data inDST
is overwritten by the new data copied fromORG, so there is no need to verify
DST:cksum. The next two cases, however, have part ofDST:data overwritten
by new data. Therefore, an extra veri�cation is needed to make sure the portion of
data inDST that is not modi�ed is correct.
Case 4Unaligned Data Movement (Full-to-Partial)
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ORG:size < DST:size and
S = ORG:size

Case 4 happens when an application writes data to the �le system with an offset
not aligned to the block size; the user buffer (ORG) is thus not aligned to the data
page (DST ), because only part of the data page is overwritten.

In this case,ORG:data overwrites a part ofDST:data. The net effect is
that the newDST:data containsORG:data and the remaining portion of old
DST:data is not overwritten. The newDST:data is represented byORG:data +
r (DST ). Therefore, the newDST:cksum must be calculated overORG:data +
r (DST ) before the data movement, as ifORG:data were already copied toDST .
To make sure bothORG:data andr (DST ) are good whileDST:cksum is be-
ing calculated, they have to be veri�ed. Therefore, the correct order of checksum
chaining is:

(1) g(tmpcksum; DST:alg; ORG:data + r (DST ))
(2) v(ORG:cksum; ORG:alg; ORG:data)
(3) v(DST:cksum; DST:alg; DST:data)
(4) DST:cksum  tmpcksum
(5) o(DST:data)  ORG:data

Unlike the previous cases, Case 4 requires two veri�cations, one overORG:data
and the other overDST:data.
Case 5Unaligned Data Movement (Partial-to-Partial)

S 6= ORG:size andS 6= DST:size

This is the general case of unaligned data movement: part ofORG:data is copied
to DST and overwrites part ofDST:data. The method of implementing checksum
chaining is similar to Case 4, with a slight change to step (1)and step (5):

(1) g(tmpcksum; DST:alg; m(ORG) + r (DST ))
(2) v(ORG:cksum; ORG:alg; ORG:data)
(3) v(DST:cksum; DST:alg; DST:data)
(4) DST:cksum  tmpcksum
(5) o(DST:data)  m(ORG:data)

Although this case does not occur in Z2FS, we include Case 5 for the sake of
completeness.

4.3.2 Integration with Existing Applications

First, Z2FS supports generic requests with arbitrary offset and sizethrough checksum-
aware interfaces. These interfaces differ from the traditional read/write interfaces



66
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Data Page User Bu•er

Figure 4.15:Example of Aligned and Unaligned ReadsThis �gure illustrates how
Z2FS handles aligned and unaligned reads. Small squares represent page checksums and
small triangles represent user checksums. The dark area represents the requested data.

in that both data and it associated checksums are transferred between the user
space and the kernel space. For example, Figure 4.15 illustrates how Z2FS handles
aligned and generic read requests respectively. In the aligned case, Z2FS simply re-
turns all three checksums to the application. But when dealing with the unaligned
reads, Z2FS calculates a new checksum that covers the requested data and sends
it to the application. The order of checksum generation and veri�cation conforms
with checksum chaining (see Case 3 and Case 4 above): generate the user check-
sum �rst and then verify all three page checksums. Note that the applications must
be modi�ed to use the new interfaces. We believe such changesare necessary, be-
cause the exposed checksums can be further utilized by applications to protect data
at the user level.

Second, Z2FS also provides a compatibility library that preserves thetraditional
interfaces. The library performs checksum generation and veri�cation on behalf of
the application. The tradeoff is that applications do not have access to the check-
sums, thus losing some data protection at the user level.

4.3.3 Error Handling

Both E2ZFS and Z2FS use checksums to verify data integrity. Whenever a mis-
match happens, it is reasonable to think the data is corrupted, not the checksum,
because the checksum is usually much smaller than the data itprotects and has a
lower chance of becoming corrupted. In the unusual case where the checksum is
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corrupted, good data would be considered corrupted. This false positive about data
corruption does not hurt data integrity; in fact, any checksum mismatch indicates
that the data cannot be trusted, either because the data itself is corrupted, or be-
cause the checksum cannot prove the data is correct. Therefore, both systems must
handle veri�cation failures properly.

In E2ZFS, there is only one veri�cation, which occurs when the reader reads
a data block. If the veri�cation fails, the reader will re-read the same block from
the �le system. If the corruption happens in the page cache (reader's memory),
E2ZFS can get the correct data from disk and return it to the reader. However, if
the corruption occurs before the block is written to disk on the write path, it is too
late to recover from the corruption. This is the timeliness problem of the straight-
forward end-to-end approach.

As we mentioned in Section 4.2.3, to solve the problem, Z2FS has extra check-
sum veri�cations at the boundary of memory and disk. On the write path, the
veri�cation is part of the checksum chaining. If it fails, Z2FS aborts the write im-
mediately and inform the application, thus preventing corrupt data going to disk.
The application then can re-write the block. On the read path, Z2FS veri�es the
primary checksum (Fletcher) after getting a data block fromdisk and will re-read
it if the veri�cation fails.

Note that informing the application about the failed write is quite challenging.
It is easy for synchronous writes; because the veri�cation occurs before the write
system call returns, the application can just check the return value of the system
call. However, for asynchronous writes, the veri�cation isperformed by the back-
ground �ushing thread. To properly return the error information to the application,
our solution in Z2FS is to use a modi�ed fsync system call. Z2FS creates an error
table for each opened �le to record which data page fails the veri�cation. When-
everfsyncis called, it checks the error table of the corresponding �leand returns
all block numbers found in the table. Because at that time allveri�cations of dirty
pages belonging to the �le have already �nished,fsynccan give the most up-to-
date error information. Therefore, by callingfsyncperiodically, the application can
know the latest status of the blocks it wrote and perform necessary recovery in time.

4.4 Evaluation

We now evaluate and compare E2ZFS and Z2FS along two axes: reliability and
performance. Speci�cally, we want to answer the following questions:

� How do they handle various data corruption?
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ZFS E2ZFS Z2FS
Timing act res act res act res
t0 � t1 � � d3r e d1r

p

t1 � t2 d2r e d3r e d2r e
t2 � t3 � � d3r

p
d3r

p

Table 4.5:Fault Injection Results The columns (from left to right) show the time period
when the fault was injected (Timing), how the system and the reader reacts (act) and the
result of the read request from the reader (res). Under the act column, “di r ” means the
corruption is detected att i and a retry is performed. Under the res column, “� ” means
silent data corruption, “e” means the corruption is detected but can not be recovered
(assuming there is only one copy of the data on disk), and “

p
” means the reader gets good

data.

� What is the the overall performance of both systems?

� What is the impact of checksum switching on performance?

� What is the performance of both systems on real-world workloads?

We perform all experiments on a machine with a single-core 2.2GHz AMD Opteron
processor, 2GB memory, and a 1TB Hitachi Deskstar hard drive. We use Solaris
Express Community Edition (build 108), ZFS pool version 14 and ZFS �le system
version 3.

4.4.1 Reliability

The analyses in Section 4.2 showed theoretically how Z2FS can achieve Zettabyte
Reliability with different reliability levels of disk and memory. In practice, how-
ever, it is dif�cult to experimentally measure the reliability of a system, especially
since we have no knowledge of the actual failure rate of the disk and memory in
use. Therefore, we focus on demonstrating the advantage of �exible end-to-end
data integrity in detecting and recovering from corruption, through a series of fault
injection experiments.

We inject a single bit �ip to a data block during each time period in Figure 4.3,
and record how each system reacts and whether the reader can get correct data. We
perform the same set of experiments on all three systems, ZFS, E2ZFS, and Z2FS.

Table 4.5 summarizes the fault injection results. For the fault injected before
the block goes to disk (t0 � t1), only Z2FS is able to detect it beforet1 and ask the
writer to retry, thus preventing corrupt data getting to disk. The reader in E2ZFS
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Figure 4.16:Corruption in the Read Path (Cold) This graph shows the time break-
down of a read system call in Z2FS when a block is correct or found corrupted in the page
cache. The y-axis is in micro seconds. Since the cache is cold, the block is �rst read from
disk.

can also detect the fault att3, but it is too late to recover the data. When data on
disk is corrupted (t1 � t2), neither E2ZFS nor Z2FS is able to recover. For the fault
injected after the block leaves disk on the read path (t2 � t3), the reader in both
Z2FS and E2ZFS can detect it and re-read the block from disk. Since ZFS only has
protection for on-disk blocks, it can only catch corruptionthat occurs on disk.

To show that Z2FS behaves as expected during the fault injection experiments,
we measure the time cost of read and write system calls, as well as the I/O time of
each disk read and write. Figure 4.16, 4.17, and 4.18 presentthe time breakdown
of a read or a write system call in three cases: cold read, warmread and write with
fsync.
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Figure 4.17:Corruption in the Read Path (Warm) This graph shows the time break-
down of a read system call in Z2FS when a block is correct or found corrupted in the page
cache. The y-axis is in micro seconds. Since the cache is warm, the block can be returned
directly from the page cache.

Read (cold): In this case, the reader reads a 4KB block from Z2FS and the block
is not present in the page cache. We clear the disk cache at thebeginning of our
experiment so that the �rst read always gets the block from disk. When no fault is
injected, there is only one I/O, which takes about 5000 microseconds, as shown in
Figure 4.16. When a fault is injected while the block is in thepage cache, Z2FS is
able to detect the corruption and re-read the block from disk. Since the second read
I/O hits disk cache, the actual I/O time is small, only about 60 micro seconds.
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Read (warm): As shown in Figure 4.17, the result is similar to the previouscase,
except that there is no huge �rst-time I/O cost, because the requested block is al-
ready cached.

Write with fsync: In this case, the writer writes a 4KB block to Z2FS and calls
fsync immediately. When there is no corruption, the write system call returns in-
stantly (the short white bar above the x-axis in Figure 4.18), because the write is
asynchronous. The following fsync �ushes the data block to disk and logs the write
operation in a log block (totally two I/Os). Because both I/Os go to the disk cache,
the I/O time is only about 120 micro seconds. Then, the �le system issues a cache
�ush to the disk so that all blocks cached by the disk cache areforced to disk. The
wait time for �ush to �nish is long, which dominates the response time of fsync.
When the block is corrupted in the page cache, Z2FS is able to detect the corrup-
tion before writing it out to disk. The writer gets an error code from fsync and calls
write and fsync again to re-do the write, which are shown as the second set of bars
on top of the previous failed fsync. Note that there is only one write I/O (log block)
during the failed fsync, because the data block write is aborted.

4.4.2 Overall Performance

We use a series of micro and macro benchmarks to evaluate the performance of
E2ZFS and Z2FS. All benchmarks are compiled with the compatibility library.

Micro Benchmark Figure 4.19 shows the results of our micro benchmark ex-
periments. Sequential write/read is writing/reading a 1GB�le in 4KB requests.
Random write/read is writing/reading 100MB of a 1GB �le in 4KB requests. To
avoid the effect of checksum switching, Z2FS is in static mode. From Figure 4.19,
one can see that under random write and random read (cold), the performance of
Z2FS and E2ZFS is close to ZFS. Because both workloads are dominated by disk
seeks, the overhead of checksum calculation is small. In thecases where the cache
is warm, since no physical I/Os are involved, the calculation of checksums dom-
inates the processing time. E2ZFS (Fletcher) is about 15-17% slower than ZFS,
while both E2ZFS (xor) and Z2FS only have a 3% throughput drop. In sequential
write and sequential read (cold), the performance of Z2FS is comparable to E2ZFS
(Fletcher).

Macro Benchmark We use �lebench [107] as our macro benchmark. We choose
webserver, �leserver and varmail to evaluate the overall application performance on
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Figure 4.18:Corruption in the Write Path This graph shows the time breakdown of
a write system call followed by a fsync in Z2FS when a block is correct or found corrupted
in the page cache. The y-axis is in micro seconds.

E2ZFS and Z2FS. Figure 4.20 depicts the throughput of these workloads.
Webserver is a multi-threaded read-intensive workload. Itconsists of 100 threads,

each of which performs a series of open-read-close operations on multiple �les and
then appends to a log �le. After reaching a steady state, all reads are satis�ed by
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Figure 4.19:Micro Benchmark This graph shows the results of several micro bench-
marks on ZFS, E2ZFS, and Z2FS (static). The bars are normalized to the throughput of
ZFS. The absolute values in MB/s are shown on top.

data in the page cache. Therefore, the throughput is mainly determined by the
overhead of checksum calculation. As shown in Figure 4.20, E2ZFS (xor) and
Z2FS (static) has the closest performance to ZFS, because theyalways calculate
the xor checksum. E2ZFS (Fletcher) is about 15% percent slower than ZFS, which
matches our previous micro benchmark result. In Z2FS (dynamic), the memory
checksum is changed from xor to Fletcher when a block stays inmemory for more
than 92 seconds, so the overall throughput is in between Z2FS (static) and E2ZFS
(Fletcher).

Fileserver is con�gured with 50 threads performing creates, deletes, appends,
whole-�le writes and whole-�le reads. It's write-intensive with a 1:2 read/write
ratio. In this case, the throughput of Z2FS is comparable to E2ZFS (Fletcher) and
E2ZFS (xor).

Varmail emulates a multi-threaded mail server. Each threadperforms a set of
create-append-sync, read-append-sync, read, and delete operations. It has about
half reads and half writes and is dominated by random I/Os. Therefore, the overall
throughput of Z2FS and E2ZFS is no different than ZFS.
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Figure 4.20:Macro Benchmark This �gure shows the throughput of our macro bench-
marks on ZFS, E2ZFS, Z2FS (static), and Z2FS (dynamic). Each workload runs for 720
seconds. Z2FS (dynamic) hastswitch = 92 seconds.

4.4.3 Impact of Checksum Switching

One key parameter in Z2FS istswitch , which is the maximum residency time of a
data block in reader's memory before checksum switching occurs. The value of
tswitch indicates a tradeoff between reliability and performance.Given a reliability
goal, longertswitch means worse reliability score (still above the goal), but better
performance because the weaker memory checksum can be used for a longer time.

To understand the impact of checksum switching, we run the webserver work-
load on Z2FS (dynamic) and varytswitch . Figure 4.21 illustrates the relationship
between the throughput of the workload andtswitch . As tswitch increases, the per-
formance of Z2FS (dynamic) gets closer to Z2FS (static), because more and more
warm reads are verifying the xor checksum. Whentswitch is the same as or longer
than the runtime, Z2FS (dynamic) matches the performance of Z2FS (static). Even
whentswitch is short (e.g., 30 seconds), Z2FS (dynamic) still outperfoms E2ZFS
(Fletcher).
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Figure 4.21:Webserver Throughput with Different tswitch This �gure illustrates
the throughput changes of webserver astswitch increases. The dashed line and dotted line
represent the throughput of webserver on Z2FS (static) and E2ZFS (Fletcher) respectively.
The runtime of the webserver workload is 720 seconds.

Trace Read Cache Before After
Num Count Hit Rate tswitch tswitch

1 14343 98.0% 34.5% 65.5%
2 35209 96.9% 58.9% 41.1%
3 61437 98.8% 83.7% 16.3%

Table 4.6:Trace Characteristics Read count is the total number of 4KB-read in each
trace. Hit rate is the cache hit rate for data reads. Before/After tswitch is the percentage of
warm reads that access a data block with a residency time less/greater thantswitch = 92
seconds.

4.4.4 Trace Replay

So far we have shown the performance bene�t of Z2FS using arti�cially generated
workloads. Now, we evaluate Z2FS by replaying real-world traces. We use the
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Total Read Time (s)
Trace E2ZFS Z2FS Z2FS
Num (Fletcher) (static) (dynamic)

1 1.00 0.91 (9.0%) 0.95 (5.0%)
2 4.34 3.73 (14.1%) 3.82 (12.0%)
3 6.58 5.46 (17.0%) 5.47 (16.9%)

Table 4.7:Trace Replay Result The table shows the total time spent on read system
calls for each trace on each system. The percentage in the parentheses is the speedup of
Z2FS with respect to E2ZFS (Fletcher).

LASR system-call traces [6] collected between 2000 and 2001, which cover thir-
teen machines used for software development and research projects. The traces are
not I/O intensive, but they contain realistic access patterns that are hard to emulate
with controlled benchmarks. We build a single-threaded trace replayer to sequen-
tially replay the system calls at the same speed as they were recorded. All unaligned
read and write requests are converted into aligned ones suchthat we can replay the
trace on E2ZFS, which only supports aligned requests.

We choose three one-hour long traces from the collection andreplay them on
E2ZFS (Fletcher), Z2FS (static), and Z2FS (dynamic,tswitch = 92). The charac-
teristics of the traces are listed in Table 4.6 and the results are shown in Table 4.7.
As one can see from the tables, overall, Z2FS has better performance than E2ZFS
(Fletcher). In trace 3, most of the warm reads (83.7%) are accessing data blocks
with a residency time less than 92 seconds, and thus there aremore calculations
of xor checksum than Fletcher on Z2FS (dynamic), which makes its performance
closer to Z2FS (static). In contrast, 65.5% of the warms reads in trace 1 are of
blocks that have stayed in memory for more than 92 seconds, sothe performance
of Z2FS (dynamic) is closer to E2ZFS (Fletcher). Therefore, workloads dominated
by warm reads can bene�t most from Z2FS (dynamic) if most read accesses to a
block occur during the �rsttswitch seconds of that block in memory.

4.5 Summary

The straight-forward approach of end-to-end data integrity provides great protec-
tion against corruption, but the requirement of using one strong high-level check-
sum for all components along the I/O path leads to lower application performance
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and untimely detection and recovery.
To address these issues, we present a new concept: �exible end-to-end data

integrity. A system with �exible end-to-end data integrityuses different check-
sum algorithms for different component, and thus can dynamically make tradeoffs
between performance and reliability. Such a system also utilizes extra checksum
veri�cation below the application to provide in-time detection and recovery. In this
way, all components in the I/O path provide strong data protection in a coopera-
tive manner; every component is aware of the checksums and performs necessary
checksum operations, such as generation, veri�cation, switching or passing, to pre-
vent silent data corruption.

To apply the concept to a system, we �rst develop an analytical framework to
provide rational behind �exible end-to-end data integrity. Then, we build E2ZFS
and Z2FS, to study both end-to-end concepts and demonstrate how toapply �exible
end-to-end data integrity to ZFS. Through reliability analysis and various experi-
ments, we show that Z2FS is able to provide Zettabyte reliability with comparable
or better performance than E2ZFS. Our analysis framework provides a holistic way
to reason about the tradeoff between performance and reliability in storage systems.
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Chapter 5

Data Protection Analysis of Cloud
Storage Services

Cloud-based �le synchronization services, such as Dropbox[44], SkyDrive [122],
and Google Drive [53], provide a convenient means both to synchronize data across
a user's devices and to back up data in the cloud. While automatic synchronization
of �les is a key feature of these services, the reliable cloudstorage they offer is
fundamental to their success. Generally, the cloud backendwill checksum and
replicate its data to provide integrity [18] and will retainold versions of �les to
offer recovery from mistakes or inadvertent deletion [44].The robustness of these
data protection features, along with the inherent replication that synchronization
provides, can give the user with a strong sense of data safety.

Unfortunately, this is merely a sense, not a reality; the loose coupling of these
services and the local �le system endangers data even as these services strive to
protect it. While the data stored remotely is generally robust, local client software
is unable to distinguish between deliberate modi�cations and unintentional errors,
potentially causing corrupt or inconsistent data to automatically propagate to all
machines associated with a user. Thus, despite the presenceof multiple redundant
copies, synchronization destroys the user's data.

In this chapter, we demonstrate these problems through fault injection experi-
ments. We �rst present some background on �le synchronization services in Sec-
tion 5.1. Then, in Section 5.2 we explore several case studies wherein synchroniza-
tion services propagate corruption and spread inconsistency. Finally, we analyze
how the limitations of �le synchronization services and �lesystems directly cause
these problems in Section 5.3.
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5.1 Background

In order to understand the causes of the incorrect behavior of �le synchronization
services, it is necessary to �rst understand how they operate. File synchroniza-
tion services are aptly named; they do their best to ensure that their users' �les are
synchronized across all of their devices, as well as the cloud. While their design
space has some variety in it, ranging from Apple's iCloud synchronizing speci�c
application data [20] to Wuala's use of a user-space �le system [123], the basic
functionality of these services is relatively homogeneous. We �nd that there are
two popular ways of implementing such a service, based on theunderlying syn-
chronization protocol. Services such as Dropbox and ownCloud rely on a spe-
ci�c �le synchronization protocol, rsync [93] and csync [41] respectively. On the
other hand, many open-source synchronization services, including Sea�le [99] and
sparkleshare [103], are built on top of distributed versioncontrol systems such as
GIT [52]. Thus, we provide a brief case study of Dropbox and Sea�le to cover both
types of services; while the details are application-speci�c, the overall architecture
applies to a variety of services.

5.1.1 Dropbox

Dropbox consists of two main components: a client-side daemon and a cloud back-
end. The daemon monitors changes in the local �le system and uploads them to the
cloud. The cloud software, in turn, stores these �les and then propagates them to
the user's other devices. As the cloud component runs remotely, we can only in-
fer its characteristics through interacting with it via thenetwork and through what
Dropbox has published about it. As Drago et al. [43] have already examined many
of these details elsewhere, we focus primarily on the clientin our discussion. While
the client is closed source, since it runs locally, we can directly observe its behavior.
In the following discussion, we concentrate on two aspects of this behavior: how it
manages its internal metadata and its procedures for synchronizing �les.

Data Management

The Dropbox client operates as a userspace daemon, requiring no direct operating
system support or kernel modules, and observes a single folder, ensuring that its
contents are synchronized with the cloud. To track local states, it uses several
SQLite databases, most of which are encrypted. These databases store metadata
related to the user's �les, such as the most recent time each �le was modi�ed,
as well as hashes of each �le used to identify their contents.Dropbox uses this
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information to coordinate its synchronization with the cloud.

Dropbox's view of the user's �le namespace is much more simple than that of
the �le system. It identi�es �les by their full pathnames anddoes not represent
directories in its database. If the user performs a rename ofa �le, it deletes the �le
from the cloud and re-uploads the renamed version; similarly, if the user deletes
a directory, the client deletes all children of that directory and re-uploads them,
identi�ed by their new full pathname.

Dropbox provides a revision history for each �le that it tracks, allowing a user
to revert a �le to any of its previously uploaded states, within certain time limits
depending on the level of the user's subscription. While useful, Dropbox's con-
strained view of the �le system limits the extent of this history. In particular,
renamed �les cannot explicitly be reverted to prior versions before they were re-
named. Instead, the user must restore the �le of the originalname and delete the
renamed �le.

File Synchronization

Upon booting, the Dropbox client registers with the cloud and checks whether any
�les have changed or been added remotely. If so, it downloadsthem into a staging
area and renames them into the local directory once complete, so that the user never
sees an incomplete update. At the same time, it also scans thelocal directory to de-
tect whether any modi�cations have occurred while it was of�ine, comparing stats
such as timestamps and size of each �le with the version stored in its databases. If
these differ, it infers that the �le was changed and runs rsync to upload the changes
to the cloud; to save bandwidth, it divides �les into chunks and only sends those
chunks not already owned by the user. In the event that it detects a con�ict between
two versions of a �le, it performs no resolution; instead, itkeeps both versions of
the �le and renames one to indicate that it is in con�ict.

Once running, the Dropbox client continues to actively synchronize its folder.
When remote changes occur, the server sends it a noti�cation, causing the client to
immediately download the new data in the same manner as the initial upload. To
detect local changes, the client employs a noti�cation service, such as Linux's ino-
tify, that informs it of events in the local �le system. This information is generally
vague—inotify, for instance, reports little more than the �le name and the type of
event, such as a create, write, or unlink, that occurred–butsuf�ces to allow Drop-
box to maintain synchrony. Again, the client uses rsync to upload only the changes
in each �le and performs deduplication.
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5.1.2 Sea�le

Similar to Dropbox, Sea�le also has a client-side daemon anda server backend. Un-
like Dropbox, which interacts with �les in the �le system directly, Sea�le maintains
a GIT-like repository (repo) to manage a synchronized folder. A local synchronized
folder is called a working tree. Sea�le tracks and stores updates of the folder in lo-
cal and remote repositories. The remote repo on the server holds the master branch,
acting as a backend to store all data and version histories. The local repo contains
the local branch, representing the current state of the folder. The synchronization
is then performed between the master branch and the local branch.

Data Management

Unlike Dropbox, which only records �le metadata in a local database, Sea�le uses
repos to track both data and metadata. A repo is essentially an object store. Files
and directories in the folder are all stored as objects in thestore, identi�ed by
SHA-1 hashes. A �le's data is divided into chunks with variable length. A �le
is represented by a Sea�le Object which stores a list of hashes of data chunks. A
directory is represented by a SeafDir Object containing a list of directory entries,
each of which points to a Sea�le Object or a SeafDir Object. The hash of the root
directory in the folder is called a commit ID, which uniquelyrepresents a state of
the entire folder. Therefore, the history of changes to a folder is recorded as a series
of commit IDs. Similarly, the revision history of each �le istracked by a series of
hash values of its Sea�le objects.

The remote repo maintains the complete version history for synchronized �les,
including all the previously used but unreferenced data chunks. The client reposi-
tory, on the other hand, only keeps a short history of changes. Unused data chunks
are garbage collected at the beginning of each run of the local Sea�le client dae-
mon. At any time, the master branch points to a remote commit ID on the server
and the local branch points to the latest local commit ID on the client.

File Synchronization

A Sea�le client daemon runs on the client and monitors both the local folder and
server for updates. When there are local changes, the clientcommits the changes
to the local branch and then synchronizes the local branch tothe server. When
there are remote changes, the client �rst downloads the master branch from the
server, then commits local changes, and �nally merges the master branch into the
local branch. The client performs con�ict handling during the merge, in which
a con�icting copy from the master branch is renamed and then committed to the



83

local branch. After the merge, the client uploads the local branch to the server,
including all the regular local changes and changes due to con�icts. Finally, the
master branch is updated to point to the state just uploaded.

Sea�le client detects of�ine changes in a way similar to Dropbox. After every
commit, it records in a local index �le various stats of every�le in the folder,
including modi�cation time and �le size. When the client starts, it performs a local
scan to �nd out if there are of�ine changes. This process involves checking every
�le in the folder and comparing timestamps against the ones in the index �le.

When the client is running, it monitors both the local folderand the server for
updates. For local changes, Sea�le client relies on inotify, but it only uses inotify
as an indicator. It still depends on a scan to �nd out what �lesand directories
were modi�ed. In comparison, Dropbox makes fully use of inotify to detect local
changes. The client detects remote updates by polling the server every 30 seconds.
The client checks if the commit ID of the local branch differsfrom the commit ID
of the master branch. If they differ, it means that there are remote changes. Since
there is no remote scan, the polling process is fast and ef�cient.

5.2 Data Protection Failures

We now present three case studies to show different failurescaused by the semantic
gap between local �le systems and synchronization services. The �rst two of these
failures, the propagation of corruption and inconsistency, result from the client's
inability to distinguish between legitimate changes and failures of the �le system.
While these problems can be warded off by using more advanced�le systems, the
third, causal inconsistency, is a fundamental result of current �le-system semantics.

5.2.1 Data Corruption

Data corruption is not uncommon and can result from a varietyof causes, ranging
from disk faults to operating system bugs [23, 38, 47, 89]. Corruption can be disas-
trous, and one might hope that the automatic backups that synchronization services
provide would offer some protection from it. These backups,however, make them
likely to propagate this corruption; as clients cannot detect corruption, they simply
spread it to all of a user's copies, potentially leading to irrevocable data loss.

To investigate what might cause disk corruption to propagate to the cloud, we
�rst inject a disk corruption to a block in a �le synchronizedwith the cloud (by
�ipping bits through the device �le of the underlying disk).We then manipulate the
�le in several different ways, and observe which modi�cations cause the corruption
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Data Metadata
FS Service write mtime ctime atime

ext4
(Linux)

Dropbox LG LG LG L
ownCloud LG LG L L
Sea�le LG LG LG LG

ZFS
(Linux)

Dropbox L L L L
ownCloud L L L L
Sea�le L L L L

HFS+
(Mac
OS X)

Dropbox LG LG L L
ownCloud LG LG L L
GoogleDrive LG LG L L
SugarSync LG L L L
Syncplicity LG LG L L

Table 5.1:Data Corruption Results “ L ”: corruption remains local. “G”: corruption
is propagated (global).

to be uploaded. We repeat this experiment for Dropbox, ownCloud, and Sea�le
atop ext4 (both ordered and data journaling modes) and ZFS [15] in Linux (kernel
3.6.11) and Dropbox, ownCloud, Google Drive, SugarSync, and Syncplicity atop
HFS+ in Mac OS X (10.5 Lion).

We execute both data operations and metadata-only operations on the corrupt
�le. Data operations consist of both appends and in-place updates at varying dis-
tances from the corrupt block, updating both the modi�cation and access times;
these operations never overwrite the corruption. Metadataoperations change only
the timestamps of the �le. We usetouch -ato set the access time,touch -mto set
the modi�cation time, andchownandchmodto set the attribute-change time.

Table 5.1 displays our results for each combination of �le systems and services.
Since ZFS is able to detect local corruption, none of the synchronization clients
propagate corruption. However, on ext4 and HFS+, all clients propagate corruption
to the cloud whenever they detect a change to �le data and mostdo so when the
modi�cation time is changed, even if the �le is otherwise unmodi�ed. In both cases,
clients interpret the corrupted block as a legitimate change and upload it. Sea�le
uploads the corruption whenever any of the timestamps changes. SugarSync is
the only service that does not propagate corruption when themodi�cation time
changes, doing so only once it explicitly observes a write tothe �le or it restarts.
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Upload Download OOS
FS Service local ver. cloud ver.

ext4
(ordered)

Dropbox
p

�
p

ownCloud
p p p

Sea�le N/A N/A N/A

ext4
(data)

Dropbox
p

� �
ownCloud

p p
�

Sea�le
p

� �

ZFS
Dropbox

p
� �

ownCloud
p p

�
Sea�le

p
� �

Table 5.2:Crash Consistency ResultsThere are three outcomes: uploading the local
(possibly inconsistent) version to cloud, downloading thecloud version, and OOS (out-of-
sync), in which the local version and the cloud version differ but are not synchronized. “� ”
means the outcome does not occur and “

p
” means the outcome occurs. Because in some

cases the Sea�le client fails to run after the crash, its results are labeled “N/A”.

5.2.2 Crash Inconsistency

The inability of synchronization services to identify legitimate changes also leads
them to propagate inconsistent data after the crash recovery. To demonstrate this
behavior, we initialize a synchronized �le on disk and in thecloud at versionv0. We
then write a new version,v1, and inject a crash which may result in an inconsistent
versionv10on disk, with mixed data fromv0 and v1, but the metadata remains
v0. We observe the client's behavior as the system recovers. Weperform this
experiment with Dropbox, ownCloud, and Sea�le on ZFS and ext4.

Table 5.2 shows our results. Running the synchronization service on top of
ext4 with ordered journaling produces erratic and inconsistent behavior for both
Dropbox and ownCloud. Dropbox may either upload the local, inconsistent version
of the �le or simply fail to synchronize it, depending on whether it had noticed and
recorded the update in its internal structures before the crash. In addition to these
outcomes, ownCloud may also download the version of the �le stored in the cloud if
it successfully synchronized the �le prior to the crash. Sea�le arguably exhibits the
best behavior. After recovering from the crash, the client refuses to run, as it detects
that its internal metadata is corrupted. Manually clearingthe client's metadata and
resynchronizing the folder allows the client to run again; at this point, it detects a
con�ict between the local �le and the cloud version.
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All three services behave correctly on ZFS and ext4 with datajournaling. Since
the local �le system provides strong crash consistency, after crash recovery, the
local version of the �le is always consistent (eitherv0 or v1). Regardless of the
version of the local �le, both Dropbox and Sea�le always upload the local version
to the cloud when it differs from the cloud version. OwnCloud, however, will
download the cloud version if the local version isv0 and the cloud version isv1.
This behavior is correct for crash consistency, but it may violate causal consistency,
as we will discuss.

5.2.3 Causal Inconsistency

The previous problems occur primarily because the �le system fails to ensure a key
property—either data integrity or consistency—and does not expose this failure to
the �le synchronization client. In contrast, causal inconsistency derives not from a
speci�c failing on the �le system's part, but from a direct consequence of traditional
�le system semantics. Because the client is unable to obtaina uni�ed view of the
�le system at a single point in time, the client has to upload �les as they change
in piecemeal fashion, and the order in which it uploads �les may not correspond
to the order in which they were changed. Thus, �le synchronization services can
only guarantee eventual consistency: given time, the imagestored in the cloud
will match the disk image. However, if the client is interrupted—for instance, by a
crash, or even a deliberate powerdown—the image stored remotely may not capture
the causal ordering between writes in the �le system enforced by primitives like
POSIX'ssync andfsync , resulting in a state that could not occur during normal
operations.

To investigate this problem, we run a simple experiment in which a series of
�les are written to a synchronization folder in a speci�ed order (enforced by fsync).
During multiple runs, we vary the size of each �le, as well as the time between �le
writes, and check if these �les are uploaded to the cloud in the correct order. We
perform this experiment with Dropbox, ownCloud, and Sea�leon ext4 and ZFS,
and �nd that for all setups, there are always cases in which the cloud state does not
preserve the causal ordering of �le writes.

While causal inconsistency is unlikely to directly cause data loss, it may lead to
unexpected application behavior or failure. For instance,suppose the user employs
a �le synchronization service to store the library of a photo-editing suite that stores
photos as both full images and thumbnails, using separate �les for each. When the
user edits a photo, and thus, the corresponding thumbnail aswell, it is entirely
possible that the synchronization service will upload the smaller thumbnail �le
�rst. If a fatal crash, such as a hard-drive failure, occurs before the client can



87

�nish uploading the photo, then the service will still retain the thumbnail in its
cloud storage, along with the original version of the photo,and will propagate this
thumbnail to the other devices linked to the account. The user, accessing one of
these devices and browsing through their thumbnail galleryto determine whether
their data was preserved, is likely to see the new thumbnail and assume that the �le
was safely backed up before the crash. The resultant mismatch will likely lead to
confusion when the user fully reopens the �le later.

5.3 Discussion

Our experiments demonstrate genuine problems with �le synchronization services;
in many cases, they not only fail to prevent corruption and inconsistency, but ac-
tively spread them. Responsibility for preventing corruption and inconsistency
hardly rests with synchronization services alone; much of the blame can be placed
on local �le systems, as well. In this section, we analyze thelimitations in synchro-
nization services and local �le systems and show how they lead to data protection
failures.

5.3.1 Where Synchronization Services Fail

Most synchronization services monitor its synchronization folder for changes using
a �le-system noti�cation service, such as Linux's inotify or Mac OS X's Events
API. While these services inform the synchronization clients of both namespace
changes and changes to �le content, they provide this information at a fairly coarse
granularity—per �le, for inotify, and per directory for theEvents API, for instance.
In the event that these services fail, the machine crashes, or the client itself fails or
is closed for a time, then the client detects changes in local�les by examining their
statistics, including size and modi�cation timestamps.

Given this behavior, the causes of synchronization services' inability to handle
corruption and inconsistency become apparent. As �le-system noti�cation services
provide no information on what �le contents have changed, the synchronization
client must assume that any changes that it detects result from legitimate user ac-
tion; it has no means of distinguishing unintentional changes, like corruption and
inconsistent crash recovery.

Inconsistent crash recovery is further complicated by the client's internal meta-
data tracking. For example, with Dropbox, if the system crashes during an upload
and restores the �le to an inconsistent state, the client will recognize that it needs
to resume uploading the �le, but it cannot detect that the contents are no longer
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FS Corruption Crash Causal
ext4 (ordered) � � �
ext4 (data) �

p
�

ZFS
p p

�

Table 5.3:Summary of File System CapabilitiesThis table shows the synchroniza-
tion failures each �le system is able to handle correctly. There are three types of failures:
Corruption (data corruption), Crash (crash inconsistency), and Causal (causal inconsis-
tency). “

p
” means the failure does not occur and “� ” means the failure may occur.

consistent. Conversely, if Dropbox had �nished uploading and updated its internal
timestamps, but the crash recovery reverted the �le's metadata to an older version,
Dropbox must upload the �le, since the differing timestamp could potentially indi-
cate a legitimate change.

5.3.2 Where Local File Systems Fail

File systems frequently fail to take the preventative measures necessary to avoid
data protection failures and, in addition, fail to expose adequate interfaces to allow
synchronization services to deal with them. As summarized in Table 5.3, neither
a traditional �le system, ext4, nor a modern �le system, ZFS,is able to avoid all
failures.

File systems primarily prevent corruption via checksums. When writing a data
or metadata item to disk, the �le system stores a checksum over the item as well.
Then, when it reads that item back in, it reads the checksum and uses that to validate
the item's contents. While this technique correctly detects corruption, �le system
support for it is limited. ZFS and btrfs are some of the few widely available �le
systems that employ checksums over the whole �le system; ext4 uses checksums,
but only over metadata [40]. Even with checksums, however, the �le system can
only detect corruption, requiring other mechanisms to repair it.

Recovering from crashes without exposing inconsistency tothe user is a prob-
lem that has dogged �le systems since their earliest days, and has been addressed
with a variety of solutions, such as journaling and copy-on-write. However, as dis-
cussed in Chapter 2, the most popular �le systems, includingext3, ext4, HFS+,
and NTFS, usually only perform metadata journaling, sacri�cing data consistency
for performance. As a result, the inconsistencies upon a crash cause the erratic
behavior observed in Section 5.2.2.

Finally, avoiding causal inconsistency requires access tostable views of the �le



89

system at speci�c points in time. File-system snapshots, such as those provided by
ZFS or Linux's LVM [7], are currently the only means of obtaining such views.
However, snapshot support is relatively uncommon, and whenimplemented, tends
not to be designed for the �ne granularity at which synchronization services capture
changes.

5.4 Summary

As our observations have shown, the sense of safety providedby synchronization
services is largely illusory. The limited interface between clients and the �le sys-
tem, as well as the failure of many �le systems to implement key features, can lead
to corruption and �awed crash recovery polluting all available copies, and causal
inconsistency may cause bizarre or unexpected behavior. Thus, naively assuming
that these services will provide complete data protection can lead instead to data
loss, especially on some of the most commonly-used �le systems.

Even for �le systems capable of detecting errors and preventing their propaga-
tion, such as ZFS and btrfs, the separation of synchronization services and the �le
system incurs an opportunity cost. Despite the presence of correct copies of data
in the cloud, the �le system has no means to employ them to facilitate recovery.
Tighter integration between the service and the �le system can remedy this, al-
lowing the �le system to automatically repair damaged �les.However, this makes
avoiding causal inconsistency even more important, as naive techniques, such as
simply restoring the most recent version of each damaged �le, are likely to directly
cause it.
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Chapter 6

ViewBox: Cooperative Data
Protection across Local and
Cloud Storage

Both cloud-based �le synchronization services and �le systems go to extensive ef-
forts to preserve user data. However, our analysis in Chapter 5 reveals that both
systems fail to protect user data in several scenarios. Because the client has no
means of determining whether �le changes are intentional orthe result of corrup-
tion, it may send both to the cloud, ultimately spreading corrupt data to all of a
user's devices. Crashes compound this problem; the client may upload inconsistent
data to the cloud, download potentially inconsistent �les from the cloud, or fail to
synchronize changed �les. Finally, even in the absence of failure, the client cannot
normally preserve causal dependencies between �les, sinceit lacks stable point-
in-time images of �les as it uploads them. This can lead to an inconsistent cloud
image, which may in turn lead to unexpected application behavior.

In this chapter, we present ViewBox, a system in which local �le system and
cloud-based synchronization services are integrated and work cooperatively to solve
the problems above. Instead of synchronizing individual �les, ViewBox synchro-
nizes views, in-memory snapshots of the local synchronizedfolder that provide data
integrity, crash consistency, and causal consistency. Thelocal �le system exposes
views to the synchronization client such that the client only uploads updates from
the views. Since the client only updates views in their entirety, ViewBox guar-
antees the correctness and consistency of the cloud image, which it then uses to
correctly recover from local failures. Furthermore, by making the server aware of
views, ViewBox can synchronize views across clients and properly handle con�icts
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without losing data.

The rest of the chapter is organized as follows. We �rst present the high-level
design of ViewBox in Section 6.1. We then describe the implementation of View-
Box in detail in 6.2. Finally, we evaluate our prototype ViewBox system in Section
6.3.

6.1 Design

To remedy the problems outlined in the previous section, we propose ViewBox,
an integrated solution in which the local �le system and the synchronization ser-
vice cooperate to detect and recover from these issues. Instead of a clean-slate
design, we structure ViewBox around ext4 (ordered journaling mode), Dropbox,
and Sea�le, in the hope of solving these problems with as few changes to existing
systems as possible.

Ext4 provides a stable, open-source, and widely-used solution on which to base
our framework. While both btrfs and ZFS already provide someof the functionality
we desire, they lack the broad deployment of ext4. Additionally, as it is a journaling
�le system, ext4 also bears some resemblance to NTFS and HFS+, the Windows
and Mac OS X �le systems; thus, many of our solutions may be applicable in these
domains as well.

Similarly, we employ Dropbox because of its reputation as one of the most
popular, as well as one of the most robust and reliable, synchronization services.
Unlike ext4, it is entirely closed source, making it impossible to modify directly.
Despite this limitation, we are still able to make signi�cant improvements to the
consistency and integrity guarantees that both Dropbox andext4 provide. How-
ever, certain functionalities are unattainable without modifying the synchronization
service. Therefore, we take advantage of an open source synchronization service,
Sea�le, to show the capabilities that a fully integrated �lesystem and synchroniza-
tion service can provide. Although we only implement ViewBox with Dropbox
and Sea�le, we believe that the techniques we introduce apply generally to other
synchronization services.

In this section, we �rst outline the fundamental goals driving ViewBox. We
then provide a high-level overview of the architecture withwhich we hope to
achieve these goals. Our architecture performs three primary functions: detection,
synchronization, and recovery; we discuss each of these in turn.
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6.1.1 Goals

In designing ViewBox, we focus on four primary goals, based on both resolving
the problems we have identi�ed and on maintaining the features that make users
appreciate �le-synchronization services in the �rst place.
Integrity: Most importantly, ViewBox must be able to detect local corruption and

prevent its propagation to the rest of the system. Users frequently depend on
the synchronization service to back up and preserve their data; thus, the �le
system should never pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox should maintain causal con-
sistency between the client's local �le system and the cloudand prevent the
synchronization service from uploading inconsistent data. Furthermore, if
the synchronization service provides the necessary functionality, ViewBox
must provide multi-client consistency: �le-system stateson multiple clients
should be synchronized properly with well-de�ned con�ict resolution.

Recoverability: While the previous properties focus on containing faults, contain-
ment is most useful if the user can subsequently repair the faults. ViewBox
should be able to use the previous versions of the �les on the cloud to re-
cover automatically. At the same time, it should maintain causal consistency
when necessary, ideally restoring the �le system to an imagethat previously
existed.

Performance: Improvements in data protection cannot come at the expense of per-
formance. ViewBox must perform competitively with currentsolutions even
when running on the low-end systems employed by many of the users of �le
synchronization services. Thus, naive solutions, like synchronous replica-
tion [65], are not acceptable.

6.1.2 Fault Detection

The ability to detect faults is essential to prevent them from propagating and, ulti-
mately, to recover from them as well. In particular, we focuson detecting corrup-
tion and data inconsistency. While ext4 provides some ability to detect corruption
through its metadata checksums, these do not protect the data itself. Thus, to cor-
rectly detect all corruption, we add checksums to ext4's data as well, storing them
separately so that we may detect misplaced writes [29, 69], as well as bit �ips. Once
it detects corruption, ViewBox then prevents the �le from being uploaded until it
can employ its recovery mechanisms.

In addition to allowing detection of corruption resulting from bit-�ips or bad
disk behavior, checksums also allow the �le system to detectthe inconsistent crash
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Figure 6.1:Synchronizing Frozen ViewsThis �gure shows how view-based synchro-
nization works, focusing on how to upload frozen views to thecloud. The x-axis represents
a series of �le system epochs. Squares represent various views in the system, with a view
number as ID. When an active view is shaded, it means that the view is not at an epoch
boundary and cannot be frozen.

recovery that could result from ext4's journal. Because checksums are updated
independently of their corresponding blocks, an inconsistently recovered data block
will not match its checksum. As inconsistent recovery is semantically identical
to data corruption for our purposes—both comprise unintended changes to the �le
system—checksums prevent the spread of inconsistent data,as well. However, they
only partially address our goal of correctly restoring data, which requires stronger
functionality.

6.1.3 View-based Synchronization

Ensuring that recovery proceeds correctly requires us to eliminate causal inconsis-
tency from the synchronization service. Doing so is not a simple task, however. It
requires the client to have an isolated view of all data that has changed since the
last synchronization; otherwise, user activity could cause the remote image to span
several �le system images but re�ect none of them.
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While �le-system snapshots provide consistent, static images [62], they are too
heavyweight for our purposes. Because the synchronizationservice stores all �le
data remotely, there is no reason to persist a snapshot on disk. Instead, we propose
a system of in-memory, ephemeral snapshots, orviews.

View Basics

Views represent the state of the �le system at speci�c pointsin time, or epochs,
associated with quiescent points in the �le system. We distinguish between three
types of views: active views, frozen views, and synchronized views. The active
view represents the current state of the local �le system as the user modi�es it.
Periodically, the �le system takes a snapshot of the active view; this becomes the
current frozen view. Once a frozen view is uploaded to the cloud, it then becomes
a synchronized view, and can be used for restoration. At any time, there is only
one active view and one frozen view in the local system, whilethere are multiple
synchronized views on the cloud.

To provide an example of how views work in practice, Figure 6.1 depicts the
state of a typical ViewBox system. In the initial state, (a),the system has one
synchronized view in the cloud, representing the �le systemstate at epoch 0, and
is in the process of uploading the current frozen view, whichcontains the state at
epoch 1. While this occurs, the user can make changes to the active view, which is
currently in the middle of epoch 2 and epoch 3.

Once ViewBox has completely uploaded the frozen view to the cloud, it be-
comes a synchronized view, as shown in (b). ViewBox refrainsfrom creating a
new frozen view until the active view arrives at an epoch boundary, such as a jour-
nal commit, as shown in (c). At this point, it discards the previous frozen view and
creates a new one from the active view, at epoch 3. Finally, asseen in (d), ViewBox
begins uploading the new frozen view, beginning the cycle anew.

Because frozen views are created at �le-system epochs and the state of frozen
views is always static, synchronizing frozen views to the cloud provides both crash
consistency and causal consistency, given that there is only one client actively syn-
chronizing with the cloud. We call thissingle-client consistency.

Multi-client Consistency

When multiple clients are synchronized with the cloud, the server must propagate
the latest synchronized view from one client to other clients, to make all clients'
state synchronized. Critically, the server must propagateviews in their entirety;
partially uploaded views are inherently inconsistent and thus should not be visible.
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However, because synchronized views necessarily lag behind the active views in
each �le system, the current active �le system may have dependencies that would be
invalidated by a remote synchronized view. Thus, remote changes must be applied
to the active view in a way that preserves local causal consistency.

To achieve this, ViewBox handles remote changes in two phases. In the �rst
phase, ViewBox applies remote changes to the frozen view. Ifa changed �le does
not exist in the frozen view, ViewBox adds it directly; otherwise, it adds the �le un-
der a new name that indicates a con�ict (e.g., “foo.txt” becomes “remote.foo.txt”).
In the second phase, ViewBox merges the newly created frozenview with the ac-
tive view. ViewBox propagates all changes from the new frozen view to the active
view, using the same con�ict handling procedure. At the sametime, it uploads the
newly merged frozen view. Once the second phase completes, the active view is
fully updated; only after this occurs can it be frozen and uploaded.

To correctly handle con�icts and ensure no data is lost, we follow the same
policy as GIT [54]. This can be summarized by the following three guidelines:

� Preserve any local or remote change; a change could be the addition, modi�-
cation, or deletion of a �le.

� When there is a con�ict between a local change and a remote change, always
keep the local copy untouched, but rename and save the remotecopy.

� Synchronize and propagate both the local copy and the renamed remote copy.

Figure 6.2 illustrates how ViewBox handles remote changes.In case (a), both
the remote and local clients are synchronized with the cloud, at view 0. The remote
client makes changes to the active view, and subsequently freezes and uploads it to
the cloud as view 1. The local client is then informed of view 1, and downloads it.
Since there are no local updates, the client directly applies the changes in view 1 to
its frozen view and propagates those changes to the active view.

In case (b), both the local client and the remote client perform updates concur-
rently, so con�icts may exist. Assuming the remote client synchronizes view 1 to
the cloud �rst, the local client will refrain from uploadingits frozen view, view 2,
and download view 1 �rst. It then merges the two views, resolving con�icts as de-
scribed above, to create a new frozen view, view 3. Finally, the local client uploads
view 3 while simultaneously propagating the changes in view3 to the active view.

In the presence of simultaneous updates, as seen in case (b),this synchroniza-
tion procedure results in a cloud state that re�ects a combination of the disk states
of all clients, rather than the state of any one client. Eventually, the different client
and cloud states will converge, providingmulti-client consistency. This model is
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Figure 6.2: Handling Remote Updates This �gure demonstrates two different sce-
narios where remote updates are handled. While case (a) has no con�icts, case (b) may,
because it contains concurrent updates.

weaker than our single-client model; thus, ViewBox may not be able to provide
causal consistency for each individual client under all circumstances.

Unlike single-client consistency, multi-client consistency requires the cloud
server to be aware of views, not just the client. Thus, ViewBox can only pro-
vide multi-client consistency for open source services, like Sea�le; providing it
for closed-source services, like Dropbox, will require explicit cooperation from the
service provider.
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6.1.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistent views of the �le system
state, ViewBox is now capable of performing correct recovery. There are effec-
tively two types of recovery to handle: recovery of corrupt �les, and recovery of
inconsistent �les at the time of a crash.

In the event of corruption, if the �le is clean in both the active view and the
frozen view, we can simply recover the corrupt block by fetching the copy from the
cloud. If the �le is dirty, the �le may not have been synchronized to the cloud, mak-
ing direct recovery impossible, as the block fetched from cloud will not match the
checksum. If recovering a single block is not possible, the entire �le must be rolled
back to a previous synchronized version, which may lead to causal inconsistency.

Recovering causally-consistent images of �les that were present in the active
view at the time of a crash faces the same dif�culties as restoring corrupt �les in the
active view. Restoring each individual �le to its most recent synchronized version
is not correct, as other �les may have been written after the now-corrupted �le and,
thus, depend on it; to ensure these dependencies are not broken, these �les also
need to be reverted. Thus, naive restoration can lead to causal inconsistency, even
with views.

Instead, we present users with the choice of individually rolling back damaged
�les, potentially risking causal inconsistency, or reverting to the most recent syn-
chronized view, ensuring correctness but risking data loss. As we anticipate that
the detrimental effects of causal inconsistency will be relatively rare, the former
option will be usable in many cases to recover, with the latter available in the event
of bizarre or unexpected application behavior.

6.2 Implementation

Now that we have provided a broad overview of ViewBox's architecture, we delve
more deeply into the speci�cs of our implementation. As withSection 6.1, we di-
vide our discussion based on the three primary components ofour architecture: de-
tection, as implemented with our newext4-cksum�le system; view-based synchro-
nization using ourview manager, a �le-system agnostic extension to ext4-cksum;
and recovery, using a user-space recovery daemon calledcloud helper.

6.2.1 Ext4-cksum

Like most �le systems that update data in place, ext4 provides minimal facilities
for detecting corruption and ensuring data consistency. While it offers experimental
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Figure 6.3:Ext4-cksum Disk Layout This graph shows the typical layout of a block
group in ext4-cksum. The shaded region, the checksum table,contains data checksums for
blocks in the block group.

metadata checksums, these do not protect data; similarly, its default ordered jour-
naling mode only protects the consistency of metadata, while providing minimal
guarantees about data. Thus, it requires changes to meet ourrequirements for in-
tegrity and consistency. We now present ext4-cksum, a variant of ext4 that supports
data checksums to protect against data corruption and to detect data inconsistency
after a crash without the high cost of data journaling.

Checksum Region

There are several ways in which we could add data checksums toext4. The sim-
plest way is to store a checksum within its protecting block,which is viable if the
disk supports 520-byte sectors [112]. If not, some bytes in the 4KB block will have
to be sacri�ced to store the checksum, which may cause alignment problems with
applications. In addition, because this method stores the data block and the check-
sum in the same logical write unit, it cannot detect misdirected writes or phantom
writes [69]. Alternatively, the �le system could inline thechecksum for each block
with the pointer to it in metadata, as ZFS does. While this method can work well, it
can substantially limit the maximum �le size, due to the needto store checksums,
and it may work awkwardly with ext4's current implementation of extents.

Ext4-cksum stores data checksums in a �xed-sizedchecksum regionimmedi-
ately after the inode table in each block group, as shown in Figure 6.3. All check-
sums of data blocks in a block group are preallocated in the checksum region. This
region acts similarly to a bitmap, except that it stores checksums instead of bits,
with each checksum mapping directly to a data block in the group. Since the re-
gion starts at a �xed location in a block group, the location of the corresponding
checksum can be easily calculated, given the physical (disk) block number of a data
block.

The size of the region depends solely on the total number of blocks in a block
group and the length of a checksum, both of which are determined and �xed dur-
ing �le system creation. Currently, ext4-cksum uses the built-in crc32c checksum,
which is 32-bit long. Therefore, it reserves a 32-bit checksum for every 4KB block,
imposing a space overhead of 1/1024; for a regular 128MB block group, the size
of the checksum region is 128KB.
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Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding checksum must be veri�ed.
Before the �le system issues a read of a data block from disk, it gets the corre-
sponding checksum by reading the checksum block. After the �le system reads the
data block into memory, it veri�es the block against the checksum. If the initial
veri�cation fails, ext4-cksum will retry. If the retry alsofails, ext4-cksum will re-
port an error to the application. Note that in this case, if ext4-cksum is running with
the cloud helper daemon, ext4-cksum will try to get the remote copy from cloud
and use that for recovery. The read part of a read-modify-write is handled in the
same way.

A read of a data block from disk always incurs an additional read for the check-
sum, but not every checksum read will cause high latency. First, the checksum read
can be served from the page cache, because the checksum blocks are considered
metadata blocks by ext4-cksum and are kept in the page cache like other metadata
structures. Second, even if the checksum read does incur a disk I/O, because the
checksum is always in the same block group as the data block, the seek latency
will be minimal. Third, to avoid checksum reads as much as possible, ext4-cksum
employs a simple prefetching policy: always read 8 checksumblocks (within a
block group) at a time. Advanced prefetching heuristics, such as those used for
data prefetching, are applicable here.

Ext4-cksum does not update the checksum for a dirty data block until the data
block is written back to disk. Before issuing the disk write for the data block, ext4-
cksum reads in the checksum block and updates the corresponding checksum. This
applies to all data write-backs, caused by a background �ush, fsync, or a journal
commit.

Since ext4-cksum treats checksum blocks as metadata blocks, with journaling
enabled, ext4-cksum logs all dirty checksum blocks in the journal. In ordered jour-
naling mode, this also allows the checksum to detect inconsistent data caused by
a crash. In ordered mode, dirty data blocks are �ushed to diskbefore metadata
blocks are logged in the journal. If a crash occurs before thetransaction commits,
data blocks that have been �ushed to disk may become inconsistent, because the
metadata that points to them still remains unchanged after recovery. As the check-
sum blocks are metadata, they will not have been updated, causing a mismatch
with the inconsistent data block. Therefore, if such a blockis later read from disk,
ext4-cksum will detect the checksum mismatch.

To ensure consistency between a dirty data block and its checksum, data write-
backs triggered by a background �ush and fsync can no longer simultaneously
occur with a journal commit. In ext4 with ordered journaling, before a transaction
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has committed, data write-backs may start and overwrite a data block that was just
written by the committing transaction. This behavior, if allowed in ext4-cksum,
would cause a mismatch between the already logged checksum block and the newly
written data block on disk, thus making the committing transaction inconsistent. To
avoid this scenario, ext4-cksum ensures that data write-backs due to a background
�ush and fsync always occur before or after a journal commit.

6.2.2 View Manager

To provide consistency, ViewBox requires �le synchronization services to upload
frozen views of the local �le system, which it implements through an in-memory
�le-system extension, the view manager. In this section, wedetail the implemen-
tation of the view manager, beginning with an overview. Next, we introduce two
techniques, cloud journaling and incremental snapshotting, which are key to the
consistency and performance provided by the view manager. Then, we describe the
synchronization processes that upload a frozen view to cloud. Finally, we brie�y
discuss how to integrate the synchronization client with the view manager to handle
remote changes and con�icts.

View Manager Overview

The view manager is a light-weight kernel module that creates views on top of
a local �le system. Since it only needs to maintain two local views at any time
(one frozen view and one active view), the view manager does not modify the
disk layout or data structures of the underlying �le system.Instead, it relies on a
modi�ed tmpfs to present the frozen view in memory and support all the basic �le
system operations to �les and directories in it. Therefore,a synchronization client
now monitors the exposed frozen view (rather than the actualfolder in the local �le
system) and uploads changes from the frozen view to the cloud. All regular �le
system operations from other applications are still directly handled by ext4-cksum.
The view manager uses the active view to track the on-going changes and then
re�ects them to the frozen view. Note that the current implementation of the view
manager is tailored to our ext4-cksum and it is not stackable[128]. We believe that
a stackable implementation would make our view manager compatible with more
�le systems.

Consistency through Cloud Journaling

As we discussed in Section 6.1.3, to preserve consistency, frozen views must be
created at �le-system epochs. Therefore, the view manager freezes the current
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active view at the beginning of a journal commit in ext4-cksum, which serves as
a boundary between two �le-system epochs. At the beginning of a commit, the
current running transaction becomes the committing transaction. When a new run-
ning transaction is created, all operations belonging to the old running transaction
have completed, and operations belonging to the new runningtransaction have not
started yet. The view manager freezes the active view at thispoint, ensuring that no
in-�ight operation spans multiple views. All changes sincethe last frozen view are
preserved in the new frozen view, which is then uploaded to the cloud, becoming
the latest synchronized view.

To ext4-cksum, the cloud acts as an external journaling device. Every syn-
chronized view on the cloud matches a consistent state of thelocal �le system at a
speci�c point in time. Although ext4-cksum still runs in ordered journaling mode,
when a crash occurs, the �le system now has the chance to roll back to a consistent
state stored on cloud. We call this approach cloud journaling.

Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves better performance and lower
overhead through a technique called incremental snapshotting. The view manager
always keeps the frozen view in memory and the frozen view only contains the
data that changed from the previous view. The active view is thus responsible for
tracking all the �les and directories that have changed since it last was frozen.
When the view manager creates a new frozen view, it marks all changed �les copy-
on-write (COW), which preserves the data at that point. The new frozen view is
then constructed by applying the changes associated with the active view to the
previous frozen view.

The view manager uses several in-memory and on-cloud structures to support
this incremental snapshotting approach. First, the view manager maintains anin-
ode mapping tableto connect �les and directories in the frozen view to their cor-
responding ones in the active view. The view manager represents the namespace
of a frozen view by creatingfrozen inodesfor �les and directories in tmpfs (their
counterparts in the active view are thus calledactive inodes), but no data is usually
stored under frozen inodes (unless the data is copied over from the active view due
to copy-on-write). When a �le in the frozen view is read, the view manager �nds
the active inode and fetches data blocks from it. The inode mapping table thus
serves as a translator between a frozen inode and its active inode.

Second, the view manager tracks namespace changes in the active view by
using anoperation log, which records all successful namespace operations (e.g.,
create, mkdir, unlink, rmdir, and rename) in the active view. The log records the
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type of an operation and all operands, in the form of active inode numbers. For
example, for a �le create, the inode numbers of the parent dirand the created �le
inode are logged. When the active view is frozen, the log is replayed onto the
previous frozen view to bring it up-to-date, re�ecting the new state.

Third, the view manager uses adirty tableto track what �les and directories are
modi�ed in the active view. Once the active view becomes frozen, all these �les are
marked copy-on-write. Then, by generating inotify events based on the operation
log and the dirty table, the view manager is able to make the synchronization client
check and upload these local changes to the cloud. After the synchronization is
�nished, the view becomes a synchronized view on the cloud.

Finally, the view manager keepsview metadataon the server for every syn-
chronized view, which is used to identify what �les and directories are contained
in a synchronized view. For services such as Sea�le, which internally keeps the
modi�cation history of a folder as a series of snapshots [99], the view manager is
able to use its snapshot ID (called commit ID by Sea�le) as theview metadata. For
services like Dropbox, which only provides �le-level versioning, the view manager
creates a view metadata �le for every synchronized view, consisting of a list of
pathnames and revision numbers of �les in that view. The information is obtained
by querying the Dropbox server. The view manager stores these metadata �les in a
hidden folder on the cloud, so the correctness of these �les is not affected by disk
corruption or crashes.

Synchronizing Views to the Cloud

Now, we describe how the view manager synchronizes views to the server.

Initial Synchronization: Assuming there are no crash and no remote changes,
when a local �le system is mounted and the synchronization client starts, the client
scans the synchronization folder and uploads any of�ine changes to the server. With
ViewBox, to ensure that the synchronization client captures a view of the initial on-
disk state of the synchronized folder, the view manager freezes the initial state
of ext4-cksum before the client starts. The client then scans the frozen view and
synchronizes any of�ine changes to the cloud, in the same wayas the unmodi�ed
synchronization client. We call this processinitial synchronization. Note that dur-
ing the initial synchronization, ext4-cksum is not accessible to applications other
than the client, as if it were not mounted.

The view manager creates the initial frozen view by cloning the whole names-
pace from ext4-cksum (the active view). It creates the same directories in the frozen
view directly, and clones �les from the active view by allocating sparse �les in their
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corresponding directories in the frozen view. These frozen�les have the same in-
ode attributes (such as mtime and size) as their active versions, but do not contain
any data. The inode mapping table is initialized during thisprocess.

Then, the synchronization client starts to scan the frozen view, in order to detect
of�ine changes. The client reads all new and modi�ed �les from the frozen view
and uploads them to the server. Because the frozen view does not contain any data
for the �le, the view manager handles data reads by looking upthe inode mapping
table, �nding the active inode, and reading blocks from the active view. After
the client �nishes uploading the view, the view manager creates and stores view
metadata of the view on the server.

Figure 6.4 shows an example of how the view manager performs initial syn-
chronization. We will use the same example to illustrate howthe view manager
works in the following discussion.

Regular Synchronization: Once the initial synchronization �nishes, the active
view becomes visible to applications and starts to carry outoperations. The view
manager uses an operation log and a dirty table to record namespace changes and
�le changes in the active view, as shown in Figure 6.5. At somepoint, the active
view is frozen and a new active view is immediately created. While the frozen view
is being synchronized to the cloud, the new active view continues to serve requests
from applications. We call this processregular synchronization. Once the frozen
view is synchronized, the view manager starts the same process again.

Freezing an active view: The view manager freezes the current active view at
the beginning of the upcoming transaction commit in ext4-cksum. When the active
view is frozen, the op-log and dirty table are attached to thefrozen view and become
frozen op-logandfrozen dirty table. At the same time, a new active view is created
on top of the ext4-cksum, with an emptyactive op-logandactive dirty table. Figure
6.6 shows how the view manager freezes the previous active view 6 and creates a
new active view 7.

Establishing a frozen view: In ViewBox, a frozen view does not have to be
persistent. Instead, it only needs to be present when it is being synchronized to
the cloud. Therefore, the view manager takes a light-weightin-memory snapshot
approach. The key is to break the state of the snapshot into three parts: namespace,
inode attributes and �le data.

The view manager relies on the op-log to quickly bring the namespace up-to-
date. When the active view becomes frozen, the namespace in the frozen view is
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stale; it still re�ects the state of previously synchronized frozen view, so does the
inode mapping table. Since the frozen op-log recorded all namespace operations
that took place between when the synchronized view was frozen and when the
current frozen view was frozen, the view manager keeps the namespace up-to-date
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by replaying these logged operations, as shown in Figure 6.7. The inode mapping
table is also updated during the replay. By storing concretedirectory structures
in the frozen view, any namespace operation that takes placein the current active
view will not affect the namespace of the frozen view. Therefore, there is no need
to perform copy-on-write (COW) on metadata related to namespace, which avoids
the complication and overhead of copying these metadata structures.

However, preserving inode attributes and �le data still need COW. After the
replay is �nished, all �les in the frozen view have their frozen inodes allocated.
However, these inodes are only placeholders; they still have the previous attributes
and there are no data blocks allocated. For inode attributes, when a frozen inode
is to be accessed or when the corresponding active inode is tobe changed, the in-
ode attributes of the active inode would be copied to the frozen inode. Therefore,
operations such as utime, chown, and chmod in the active viewwill trigger COW
for inode attributes. For �le data, the frozen view does not keep a copy of a data
block, unless the data block is to be modi�ed or deleted in theactive view, so oper-
ations including write, truncate, unlink, and rename (in which a �le is overwritten
by the renamed �le) will cause COW for affected data blocks. Figure 6.8 illustrates
a COW example in which the �le y is removed in active view 7. If adata block
remains unchanged in the active view, when the block is read from the frozen view,
the view manager will directly fetch that data block from theactive inode in ext4-
cksum, either from disk or from the page cache. This saves an unnecessary page
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copying from the active inode to the frozen inode.
Moreover, not every �le in the frozen view needs to be COWed. Since syn-

chronization services only upload changed �les to the server, the view manager
only has to COW changed �les. As discussed before, the dirty table recorded �les
that were changed when the frozen view was active. Once the view is frozen, all
recorded inodes are marked COW. Therefore, before any �le-changing operation
takes place in the active view, the view manager checks if the�le's inode exists in
the frozen dirty table. If it exists, the inode attributes and any data block that will
be affected by the operation but have not been COWed will be copied to the frozen
view. Otherwise, the operation will be carried out without any COW overhead.

Uploading a frozen view: In a regular �le system without views, the synchro-
nization client relies on the inotify mechanism to monitor �le and directory changes
in real-time, and uploads those changes accordingly. In ViewBox, however, the
client monitors the frozen view exposed by the view manager,in which most
changes (other than the replayed namespace operations) do not take place in real-
time. Therefore, the view manager recreates and replays inotify events to drive the
synchronization client upload changes in the frozen view. After the client �nishes
uploading the frozen view, the view manager creates necessary view metadata. Fi-
nally, the view manager destroys the frozen op-log and the frozen dirty table, cleans
up COWed data pages in the frozen view, and prepares to freezethe current active
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view. Figure 6.9 shows the steps the view manager takes to upload frozen view 6.

Handling Remote Changes

All the techniques we have introduced so far focus on how to provide single-client
consistency and do not require modi�cations to the synchronization client or the
server. They work well with proprietary synchronization services such as Drop-
box. However, when there are multiple clients running ViewBox and performing
updates at the same time, the synchronization service itself must be view-aware.
To handle remote updates correctly, we modify the Sea�le client to perform the
two-phase synchronization described in Section 6.1.3. We choose Sea�le to imple-
ment multi-client consistency, because both its client andserver are open-source.
More importantly, its data model and synchronization algorithm are similar to GIT,
which �ts our view-based synchronization well.

6.2.3 Cloud Helper

When corruption or a crash occurs, ViewBox performs recovery using backup data
on the cloud. Recovery is performed through a user-level daemon, cloud helper.
The daemon is implemented in Python, which acts as a bridge between the local
�le system and the cloud. It interacts with the local �le system using ioctl calls and
communicates with the cloud through the service's web API.

For data corruption, when ext4-cksum detects a checksum mismatch, it sends
a block recovery request to the cloud helper. The request includes the pathname
of the corrupted �le, the offset of the block inside the �le, and the block size.
The cloud helper then fetches the requested block from the server and returns the
block to ext4-cksum. Ext4-cksum re-veri�es the integrity of the block against the
data checksum in the �le system and returns the block to the application. If the
veri�cation still fails, it is possibly because the block has not been synchronized or
because the block is fetched from a different �le in the synchronized view on the
server with the same pathname as the corrupted �le.

When a crash occurs, the cloud helper performs a scan of the ext4-cksum �le
system to �nd potentially inconsistent �les. If the user chooses to only roll back
those inconsistent �les, the cloud helper will download them from the latest syn-
chronized view. If the user chooses to roll back the whole �lesystem, the cloud
helper will identify the latest synchronized view on the server, and download �les
and construct directories in the view. The former approach is able to keep most
of the latest data but may cause causal inconsistency. The latter guarantees causal
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Service Data Metadata
ViewBox w/ write mtime ctime atime
Dropbox DR DR DR DR
Sea�le DR DR DR DR

Table 6.1:Data Corruption Results of ViewBox In all cases, the local corruption is
detected (D) and recovered (R).

Service Upload Download Out-of-sync
ViewBox w/ local ver. cloud ver. (no sync)
Dropbox �

p
�

Sea�le �
p

�

Table 6.2:Crash Consistency Results of ViewBoxThe local version of the �le is
inconsistent, and is rolled back to the previous version on the cloud.

consistency, but at the cost of losing updates that took place during the frozen view
and the active view when the crash occurred.

6.3 Evaluation

We now present the evaluation results of our ViewBox prototype. We �rst show that
our system is able to recover from data corruption and crashes correctly and provide
causal consistency. Then, we evaluate the underlying ext4-cksum and view man-
ager components separately, without synchronization services. Finally we study
the overall synchronization performance of ViewBox with Dropbox and Sea�le.

We implemented ViewBox in the Linux 3.6.11 kernel, with Dropbox client
1.6.0, and Sea�le client and server 1.8.0. All experiments are performed on ma-
chines with a 3.3GHz Intel Quad Core CPU, 16GB memory, and a 1TB Hitachi
Deskstar hard drive. For all experiments, we reserve 512MB of memory for the
view manager. We run every experiment 10 times and report theaverage result.

6.3.1 Cloud Helper

We �rst perform the same set of fault injection experiments as in Section 2. The
corruption and crash test results are shown in Table 6.1 and Table 6.2. Because the
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Workload ext4 ext4-cksum Slowdown
(MB/s) (MB/s)

Seq. write 103.69 99.07 4.46%
Seq. read 112.91 108.58 3.83%
Rand. write 0.70 0.69 1.42%
Rand. read 5.82 5.74 1.37%

Table 6.3: Microbenchmarks on ext4-cksum This �gure compares the throught-
put of several micro benchmarks on ext4 and ext4-cksum. Sequential write/read are writ-
ing/reading a 1GB �le in 4KB requests. Random write/read arewriting/reading 128MB
of a 1GB �le in 4KB requests. For sequential read workload, ext4-cksum prefetches 8
checksum blocks for every disk read of a checksum block.

local state is initially synchronized with the cloud, the cloud helper is able to fetch
the redundant copy from cloud and recover from corruption and crashes. We also
con�rm that ViewBox is able to preserve causal consistency.

6.3.2 Ext4-cksum

We now evaluate the performance of standalone ext4-cksum, focusing on the over-
head caused by data checksumming. Table 6.3 shows the throughput of several
microbenchmarks on ext4 and ext4-cksum. From the table, onecan see that the
performance overhead is quite minimal. Note that checksum prefeteching is impor-
tant for sequential reads; if it is disabled, the slowdown ofthe workload increases
to 15%.

We perform a series of macrobenchmarks using Filebench on both ext4 and
ext4-cksum with checksum prefetching enabled. The resultsare shown in Table
6.4. For the �leserver workload, the overhead of ext4-cksumis quite high, because
there are 50 threads reading and writing concurrently and the negative effect of the
extra seek for checksum blocks accumulates. The webserver workload, on the other
hand, experiences little overhead, because it is dominatedby warm reads.

It is surprising to notice that ext4-cksum greatly outperforms ext4 in varmail.
This is actually a side effect of the ordering of data write-backs and journal com-
mit, as discussed in Section 6.2.1. Note that because ext4 and ext4-cksum are not
mounted with “journalasynccommit”, the commit record is written to disk with a
cache �ush and the FUA (force unit access) �ag, which ensuresthat when the com-
mit record reaches disk, all previous dirty data (includingmetadata logged in the
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Workload ext4 ext4-cksum Slowdown
(MB/s) (MB/s)

Fileserver 79.58 66.28 16.71%
Varmail 2.90 3.96 -36.55%
Webserver 150.28 150.12 0.11%

Table 6.4:Macrobenchmarks on ext4-cksum This table shows the throughtput of
�leserver, varmail, and webserver workloads on ext4 and ext4-cksum. Fileserver is con�g-
ured with 50 threads performing creates, deletes, appends,whole-�le writes, and whole-�le
reads. Varmail emulates a multi-threaded mail server. Eachthread performs a set of create-
append-sync, read-append-sync, read, and delete operations. It has about half reads and
half writes and is dominated by random I/Os. Webserver is a multi-threaded read-intensive
workload.

journal) has already been forced to disk. When running varmail in ext4, data blocks
written by fsyncs from other threads during the journal commit are also �ushed to
disk at the same time, which causes high latency. In contrast, since ext4-cksum
does not allow data write-back from fsync to run simultaneously with the journal
commit, the amount of data �ushed is much smaller, which improves the overall
throughput of the workload.

6.3.3 View Manager

We now study the performance of various �le system operations in an active view
when a frozen view exists. The view manager runs on top of ext4-cksum.

We �rst evaluate the performance of various operations thatdo not cause copy-
on-write (COW) in an active view. These operations are create, unlink, mkdir,
rmdir, rename, utime, chmod, chown, truncate and stat. We run a workload that
involves creating 1000 8KB �les across 100 directories and exercising these oper-
ations on those �les and directories. We prevent the active view from being frozen
so that all these operations do not incur a COW. We see a small overhead (mostly
less than 5% except utime, which is around 10%) across all operations, as com-
pared to their performance in the original ext4., This overhead is mainly caused by
operation logging and other bookkeeping performed by the view manager.

Next, we show the normalized response time of operations that do trigger copy-
on-write in Table 6.5. These operations are performed on a 10MB �le after the �le
is created and marked COW in the frozen view. All operations cause all 10MB of
�le data to be copied from the active view to the frozen view. The copying overhead
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Normalized Response Time
Operation Before COW After COW
unlink (cold) 484.49 1.07
unlink (warm) 6.43 0.97
truncate (cold) 561.18 1.02
truncate (warm) 5.98 0.93
rename (cold) 469.02 1.10
rename (warm) 6.84 1.02
overwrite (cold) 1.56 1.10
overwrite (warm) 1.07 0.97

Table 6.5:Copy-on-write Operations in the View Manager This table shows the
normalized response time (against ext4) of various operations on a frozen �le (10MB) that
trigger copy-on-write of data blocks. “Before COW”/”AfterCOW” indicates the operation
is performed before/after affected data blocks are COWed.

is listed under the “Before COW” column, which indicates that these operations
occur before the affected data blocks are COWed. When the cache is warm, which
is the common case, the data copying does not involve any diskI/O but still incurs
up to 7x overhead. To evaluate the worst case performance (when the cache is
cold), we deliberately force the system to drop all caches before we perform these
operations. As one can see from the table, all data blocks areread from disk, thus
causing much higher overhead. Note that cold cache cases arerare and may only
occur during memory pressure. We further measure the performance of the same
set of operations on a �le that has already been fully COWed. As shown under
the “After COW” column, the overhead is negligible, becauseno data copying is
performed.

6.3.4 ViewBox with Dropbox and Sea�le

We assess the overall performance of ViewBox using three workloads: openssh
(building openssh from its source code), iphotoedit (editing photos in iPhoto,
about 5GB data), and iphotoview (browsing photos in iPhoto, about 1GB data).
The latter two workloads are from the iBench trace suite [60]and are replayed
using Magritte [119]. We believe that these workloads are representative of ones
people run with synchronization services.

The results of running all three workloads on ViewBox with Dropbox and
Sea�le are shown in Table 6.6 and Table 6.7. In all cases, the runtime of the work-
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ext4 + Dropbox ViewBox with Dropbox
Workload Runtime Sync Time Runtime Sync Time
openssh 36.4 49.0 36.0 64.0

iphoto edit 577.4 2115.4 563.0 2667.3
iphoto view 149.2 170.8 153.4 591.0

Table 6.6:Performance of ViewBox with Dropbox This table compares the runtime
and sync time (in seconds) of various workloads running on top of the unmodi�ed ext4 and
ViewBox using Dropbox. Runtime is the time it takes to �nish the workload and sync time
is the time it takes to �nish synchronizing.

ext4 + Sea�le ViewBox with Sea�le
Workload Runtime Sync Time Runtime Sync Time
openssh 36.0 44.8 36.0 56.8

iphoto edit 566.6 857.6 554.0 598.8
iphoto view 150.0 166.6 156.4 175.4

Table 6.7:Performance of ViewBox with Sea�le This table compares the runtime
and sync time (in seconds) of various workloads running on top of the unmodi�ed ext4 and
ViewBox using Sea�le. Runtime is the time it takes to �nish the workload and sync time is
the time it takes to �nish synchronizing.

load in ViewBox is at most 5% slower and sometimes even fasterthan that of the
unmodi�ed ext4 setup, which shows that view-based synchronization does not have
a negative impact on the foreground workload. We also �nd that the memory over-
head of ViewBox (the amount of memory consumed by the view manager to store
frozen views) is minimal, at most 20MB across all three workloads.

We expect the synchronization time of ViewBox to be longer because View-
Box does not start synchronizing until the current �le system state is frozen, which
may cause delays. The results of openssh con�rm our expectations. However, for
iphoto view and iphotoedit, the synchronization time on ViewBox with Dropbox
is much greater than that on ext4. This is due to Dropbox's lack of proper interface
support for views, as described in Section 6.2.2. Because both workloads use a �le
system image with around 1200 directories, to create the view metadata for each
view, ViewBox has to query the Dropbox server numerous times, causing substan-
tial overhead. In contrast, ViewBox can avoid this overheadwith Sea�le because it
has direct access to Sea�le's internal metadata. Thus, the synchronization time of
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iphoto view in ViewBox with Sea�le is near that in ext4.
Note that the iphotoedit workload actually has a much shorter synchronization

time on ViewBox with Sea�le than on ext4. Because the photo editing workload in-
volves many writes, Sea�le delays uploading when it detects�les being constantly
modi�ed. After the workload �nishes, many �les have yet to beuploaded. Since
frozen views prevent interference, ViewBox can �nish synchronizing about 30%
faster.

6.4 Summary

Despite their near-ubiquity, �le synchronization services ultimately fail at one of
their primary goals: protecting user data. Not only do they fail to prevent corruption
and inconsistency, they actively spread it in certain cases. The fault lies equally with
local �le systems, however, as they often fail to provide thenecessary capabilities
that would allow synchronization services to catch these errors. To remedy this,
we propose ViewBox, an integrated system that allows the local �le system and the
synchronization client to work together to prevent and repair errors.

Rather than synchronizing individual �les, as current �le synchronization services
do, ViewBox centers around views, in-memory �le-system snapshots which have
their integrity guaranteed through on-disk checksums. Since views provide con-
sistent images of the �le system, they provide a stable platform for recovery that
minimizes the risk of restoring a causally inconsistent state. As they remain in-
memory, they incur minimal overhead.

We implement ViewBox to support both Dropbox and Sea�le clients, and �nd
that it prevents the failures that we observe with unmodi�edlocal �le systems and
synchronization services. Equally importantly, it performs competitively with un-
modi�ed systems. This suggests that the cost of correctnessneeds not be high; it
merely requires adequate interfaces and cooperation.
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Chapter 7

Related Work

This chapter discusses various research efforts and real systems that are related to
this dissertation. We �rst discuss literature on analyzingsystem reliability using
fault injection and modeling techniques. Then, we summarize research on improv-
ing data integrity and consistency in storage systems.

7.1 Fault Injection

Software-implemented fault injection techniques have been widely used to analyze
the robustness of systems [26, 33, 56, 66, 101, 114]. For example, FINE used fault
injection to emulate hardware and software faults in the operating system [66];
Gu et al. [56] injected faults to instruction streams of Linux kernel function to
characterize Linux kernel behavior.

More recent works have applied type-aware fault injection to analyze failure be-
haviors of different �le systems to disk corruptions. Prabhakaran et al. injected par-
tial disk failures to various �le systems to understand the behavior of these systems
in the presence of disk errors and randomly-corrupted disk blocks [89]. Bairava-
sundaram et al. developed and applied type-aware pointer corruption to NTFS and
ext3 to study how both systems handle pointer corruption in their metadata struc-
tures [24]. Our analysis of on-disk data integrity in ZFS anddata corruption with
synchronization services is similar to these studies.

Furthermore, fault injection has also been used to analyze effects of memory
corruption on systems. FIAT [26] used fault injection to study the effects of mem-
ory corruption in a distributed environment. Krishnan et al. applied a memory
corruption framework to analyze the effects of metadata corruption on NFS [70].
Our study on in-memory data integrity is related to these studies in their goal of
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�nding effects of memory corruption.

However, our work on ZFS is the �rst comprehensive reliability analysis of lo-
cal �le system that covers carefully controlled experiments to analyze both on-disk
and in-memory data integrity. Speci�cally, for our study ofmemory corruptions,
we separately analyze ZFS behavior for faults in page cache metadata and data and
for metadata structures in the heap. To the best of our knowledge, this is the �rst
such comprehensive study of end-to-end �le system data integrity.

Similarly, our analysis of cloud-based synchronization services is the �rst study
on the reliability of these services. We study the impact of disk corruption and
system crash to synchronization services and reveal the surprising fact that multiple
copies do not always make data safe.

7.2 Reliability Modeling

A large body of research has been focusing on modeling device-level errors such as
memory errors and latent sector errors. Li et al. performed aseries of measurement
of soft errors on real production systems, and developed models for error rates and
error patterns [71, 72]. Schroeder et al. conducted a detailed static analysis of
latent sector errors and provided parameters for models derived from the analysis
[96]. Based on the models, they proposed and evaluated several new protection
schemes against latent sector errors.

There are many studies on reliability modeling for RAID systems [31, 45, 86],
but only a few of them cover silent data corruption. Rozier etal. presented a
fault model for Undetected Disk Errors (UDE) in RAID systems[92]. They built
a framework that combines simulation and model to calculatethe manifestation
rates of undetected data corruption caused by UDEs. Krioukov et al. used model
checking to analyze various protection techniques used in current RAID storage
systems [69]. They study the interaction between these techniques and �nd design
faults that may lead to data loss or data corruption. In comparison, our reliability
framework focuses on bit errors from various devices (not just disk or RAID). We
use analytical models to evaluate the reliability of different devices and different
checksums in terms of the probability of undetected corruption. Our framework
calculates a system-level metric that can be used to comparethe reliability of dif-
ferent storage systems.
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7.3 Techniques for Data Integrity

Using checksums to detect data corruption is common. File systems, such as PFS
[104], GoogleFS [51], IRON �le system [89], btrfs [91] and ZFS [29], use check-
sums to protect on-disk blocks. Many database systems, suchas Berkeley DB [85]
and SQL Server [1], support page-level checks to make sure data is not corrupted
on disk. In networking, the Internet checksum [12], used by most Internet pro-
tocols, is designed to detect transmission errors. The integrity check speci�ed in
RPCSECGSS [13] protects RPC messages during transmission. All these checks
are applied in a single subsystem/protocol, while �exible end-to-end data integrity
focuses on cross-component data protection. In addition, our ext4-cksum is similar
to these systems in using checksums, but to our knowledge, itis the �rst work to
add data checksumming to ext4. In Z2FS, we take advantage of existing checks as
well as our newly added checks to provide wider coverage of data protection.

Many of the systems above, such as GoogleFS, IRON �le system,and ZFS,
rely on locally stored redundant copies for automatic recovery, which may or may
not be available. In contrast, ViewBox is the �rst work of which we are aware that
employs the cloud for recovery.

The concept of �exible end-to-end data integrity is similarto the protection
scheme in the Linux Data Integrity Extension (DIX) [87] and the T10 Protection
Information (T10-PI) model [112] (previously known as DataIntegrity Field). DIX
provides end-to-end protection from the application to theI/O controller, while
T10-PI covers the data path between the I/O controller and the disk. Within this
framework, checksums are passed from the application all the way to the disk, and
can be veri�ed by the disk drive, as well as the components inbetween. Although
T10-PI requires CRC as the checksum, DIX is able to use the Internet checksum
[12] to achieve better performance and relies on the I/O controller to convert the
Internet checksum to CRC. The behavior of each components inthe I/O path is
well modeled by the data integrity architecture from SNIA [102]. Our �exible
end-to-end concept differs from their scheme in that they focus onde�ning the
behavior of each node while our work helps toreasonabout the rational behind
certain behaviors, such as what checksum should be used by which component, and
when and where the system should change checksum. Our reliability framework
also provides a holistic way to think about the tradeoffs between performance and
protection.

In terms of implementation, Z2FS offers similar protection as DIX, but it is
different from DIX in several aspects. First, Z2FS is a software solution while
T10-PI and DIX require support from hardware vendors. The hard drives and the
controller must support 520-byte sector because the checksum is stored in the extra
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8-byte area for each sector. Z2FS uses space maintained by the �le system to store
checksums so that it is able to provide similar protection asDIX without special
hardware. It can also be easily extended to support T10-PI. Second, in addition
to checksum chaining (conversion) at the disk-memory boundary Z2FS performs
checksum switching for data in memory. We believe Z2FS is the �rst �le system to
take data residency time into consideration and provide better protection for data in
the page cache. Third, Z2FS is a full-featured local �le system that exposes check-
sum to applications through new and generic APIs so that any application can be
modi�ed to take advantage of the data protection offered by Z2FS. In comparison,
DIX is currently a block layer extension in Linux. To our bestknowledge, there is
no local �le system support or user-level APIs available; DIX is now only used in
Lustre �le system [82] and Oracle's database products [46, 121].

7.4 Techniques for Data Consistency

A variety of research work, such as IRON �le system [89] and OptFS [36], explores
the use of checksums for purposes beyond simply detecting corruption. IRON ext3
introduces transactional checksums, which allow the journal to issue all writes,
including the commit block, concurrently; the checksum detects any failures that
may occur. OptFS extends transactional checksum to cover dirty data blocks that
are �ushed during journal commit, so that the system is able to detect inconsistent
data upon a crash. Ext4-cksum is mostly related to OptFS in that ext4-cksum also
relies on checksums to detect inconsistent data, but OptFS requires data block to
be checksummed whenever the block is updated in the page cache, which may
lead to high response time for write system calls (due to checksum calculation). In
contrast, ext4-cksum only generates checksums when data blocks are written back,
which usually occurs in the background and does not incur much overhead.

Similarly, a number of works have explored means of providing greater crash
consistency than ordered and metadata journaling provide.Data journaling mode
in ext3 and ext4 provides full crash consistency, but its high overhead makes it
unappealing. OptFS [36] is able to achieve data consistencyand deliver high per-
formance through an optimistic protocol, but it does so at the cost of durability
while still relying on data journaling to handle overwrite cases. In contrast, View-
Box avoids overhead by allowing the local �le system to work in ordered mode,
while providing consistency through the views it synchronizes to the cloud; it then
can restore the latest view after a crash to provide full consistency. Like OptFS, this
sacri�ces durability, since the most recent view on the cloud will always lag behind
the active �le system. However, this approach is optional, and, in the normal case,
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ordered mode recovery can still be used.
ViewBox's snapshotting component, the view manager, bearssome resem-

blance to ext3cow [88] and Next3 [49], but these similarities are mostly super�-
cial. Like both of these systems, the view manager performs copy-on-write once
per snapshot. However, unlike these systems, the view manager does not persist its
snapshots on disk, relying instead on the cloud back-end to store uploaded views.
Additionally, while we implement the view manager as an extension to ext4, it re-
quires no modi�cation to on-disk data structures and could easily be applied to any
other Linux �le system. Finally, while ext3cow's focus on �le history resembles
Dropbox's �le revision history interface, ViewBox shifts from this interface to fo-
cus on complete images, as this is the only way to guarantee causal consistency
when restoring previous �le versions.
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Chapter 8

Conclusion and Future Work

One of the major responsibilities of storage systems is to store data correctly and
protect it from being damaged. Existing systems and many research projects have
employed various techniques to ful�ll this responsibility, but most of the techniques
only focus on protecting data in a speci�c component in the storage stack, while
failing to provide comprehensive protection – corrupt dataor inconsistent data still
goes undetected and is exposed to users or applications.

In this dissertation, we identi�ed this problem of isolatedprotection in both
local and cloud storage systems, and proposed several cooperative data protection
techniques to address the problem. For local storage systems, we �rst analyzed the
impact of disk and memory corruption to ZFS and found that ZFSfails to protect
in-memory data (Chapter 3). Then, we proposed the concept of�exible end-to-
end data integrity and built Z2FS by applying the concept to ZFS, which provides
end-to-end protection with improved performance (Chapter4). For cloud storage
services, we started by studying how synchronization clients propagate corrupt data
and inconsistent data to the cloud due to the loose coupling of local �le systems and
synchronization services (Chapter 5). We then built ViewBox, a system in which
local �le systems and synchronization services work cooperatively to provide data
integrity, consistency, and recoverability (Chapter 6).

In this chapter, we �rst summarize our analysis and solutions in Section 8.1,
then list a set of lessons learned over the course of this workin Section 8.2, and
�nally discuss directions for future research in Section 8.3.
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8.1 Summary

This dissertation is mainly divided in two parts: cooperative data protection in local
storage, and cooperative data protection across local and cloud storage. Each part
further consists of a problem analysis and a solution. We nowsummarize each part
in turn.

8.1.1 Cooperative Data Protection in Local Storage

In the �rst part of the dissertation, we focused on the impactof disk corruption
and memory corruption in local storage systems and we chose ZFS, a modern and
mature �le system, as our study subject. First, we evaluatedhow robust ZFS is
against disk and memory corruption. We injected corruptionto data blocks and
metadata structures both on disk and in memory. We found thatZFS is able to
detect and recover from most injected disk corruption, due to the usage of check-
sums for on-disk blocks and �le-system level replication for important metadata
structures. However, because the protection is only limited to disk blocks, ZFS
fails to protect in-memory data and metadata, which leads tobad data blocks being
silently returned to the user or written to disk, �le system operation failures, and
whole system crashes. Our �ndings indicated that end-to-end data protection is
needed to protect data from both memory and disk corruption.

Then, we explored techniques to provide end-to-end data protection. A straight-
forward way to achieve this is to apply the traditional end-to-end concept, in which
applications generate and verify checksum (usually a strong one) for their data.
However, this approach suffers from slow performance for workloads that repeat-
edly access data from the page cache due to the overhead of calculating checksums.
Moreover, when the corruption occurs in the write path, it fails to detect the cor-
ruption in time, and thus it is not able to recover from it.

To address both problems, we proposed a new concept called �exible end-to-
end data integrity, which enables all components in the storage system to be aware
of checksums and changes checksums scheme across components (sometimes even
over time) to achieve a balance between performance and reliability. We developed
an analytical model to reason about which checksums to be used on which com-
ponent, and then built Z2FS to demonstrate how to apply �exible end-to-end data
integrity to an existing �le system, ZFS. As a comparison, wealso built E2ZFS
with straight-forward end-to-end data integrity. Throughanalysis and fault injec-
tion experiments, we showed that Z2FS is able to provide Zettabyte reliability (at
most one undetected corruption per Zettabyte data read), and can detect and re-
cover from corruption in the write path. Through performance experiments, we
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showed that Z2FS performs comparably to the original ZFS in various micro and
macro benchmarks and outperforms E2ZFS by up to 17% in workloads dominated
by warm reads.

8.1.2 Cooperative Data Protection across Local and Cloud Storage

The second part of the dissertation focused on the impact of disk corruption and un-
timely crashes in local �le systems and cloud storage services (cloud-based �le syn-
chronization services). We �rst performed fault injectionexperiments on several
popular synchronization services and studied how well theyprotect data. Through
disk corruption experiments, we found that in many cases, all the services we ex-
amined propagate local corruption to the cloud and thus corrupt copies on other
devices. Through crash tests, we found that the synchronization clients behave
inconsistently; sometimes they upload inconsistent �les to the cloud, sometimes
they download stale versions of �les from the server, and sometimes they refuse
to synchronize despite the fact that the local copy is different than the cloud copy.
Further, we showed that these services cannot provide causal consistency because
the clients are not able to obtain an uni�ed and consistent view of the local �le
system. Our analysis revealed that the root cause of these problems is the loose
coupling of synchronization services and local �le systems.

Next, we designed, implemented, and evaluated a new system called View-
Box, in which the synchronization service works cooperatively with the local �le
system to provide data integrity and consistency. The key idea behind ViewBox
is views, in-memory snapshots of the synchronizing folder.Instead of uploading
�les, ViewBox synchronizes views between the devices and cloud. To guarantee the
correctness of views, ViewBox relies on three components: ext4-cksum, the view
manager, and the cloud helper. Ext4-cksum adds data checksuming to ext4 and
serves as the local �le system in ViewBox. The added checksumis able to detect
both corruption and inconsistency. The view manager is an extension to ext4-cksum
which creates views at �le system epochs and exposes views tothe synchronization
client; the consistency of views is thus guaranteed. The cloud helper is a user-level
daemon that uses views on the cloud to perform recovery when corruption or in-
consistency is detected. We built ViewBox around two synchronization services,
Dropbox and Sea�le. Through fault injection experiments, we showed that View-
Box is able to detect and recover from corruption and crash, and therefore prevent
bad data from being propagated. Compared to Dropbox and Sea�le running on
top of unmodi�ed ext4, we showed that ViewBox incurs less than 5% overhead in
many workloads, and in some cases reduces the synchronization time by 30%.
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8.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on
this dissertation.

� Reliability does not come for free.First, data protection techniques usually
hurt the performance of the system. In E2ZFS, we moved the checksum
generation and veri�cation up to the application level to achieve end-to-end
data integrity, which caused about a 15% slowdown compared to the original
ZFS in some workloads. In ViewBox, we added checksums to ext4and we
�nd that the overall throughout of ext4-cksum is worse than the original ext4.
The former case is due to the CPU overhead of calculating the checksum,
and the latter is because of extra I/Os and seeks to read and write checksum
blocks.

Second, optimization helps to reduce the overhead. In Z2FS, we chose xor
as memory checksum and we applied the checksum-on-copy optimization
[39] to make it extremely faster (3% overhead compared to theoriginal ZFS)
than the naive implementation (7% overhead). In ViewBox, weimplemented
prefetching of checksum blocks for sequential read workloads such that the
throughput slowdown (compared to original ext4) is improved from 15% to
4%.

Finally, fast storage device needs fast checksum calculation. Current sys-
tems perform well with strong checksums because the checksum calculation
usually occurs with a (traditional) disk I/O, which is already costly. As fast
devices (such as SSDs) are becoming popular and widely deployed, storage
systems cannot hide the computational cost of checksum behind I/O time
anymore, so we believe that either we have to �nd a checksum that is strong
enough to protect data and fast enough to not cause noticeable slowdown,
or we should take other approaches to reduce the calculationoverhead (e.g.,
through specialized instructions or additional chips).

� One size (checksum) does not �t all.With the straight-forward end-to-end
protection scheme, usually one checksum is used all the way from applica-
tion to disk. This simpli�es the implementation of a system,but strips the
�exibility away; reliability can be achieved by using a stronger checksum,
but the performance hurts. Our �exible end-to-end data protection proposes
to use different checksum for different components, depending on the their
reliability and/or performance characteristics, such that the reliability and
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performance of the whole system can be tweaked to satisfy certain require-
ment. We believe that such �exibility should be provided by future storage
systems, especially software-de�ned storage systems.

� Multiple copies do not always make data safe.File synchronization services
automatically upload local data to the cloud, and propagateit to other syn-
chronized devices. These services give the users a perception that there are
multiple copies of their data and their data must be safe. However, our analy-
sis showed that this is merely a false sense of “security”. When the local �le
system or the synchronization client cannot distinguish legitimate changes
(actual updates) from “unauthorized” changes (corrupt or inconsistent data),
bad data may be uploaded to the server and thus pollute all copies – failing to
guarantee the correctness of data renders all the replicas useless. We believe
that the replication itself does not necessarily improve data reliability; the
ability to verify the integrity of data is the foundation replication should rely
on.

8.3 Future Work

In this section, we outline various directions for future work.

8.3.1 Characteristic Study of Data Corruption

Our analytical framework described in Section 4.1 models data corruption as inde-
pendent bit �ips in a �xed-sized data block, which simpli�esthe model but unfor-
tunately fails to represent the reality. Bairavasundaram et al. found that corruption
(checksum mismatches) that occur in the same disk is not independent and has spa-
tial and temporal locality [23]. Schroeder et al. found thatmemory errors also have
strong time and space correlations [63]. Therefore, in order to better understand
and model data corruption, we believe that a study of data corruption characteristic
will be an interesting future direction.

The focus of the study would be to �nd out the pattern of corruption and how
likely each pattern occurs. If the corruption is caused by dropped writes, the corrupt
data would be the same as the previous data at the same location but may look
completely different than the correct data. If the corruption is caused by bit-rots, it
is highly likely that the corruption is just several bit �ips. In this case, it would also
be interesting to know the distribution of the number of bit �ips.

In addition to helping to improve the modeling of data corruption, the study
would be bene�cial in several other ways. First, categorizing data corruption events
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may provide some hints on why data corruption occurs and which component
should be blamed for it. For example, if most corruption events are random bit �ips,
it is possible that the disk drive is defected and should be replaced. Second, under-
standing corruption pattern would help with the invention of special checksums.
As mentioned above, fast devices need fast checksums to avoid the performance
slowdown. If the corruption pattern of such a device is known, one may be able to
apply a checksum that is specially designed to handle that corruption pattern and
performs much faster than a generic and strong checksum.

8.3.2 Application-level Data Protection

This dissertation has focused on data protection provided by �le systems and �le
synchronization services, but it does not address another important piece: appli-
cations. Since applications are the ones that generate dataand process data, it is
critical to make sure applications protect data and handle corruption correctly. It is
well known that corporate applications, such as database systems and mail servers,
already use checksums to protect data from corruption [1, 4,85, 105]. Therefore,
studying the robustness of home-user applications, such asdocument editors or
photo managers, will be an interesting future avenue and the�rst step would be a
thorough analysis of how data corruption affects application behavior.

We can inject various faults (such as corruption, read errorand write error)
when an application reads/writes data from/to the �le system, and see how the
application reacts. We may classify application behaviorsinto three categories: de-
tection, recovery and functionality. In terms of detection, applications may ignore
the failure or corruption, detect and inform the user, or detect and hide from the
user. In terms of recovery, applications may perform no recovery, retry, repair, or
wait for user instruction. By functionality, we mean after the error handling (de-
tection and recovery) whether the applications work as usual, abort abnormally, or
perform incorrect actions.

There are two challenges in this fault injection analysis. First, to effectively in-
ject faults, we have to understand various �le formats. Different applications work
with different �le formats. Each �le format is like a �le system and has its own or-
ganization of metadata and data. For example, a MP3 �le contains a stream of MP3
frames, each of which consists of a header (metadata) and an audio data block. In
contrast, a DOC �le is actually a mini FAT �le system, which contains text �les,
images �les and other metadata structures that make up the document. Therefore,
it is important to study how metadata and data in each �le format is organized and
what are the meanings of the metadata structures. Second, automation of the fault
injection experiments may be dif�cult. Unlike traditionalUNIX programs, most
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home-user applications are all GUI-based and they interactwith users extensively.
The involvement of human users may hinder the ef�ciency of fault injection exper-
iments. To solve this problem, we can use advanced scriptinglanguages, such as
AppleScript, to control GUIs.

Once we have the results from the fault injection analysis, we will be able to
explore techniques to improve the robustness of applications in the face of data
corruption.

8.3.3 Cooperative Data Protection in Networked Storage Systems

We have explored techniques for cooperative data protection in local storage sys-
tems and cloud storage systems. We believe that another important environment to
look into is networked storage systems.

Network File System (NFS) is a popular network �le system protocol, origi-
nally developed by Sun, which allows users to access �les across a network. NFS
relies on a security protocol called RPCSECGSS [13] to provide data integrity,
in which RPC messages containing NFS requests and responsesare checksummed
(NFS checksum). However, the protocol also suffers from the problem of isolated
protection; the checksum is only used during network transmission and there is no
end-to-end protection between the client-side application and the server disk.

One approach to achieve cooperative data protection is to apply the concept of
�exible end-to-end data integrity to NFS. First, Z2FS can be directly used here as
the local �le system on the client and the server. Second, models for network data
corruption, TCP/IP checksum, and NFS checksums used by RPCSEC GSS (e.g.,
DES) are needed to evaluate how reliable the whole system is with the addition of
the network part, and to choose a proper NFS checksum to meet the performance
and reliability requirement. Finally, checksum chaining must be applied at the
boundary of page cache and the NFS layer to connect the client's or the server's
memory checksum and the NFS checksum.

8.4 Closing Words

In this dissertation, we have identi�ed the problem of isolated protection in exist-
ing storage systems, and proposed various techniques to achieve cooperative data
protection. As the amount of generated data explodes, the use of low-cost hardware
increases, and the complexity of storage systems grows, existing and future storage
systems will face more and more challenges to data protection. By demonstrating
the power of cooperation, we hope that this dissertation canhelp researchers, de-
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signers, and developers to rethink data protection and build reliable storage systems
with cooperative data protection.
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