Cooperative Data Protection

by

Yupu Zhang

A dissertation submitted in partial ful Iment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2014

Date of nal oral examination: 02/10/14

Committee in charge:
Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Shan Lu, Assistant Professor, Computer Sciences
Michael M. Swift, Associate Professor, Computer Sciences
Peter Z.G. Qian, Associate Professor, Statistics

To my parents

Vi

Vii

Acknowledgements

First and foremost, | would like to express my deep gratittmleny advisors,
Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau, who duigie through my
Ph.D. studies. There is an old saying in China: a teacher fatyas a father for
a lifetime. | feel extremely lucky and thankful to have bothtteem as my Ph.D.
“parents”.

My initial interest in system research was born when | tooknRi&s Advanced
Operating Systems class. When | just came here, operatstgnsyg was de nitely
not one of my favorites. However, Remzi's excellent teagtdnd deep knowledge
convinced me that building systems is such a fun and chatigmocess that | can
de nitely start a Ph.D. journey in systems. My last conceon fesearch, writing
papers, was eased by Andrea’'s meticulous guidance. Aféeling a paper draft,
she always provided me with a lot of feedback, ranging froamgnatical correc-
tions to organizational suggestions, which greatly imptbthe quality of my work.
She taught me crucial skills to convert a complicated systeitten in C into a nice
story with words and gures, which | could never have learhgdnyself in such
a short time. Throughout my Ph.D. studies, not only did thiee gne numerous
pieces of advices on how to be a good researcher, they alsgedhue how to be
a better person. | am extremely thankful for their patienog support during my
ups and downs. Without their encouragement, | would nevee kampleted this
exceptional Ph.D. journey.

Next, | would like to thank my thesis-committee members, rSha, Peter
Qian, and Mike Swift, for their insights and suggestionsrfor research. | would
especially like to thank Mike for his detailed comments ahdllenging questions
during my preliminary exam and defense, which greatly hedpmimproving and
nishing my thesis.

| have bene ted greatly from interning at NetApp. | woulddiko thank the
company as well as my mentor, Kiran Srinivasan, and my man&pankar Pasu-
pathy, for providing a terri c internship experience.

| am fortunate to have had the opportunity to work with smar hardwork-

viii

ing colleagues: Chris Dragga, Daniel Myers, Abhishek Rajate, Lanyue Lu,
Swaminathan Sundararaman, Sriram Subramaniam, HaryadivuThanh Do,
and Samer Al-Kiswany. | also have enjoyed interacting witheo students: Nitin
Agrawal, Ishani Ahuja, Leo Arulraj, Vijay Chidambaram, &€ylHarter, Jun He,
Asim Kadav, Ao Ma, Joe Meehean, Sankaralingam Panneenselaepak Rama-
murthi, Mohit Saxena, Laxman Visampalli, Zev Weiss, SulhiyaWei Zhang, and
Yiying Zhang.

I am lucky to have so many friends at Madison. To name a few:ry4€hung,
Guoliang Jin, Ji Liu, Jie Liu, Lanyue Lu, Ao Ma, Linhai Songh@hg Sun, Chong
Sun, Wenfei Wu, Wentao Wu, Wei Zhang, and Yiying Zhang. | widike to espe-
cially thank my roommates, Guoliang Jin and Jie Liu, for ampanying me during
these years. | also would also like to thank Yiying Zhang feinlg a wonderful
and helping of cemate. Of course, | am also grateful for thpmort from other
friends who are not at Madison: Shaochen Huang, Qiang Li, ®iam, and Yuxi-
ang Zheng.

Finally, | would like to thank my family back in China, espalty my parents,
for their unconditional love and support. When | am struggylivith my research
and sometimes with my life, they have always been suppodig encouraging.
When | have even the smallest success, they are so happyéyaalmost want
everyone in the world to know about it. Thank you, Baba and ahdedicate
this dissertation to you!

Abstract

COOPERATIVE DATA PROTECTION
Yupu Zhang

Storage systems employ various techniques to protect asgfrodm hardware fail-
ures and software defects. These techniques, while efeictitheir own domains,

fail to provide comprehensive protection. In this dissista we identify the prob-

lem ofisolated protectionn both local storage systems and cloud storage services,
and propose&ooperative data protectioto address this problem.

Inthe rst half of this dissertation (on local storage systg, we present a study
of the effects of disk and memory corruption on ZFS, a modemroercial le
system with numerous reliability mechanisms. Throughfodend thorough fault
injection, we show that ZFS is robust to a wide range of diskt$a but because
of its isolated integrity checks that only cover on-diskajat is less resilient to
memory corruption, which can lead to corrupt data beingrnetdl to applications
or system crashes.

To solve this problem, we introduce exible end-to-end dezgrity, which
enables all components along the I/O path (e.g., page cédelsystem) to handle
checksums cooperatively. Each component is able to adtpratection scheme to
meet the performance and reliability demands of the systéfm.apply this new
concept to ZFS and build Zettabyte-Reliable ZFSRR). Z2FS provides dynami-
cal tradeoffs between performance and protection andsofettabyte Reliability,
which is at most one undetected corruption per Zettabytat# tead. We develop
an analytical framework to evaluate reliability; the paiien approaches inFS
are built upon the foundations of the framework. For conymarj we implement
a straight-forward End-to-End ZFS{EFS) with the same protection scheme for
all components. Through analysis and experiment, we shatZiFS is able to
achieve better overall performance thaZES, while still offering Zettabyte Reli-
ability.

In the second half of this dissertation (on cloud storageises), we analyze

how reliable cloud-based synchronization services arbarfdce of local corrup-

tion and crashes. We perform fault injection experiments@reral popular syn-
chronization services and local le systems, and nd thasmlee the excellent re-
liability that the cloud back-end provides, the loose cgpbf these services and
local le systems makes synchronized data more vulnerdide users might be-
lieve. Local corruption may be propagated to the cloud,ypiolgy all copies on

other devices, and a crash or untimely shutdown may leaddangistency be-
tween a local le and its cloud copy. Even without these fiaghk) these services
cannot provide causal consistency.

To solve this problem, we present ViewBox, an integratedgyanization ser-
vice and local le system that provides freedom from datargption and incon-
sistency. ViewBox detects these problems using ext4-cksumodi ed version of
ext4, and recovers from them using a user-level daemond dielper, to fetch cor-
rect data from the cloud. To provide a stable basis for ragp¥ewBox employs
the view manager on top of extd-cksum. The view manager eseatd exposes
views, consistent in-memory snapshots of the le systemchkhe synchroniza-
tion client then uploads. Our experiments show that ViewBetects and recovers
from both corruption and inconsistency, while incurringhnimal overhead.

Contents

Acknowledgements vii
Abstract iX
1 Introduction 1
1.1 Cooperative Data Protection in Local Storage 2
1.1.1 Data Protection AnalysisofZFS 3
1.1.2 ZFS: Zettabyte Reliability with Flexible End-to-end Data
Integrity 3
1.2 Cooperative Data Protection across Local and Cloudagéor. . . 5
1.2.1 Data Protection Analysis of Cloud Storage Services ... 5
1.2.2 ViewBox: Integrating File Systems with Cloud Storage
SEerviCes 6
1.3 Summary of Contributions /Outline 7
2 Threats to Data Protection 9
21 DataCorruption e 9
2.1.1 DiskCorruption, 9
2.1.2 Memory Corruption, 11
2.2 Datalnconsistency e 13
2.3 Summary ... e e e 14
3 Data Protection Analysis of Local File Systems 15
3.1 Background 16
311 ZFSOverview 16
3.1.2 ZFS On-disk Organization 17
3.1.3 ZFSIn-memory Structures 22
3.2 On-disk Data Integrity inZFS 24
3.21 Methodology 24

Xii

3.2.2 Resultsand Observations 25
3.3 In-memory Data IntegrityinZFS 27
3.3.1 Methodology, 27
3.3.2 Resultsand Observations 29
3.4 Probability Analysis of Memory Corruption 34
3.41 Methodology 34
3.42 Calculation 35
343 Results 35
3.5 Summary e 37
Z2FS: Cooperative Data Protection in Local Storage 39
4.1 Reliability of Storage Systems with Data Corruption .. 40
4.1.1 OVEeIVIEW v it 40
4.1.2 Models for Devices and Checksums 41
4.1.3 CalculatindPsys udc - -+« « v v e e 44
414 Example:NCFS 45
42 FromZFStoZFS 47
42.1 ZFS:theOriginalZFS 47
4.2.2 BZFS: ZFS with End-to-end Data Integrity 50
4.2.3 ZFS: ZFS with Flexible End-to-end Data Integrity 53
4.3 Discussion 59
431 ChecksumChaining 61
4.3.2 Integration with Existing Applications 65
433 ErrorHandling 66
44 Evaluation 67
441 Reliability.. o 68
4.4.2 Overall Performance 71
4.4.3 Impact of Checksum Switching 74
444 TraceReplay 75
45 Summary e e 76
Data Protection Analysis of Cloud Storage Services 79
51 Background e 80
5.1.1 Dropbox 80
512 Seale. 82
5.2 Data Protection Failures, 83
5.2.1 DataCorruption 83
5.2.2 CrashlInconsistency 85
5.2.3 Causallnconsistency 86

5.3 DISCUSSION o o 87
5.3.1 Where Synchronization ServicesFail 87
5.3.2 Where Local File Systems Fail 88

54 Summary e 89

ViewBox: Cooperative Data Protection across Local and Clad Stor-

age 91

6.1 Design. 92
6.1.1 Goals 93
6.1.2 FaultDetection 93
6.1.3 View-based Synchronization 94
6.1.4 Cloud-aided Recovery 98

6.2 Implementation 98
6.2.1 Extd-cksum 98
6.2.2 ViewManager 101
6.2.3 CloudHelper, 109

6.3 Evaluation 110
6.3.1 CloudHelper 110
6.3.2 Extd-cksum 111
6.3.3 ViewManager 112
6.3.4 ViewBox with Dropbox and Seale 113

6.4 Summary 115

Related Work 117

7.1 Faultinjection 117

7.2 Reliability Modeling 118

7.3 Techniques for Datalntegrity 911

7.4 Techniques for Data Consistency 012

Conclusion and Future Work 123

8.1 Summary e e 124
8.1.1 Cooperative Data Protection in Local Storage 124
8.1.2 Cooperative Data Protection across Local and Clooch§ 125

8.2 LessonslLearned 126

8.3 FutureWork 127
8.3.1 Characteristic Study of Data Corruption 271
8.3.2 Application-level Data Protection 812

8.3.3 Cooperative Data Protection in Networked StoragéeBys 129
8.4 ClosingWords. 129

Xiv

Chapter 1

Introduction

People are generating tremendous amount of data everydagorBe estimates,
there were 2.8 Zettabytes of data created in 2012, and therrgnod data is ex-
pected to double by 2015 [115]. Not only governments andaratfons, but also
regular persons have contributed to this data explosiostdyng musics, photos,
videos, and even email messages. Regardless of where gétadd, in a personal
computer, an enterprise server, or the cloud, the underigtorage systems are
responsible for preserving data correctly for a long time.

Unfortunately, storage systems are built upon imperfextware and software;
hardware errors, crash, and software bugs all can corrupt ddare events in
hard drives such as dropped writes or misdirected writasletale or corrupt data
on disk [3, 23, 89, 92]. Bits in memory get ipped due to chipfelds [63, 71,
97] or radiation [75, 133]. Untimely crash, if not handledperly, can lead to
inconsistent data in the le system [37, 129]. Software baigsalso a source of data
corruption, arising from low-level device drivers [111ystem kernels [38, 47], and
le systems [125, 126]. Even worse, design aws are not unown and can lead
to serious data loss or corruption [69].

As storage systems have evolved over the years, designersibeeloped var-
ious mechanisms to handle some of the aforementioned pnsbleBesides the
built-in hardware ECC in hard drives, many modern le syssesupport high-level
checksums to detect corruption [29, 91, 104], and some af theen provide repli-
cas inside the le system to facilitate recovery [29]. Unaemth the le system,
RAID is widely used to provide redundancy for recovery [88pwadays, backing
up data to the cloud is also an appealing solution to presiatee[67]. In case of
crash or power loss, le systems usually apply techniqued s journaling [116],
soft updates [50], or copy-on-write [62], to provide met@dar data consistency.

However, these protection techniques, while effectivebtgcting data in their
own domains, fail to provide comprehensive data protediorhe entire system.
As one example, many of the techniques are able to detecte@oslar from disk
corruption, but they cannot protect in-memory data [131F akother example,
cloud storage services usually protect its data using chee& and tend to store
multiple copies, but if the local le system exposes corrdata, corruption may be
propagated to the cloud, and thus pollute all the replicas]j1

All these failures occur due tisolated protectiorin storage systems, and we
proposecooperative data protectioto solve these problems. The goals of this dis-
sertation are two-fold: rst, to examine the threats to datatection in current stor-
age systems due to isolated protection; second, to devetbmigues that enable
components in storage systems to work cooperatively toigeeosomprehensive
data protection.

We address the goals of this dissertation in two aspectal &torage systems
and cloud storage services. For local storage systems, st@malyze the impact
of disk corruption and memory corruption on a modern le syst ZFS, and show
that memory corruption is largely ignored and poses greahtia data integrity
[131]. Then, we build ZFS, which embraces a new protection scheme called ex-
ible end-to-end data integrity and provides protectiondthbn-memory and on-
disk data without sacri cing much performance [130]. Fonud storage services,
especially cloud-based le synchronization services, wst examine how disk
corruption and system crashes could lead to the propagetibad data across all
synchronized devices [129]. Then we develop ViewBox, argrated le sys-
tem and synchronization service that provides data irttegrash consistency, and
even causal consistency for both local and cloud data [I2¥8.following sections
elaborate on each of these contributions of the dissentatio

1.1 Cooperative Data Protection in Local Storage

One of the primary challenges faced by storage systems igtegb data despite
the presence of imperfect components in the storage stadkel rst part of the

dissertation, we focus on data protection in local storagtems. Speci cally,

we rst use ZFS as an example and show that its isolated ityegheck does

not protect data in memory. Then, we propose and apply exéid-to-end data
integrity to ZFS to achieve cooperative data protection.

1.1.1 Data Protection Analysis of ZFS

File and storage systems have evolved various techniquiaridle corruption.
Different types of checksums can be used to detect whenptanuoccurs [25,
29, 104, 109], and redundancy, likely in mirrored or pakigsed form [86], can be
applied to recover from corruption. While such techniquesrent foolproof [69],
they clearly have made le systems more robust to disk cdionp

Unfortunately, the effects afhnemory corruptionon data integrity have been
largely ignored in le system design. Hardware-based mgnoorruption occurs
as both transiensoft errorsand repeatabléard errorsdue to a variety of radia-
tion mechanisms [27, 75, 133], and recent studies have owgdrtheir presence in
modern systems [72, 84, 97]. Software can also cause memonption; bugs can
lead to “wild writes” into random memory contents [34], thaslluting memory;
studies con rm the presence of software-induced memorgu@bions in operating
systems [2, 5, 14, 124].

To study how robust modern le systems are to disk and memoryuption,
we analyze a state-of-the-art le system, ZFS [29], by periimg fault injection
tests representative of realistic disk and memory corougti We choose ZFS for
our analysis because it is a modern and mature commerciaystem with nu-
merous robustness features, including end-to-end chexkslata replication, and
transactional updates; the result, according to the dessgis “provable data in-
tegrity” [29].

In our analysis, we nd that ZFS is indeed robust to a wide mnfdisk cor-
ruptions, thus partially con rming that many of its desigoajs have been met.
However, we also nd that ZFS often fails to maintain dateedrity in the face of
memory corruption. In many cases, ZFS is either unable tecti¢he corruption,
returns bad data to the user, or simply crashes.

1.1.2 ZFS: Zettabyte Reliability with Flexible End-to-end Data In-
tegrity

A more comprehensive approach to data protection shouldasmbkhe “end to
end” philosophy [94]. In this approach, checksums are geadrby an application
and percolate through the entire storage system. Whemgpddtia, the application
can check whether the calculated checksum matches thel stbezksum, thus
improving data integrity.

Unfortunately, the straight-forward end-to-end approhel two drawbacks.

The rst is performance depending on the cost of checksum calculation, perfor-

mance can suffer when repeatedly accessing data from timemery page cache.

4

The second igimeliness if a data block is corrupted in memory before being
ushed to disk, the corruption can only be detected when iater read by an
application, which is likely too late to recover from the gation.

To address these issues, we propose a concept calite end-to-end data
integrity. We argue that it is not necessary for all components on @edath to use
the same checksum. By carefully choosing a different chauokf®r each compo-
nent (and perhaps altering said checksum over time), theraysan deliver better
performance while still maintaining a high level of proieat By enabling all
components to handle checksums cooperatively, the systardatect and recover
from corruption in time.

To explore this exible approach, we design and implementibée end-to-
end data integrity within ZFS, resulting in a new variant gthive call Zettabyte-
reliable ZFS (ZFS). Z2FS exposes checksums to the application, and passes check-
sums through the page cache down to the disk system, thusrgnahd-to-end
veri cation. Z2FS uses two techniques to provide exible data protectidme Fst
is checksum chainingvhich carefully orders the generation of new checksum and
the veri cation of old checksum such that there is no vulbgiiy window for data
when it crosses domains (e.g., when moving from a strongelisinchecksum to
a weaker but more performant in-memory one). The secodukisksum switching
which enables a component (e.g., memory) to switch the cueaht is using dy-
namically, thus preserving a high level of reliability fdobks that remain resident
for extended periods of time. For comparison, we also devEled-to-End ZFS
(E?ZFS), which embraces the straight-forward end-to-endegtintn and uses only
one type of checksum for both the page cache and disk.

Underlying ZFS is an analytical framework that enables us to underselid r
ability of storage systems against data corruption. Thadéwork takes models of
devices and checksums used in a storage system as inputalantites the prob-
ability of undetected data corruption when reading a dataksirom the system as
a reliability metric. We de neZettabyte Reliabilityone undetected corruption per
Zettabyte read, as a reliability goal of storage systemsidé€giuby the reliability
goal, we use the framework to provide rationale behind &xibnd-to-end data
integrity.

Through fault injection experiments, we show th&F3 is able to detect and
recover from corruption that occurs to a block in memory beefbis ushed to disk
in the write path. Using both controlled benchmarks as weleal-world traces,
we demonstrate that?ES is able to meet or exceed the performance &S
while still providing Zettabyte reliability. Especiallyof workloads dominated by
warm reads, ZFS ourperforms EFS by up to 17%.

5

1.2 Cooperative Data Protection across Local and Cloud
Storage

With the emergence of cloud storage, especially in the fofrolaud-based le
synchronization services, local le systems are now cotetk¢o the cloud, and
user data becomes synchronized and replicated on multipleas. These services
are great additions to local le systems and provide bettetgetion for user data,
but the loose coupling of these services and the le systeatigally puts data
in danger in various ways. In the second part of the dissentatve focus on
new challenges to data protection across local and clowdgs#o We rst conduct
an analysis of various le synchronization services andashow they propagate
corrupt and inconsistent data to the cloud. Then, we bui@Wgiox, an integrated
synchronization service and le system in which the undedy le system works
cooperatively with the le synchronization service to pide comprehensive data
protection.

1.2.1 Data Protection Analysis of Cloud Storage Services

File synchronization services occupy a unique design fmEtween distributed le
systems, like NFS [95] or Coda [68], and le backup serviddse Mozy [8] or
Data Domain [132]. Like the former, le synchronization giees provide a means
for users to access their les on any machine connected tedghace. Like the lat-
ter, however, le synchronization services propagatellobanges asynchronously,
and often provide a means to restore previous versions ef furthermore, they
are only loosely integrated with the le system, allowingih to be portable across
a wide range of devices.

While the automatic propagation of les as they are modi edthio doubt key
to these services' success, the perceived reliability amdistency they provide is
also instrumental to their appeal. The Dropbox tour goearaasto state that “none
of your stuff will ever be lost” [44]. Unfortunately, the lse coupling of cloud
synchronization services with the underlying le systemegi the lie to this claim.
While the data stored remotely is generally robust, lodahtlsoftware is unable to
distinguish between deliberate modi cations and uniritardl errors, potentially
causing corruption to automatically propagate to all maesiassociated with a
user. Thus, despite the presence of multiple redundanespgiynchronization
destroys the user's data.

To understand this “false sense of security”, we perfornit fajections exper-
iments on several popular cloud-based synchronizationcesr. We rst examine
how these services can silently propagate data corrupdi@il synchronized de-

vices, and then show how these services cannot guaranteeatestistency with the
underlying le system after a crash. Furthermore, we shoat ghstronger level of
inconsistency, causal inconsistency, may occur and thusecaven more harm to
both local and cloud data.

1.2.2 ViewBox: Integrating File Systems with Cloud Storageéservices

The analysis reveals that the root cause of data proteditnds is the loose cou-
pling of synchronization services and local le systemsd diney take equal re-
sponsibilities for these failures. Therefore, we developwBox, a system that
integrates local le system and cloud-based synchroromatiervices to provide
better data integrity, crash consistency, and recovétabil

ViewBox synchronizes data between the local machine andltusl through
views in-memory snapshots of the local synchronized folderwiex relies on
three primary components to guarantee the correctneswbyviext4-cksum, the
view manager, and the cloud helper. Ext4-cksum serves aedhe le system,
which is able to detect corrupt and inconsistent data thralaga checksumming.
Atop ext4-cksum, we place the view manager, a le systemresite that creates
views and exposes views to the synchronization client. Téwe manager provides
consistency throughbloud journalingby creating views at le-system epochs and
uploading views to the cloud. To reduce the overhead of ramimy views, the
view manager employmcremental snapshottingy keeping only deltas (changed
data) in memory since the last view. Finally, in case of qotinn or crash, View-
Box uses an independent user-space daemon, the cloud, heljppgeract with the
server-backend and utilize the views on the cloud to redt@aystem to a correct
State.

We build ViewBox with two le synchronization services: Dubox [44], one
of the most popular synchronization services to date, aradlé&Sg9], an open
source synchronization service based on GIT [52]. Throedfalility experiments,
we demonstrate that ViewBox detects and recovers from tadal corruption, thus
preventing the corruption’'s propagation. We also show tipai a crash, ViewBox
successfully rolls back the local le system state to a pasly uploaded view,
restoring it to a causally consistent image. By comparingmBox to Dropbox or
Sea le running atop unmodi ed ext4, we nd that ViewBox incsiless than 5%
overhead across a set of workloads. In some cases, ViewBaxigproves the
synchronization time by 30%.

1.3 Summary of Contributions / Outline

Below is a summary of the contributions of the dissertatiwhich also serves as
an outline for the rest of the dissertation:

Threats to Data Protection: Chapter 2 provides background on various
threats to data protection in existing storage systemg&:atdisuption, mem-
ory corruption, and crashes.

Cooperative Data Protection in Local Storage:In Chapter 3, we present
an empirical analysis of the reliability of ZFS in the facedigk and memory
corruption. Then, in Chapter 4, we propose the concept dblexend-to-end
data integrity, introduce an analytical framework to pdevihe rationale be-
hind the concept, and implementiZS, which provides comprehensive data
protection (from both disk and memory corruption). The @ptc frame-
work, and techniques used in implementingF3, all together demonstrate
a holistic way to think about the performance-reliabilitpdeoff in storage
systems, which is the rst major contribution of the disadn.

Cooperative Data Protection across Local and Cloud StorageChapter 5
presents an analysis of data protection failures (focusimgdisk corruption
and crash) when le synchronization services are runningognof current
le systems. Chapter 6 describes our solution to the fourublems, View-
Box, an integrated le system and synchronization servihassynchronizes
data based on le-system views. Both the analysis and thdisal serve as
the second major contribution of this dissertation.

Related Work: Chapter 7 summarizes previous research efforts on protect-
ing data in storage systems.

Conclusion and Future Work: Chapter 8 concludes this dissertation, rst
summarizing our work and highlighting the lessons learrsed] then dis-
cussing various avenues for future work that arise from esearch.

Chapter 2

Threats to Data Protection

This chapter provides the motivation for the dissertatigndiescribing various
threats to data protection in storage systems. Speci calg/focus on two types
of threats, data corruption and data inconsistency. Dataugtion occurs mostly
due to hardware failures and software bugs, and we deschilgatwiappens, how
frequently it occurs, and how systems try to deal with it ict®m 2.1. Data incon-
sistency, on the other hand, usually results from the ldeyés improper handling
during an untimely system crash or reboot. We discuss hovsyltems provide
consistency and why data consistency is not always guaeirteSection 2.2.

2.1 Data Corruption

We now discuss data corruption in detail. Although it canunctt any place in a
storage system, we only focus on corruption on disk and in angnbecause both
are the major media for long-term data storage and accesses.

2.1.1 Disk Corruption

We de ne disk corruption as a state when any data accessextigk does not have
the expected contents due to some problem in the storade sthcs is different

from latent sector errors, not-ready-condition errors eswbvered errors [22] in
disk drives, where there is an explicit noti cation from theve about the error
condition.

10

Why It Happens

Disk corruption happens due to many reasons originatingffateht layers of the
storage stack. Errors in the magnetic media lead to the gmobf “bit-rot” where
the magnetic properties of a single bit or few bits are dama@pikes in power,
erratic arm movements, and scratches in media can also catrsgtion in disk
blocks [19, 98, 113]. On-disk ECC catches many (but not dlthese corruption.

Errors are also induced due to bugs in complex drive rmwanedern drives
contain hundreds of thousands of lines of rmware code [8%ome reported
rmware problems include a misdirected write where the rame accidentally
writes to the wrong location [118] or a lost write (or phantevrite) where the
disk reports a write as completed when in fact it never resithe disk [109]. Bus
controllers have also been found to incorrectly report desfuests as complete or
to corrupt data [55, 117].

Finally, software bugs in operating systems are also palesturces of cor-
ruption. Buggy device drivers can issue disk requests watl parameters or
data [38, 47, 111]. Software bugs in the le system itself canse incorrect data
to be written to disk.

How Frequently It happens

Disk corruption are prevalent across a broad range of mattares. There is much
anecdotal evidence of corruption in hard disks [25, 109].1k82008, in a study

of 1.53 million disk drives over 41 months [23], Bairavasaraim et al. show that
more than 400,000 blocks had checksum mismatches, 8% ohwece discov-

ered during RAID reconstruction, creating the possibitfyreal data loss. They
also found that nearline disks develop checksum mismagiesder of magnitude
more often than enterprise class disk drives.

How to Handle It

Systems use a number of techniques to handle disk corrupMerdiscuss some of
the most widely used techniques along with their limitasion
Checksums Checksums are small pieces of data computed over datasblatik
a speci ¢ function and are used to verify data integrity. Bardisk data integrity,
checksums are stored or updated on disk during write opesatind read back to
verify the block or sector contents during reads.

Many storage systems have used checksums for on-disk detgifp, such as
Tandem NonStop [25] and NetApp Data ONTAP [109]. Similarai{seimming
techniques have also been used in le systems [29, 91].

11

However, Krioukov et al. show that checksumming, if not éalhg integrated
into the storage system, can fail to protect against comfalgxres such as lost
writes and misdirected writes [69]. Further, checksumnaiogs not protect against
corruption that happens due to bugs in software, typicalliaige code bases [38,
125].

Redundancy Redundancy in on-disk structures also helps to detectiarshme
cases, recover from disk corruption. For example, somed®-Tie systems such
as ReiserFS [30] store page-level information in eachimaigpage in the B-Tree.
Thus, a corrupt pointer that does not connect pages in atdjdeeels is caught
by checking this page-level information. Similarly, ex@] and ext3 [116] use
redundant copies of superblock and group descriptors tavezdrom corruption.

However, it has been shown that many of these le systemkssstinetimes

fail to detect corruption, leading to greater problems [8Blirther, Gunawi et al.
show instances where ext2/ext3 le system checkers fait®available redundant
information for recovery [57].
RAID : Another popular technique is to use a RAID storage systé&hy@derneath
the le system. However, RAID is designed to tolerate theslofa certain number
of disks or blocks (e.g., RAID-5 tolerates one, and RAID-@)and it may not
be possible with RAID alone to accurately identify the bldak a stripe) that is
corrupted. Secondly, some RAID systems have been showrvéo &as where a
single block loss leads to data loss or silent corruption. [Bfhally, not all systems
incorporate multiple disks, which limits the applicalilbf RAID.

2.1.2 Memory Corruption

We de ne memory corruption as the state when the contentssaed from the main
memory have one or more bits changed from the expected viabma & previous
store to the location). From the software perspective, iy mat be possible to
distinguish memory corruption from disk corruption on adefa disk block.

Why It Happens

Errors in the memory chip are one source of memory corruptdMamory errors
can be classi ed asoft errorswhich randomly ip bits in RAM without leaving
any permanent damage, anard errorswhich corrupt bits in a repeatable manner
due to physical damage.

Researchers have discovered radiation mechanisms theg¢ eators in semi-
conductor devices at terrestrial altitudes. Nearly thexmades ago, May and Woods
found that if an alpha particle penetrates the die surfdcean cause a random,

12

single-bit error [75]. Zeigler and Lanford found that cosmays can also disrupt
electronic circuits [133]. More recent studies and meanergs con rm the effect
of atmospheric neutrons causing single event upsets (SEtdgmories [83, 84].

Memory corruption can also happen due to software bugs. $heotiunsafe
languages like C and C++ makes software vulnerable to bugs as dangling
pointers, buffer over ows and heap corruption [28], whidnaesult in seemingly
random memory corruption.

How Frequently It Happens

Early studies and measurements on memory errors provideerse of soft errors.
Data collected from a vast storehouse of data at IBM over geHs-period [84]
con rmed the presence of errors in RAM and that the upsetsraterease with
elevation, indicating atmospheric neutrons as the likalyse.

In 2009, a measurement-based study of memory errors in @ laeg of com-
modity servers over a period of 2.5 years [97], Schroedek ebserve DRAM er-
ror rates that are orders of magnitude higher than prewaeslorted, with 25,000
to 70,000 FIT per Mbit (1 FIT equals 1 failure in 1@evice hours). They also
nd that more than 8% of the DIMMSs they examined (from muléplendors, with
varying capacities and technologies) were affected byrbirg each year. Finally,
they also provide strong evidence that memory errors araragded by hard errors,
rather than soft errors.

Another study [72] of production systems including 300 maek for a multi-
month period found 2 cases of suspected soft errors and @ chdeard errors
suggesting the commonness of hard memory faults.

Besides hardware errors, software bugs that lead to menwryption are
widely extant. Reports from the Linux Kernel Bugzilla Dagagk [5], USCERT Vul-
nerabilities Notes Database [14], CERT/CC advisoriesd8]well as other anec-
dotal evidence [34] show cases of memory corruption hamgedie to software
bugs.

How to Handle It

Systems use both hardware and software techniques to haedbery corruption.
Below, we discuss the most relevant hardware and softwehmigues.

ECC: Traditionally, memory systems have employed Error CdivecCodes [35]
to correct memory errors. Unfortunately, ECC is unable tdresks all soft-error
problems. Studies found that the most commonly-used ECGQritighs called
SEC/DED (Single Error Correct/Double Error Detect) carower from only 94%

13

of the errors in DRAMs [48]. Further, many consumer systemsot use ECC
protection in order to reduce cost [59].

More sophisticated techniques like Chipkill [64] have be@eoposed to with-
stand multi-bit failure in DRAMs. However, such technigue® expensive and
have been restricted to proprietary server systems, lgdkimproblem of memory
corruption open in commodity systems.

Programming models and tools Another approach to deal with memory errors
is to use recoverable programming models [80] at differeme¢ls (rmware, op-
erating system, and applications). However, such teclesigequire support from
hardware to detect memory corruption. Further, a holistiange in software is
required to provide recovery solution at various levels.

Much effort has also gone into detecting software bugs thase memory cor-
ruption. Tools such as metal [58] and CSSV [42] apply statialgsis to detect
memory corruption. Others such as Purify [61] and SafeMed) (e dynamic
monitoring to detect memory corruption at runtime. Howewasrdiscussed previ-
ously, software-induced memory corruption still remainseblem.

2.2 Data Inconsistency

The problem of data inconsistency usually occurs due toyktem failing to pro-
vide strong consistency guarantee upon a crash. File systemmtains various
metadata structures to organize data. Performing a sirlglsystem operation,
such as write(), usually involves changes to several meadaictures. For exam-
ple, appending a block to a le in ext3 requires at least threeks to be written to
disk: a data bitmap block, an inode block, and the data blbtkrder to correctly
apply such an operation to the on-disk le system image,tedbe blocks must be
written to disk as a whole. However, when crash occurs, ibssible that some of
the changes do not make to the disk. For instance, if the diati 5 not written,
the le would point to garbage data, resulting diata inconsistency If the data
bitmap block is not written, the actual status of the datakblwused by the inode)
does not match the bitmap (free), which leadsetadata inconsistency

File system developers have been using several techniquekitess the con-
sistency problem. One simple approach is to let the inctarsty occur and then
use a tool, usually called le system checker (fsck) [76],xdhe inconsistency.
This approach can x metadata inconsistency in most casedt bannot, for ex-
ample, detect the data inconsistency case mentioned abitvefore, many le
systems have built-in mechanism to prevent inconsistemayritime, and the most
common technique is journaling. Journaling, or write-ahlegging, provides con-

14

sistency by grouping multiple updates into transactionsiclvare rst written to
a circular log and then later checkpointed to their xed lima in the le sys-
tem. Journaling is quite popular, seeing use in ext3 [1D&% €/3], XFS [110],
HFS+ [21], and NTFS [79]. Recording all data and metadat&énlég can pro-
vide data consistency, but doing so doubles all write trafche system. Thus,
normally, these le systems only journal metadata, which E&ad to inconsisten-
cies in le data upon recovery, even if the le system caréfurders its data and
metadata writes (as in ext4's ordered mode, for instance).

Data inconsistency can be avoided entirely using copy-otewbut it is an
infrequently used solution. Copy-on-write never overesitdata or metadata in
place; thus, if a crash occurs mid-update, the originaéstall still exist on disk,
providing a consistent point for recovery. Implementingpy:@n-write involves
substantial complexity, however, and only recent le-syss, like ZFS [29] and
btrfs [91], support it for personal use.

2.3 Summary

Modern storage systems are facing great challenges ingpirggedata. Disk errors,
memory bit ips, and software bugs can all corrupt data. Thmbination of un-
timely crash and imperfect crash handling of le system nmegdl to data inconsis-
tency. We have presented some existing mechanisms to disath@se problems,
but unfortunately they are still separated techniques ammhat provide compre-
hensive data protection. In the following chapters we vhibw why they fail to
protect data in local le systems as well as cloud storageices, and explore new
cooperative techniques to maintain data integrity andistarsy.

15

Chapter 3

Data Protection Analysis of Local
File Systems

Disk corruption is one of the primary sources for unrelidypiln data storage. As
le systems have evolved over the years, designers haveséacon this problem
and devised techniques to deal with it [29, 86, 104]. Unfaately, memory cor-
ruption has been ignored and poses a growing threat to dagrity. As discussed
in Section 2.1.2, recent studies measured increasing nyeenar rate due to hard-
ware faults, and various bug reports show the occurrencesofarny corruption due
to software bugs.

The problem of memory corruption is critical for le systertmt cache a great
deal of data in memory for performance. Almost all modern sgstems use a
page cache or buffer cache to store copies of on-disk datanatadata in mem-
ory. Moreover, frequently-accessed data and importanaaatd may be cached
in memory for long periods of time, making them more sustdptto memory
corruption.

In this chapter, we ask: how robust are modern local le systé¢o disk and
memory corruptions? To answer this query, we perform a sefidéault injection
experiments on ZFS to study how it responds to disk and meowryptions. Be-
fore we go into details about the experiments, we rst we iessome background
on ZFSin Section 3.1. Then, we present our analysis of datagiron in ZFS with
disk and memory corruptions in Section 3.2 and Section 8shectively. Finally,
Section 3.4 gives an analysis of the probabilities of déferfailure scenarios in
ZFS due to memory errors.

16

3.1 Background

ZFS is a state-of-the-art le system from Sun (now Oracle)jchhakes a uni ed
approach to data management. ZFS provides data integdtsédctional consis-
tency, scalability, and a multitude of useful features sastsnapshots, copy-on-
write clones, and simple administration [29]. In this sefiwe rst present a
high-level overview of ZFS, focusing on the reliability ni@misms. Then, we dis-
cuss the disk layout of ZFS in detail and illustrate how ZF§aoizes metadata and
data through a on-disk walkthrough. Finally, we brie y diss in-memory data
structures.

3.1.1 ZFS Overview

ZFS claims to provide provable data integrity by using téghes like checksums,
replication, and transactional updates. Further, the tisgpooled storage in ZFS
lends it additional RAID-like reliability features. In theords of the designers,
ZFS is the “The Last Word in File Systems.” We now describerd¢fiability mech-
anisms in ZFS.

Checksums for data integrity checking ZFS maintains data integrity by using
checksums for on-disk blocks. The checksums are kept depfiocem the cor-
responding blocks by storing them in the parent blocks. ZFfiges for these
parental checksums of blocks by using a generic block pogttacture to address
all on-disk blocks.

The block pointer structure contains the checksum of thekbibreferences.
Before using a block, ZFS calculates its checksum and veit against the stored
checksum in the block pointer. The checksum hierarchy foanself-validating
Merkle tree [78]. With this mechanism, ZFS is able to detdehsdata corruption,
such as bit rot, phantom writes, and misdirected reads aiteswr
Replication for data recovery. Besides using RAID techniques (described below),
ZFS provides for recovery from disk corruption by keepinglieas of certain “im-
portant” on-disk blocks. Each block pointer contains peaigtto up to three copies
of the block being referenced. By default ZFS stores mdtgapies for metadata
(three copies for pool metadata and two copies for le sysiteatadata) and one
copy for data. Upon detecting a corruption due to checksusmaich, ZFS uses a
redundant copy with a correctly-matching checksum.

COW transactions for atomic updates ZFS maintains data consistency in the
event of system crashes by using a copy-on-write transedtigppdate model. ZFS
manages all metadata and data as objects. Updates to altobje grouped to-
gether as a transaction group. To commit a transaction gdjsk, new copies

17

are created for all the modi ed blocks (in a Merkle tree). Tioet of this tree
(the uberblocR is updated atomically, thus maintaining an always-cadestsdisk
image. In effect, the copy-on-write transactions alondgweibck checksums (in a
Merkle tree) preclude the need for journaling [120], thodd#s occasionally uses
a write-ahead log for performance reasons.

Storage pools for additional reliability: ZFS provides additional reliability by
enabling RAID-like con guration for devices using a commstorage pool for
all zfs instances. ZFS presents physical storage to leesgstin the form of a
storage pool (calledpoo). A storage pool is made up efrtual devices(vdev).
A virtual device could be a physical device (e.g., disks) @agcal device (e.g., a
mirror that is constructed by two disks). This storage p@ol be used to provide
additional reliability by using devices as RAID arrays. Zpf®vides automatic
repairs in mirrored con gurations and provides a disk sbiof facility to detect
latent sector errors.

3.1.2 ZFS On-disk Organization

ZFS organizes its metadata and data into a two level arthitecas shown in
Figure 3.1. The zfs level contains on-disk structures thatused to represent a
zfs instance, such as a le system, a snapshot, or a clonezddw level maintains
data structures that keep track of all le system instancektheir relationship. We
now discuss some of these basic on-disk structures andusege in ZFS.

Basic Structures

Block pointers: A block pointer is the basic structure in ZFS for addressing
block on disk and connecting different structures. It pteg a generic mechanism
to keep parental checksums and replicas of on-disk blockguré 3.2 shows the
block pointer used by ZFS. As shown, the block pointer caostaip to three block
addresses, called DVAddta virtual addressgseach pointing to a different block
having the same contents. These are referred tites blocks The number of
DVAs varies depending on the importance of the block. Theerumolicy in ZFS
is that there is one DVA for user data, two DVAs for le systenetadata, and
three DVAs for global metadata across all le system insénio the pool [81]. As
discussed earlier, the block pointer also contains a sicayby of the checksum of
the block being pointed to.

Objects. All blocks on disk are organized in objects. Physicallyoaject is repre-
sented on disk by a structure calléabde _phys _t (hereafter referred to amods.

A dnode contains an array of up to three block pointers, eðach points to

18

LEGEND

|| vdev label
__

i - uberblock

E object set block

\:] dnode block

_

HRN

D indirect block

D data block

Figure 3.1:ZFS Two-level Layout The gure shows the two-level layout of ZFS on-
disk structures.

either a leaf block (e.g., a data block) or an indirect bldcl of block pointers).
These blocks pointed to by the dnode form a block tree. A dradsie contains a
bonus buffer at the end, which stores an object-speci ¢ datacture for different
types of objects. For example, a dnode of a le object costarstructure called
znode _phys _t (znod# in the bonus buffer, which stores le attributes such as ac-
cess time, le mode and size of the le. The dnode then poiata block tree with
data blocks at the leaf level, as shown in Figure 3.1.

Object sets Object sets are used in ZFS to group related objects. An gheam
of a object set is a le system, which contains le objects afickctory objects
belonging to this le system. An object set is representedabstructure called
objset _phys t, which consists of a meta dnode and a ZIL (ZFS Intent Log)
header. The meta dnode points to a group of dnode blocks;edn@gresenting
the objects in this object set are stored in these dnode $lodihe object de-

19

L

e

« =

Figure 3.2:Block pointer The gure shows how the block pointer structure points to (up
to) three copies of a block (ditto blocks), and keeps a siolgéeksum.

Level | Object Name

Simpli ed Explanation

MOS dnode

A dnode object that contains dnode blocks, which store dnode
representing pool-level objects.

zpool | Object directory

A ZAP object whose blocks contain name-value pairs referenc
ing further objects in the MOS object set.

Dataset

It represents an object set (e.g., a le system) and traskela-
tionships with other object sets (e.g., snapshots and sJone

Dataset directory

It maintains an active dataset object along with its chilchdats.
It has a reference to a dataset child map object. It also aiagt
properties such as quotas for all datasets in this datasetaliy.

Dataset child map

A ZAP object whose blocks hold name-value pairs referencing
child dataset directories.

FS dnode

zfs

A dnode object that contains dnode blocks, which store dnode
representing lesystem-level objects.

Master node

A ZAP object whose blocks contain name-value pairs referenc
ing further objects in this le system.

File

An object whose blocks contain le data.

Directory

A ZAP object whose blocks contain name-value pairs referenc
ing les and directories inside this directory.

Table 3.1:Summary of ZFS objects visitedThe table presents a summary of all ZFS
objects visited in the walkthrough, along with a simpli egptanation. Note that ZAP
stands for ZFS Attribute Processor. A ZAP object is usedai@ stame-value pairs.

scribed by the meta dnode is called “dnode object”. The Zladee points to a
list of blocks, which holds transaction records for ZFS'gdong mechanism. The
objset _phys _t structure is stored in apbjset block

20

Datasets An object set is eventually encapsulated by a zpool-lebgat called
dataset. A dataset could be a le system, a clone, or a snap&huataset contains
statistics such as the space consumption of an object setramks its relationship
with other related datasets. For example, a le system datagintains the inter-
dependency between the le system and its snapshots andscloA dataset is
represented by a dnode withdal _dataset _phys _t structure in the bonus eld.
The dnode itself does not point to the objset block; it isdble_dataset _phys _t
structure that contains a block pointer referencing theettjlock.

Uberblock: As shown in Figure 3.1, all zpool-level objects form anotbbject
set and the corresponding objset block is pointed to by abitoak pointer in an
uberblock An uberblock (similar to a superblock) is used to provideess to the
current pool data and verify its integrity. The uberbloclsétf-checksummed and
updated atomically.

Vdev label: Each physical vdev is labeled withvalev labelthat describes this
device and other related virtual devices. Four copies ofabel are stored in each
physical vdev to provide redundancy and a two-stage updathamism is used to
guarantee that there is always a valid vdev label in the de\if8]. Every vdev
label contains an array of uberblocks; updating an ubekbiomlves writing the
new uberblock to the next entry in the array (in a round robshfon) and mark the
new entry the active uberblock. Therefore, if a crash ocdursg the update, ZFS
will always fall back to the previous uberblock, thus guaeaing consistency.

On-disk Layout

Next, we present more details on ZFS on-disk layout. Thiswie® will help
the reader to understand the range of our fault injectioreexyents presented in
later sections. A complete description of ZFS on-disk $tm&s can be found else-
where [108].

For the purpose of illustration, we demonstrate the stegtsARS takes to locate
a le system and to locate le data in it in a simple storage pdogure 3.3 shows
the on-disk layout of the simpli ed pool with a sample le ggsn called “myfs”,
along with the sequence of objects and blocks accessed by XAB8mmary of
all visited objects is described in Table 3.1. Note that wip ke details of how
in-memory structures are set up and assume that data andataetae not cached
in memory to begin with.

|

Figure 3.3:ZFS On-disk Walk The gure illustrates a walkthrough of on-disk structurefiszé-S to locate a data block in a le

system “myfs”. Zpool contains a sample le system named ShyAll data structures are shown by rounded boxes, and td@sk
shown by rectangular boxes. Solid arrows point to allocdiktks and dotted arrows represent references to objestderblocks.

The legend at the top shows the types of on-disk blocks aiatrgents.

TZ

22

As shown in the gure, four copies of vdev labels are locatedced locations
on the disk (two each at the start and end). The active ubskldofound in any
one of the labels (step 1). The uberblock points to a metacbbgt (MOS) (step
2), which is an object set holding pool-wide information @t@scribing and man-
aging relationships between various le system instan&asce MOS is pool-wide
metadata, there are three copies of the block containing it.

A special object in MOS called the object directory is usedkeep track of
further zpool-level objects (step 3 and 4). The object dingccontains references
(object numbers) to various other objects in the object®@at of these references
is the root dataset directory (step 5). A dataset directagapsulates a group of
related datasets and maintains their common propertieb, agiquota, block size,
checksum algorithm, etc. Every zfs in zpool has a correspgndbtaset directory.
A dataset directory always has a single “active datasetichvuepresents the active
zfs instance; other datasets are its snapshots, clone3 hetiefore, the root dataset
directory represents the root le system in the pool and itded to access all child
dataset directories.

The root dataset directory points to a dataset child mapcobgtep 6), which
contains references to all child dataset directoriesuifing “myfs” (step 7). Fi-
nally, the dataset directory of “myfs” is found (step 8) ahd active dataset of the
directory points to the current “myfs” le system (step 9)hd object set pointed
to by this dataset contains further le-system speci ¢ nutia structures (step 10).
Since the objset block is zfs-level metadata, ZFS keeps dpms of the block. The
“myfs” object set further points to several layers of indirblocks which eventually
lead to a large array of dnodes describing le system objgstep 11-13). Since all
these blocks are also le-system speci ¢ metadata, theeetwo copies of all the
indirect blocks as well as the dnode blocks at the leaf level.

There is a special object called master node for each leesystit contains
references to the root directory of a le system (step 14)e Tdot directory is then
traversed to nd further child directories and les in the yfis” le system (step
15-17). Finally, the le objects contain the block pointécstheir corresponding
data blocks (step 18).

3.1.3 ZFS In-memory Structures

ZFS in-memory structures can be classi ed into two categgorthose that exist in
the page cache and those that are in memory outside of thecpabe; for conve-
nience we call the lattan-heapstructures. Whenever a disk block is accessed, it
is loaded into memory. Disk blocks containing data and negtadre cached in the
ARC page cache [77], and stay there until evicted. Data kl@ck stored only in

23

7
v
A
v

] B B

Figure 3.4:Lifecycle of a block This gure illustrates one example of the lifecycle of
a block. The left half represents the read timeline and tiyatrhalf represents the write
timeline. The black dotted line is a protection boundarypbewhich a block is protected
by the checksum, otherwise unprotected.

the page cache, while most metadata structures are stdvethithe page cache (as
copies of on-disk structures) and the heap. Note that blookgrs inside indirect
blocks are also metadata, but they only reside in the padeecaddberblocks and
vdev labels, on the other hand, only stay in the heap.

To help the reader understand the vulnerability of ZFS to orgroorruptions
discussed in later sections, Figure 3.4 illustrates onenpla of the lifecycle of
a block (i.e., how a block is read from and written asynchustp to disk). To
simplify the explanation, we consider a pair of blocks in gththe target block to
be read or written is pointed to by a block pointer containethe parental block.
The target block could be a data block or a metadata block. pEinental block
could be an indirect block (full of block pointers), a dnodedk (array of dnodes,
each of which contains block pointers), or an object setlb{aanode is embedded
in it). The user of the block could be a user-level applicatio ZFS itself. Note
that only the target block is shown in the gure.

At rst, the target block is read from disk to memory. For re#liere are two
scenarios, as shown in the left half of Figure 3.4. On therestd of a target block,
itis read from the disk and immediately veri ed against tiiecksum stored in the
block pointer in the parental block. Then the target blockeisirned to the user.
On a subsequent read of a block already in the page cacheatieaguest gets the
cached block from the page cache directly, without veriftine checksum.

In both cases, after the read, the target block stays in the pache until
evicted. The block remains in the page cache for an unboumdexal of time
depending on many factors such as the workload and the ceplaement policy.

After some time, the block is updated. The write timelindlissirated in the
right half of Figure 3.4. All updates are rst done in the pagehe and then ushed
to disk. Thus before the updates occur, the target blockligrein the page cache

24

already or just loaded to the page cache from disk. After thieewthe updated
block stays in the page cache for at most 30 seconds and tisenshed to disk.

During the ush, a new physical block is allocated and a newokisum is
generated for the dirty target block. The new disk addresdscaecksum are then
written to the block pointer contained in the parental blatkis making it dirty.
After the target block is written to the disk, the ush procee continues to allocate
a new block and calculate a new checksum for the parentakblglich in turn
dirties its subsequent parental block. Following the upslaff block pointers along
the tree (solid arrows in Figure 3.3), it nally reaches theetblock which is self-
checksummed. After the ush, the target block is kept in taggpcache until it is
evicted.

3.2 On-disk Data Integrity in ZFS

In this section, we analyze the robustness of ZFS agairistdisuptions. Our aim
isto nd whether ZFS can maintain data integrity under aefgrf disk corruption
scenarios. Speci cally, we wish to nd if ZFS can detect amrdaver from all disk
corruptions in data and metadata and how ZFS reacts to heuttipck corruptions
at the same time. Through experiments, we nd that ZFS is abietect all and
recover from most disk corruptions.

3.2.1 Methodology

Now we present the methodology of our reliability analysisZ6S against disk
corruptions. We discuss our fault injection framework estd then present our
test procedures and workloads.

Fault Injection Framework

Our experiments are performed on a 64-bit Solaris Expresanmity Edition
(build 108) virtual machine with 2GB memory. We use ZFS pasision 14 and
ZFS le system version 3. We run ZFS on top of a single disk for experiments.

To emulate disk corruptions, we developed a fault injectramework consist-
ing of a pseudo-driver to perform fault injection on diskdke and an application
for controlling the experiments. The pseudo-driver is agéad Solaris layered
driver that interposes between the ZFS virtual device aadlibk driver beneath.
We analyze the behavior of ZFS by looking at return valuesckimg system logs,
and tracing system calls.

25

Test Procedure and Workloads

In our tests, we wanted to understand the behavior of ZFSstoairruptions on
different types of blocks. We injected faults by ipping siat random offsets in
disk blocks. Since we used the default setting in ZFS for aesgion (metadata
compressed and data uncompressed), our fault injectimmdesupted compressed
metadata and uncompressed data blocks on disk. We injenittd 6n nine differ-
ent classes of ZFS on-disk blocks and for each class, wepteda single copy as
well as all copies of blocks.

In our fault injection experiments on pool-wide and le syst level metadata,
we used “mount” and “remount” operations as our workloade Thount” work-
load indicates that the target block is corrupted with thel gxported and “myfs”
not mounted, and we subsequently mount it. This workloade®ZFS to use on-
disk copies of metadata. The “remount” workload indicated the target block is
corrupted with “myfs” mounted and we subsequently umourt mount it. ZFS
uses in-memory copies of metadata in this workload.

For injecting faults in le and directory blocks in a le sysin, we used two
simple operations as workloads: “create le” creates a néin a directory, and
“read le” reads a le's contents.

3.2.2 Results and Observations

The results of our fault injection experiments are shownabld 3.2. The table
reports the results of experiments on pool-wide metadalalarsystem metadata
and data. It also shows the results of corrupting a singlg espwvell as all copies
of blocks. We now explain the results in detail in terms of teservations we
made from our fault injection experiments.

Observation 1. ZFS detects all corruptions due to the use of checksums
our fault injection experiments on all metadata and datafomed that bad data
was never returned to the user because ZFS was able to diétmmtraptions due
to the use of checksums in block pointers. The parental clueck are used in ZFS
to verify the integrity of all the on-disk blocks accessecheTonly exception are
uberblocks, which do not have parent block pointers. Caiwap to the uberblock
are detected by the use of checksums inside the uberbl@ik its

Observation 2: ZFS gracefully recovers from single metadata block corrup-
tions For pool-wide metadata and le system wide metadata, ZESvwered from
disk corruptions by using the ditto blocks. ZFS keeps thiite 8locks for pool-
wide metadata and two for le system metadata. Hence, onesibigck corruption
to metadata, ZFS was successfully able to detect the cmrugbd use other avail-

26

Single All
ditto ditto
o) =@
2502 | 25g
[o= [o=
JECR | 2EG®
Level Block ELGL | ELGY
vdev label RR ER
uberblock RR ER
zpool .
MOS object set block RR ER
MOS dnode block RR ER
myfs object set block| RR ER
myfs indirect block RR ER
zfs myfs dnode block RR ER
dir ZAP block RR EE
le data block E E

! excluding the uberblocks contained in it.

Table 3.2: On-disk corruption analysis The table shows the results of on-disk ex-
periments. Each cell indicates whether ZFS was able to excivom the corruption (R),
whether ZFS reported an error (E), whether ZFS returned bathdo the user (B), or
whether the system crashed (C). Blank cells mean that thkleaat was not exercised for
the block.

able correct copies to recover from it; this is shown by tHis¢R) in the “Single
ditto” column for all metadata blocks.

Observation 3: ZFS does not recover from data block corruptiof®r data
blocks belonging to les, ZFS was not able to recover fromraptions. ZFS de-
tected the corruption and reported an error on reading tteeldack. Since ZFS
does not keep multiple copies of data blocks by default, liblsavior is expected;
this is shown by the cells (E) for the le data block.

Observation 4: In-memory copies of metadata help ZFS to recover from se-
rious multiple block corruptionsin an active storage pool, ZFS caches metadata
in memory for performance. ZFS performs operations on tisasbed copies of
metadata and writes them to disk on transaction group casnifiitese in-memory
copies of metadata, along with periodic transaction cosntielp ZFS recover
from multiple disk corruptions.

In the “remount” workload that corrupted all copies of ubded, ZFS recov-
ered from the corruptions because the in-memory copy of ttieeauberblock
remains as long as the pool exists. The in-memory copy isesuiestly written
to a new disk block in a transaction group commit, making tidecorrupted copy

27

void. Similar results were obtained when corrupting othmslpvide metadata and
le system metadata, and ZFS was able to recover from thedgpheublock cor-
ruptions (R).

Observation 5: ZFS cannot recover from multiple block corruptions affect-
ing all ditto blocks when no in-memory copy exigter le system metadata, like
directory ZAP blocks, ZFS does not always keep an in-memopy cinless the di-
rectory has been accessed. Thus, on corruptions to bovhbitiitks, ZFS reported
an error. This behavior is shown by the results (E) for doges indicating for
the “create le” and “read le” operations. Note that we perfned these corrup-
tions without rst accessing the directory, so that thergem@o in-memory copies.
Similarly, in the “mount” workload, when the pool was inaeti(exported) and
thus no in-memory copies existed, ZFS was unable to recowar multiple disk
corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclusiatraetmactive storage
pool is likely to tolerate more serious disk corruptionsitlaa inactive one.

In summary, ZFS successfully detects all corruptions andvers from them
as long as one correct copy exists. The in-memory cachingamaodic ushing of
metadata on transaction commits help ZFS recover fromseddsk corruptions
affecting all copies of metadata. For user data, ZFS doekasqt redundant copies
and is unable to recover from corruptions. ZFS, howeveedstthe corruptions
and reports an error to the user.

3.3 In-memory Data Integrity in ZFS

Although ZFS was not speci cally designed to tolerate meynoorruptions, we
still would like to know how ZFS reacts to memory corruptipns., whether ZFS
can detect and recover from a single bit ip in data and metadéocks. In this
section, we perform a series of fault injection experimeatstudy the behavior of
ZFS in the presence of memory corruptions. We nd that ZFSrwprecautions
for memory corruptions: bad data blocks are returned to slee or written to disk,
le system operations fail, and many times the whole systeasites.

3.3.1 Methodology

Now we discuss the fault injection framework and the testedore and work-
loads. The injection framework is similar to the one usedofodisk experiments.
The only difference is the pseudo-driver, which in this ¢asteracts with the ZFS
stack by calling internal functions to locate the in-memstryctures.

28

Test Procedure and Workloads

Object Data Structures Workload

MOS dnodet, dnodephyst

dnode zfs create,

Object dnodet, dnodephyst, zfs destroy,

directory mzapphyst, mzapentphyst zfs rename,

Dataset dnodet, dnodephyst, zfs list,
dsldatasefphyst zfs mount,

Dataset dnodet, dnodephyst, zfs umount

directory dslLdir_physt

Dataset dnodet, dnodephyst,

child map | mzapphyst, mzapentphyst

FS dnode | dnodet, dnodephyst zfs umount,

Master dnodet, dnodephyst, path traversal

node mzapphyst, mzapentphyst

File dnodet, dnodephyst, open, close, Iseek, read,
znodephyst write, access, link, unlink,

Dir dnodet, dnodephyst, rename, truncate
znodephyst, (chdir, mkdir, rmdir)
mzapphyst, mzapentphyst

Table 3.3:Summary of Tested ObjectsThe table presents a summary of all ZFS ob-
jects corrupted in our in-memory analysis, along with thddta structures and the work-
loads exercised on them.

We wished to nd out the behavior of ZFS in response to coianst in differ-
ent in-memory objects. Since all data and metadata in meareryncompressed,
we performed a controlled fault injection in various obgedtor metadata, we ran-
domly ipped a bit in each individual eld of the structure garately; for data, we
randomly corrupted a bit in a data block of a le in memory. \epeated each fault
injection test ve times. We performed fault injection testn nine different types
of objects at two levels (zfs and zpool) and exercised diffeset of workloads as
listed in Table 3.3. Table 3.4 shows all data structureslentie objects and all the
elds we corrupted during the experiments.

For data blocks, we injected bit ips at an appropriate tirsalascribed below.
For reads, we ipped a random bit in the data block after it eagled to the page
cache; then we issued a subsequent read() on that block tbZ€g returned the
corrupted block. In this case, the read() call fetched tbelbfrom the page cache.
For writes, we corrupted the block after the write() callshed but before the target
block was written to the disk.

Data Structure

29

Fields

dnodet

dn.nlevels,
dn.indblkshift,
dn.datablkszsec,
dn_.compress,
dn_checksum,
dn_type

dnbonustype,
dnnblkptr,
dmaxblkid,
drbonuslen,

dnodephyst

dn.nlevels,
dn.indblkshift,
dn_.datablkszsec,
dn_.compress,
dn.checksum,
dn_ags,

dnbonustype,
dnnblkptr,
dmaxblkid,
dibonuslen,

driype, dnused,

mzapphyst

mz_block type, mzsalt

mzapentphyst

mzevalue, mzename

znodephyst

zp_mode, zpsize, zplinks,
Zp_ ags, zp_parent

dslLdir_physt

dd_headdataseibj,

dd_child_dir_zapobj,
dd_parentobj
ds.dir_obj

dslLdatasetphyst

Table 3.4:Summary of Tested Data structures and FieldsThe table lists all elds
we corrupted in the in-memory experimentsizap_phys .t and mzap_ent _phys _t are
metadata stored in ZAP blocks. The last three structuresoaject-speci ¢ structures
stored in the dnode bonus buffer.

For metadata, in our fault injection experiments, we cadesebroad range
of metadata structures (totally 16 core objects/strusjurdo reduce the sample
space for experiments to more interesting cases, we madehwioes. First, we
always injected faults to the in-memory structure afterdisvaccessed by the le
system, so that both the in-heap version and page cachewatseady exist in the
memory. Second, among the in-heap structures, we only meduthednode _t
structure (in-heap version afode _phys .t). The dnode structure is the most
widely used metadata structure in ZFS and every object inigF&oresented by a
dnode. Hence, we anticipate that corrupting the in-heaplestructure will cover
many interesting cases.

3.3.2 Results and Observations

We present the results of our in-memory experiments in TaldeAs shown, ZFS
fails to catch data block corruptions due to memory errorgdth read and write

30

experiments. Single bit ips in metadata blocks not onlydéa returning bad data
blocks, but also cause more serious problems like failugpefations and system
crashes. Note that Table 3.5 only shows cases with apparebiems. In other
cases that are either indicated by a dot (.) in the resuk celhot shown at all in
Table 3.5, the corresponding operation either did not acttesscorrupted eld or
completed successfully with the corrupted eld. Howeverall cases, ZFS did not
correct the corrupted eld.

Next we present our observations on ZFS behavior and usineviresults.
The rst ve observations are about ZFS behavior and the hasbbservations are
about user-visible results of memory corruptions.

Observation 1. ZFS does not use the checksums in the page cache along
with the blocks to detect memory corruptionShecksums are the rst guard for
detecting data corruption in ZFS. However, when a block lisaaly in the page
cache, ZFS implicitly assumes that it is protected agaiosugptions. In the case
of reads, the checksum is veri ed only when the block is bewmd from the disk.
Following that, as long as the block stays in the page catheg,niever checked
against the checksum, despite the checksum also being ipate cache (in the
block pointer contained in its parental block). The ressilthat ZFS returns bad
data to the user on reads.

For writes, the checksum is generated only when the blockiisgbwritten to
disk. Before that, the dirty block stays in the page cachb aitoutdated checksum
in the block pointer pointing to it. If the block is corruptadthe page cache before
itis ushed to disk, ZFS calculates a checksum for the badlbbnd stores the new
checksum in the block pointer. Both the block and its patésitek containing the
block pointer are written to disk. On subsequent reads obtbek, it passes the
checksum veri cation and is returned to the user.

Moreover, since the detection mechanisms already fail tectlenemory cor-
ruptions, recovery mechanisms such as ditto blocks and ttered zpool are not
triggered to recover from the damage.

The results in Table 3.5 indicate that when a data block wasipted, the
application that issued a read() or write() request wagmetlibad data (B), as
shown in the last row. When metadata blocks were corrupté® accessed the
corrupted data structures and thus behaved wrongly, asshypwther cases in the
result table.

File Dir MOS dnode Dataset directory ?ﬁ:gsme;p Dataset
Structure Field ORWAUNT | OALUNTMCD | cdrimu cdrilmu|cdr|cdrim
dntype | .. . o] oo ccccecce c
dn_indblkshift .BC. . C.. EEE.E .E|
dn_nlevels c . . C ccc.c.cjcccecccecc CCC| Cccc. .
dnodet
dn.checksum .C oL C e
dn.compress . C T B
dn_maxblkid . .C o .C|
dn_indblkshift & A .
dn_nlevels .BcC . C. .|C|C.| ...
dnodephyst dn_nblkptr e o .. .C.
dn_bonuslen . C T R . C.C.
dn_maxblkid B .C.C|C oL . C. .C.| .C.
zp.sizeE
ZnOdEphySt Zp- ags E. . E EE| EEEEEEEEE
dsLdir_physt dd_he_addz_itaselobj_ EEEE. .
- dd_child_dir_zapobj EC EC EC EC ECC
dslLdataseiphyst dsdir_obj .EE. .
data block B B]

Table 3.5: In-memory corruption results The table shows our memory corruption results. The opematiexercised are
O(open), R(read), W(write), A(access), L(link), U(un)imk(rename), T(truncate), M(mkdir), C(chdir), D(rmdig)fizfs create), d(zfs
destroy), r(zfs rename), I(zfs list), m(zfs mount) andsu(afount). Each result cell indicates whether the systeshe@ (C), whether
the operation failed with wrong results or with a misleadmgssage (E), whether a bad data block was returned (B) orhehéte
operation completed (.). Large blanks mean that the opanatare not applicable.

T€

32

Observation 2: The window of vulnerability of blocks in the page cache is
unbounded.As Figure 3.4 shows, after a block is loaded into the pageecagh
rst read, it stays there until evicted. During this intekvidia corruption happens to
the block, any subsequent read will get the corrupted bledabse the checksum
is not veri ed. Therefore, as long as the block is in the pagehe (unbounded), it
is susceptible to memory corruptions.

Observation 3: Since checksums are created when blocks are written to disk,
any corruption to blocks that are dirty (or will be dirtied$ written to disk per-
manently on a ush As described in Section 3.1, dirty blocks in the page cache
are written to disk during a ush. During the ush, any dirtydek will further
cause updates of all its parental blocks; a new checksunerisahiculated for each
updated block and all of them are ushed to disk. If a memomyation happens
to any of those blocks before a ush (above the black dotted Liefore G in Fig-
ure 3.4), the corrupted block is written to disk with a newaltseim. The checksum
is thus valid for the corrupted block, which makes the caianppermanent. Since
the window of vulnerability is long (30 seconds), and there many blocks that
will be ushed to disk in each ush, we conjecture that thedithood of memory
corruption leading to permanent on-disk corruptions ishig

We did a block-based fault injection to verify this obseiwat We injected a
single bit ip to a dirty (or to-be-dirtied) block before a sh; as long as the ipped
bit in the block was not overwritten by subsequent operatidime corrupted block
was written to disk permanently.

Observation 4: Dirtying blocks due to updating le access time increases th
possibility of making corruptions permanerBy default, access time updates are
enabled in ZFS; therefore, a read-only workload will updh&access time of any
le accessed. Consequently, when the structure contaithiegiccess time (znode)
goes inactive (or when there is another workload that ugdtte znode), ZFS
writes the block holding the znode to disk and updates antesvell its parental
blocks. Therefore, any corruption to these blocks will beegpermanent after the
ush caused by the access time update. Further, as mentieagi@r, the time
interval when the corruption could happen is unbounded.

Observation 5: For most metadata blocks in the page cache, checksums are
not valid and thus useless in detecting memory corruptiByslefault, most meta-
data blocks such as indirect blocks and dnode blocks areremsgd on disk. Since
the checksums for these blocks are used to prevent diskptmms, they are only
valid for compressed blocks, which are calculated aftey #re compressed dur-
ing writes and veri ed before they are decompressed dumagls. When metadata
blocks are in the page cache, they are uncompressed. Tieerdéfe checksums

33

contained in the corresponding block pointers are useless.

Observation 6: When metadata is corrupted, operations fail with wrong re-
sults, or give misleading error messages (Epr example, whenp _flags in
dnode _phys _t for a le object was corrupted, open() may return an errorecod
EACCES (permission denied). The case occurred when tfioid bf zp _flags
was ipped from 0 to 1, which signi es that the le is quarantd by an anti-virus
software. Therefore, open() was incorrectly denied, gian error code EACCES.
The calls access(), rename() and truncate() also failethéosame reason.

Another example of a misleading error message happenedduhiesad _dataset _obj
indsl _dir _phys t for a dataset directory object was corrupted. In this cads, “
create” failed to create a new le system under the parensylstem represented by
the corrupted object. ZFS gave a misleading error messagegsthat the parent

le system did not exist. ZFS gave similar error messagedlieiocases (E) under
“Dataset directory” and “Dataset”.

Observation 7: Many corruptions lead to a system crash (Epr exam-
ple, whendn_nlevels (the height of the block tree pointed to by the dnode) in
dnode _phys _t for a le object was corrupted and the le was read, the system
crashed due to a NULL pointer dereference. In this case, €8 the wrong
value ofdn_nlevels to traverse the block tree of the le object and obtained an
invalid block pointer. Therefore, the block size obtaineohf the block pointer
was an arbitrary value, which was then used to index into exyarvhose size was
much less than the value. As a result, the system crashed avhitfi L pointer
was dereferenced.

Observation 8: The read() system call may return bad datas shown in
Table 3.5, for metadata corruptions, there were three calsere read() gave bad
data block to the user. In these cases, ZFS simply trustedathe of the corrupted
eld and used it to traverse the block tree pointed to by theds#n thus returning
bad blocks. For example, wheim_nlevels in dnode _phys t for a le object
was changed from 3 to 1, ZFS gave an incorrect block to thearsarread request
for the rstblock of the le. The bad block was returned besalZ FS assumed that
the tree only had one level, and incorrectly returned arréatliblock to the user.
Such cases where wrong blocks are returned to the user alsdhepotential for
security vulnerabilities.

Observation 9: There is no recovery for corrupted metadatim the cases
where no apparent error happened (as indicated by a dot aghoetn) and the
operation was not meant to update the corrupted eld, theuption remained in
the metadata block in the page cache.

In summary, ZFS fails to detect and recover from memory qions. Check-

34

sums in the page cache are not used to protect the integhbtgaks. Therefore, bad
data blocks are returned to the user or written to disk. Maeaorrupted meta-
data blocks are accessed by ZFS and lead to operation faihgrgystem crashes.

3.4 Probability Analysis of Memory Corruption

In this section, we present a preliminary analysis of thelillood of different fail-
ure scenarios due to memory errors in a system using ZFSi &bt given that
one random bit in memory is ipped, we compute the probabsitof four scenar-
ios: reading corrupt data (R), writing corrupt data (W),striag/hanging (C) and
running successfully to completion (S). These probaegithelp us to understand
how severely le system data integrity is affected by memooyruptions and how
much effort le system developers should make to add extodgation to maintain
data integrity.

3.4.1 Methodology

We apply fault-injection technigues to perform the analysConsidering one run
of a speci ¢ workload as a trial, we inject a xed number numlzé random bit
ips to the memory and record how the system reacts. By doindfipie trials,
we measure the number of trials where each scenario octuis gstimating the
probability of each scenario given that certain number t§ bre ipped. Then,
we calculate the probability of each scenario given the weoge of one single bit
ip.

We have extended our fault injection framework to conduet ékperiments.
We replaced the pseudo-driver with a user-level “injectatiich injects random
bit ips to the physical memory. We used lebench [107] to geate complex
workloads. We modi ed lebench such that it always writeggde ned data blocks
(e.g., full of 1s) to disk. Therefore, we can check every r@aeration to verify that
the returned data matches the prede ned pattern. We canetgp the data written
to disk by checking the contents of on-disk les.

We used the framework as follows. For a speci ¢ workload, ae 100 trials.
For each trial, we used the injector to generate 16 randonpbiat the same time
when the workload has been running for 3 minutes. We then tkeptvorkload
running for 5 minutes. Any occurrence of reading corruptd&) was reported.
When the workload was done, we checked all on-disk les toisdeere was any
corrupt data written to the disk (W). Since we only verify igroperations after each
run of a workload, some intermediate corrupt data might e overwritten and

35

thus the actual number of occurrence of writing corrupt datad be higher than
measured here. We also logged whether the system hung tedr&S) during
each trial, but we did not determine if it was due to corrupiid ZFS metadata or
other kernel data structures.

It is important to notice that we injected 16 bit ips in eacdiat because it let
us observe a suf cient number of failure trials in 100 triattowever, we apply the
following calculation to derive the probabilities of difent failure scenarios given
that 1 bit is ipped.

3.4.2 Calculation

We usePy (X)) to represent the probability of scenaogiven thatk random bits
are ipped, in which X could be R, W, C or S. Therefol®(X) =1 Py(X)is
the probability of scenariX not happening given that bits are ipped. In order

to calculateP1(X), we rst measurdPy (X) using the method described above and
then deriveP1(X) from Pi(X), as explained below.

Measure Py (X) Given thatk random bit ips are injected in each trial, we
denote the total number of trials & and the number of trials in which
scenariaX occurs at least once &b¢ . Therefore,

N
P(X)=

Derive P1(X) Assumek bit ips are independent, then we have
P(X) = (P1(X))¥; whenX = R;W orC
Pc(X) = (P1(X))X; whenX = S
SubstitutingPx(X) =1 Py (X) into the equations above, we can get,
Pi(X)=1 (1 Pg(X))F; whenX = R;W orC

P1(X) = (Pk(X))k; whenX = S

3.4.3 Results

The analysis is performed on the same virtual machine asomeckin Section 3.2.1.
The machine is con gured with 2GB memory and a single diskning ZFS. We
rst ran some controlled micro-benchmarks (e.g., seqaéngiad) to verify that the

36

Workload P1s(R) P1s(W) P16(C) P16(S)
varmail 9% 1[4, 17] 0%]0, 3] 5%][1, 12] | 86%[77, 93]
oltp 26%([17,36] | 2%]0, 8] 16%][9, 25] | 60%][49, 70]

webserver| 11%]5, 19] | 20%][12, 30] | 19%][11, 29] | 61%]50, 71]
leserver | 69%]58, 78] | 44%[34, 55] | 23%]15, 33] | 28%][19, 38]

Workload P1(R) P1(W) P1(C) P1(S)
varmail | 0.6%][0.2, 1.2]| 0%][0, 0.2] |0.3%]0.1, 0.8]| 99.1%]98.4, 99.5]
oltp 1.9%[1.2, 2.8]| 0.1%]0, 0.5] | 1.1%][0.6, 1.8]| 96.9%]95.7, 97.8]

webserver| 0.7%][0.3, 1.3]| 1.4%]0.8, 2.2]| 1.3%]0.7, 2.1]| 97.0%[95.8, 97.9]
leserver |7.1%]J5.4, 9.0]| 3.6%][2.5, 4.8]| 1.6%][1.0, 2.5]| 92.4%[90.2, 94.2]

Table 3.6:P15(X) and P1(X) The upper table presents percentage values of the prob-
abilities and 95% con dence intervals (in square brackei§yeading corrupt data (R),
writing corrupt data (W), crash/hang and everything beinge (S), given that 16 bits are
ipped, on a machine of 2GB memory. The lower table gives thivdd percentage values
given that 1 bit is corrupted. The working set size of eachkead is less than 2GB; the
average amount of page cache consumed by each workloadtadtdit ips are injected

is 31MB (varmail), 129MB (oltp), 441MB (webserver) and 9B Meserver).

methodology and the calculation is correct (the result tsshown due to limited
space). Then, we chose four workloads from lebench: vaknudtp, webserver
and leserver, all of which were exercised with their defqudrameters. A detailed
description of these workloads can be found elsewhere [107]

Table 3.6 provides the probabilities and con dence intergaven that 16 bits
are ipped and the derived values given that 1 bit is ippedotBl that for each
workload, the sum oPg(R), Px(W), Px(C) andPy(S) is not necessary equal to
1, because there are cases where multiple failure scerwatos in one trial.

From the lower table in Table 3.6, we see that a single bitnipnemory causes
a small but non-negligible percentage of runs to experid¢aibere. For all work-
loads, the probability of reading corrupt data is greatanth.6% and the probabil-
ity of crashing or hanging is higher than 0.3%. The probabdif writing corrupt
data varies widely from 0 to 3.6%. Our results also show thahost cases, when
the working set size is less than the memory size, the more gaghe the workload
consumes, the more likely that a failure would occur if ortésbiipped.

In summary, when a single bit ip occurs, the chances of failscenarios hap-
pening can not be ignored. Therefore, efforts should be mageeserve data
integrity in memory and prevent these failures from happgni

37

3.5 Summary

In this chapter, we analyzed a state-of-the-art le syst&@mS, to study the im-
plications of disk and memory corruptions to data integritife used carefully
controlled fault injection experiments to simulate re#dislisk and memory errors
and presented our observations about ZFS behavior andiistreess.

While the reliability mechanisms in ZFS are able to provieasonable robust-
ness against disk corruptions, memory corruptions stila® a serious problem
to data integrity. Our results for memory corruptions iadé cases where bad
data is returned to the user, operations silently fail, &edvwhole system crashes.
Our probability analysis shows that one single bit ip hasadirbut non-negligible
chances to cause failures such as reading/writing cormatptahd system crashing.

We argue that le systems should be designed with compreveedsta protec-
tion. File systems should not only provide protection agiifisk corruptions, but
also aim to protect data from memory corruptions, which negire cooperation
from the page cache and even user-level applications.

38

39

Chapter 4

Z°FS: Cooperative Data
Protection in Local Storage

Many features that storage systems provide require greatazad coordination
across the many layers of the system (e.g., performancejntegrity checks for

data protection generally remain isolated within indidatleomponents. For ex-
ample, as shown in Chapter 3, ZFS uses checksums to protalisioblock, but

fails to extend the checksums to protect in-memory dataj Hiaks have built-in

ECC for each sector [22], but the ECCs are rarely exposecetoppper-level sys-
tem; TCP uses Internet checksums to protect data paylodddiitlonly during the

transmission. When data is transferred across comporgaiis,is not protected
and thus may become silently corrupted.

A comprehensive approach is to apply the straight-forwardite-end data pro-
tection [94], where high-level applications generate agxify checksums for their
data such that the checksums protect data throughout tire #@ stack. This
approach does provide better data protection, but it suftee performance and
timeliness problems, as discussed in Chapter 1.

To address both problems, we propose a new concept calté@ue end-to-
end data integrity With this concept, all components on the 1/O path are awhre o
the checksum, and different components can choose diffeypa of checksum,
depending on the reliability characteristics (e.g., f@luate) and performance re-
qguirements (e.g., throughput) of the component. Then, weldp an analytical
framework to provide rationale for the new concept. Spedlly; the framework is
able to evaluate and compare the reliability of differentage systems, and help to
choose proper checksums for different components. Fingliigled by the frame-
work, we build Zettabyte-reliable ZFS {ES) by applying exible end-to-end data

40

protection to ZFS. ZFS is able to provide Zettabyte Reliability while performin
comparably to ZFS.

The rest of the chapter is organized as follows. In Sectitnwle introduce the
framework for evaluating reliability of storage systemse Wven present the design
of ZFS in Section 4.2 and discuss some implementation issuesdtio8 4.3.
Finally, we evaluate ZFS in Section 4.4.

4.1 Reliability of Storage Systems with Data Corruption

We now present a framework to analyze the reliability ofager systems with data
corruption. The framework uses analytical models for ey tof device and
checksum in a system to calculate a reliability metric imtgiof the probability of
undetected data corruption.

41.1 Overview

The reliability of a storage system can be evaluated baséawriikely corruption
would occur. There are two types of corruption: detected amidktected (silent
data corruption, SDC). Detected corruption is the caseybiems is built to detect
and may recover from, but SDC is what the system is not prdare SDC does
more harm in that it would be treated as correct data and nrétyeiupollute other
good data (e.g., RAID reconstruction with corrupted dat@erefore, we focus on
the probability of SDC in a storage system. To quantify hdwlyy a SDC would
occur, we use the probability of undetected data corruptimit) when reading a
data block from the systefsys yqc as a reliability metric.

Psys udc for a storage system depends on various devices, each afi witig
experience corruptions caused by different factors. Eaelicd may employ dif-
ferent types of hardware protection and the upper-levakay®r application may
add extra protection mechanisms. Therefore, we proposanzefvork that takes
a ground-up approach to derive the system-level relighitietric from underlying
devices.

The framework consists of models for devices and checkséthsnodels are
built around the basic storage unit, a data blockbdiits. For a raw devicd®
(with its own hardware-level checksum), we are interesteubiv likely corruption
would occur to a block and escape from the detection of thécdsvchecksum
(Pc(D)). To detect such corruption, high-level (software) cheoks are usually
applied on top of a raw device (henceafter, we will use “clseok’ to indicate the
high-level checksum). Each data block has a checksuknbits. For a checksum

41

C and deviceD, we focus on the device-level probability of undetectedwgairon
(Pugc(D; C)) when the checksum is used to protect a data block on theadevic

Devices with different checksums are connected in varioagsvio form the
whole system. A data block can pass through or stay in sedekates from the
time it is born to the time it is accessed. By considering agible corruption
scenarios during this time period, we calculate the overalbability of undetected
data corruption when reading the data block from the systm (udc)-

4.1.2 Models for Devices and Checksums

To demonstrate how to apply the framework, we present mddeldevices and
checksums that will be used throughout the chapter. We msdagptions (e.g.,
independence of bit errors) to simplify our models such tatcan focus on rea-
soning about the reliability of storage systems within tlaerfework; discussion on
more complex and accurate models is beyond the scope ofthjxer.

Device Model

We consider two types of devices, hard disétsk) and memoryhem) , and one
type of corruption: random bit ip. We assume the block dide 32768 bits (4KB).

Hard Disks Hard disks are a long-term storage medium for data, and anerkn
to be unreliable. Hard disks can exhibit unusual behaviesabse of hardware
faults such as latent sector errors [22, 96]. These errorsisaally be detected by
disk ECC. The less-likely but more harmful silent data cptian may come from
hardware bit rot, buggy rmware, or mechanic faults (suctdespped writes and
misdirected writes [23, 92]), causing random bit ips anddk corruption. These
errors are not detectable by disk ECC.

Bit error rate (BER) is often used to characterize the réitgtof a hard disk.
BER is de ned as the number of bit errors divided by the totahiber of bits trans-
ferred and often refers to detected bit error (by disk EC@}.d#lent corruption,
we are more interested in the undetected bit error rate (UB&Rich is the rate
of errors that have escaped from ECC. Assuming each bit erridata block is
independent and the number of bit errors follows a binomigthibution, the prob-
ability of an undetected bit ip is equal to UBER. Assumingetk is at most one
ip for each bit, the probability of bit ips in a b-bit block is:

Pc(dsk; i) = ib(UBER)i(l UBER)® !

42

Therefore, the probability of corruption in a block is thersaf the probabilities of
all possible bit ips (from exactly 1 bit ip to exact b bit is):

_ Xy i b i
P.(dsk) = . (UBER)'(1 UBER)
i=1

While BER is often reported by disk manufactures, rangiognfd0 4 to 10 16,
there is no published data on UBER. Rozier et al. estimatatittie rate of un-
detected disk error caused by far-off track writes and hardvbit corruption is
betweenl0 2 and10 13 [92]. Although we do not know the percentage of errors
caused by either fault, we conservatively assume that rmedtiaerrors and thus
we pick 10 12 as the UBER for current disks. In our study, we choose a wider
range for UBER, froml0 1°to 10 2°, to cover more reliability levels. To simplify
the presentation, we de ne thibisk reliability indexas log;o(UBER).

Memory Memory (DRAM) is mainly used to cache data for performancé. B
ips are the main corruption type, probably due to chip fawdt external radiation
[75, 133]. Earlier studies show that memaory errors can oatarrate of 10 to 360
errors/year/GB [83, 84, 100] and suspect that most errers@it errors, which are
transient. However, recent studies show that memory eo@rgr more frequently
[63, 71, 97] and are probably dominated by hard errors (&diace defects). If a
memory module has ECC or more complex codes such as chif&ill fhen both
soft errors and hard errors within the capability of the codan be detected or
corrected. However, corruption caused by software bug8][&fe not detectable
by these hardware codes.

For memory, the error rate is usually measured as failuréeme (FIT) per
Mbit. Assuming each failure is a bit ip, 1 FIT/Mbit means tteeis one bit ip
in one billion hours per Mbit. Assuming each bit ip is indepient and the same
bit can only experience one ip, we model the number of bitsigm ab-bit block
during a time period as a Poisson distribution with a constant failure rater-
rors/second/bit. Therefore, the probabilityidiit ips in a b-bit block during time
tis:

e bt (b t)i
i!
Summing up the probabilities of all possible bit corruppwe have:

Pc(mem;i;t) =

X . bt i
Pc.(mem;t) = eiﬁ

i=1

43

Previous studies reported FIT/Mbit as low as 0.56 [72] ankigis as 167,066 [63].
Converting to errors/second/bit gives the range foirom 1:48 10 19 (in) to
4:42 10 ¥ (max). Inthis chapter, we choo62 10 ° (.,q) as the error
rate of non-ECC memory; it is derived from 25,000 FIT/Mbithieh is the lower
bound of the DRAM error rate measured in a recent study [97¢ piek min
as the error rate of ECC memory, because most errors woulsl een detected
by ECC. We use log;o() as thememory reliability index The corresponding
indices for min, mid,and max are 18.8, 14.2, and 13.4.

Checksum Model

The effectiveness of a checksum is measured by the pratyatifilundetected cor-
ruption given an error rate. It is usually dif cult, sometim impossible, to have
an accurate model for the probability, because of the coxitplef errors and the
data-dependency property of some checksums. Thereforepplg an analytic
approach to evaluate checksums for random bit ips.

We focus on two types of checksum: xor (64-bit) and FletcBé6{bit). Ex-
clusive or checksums (xor) are calculated by XORing eachl-gized chunk of a
data block. For example, a 64-bit xor checksum over a 4KB bhtek is com-
puted by XORing every 64-bit of data in the block. The xor dtsetn is very fast
to calculate, but it can only detect one bit error. On the oltaad, Flecther check-
sum is more complex, which involves calculating two chedksiat a time. For
instance, to compute a 256-bit Fletcher checksum from a 4ikBkbthe block is
rst divided into an array of 128-bit data chunkd;(d,; :::; d2sg), and two 128-bit
checksumsg; andsp) are initialized with 0. Then for every data chudk(i from
1 to 256),s; ands; are calculated using one's complement addition as follows:
s1 = (sp+ di) mod2'28 ands, = (s, + s1) mod 2128, Finally, the two checksums
are concatenated to form the Fletcher checksum of the blBlgtcher checksum
is slower to compute than xor, but it can detect all 1-bit exend 2-bit errors in a
4KB block.

Our approach to model both checksums is similar to the oné unsa recent
study on checksums for embedded control networks [74]. dka is based on
Hamming Distance (HD). A checksu@ with HD=n can detect all bit errors up
ton 1 hbits, but there is at least one casendbit ips that is undetectable by the
checksum. We use (C) to represent the fraction afbit ips that are undetectable
by checksumC. Then, the probability of undetectabtebit ips is Pc(D;n)

F (C), in which P¢(D; n) is the probability ofn bit ips on deviceD. The actual
Puqc is the sum of the probabilities of undetectable bit ips fronto b (the size of
the block isb bits). Since the occurrence of more thabit ips is highly unlikely,

44

Reliability Score | Reliability Goal Psys udc
8.4 Terabyte 373 10°
11.4 Petabyte 364 10 12
14.4 Exabyte 355 10 15
17.5 Zettabyte 346 10 18

Table 4.1:Reliability ScoresThis table lists a mapping from reliability scores to differ
ent reliablity goals.

the probability of undetected bit ips dominatesP,q: [74]. Therefore, we have
the approximation oPyqc.(D;C) = Pc(D;n) F(C).

The value ofP.(D;n) can be easily calculated based on the model of each
device, so the key parameterRgC). Assuming the block size is bits and the
checksum size ik bits, there is an analytical formula for xor [74F (xor) =
%. Since the HD for xor is 2, we havé q.(D;xor) = P¢(D; 2) %

But for Fletcher (HD=3), we can only get an approximation]{10(F letcher) =
4:16 10 29, ThereforePyqc(D; Fletcher) = P¢(D;3) (4:16 10 20).

4.1.3 CalculatingPsys ygc

Based on previous models, given the con guration of a s@rsgstem, we can
calculatePsys ydc by summing up the probabilities of every silent corruptioe-s
nario during the time from the data being generated to itdhedad. We de ne
the reliability scorefor a system as logio(Psys udc); higher scores mean better
reliability.

Finding all scenarios that lead to a silent corruption iskiyi In reality, it is
possible that multiple devices corrupt the same data whisrtriansferred through
or stored on them. In this chapter, we assume that in eaclasogthere is only
one corruption from when a data block is born to when it is rieah the system.
One reason is that data corruption is rare - multiple coruptto the same data
block are unlikely. Another reason is that with this assuamtwe do not have to
reason about complex interactions of corruption from rpldtdevices, which may
require more advanced modeling techniques.

Determining whether a value &%ys yqc is good enough for a storage system
is not easy. ldeally, the best value Bfys uqc is O, but this is impossible. In
reality, Psys udc is a tradeoff between reliability and performance; it skobé

45

Cfg Cfg Index
Num Name | Mem | Dsk | Description
1 low-end | 13.4 | 10 | worst mem & dsk
2 consumer| 14.2 | 12 | non-ECC mem & regular dsk
3 enterprise| 18.8 | 12 | ECC mem & regular dsk
4 server 18.8 | 20 | ECC mem & best dsk

Table 4.2:Sample System Con gurationsThis table shows four con gurations of a
local le system that we will study throughout the dissedat

low enough such that SDC is extremely rare, but at the same itishould not
hinder the system's performance. In this chapter, wedestabyte Reliabilityas a
reliability goal of storage systems. Zettabyte reliapifiteans that there is at most
one SDC when reading one Zettabyte data from a storage syéféimour models,
assuming the block size and the 10 size is 4KB, this goal lad&s toPsys ydc =
Pgoar = 3:46 10 18 which in terms of a reliability score is 17.5. Intuitively,
we can map other reliability scores to similar reliabilitetrics, as shown in Table
4.1. Note that the numerical value of the reliability goalydiffer depending
on the accuracy of the assumptions and models, and it mayeptdzise; our
purpose is to use it as a way to demonstrate how to make preeoffs between
performance and protection in a storage system.

4.1.4 Example: NCFS

To illustrate how to apply the framework to evaluate theatality of a storage
system, we use a local le system with no checksum (NCFS) asxample. We
focus on four con gurations of the system, as listed in Tabz Within the range
for each index, we use the minimum value to represent thetwuemory or disks
which may be faulty or prone to corrupting data. We use theimam disk index
to represent disks that are much more reliable than regidks.d

The timeline of a data block from being generated to beingss®d is shown
in Figure 4.1. A writer application generates the blockgt The block stays in
memory untilt; when it is ushed to disk. The block is then read into memory
att, and nally accessed by a reader applicatiortzat The residency time of the
block in writer's memory and reader's memorytis tp andts t, respectively.
To simplify the model and also because most le systems uisty dlocks to disk

46

writer \ storage | reader
| |
i mem (none) dsk (none) mem (none) T
1 1 N
o
tO t1 t2 t3
. Checksum Checksum
¢ write T Read Generation Verilcation

Figure 4.1:Timeline of a Data Block in NCFSThis gure shows timeline of a block
from being generated by the writetpf to being read by the readets) in NCFS. The

timeline consists of three parts: writer in memory, storgdisk), and reader in memory.
The name of the checksum used to protect data during eachptmed is listed in the

parentheses on the right of the device name.

at regular time intervals (usually 30 seconds), we assymetg to be 30 seconds
for all blocks in this chapter.

Based on the “one corruption” assumption, there are threpasos that will
lead to silent data corruption: corruption that occurs mrsader's memory, disk,
or the writer's memory. Therefor®sys yqc for NCFS is approximately the sum
of the probabilities of corruption in each device:

Pnces ude = Pe(mem; tresident) + Pc(dsk)
+ Pc(mem; 30)

wheret,esigent = tz t2 is the residency time (in seconds) of the block in the
reader's memory and 30 is the residency time of it in the wsitBemory.Psys udc

is a function of three variables: the reliability indicesrmémory and disk in the
system, and the residency tirtygsigent -

The reliability score of NCFStfesigent = 1) is shown in Figure 4.2, with the
four con gurations marked as “”. We choosé esigent = 1 because it represents
a best case (approximately) for reliability and we will diss the sensitivity of
reliability score tot;esigent in Section 4.2.3.

As one can see from the gure, when either the disk or the mgmaability
index is low, corruption on that device dominates the rdiigiscore. For example,
when the disk reliability index is 12, the reliability scavéthe system almost does
not change when the memory reliability index varies; both g& (consumer)
and con g 3 (enterprise) have a score of 7.4 (even worse tieaabite reliability).
But when the disk is more reliable, memory corruption stevtdominate and the

47

N
o

=
(o]

[N
(o))

I
5

Disk Reliability Index

=
N

114 15 16 17 18
Memory Reliability Index

Figure 4.2:NCFS Reliability Score {resigent = 1) This gure illustrates a contour
plot of the reliability score of NCFS. Darker color means &vgcore - worse reliability.
Four points marked with a “” represent the four sample con gurations: low-end (1),
consumer (2), enterprise (3), server (4).

reliability score increases as the memory reliability xdecreases. When both
reliability indices are high, NCFS with con g 4 (server) htd®e best reliability

score of 12.8 (a little better than Petabyte), still lessttiee Zettabyte reliability

goal (17.5).

4.2 From ZFS to Z°FS

To explore end-to-end concepts in a le system, we now preseo variants of
ZFS: BZFS, which takes the straight-forward end-to-end approacil ZFS,
which employs exible end-to-end data integrity. Specillgawe show how ZFS,
a modern le system with strong protection against disk gption, can be further
hardened with end-to-end data integrity to protect daténalivay from application
to disk, achieving Zettabyte reliability with better perftance.

4.2.1 ZFS:the Original ZFS

ZFS is a state-of-the-art open source le system originallgated by Sun Mi-
crosystems with many reliability features. ZFS providetadategrity by using

48

writer storage reader

i mem!(none) dsk!(Fletcher) mem!(none) T

|
|
|
t2 t3

|

|

|
t t,
© Fletcher (V) Fletcher

. Checksum Checksum
¢ Write ¢ At Generation Veri cation

Figure 4.3:Timeline of a Data Block in ZFS This gure shows timeline of a block
in ZFS. The name of the checksum used to protect data duroigteae period is listed in
the parentheses on the right of the device name. None meartgenksum is used.

checksums, data recovery with replicas, and consisterttyargiopy-on-write trans-
actional model [29]. In addition, other mechanisms suchamdeal storage, inline
deduplication, snapshots, and clones, provide ef ciema daanagement.

Problem

One important feature that distinguishes ZFS from mostroteesystems is that
ZFS provides protection from disk corruption by using clerks. ZFS maintains
adisk checksunFletcher, by default) for each disk block and keeps the k$ao
in a block pointer structure. As shown in Figure 4.3, when Zifes a block to
disk attq, it generates a Fletcher checksum. When ZFS reads the béuk
veri es the checksum and places it in the page cache. In thisnar, ZFS is able
to detect many kinds of corruption caused by disk faultshfghbit rot, phantom
writes, and misdirected reads and writes [29].

However, Chapter 3, as well as some anecdotal evidence,[27]),6hows that
ZFS is vulnerable to memory corruption. The checksum in Z-8ly veri ed and
generated at the boundary of memory and disk; once a blodchsed in memory,
the checksum is never veri ed again. Applications coulddréad data from the
page cache without knowing that it is corrupted. Even wafse dirty data page
is corrupted before the new checksum is generated, the ladnilhget to disk
permanently with a matching checksum and later reads wilbeoable to detect
the corruption.

N
o

4
. 18
()]
e}
=
> 16
E
=
S 14
4
2]
Q1) ¥,
10

114 15 16 17 18
Memory Reliability Index

Figure 4.4.ZFS Reliability Score (tresigent = 1) This gure illustrates a contour plot
of the reliability score of ZFS. Darker color means lower ice worse reliability. Four
points marked with a*“ " represent the four sample con gurations: low-end (1), somer
(2), enterprise (3), server (4).

Reliability Analysis

We apply the framework introduced in Section 4.1 to caleuthe reliability score
for ZFS. Similar to NCFS, there are three scenarios thatecSIxC:

Pzrs udc = Pc(mem; tresident)
+ Puqc(dsk; Fletcher)

+ P.(mem; 30)

Because ZFS has on-disk blocks protected by Fletcher, ardgtected corruption
contributes tdPzgs ydc.

Figure 4.4 depicts the reliability score of ZFS. With Fletcprotecting data on
disk, the reliability score is now dominated by memory cption. However, the
reliability score is not improved much, due to the lack oftpaotion of in-memory
data. Both con g 3 (enterprise) and con g (server) 4 have highest reliability
score of 12.8 (above Petabyte reliability), but they ark lsélow the Zettabyte
reliability goal (17.5). It is interesting to see that cordg(server) in ZFS has the
same best reliability score as itself in NCFS, which indisathat when both the
disk and memory reliability indices are the highest, memayruption is more

50

severe than disk corruption. Therefore, we need to protgetid memory.

4.2.2 BEZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and askdnust be pro-
tected. One way to achieve this is to apply the straight-fodaend-to-end concept.
In common practice, the writer generates an applicativatiehecksum for the data
block and sends both the checksum and data to the le systanause the page
cache and the le system are not aware of the checksum, thenuasually uses a
portion of the data block to store the checksum. When theeregghds back the
block, it can verify the checksum portion to ensure the intg@f the data portion.
The checksum protects the data block all the way from theewtat the reader.

Because ZFS already maintains a checksum for each on-disk inl the block
pointer, we do not have to append the application checksutomaf ZFS's check-
sum. Instead, we can simply store the application checksutinei block pointer,
replacing the original disk checksum. Therefore, we onlyetta expose the check-
sum to the reader and writer, and make sure the page cachbeand system are
oblivious to the checksum.

Implementation

To achieve the straight-forward end-to-end data integvity make the following
changes to ZFS, transforming it intd &S.

First, we attach checksums to all buffers along the I/O pa#er buffer, data
page and disk block. Since ZFS already providésk checksunfor each disk
block, we addmemory checksuio the user buffer and the data page. It enables
the system to pass checksums between the application and Siisce only one
checksum algorithm is used throughout the system, the meah@cksum and the
disk checksum are the same as the application-generateistime, assuming the
user buffers are always aligned to data pages. We will dssthesalignment issue
in Section 4.3. BEZFS currently supports both xor and Fletcher, but only orre ca
be used at a time.

Second, we enhance the existing read/write system caltsanitew argument
to transfer checksums between user and kernel space. Trergement is a buffer
containing all checksums corresponding to the blocks irutteg buffer. On reads,
the application receives both data and checksum, and thablésto verify the
integrity of data. On writes, the application must geneaihecksum for each
data block, and send both the data block and checksum thrineghew system
call.

51

writer : storage reader

| |
imem!(FIetcherlxor)I dsk!(FIetcher/xor) mem!(FIetcher/xor)T

1

to t1 t2 t3
© Fletcher/xor (V) Fletcher/xol
. Checksum Checksum
¢ Write ¢ Read Generation Veri cation

Figure 4.5:Timeline of a Data Block in E2ZFS This gure shows timeline of a block
in E2ZFS. BZFS uses the same checksum (either xor or Fletcher) all tlyethvaugh.

Finally, we modify the checksum handling at the boundary efimory and disk
such that the checksum is always passed through this boundidwout any extra
processing. EZFS simply stores both data and checksum on disk and does not
generate or verify the checksum. In this way, only the aptibns (reader and
writes) are responsible of verifying and generating theckbems, thus providing
the straight-forward end-to-end data integrity.

Reliability Analysis

The timeline of a data block from writer to reader is shown igufe 4.5. EZFS
uses one type of checksum (xor or Fletcher) all the way throtitpe writer gener-
ates the checksum for the data block@tand passes both the checksum and data
block to the le system. Both are then written to diskiaand read back dp. The
reader receives them & and veri es the checksum.

In E2ZFS, only undetected corruption during each time periodesa SDC;
detected corruption would be caught by the checksum veiboaperformed by
the reader. The probability of undetected data corrupson i

Pe2zes ude = Pudc(mem; Fletcher=xor; t resident)
+ Pudc(dsk; Fletcher=xor)
+ Pudc(mem; Fletcher=xor; 30)

The reliability scores of EZFS (xor) and EZFS (Fletcher) are shown in Figure
4.6(a) and Figure 4.6(b). Overall?EFS (Fletcher) has the best reliability, with
all scores above the reliability goal.2EFS (xor) can meet the goal only when

52

20
X x 18
[()
he] ke
£ £
2 216
3 i
g s
2 214
X x
%) v
a) a5 .
RS | ¢ S
10
114 15 16 17 18 114 15 16 17 18
Memory Reliability Index Memory Reliability Index
(a) E2ZFS (xor) (b) E2ZFS (Fletcher)

Figure 4.6:E2ZFS Reliability Score (tyesident = 1) These gures illustrate contour
plots of the reliability score of &FS (xor) and BEZFS (Fletcher). Four points marked with
a“ "representthe four sample con gurations: low-end (1), somer (2), enterprise (3),
server (4).

System TP (MB/s) | Normalized TP
ZFS 656.67 100%
E2ZFS (Fletcher)] 558.22 85%
E2ZFS (xor) 639.89 97%

Table 4.3: Overhead of Checksum CalculationThis table shows the through-
put of sequentially reading a 1GB le from the page cache irSZIEZZFS (xor), and
E2ZFS(Fletcher).

both disk and memory are more reliable. Con g 4 (server) hasa@e of 27.8
while both con g 2 (consumer) and con g 3 (enterprise) havecare of 17.1 (just
short of Zettabyte reliability). Comparing both gures, aithe disk corruption
dominates (with an index below 12)?EFS (Fletcher) is much better thar S

(xor), showing that Fletcher is clearly a better checksunpfotecting blocks on
disk.

53

Performance Issues

E2ZFS (xor) is less reliable thar?BFS (Fletcher), but it offers better performance,
especially when the reader is reading data from memory. eTal8 shows the
throughput of reading a 1GB le from the page cache. As onesmm ZFS has
the best throughput because there is no checksum calculiatiolved. EZFS
with Fletcher suffers a throughput drop of 15%. In contrBSEFS (xor) is able to
achieve a throughput just 3% less than ZFS, with the checl@weopy optimiza-
tion [39], which calculates the xor checksum while data igied between kernel
space and user space. The checksum-on-copy technique eppliex easily and
ef ciently due to the simplicity of xor checksum, but may rim a good option for
stronger and more complex checksums such as Fletcher.

4.2.3 Z2FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward endrg-approach. Besides
the performance problem as shown above, it also suffers fnaimely recovery:
neither the page cache nor the le system is able to verifyctiecksum to detect
corruption in time. To handle both problems, we buikF3 on top of the changes
we have made in#ZFS by further applying the concept of exible end-to-endada
integrity. For the timeliness problem, a simple x is to ada extra veri cation
when the data is being ushed to disk and when the data is beiad from disk.
For the performance problem, however, more analysis ammhigees are required.
We will focus on the performance problem in this section aisduks the timeliness
problem in Section 4.3.

In this section, we will introduce two operation modes fFB: static mode, in
which checksums are changed only across components (ebgedn memory and
disk), and dynamic mode, where checksums are even changetihe:,

Static Mode with Checksum Chaining

Looking at the reliability score and performance gures 8ZES, a natural ques-
tion one may ask is: can we combinéZES (xor) and BEZFS (Fletcher) to make

a system with better performance while still meeting théabdity goal? To an-
swer this question, we introduce the static mode &, ZFS (static), a hybrid

of E2ZFS (xor) and BZFS (Fletcher) that uses xor as the memory checksum and
Fletcher as the disk checksum. In static moddZmust perform a checksum con-
version at the cache-disk boundary. To handle the convecsiorectly, we develop

a technique calle€hecksum Chainingvhich carefully changes the checksum to
avoid any vulnerable window.

54

writer storage reader

i mem!(xor) dsk!(Fletcher) 1 mem!(xor) T
t t t t,

0 1 2 3

(© xor © Fletcher © xor (W) xor
(V) xor (W) Fletcher

Checksum Checksum
Generation Veri cation

1
|
|
|
1

¢ Write f Read

Figure 4.7: Timeline of a Data Block in Z2FS with Checksum Chaining This
gure shows timeline of a block in’FS with checksum chaining, which is appliedt at
andt,.

Z2FS (static) converts the checksum from xor to Fletcher wheting data
to disk. With checksum chaining, it must generate the Fetamecksunbefore
verifying the xor checksum. In this way, the creation of tkeevrFletcher checksum
occurs before the last use (veri cation) of the old xor cleak; the coverage of
the new and old checksums overlaps. It is as if the two chesksare chained
to each other. A successful veri cation of the xor checksundidgates that with
high probability, the Fletcher checksum was generated thescorrect data and
thus Fletcher checksum is correct. If the order of geneagdietcher and verifying
Xor is reversed, there is a vulnerable window in betweenhdfdata is corrupted
in the window, the new Fletcher checksum will be calculatedrdhe corrupted
data, resulting in silent corruption, because the checkactmally “matches” the
bad data.

The timeline of a data block inZS with checksum chaining is shown in Fig-
ure 4.7. On the write path, the writer generates an xor chuecks rst. When the
block is being written to disk, ZS generates a Fletcher checksum using check-
sum chaining and sends the Fletcher checksum and data toQitisthe read path,
Z?FS generates an xor checksum using checksum chaining waeéimgethe data
block from disk, and then passes it to the reader along wihdtita block. The
reader nally veri es the xor checksum. As a side effect olechsum chaining,
the xor checksum is veri ed at the cache-disk boundary onwthte path and the
Fletcher checksum is veri ed on the read path, which helpsatoh any detectable
corruption in time.

With checksum chaining, ZS has to generate an xor checksum for each data

55

storage | reader
dsk!(xor Fletcher) mem!(xor)T

writer
i mem!(xor)

1
|
|
|
1

t t t

1

0 2 3
(© xor (© Fletcher (V) Fletcher (V) xor

(V) xor

¢ Write f Read

Checksum Checksum
Generation Veri cation

Figure 4.8:Timeline of a Data Block in Z2FS (static) This gure shows timeline of a

block in ZFS (static). When there are two checksums during a time @giti@ underlined
checksum is the primary checksum, as de ned in Section.4.2.3

block when reading it from disk, which may affect the perfamoe. In fact, the
same xor checksum already existed when the data block wasvrigen by the
application. Instead of regenerating the xor checksum enyeead, ZFS simply
stores both the xor checksum and the Fletcher checksum kmwiiisn writing a
data block, and then when reading it, both checksums artabieai The Fletcher
checksum is called therimary checksupbecause it is the required disk checksum.
By grouping both checksums and storing them on diSlEZskips the generation
of xor checksum on the read path, thus improving the perfoomaNote that ZFS
still need to verify the primary checksum (Fletcher) wheadiag a block from
disk.

Reliability Analysis of Static Mode

Figure 4.8 shows an updated timeline fGiFB (static) with this optimization. The
probability of undetected corruption foPES (static) is:

P22es ude = Pude(Mem; Xor; t resident)
+ Pugc(dsk; xor & Fletcher)
+ Pugc(mem;xor; 30)

Note that the corruption on disk must be undetectable by kothand Fletcher.
Since the block will be checked against the Fletcher cheunlati, and against the
xor checksum ats, if either checksum catches the corruption, there will rotb
silent data corruption.

56

= = =)
~ o fe9) o

Disk Reliability Index

[EEN
N

10
14 15 16 17 18

Memory Reliability Index

Figure 4.9: Reliability Score (tresigent = 1) Of Z2FS (static) This graph is a
contour plot of the reliability score of2FS (static). Darker color means lower score -
worse reliability. Four points marked with a “” represent the four sample con gurations:
low-end (1), consumer (2), enterprise (3), server (4).

The reliability score of 2FS (static) atesigent = 1 iS Shown in Figure 4.9.
Since on-disk blocks are protected by Fletcher, memoryuption dominates.
When memory corruption is severe with an index less than, 1B& reliability
score is below the goal. As the memory reliability index aases, the reliability
score increases and becomes above the goal. Howeugggigs: increases, the
reliability score will decrease and at some point it is polesto drop below the
goal.

To nd out when we should use?ES (static), we focus on memory reliability
andt,esigent - We take a close look at three cases based on the memonyilitgliab
index: 13.4 (max =1:99 10 '%),14.2 (mg =6:62 10 %), and 18.8 (imin =
1:48 10 '°). Since Figure 4.9 shows that memory corruption dominatess,
value of the disk reliability index in each case does notcffiee reliability score.
Therefore, we x the disk reliability index at 10 for the rstase, and at 12 for
second and third case; the three cases now correspond tg dor2 and 3 (low-
end, consumer, and enterprise). Figure 4.10(a), Figugl#).,land Figure 4.10(c)
illustrate the reliability score of ZFS (static) versus residency time in all three
cases.

In Figure 4.10(c) where the memory reliable index is maximtira reliability

57

30 30
25 25¢
[}
S 20 2 20t
O O
) |pmmmmmmemmemmemsssmsm-—-m-------)
215 215
o Qo
£ <
8 10t & 10t
5f —7%Fs 51 —Z7%Fs
---Goal ---Goal
% 50 100 150 200 250 300 % 50 100 150 200 250 300
Residency Time (s) Residency Time (s)
(@) max (index=13.4, cong 1, low-end) (b) mia (index=14.2, con g 2, consumer)
301 301
25 25¢
S 20 2 20t
o o T
Lo il I et il
215 2 15f
o Qo
g 8
8 10t & 10t
5 —7%s 5 —7%s
---Goal ---Goal
% 50 100 150 200 250 300 % 50 100 150 200 250 300
Residency Time (s) Residency Time (s)
(¢) min (index =18.8, con g 3, enterprise) (d) mia (index=14.2, con g 2, consumer)

Figure 4.10:Reliability Score VStesigent in Z2FS These gures show the relation-

ship between reliability score and residency time #fF&. The rst three are for the static
mode, and the last for the dynamic mode, in which the checksuitohing occurs at 92
seconds.

score is above the goal and they will intersect after abowgrseeeks (not shown).
It indicates that xor is probably strong enough for data inmoey; Z2FS (static)
ts right into this case.

In contrast, when the index is minimum as shown in Figure (@)1@he whole
line of Z2FS is below the goal. It shows that xor is not strong enoughdtept data
in memory. To handle this extreme cas@F3 (static) skips checksum chaining and
uses Fletcher all the way through, but keeps the extra \&tiba at the boundary of
memory and disk. In this way,2ES (static) can provide the same level of reliability
as EZFS (Fletcher).

The most interesting case is shown in Figure 4.10(b) with enamg reliability

58

writer storage | reader
i mem!(xor) : dsk!(xor!Fletcherbmem!(&r,!FletcherT ! mem!(xor,!FIetchel?

t t t t,t t,

0 1 2 3 “switch

© xor © Fletcher (V) Fletcher (W) xor (V) Fletchel
() xor
. Checksum Checksum
¢ Write T Read Generation Veri cation

Figure 4.11:Timeline of a Data Block in Z2FS (dynamic) This gure shows time-

line of a block in 2FS (dynamic). The memory checksum is switched from xor toHele
attswitch.

index of 14.2. When the residency time is less than 92 se¢c@R&S is able to keep
the reliability score above the goal. However, after thendtore drops below the
goal and slowly converges to?EFS (xor). In this case, in order to make sure the
reliability score is always above the goaP%S may need to change to a stronger
checksum at some point when data stays longer in memory.

Dynamic Mode with Checksum Switching

To prevent the reliability score from dropping below the Iggmthe residency time
increases, we apply a technique cal@decksum Switchintp Z2FS (static). The
idea behind checksum switching is simple. On the read phtretare already
two checksums on disk: xor and Fletche?F5 can simply read both checksums
into memory; for the rsttgwich Seconds, ZFS uses xor as theeaker memory
checksunand then switch to Fletcher as thiigonger memory checksuaftertgyiich
seconds. ltis just a simple change of checksum and theredgtrmoverhead. We
call this mode 2FS (dynamic).

Reliability Analysis of Dynamic Mode

Figure 4.11 shows the timeline of a block ifFS (dynamic mode). The static
mode is essentially a special case of dynamic mode with areely large value of
tswitch Such thats is always in betweety, andtsyitch -

59

Calculating Psys usc Depending on whethetrs is before or aftettsyich , we
have:

P22es ude = Pudc(Mem; Xor; t resident)
+ Pugc(dsk; xor & Fletcher)
+ Pugc(mem; xor; 30)

wheretz = ts + tresident IS betweerts andtgyich , and:

P22es ude = Pudc(mem; Fletcher; tesident)
+ Pudc(dsk; Fletcher)
+ Puac(mem; xor; 30)

Determining tgwitch BY replacingt,esigent in the rst formula with tgyich , We
can solve foitgyitch from the equation below:

Pz2es ude = Pgoal

With the Zettabyte reliability goaPgoq = 3:46 10 18 and mig, we have
tswich = 92. Figure 4.10(d) shows the reliability score off5S in dynamic mode.
As we can see from the gure, checksum switching occurs ateég®rsds so that
the score afterwards is still above the goal.

By varying both the disk and memory reliability index, we bavigure 4.12
showing the values dfyiich that are required to meet the goal of Zettabyte reli-
ability. When the memory reliability index is high = min, €.9., cong 3 and
4), tswitch IS about seven weeks; in this caséF3 (static) is strong enough, which
also offers the best performance. When the memory religliiidex is extremely
low (e.g., con g 1), ZFS (static) keeps using Fletcher as both disk and memory
checksum to provide the best reliability. When the memolialdity index is in
between (e.g., con g 2), ZFS (dynamic) strikes a nice balance between reliability
and performance by switching the checksun@ich -

4.3 Discussion

We now discuss three technical issues when implementéf@Zchecksum chain-
ing, application integration, and error handling.

60

N
o

4
. 18
[}
e}
=
> 16
E
s
S 14
4
2}
Q10 A,
10

114 15 16 17 18
Memory Reliability Index

Figure 4.121gyich Of Z2FS (dynamic)This gure shows a contour plot of the required
switching time to provide Zettabyte reliability if S (dynamic), with respect to different
disk and memory reliability index. The z axis is the base g@rithm oftswicn in SECONdS.
Four points marked with a “” represent the four sample con gurations: low-end (1),
consumer (2), enterprise (3), server (4).

Symbol Description

X a data object, could PORG or DST
X:data the data of the object

X:cksum the checksum of objec¢t

X:size the size ofX:data

X:alg the checksum algorithm fof:cksum
S size of moved data

m(X) moved data irX

o(X) overwritten data irK

r(X) remaining data irX

g(cksum; alg; data) | generateeksum usingalg overdata
v(cksum; alg; data) | verify cksum usingalg overdata

Table 4.4:Model Notation for Checksum Chaining The table depicts all notations
used to describe the model for checksum chaining.

61

ORG.cksum(——E A—» DST.cksut

K| £ T = W
r(ORG) m(ORG) | oRGsze | oemy r(DST)
AN s l d

ORG DST

Figure 4.13:An Example of the NotationsThis gure shows some of the notations
in a data movement example. Small squares and trianglegsept checksums. Differ-
ent shapes of checksum symbol indicates the algorithm ovahe of the checksum are
different. Each big rectangle represents a data object avieich a checksum is calcu-
lated. Heavy-shaded squares represent the moved dataghteslhaded squared represent
overwritten data.

4.3.1 Checksum Chaining

So far, we have assumed the user buffer is always alignedge giae. In fact,
checksum chaining does support generic requests withrampibffset and size,
which is implemented in ZFS through checksum-ware interfaces. Before we talk
about the new interfaces, we rst we propose a simple modehtracterize all
scenarios where checksum chaining could apply when datavsdracross buffers.

Notations In the model, data is always protected by a checksum. We uaéaa d
object to represent a piece of data and a corresponding sin@clData in different
data objects can be of different sizes and the checksumithligner can also differ.
Therefore, a data object has four propert@ata, cksum, size andalg.

Data movement is de ned here as a piece of data moved fromrbm alata
objectORG to destination data obje€iST . The moved data fro®RG is repre-
sented byn(ORG), and the overwritten data IDST is represented bg(DST).
The moved and overwritten data is of s&eln some case§ may not be the same
asORG:size or DST:size; some portion of data iIORG is not moved and some
portion of data inDST is not overwritten. The remaining data is represented by
r(ORG) or r(DST). All notations are explained in Figure 4.4 and illustratad i
Figure 4.13.

62

During the data movementn(ORG) is copied fromORG to DST and the
checksum oDST is updated. Checksum chaining is thus de ned as follows: as-
sumingD is the data stored iDST after the data movement, the n®&T :cksum
is calculated oveb beforethe integrity ofD is veri ed using ORG:cksum and
the old DST:cksum. A special case of checksum chaining is wH@RG and
DST are of the same size, a@RG andDST use the same checksum algorithm.
In this casePRG:cksum is copied taDST .cksum directly when the moved data,
without any recalculation. We call this special case checkforwarding.

Checksum forwarding is straightforward and has no overlegadpt the copy-
ing of the checksum, but it has strict requirements for tignatent and checksum
algorithms of the moved dat@RG andDST. In contrast, checksum chaining
can be applied in any scenario, but it has the overhead of bneope checksum
calculations.

In checksum chaining, the order of new checksum generatidnold check-
sum veri cation must not be reversed. IFST:cksum is calculated AFTERD is
veri ed, there is a vulnerable window in between. If the detaorrupted in this
time window, the newDST :cksum will be calculated using corrupt data. This
is a type of silent corruption which is undetectable using tlew checksum be-
cause the checksum actually “matches” the corrupted daith. tkié correct order,
a successful veri cation indicates thBXST:cksum is generated over the correct
data and thus can be trusted. Because the creatiBrsadt.cksum occurs before
the last use 0DRG:cksum and oldDST:cksum, the coverage of new and old
checksums overlaps; it is as if two checksums are chaineddo @ther.

Five Cases of Checksum Chaining Data movement is not just a simple data
copy operation. Transferring a piece of data from its ihiwiggin to its nal desti-
nation usually involves multiple copies through differéayers of the system. The
alignment and size of the moved data, as well as the size awkstim algorithm
of ORG andDST in all layers are important factors. Depending on $eand
alg andsize of bothORG andDST objects, data movement can be classi ed into
the following ve cases, as shown in Figure 4.14. For eacleca® rst give the
condition these properties must satisfy and then descrit@and how checksum
forwarding or chaining is applied in detail.

Case 1:Aligned Data Movement (Same Checksum Algorithms)

ORG:alg == DST:alg and
S == ORG:size == DST:size
One example of Case 1 is transferring data blocks betweepstipe cache and
disk when both components use the same checksum. The sizdavh page is

63

O O O O O A
V GV

ORG DST ORG DST ORG DST
Case 1 Case 1' Case 2

O A O A O A
GV GVIv GlVIV

ORG DST ORG DST ORG DST
Case 3 Case 4 Case 5

G) checksum generation

. O
moved data overwritten data A checksum

\/) checksum verilcation

Figure 4.14.Cases of Checksum Chaininghis gure shows ve typical cases of data
movement. In Case 194nd 2, the moved data is aligned wirRG andDST . In Case 3,

4 and 5, the moved data is not aligned WiiRG, DST or both, respectively. The size of
moved data could be the same@ST:size as in Case 1, 2 and 3, or different as in Case
4 and 5. The sequence of checksum chaining is shown as G aretratiops in each case.
The number of these operations is used as an estimate of ¢nlesad.

usually the same as a disk block, and data is always moved inefaveen them.
In this case, all data I@RG is copied tadDST . Since the checksum algorithms
are the same for both objects, one can apply checksum foingard

(1) DST:.data ORG:data
(2) DST:cksum ORG:cksum

Before moving forward to Case 2, we introduce Cdsa nore reliable version
of Case 1 with an extra veri cation, as shown in Figure 4.14c8&8use checksum
forwarding does not detect any corruption, doing such acadron provides an
opportunity of early detection and in-time recovery. Ottise, if the data is al-
ready corrupted, it will not be detected until the next tirhe tata is accessed and
veri cation is performed. In fact, this is a tradeoff betwereliability and perfor-
mance. With the overhead of one extra veri cation, possiweruptions can be
detected early and repaired in time.

64

Note that Case 1 has the lowest overhead, because therehecicsam calcu-
lation involved. For Case®las well as the next four cases, one can estimate the
overhead by counting the number of checksum operationefggon and veri -
cation) needed in each case. Each of these operations ave sh&igure 4.14 as
a circled G or V, respectively. To accurately measure thelhmax, one needs to
consider the size of data as well as the speed of the checKgonittam.

Case 2:Aligned Data Movement (Different Checksum Algorithms)

ORG:alg 6 DST:alg and

S == ORG:size == DST:size
In this case, since the checksum algorithms are diffel@&T :cksum must be
calculated usindpST:alg. Checksum chaining should be applied:

(1) g(DST:cksum; DST:alg; ORG:data)
(2) v(ORG:cksum; ORG:alg; ORG:data)
(3)DST:data ORG:data

Case 3Unaligned Data Movement (Partial-to-Full)

ORG:buf 6 DST:buf and
ORG:size > DST:size and
S == ORG:size

A good example of Case 3 is an application reading data frenp#iye cache
into a user buffer, with an offset not aligned to the bloclegjpage size). In this
example ORG is a data page andST is a user buffer. The moved data is just a
portion of the full block stored in the page.

In this casePST .data is overwritten by a partial amount @RG:data. Irre-
spective of the checksum algorithms useddR®G andDST, checksum chaining
must be applied. A correct order is:

(1) g(DST:cksum; DST:alg; m(DST))

(2) v(ORG:cksum; ORG:alg; ORG:data)

(3)DST:data mM(ORG)
Note that in (1) the checksum is calculated only over the malada inORG, while
in (2) the veri cation is performed using all data @RG, becaus€®ORG:cksum
covers all its data and there is no checksum for the moved d&erefore, for the
sameS, the overhead of this case is actually higher than Case 2.

All cases introduced so far have one commonality: the oaigifata inDST
is overwritten by the new data copied fro@RG, so there is no need to verify
DST:cksum. The next two cases, however, have parD&T :data overwritten
by new data. Therefore, an extra veri cation is needed toergake the portion of
data inDST that is not modi ed is correct.

Case 4Unaligned Data Movement (Full-to-Partial)

65

ORG:size < DST:size and
S = ORG:size

Case 4 happens when an application writes data to the lesystith an offset
not aligned to the block size; the user buff&RG) is thus not aligned to the data
page DST), because only part of the data page is overwritten.

In this case,ORG:data overwrites a part oDST:data. The net effect is
that the newDST:data containsORG:data and the remaining portion of old
DST:data is not overwritten. The ne® ST :data is represented b RG:data +
r(DST). Therefore, the newST:cksum must be calculated ovédRG:data +
r (DST) before the data movement, aORG:data were already copied tDST .
To make sure botl®RG:data andr(DST) are good whileDST:cksum is be-
ing calculated, they have to be veri ed. Therefore, the edrorder of checksum
chaining is:

(1) g(tmpcksum; DST:alg; ORG:data + r(DST))
(2) v(ORG:cksum; ORG:alg; ORG:data)

(3) v(DST:cksum; DST:alg; DST:data)

(4) DST:cksum tmpcksum

(5) o(DST:data) ORG:data

Unlike the previous cases, Case 4 requires two veri catiomg overORG:data
and the other oveDST :data.
Case 5Unaligned Data Movement (Partial-to-Partial)

S 6 ORG:size andS 6 DST:size

This is the general case of unaligned data movement: p&Rb.data is copied
toDST and overwrites part ddST :data. The method of implementing checksum
chaining is similar to Case 4, with a slight change to ste@af step (5):

(1) g(tmpcksum; DST:alg; m(ORG) + r(DST))

(2) v(ORG:cksum; ORG:alg; ORG:data)

(3) v(DST:cksum; DST:alg; DST:data)

(4) DST:cksum tmpcksum

(5) o(DST:data) m(ORG:data)

Although this case does not occur ifFAS, we include Case 5 for the sake of
completeness.
4.3.2 Integration with Existing Applications

First, ZFS supports generic requests with arbitrary offset andisibeigh checksum-
aware interfaces. These interfaces differ from the trawliti read/write interfaces

66

O O O
o — o0 o —>» A
O O O
Data Page User Bueer Data Page User Bueel
Aligned Read Unaligned Read

Figure 4.15:Example of Aligned and Unaligned ReadsThis gure illustrates how
Z°FS handles aligned and unaligned reads. Small squares septgage checksums and
small triangles represent user checksums. The dark araasepts the requested data.

in that both data and it associated checksums are trargfba®veen the user
space and the kernel space. For example, Figure 4.15dtasthow 2FS handles
aligned and generic read requests respectively. In theeaigase, ZFS simply re-
turns all three checksums to the application. But when dgaliith the unaligned
reads, 2FS calculates a new checksum that covers the requested rihteads
it to the application. The order of checksum generation ardoation conforms
with checksum chaining (see Case 3 and Case 4 above): getieeatser check-
sum rst and then verify all three page checksums. Note thatjpplications must
be modi ed to use the new interfaces. We believe such chaagesecessary, be-
cause the exposed checksums can be further utilized bycapphs to protect data
at the user level.

Second, 2FS also provides a compatibility library that preservesiheitional
interfaces. The library performs checksum generation anidcation on behalf of
the application. The tradeoff is that applications do natehaccess to the check-
sums, thus losing some data protection at the user level.

4.3.3 Error Handling

Both E°ZFS and ZFS use checksums to verify data integrity. Whenever a mis-
match happens, it is reasonable to think the data is codupiat the checksum,
because the checksum is usually much smaller than the datetéicts and has a
lower chance of becoming corrupted. In the unusual caseentherchecksum is

67

corrupted, good data would be considered corrupted. Thiis fasitive about data
corruption does not hurt data integrity; in fact, any cheoksnismatch indicates
that the data cannot be trusted, either because the ddfastserrupted, or be-
cause the checksum cannot prove the data is correct. Therbfith systems must
handle veri cation failures properly.

In E°ZFS, there is only one veri cation, which occurs when thedesareads
a data block. If the veri cation fails, the reader will reag the same block from
the le system. If the corruption happens in the page cackadgr's memory),
E?ZFS can get the correct data from disk and return it to theereadowever, if
the corruption occurs before the block is written to disk lo Write path, it is too
late to recover from the corruption. This is the timelinessbem of the straight-
forward end-to-end approach.

As we mentioned in Section 4.2.3, to solve the proble?dF,ihas extra check-
sum veri cations at the boundary of memory and disk. On thé@empath, the
veri cation is part of the checksum chaining. If it fails2ES aborts the write im-
mediately and inform the application, thus preventing wpirrdata going to disk.
The application then can re-write the block. On the read,p&tRS veri es the
primary checksum (Fletcher) after getting a data block faigk and will re-read
it if the veri cation fails.

Note that informing the application about the failed wrieguite challenging.
It is easy for synchronous writes; because the veri cationuns before the write
system call returns, the application can just check themetalue of the system
call. However, for asynchronous writes, the veri catiorperformed by the back-
ground ushing thread. To properly return the error infotioa to the application,
our solution in ZFS is to use a modi ed fsync system call2/ZS creates an error
table for each opened le to record which data page fails & cation. When-
everfsyncis called, it checks the error table of the correspondingatel returns
all block numbers found in the table. Because at that timeeadlcations of dirty
pages belonging to the le have already nishddynccan give the most up-to-
date error information. Therefore, by callifgyncperiodically, the application can
know the latest status of the blocks it wrote and perform s&eey recovery in time.

4.4 Evaluation

We now evaluate and comparéZES and ZFS along two axes: reliability and
performance. Speci cally, we want to answer the followingegtions:

How do they handle various data corruption?

68

ZFS E2ZFS | Z%FS
Timing | act res | act res| act res
g

to t1 dar e dir
tp ty | dor e | dar 8 dor 8
to i3 d3l’ d3r

Table 4.5:Fault Injection Results The columns (from left to right) show the time period
when the fault was injected (Timing), how the system andedhdar reacts (act) and the
result of the read request from the reader (res). Under thtecatumn, “d;r” means the
corruption is detected at and a retry is performed. Under the res column,™means
silent data corruption, €" means the corruption is degected but can not be recovered
(assuming there is only one copy of the data on disk), antirheans the reader gets good
data.

What is the the overall performance of both systems?
What is the impact of checksum switching on performance?
What is the performance of both systems on real-world werdk®

We perform all experiments on a machine with a single-ca2&Plz AMD Opteron
processor, 2GB memory, and a 1TB Hitachi Deskstar hard .dkiVe use Solaris
Express Community Edition (build 108), ZFS pool version hd ZFS le system
version 3.

4.4.1 Reliability

The analyses in Section 4.2 showed theoretically hé®Zcan achieve Zettabyte
Reliability with different reliability levels of disk and emory. In practice, how-
ever, it is dif cult to experimentally measure the reliatylof a system, especially
since we have no knowledge of the actual failure rate of tek dhnd memory in
use. Therefore, we focus on demonstrating the advantagexible end-to-end
data integrity in detecting and recovering from corruptittmough a series of fault
injection experiments.

We inject a single bit ip to a data block during each time pekin Figure 4.3,
and record how each system reacts and whether the readestozorigect data. We
perform the same set of experiments on all three systems, ZZFS, and 2FS.

Table 4.5 summarizes the fault injection results. For thdt fajected before
the block goes to disk§ t1), only Z2FS is able to detect it befote and ask the
writer to retry, thus preventing corrupt data getting tckdi$he reader in EZFS

69

Read Syscall
Read IO (original)
B Read 10 (retry due to corruption)
6000 —
m
=
O
£
|_
o)
2
I
8 5000 —
7
Q
o
4000 I

I
No Corruption Corruption

Figure 4.16:Corruption in the Read Path (Cold) This graph shows the time break-
down of a read system call it ES when a block is correct or found corrupted in the page

cache. The y-axis is in micro seconds. Since the cache istb@dlock is rst read from
disk.

can also detect the fault &, but it is too late to recover the data. When data on
disk is corruptedtq t»,), neither EZFS nor ZFS is able to recover. For the fault
injected after the block leaves disk on the read path (t3), the reader in both
Z?FS and EZFS can detect it and re-read the block from disk. Since ZFtus
protection for on-disk blocks, it can only catch corruptibiat occurs on disk.

To show that 2FS behaves as expected during the fault injection expetanen
we measure the time cost of read and write system calls, dssvite /O time of
each disk read and write. Figure 4.16, 4.17, and 4.18 prélseriime breakdown

of a read or a write system call in three cases: cold read, weaohand write with
fsync.

70

300 —
Read Syscall

B Read |0 (retry due to corruption)
250 —

200 —

150 —

Response Time (us)

100 —

0
I

No Corruption Corruption

Figure 4.17.Corruption in the Read Path (Warm) This graph shows the time break-
down of a read system call i’ ES when a block is correct or found corrupted in the page

cache. The y-axis is in micro seconds. Since the cache is vihenblock can be returned
directly from the page cache.

Read (cold): In this case, the reader reads a 4KB block frofffE and the block
is not present in the page cache. We clear the disk cache atguening of our
experiment so that the rst read always gets the block frosk.diVhen no fault is
injected, there is only one 1/O, which takes about 5000 méermonds, as shown in
Figure 4.16. When a fault is injected while the block is in ffage cache, 2FS is
able to detect the corruption and re-read the block from. (#sce the second read
I/0 hits disk cache, the actual I/O time is small, only abduiicro seconds.

71

Read (warm): As shown in Figure 4.17, the result is similar to the previcase,
except that there is no huge rst-time 1/O cost, because ¢geested block is al-
ready cached.

Write with fsync: In this case, the writer writes a 4KB block t¢#S and calls
fsync immediately. When there is no corruption, the writetegn call returns in-
stantly (the short white bar above the x-axis in Figure 4.b8cause the write is
asynchronous. The following fsync ushes the data blockisi dnd logs the write
operation in a log block (totally two 1/0s). Because bothd/gd to the disk cache,
the 1/0O time is only about 120 micro seconds. Then, the leaysissues a cache
ush to the disk so that all blocks cached by the disk cachda@eed to disk. The
wait time for ush to nish is long, which dominates the resme time of fsync.
When the block is corrupted in the page cach&;Zis able to detect the corrup-
tion before writing it out to disk. The writer gets an errodedrom fsync and calls
write and fsync again to re-do the write, which are shown ast#tond set of bars
on top of the previous failed fsync. Note that there is onlg wmite 1/0 (log block)
during the failed fsync, because the data block write is tablor

4.4.2 Overall Performance

We use a series of micro and macro benchmarks to evaluatestf@rmance of
E2ZFS and ZFS. All benchmarks are compiled with the compatibility &by.

Micro Benchmark Figure 4.19 shows the results of our micro benchmark ex-
periments. Sequential write/read is writing/reading a 1&Bn 4KB requests.
Random write/read is writing/reading 100MB of a 1GB le in Bkrequests. To
avoid the effect of checksum switching?% is in static mode. From Figure 4.19,
one can see that under random write and random read (coé&pettiormance of
Z?FS and EZFS is close to ZFS. Because both workloads are dominatedshky d
seeks, the overhead of checksum calculation is small. Inakes where the cache
is warm, since no physical 1/Os are involved, the calcutatd checksums dom-
inates the processing time.?ES (Fletcher) is about 15-17% slower than ZFS,
while both EZFS (xor) and 2FS only have a 3% throughput drop. In sequential
write and sequential read (cold), the performance&¥Xis comparable to&ZFS
(Fletcher).

Macro Benchmark We use lebench [107] as our macro benchmark. We choose
webserver, leserver and varmail to evaluate the overgiligption performance on

72

30000 —
] write Syscall
Fsync Syscall
B write 10 (log block)

25000 — B write 10 (data block)
___ 20000 —
0
=
@
£
l_ [—
o 15000 —
%)
c
o
Q
0
o}
o

10000 —

5000 —

0 [
No Corruption Corruption

Figure 4.18:Corruption in the Write Path This graph shows the time breakdown of

a write system call followed by a fsync iR when a block is correct or found corrupted
in the page cache. The y-axis is in micro seconds.

E2ZFS and ZFS. Figure 4.20 depicts the throughput of these workloads.
Webserver is a multi-threaded read-intensive workloacbriisists of 100 threads,

each of which performs a series of open-read-close opasatio multiple les and

then appends to a log le. After reaching a steady stateealtls are satis ed by

73

m ZFS m EZFS (xor) E2ZFS (Fletcher) Z2FS (static)
%0, B g g @95 8888 83 g3
~ o 9Rw®n S 5 ~Nee N cococo P
~OR o SR A R AN ™~ Brag
1 4 ~ 0w © N © - oyl
| ® © o] - o
a 09 — [3 3
% 08 |
E 0.7 —
5 0.6 —
N 05 —
g 04 -
2 03
0.2
0.1 —
0
Seq Write Seq Read Seq Read Random Write Random Read Random Read
Cold Warm Cold Warm

Figure 4.19:Micro Benchmark This graph shows the results of several micro bench-
marks on ZFS, &FS, and 2FS (static). The bars are normalized to the throughput of
ZFS. The absolute values in MB/s are shown on top.

data in the page cache. Therefore, the throughput is magtigrhined by the
overhead of checksum calculation. As shown in Figure 4.2ZFS (xor) and
Z2FS (static) has the closest performance to ZFS, becausealivays calculate
the xor checksum. &ZFS (Fletcher) is about 15% percent slower than ZFS, which
matches our previous micro benchmark result. #%& (dynamic), the memory
checksum is changed from xor to Fletcher when a block stagseimory for more
than 92 seconds, so the overall throughput is in betweé&sstatic) and EZFS
(Fletcher).

Fileserver is con gured with 50 threads performing creatidetes, appends,
whole- le writes and whole- le reads. It's write-intensé&vwith a 1:2 read/write
ratio. In this case, the throughput ofZS is comparable to%FS (Fletcher) and
E?ZFS (xor).

Varmail emulates a multi-threaded mail server. Each thpeatbrms a set of
create-append-sync, read-append-sync, read, and deletations. It has about
half reads and half writes and is dominated by random I/Osgrd&fbre, the overall
throughput of ZFS and EZFS is no different than ZFS.

74

m ZFS] EZZFS(xor) E22FS(FIetcher) ZZFS(static) s (dynamic)
fF\lf [™ S W 0 N~ © % % § ':q 2
5 '\.% gjr.oqoqm agdcﬁd
Agegr SR EER ==
1 N ¢ N © A R
WO— N N
§_0.9 — N
§>0.8 —
I'E 0.7 —
3 0.6 —
NO05 —
£04
203 -
0.2 —
0.1 —
0 \ \ \
webserver fileserver varmail

Figure 4.20:Macro Benchmark This gure shows the throughput of our macro bench-
marks on ZFS, &FS, ZFS (static), and ZFS (dynamic). Each workload runs for 720
seconds. ZFS (dynamic) hassyich = 92 seconds.

4.4.3 Impact of Checksum Switching

One key parameter in%ES istsyiich , Which is the maximum residency time of a
data block in reader's memory before checksum switchingieccThe value of
tswitch indicates a tradeoff between reliability and performar@wen a reliability
goal, longertqyicch Means worse reliability score (still above the goal), butdre
performance because the weaker memory checksum can beouseldiger time.

To understand the impact of checksum switching, we run tHeserwer work-
load on ZFS (dynamic) and varyswich . Figure 4.21 illustrates the relationship
between the throughput of the workload &gglich . AS tswitch iNcreases, the per-
formance of ZFS (dynamic) gets closer t&?ES (static), because more and more
warm reads are verifying the xor checksum. Whgfch is the same as or longer
than the runtime, ZFS (dynamic) matches the performance &F3 (static). Even
whentswich iS short (e.g., 30 seconds)?ES (dynamic) still outperfoms &ZFS
(Fletcher).

75

290
280 —
K
m
2
3 270 —
S
§ """" E2ZFS (Fletcher)
= 260 - - ZFs (static)
O Z%Fs (dynamic)
250 \ \ \ \ \ \ \ \ \

0 100 200 300 400 500 600 700 800 900
Switching Time (s)

Figure 4.21:Webserver Throughput with Different tswicch This gure illustrates
the throughput changes of webservetgscn increases. The dashed line and dotted line

represent the throughput of webserver G2 (static) and EZFS (Fletcher) respectively.
The runtime of the webserver workload is 720 seconds.

Trace | Read Cache | Before After
Num | Count | Hit Rate | tswitch tswitch
1 14343 | 98.0% | 34.5% 65.5%
2 35209 | 96.9% | 58.9% 41.1%
3 61437 | 98.8% | 83.7% 16.3%

Table 4.6:Trace Characteristics Read count is the total number of 4KB-read in each
trace. Hit rate is the cache hit rate for data reads. BefofedAtsyicry IS the percentage of
warm reads that access a data block with a residency timégesster thantsyich = 92
seconds.

4.4.4 Trace Replay

So far we have shown the performance bene t 8F3 using arti cially generated
workloads. Now, we evaluate?ES by replaying real-world traces. We use the

76

Total Read Time (s)
Trace E?ZFS Z’FS Z°FS
Num | (Fletcher) (static) (dynamic)
1 1.00 0.91 (9.0%) 0.95 (5.0%)
2 4.34 3.73 (14.1%) 3.82 (12.0%)
3 6.58 5.46 (17.0%) 5.47 (16.9%)

Table 4.7:Trace Replay Result The table shows the total time spent on read system
calls for each trace on each system. The percentage in thengiases is the speedup of
Z°FS with respect to &FS (Fletcher).

LASR system-call traces [6] collected between 2000 and 2@®ich cover thir-
teen machines used for software development and reseanettst The traces are
not I/O intensive, but they contain realistic access pasténat are hard to emulate
with controlled benchmarks. We build a single-threadeden&player to sequen-
tially replay the system calls at the same speed as they weneded. All unaligned
read and write requests are converted into aligned onestlsattve can replay the
trace on EZFS, which only supports aligned requests.

We choose three one-hour long traces from the collectionreplay them on
E2ZFS (Fletcher), ZFS (static), and ZFS (dynamictswicch = 92). The charac-
teristics of the traces are listed in Table 4.6 and the resu# shown in Table 4.7.
As one can see from the tables, overaflF® has better performance thatZES
(Fletcher). In trace 3, most of the warm reads (83.7%) aresstigg data blocks
with a residency time less than 92 seconds, and thus themn@ne calculations
of xor checksum than Fletcher orfZS (dynamic), which makes its performance
closer to ZFS (static). In contrast, 65.5% of the warms reads in traceelof
blocks that have stayed in memory for more than 92 secondkesperformance
of Z?FS (dynamic) is closer to®FS (Fletcher). Therefore, workloads dominated
by warm reads can bene t most fron?ES (dynamic) if most read accesses to a
block occur during the rstgyiich Seconds of that block in memory.

4.5 Summary

The straight-forward approach of end-to-end data intggmibvides great protec-
tion against corruption, but the requirement of using onenst high-level check-
sum for all components along the 1/O path leads to lower appitin performance

a4

and untimely detection and recovery.

To address these issues, we present a new concept: exidkoeend data
integrity. A system with exible end-to-end data integritises different check-
sum algorithms for different component, and thus can dynaltyi make tradeoffs
between performance and reliability. Such a system al$iaadiextra checksum
veri cation below the application to provide in-time detin and recovery. In this
way, all components in the I/O path provide strong data ptme in a coopera-
tive manner; every component is aware of the checksums affiothips necessary
checksum operations, such as generation, veri cationicéwig or passing, to pre-
vent silent data corruption.

To apply the concept to a system, we rst develop an analyfieanework to
provide rational behind exible end-to-end data integrifyhen, we build EZFS
and ZFS, to study both end-to-end concepts and demonstrate rapptp exible
end-to-end data integrity to ZFS. Through reliability ars& and various experi-
ments, we show that?FS is able to provide Zettabyte reliability with comparable
or better performance tharfEFS. Our analysis framework provides a holistic way
to reason about the tradeoff between performance andifityiat storage systems.

78

79

Chapter 5

Data Protection Analysis of Cloud
Storage Services

Cloud-based le synchronization services, such as Drogldk SkyDrive [122],
and Google Drive [53], provide a convenient means both talssonize data across
a user's devices and to back up data in the cloud. While autorsynchronization
of les is a key feature of these services, the reliable clgtmrage they offer is
fundamental to their success. Generally, the cloud backéhdhecksum and
replicate its data to provide integrity [18] and will retamfd versions of les to
offer recovery from mistakes or inadvertent deletion [4Bhe robustness of these
data protection features, along with the inherent repboathat synchronization
provides, can give the user with a strong sense of data safety

Unfortunately, this is merely a sense, not a reality; theséocoupling of these
services and the local le system endangers data even as Hegices strive to
protect it. While the data stored remotely is generally stplocal client software
is unable to distinguish between deliberate modi cationd anintentional errors,
potentially causing corrupt or inconsistent data to autarably propagate to all
machines associated with a user. Thus, despite the presénudtiple redundant
copies, synchronization destroys the user's data.

In this chapter, we demonstrate these problems throughifgettion experi-
ments. We rst present some background on le synchronizaservices in Sec-
tion 5.1. Then, in Section 5.2 we explore several case stwdierein synchroniza-
tion services propagate corruption and spread inconsigterinally, we analyze
how the limitations of le synchronization services and $gstems directly cause
these problems in Section 5.3.

80

5.1 Background

In order to understand the causes of the incorrect behatiite synchronization
services, it is necessary to rst understand how they oper#tile synchroniza-
tion services are aptly named; they do their best to ensatdhhbir users' les are
synchronized across all of their devices, as well as thedcldhile their design
space has some variety in it, ranging from Apple's iCloudcéyonizing speci ¢
application data [20] to Wuala's use of a user-space le ays{123], the basic
functionality of these services is relatively homogeneoWe nd that there are
two popular ways of implementing such a service, based omtigerlying syn-
chronization protocol. Services such as Dropbox and ownClely on a spe-
ci ¢ le synchronization protocol, rsync [93] and csync [#espectively. On the
other hand, many open-source synchronization servicelsidimg Sea le [99] and
sparkleshare [103], are built on top of distributed verstontrol systems such as
GIT [52]. Thus, we provide a brief case study of Dropbox and Bego cover both
types of services; while the details are application-spgettie overall architecture
applies to a variety of services.

5.1.1 Dropbox

Dropbox consists of two main components: a client-side aeeamd a cloud back-
end. The daemon monitors changes in the local le system atahds them to the
cloud. The cloud software, in turn, stores these les and thepagates them to
the user's other devices. As the cloud component runs réynate can only in-
fer its characteristics through interacting with it via thetwork and through what
Dropbox has published about it. As Drago et al. [43] haveaalyeexamined many
of these details elsewhere, we focus primarily on the clieotir discussion. While
the client is closed source, since it runs locally, we caeally observe its behavior.
In the following discussion, we concentrate on two aspekctisi® behavior: how it
manages its internal metadata and its procedures for symizhnrg les.

Data Management

The Dropbox client operates as a userspace daemon, repaoidirect operating
system support or kernel modules, and observes a singlerfadsuring that its
contents are synchronized with the cloud. To track locakstait uses several
SQLite databases, most of which are encrypted. These datalstore metadata
related to the user's les, such as the most recent time edetwas modi ed,
as well as hashes of each le used to identify their contelmspbox uses this

81

information to coordinate its synchronization with thewzddo

Dropbox's view of the user's le namespace is much more sirtplan that of
the le system. It identi es les by their full pathnames ardbes not represent
directories in its database. If the user performs a renanaelef it deletes the le
from the cloud and re-uploads the renamed version; simijl#rthe user deletes
a directory, the client deletes all children of that diregtand re-uploads them,
identi ed by their new full pathname.

Dropbox provides a revision history for each le that it tka¢ allowing a user
to revert a le to any of its previously uploaded states, witbertain time limits
depending on the level of the user's subscription. Whilefuls®ropbox's con-
strained view of the le system limits the extent of this loist In particular,
renamed les cannot explicitly be reverted to prior versidrefore they were re-
named. Instead, the user must restore the le of the origiaahe and delete the
renamed le.

File Synchronization

Upon booting, the Dropbox client registers with the cloud ahecks whether any
les have changed or been added remotely. If so, it downldhém into a staging
area and renames them into the local directory once compietaat the user never
sees an incomplete update. At the same time, it also scalectialirectory to de-
tect whether any modi cations have occurred while it wasiioé, comparing stats
such as timestamps and size of each le with the version dtioréts databases. If
these differ, it infers that the le was changed and runs csygnupload the changes
to the cloud; to save bandwidth, it divides les into chunkwaonly sends those
chunks not already owned by the user. In the event that ittsesecon ict between
two versions of a le, it performs no resolution; insteadkéeps both versions of
the le and renames one to indicate that it is in con ict.

Once running, the Dropbox client continues to actively $yonize its folder.
When remote changes occur, the server sends it a noti gateumsing the client to
immediately download the new data in the same manner as itie upload. To
detect local changes, the client employs a noti cation merysuch as Linux's ino-
tify, that informs it of events in the local le system. Thisformation is generally
vague—inotify, for instance, reports little more than the name and the type of
event, such as a create, write, or unlink, that occurredsbiites to allow Drop-
box to maintain synchrony. Again, the client uses rsync toagbonly the changes
in each le and performs deduplication.

82

5.1.2 Seale

Similar to Dropbox, Sea le also has a client-side daemonaserver backend. Un-
like Dropbox, which interacts with lesin the le system dictly, Sea le maintains

a GIT-like repository (repo) to manage a synchronized fiolddocal synchronized

folder is called a working tree. Sea le tracks and storesatesl of the folder in lo-

cal and remote repositories. The remote repo on the serias tiee master branch,
acting as a backend to store all data and version histories.IoCal repo contains
the local branch, representing the current state of theefollhe synchronization
is then performed between the master branch and the locattora

Data Management

Unlike Dropbox, which only records le metadata in a locatalaase, Sea le uses
repos to track both data and metadata. A repo is essentialbpjct store. Files
and directories in the folder are all stored as objects instioee, identi ed by
SHA-1 hashes. A le's data is divided into chunks with valabength. A le

is represented by a Sea le Object which stores a list of hasli@ata chunks. A
directory is represented by a SeafDir Object containingtaol directory entries,
each of which points to a Sea le Object or a SeafDir Objecte Tlash of the root
directory in the folder is called a commit ID, which uniquebpresents a state of
the entire folder. Therefore, the history of changes to@eiois recorded as a series
of commit IDs. Similarly, the revision history of each le tsacked by a series of
hash values of its Sea le objects.

The remote repo maintains the complete version historyyiocisronized les,
including all the previously used but unreferenced datankbuThe client reposi-
tory, on the other hand, only keeps a short history of chandeased data chunks
are garbage collected at the beginning of each run of thé &eale client dae-
mon. At any time, the master branch points to a remote conibndn the server
and the local branch points to the latest local commit ID endient.

File Synchronization

A Sea le client daemon runs on the client and monitors bothldtal folder and
server for updates. When there are local changes, the cleninits the changes
to the local branch and then synchronizes the local brandheerver. When
there are remote changes, the client rst downloads the endstinch from the
server, then commits local changes, and nally merges thetendoranch into the
local branch. The client performs con ict handling durinlgetmerge, in which
a con icting copy from the master branch is renamed and tf@nmitted to the

83

local branch. After the merge, the client uploads the locahbh to the server,
including all the regular local changes and changes dueridct®. Finally, the
master branch is updated to point to the state just uploaded.

Sea le client detects of ine changes in a way similar to Dbop. After every
commit, it records in a local index le various stats of evehy in the folder,
including modi cation time and le size. When the client sts, it performs a local
scan to nd out if there are of ine changes. This process lmgs checking every
le in the folder and comparing timestamps against the ongbe index le.

When the client is running, it monitors both the local folded the server for
updates. For local changes, Sea le client relies on inpbfyt it only uses inotify
as an indicator. It still depends on a scan to nd out what ksl directories
were modi ed. In comparison, Dropbox makes fully use of ifioto detect local
changes. The client detects remote updates by polling thrersevery 30 seconds.
The client checks if the commit ID of the local branch diffén@m the commit ID
of the master branch. If they differ, it means that there ameate changes. Since
there is no remote scan, the polling process is fast andesftci

5.2 Data Protection Failures

We now present three case studies to show different faitaesed by the semantic
gap between local le systems and synchronization servi€tbs rst two of these
failures, the propagation of corruption and inconsistemegult from the client's
inability to distinguish between legitimate changes anldifes of the le system.
While these problems can be warded off by using more advamesgstems, the
third, causal inconsistency, is a fundamental result aferur le-system semantics.

5.2.1 Data Corruption

Data corruption is not uncommon and can result from a vaoétiauses, ranging
from disk faults to operating system bugs [23, 38, 47, 89fr@ution can be disas-
trous, and one might hope that the automatic backups thahsymization services
provide would offer some protection from it. These backummsyever, make them
likely to propagate this corruption; as clients cannot deterruption, they simply
spread it to all of a user's copies, potentially leading tevocable data loss.

To investigate what might cause disk corruption to propagathe cloud, we
rst inject a disk corruption to a block in a le synchronizedith the cloud (by
ipping bits through the device le of the underlying diskyve then manipulate the
le in several different ways, and observe which modi cat®cause the corruption

84

Data Metadata
FS Service write | mtime ctime atime
Dropbox LG LG LG L
ext4
(Linux) ownCloud LG LG L L
Seale LG LG LG LG
Dropbox L L L L
(in:li() ownCloud L L L L
Seale L L L L
Dropbox LG LG L L
HFS+ ownCloud LG LG L L
(Mac GoogleDrive| LG LG L L
OS X) SugarSync LG L L L
Syncplicity LG LG L L

Table 5.1:Data Corruption Results “L": corruption remains local. “G”: corruption
is propagated (global).

to be uploaded. We repeat this experiment for Dropbox, oeul and Sea le
atop ext4 (both ordered and data journaling modes) and Z5j3riLinux (kernel
3.6.11) and Dropbox, ownCloud, Google Drive, SugarSynd, &yncplicity atop
HFS+in Mac OS X (10.5 Lion).

We execute both data operations and metadata-only opesatio the corrupt
le. Data operations consist of both appends and in-placdatgs at varying dis-
tances from the corrupt block, updating both the modi catend access times;
these operations never overwrite the corruption. Metadpéations change only
the timestamps of the le. We udeuch -ato set the access timguch -mto set
the modi cation time, andthownandchmodto set the attribute-change time.

Table 5.1 displays our results for each combination of lsteyns and services.
Since ZFS is able to detect local corruption, none of the lssonization clients
propagate corruption. However, on ext4 and HFS+, all dignbpagate corruption
to the cloud whenever they detect a change to le data and nwsb when the
modi cation time is changed, evenifthe le is otherwise uadi ed. In both cases,
clients interpret the corrupted block as a legitimate cleaaigd upload it. Seale
uploads the corruption whenever any of the timestamps @sman&ugarSync is
the only service that does not propagate corruption whemtbei cation time
changes, doing so only once it explicitly observes a writihéo le or it restarts.

85

Upload Download OOS
FS Service Iocarl‘I ver. cloud ver.

g g
exa el PP
(ordered) 5o 16 N/A N/A N/A
g
extd Dropbox D D

(data) ownCloud D
Seale n
Dropbox B 0
ZFS ownCloud D
Seale

Table 5.2:Crash Consistency ResultsThere are three outcomes: uploading the local
(possibly inconsistent) version to cloud, downloadingdleeid version, and OOS (out-of-
sync), in which the local version and thg cloud version diffe are not synchronized. “”
means the outcome does not occur and ‘means the outcome occurs. Because in some
cases the Sea le client fails to run after the crash, its fessare labeled “N/A”.

5.2.2 Crash Inconsistency

The inability of synchronization services to identify legiate changes also leads
them to propagate inconsistent data after the crash recoVerdemonstrate this
behavior, we initialize a synchronized le on disk and in ttieud at versiowg. We
then write a new versionz, and inject a crash which may result in an inconsistent
versionvi0on disk, with mixed data fronvg andv;, but the metadata remains
Vo. We observe the client's behavior as the system recovers.péfferm this
experiment with Dropbox, ownCloud, and Sea le on ZFS andiext

Table 5.2 shows our results. Running the synchronizatiovicgeon top of
ext4 with ordered journaling produces erratic and incdasisbehavior for both
Dropbox and ownCloud. Dropbox may either upload the loc&lpnsistent version
of the le or simply fail to synchronize it, depending on whet it had noticed and
recorded the update in its internal structures before taghcrin addition to these
outcomes, ownCloud may also download the version of thetdeesl in the cloud if
it successfully synchronized the le prior to the crash. &earguably exhibits the
best behavior. After recovering from the crash, the cliefuses to run, as it detects
that its internal metadata is corrupted. Manually cleatifgclient's metadata and
resynchronizing the folder allows the client to run againthés point, it detects a
con ict between the local le and the cloud version.

86

All three services behave correctly on ZFS and ext4 with pghataaling. Since
the local le system provides strong crash consistencyerattash recovery, the
local version of the le is always consistent (eithey or v1). Regardless of the
version of the local le, both Dropbox and Sea le always uptbthe local version
to the cloud when it differs from the cloud version. OwnClotimwever, will
download the cloud version if the local versionvigs and the cloud version i;.
This behavior is correct for crash consistency, but it majate causal consistency,
as we will discuss.

5.2.3 Causal Inconsistency

The previous problems occur primarily because the le aystails to ensure a key
property—either data integrity or consistency—and dodsrpose this failure to
the le synchronization client. In contrast, causal incstency derives not from a
speci c failing on the le system's part, but from a directiesequence of traditional
le system semantics. Because the client is unable to olataini ed view of the
le system at a single point in time, the client has to uplodds as they change
in piecemeal fashion, and the order in which it uploads leaynmot correspond
to the order in which they were changed. Thus, le synchratan services can
only guarantee eventual consistency: given time, the insgesd in the cloud
will match the disk image. However, if the client is interteg—for instance, by a
crash, or even a deliberate powerdown—the image storedteymay not capture
the causal ordering between writes in the le system enfibdog primitives like
POSIX'ssync andfsync , resulting in a state that could not occur during normal
operations.

To investigate this problem, we run a simple experiment inctvta series of
les are written to a synchronization folder in a speci edder (enforced by fsync).
During multiple runs, we vary the size of each le, as well s time between le
writes, and check if these les are uploaded to the cloud endbrrect order. We
perform this experiment with Dropbox, ownCloud, and Sealeext4 and ZFS,
and nd that for all setups, there are always cases in whietctbud state does not
preserve the causal ordering of le writes.

While causal inconsistency is unlikely to directly caustadass, it may lead to
unexpected application behavior or failure. For instasoppose the user employs
a le synchronization service to store the library of a phettiting suite that stores
photos as both full images and thumbnails, using separatefdr each. When the
user edits a photo, and thus, the corresponding thumbnailedis it is entirely
possible that the synchronization service will upload thealéer thumbnail le
rst. If a fatal crash, such as a hard-drive failure, occuefdoe the client can

87

nish uploading the photo, then the service will still retaihe thumbnail in its
cloud storage, along with the original version of the phaitag will propagate this
thumbnail to the other devices linked to the account. The, @ws®Eessing one of
these devices and browsing through their thumbnail gatieryetermine whether
their data was preserved, is likely to see the new thumbndibasume that the le
was safely backed up before the crash. The resultant mibmalidikely lead to
confusion when the user fully reopens the le later.

5.3 Discussion

Our experiments demonstrate genuine problems with le bByoization services;
in many cases, they not only fail to prevent corruption armbinsistency, but ac-
tively spread them. Responsibility for preventing corroptand inconsistency
hardly rests with synchronization services alone; mucthefiiame can be placed
on local le systems, as well. In this section, we analyzelimgations in synchro-
nization services and local le systems and show how theg teadata protection
failures.

5.3.1 Where Synchronization Services Fall

Most synchronization services monitor its synchronizafmlder for changes using
a le-system noti cation service, such as Linux's inotifyr ¢ac OS X's Events
API. While these services inform the synchronization d¢beof both hamespace
changes and changes to le content, they provide this inédion at a fairly coarse
granularity—per le, for inotify, and per directory for tHevents API, for instance.
In the event that these services fail, the machine crashése elient itself fails or
is closed for a time, then the client detects changes in l@&saby examining their
statistics, including size and modi cation timestamps.

Given this behavior, the causes of synchronization sesVinability to handle
corruption and inconsistency become apparent. As leesyshoti cation services
provide no information on what le contents have changed slgnchronization
client must assume that any changes that it detects resuitl&gitimate user ac-
tion; it has no means of distinguishing unintentional clemdike corruption and
inconsistent crash recovery.

Inconsistent crash recovery is further complicated by tieats internal meta-
data tracking. For example, with Dropbox, if the system leegsduring an upload
and restores the le to an inconsistent state, the clientre@ognize that it needs
to resume uploading the le, but it cannot detect that theteots are no longer

88

FS Corruption Crash Causal
ext4 (ordered) D
ext4 (data

(data) D D

ZFS

Table 5.3:Summary of File System Capabilities This table shows the synchroniza-
tion failures each le system is able to handle correctly.efi@are three types of failures:

Corruptiﬁn (data corruption), Crash (crash inconsistehand Causal (causal inconsis-

tency). © " means the failure does not occur and * means the failure may occur.

consistent. Conversely, if Dropbox had nished uploadimgl apdated its internal
timestamps, but the crash recovery reverted the le's matatb an older version,
Dropbox must upload the le, since the differing timestanguic potentially indi-
cate a legitimate change.

5.3.2 Where Local File Systems Fail

File systems frequently fail to take the preventative messnecessary to avoid
data protection failures and, in addition, fail to exposeqate interfaces to allow
synchronization services to deal with them. As summaripetiable 5.3, neither
a traditional le system, ext4, nor a modern le system, ZkSable to avoid all
failures.

File systems primarily prevent corruption via checksum$ieWwriting a data
or metadata item to disk, the le system stores a checksum theeitem as well.
Then, when it reads that item back in, it reads the checksuhuses that to validate
the item's contents. While this technique correctly detexirruption, le system
support for it is limited. ZFS and btrfs are some of the few elydavailable le
systems that employ checksums over the whole le systent esés checksums,
but only over metadata [40]. Even with checksums, howeber, Ie system can
only detect corruption, requiring other mechanisms toirépa

Recovering from crashes without exposing inconsistendidaiser is a prob-
lem that has dogged le systems since their earliest days hais been addressed
with a variety of solutions, such as journaling and copywoite. However, as dis-
cussed in Chapter 2, the most popular le systems, includrt3, ext4, HFS+,
and NTFS, usually only perform metadata journaling, saing data consistency
for performance. As a result, the inconsistencies upon shctause the erratic
behavior observed in Section 5.2.2.

Finally, avoiding causal inconsistency requires accessagle views of the le

89

system at speci ¢ points in time. File-system snapshotsh sis those provided by
ZFS or Linux's LVM [7], are currently the only means of obtitig such views.
However, snapshot support is relatively uncommon, and vil@femented, tends
not to be designed for the ne granularity at which synchration services capture
changes.

5.4 Summary

As our observations have shown, the sense of safety prolgdegnchronization
services is largely illusory. The limited interface betweadients and the le sys-
tem, as well as the failure of many le systems to implement features, can lead
to corruption and awed crash recovery polluting all avhlia copies, and causal
inconsistency may cause bizarre or unexpected behaviars, Tlaively assuming
that these services will provide complete data protectiam lead instead to data
loss, especially on some of the most commonly-used le syste

Even for le systems capable of detecting errors and premgriheir propaga-
tion, such as ZFS and btrfs, the separation of synchronizatervices and the le
system incurs an opportunity cost. Despite the presencercéat copies of data
in the cloud, the le system has no means to employ them tdit@te recovery.
Tighter integration between the service and the le systamn emedy this, al-
lowing the le system to automatically repair damaged ld¢$owever, this makes
avoiding causal inconsistency even more important, aseraishniques, such as

simply restoring the most recent version of each damagedre likely to directly
cause it.

90

91

Chapter 6

ViewBox:. Cooperative Data
Protection across Local and
Cloud Storage

Both cloud-based le synchronization services and le gyst go to extensive ef-
forts to preserve user data. However, our analysis in Ch&pteveals that both
systems fail to protect user data in several scenarios. UBecthe client has no
means of determining whether le changes are intentionaherresult of corrup-
tion, it may send both to the cloud, ultimately spreadingwotrr data to all of a
user's devices. Crashes compound this problem; the cliegtupload inconsistent
data to the cloud, download potentially inconsistent lesh the cloud, or fail to
synchronize changed les. Finally, even in the absenceibfrfg the client cannot
normally preserve causal dependencies between les, sinaeks stable point-
in-time images of les as it uploads them. This can lead toraonsistent cloud
image, which may in turn lead to unexpected application ieha

In this chapter, we present ViewBox, a system in which lodalsystem and
cloud-based synchronization services are integrated arkieswoperatively to solve
the problems above. Instead of synchronizing individuak,l ViewBox synchro-
nizes views, in-memory snapshots of the local synchrorizieier that provide data
integrity, crash consistency, and causal consistency.|ldda le system exposes
views to the synchronization client such that the clienyarploads updates from
the views. Since the client only updates views in their engjrViewBox guar-
antees the correctness and consistency of the cloud imdgeh W then uses to
correctly recover from local failures. Furthermore, by ingkthe server aware of
views, ViewBox can synchronize views across clients angenlg handle con icts

92

without losing data.

The rest of the chapter is organized as follows. We rst pnesee high-level
design of ViewBox in Section 6.1. We then describe the imgetation of View-
Box in detail in 6.2. Finally, we evaluate our prototype VB®x system in Section
6.3.

6.1 Design

To remedy the problems outlined in the previous section, vepgse ViewBox,
an integrated solution in which the local le system and thiachronization ser-
vice cooperate to detect and recover from these issueseathstf a clean-slate
design, we structure ViewBox around ext4 (ordered joungalinode), Dropbox,
and Sea le, in the hope of solving these problems with as feanges to existing
systems as possible.

Ext4 provides a stable, open-source, and widely-usedisnlah which to base
our framework. While both btrfs and ZFS already provide sofitbe functionality
we desire, they lack the broad deployment of ext4. Additignas it is a journaling

le system, ext4 also bears some resemblance to NTFS and HR8+indows
and Mac OS X le systems; thus, many of our solutions may bdiegiple in these
domains as well.

Similarly, we employ Dropbox because of its reputation as ohthe most
popular, as well as one of the most robust and reliable, sgnctation services.
Unlike ext4, it is entirely closed source, making it impdssito modify directly.
Despite this limitation, we are still able to make signi ¢camprovements to the
consistency and integrity guarantees that both Dropboxexil provide. How-
ever, certain functionalities are unattainable withoudifying the synchronization
service. Therefore, we take advantage of an open sourcérsyrization service,
Sea le, to show the capabilities that a fully integrated dgstem and synchroniza-
tion service can provide. Although we only implement ViewBwith Dropbox
and Sea le, we believe that the techniques we introduceyaggherally to other
synchronization services.

In this section, we rst outline the fundamental goals dnyiViewBox. We
then provide a high-level overview of the architecture withich we hope to
achieve these goals. Our architecture performs three pyifuactions: detection,
synchronization, and recovery; we discuss each of thesarin t

93

6.1.1 Goals

In designing ViewBox, we focus on four primary goals, basadoth resolving
the problems we have identi ed and on maintaining the festuhat make users
appreciate le-synchronization services in the rst place

Integrity: Most importantly, ViewBox must be able to detect local cptron and
prevent its propagation to the rest of the system. Usersiémtty depend on
the synchronization service to back up and preserve th&; tzus, the le
system should never pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox should maintain choea-
sistency between the client's local le system and the cland prevent the
synchronization service from uploading inconsistent ddtarthermore, if
the synchronization service provides the necessary tumality, ViewBox
must provide multi-client consistency: le-system statesmultiple clients
should be synchronized properly with well-de ned con i&solution.

Recoverability: While the previous properties focus on containing faulistain-
ment is most useful if the user can subsequently repair thesfaviewBox
should be able to use the previous versions of the les on thedcto re-
cover automatically. At the same time, it should maintainszd consistency
when necessary, ideally restoring the le system to an intagepreviously
existed.

Performance: Improvements in data protection cannot come at the expédpsz-0
formance. ViewBox must perform competitively with curreaiutions even
when running on the low-end systems employed by many of tesus le
synchronization services. Thus, naive solutions, likechyonous replica-
tion [65], are not acceptable.

6.1.2 Fault Detection

The ability to detect faults is essential to prevent themrmffmropagating and, ulti-
mately, to recover from them as well. In particular, we foousdetecting corrup-
tion and data inconsistency. While ext4 provides sometgltdi detect corruption
through its metadata checksums, these do not protect thatself. Thus, to cor-
rectly detect all corruption, we add checksums to ext4'a @atwell, storing them
separately so that we may detect misplaced writes [29, 69}gl as bit ips. Once
it detects corruption, ViewBox then prevents the le fromrgeuploaded until it
can employ its recovery mechanisms.

In addition to allowing detection of corruption resultingin bit- ips or bad
disk behavior, checksums also allow the le system to deteeinconsistent crash

Synced View

Frozen View
Active View

FS Epoch

Synced View
Frozen View
Active View

FS Epoch

S
B —
6
E B OB

,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, G
(6]
£ E B E

(c) Freezing fas View 6

,,,,, HE
S
,

£ E B B

(d) Uploading View 6

95

While le-system snapshots provide consistent, staticges[62], they are too
heavyweight for our purposes. Because the synchronizaovice stores all le
data remotely, there is no reason to persist a snapshot konldstead, we propose
a system of in-memory, ephemeral snapshotsjews

View Basics

Views represent the state of the le system at speci ¢ pointsime, or epochs,
associated with quiescent points in the le system. We wiggtish between three
types of views: active views, frozen views, and synchrathiziews. The active
view represents the current state of the local le systemhasuser modi es it.
Periodically, the le system takes a snapshot of the actiegvythis becomes the
current frozen view. Once a frozen view is uploaded to thedld then becomes
a synchronized view, and can be used for restoration. At iamg, tthere is only
one active view and one frozen view in the local system, wthitge are multiple
synchronized views on the cloud.

To provide an example of how views work in practice, Figuré @epicts the
state of a typical ViewBox system. In the initial state, (dje system has one
synchronized view in the cloud, representing the le systate at epoch 0, and
is in the process of uploading the current frozen view, witichtains the state at
epoch 1. While this occurs, the user can make changes totikie @iew, which is
currently in the middle of epoch 2 and epoch 3.

Once ViewBox has completely uploaded the frozen view to tbead; it be-
comes a synchronized view, as shown in (b). ViewBox refréiiom creating a
new frozen view until the active view arrives at an epoch lofauy, such as a jour-
nal commit, as shown in (c). At this point, it discards thevpwas frozen view and
creates a new one from the active view, at epoch 3. Finalseas in (d), ViewBox
begins uploading the new frozen view, beginning the cyctan

Because frozen views are created at le-system epochs anskdle of frozen
views is always static, synchronizing frozen views to tlwud provides both crash
consistency and causal consistency, given that thereysooel client actively syn-
chronizing with the cloud. We call thsingle-client consistency

Multi-client Consistency

When multiple clients are synchronized with the cloud, tbever must propagate
the latest synchronized view from one client to other ciemd make all clients'
state synchronized. Critically, the server must propaga®s in their entirety;
partially uploaded views are inherently inconsistent dngtshould not be visible.

96

However, because synchronized views necessarily lag thehanactive views in
each le system, the current active le system may have ddpenies that would be
invalidated by a remote synchronized view. Thus, remotagés must be applied
to the active view in a way that preserves local causal ctersiy.

To achieve this, ViewBox handles remote changes in two ghalsethe rst
phase, ViewBox applies remote changes to the frozen vieaclfanged le does
not exist in the frozen view, ViewBox adds it directly; othese, it adds the le un-
der a new name that indicates a con ict (e.qg., “foo.txt” bews “remote.foo.txt").
In the second phase, ViewBox merges the newly created frae@nwith the ac-
tive view. ViewBox propagates all changes from the new froziew to the active
view, using the same con ict handling procedure. At the séime, it uploads the
newly merged frozen view. Once the second phase compléesctive view is
fully updated; only after this occurs can it be frozen andaged.

To correctly handle con icts and ensure no data is lost, wiofiothe same
policy as GIT [54]. This can be summarized by the followinge#hguidelines:

Preserve any local or remote change; a change could be thmadohodi -
cation, or deletion of a le.

When there is a con ict between a local change and a remotegehalways
keep the local copy untouched, but rename and save the reowie

Synchronize and propagate both the local copy and the rahesmmeote copy.

Figure 6.2 illustrates how ViewBox handles remote changjesase (a), both
the remote and local clients are synchronized with the glatidiew 0. The remote
client makes changes to the active view, and subsequenrtiyds and uploads it to
the cloud as view 1. The local client is then informed of vievadd downloads it.
Since there are no local updates, the client directly appiie changes in view 1 to
its frozen view and propagates those changes to the acéwe vi

In case (b), both the local client and the remote client parfopdates concur-
rently, so con icts may exist. Assuming the remote clienhdyronizes view 1 to
the cloud rst, the local client will refrain from uploadinigs frozen view, view 2,
and download view 1 rst. It then merges the two views, resajwcon icts as de-
scribed above, to create a new frozen view, view 3. Findily,|bcal client uploads
view 3 while simultaneously propagating the changes in \Beiw the active view.

In the presence of simultaneous updates, as seen in casaiglgynchroniza-
tion procedure results in a cloud state that re ects a coathn of the disk states
of all clients, rather than the state of any one client. Evelty, the different client
and cloud states will converge, providimgulti-client consistency This model is

Active View 0]

Remote N
Client Frozen View (0]
Cloud Synced View (0]
Local Frozen View @ \
Client Active View @
(a) Directly Applying Remote Updates
Remote Active View
Client Frozen View (0]
Cloud Synced View (0]
,,,,,,,,,,,,,,,,,,,,,,,,, \\/'
Local Frozen View @
Client 4

Active View 0

(b) Merging and Handling Potential Conflicts

98

6.1.4 Cloud-aided Recovery

With the ability to detect faults and to upload consistemiwg of the le system
state, ViewBox is now capable of performing correct recgveFhere are effec-
tively two types of recovery to handle: recovery of corrufgs, and recovery of
inconsistent les at the time of a crash.

In the event of corruption, if the le is clean in both the agtiview and the
frozen view, we can simply recover the corrupt block by faighthe copy from the
cloud. Ifthe leis dirty, the le may not have been synchraed to the cloud, mak-
ing direct recovery impossible, as the block fetched frooudlwill not match the
checksum. If recovering a single block is not possible, titee le must be rolled
back to a previous synchronized version, which may lead ugalenconsistency.

Recovering causally-consistent images of les that weesent in the active
view at the time of a crash faces the same dif culties as rexjacorrupt les in the
active view. Restoring each individual le to its most retegnchronized version
is not correct, as other les may have been written after the-gorrupted le and,
thus, depend on it; to ensure these dependencies are na&nbrblese les also
need to be reverted. Thus, naive restoration can lead t@lceg®nsistency, even
with views.

Instead, we present users with the choice of individuallyng back damaged
les, potentially risking causal inconsistency, or revegtto the most recent syn-
chronized view, ensuring correctness but risking data lésswe anticipate that
the detrimental effects of causal inconsistency will batre¢ly rare, the former
option will be usable in many cases to recover, with the latilable in the event
of bizarre or unexpected application behavior.

6.2 Implementation

Now that we have provided a broad overview of ViewBox's atetture, we delve
more deeply into the speci cs of our implementation. As wiection 6.1, we di-
vide our discussion based on the three primary componewtsrafrchitecture: de-
tection, as implemented with our next4-cksumle system; view-based synchro-
nization using ourview managera le-system agnostic extension to ext4-cksum;
and recovery, using a user-space recovery daemon atlad helper

6.2.1 Ext4-cksum

Like most le systems that update data in place, ext4 pravidenimal facilities
for detecting corruption and ensuring data consistencyild/ittoffers experimental

Superblock

Group
Descriptors

Block
Bitmap

Inode
Bitmap

Inode
Table

Checksum
Region

Data
Blocks

Figure 6.3:Ext4-cksum Disk Layout This graph shows the typical layout of a block
group in ext4-cksum. The shaded region, the checksum tabitins data checksums for
blocks in the block group.

metadata checksums, these do not protect data; similerlgiefault ordered jour-
naling mode only protects the consistency of metadata,ewgmbviding minimal
guarantees about data. Thus, it requires changes to mestquirements for in-
tegrity and consistency. We now present ext4-cksum, anieoiaext4 that supports
data checksums to protect against data corruption and ¢atd#dta inconsistency
after a crash without the high cost of data journaling.

Checksum Region

There are several ways in which we could add data checksumg4o The sim-
plest way is to store a checksum within its protecting blagkich is viable if the
disk supports 520-byte sectors [112]. If not, some bytekémKB block will have
to be sacri ced to store the checksum, which may cause akgmmroblems with
applications. In addition, because this method storesdkteelblock and the check-
sum in the same logical write unit, it cannot detect misdedanrites or phantom
writes [69]. Alternatively, the le system could inline trenecksum for each block
with the pointer to it in metadata, as ZFS does. While thishoeican work well, it
can substantially limit the maximum le size, due to the néedtore checksums,
and it may work awkwardly with ext4's current implementatiof extents.

Ext4-cksum stores data checksums in a xed-sizhdcksum regiommmedi-
ately after the inode table in each block group, as showngare€i6.3. All check-
sums of data blocks in a block group are preallocated in tkelkdum region. This
region acts similarly to a bitmap, except that it stores khems instead of bits,
with each checksum mapping directly to a data block in theigrdSince the re-
gion starts at a xed location in a block group, the locatidritee corresponding
checksum can be easily calculated, given the physical)(tlekk number of a data
block.

The size of the region depends solely on the total numberaaikklin a block
group and the length of a checksum, both of which are deteanamd xed dur-
ing le system creation. Currently, ext4-cksum uses thdthaoicrc32c checksum,
which is 32-bit long. Therefore, it reserves a 32-bit cheokgor every 4KB block,
imposing a space overhead of 1/1024; for a regular 128MBkbdpoup, the size
of the checksum region is 128KB.

100

Checksum Handling for Reads and Writes

When a data block is read from disk, the corresponding clhueckaust be veri ed.
Before the le system issues a read of a data block from diskggets the corre-
sponding checksum by reading the checksum block. After lagystem reads the
data block into memory, it veri es the block against the dtson. If the initial
veri cation fails, ext4-cksum will retry. If the retry alstails, ext4-cksum will re-
port an error to the application. Note that in this case, ifleoksum is running with
the cloud helper daemon, ext4-cksum will try to get the revmmipy from cloud
and use that for recovery. The read part of a read-modifyevisi handled in the
same way.

A read of a data block from disk always incurs an additionatrior the check-
sum, but not every checksum read will cause high latencgt,Fire checksum read
can be served from the page cache, because the checksurs hleckonsidered
metadata blocks by ext4-cksum and are kept in the page c&ehather metadata
structures. Second, even if the checksum read does incwkd/@i, because the
checksum is always in the same block group as the data blbekseek latency
will be minimal. Third, to avoid checksum reads as much asiptes ext4-cksum
employs a simple prefetching policy: always read 8 checksblooks (within a
block group) at a time. Advanced prefetching heuristicghsas those used for
data prefetching, are applicable here.

Ext4-cksum does not update the checksum for a dirty dat&khintil the data
block is written back to disk. Before issuing the disk write fhe data block, ext4-
cksum reads in the checksum block and updates the corrasgarttecksum. This
applies to all data write-backs, caused by a background, tsmnc, or a journal
commit.

Since ext4-cksum treats checksum blocks as metadata blwitkgournaling
enabled, ext4-cksum logs all dirty checksum blocks in theerjal. In ordered jour-
naling mode, this also allows the checksum to detect instersi data caused by
a crash. In ordered mode, dirty data blocks are ushed to Hiefore metadata
blocks are logged in the journal. If a crash occurs befordrdmesaction commits,
data blocks that have been ushed to disk may become indensjdecause the
metadata that points to them still remains unchanged aftevery. As the check-
sum blocks are metadata, they will not have been updatedingpa mismatch
with the inconsistent data block. Therefore, if such a blisdiater read from disk,
ext4-cksum will detect the checksum mismatch.

To ensure consistency between a dirty data block and itkshet, data write-
backs triggered by a background ush and fsync can no longeuls&aneously
occur with a journal commit. In ext4 with ordered journalifgefore a transaction

101

has committed, data write-backs may start and overwritdalmack that was just
written by the committing transaction. This behavior, ioaled in ext4-cksum,

would cause a mismatch between the already logged checKksuknand the newly

written data block on disk, thus making the committing teazt®n inconsistent. To
avoid this scenario, ext4-cksum ensures that data writksbdue to a background
ush and fsync always occur before or after a journal commit.

6.2.2 View Manager

To provide consistency, ViewBox requires le synchroniaatservices to upload
frozen views of the local le system, which it implementsdhgh an in-memory
le-system extension, the view manager. In this section,ds&il the implemen-
tation of the view manager, beginning with an overview. Next introduce two
techniques, cloud journaling and incremental snapstipttivhich are key to the
consistency and performance provided by the view manadpen,fwe describe the
synchronization processes that upload a frozen view todcléunally, we brie y
discuss how to integrate the synchronization client withview manager to handle
remote changes and con icts.

View Manager Overview

The view manager is a light-weight kernel module that cieaiews on top of
a local le system. Since it only needs to maintain two locaws at any time
(one frozen view and one active view), the view manager dagsmodify the
disk layout or data structures of the underlying le systeimstead, it relies on a
modi ed tmpfs to present the frozen view in memory and suppéirthe basic le
system operations to les and directories in it. Theref@aesynchronization client
now monitors the exposed frozen view (rather than the aébladr in the local le
system) and uploads changes from the frozen view to the cldlidregular le
system operations from other applications are still diydtandled by ext4-cksum.
The view manager uses the active view to track the on-goirmgngés and then
re ects them to the frozen view. Note that the current impdetation of the view
manager is tailored to our ext4-cksum and it is not stackidl@8]. We believe that
a stackable implementation would make our view manager atibip with more
le systems.

Consistency through Cloud Journaling

As we discussed in Section 6.1.3, to preserve consistermzer views must be
created at le-system epochs. Therefore, the view manageizés the current

102

active view at the beginning of a journal commit in ext4-aksuvhich serves as
a boundary between two le-system epochs. At the beginnihg commit, the

current running transaction becomes the committing tictitsa When a new run-
ning transaction is created, all operations belonging ¢odlld running transaction
have completed, and operations belonging to the new rurtramgaction have not
started yet. The view manager freezes the active view apdiig, ensuring that no
in- ight operation spans multiple views. All changes sirtbe last frozen view are
preserved in the new frozen view, which is then uploaded ¢octbud, becoming
the latest synchronized view.

To ext4-cksum, the cloud acts as an external journalingcdeviEvery syn-
chronized view on the cloud matches a consistent state dbtlak le system at a
speci ¢ point in time. Although ext4-cksum still runs in akd journaling mode,
when a crash occurs, the le system now has the chance toack tw a consistent
state stored on cloud. We call this approach cloud jourgalin

Low-overhead via Incremental Snapshotting

During cloud journaling, the view manager achieves bettefgpmance and lower
overhead through a technique called incremental snajrsipofhe view manager
always keeps the frozen view in memory and the frozen view coohtains the
data that changed from the previous view. The active viesus responsible for
tracking all the les and directories that have changed esifidast was frozen.
When the view manager creates a new frozen view, it mark$afiged les copy-
on-write (COW), which preserves the data at that point. Téw frozen view is
then constructed by applying the changes associated watladtive view to the
previous frozen view.

The view manager uses several in-memory and on-cloud stascto support
this incremental snapshotting approach. First, the viewagar maintains am-
ode mapping tabléo connect les and directories in the frozen view to their-co
responding ones in the active view. The view manager repteske namespace
of a frozen view by creatinfrozen inodedor les and directories in tmpfs (their
counterparts in the active view are thus cabetive inode} but no data is usually
stored under frozen inodes (unless the data is copied awertfie active view due
to copy-on-write). When a le in the frozen view is read, thew manager nds
the active inode and fetches data blocks from it. The inodpping table thus
serves as a translator between a frozen inode and its actide.i

Second, the view manager tracks namespace changes in e detv by
using anoperation log which records all successful namespace operations (e.g.,
create, mkdir, unlink, rmdir, and rename) in the active viée log records the

103

type of an operation and all operands, in the form of actisénumbers. For
example, for a le create, the inode numbers of the parenadd the created le
inode are logged. When the active view is frozen, the log daseed onto the
previous frozen view to bring it up-to-date, re ecting thewstate.

Third, the view manager useglaty tableto track what les and directories are
modi ed in the active view. Once the active view becomes émzll these les are
marked copy-on-write. Then, by generating inotify everdsda on the operation
log and the dirty table, the view manager is able to make thelspnization client
check and upload these local changes to the cloud. Afterythehsonization is

nished, the view becomes a synchronized view on the cloud.

Finally, the view manager keepsew metadataon the server for every syn-
chronized view, which is used to identify what les and di@@es are contained
in a synchronized view. For services such as Sea le, whitarimally keeps the
modi cation history of a folder as a series of snapshots [#9 view manager is
able to use its snapshot ID (called commit ID by Sea le) asviber metadata. For
services like Dropbox, which only provides le-level versing, the view manager
creates a view metadata le for every synchronized view,stgimg of a list of
pathnames and revision numbers of les in that view. Thernmiation is obtained
by querying the Dropbox server. The view manager storegthetadata lesin a
hidden folder on the cloud, so the correctness of these dawmt affected by disk
corruption or crashes.

Synchronizing Views to the Cloud

Now, we describe how the view manager synchronizes viewsetgerver.

Initial Synchronization: Assuming there are no crash and no remote changes,
when alocal le system is mounted and the synchronizatieentistarts, the client
scans the synchronization folder and uploads any of inenglea to the server. With
ViewBox, to ensure that the synchronization client cafgargiew of the initial on-
disk state of the synchronized folder, the view managerzéedhe initial state
of ext4-cksum before the client starts. The client then s¢ha frozen view and
synchronizes any of ine changes to the cloud, in the same agthe unmodi ed
synchronization client. We call this procdsgial synchronization Note that dur-
ing the initial synchronization, ext4-cksum is not acdelesio applications other
than the client, as if it were not mounted.

The view manager creates the initial frozen view by clonimgwhole names-
pace from ext4-cksum (the active view). It creates the sarsetdries in the frozen
view directly, and clones les from the active view by alldicey sparse les in their

D D
X Xa
Ye Ya

Frozen View 5

Dirty Table

A
2

Op Log 6

unlink x,
create z

1. View manager copies the namespace fro|
active view 5 to frozen view 5, and
initializes the inode mapping table

2. Sync client uploads file x from frozen vie
* View manager looks up frozen inode
number xin inode mapping table and
find active inode number x
* View manager reads data from active
inode x,

3. View manager creates and uploads view
metadata for frozen view 5

1. User deletes file x
« View managefogs “unlinkx," in op log

2. User madifies file y
« View manager records,yn dirty table

3. User creates file z
« View manager records,in dirty table
« View managelfogs “createz,’ in op log

V5

105

corresponding directories in the frozen view. These frolshave the same in-
ode attributes (such as mtime and size) as their activeorersbut do not contain
any data. The inode mapping table is initialized during pin@cess.

Then, the synchronization client starts to scan the frozem,\n order to detect
of ine changes. The client reads all new and modi ed lesiincthe frozen view
and uploads them to the server. Because the frozen view dbesmtain any data
for the le, the view manager handles data reads by lookinghganode mapping
table, nding the active inode, and reading blocks from tletivae view. After
the client nishes uploading the view, the view manager t@sand stores view
metadata of the view on the server.

Figure 6.4 shows an example of how the view manager perfonitialisyn-
chronization. We will use the same example to illustrate tiogvview manager
works in the following discussion.

Regular Synchronization: Once the initial synchronization nishes, the active
view becomes visible to applications and starts to carryoparations. The view
manager uses an operation log and a dirty table to recordspmoe changes and
le changes in the active view, as shown in Figure 6.5. At sqroit, the active
view is frozen and a new active view is immediately createthil®\the frozen view
is being synchronized to the cloud, the new active view oo to serve requests
from applications. We call this processgular synchronization Once the frozen
view is synchronized, the view manager starts the same gsagain.

Freezing an active view: The view manager freezes the current active view at
the beginning of the upcoming transaction commit in extdutk. When the active
view is frozen, the op-log and dirty table are attached tdrtbeen view and become
frozen op-logandfrozen dirty table At the same time, a new active view is created
on top of the ext4-cksum, with an empgtive op-logandactive dirty table Figure

6.6 shows how the view manager freezes the previous ackwe &iand creates a
new active view 7.

Establishing a frozen view: In ViewBox, a frozen view does not have to be
persistent. Instead, it only needs to be present when itiyl®ynchronized to
the cloud. Therefore, the view manager takes a light-wdigihemory shapshot
approach. The key is to break the state of the snapshot irge garts: namespace,
inode attributes and le data.

The view manager relies on the op-log to quickly bring the espace up-to-
date. When the active view becomes frozen, the namespahbe finozen view is

Frozen View 5

Frozen | Active
Inode | Inode

D: Dy
Xe Xa
Ye Ya

Frozen View 6

Frozen | Active

Inode | Inode
D: Dy
Ye Ya

% Zn

Dirty Table

Ya
Zn

Op Log 6

unlink %,
create z

Dirty Table
1. View manager creates a new active view ¥
with empty dirty table and op log
Op Log 7) i
2. View manager attaches dirty table 6 and gp
log 6 to the frozen view

Active View 7

Dirty Table

Ya
Zn

Op Log 6

unlink %,
create z

Dirty Table
View manager replays op log 6 onto frozen vigw
5 and brings its namespace up-to-date
Op Log 7 « The inode mapping table is also updated

Active View 7

Frozen View 6

Frozen | Active

Inode | Inode
D D
Y& Ya

% £

Dirty Table

Ya
Zn

Dirty Table

Op Log 6
unlink x,

create 3

Op Log 7
unlink y,

ihs

Active View 7

User deletes file y in active view 7
View manager sees,exists in dirty table 6
* View manager copies,’g data to y-

* Unlink succeeds
View managetogs “unlinky," in oplog

108

Dirty Table 7

. View manager generates inotify events
based on op log 6 and dirty table 6

Sync client uploads file y to the cloud
* The view manager reads data from y
directly, because file y was COWed

. Sync client uploads file z to the cloud
* View manager reads data frorg z

Frozen | Active
Inode | Inode . View manager creates and uploads view

D: Dp metadata for frozen view 6

Y& Ya
% £

109

view. Figure 6.9 shows the steps the view manager takes tadptozen view 6.

Handling Remote Changes

All the techniques we have introduced so far focus on how ¢eige single-client
consistency and do not require modi cations to the synctzation client or the
server. They work well with proprietary synchronizatiomsees such as Drop-
box. However, when there are multiple clients running ViexEnd performing
updates at the same time, the synchronization servicé itsedt be view-aware.
To handle remote updates correctly, we modify the Sea lentlito perform the
two-phase synchronization described in Section 6.1.3. Mdese Sea le to imple-
ment multi-client consistency, because both its client seryer are open-source.
More importantly, its data model and synchronization dtbar are similar to GIT,
which ts our view-based synchronization well.

6.2.3 Cloud Helper

When corruption or a crash occurs, ViewBox performs regouemg backup data
on the cloud. Recovery is performed through a user-leveindae cloud helper.
The daemon is implemented in Python, which acts as a bridtyecka the local
le system and the cloud. It interacts with the local le sgst using ioctl calls and
communicates with the cloud through the service's web API.

For data corruption, when ext4-cksum detects a checksummaid$, it sends
a block recovery request to the cloud helper. The requekidas the pathname
of the corrupted le, the offset of the block inside the lena@ the block size.
The cloud helper then fetches the requested block from theisand returns the
block to ext4-cksum. Ext4-cksum re-veri es the integritiytbe block against the
data checksum in the le system and returns the block to thpticgiion. If the
veri cation still fails, it is possibly because the blocks$aot been synchronized or
because the block is fetched from a different le in the sywoclized view on the
server with the same pathname as the corrupted le.

When a crash occurs, the cloud helper performs a scan of thecksum le
system to nd potentially inconsistent les. If the user as®s to only roll back
those inconsistent les, the cloud helper will downloadrthéfom the latest syn-
chronized view. If the user chooses to roll back the wholesystem, the cloud
helper will identify the latest synchronized view on thevagr and download les
and construct directories in the view. The former approachbile to keep most
of the latest data but may cause causal inconsistency. Ttee dmiarantees causal

110

Service Data Metadata
ViewBox w/ | write | mtime ctime atime
Dropbox DR DR DR DR
Seale DR DR DR DR

Table 6.1:Data Corruption Results of ViewBox In all cases, the local corruption is
detectedD) and recoveredR).

Service Upload Download Out-of-sync
ViewBox w/ | local ver. cloud ver. (no sync)
Dropbox -
Seale P

Table 6.2:Crash Consistency Results of ViewBoxThe local version of the le is
inconsistent, and is rolled back to the previous versionfendoud.

consistency, but at the cost of losing updates that tooleplacing the frozen view
and the active view when the crash occurred.

6.3 Evaluation

We now present the evaluation results of our ViewBox prqietyWe rst show that
our system is able to recover from data corruption and ceastreectly and provide
causal consistency. Then, we evaluate the underlying ékddm and view man-
ager components separately, without synchronizationicesy Finally we study
the overall synchronization performance of ViewBox withopbox and Sea le.
We implemented ViewBox in the Linux 3.6.11 kernel, with Dbax client
1.6.0, and Sea le client and server 1.8.0. All experiments @erformed on ma-
chines with a 3.3GHz Intel Quad Core CPU, 16GB memory, and & Hifachi
Deskstar hard drive. For all experiments, we reserve 512KiBemory for the
view manager. We run every experiment 10 times and repodveege result.

6.3.1 Cloud Helper

We rst perform the same set of fault injection experimergsiraSection 2. The
corruption and crash test results are shown in Table 6.1 ahl#B.2. Because the

111

Workload ext4 | extd4-cksum | Slowdown
(MB/s) (MB/s)

Seq. write | 103.69 99.07 4.46%

Seq.read | 112.91 108.58 3.83%

Rand. write| 0.70 0.69 1.42%

Rand. read| 5.82 5.74 1.37%

Table 6.3: Microbenchmarks on ext4-cksum This gure compares the throught-
put of several micro benchmarks on ext4 and ext4-cksum.e®tglwrite/read are writ-
ing/reading a 1GB le in 4KB requests. Random write/read anmdgting/reading 128MB
of a 1GB le in 4KB requests. For sequential read workloadtdegksum prefetches 8
checksum blocks for every disk read of a checksum block.

local state is initially synchronized with the cloud, thewd helper is able to fetch
the redundant copy from cloud and recover from corruptioth @rashes. We also
con rm that ViewBox is able to preserve causal consistency.

6.3.2 Ext4-cksum

We now evaluate the performance of standalone ext4-cksaousing on the over-
head caused by data checksumming. Table 6.3 shows the tatugf several
microbenchmarks on ext4 and ext4-cksum. From the tablecanesee that the
performance overhead is quite minimal. Note that checks@fefeching is impor-
tant for sequential reads; if it is disabled, the slowdowthef workload increases
to 15%.

We perform a series of macrobenchmarks using Filebench tndéda4 and
ext4-cksum with checksum prefetching enabled. The resuéisshown in Table
6.4. For the leserver workload, the overhead of ext4-ckssmuite high, because
there are 50 threads reading and writing concurrently aadégative effect of the
extra seek for checksum blocks accumulates. The webseor&load, on the other
hand, experiences little overhead, because it is domirigtecarm reads.

It is surprising to notice that ext4-cksum greatly outperfe ext4 in varmail.
This is actually a side effect of the ordering of data writesks and journal com-
mit, as discussed in Section 6.2.1. Note that because egitéxdd-cksum are not
mounted with “journalasynccommit”, the commit record is written to disk with a
cache ush and the FUA (force unit access) ag, which enstines when the com-
mit record reaches disk, all previous dirty data (includingtadata logged in the

112

Workload ext4 | extd-cksum | Slowdown
(MB/s) (MB/s)

Fileserver | 79.58 66.28 16.71%
Varmail 2.90 3.96 -36.55%
Webserver| 150.28 150.12 0.11%

Table 6.4:Macrobenchmarks on ext4-cksum This table shows the throughtput of
leserver, varmail, and webserver workloads on ext4 andlesktisum. Fileserver is con g-
ured with 50 threads performing creates, deletes, appemdsle- le writes, and whole- le
reads. Varmail emulates a multi-threaded mail server. Baobad performs a set of create-
append-sync, read-append-sync, read, and delete opagtib has about half reads and
half writes and is dominated by random I/Os. Webserver is littlueaded read-intensive
workload.

journal) has already been forced to disk. When running viiimext4, data blocks
written by fsyncs from other threads during the journal catrare also ushed to
disk at the same time, which causes high latency. In contsaste ext4-cksum
does not allow data write-back from fsync to run simultarsbpwvith the journal
commit, the amount of data ushed is much smaller, which ioves the overall
throughput of the workload.

6.3.3 View Manager

We now study the performance of various le system operationan active view
when a frozen view exists. The view manager runs on top ofexsdim.

We rst evaluate the performance of various operations doaeot cause copy-
on-write (COW) in an active view. These operations are ereanlink, mkdir,
rmdir, rename, utime, chmod, chown, truncate and stat. \Wearworkload that
involves creating 1000 8KB les across 100 directories axereising these oper-
ations on those les and directories. We prevent the actige/from being frozen
so that all these operations do not incur a COW. We see a sratead (mostly
less than 5% except utime, which is around 10%) across afhatipes, as com-
pared to their performance in the original ext4., This oeaxhis mainly caused by
operation logging and other bookkeeping performed by the/vhanager.

Next, we show the normalized response time of operationgithtigger copy-
on-write in Table 6.5. These operations are performed or\VéBlL0e after the le
is created and marked COW in the frozen view. All operaticengse all 10MB of
le data to be copied from the active view to the frozen vieviaelcopying overhead

113

Normalized Response Time
Operation Before COW After COW
unlink (cold) 484.49 1.07
unlink (warm) 6.43 0.97
truncate (cold) 561.18 1.02
truncate (warm) 5.98 0.93
rename (cold) 469.02 1.10
rename (warm) 6.84 1.02
overwrite (cold) 1.56 1.10
overwrite (warm) 1.07 0.97

Table 6.5:Copy-on-write Operations in the View Manager This table shows the
normalized response time (against ext4) of various openaton a frozen le (10MB) that
trigger copy-on-write of data blocks. “Before COW"/"Aft&€@ OW” indicates the operation
is performed before/after affected data blocks are COWed.

is listed under the “Before COW” column, which indicatestttteese operations
occur before the affected data blocks are COWed. When thhedaavarm, which
is the common case, the data copying does not involve anyl/@dut still incurs
up to 7x overhead. To evaluate the worst case performancen(ite cache is
cold), we deliberately force the system to drop all cachésrbave perform these
operations. As one can see from the table, all data blockseackfrom disk, thus
causing much higher overhead. Note that cold cache caseararand may only
occur during memory pressure. We further measure the peafoce of the same
set of operations on a le that has already been fully COWed. shown under
the “After COW” column, the overhead is negligible, becansedata copying is
performed.

6.3.4 ViewBox with Dropbox and Sea le

We assess the overall performance of ViewBox using threkloads: openssh
(building openssh from its source code), ipheidit (editing photos in iPhoto,
about 5GB data), and iphatdew (browsing photos in iPhoto, about 1GB data).
The latter two workloads are from the iBench trace suite @0 are replayed
using Magritte [119]. We believe that these workloads apeegentative of ones
people run with synchronization services.

The results of running all three workloads on ViewBox withopbox and
Sea le are shown in Table 6.6 and Table 6.7. In all cases,uhgme of the work-

114

ext4 + Dropbox ViewBox with Dropbox
Workload | Runtime Sync Timg Runtime Sync Time

openssh 36.4 49.0 36.0 64.0
iphoto_edit 577.4 2115.4 563.0 2667.3
iphota.view 149.2 170.8 153.4 591.0

Table 6.6:Performance of ViewBox with Dropbox This table compares the runtime
and sync time (in seconds) of various workloads running profdhe unmodi ed ext4 and

ViewBox using Dropbox. Runtime is the time it takes to nfshworkload and sync time
is the time it takes to nish synchronizing.

extd + Seale ViewBox with Sea le
Workload | Runtime Sync Timg Runtime Sync Time
openssh 36.0 44.8 36.0 56.8

iphota_edit 566.6 857.6 554.0 598.8
iphota.view | 150.0 166.6 156.4 175.4

Table 6.7:Performance of ViewBox with Sea le This table compares the runtime
and sync time (in seconds) of various workloads running profdhe unmodi ed ext4 and

ViewBox using Sea le. Runtime is the time it takes to nishworkload and sync time is
the time it takes to nish synchronizing.

load in ViewBox is at most 5% slower and sometimes even fdktar that of the
unmodi ed ext4 setup, which shows that view-based syndkation does not have
a negative impact on the foreground workload. We also nd tha memory over-
head of ViewBox (the amount of memory consumed by the viewaganto store
frozen views) is minimal, at most 20MB across all three woakls.

We expect the synchronization time of ViewBox to be longetause View-
Box does not start synchronizing until the current le syststate is frozen, which
may cause delays. The results of openssh con rm our expeatatHowever, for
iphota.view and iphotaedit, the synchronization time on ViewBox with Dropbox
is much greater than that on ext4. This is due to Dropboxk td@roper interface
support for views, as described in Section 6.2.2. Becausevarkloads use a le
system image with around 1200 directories, to create th& metadata for each
view, ViewBox has to query the Dropbox server numerous tjroagsing substan-
tial overhead. In contrast, ViewBox can avoid this overhe#tl Sea le because it
has direct access to Sea le's internal metadata. Thus,thehsonization time of

115

iphota.view in ViewBox with Sea le is near that in ext4.

Note that the iphotaedit workload actually has a much shorter synchronization
time on ViewBox with Sea le than on ext4. Because the photitirgiworkload in-
volves many writes, Sea le delays uploading when it detdetsbeing constantly
modi ed. After the workload nishes, many les have yet to hploaded. Since
frozen views prevent interference, ViewBox can nish syrafizing about 30%
faster.

6.4 Summary

Despite their near-ubiquity, le synchronization sendcaltimately fail at one of
their primary goals: protecting user data. Not only do tfahé prevent corruption
and inconsistency, they actively spread it in certain cagle fault lies equally with
local le systems, however, as they often fail to provide tlezessary capabilities
that would allow synchronization services to catch theserer To remedy this,
we propose ViewBox, an integrated system that allows the! Iteesystem and the
synchronization client to work together to prevent and iregaors.

Rather than synchronizing individual les, as current ehronization services
do, ViewBox centers around views, in-memory le-systemsiets which have
their integrity guaranteed through on-disk checksums.c&iriews provide con-
sistent images of the le system, they provide a stable ptaiffor recovery that
minimizes the risk of restoring a causally inconsistentestaAs they remain in-
memory, they incur minimal overhead.

We implement ViewBox to support both Dropbox and Sea le mige and nd
that it prevents the failures that we observe with unmodiechl le systems and
synchronization services. Equally importantly, it penfiercompetitively with un-
modi ed systems. This suggests that the cost of correctnesds not be high; it
merely requires adequate interfaces and cooperation.

116

117

Chapter 7

Related Work

This chapter discusses various research efforts and retansg that are related to
this dissertation. We rst discuss literature on analyzgygtem reliability using
fault injection and modeling techniques. Then, we sumneaiesearch on improv-
ing data integrity and consistency in storage systems.

7.1 Fault Injection

Software-implemented fault injection techniques havenbeielely used to analyze
the robustness of systems [26, 33, 56, 66, 101, 114]. For geafINE used fault
injection to emulate hardware and software faults in theratpeg system [66];
Gu et al. [56] injected faults to instruction streams of bLirkernel function to
characterize Linux kernel behavior.

More recent works have applied type-aware fault injectmartalyze failure be-
haviors of different le systems to disk corruptions. Prakhran et al. injected par-
tial disk failures to various le systems to understand tle@dvior of these systems
in the presence of disk errors and randomly-corrupted disgkls [89]. Bairava-
sundaram et al. developed and applied type-aware pointaratmn to NTFS and
ext3 to study how both systems handle pointer corruptiotéir tmetadata struc-
tures [24]. Our analysis of on-disk data integrity in ZFS aada corruption with
synchronization services is similar to these studies.

Furthermore, fault injection has also been used to analifeete of memory
corruption on systems. FIAT [26] used fault injection todstuhe effects of mem-
ory corruption in a distributed environment. Krishnan et applied a memory
corruption framework to analyze the effects of metadataugtion on NFS [70].
Our study on in-memory data integrity is related to thesdistiin their goal of

118

nding effects of memory corruption.

However, our work on ZFS is the rst comprehensive relidpiknalysis of lo-
cal le system that covers carefully controlled experinett analyze both on-disk
and in-memory data integrity. Speci cally, for our study miemory corruptions,
we separately analyze ZFS behavior for faults in page cadtadata and data and
for metadata structures in the heap. To the best of our krigelethis is the rst
such comprehensive study of end-to-end le system dataiitye

Similarly, our analysis of cloud-based synchronizatiorviees is the rst study
on the reliability of these services. We study the impact isk @orruption and
system crash to synchronization services and reveal thesing fact that multiple
copies do not always make data safe.

7.2 Reliability Modeling

A large body of research has been focusing on modeling désvet errors such as
memory errors and latent sector errors. Li et al. performseri@s of measurement
of soft errors on real production systems, and developecetaddr error rates and
error patterns [71, 72]. Schroeder et al. conducted a ddtaiatic analysis of
latent sector errors and provided parameters for modeigediefrom the analysis
[96]. Based on the models, they proposed and evaluatedasenas protection
schemes against latent sector errors.

There are many studies on reliability modeling for RAID syss [31, 45, 86],
but only a few of them cover silent data corruption. Roziealet presented a
fault model for Undetected Disk Errors (UDE) in RAID systefg]. They built
a framework that combines simulation and model to calcutaéemanifestation
rates of undetected data corruption caused by UDEs. Krioekal. used model
checking to analyze various protection techniques usediirest RAID storage
systems [69]. They study the interaction between theseaitggbs and nd design
faults that may lead to data loss or data corruption. In caoispa, our reliability
framework focuses on bit errors from various devices (nst glisk or RAID). We
use analytical models to evaluate the reliability of diffietr devices and different
checksums in terms of the probability of undetected coiapt Our framework
calculates a system-level metric that can be used to contipaneliability of dif-
ferent storage systems.

119

7.3 Techniques for Data Integrity

Using checksums to detect data corruption is common. F#eesys, such as PFS
[104], GoogleFS [51], IRON le system [89], btrfs [91] and ZH29], use check-
sums to protect on-disk blocks. Many database systems,asuBbrkeley DB [85]
and SQL Server [1], support page-level checks to make sueeislaot corrupted
on disk. In networking, the Internet checksum [12], used lystrinternet pro-
tocols, is designed to detect transmission errors. Thegritigecheck speci ed in
RPCSECGSS [13] protects RPC messages during transmission. Aletbkecks
are applied in a single subsystem/protocol, while exibhel¢o-end data integrity
focuses on cross-component data protection. In additiamnext4-cksum is similar
to these systems in using checksums, but to our knowledigethie rst work to
add data checksumming to ext4. IRFS, we take advantage of existing checks as
well as our newly added checks to provide wider coverage t@f plavtection.

Many of the systems above, such as GoogleFS, IRON le systard,ZFS,
rely on locally stored redundant copies for automatic recgwvhich may or may
not be available. In contrast, ViewBox is the rst work of wehiwe are aware that
employs the cloud for recovery.

The concept of exible end-to-end data integrity is simitarthe protection
scheme in the Linux Data Integrity Extension (DIX) [87] arek tT10 Protection
Information (T10-PI) model [112] (previously known as Déatgegrity Field). DIX
provides end-to-end protection from the application to i@ controller, while
T10-PI covers the data path between the I/O controller aaddisk. Within this
framework, checksums are passed from the applicationeaiitty to the disk, and
can be veri ed by the disk drive, as well as the componentgtimben. Although
T10-PI requires CRC as the checksum, DIX is able to use tlegriat checksum
[12] to achieve better performance and relies on the I/Orobiat to convert the
Internet checksum to CRC. The behavior of each componeritseitvO path is
well modeled by the data integrity architecture from SNIA2). Our exible
end-to-end concept differs from their scheme in that theyu$oonde ning the
behavior of each node while our work helpsremsonabout the rational behind
certain behaviors, such as what checksum should be usedibly edmponent, and
when and where the system should change checksum. Ouriliglifdlamework
also provides a holistic way to think about the tradeoffsMeein performance and
protection.

In terms of implementation, ZS offers similar protection as DIX, but it is
different from DIX in several aspects. First?iZS is a software solution while
T10-PI and DIX require support from hardware vendors. Thel loaives and the
controller must support 520-byte sector because the chetlsstored in the extra

120

8-byte area for each sector?/ZS uses space maintained by the le system to store
checksums so that it is able to provide similar protectio b without special
hardware. It can also be easily extended to support T10€tor®l, in addition

to checksum chaining (conversion) at the disk-memory baon@?FS performs
checksum switching for data in memory. We belie¥& 3 is the rst le system to
take data residency time into consideration and provideebptotection for data in
the page cache. Third?ES is a full-featured local le system that exposes check-
sum to applications through new and generic APls so that ppifcation can be
modi ed to take advantage of the data protection offered By In comparison,
DIX is currently a block layer extension in Linux. To our bé&sibwledge, there is
no local le system support or user-level APIs available XD$ now only used in
Lustre le system [82] and Oracle's database products [£4,).1

7.4 Techniques for Data Consistency

A variety of research work, such as IRON le system [89] andE%p[36], explores
the use of checksums for purposes beyond simply detectimgptmn. IRON ext3
introduces transactional checksums, which allow the jauto issue all writes,
including the commit block, concurrently; the checksumedtst any failures that
may occur. OptFS extends transactional checksum to coxgrdiita blocks that
are ushed during journal commit, so that the system is abldetect inconsistent
data upon a crash. Ext4-cksum is mostly related to OptFSainetkt4-cksum also
relies on checksums to detect inconsistent data, but Oédres data block to
be checksummed whenever the block is updated in the page,catiich may
lead to high response time for write system calls (due tokdweu calculation). In
contrast, ext4-cksum only generates checksums when datksldre written back,
which usually occurs in the background and does not incuthnowrerhead.
Similarly, a number of works have explored means of progdineater crash
consistency than ordered and metadata journaling prodga journaling mode
in ext3 and ext4 provides full crash consistency, but ithlhogerhead makes it
unappealing. OptFS [36] is able to achieve data consistandydeliver high per-
formance through an optimistic protocol, but it does so atdbst of durability
while still relying on data journaling to handle overwritases. In contrast, View-
Box avoids overhead by allowing the local le system to wonkdrdered mode,
while providing consistency through the views it syncheesi to the cloud; it then
can restore the latest view after a crash to provide full isteiscy. Like OptFS, this
sacri ces durability, since the most recent view on the diall always lag behind
the active le system. However, this approach is optionalj,an the normal case,

121

ordered mode recovery can still be used.

ViewBox's snapshotting component, the view manager, bsarse resem-
blance to ext3cow [88] and Next3 [49], but these similasitege mostly super -
cial. Like both of these systems, the view manager perforopy-on-write once
per snapshot. However, unlike these systems, the view readags not persist its
snapshots on disk, relying instead on the cloud back-entbte sploaded views.
Additionally, while we implement the view manager as an Bgien to ext4, it re-
quires no modi cation to on-disk data structures and cowlsilg be applied to any
other Linux le system. Finally, while ext3cow's focus onelhistory resembles
Dropbox's le revision history interface, ViewBox shiftsdm this interface to fo-
cus on complete images, as this is the only way to guaranigsakaonsistency
when restoring previous le versions.

122

123

Chapter 8

Conclusion and Future Work

One of the major responsibilities of storage systems isdmesiata correctly and
protect it from being damaged. Existing systems and marearehl projects have
employed various techniques to ful Il this responsibilibut most of the techniques
only focus on protecting data in a speci ¢ component in threraie stack, while
failing to provide comprehensive protection — corrupt datanconsistent data still
goes undetected and is exposed to users or applications.

In this dissertation, we identi ed this problem of isolatpdotection in both
local and cloud storage systems, and proposed severalratiopalata protection
techniques to address the problem. For local storage sgsteenrst analyzed the
impact of disk and memory corruption to ZFS and found that Z&lIS to protect
in-memory data (Chapter 3). Then, we proposed the concepxifle end-to-
end data integrity and built?FS by applying the concept to ZFS, which provides
end-to-end protection with improved performance (ChagjerFor cloud storage
services, we started by studying how synchronization tdipropagate corrupt data
and inconsistent data to the cloud due to the loose coupfilugal le systems and
synchronization services (Chapter 5). We then built ViewBosystem in which
local le systems and synchronization services work coapeely to provide data
integrity, consistency, and recoverability (Chapter 6).

In this chapter, we rst summarize our analysis and solion Section 8.1,
then list a set of lessons learned over the course of this wo8ection 8.2, and
nally discuss directions for future research in Sectio8.8.

124

8.1 Summary

This dissertation is mainly divided in two parts: coopemtiata protection in local
storage, and cooperative data protection across localland storage. Each part
further consists of a problem analysis and a solution. We suowmarize each part
in turn.

8.1.1 Cooperative Data Protection in Local Storage

In the rst part of the dissertation, we focused on the impafctlisk corruption
and memory corruption in local storage systems and we chBSe @ modern and
mature le system, as our study subject. First, we evaludied robust ZFS is
against disk and memory corruption. We injected corruptmmlata blocks and
metadata structures both on disk and in memory. We foundz2R&tis able to
detect and recover from most injected disk corruption, duthé usage of check-
sums for on-disk blocks and le-system level replicatiom fimportant metadata
structures. However, because the protection is only linitedisk blocks, ZFS
fails to protect in-memory data and metadata, which leatimtbdata blocks being
silently returned to the user or written to disk, le systemesation failures, and
whole system crashes. Our ndings indicated that end-tb-g@aita protection is
needed to protect data from both memory and disk corruption.

Then, we explored techniques to provide end-to-end datagiron. A straight-
forward way to achieve this is to apply the traditional eaekhd concept, in which
applications generate and verify checksum (usually a gtane) for their data.
However, this approach suffers from slow performance forkleads that repeat-
edly access data from the page cache due to the overheadubtialg checksums.
Moreover, when the corruption occurs in the write path, ilsfto detect the cor-
ruption in time, and thus it is not able to recover from it.

To address both problems, we proposed a new concept caligoleeesnd-to-
end data integrity, which enables all components in theagwsystem to be aware
of checksums and changes checksums scheme across consggsoergtimes even
over time) to achieve a balance between performance armdbitdii. We developed
an analytical model to reason about which checksums to e arsevhich com-
ponent, and then builtZS to demonstrate how to apply exible end-to-end data
integrity to an existing le system, ZFS. As a comparison, &lso built EZFS
with straight-forward end-to-end data integrity. Througalysis and fault injec-
tion experiments, we showed thaFZS is able to provide Zettabyte reliability (at
most one undetected corruption per Zettabyte data read)cam detect and re-
cover from corruption in the write path. Through performarexperiments, we

125

showed that ZFS performs comparably to the original ZFS in various miand a
macro benchmarks and outperform®&ZES by up to 17% in workloads dominated
by warm reads.

8.1.2 Cooperative Data Protection across Local and Cloud Stage

The second part of the dissertation focused on the impadsktdrruption and un-
timely crashes inlocal le systems and cloud storage ses/(cloud-based le syn-
chronization services). We rst performed fault injectierperiments on several
popular synchronization services and studied how well fiteyect data. Through
disk corruption experiments, we found that in many caséshalservices we ex-
amined propagate local corruption to the cloud and thusupbrropies on other
devices. Through crash tests, we found that the synchiionzalients behave
inconsistently; sometimes they upload inconsistent leghe cloud, sometimes
they download stale versions of les from the server, and siimes they refuse
to synchronize despite the fact that the local copy is difiethan the cloud copy.
Further, we showed that these services cannot provide lcaurssistency because
the clients are not able to obtain an uni ed and consisteetvwof the local le
system. Our analysis revealed that the root cause of theddeprs is the loose
coupling of synchronization services and local le systems

Next, we designed, implemented, and evaluated a new sysatted d/iew-
Box, in which the synchronization service works cooperdyiwvith the local le
system to provide data integrity and consistency. The kew toehind ViewBox
is views, in-memory snapshots of the synchronizing foldestead of uploading
les, ViewBox synchronizes views between the devices andd! To guarantee the
correctness of views, ViewBox relies on three component#}-eksum, the view
manager, and the cloud helper. Ext4-cksum adds data chaokguo ext4 and
serves as the local le system in ViewBox. The added checksuable to detect
both corruption and inconsistency. The view manager is gension to ext4-cksum
which creates views at le system epochs and exposes viethe t®ynchronization
client; the consistency of views is thus guaranteed. Thadchelper is a user-level
daemon that uses views on the cloud to perform recovery wbenption or in-
consistency is detected. We built ViewBox around two syaotaation services,
Dropbox and Sea le. Through fault injection experimentg showed that View-
Box is able to detect and recover from corruption and crasti tikerefore prevent
bad data from being propagated. Compared to Dropbox andl&eaaning on
top of unmodi ed ext4, we showed that ViewBox incurs lessttado overhead in
many workloads, and in some cases reduces the synchronizatie by 30%.

126

8.2 Lessons Learned

In this section, we present a list of general lessons we dghwhile working on
this dissertation.

Reliability does not come for free.First, data protection techniques usually
hurt the performance of the system. IRZES, we moved the checksum
generation and veri cation up to the application level thig@ve end-to-end
data integrity, which caused about a 15% slowdown comparduktoriginal
ZFS in some workloads. In ViewBox, we added checksums to axtdwe
nd that the overall throughout of ext4-cksum is worse thiaa original ext4.
The former case is due to the CPU overhead of calculating ieeksum,
and the latter is because of extra I/Os and seeks to read dedchvecksum
blocks.

Second, optimization helps to reduce the overhead.?FSZwe chose xor
as memory checksum and we applied the checksum-on-copmiaption

[39] to make it extremely faster (3% overhead compared tothgnal ZFS)

than the naive implementation (7% overhead). In ViewBoxjmwglemented
prefetching of checksum blocks for sequential read woddosuch that the
throughput slowdown (compared to original ext4) is impebfimm 15% to

4%.

Finally, fast storage device needs fast checksum caloulatCurrent sys-
tems perform well with strong checksums because the chetksaiculation

usually occurs with a (traditional) disk 1/O, which is aldyacostly. As fast
devices (such as SSDs) are becoming popular and widelyydsplgtorage
systems cannot hide the computational cost of checksurmdbdhd time

anymore, so we believe that either we have to nd a checksanishstrong
enough to protect data and fast enough to not cause notcehivdown,
or we should take other approaches to reduce the calculatierinead (e.g.,
through specialized instructions or additional chips).

One size (checksum) does not t allWith the straight-forward end-to-end
protection scheme, usually one checksum is used all the may &pplica-
tion to disk. This simpli es the implementation of a systebut strips the
exibility away; reliability can be achieved by using a stiger checksum,
but the performance hurts. Our exible end-to-end datagatibn proposes
to use different checksum for different components, dejpgndn the their
reliability and/or performance characteristics, such tha reliability and

127

performance of the whole system can be tweaked to satistgiceequire-
ment. We believe that such exibility should be provided lure storage
systems, especially software-de ned storage systems.

Multiple copies do not always make data safekile synchronization services
automatically upload local data to the cloud, and propagateother syn-
chronized devices. These services give the users a penceptt there are
multiple copies of their data and their data must be safe. é¥ew our analy-
sis showed that this is merely a false sense of “security”’elithe local le
system or the synchronization client cannot distinguiglitimate changes
(actual updates) from “unauthorized” changes (corruphoomsistent data),
bad data may be uploaded to the server and thus pollute allscefailing to
guarantee the correctness of data renders all the repkedsss. We believe
that the replication itself does not necessarily improvea daliability; the
ability to verify the integrity of data is the foundation teation should rely
on.

8.3 Future Work

In this section, we outline various directions for futureriuo

8.3.1 Characteristic Study of Data Corruption

Our analytical framework described in Section 4.1 modeta darruption as inde-
pendent bit ips in a xed-sized data block, which simpli ¢he model but unfor-
tunately fails to represent the reality. Bairavasundaraai. gound that corruption
(checksum mismatches) that occur in the same disk is ngpémaent and has spa-
tial and temporal locality [23]. Schroeder et al. found titm&mory errors also have
strong time and space correlations [63]. Therefore, inotldetter understand
and model data corruption, we believe that a study of dataiption characteristic
will be an interesting future direction.

The focus of the study would be to nd out the pattern of cotimp and how
likely each pattern occurs. If the corruption is caused lmpded writes, the corrupt
data would be the same as the previous data at the same totationay look
completely different than the correct data. If the corromptis caused by bit-rots, it
is highly likely that the corruption is just several bit ipn this case, it would also
be interesting to know the distribution of the number of bs.

In addition to helping to improve the modeling of data cotrop, the study
would be bene cial in several other ways. First, categoiizilata corruption events

128

may provide some hints on why data corruption occurs and lwhamponent
should be blamed for it. For example, if most corruption ¢s@mne random bit ips,
it is possible that the disk drive is defected and should poed. Second, under-
standing corruption pattern would help with the inventidnspecial checksums.
As mentioned above, fast devices need fast checksums td tiperformance
slowdown. If the corruption pattern of such a device is knpame may be able to
apply a checksum that is specially designed to handle thasmtion pattern and
performs much faster than a generic and strong checksum.

8.3.2 Application-level Data Protection

This dissertation has focused on data protection provigedebsystems and le
synchronization services, but it does not address anothgoriant piece: appli-
cations. Since applications are the ones that generateaddtarocess data, it is
critical to make sure applications protect data and harnalieiption correctly. It is
well known that corporate applications, such as databastersg and mail servers,
already use checksums to protect data from corruption [854105]. Therefore,
studying the robustness of home-user applications, sudoasment editors or
photo managers, will be an interesting future avenue andshstep would be a
thorough analysis of how data corruption affects applicabehavior.

We can inject various faults (such as corruption, read earwr write error)
when an application reads/writes data from/to the le syst@and see how the
application reacts. We may classify application behavitisthree categories: de-
tection, recovery and functionality. In terms of detectiapplications may ignore
the failure or corruption, detect and inform the user, oedeand hide from the
user. In terms of recovery, applications may perform noveng retry, repair, or
wait for user instruction. By functionality, we mean aftbeterror handling (de-
tection and recovery) whether the applications work asluabart abnormally, or
perform incorrect actions.

There are two challenges in this fault injection analysisstfFto effectively in-
ject faults, we have to understand various le formats. &t applications work
with different le formats. Each le format is like a le sys®m and has its own or-
ganization of metadata and data. For example, a MP3 le comtstream of MP3
frames, each of which consists of a header (metadata) anddam @ata block. In
contrast, a DOC le is actually a mini FAT le system, which gtains text les,
images les and other metadata structures that make up thengent. Therefore,
it is important to study how metadata and data in each le farrim organized and
what are the meanings of the metadata structures. Secdodhation of the fault
injection experiments may be dif cult. Unlike tradition&INIX programs, most

129

home-user applications are all GUI-based and they intevdbtusers extensively.
The involvement of human users may hinder the ef ciency oftfajection exper-
iments. To solve this problem, we can use advanced scrifgimguages, such as
AppleScript, to control GUISs.

Once we have the results from the fault injection analysiswill be able to
explore techniques to improve the robustness of applicsitin the face of data
corruption.

8.3.3 Cooperative Data Protection in Networked Storage Sysms

We have explored techniques for cooperative data proteatitocal storage sys-
tems and cloud storage systems. We believe that anothertmmpe@nvironment to
look into is networked storage systems.

Network File System (NFS) is a popular network le systemtpool, origi-
nally developed by Sun, which allows users to access lesssca network. NFS
relies on a security protocol called RPCSESS [13] to provide data integrity,
in which RPC messages containing NFS requests and respamaseisecksummed
(NFS checksujm However, the protocol also suffers from the problem ofaiexd
protection; the checksum is only used during network trassion and there is no
end-to-end protection between the client-side applioatiod the server disk.

One approach to achieve cooperative data protection isgly #pe concept of
exible end-to-end data integrity to NFS. First?EZS can be directly used here as
the local le system on the client and the server. Second,atsofibr network data
corruption, TCP/IP checksum, and NFS checksums used by REGSS (e.g.,
DES) are needed to evaluate how reliable the whole systenthighe addition of
the network part, and to choose a proper NFS checksum to megetformance
and reliability requirement. Finally, checksum chainingighbe applied at the
boundary of page cache and the NFS layer to connect the'sl@nthe server's
memory checksum and the NFS checksum.

8.4 Closing Words

In this dissertation, we have identi ed the problem of idethprotection in exist-
ing storage systems, and proposed various techniques i®vaatooperative data
protection. As the amount of generated data explodes, thefuew-cost hardware
increases, and the complexity of storage systems growstjrexand future storage
systems will face more and more challenges to data protecBy demonstrating
the power of cooperation, we hope that this dissertationhedym researchers, de-

130

signers, and developers to rethink data protection and beliable storage systems
with cooperative data protection.

Bibliography

(1]

(2]
(3]

(4]

(5]
(6]
(7]
(8]
9]

(10]

(11]

(12]

(13]

(14]
(15]
(16]

(17]

(18]

Buffer Management - SQL Server 2008 R#tp://msdn.microsoft.com/en-us/
library/aa337525.aspx

CERT/CC Advisorieshttp://www.cert.org/advisories/

Data Integrity. http://indico.cern.ch/getFile.py/access?contribld=
3&sessionld=0&resld=1&materialld=paper&confld=13797

Eseutil /K Checksum Modeéhttp://technet.microsoft.com/en-us/library/
bb123632%28EXCHG.65%29.aspx .

Kernel Bug Trackerhttp://bugzilla.kernel.org/
LASR Traces.http://iotta.snia.org/traces/2
Ivcreate(8) - linux man page.

Mozy. https://www.mozy.com

Repeated panics, something gone bau®://tech.groups.yahoo.com/group/
solarisx86/message/38925

RFC 3385 - Internet Protocol Small Computer Systemrfate (iISCSI) Cyclic Redundancy
Check (CRC)/Checksum Considerationshttp://www.ietf.org/rfc/rfc3385.
txt .

RFC 793 - Transmission Control Protocohttp://www.ietf.org/rfc/rfc793.
txt .

RFC1071 - Computing the Internet Checksum. http://www.ietf.org/rfc/
rfc1071.txt

RFC2203 - RPCSEGSS Protocol Speci cation. http://www.ietf.org/rfc/
rfc2203.txt

US-CERT Vulnerabilities Notes Databag#tp://www.kb.cert.org/vuls/
ZFS on Linux. http://zfsonlinux.org

Zfs problem mirror. http://www.mail-archive.com/zfs-discuss@
opensolaris.org/msg18079.html

Zfs problems.http://www.mail-archive.com/zfs-discuss@opensolaris
org/msg04518.html

Amazon. Amazon Simple Storage Service (Amazon S8)p://aws.amazon.com/
s3/ .

131

132

(19]

(20]
(21]

(22]

(23]

(24]

(25]
(26]
(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

Dave Anderson, Jim Dykes, and Erik Riedel. More Than rterface: SCSI vs. ATA. In
Proceedings of the 2nd USENIX Symposium on File and Storagendlogies (FAST '03)
San Francisco, California, April 2003.

Apple. icloud. http://www.icloud.com/

Apple. Technical Note TN115http://developer.apple.com/technotes/tn/
tn1150.html , March 2004.

Lakshmi N. Bairavasundaram, Garth R. Goodson, ShaRkaupathy, and Jiri Schindler. An
Analysis of Latent Sector Errors in Disk Drives. Rroceedings of the 2007 ACM SIGMET-
RICS Conference on Measurement and Modeling of ComputézrBy{SIGMETRICS '07)
San Diego, California, June 2007.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianclardeder, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. An Analysis of Datauption in the Storage
Stack. InProceedings of the 6th USENIX Symposium on File and Storgja®logies (FAST
'08), pages 223-238, San Jose, California, February 2008.

Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin &gal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing tffects of Disk Pointer Cor-

ruption. InProceedings of the International Conference on Depend@ip#tems and Networks
(DSN '08), Anchorage, Alaska, June 2008.

Wendy Bartlett and Lisa Spainhower. Commercial Faoleflance: A Tale of Two Systems.
IEEE Transactions on Dependable and Secure Computifig:87-96, January 2004.

J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewioreault Injection Experiments Using
FIAT. IEEE Transactions on Computer39(4):1105-1118, April 1990.

Robert Baumann. Soft errors in advanced computer systéEE Design & Test of Comput-
ers 22(3):258-266, 2005.

Emery D. Berger and Benjamin G. Zorn. Diehard: prokiatd memory safety for unsafe
languages. IfProceedings of the ACM SIGPLAN 2005 Conference on Programb@nguage
Design and Implementation (PLDI '06pttawa, Canada, June 2006.

Jeff Bonwick and Bill Moore. ZFS: The Last Word in File 8gms. http://
opensolaris.org/os/community/zfs/docs/zfs_last.pdf , 2007.

Florian Buchholz. The structure of the Reiser le syste http://homes.cerias.
purdue.edu/ florian/reiser/reiserfs.php

W. Burkhard and Jai Menon. Disk Array Storage Systemid®dlty. In Proceedings of
the 23rd International Symposium on Fault-Tolerant Cormau{FTCS-23) pages 432441,
Toulouse, France, June 1993.

Remy Card, Theodore Ts'o, and Stephen Tweedie. Designimplementation of the Sec-
ond Extended Filesystem. IFirst Dutch International Symposium on Linugmsterdam,
Netherlands, December 1994.

Joao Carreira, Henrique Madeira, and Joao GabrieaSiception: A Technique for the
Experimental Evaluation of Dependability in Modern CongrstIEEE Transactions on Soft-
ware Engineering1998.

John Chapin, Mendel Rosenblum, Scott Devine, Tirtlzarlahiri, Dan Teodosiu, and Anoop
Gupta. Hive: Fault Containment for Shared-Memory Multgessors. IfProceedings of the
15th ACM Symposium on Operating Systems Principles (SCBRC8pper Mountain Resort,
Colorado, December 1995.

(35]

(36]

(37]

(38]

(39]

[40]

[41]
[42]

(43]

(44]
[45]

[46]

[47]

(48]

[49]
(50]

133

C. L. Chen. Error-correcting codes for semiconductenmries.SIGARCH Comput. Archit.
News 12(3):245-247, 1984.

Vijay Chidambaram, Thanumalayan Sankaranarayanai,FAindrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash ConsistencyPrisceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP EEjnington, PA, November 2013.

Vijay Chidambaram, Tushar Sharma, Andrea C. Arpacs$aau, and Remzi H. Arpaci-
Dusseau. Consistency Without Ordering. Rroceedings of the 10th USENIX Symposium
on File and Storage Technologies (FAST '18an Jose, California, February 2012.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallend ®awson Engler. An Empirical
Study of Operating System Errors. Broceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP '0ppges 73-88, Banff, Canada, October 2001.

Hsiao-keng Jerry Chu. Zero-copy tcp in solaris Pimceedings of the 1996 USENIX Annual
Technical ConferengeSan Diego, CA, 1996.

Jonathan Corbet. Improving ext4: bigalloc, inlineaaand metadata checksumisttp:
/llwn.net/Articles/469805/ , November 2011.

csync. csynchttp://lwww.csync.org/

Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: towsra realistic tool for statically
detecting all buffer over ows in C. IfProceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI,@&n Diego, California, June
2003.

Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna [&rotto, Ramin Sadre, and Aiko
Pras. Inside Dropbox: Understanding Personal Cloud SéoBagvices. IfProceedings of the
2012 ACM conference on Internet measurement conferende '(R), Boston, MA, Novem-
ber 2012.

Dropbox. The dropbox touhttps://www.dropbox.com/tour

Jon G. Elerath and Michael Pecht. Enhanced reliabitigdeling of raid storage systems.
In Proceedings of the International Conference on Depend8gtems and Networks (DSN
'07), Edinburgh, UK, June 2007.

EMC. An Integrated End-to-End Data Integrity Solutioto Protect Against
Silent Data Corruption. http://www.oracle.com/us/technologies/linux/
data-integrity-solution-1852762.pdf

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chouj &enjamin Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring ErrorSiystems Code. IRroceedings of
the 18th ACM Symposium on Operating Systems PrinciplesRST1§ pages 57-72, Banff,
Canada, October 2001.

A. Eto, M. Hidaka, Y. Okuyama, K. Kimura, and M. Hosonanpact of neutron ux on soft
errors in mos memories. International Electron Devices Meeting 1998 (IEDM '98p98.

Amir G. Next3 snapshots design. Technical report, CAERRtworks, Ltd., July 2011.

Gregory R. Ganger and Yale N. Patt. Metadata UpdateoRaence in File Systems. In
Proceedings of the 1st Symposium on Operating SystemsrDagigimplementation (OSDI
'94), pages 49-60, Monterey, California, November 1994.

134

(51]

[52]
(53]
(54]

[55]

[56]

[57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leundie Google File System. In
Proceedings of the 19th ACM Symposium on Operating Systentidfes (SOSP '03)pages
29-43, Bolton Landing, New York, October 2003.

GIT. Git. http://git-scm.com
Google. Google drivehttp://iwww.google.com/drive/about.html

David Greaves, Junio Hamano, et al. git-read-tree(lijux man page http://linux.
die.net/man/1/git-read-tree

Roedy Green. EIDE Controller Flaws Version 24dttp://mindprod.com/jgloss/
eideflaw.html

Weining Gu, Z. Kalbarczyk, Ravishankar K. lyer, and Bize Yang. Characterization of Linux
Kernel Behavior Under Errors. IAroceedings of the International Conference on Dependable
Systems and Networks (DSN '0pages 459—-468, San Francisco, California, June 2003.

Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arp@asseau, and Remzi H. Arpaci-
Dusseau. SQCK: A Declarative File System CheckePriiceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSD| ‘88 Diego, California, December
2008.

Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson EEng A system and lang-uage
for building system-speci c, static analyses. Broceedings of the 2003 ACM SIGPLAN
Conference on Programming Language Design and Implemienté®LDI '03), San Diego,
California, June 2003.

James Hamilton. Successfully Challenging the Senax. Thttp://perspectives.
mvdirona.com/2009/09/03/SuccessfullyChallengingTheS erverTax.
aspx .

Tyler Harter, Chris Dragga, Michael Vaughn, Andrea Qpéci-Dusseau, and Remzi H.
Arpaci-Dusseau. A File is Not a File: Understanding the I/€hBvior of Apple Desktop
Applications. InProceedings of the 24th ACM Symposium on Operating SystanspgRes
(SOSP '11) pages 71-83, Cascais, Portugal.

Reed Hastings and Bob Joyce. Purify: Fast detectionerhory leaks and access errors. In
Proceedings of the USENIX Winter Technical Conference (UBNinter '92) San Fran-
cisco, CA, 1992.

Dave Hitz, James Lau, and Michael Malcolm. File Systessign for an NFS File Server
Appliance. InProceedings of the USENIX Winter Technical Conference {UXBNinter
'94), San Francisco, California, January 1994.

Andy A. Hwang, loan A. Stefanovici, and Bianca Schraed&osmic rays don't strike twice:
understanding the nature of dram errors and the implicafimrsystem design. I[Rroceedings
of the 16th International Conference on Architectural Sapgor Programming Languages
and Operating Systems (ASPLOS XY¥bHndon, UK, March 2012.

Dell T. J. A white paper on the bene ts of chipkill- comeecc for pc server main memory.
IBM Microelectronics Division1997.

Minwen Ji, Alistair C Veitch, and John Wilkes. Senecamote mirroring done write. In
Proceedings of the USENIX Annual Technical Conference lUSMB3), San Antonio, Texas,
June 2003.

(66]

(67]

[68]

(69]

[70]

(71]

[72]

(73]

(74]
(78]

[76]

[77]

(78]

[79]

(80]

135

Wei-lun Kao, Ravishankar K. lyer, and Dong Tang. FINEFAult Injection and Monitoring
Environment for Tracing the UNIX System Behavior Under Eauln IEEE Transactions on
Software Engineeringpages 1105-1118, 1993.

Osama Khan, Randal Burns, James Plank, William Pieand, Cheng Huang. Rethinking
erasure codes for cloud le systems: minimizing i/o for reexry and degraded reads. In
Proceedings of the 10th USENIX Symposium on File and Stofagenologies (FAST '12)
San Jose, California, February 2012.

J.J. Kistler and M. Satyanarayanan. Disconnected &joerin the Coda File SystemACM
Transactions on Computer Systerh8(1), February 1992.

Andrew Krioukov, Lakshmi N. Bairavasundaram, Gartid®odson, Kiran Srinivasan, Randy
Thelen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Bass Parity Lost and Parity
Regained. IrProceedings of the 6th USENIX Symposium on File and Storagen®logies
(FAST '08) pages 127-141, San Jose, California, February 2008.

Swetha Krishnan, Giridhar Ravipati, Andrea C. ArpBeisseau, Remzi H. Arpaci-Dusseau,
and Barton P. Miller. The Effects of Metadata Corruption dRS\ InProceedings of the 3rd
International Workshop on Storage Security and Survigb{iStorageSS'07)Alexandria,
Virginia, October 2007.

Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A listic evaluation of memory
hardware errors and software system susceptibilityProceedings of the USENIX Annual
Technical Conference (USENIX '1@oston, Massachusetts, June 2010.

Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A mem soft error measurement on
production systems. IRroceedings of the USENIX Annual Technical Conference (USE
'07), Santa Clara, CA, June 2007.

Avantika Mathur, Mingming Cao, Suparna Bhattacha#madreas Dilger, Alex Tomas, Lau-
rent Vivier, and Bull S.A.S. The New Ext4 Filesystem: Cutr8tatus and Future Plans. In
Ottawa Linux Symposium (OLS 'QQttawa, Canada, July 2007.

Theresa C. Maxino and Philip J. Koopman. The effectagsnof checksums for embedded
control networkslEEE Trans. Dependable Secur. Comp@(1):59-72, January 2009.

T. C. May and M. H. Woods. Alpha-particle-induced satitogs in dynamic memoriedEEE
Trans. on Electron De26(1), 1979.

Marshall Kirk McKusick, Willian N. Joy, Samuel J. Lefre and Robert S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager'siivé - 4.3 BSD Virtual
VAX-11 Version, April 1986.

Nimrod Megiddo and Dharmendra Modha. Arc: A self-tupinow overhead replacement
cache. InProceedings of the 2nd USENIX Symposium on File and Storagendlogies
(FAST '03) San Francisco, California, April 2003.

Ralph C. Merkle. A digital signature based on a convamdi encryption function. IA Confer-
ence on the Theory and Applications of Cryptographic Temies on Advances in Cryptology
(CRYPTO '87)1987.

Microsoft. How ntfs works http://technet.microsoft.com/en-us/library/
cc781134(v=ws.10).aspx , March 2003.

Dejan Milojicic, Alan Messer, James Shau, Guangrui &ugd Alberto Munoz. Increasing
relevance of memory hardware errors: a case for recovepabgamming models. IRro-
ceedings of the 9th Workshop on ACM SIGOPS European Work2060.

136

(81]

(82]

(83]

(84]

(85]

(86]

(87]
(88]

(89]

(90]

(91]

(92]

(93]
(94]

[99]

[96]

[97]

Bill Moore. Ditto Blocks - The Amazing Tape Repellenhttp://blogs.sun.com/
bill/entry/ditto_blocks_the_amazing_tape

Nathan Rutman. Improvements in Lustre Data Integribftp://legacy.xyratex.
com/pdfs/lustre/Improvements_in_Lustre_Data_Integri ty.pdf

Eugene Normand. Single event upset at ground leMeliclear Science, IEEE Transactions
on, 43(6):2742—-2750, 1996.

T. J. O'Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, HVRhlifeld, C. J. Montrose, H. W.
Curtis, and J. L. Walsh. Field testing for cosmic ray sofoestin semiconductor memories.
IBM Journal of Research and Developmetd(1):41-50, 1996.

Michael A. Olson, Keith Bostic, and Margo Seltzer. Beldy db. InProceedings of the
USENIX Annual Technical Conference (USENIX 9dpnterey, California, June 1999.

David Patterson, Garth Gibson, and Randy Katz. A CasBéalundant Arrays of Inexpensive
Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the Managieof
Data (SIGMOD '88) pages 109-116, Chicago, lllinois, June 1988.

Martin K. Petersen. Linux Data Integrity Extensions.Linux Symposiun2008.

Zachary Peterson and Randal Burns. Ext3cow: a timiésii le system for regulatory
compliance.Trans. Storagel(2):190-212, 2005.

Vijayan Prabhakaran, Lakshmi N. BairavasundaraminMigrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRNSystems. IProceedings
of the 20th ACM Symposium on Operating Systems PrincipleSPS05) pages 206—220,
Brighton, United Kingdom, October 2005.

Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Expbpiicc-memory for detecting
memory leaks and memory corruption during production rungn Proceedings of the 11th
International Symposium on High-Performance Computehitecture (HPCA 05') 2005.

Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: ThexX_B-Tree FilesystemACM
Transactions on Storage (TQ®)3):9:1-9:32, August 2013.

E. Rozier, W. Belluomini, V. Deenadhayalan, J. HafneiK. Rao, and P. Zhou. Evaluating
the impact of undetected disk errors in raid systems.Pioceedings of the International
Conference on Dependable Systems and Networks (DSN.i88pn, Portugal, June 2009.

rsync. rsynchttp://www.samba.org/rsync/

Jerome H. Saltzer, David P. Reed, and David D. Clark. -tereind arguments in system
design.ACM Transactions on Computer Syste2(®):277—-288, November 1984.

Russel Sandberg. The Design and Implementation of timeN&twork File System. [Rro-
ceedings of the 1985 USENIX Summer Technical Confergages 119-130, Berkeley, CA,
June 1985.

Bianca Schroeder, Sotirios Damouras, and Phillipd Gilnderstanding latent sector errors
and how to protect against them. Rmoceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST '1®an Jose, California, February 2010.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Di&ti¢eber. DRAM errors in the wild: a
large-scale eld study. liProceedings of the 2009 Joint International Conference eaddre-
ment and Modeling of Computer Systems (SIGMETRICS/Peaafarei09) Seattle, Washing-
ton, June 2009.

137

[98] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, DarrellE® Long, Andy Hospodor, and
Spencer Ng. Disk Scrubbing in Large Archival Storage SystemProceedings of the 12th
Annual Meeting of the IEEE International Symposium on MiadelAnalysis, and Simulation
of Computer and Telecommunication Systems (MASCQO®®®&ndam, Netherlands, October
2004.

[99] Seale. Sea le.http://seafile.com/en/home/
[100] Tezzaron Semiconductor. Soft errors in electronicmoly - a white paper. 2004.

[101] D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segakvdlopment of a Benchmark to
Measure System Robustness.Proceedings of the 23rd International Symposium on Fault-
Tolerant Computing (FTCS-23Joulouse, France, June 1993.

[102] SNIA Technical Proposal. Architectural Model for Ratintegrity. http:
/Isnia.org/sites/default/files/Data_Integrity_Archi tectural_
Model_v1.0.pdf

[103] sparkleshare. Sparkleshahttp://sparkleshare.org

[104] Christopher A. Stein, John H. Howard, and Margo |. 8=itUnifying File System Protection.
In Proceedings of the USENIX Annual Technical Conference (USED1), pages 79-90,
Boston, Massachusetts, June 2001.

[105] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathdaryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jeffrey EgRtn. Impact of Disk Cor-
ruption on Open-Source DBMS. IRroceedings of the 26th International Conference on
Data Engineering (ICDE '10)Long Beach, California, March 2010.

[106] M. Sullivan and R. Chillarege. Software defects aradrthmpact on system availability-a study
of eld failures in operating systems. IRroceedings of the 21st International Symposium on
Fault-Tolerant Computing (FTCS-21)ontreal, Canada, June 1991.

[107] Sun Microsystems. Solaris Internals: FileBentittp://www.solarisinternals.
com/wiki/index.php/FileBench

[108] Sun Microsystems. ZFS On-Disk Speci catidrttp://www.opensolaris.org/os/
community/zfs/docs/ondiskformat0822.pdf

[109] Rajesh Sundaram. The Private Lives of Disk Dri\mm://partners.netapp.com/
go/techontap/matl/sample/0206tot_resiliency.html

[110] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderddike Nishimoto, and Geoff Peck.
Scalability in the XFS File System. Rroceedings of the USENIX Annual Technical Confer-
ence (USENIX '96)San Diego, California, January 1996.

[111] Michael M. Swift, Brian N. Bershad, and Henry M. Levynproving the Reliability of Com-

modity Operating Systems. FProceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP '03)Bolton Landing, New York, October 2003.

[112] T10 Technical Committee. SCSI Block Commands - ttp://www.t10.org/
members/w_shc3.htm

[113] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/
hard-disk-failures.htm

[114] T. K. Tsai and R. K. lyer. Measuring Fault Tolerancetwihe FTAPE Fault Injection Tool.
In The 8th International Conference On Modeling TechniquesTools for Computer Perfor-
mance Evaluationpages 26—40, September 1995.

138

[115] Patrick Tucker. Has big data made anonymity impossi-
ble? http://www.technologyreview.com/news/514351/
has-big-data-made-anonymity-impossible/

[116] Stephen C. Tweedie. Journaling the Linux ext2fs Fifst8&m. InThe Fourth Annual Linux
Expa Durham, North Carolina, May 1998.

[117] John Wehman and Peter den Haan. The Enhanced IDEXFASFAQ. http:/
thef-nym.sci.kun.nl/cgi-pieterh/atazip/atafg.html .

[118] Glenn Weinberg. The Solaris Dynamic File Systeimttp://members.visi.net/
“thedave/sun/DynFS.pdf

[119] Zev Weiss, Tyler Harter, Andrea C. Arpaci-Dusseaw Remzi H. Arpaci-Dusseau. ROOT:
Replaying Multithreaded Traces with Resource-Orientede@ng. InProceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP FEjnington, PA, November
2013.

[120] Andre Wenas. ZFS FA(http://blogs.sun.com/awenas/entry/zfs_faq
[121] Wim Coekaerts. ASMLibhttps://blogs.oracle.com/wim/entry/asmlib

[122] Microsoft Windows. Skydrive. http://windows.microsoft.com/en-us/
skydrive/download

[123] Wuala. Wualahttp://www.wuala.com/

[124] Yichen Xie, Andy Chou, and Dawson Engler. Archer: gsiymbolic, path-sensitive analysis
to detect memory access errors. Pmoceedings of the 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE H&sinki, Finland, September
2003.

[125] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:ghtweight, General System for
Finding Serious Storage System Errors.Pimceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI,@®attle, Washington, November 2006.

[126] Junfeng Yang, Paul Twohey, Dawson Engler, and Madamlsuvathi. Using Model Check-
ing to Find Serious File System Errors. Rtoceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI,®§n Francisco, California, December 2004.

[127] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dussea@m®& H. Arpaci-Dusseau. View-
Box: Integrating Local File Systems with Cloud Storage 9. InProceedings of the 12th
USENIX Symposium on File and Storage Technologies (FAST Sihta Clara, California,
February 2014.

[128] Erez Zadok, lon Badulescu, and Alex Shender. ExtanBite Systems Using Stackable Tem-
plates. InProceedings of the USENIX Annual Technical Conference (USE9), Monterey,
California, June 1999.

[129] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dussead, Remzi H. Arpaci-Dusseau. *-
Box: Towards Reliability and Consistency in Dropbox-likéeFSynchronization Services. In
Proceedings of the 5th USENIX Workshop on Hot Topics in §eoend File Systems (Hot-
Storage '13) San Jose, California, June 2013.

[130] Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseand Remzi H. Arpaci-Dusseau.
Zettabyte Reliability with Flexible End-to-end Data Intitg. In Proceedings of the 29th
IEEE Conference on Massive Data Storage (MSST, 'll8hg Beach, CA, May 2013.

139

[131] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Besu, and Remzi H. Arpaci-
Dusseau. End-to-end Data Integrity for File Systems: A ZRBSeCStudy. IrProceedings
of the 8th USENIX Symposium on File and Storage Technol@gST '10) San Jose, Cali-
fornia, February 2010.

[132] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding tfiek bottleneck in the data domain
deduplication le system. IfProceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST '08pan Jose, California, February 2008.

[133] J. F. Ziegler and W. A. Lanford. Effect of Cosmic Rays ©@amputer Memories.Science
206(4420):776-788, 1979.

