De-indirection for Flash-based Solid State Drives

by

Yiying Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in
Computer Sciences

UNIVERSITY OF WISCONSIN-MADISON
2013

Committee in charge:
Prof. Andrea C. Arpaci-Dusseau (Co-chair)
Prof. Remzi H. Arpaci-Dusseau (Co-chair)
Prof. Shan Lu
Prof. Paul Barford
Prof. Jude W. Shavlik

To my parents

Vi

Vii

Acknowledgements

I would first and foremost extend my whole-hearted gratittedey advisors, An-
drea Arpaci-Dusseau and Remzi Arpaci-Dusseau. Andrea amtiRre the reason
that | had the opportunity for this exceptional Ph.D. joytrigo this day, | still re-
member the moment when they took me as their student andyhengbhope in
my heart.

Andrea and Remzi have showed me what systems research ianikénow
much fun and challenging it can be. Before this journey whign, | had always
liked and believed in the beauty of mathematics and theory. iMial interest
in systems research happened when | took Remzi's Advanceda@my Systems
course, one of the best courses | have ever taken in my stiifienThroughout
my Ph.D. studies, Remzi and Andrea have given me numerouep® priceless
advice, ranging from the details of numbers in figures andespan text to the broad
vision of how to pick research ideas and how to be successfukésearch career.
They showed me how to enjoy systems research and look atit &acientific
view.

My best moment every week may be the time after my weekly meaetiith
them. Even though | often walked in his office with tons of tesone time it
was over 200 figures in one meeting) and a tiny amount of wétds)zi tolerated
it, understood it, and pointed me to the implications of mykyevhich had never
occured to me before. | was also awed by how much details Rkeegi in his
mind; he can always point me to the important and interegpiraiplem and the
relevant works in the past. Andrea’s deep and broad thouglats amazed me.
She can always point out the big picture and guide me in the digection. Most
important, they have the magic of making me feel excitedhliignotivated, and
confident about my research.

Next, | would like to thank my other thesis-committee mensb&han Lu, Paul
Barford, and Jude Shavlik, for their insights, questioms] @advice for my research.
I would like to thank all my committee members for taking thi@ine to help me
improve this dissertation and adjusting their scheduldtemd my final defense.

viii

| would also like to extend my gratitude to several other fgconembers, who
have helped me greatly during my research journey, Mike tSilifon Livny, and
Jignesh Patel. My special thank goes to Mike Swift, who hdepidy given me a
lot of valuable advice both on my research work and on rebgatchunting (even
in the last few minutes on his last work day before his sabhbti

| am fortunate to have a great set of colleagues at UWiscansinhave helped
me in various ways, Yupu Zhang, Vijay Chidambaram, Lanyug Aol Ma, Leo
Arulraj, Tyler Harter, Chris Dragga, Zev Weiss, Swami Suadaman, Sriram Sub-
ramanian, Suli Yang, Mohit Saxena, Deepak Ramamurthi, gi#k Rajimwale,
Joe Meehean, and Laxman Visampalli. | would like to esplydiahnk Yupu Zhang
for being a quiet yet helping officemate; | can always turruatbmy chair and get
the answers to all kinds of my questions.

| am grateful to have had the opportunity of two great sumntliesinternship
at Microsoft Research-Silicon Valley and the internshifNatApp Corp. | would
like to thank the companies as well as my mentors and mandgene:. Vijayan
Prabakaran at Microsoft Research (now at Datrium), and G8kundararajan,
Mark Storer, Lakshmi Bairavasundaram (now at Datrium)h&etman Subbiah,
and Shankar Pasupathy at NetApp. Working with these twopgrofipeople have
been a great fun and a rewarding experience for me.

| am very blessed to have the support my friends have givenl mveuld first
like to thank my friend Anupam Dikshit for his kind supportwbuld also like to
thank my two great roommates and best friends, Ramya Ofidchiand Lizhu Qi,
for having given me such great accompany in Madison. My otfuerd friends,
Jiaxiu He, Jie Liu, Wei Zhang, Linhai Song, Guoliang Jin, Rei and Xiao Li,
have all helped me in different ways.

Finally, 1 would like to thank my parents, without whose undiional love
and support this Ph.D. would have been meaningless. Evenglthibhey have their
own doubts and concerns, they have always had faith in me wubaed me in
pursuing my dream. They cheered with me even for my tinestesscand encour-
aged me when | felt low. The pride and joy in their eyes wheingeme graduate
made it all worthwhile. No words can express my gratitude lavé to them. |
dedicate this whole dissertation to these two most impogaaple in my life.

Abstract

DE-INDIRECTION FOR FLASH-BASED SSDS
Yiying Zhang

Flash-based solid-state drives (SSDs) have revolutidniterage with their high
performance. Modern flash-based SSDs virtualize theiripalygesources witm-
directionto provide the traditional block interface and hide thefemal operations
and structures. When using a file system on top of a flash-&aS&] the device
indirection layer becomes redundant. Moreover, suchéation comes with a cost
both in memory space and in performance. Given that flasbebdevices are likely
to continue to grow in their sizes and in their markets, wefaced with a terrific
challenge:How can we remove the excess indirection and its cost in asked
SSDs?

We propose the technique of de-indirection to remove theantion in flash-
based SSDs. With de-indirection, the need for device addneppings is removed
and physical addresses are stored directly in file systeradatt. By doing so the
need for large and costly indirect tables is removed, whitedevice still has its
freedom to control block-allocation decisions, enablintpiexecute critical tasks
such as garbage collection and wear leveling.

In this dissertation, we first discuss our efforts to buildhanurate SSD emula-
tor. The emulator works as a Linux pseudo block device andearsed to run real
system workloads. The major challenge we found in buildimg $SD emulator
is to accurately model SSDs with parallel planes. We lewattagpveral techniques
to reduce the computational overhead of the emulator. Caluation results show
that the emulator can accurately model important metricscéanmon types of
SSDs, which is sufficient for the evaluation of various desi this dissertation
and in SSD-related research.

Next, we preserilameless Writes new device interface that removes the need
for indirection in flash-based SSDs. Nameless writes allosvdevice to choose
the location of a write; only then is the client informed oétiame(i.e., address)

where the block now resides. We demonstrate the effecttgenienameless writes
by porting the Linux ext3 file system to use an emulated nassel&iting device
and show that doing so both reduces space and time overhtbadsnaking for
simpler, less costly, and higher-performance SSD-basedgs.

We then describe our efforts to implement nameless writeseahhardware.
Most research on flash-based SSDs including our initialuaten of nameless
writes rely on simulation or emulation. However, namelesses require funda-
mental changes in the internal workings of the device, t&rface to the host op-
erating system, and the host OS. Without implementatiore@h devices, it can
be difficult to judge the true benefit of the nameless writesiglte Using the
OpenSSD Jasmine board, we develop a prototype of the Nasnéleise SSD.
While the flash-translation layer changes were straigitiod, we discovered un-
expected complexities in implementing extensions to theage interface.

Finally, we discuss a new solution to perform de-indirectithe File System
De-Virtualizer £SDV), which can dynamically remove the cost of indirection in
flash-based SSDs. FSDV is a light-weight tool that de-viizea data by changing
file system pointers to use device physical addresses. @luaion results show
that FSDV can dynamically reduce indirection mapping tapiece with only small
performance overhead. We also demonstrate that with ougrde$ FSDV, the
changes needed in file system, flash devices, and devictaogare small.

Contents

Acknowledgements

Abstract

1

Introduction

11
1.2
1.3
1.4
15
1.6

Excess Indirection in Flash-based SSDs
De-Indirection: Removing Excess Indirection
De-indirection with Nameless Writes
Hardware Experience with Nameless Writes
A File System De-virtualizer
Overview

Background

2.1

2.2

2.3
2.4

Flash-based SSD: An Indirection for Flash Memory
2.1.1 Flash Memory and Flash-based SSDs
2.1.2 Flash Memory Management Software

File System: An Indirection for Data Management

221 TheExt3FileSystem.
Block Interface and SATA
summary ... e e e

A Flash-based SSD Emulator

3.1

3.2

Implementation
3.1.1 Mechanism
3.12 SSDModel
Evaluation
3.2.1 EmulationOverhead
3.2.2 Emulation Accuracy and Capability
3.2.3 Effectof Parallelism

Xii

3.2.4 Comparison of Page-leveland Hybrid FTLs 43
3.25 StudyofHybrid FTL 44
3.3 Limitations and Discussions 46
34 Summary ... e e 46
De-indirection with Nameless Writes 49
4.1 NamelessWrites o 50
4.1.1 Nameless Write Interfaces, 50
4.1.2 Segmented AddressSpace 52
4.1.3 MigrationCallback 53
4.1.4 Associated Metadata 54
415 Implementationlissues 54
4.2 Nameless-Writing Device, 55
4.2.1 Nameless-Writing Interface Support 55
4.2.2 In-place Garbage Collection 56
4.3 Nameless Writesonext3 57
4.3.1 Segmented AddressSpace 58
4.3.2 Associated Metadata oL 58
433 Write 58
434 Read e 59
435 Free 59
4.3.6 Wear Levelingwith Callbacks 59
4.3.7 Reliability Discussion 60
44 Evaluation 61
44,1 SSD Memory Consumption 62
4.4.2 Application Performance 63
4.4.3 Basic Write Performance 65
4.4.4 ACloser Look at Random Writes 66
445 In-place Garbage Collection Overhead 68
4.4.6 Wear-leveling Callback Overhead 70
447 Reliability oo 71
45 Summary . .o oL e e e e e e 71
Hardware Experience of Nameless Writes 73
5.1 Hardware Platform 74
5.1.1 OpenSSD Research Platform 74
5.2 Challenges. e 76
521 MajorProblems. 78
5.3 Implementation Experiences 79

5.3.1 Adding New CommandTypes
5.3.2 Adding New Command Return Field
533 AddingUpcalls
5.3.4 Split-FTL Solution
535 Lessonslearned
54 Evaluation
55 Summary e

A File System De-Virtualizer 87
6.1 SystemDesign e
6.1.1 NewAddressSpace
6.1.2 FSDVModes,
6.2 Implementation
6.2.1 File System De-virtualizer
6.2.2 DeviceSupport e
6.2.3 File System Support
6.2.4 Reliabilitylssues
6.3 Evaluation
6.3.1 Mapping Table Reduction and FSDV Run Time

6.3.2 Impact of Increasing Amount of Processed Inodes . . .01 1
6.3.3 Comparison of Different Modes of FSDV 103

6.3.4 Overhead on Normal Operations

6.3.5 OptimizationResults 106

6.4 Summary and Discussion

Related Work 109
7.1 Flash-basedStorage
7.1.1 Flash Memory Management Software
7.1.2 Hardware Prototypes
7.2 Excess Indirection and De-indirection
7.3 New Storage Interface

Future Work and Conclusions 115

8.1 Summary e e 115

8.1.1 Emulation and Hardware Experience

8.1.2 De-indirection with Nameless Writes 116

8.1.3 File System De-Virtualizer
8.2 Lessons Learned

83 FutureWork 119

Xiv

8.3.1 De-indirection with Other File Systems 911

8.3.2 De-indirection of Redundant Arrays 121

8.3.3 De-indirection in Virtualized Environment 121
............................ 122

8.4 Closing Words

Chapter 1

Introduction

“All problems in computer science can be solved by anothegllef indirection”
— often attributed to Butler Lampson, who gives credit to idaheeler

“All problems in computer science can be solved by anothezllef indirection,
but that usually will create another problem”
— David Wheeler

Indirection, a core technique in computer systems, pravitie ability to ref-
erence an object with another form [82]. Whether in the mappif file names to
blocks or a virtual address space to an underlying physita) system designers
have applied indirection to improve system flexibility, foemance, reliability, and
capacity for many years. Even within the storage stackethes many examples
of indirection.

File systems are a classic example of adding indirectioroprof storage de-
vices to organize data into easy-to-use forms, as well asotdge consistency and
reliability [10]. File systems use file and directory stuets to organize data; a
data block is mapped from file and file offset to a logical blaeckdress using the
file systemmetadata

Another example of indirection happens where modern haskl diives use
a modest amount of indirection to improve reliability by inigl underlying write
failures [69]. When a write to a particular physical blockidaa hard disk will
remap the block to another location on the drive and recardrthpping such that
future reads will receive the correct data. In this mannedyige transparently
improves reliability without requiring any changes to tliert above.

F(v))

v ‘
L G(F(M;))

G(L)

|
|
i v
N

i Ni

(a) (b)

Figure 1.1:Excess Indirection and De-indirection. These graphs demonstrates a
system that contains excess indirection (a) and the systimperforming de-indirection
(b). The dotted part in (a) represents a level of excess éatimn, which is removed with
de-indirection in (b).

Because of the benefits and convenience of indirectionesydesigners often
incorporate another level of indirection when designing sgstems. As software
and hardware systems have become more complex over timenlirmbntinue
to do so in the future), layers of indirection have been anidl vei added. The
levels of indirection exist for different reasons, such esvigling flexibility and
functionality, improving performance, maintaining moalily and code simplicity,
and maintaining fixed interfaces.

As a resultredundantievels of indirection can exist in a single system, a prob-
lem we termexcess indirectian Specifically, assume that the original form of an
object is Ny and its final form i(e., the form visible by the user) i§;. If L; is
mapped more than once to transfer into the forrVgf there are multiple levels
of indirection. For example, for two levels of indirectioh; is first mapped by a
function F'(L;) to a form M; and then mapped by a functi@i(1/;) to Ny. All
together, the mapping for the objectG§ F'(L;)) = Ny. If one of the levels of in-
direction can be removed while the system can still funcéistbefore, we call this
level of indirection redundant and the system has exces®atin. Figure 1.1(a)
gives an example of excess indirection.

Unfortunately, indirection comes at a high price, which ifests as perfor-

3

mance costs, space overheads, or both. First, mapping tablsome form of
metadata are necessary for lookups with indirection. Suetadata requires per-
sistent storage space. Moreover, to improve system pesficenand reduce the
access time to slower storage for the metadata, metadatdtanecached in part
or in full in fast memory forms like DRAM, creating both moae§ and energy
costs. There is also performance overhead to access anthimdhre indirection
metadata.

Excess indirection multiplies the performance and spastsaof indirection
and is often redundant in a system. It thus presents us a withgortant problem
of how to reduce the costs of excess indirection.

1.1 Excess Indirection in Flash-based SSDs

Flash memory is a form of non-volatile memory which offertéerandom-access
performance and shock resisdence than traditional hakd,dasd lower monetary
and energy cost than RAM. Flash memory is often packagedlash-basedolid
State Device§SS[¥). SSDs have been used as caching devices [18, 29, 52, 61, 67,
74, 81] and hard disk replacements [19, 54, 71, 84], and taus gained a foothold
in both consumer and enterprise markets.

Indirection is particularly important in flash-based SSDnlike traditional
storage devices, flash-based SSDs manage an indirectiemaagt provide a tradi-
tional block interface. In modern SSDs, an indirection nrejmeFlash Translation
Layer(FTL) allows the device to map writes from the host systewégdal address
space to the underlying physical address space [24, 3484694 60].

FTLs use this indirection for two reasons: first, to transfdhe erase/program
cycle mandated by flash into the more typical write-basegrfiate via copy-on-
write techniques, and second, to implemestr leveling47, 51], which is critical
to increasing SSD lifetime. Because a flash block becomesalnhel after a certain
number of erase-program cycles (10,000 or 100,000 cyclw@iag to manufac-
turers [13, 37]), such indirection is needed to spread theevasad across flash
blocks evenly and thus ensure that no particularly poputarkbcauses the device
to fail prematurely.

The indirection in flash-based SSDs is useful for these magpo However,
flash-based SSDs can exhibit excess indirection. When afters is running on
top of a flash-based SSD, the file system first maps data frorarfidefile offset
to logical block addresses; the SSD then maps logical bldckesses to device
physical addresses. The indirection at the file system lisvathieved through
the file system metadata; the indirection at the SSD levethdesed through the

4

mapping table in the FTL.

As we can see from the architecture of file system indireati@r SSD indirec-
tion, there are redundant levels of indirection. Althougicrelevel of indirection
exists for its own reasore(g, SSD indirection hides the erase-before-write require-
ment and the wear-leveling operation), we believe thatnde@ection in the SSD
is redundant and moreover causes memory space and perfmoast.

The indirection in SSDs comes with a cost in both memory spadeenergy. If
the FTL can flexibly map each virtuphgein its address space (assuming a typical
page size of 4 KB), an incredibly large indirection tabledguired. For example,
a 1-TB SSD would need 1 GB of table space simply to keep onet3imter per
4-KB page of the device. There is also a performance cost totaia and access
the mapping tables.

Two trends in flash-based storage make the cost of excesgdtidh an im-
portant issue. First, flash memory is used widely in mobilaabs, where energy
consumption is a significant concern; a large indirectidsietén RAM imposes a
high energy cost. Second, flash-based storage is gainingapitp in enterprise
and cloud storage environments [29, 54]. As the sizes oktlash-based devices
scale up, the monetary and energy cost of RAM increases-tinparly. Clearly, a
completely flexible mapping is too costly; putting vast qitaas of memory (usu-
ally SRAM) into an SSD is prohibitive.

Because of this high cost, most SSDs do not offer a fully flexjker-page
mapping. A simple approach provides only a pointerlgeck of the SSD (a block
typically contains 64 or 128 2-KB pages), which reduces lowads by the ratio of
block size to page size. The 1-TB drive would now only need d¥litable space,
which is more reasonable. However, as clearly articulaiedbptaet al. [40],
block-level mappings have high performance costs due tessiee garbage col-
lection.

As a result, the majority of FTLs today are built using a hghbaipproach,
mapping most data at block level and keeping a small pageeataprea for up-
dates [24, 59, 60]. Hybrid approaches keep space overheadwhile avoiding
the high overheads of garbage collection, at the cost otiaddl device complex-
ity. Unfortunately, garbage collection can still be costgducing the performance
of the SSD, sometimes quite noticeably [40]. Regardleshe@fapproach, FTL
indirection incurs a significant cost; as SSDs scale, evdmidhyschemes mostly
based on block pointers will become infeasible.

Recently, approaches have been proposed to dynamicale aasmall, hot

part of the mapping table in DRAM and the rest of the mappitetan the flash
memory itself [40]. Another approach to reduce the cost diréction in SSDs is

to move the indirection layer to the host OS in a softwarer§§@].

Even with these proposed optimizations to reduce the SSiPeitibn cost,
excessndirection still exists when a file system is running on té@mdlash-based
SSD; a block is first mapped from a file offset to its logical @dd and then from
the logical address to its physical address in the deviceth Bawlirection layers
maintain their own address spaces and perform their owreadddlocation. Space
and performance overheads are incurred at both layers taaimatheir own lookup
structure (e, file system metadata and SSD FTL). We can clearly see tha ithe
excess indirection in such a system.

1.2 De-Indirection: Removing Excess Indirection

Because of its high costs, excess indirection presents tiisamiimportant prob-
lem. One way to reduce the costs of excess indirection isnmve the redundant
level(s) of indirection, a technique we cdk-indirection

The basic idea of de-indirection is simple. Let us imagingsiesn with two
levels of (excess) indirection. The first indirectidhmaps items in thd. space
to items in theM space:F(L;) — M;. The second indirectiod maps items
in the M space to those in th& space:G(M;) — N. To look up the item
i, one performs the following “excessive” indirections(£(i)). De-indirection
removes the second level of indirection by evaluating tleisé mapping=() for
all values mapped by'(): Vi : F(i) < G(F(i)). Thus, the top-level mapping
simply extracts the needed values from the lower level @udion and installs them
directly.

There are different ways to perform de-indirection. We tfgriwo methods.
The first is to remove the need for one level of indirection ptately (.e., this level
of indirection is never created). The second method is licaditw the creation of
all levels of indirection, but remove (part of) the indiriect periodically or when
needed. The former method changes the design of the origyséem that uses
multiple levels of indirection, and thus can involve subsitd changes to all layers
and the interface between different layers in a system. €hersl method does
not require as much change to the original system, but mayemobve as much
indirection as the first method.

Notice that even though we propose to remove the redundaet ¢ indi-
rection, we do not want to remove the layer in the system cetalyl €.g, by
combining two layers). In fact, it is one of our major goalgétain the function-
ality of each layer within itself and to introduce as littleange to existing layered
systems as possible. We believe that different layers &xigheir own reasons;

File & File Offset File & File Offset

FS Metadata

v

Logical Address

I
Al

FS Metadata

i Y
Physical Address Physical Address
(a) (b)

Figure 1.2:Excess Indirection and De-indirection of Flash-based SSDs The
left graph (a) demonstrates the excess indirection in flaabed SSDs when running with a
file system. A block is first mapped from file and file offsetéddbical address by the file
system metadata and is then mapped to the physical addr&SIDYTL. The right graph
(b) represents the mapping after removing the indirectiothie SSD: a block is mapped
directly from file and file offset to the physical address gshe file system metadata.

changing them would require significant research and eegmg efforts (in each
layer) and is less likely to be adopted in real world. Our ammierely to remove
the redundancy in indirection and its associated costs.

De-Indirection of Flash-based SSDs

There are two levels of (redundant) indirection with a filsteyn on top of a flash-
based SSD. To remove this excess indirection, we choosemoveethe indirection
at the SSD level for two reasons. First, the cost of maingir8SD-level indirec-
tion is higher than that of the file system level, since therimal RAM in SSDs
incurs a fixed monetary and energy cost and is also restigtélde device’s phys-
ical size, while main memory is more flexible and is shared iffergnt applica-
tions. Second, the file system indirection is used not onth Wash-based SSDs,
but also other storage devices. It is also used to providg-teasse structured
data. Thus, removing the file system indirection affect®oflystems and user ap-
plications. With the SSD-level indirection removed, plegsiblock addresses are

stored directly in file system metadata; file systems useethddresses for reads
and overwrites.

We remove the indirection in SSDs without removing or chaggheir major
functionality, such as physical address allocation and Vexaling. An alternative
way to remove indirection is to remove the SSD FTL and managdlash memory
directly with specific file systems [41, 92, 93]. We believattexposing raw flash
memory to software is dangerousd, a file system can wear out the flash memory
either by intention or by accident). Vendors are also ldsslito ship raw flash
without any wear guarantees.

To perform de-indirection of flash-based SSDs, our first negke is to re-
move the need for SSD-level address mapping with a new atedallechameless
writes. This interface removes the need for SSDs to create and araitd indirec-
tion mappings. Our second technique is to have the SSD argyfitem both create
their indirection and operate (largely) unmodified, andge a tool called “file sys-
tem de-virtualizer” to occasionally walk through the filessgm and remove the
SSD-level indirection. We next introduce these techniques

1.3 De-indirection with Nameless Writes

Our first technique to perform de-indirection for flash-th&SDs is a new inter-
face which we terrmameless writef05]. With nameless writes, the indirection in
flash-based SSDs is directly remove@.(the device never creates mappings for
the data written with nameless writes).

Unlike most writes, which specify both thdatato write as well as aname
(usually in the form of a logical address), a nameless wiitgly passes the data
to the device. The device is free to choose any underlyingiphllblock for the
data; after the deviceamesthe block (i.e., decides where to write it), it informs
the file system of its choice. The file system then records #meenin its metadata
for future reads and overwrites.

One challenge that we encounter in designing namelessswsitithie need for
flash-based SSDs to move physical blocks for tasks like ves@lihg. When the
physical address of a block is changed, its correspondiagydtem metadata also
needs to be changed so that the proper block can be foundure figads. There-
fore, for physical address changes, we use a new interfdles caigration call-
backsfrom the device to inform the file system about the addresegdm

Another potential problem with nameless writes is the reigarupdate prob-
lem: if all writes are nameless, then any update to the fileegysequires a recur-
sive set of updates up the file-system tree. To circumvesptioblem, we introduce

a segmented address spaegéhich consists of a (large) physical address space for
nameless writes, and a (small) virtual address space ftititnaal named writes. A
file system running atop a nameless SSD can keep pointet-isasetures in the
virtual space; updates to those structures do not nedeskitther updates up the
tree, thus breaking the recursion.

Nameless writes offer a great advantage over traditiongéésyras they largely
remove the need for indirection. Instead of pretending tthatdevice can receive
writes in any frequency to any block, a device that suppartaeless writes is free
to assign any physical page to a write when it is written; ltiyrméng the true name
(i.e., the physical address) of the page to the client abewg,(the file system),
indirection is largely avoided, reducing the monetary aighe SSD, improving
its performance, and simplifying its internal structure.

Nameless writes (largely) remove the costs of indirectiatheut giving away
the primary responsibility an SSD manufacturer maintaiwsar leveling. If an
SSD simply exports the physical address space to clientgs@istic file system or
workload could cause the device to fail rather rapidly, $yryy over-writing the
same block repeatedly (whether by design or simply throufjleaystem bug).
With nameless writes, no such failure mode exists. Becdusalévice retains
control of naming, it retains control of block placementdahus can properly
implement wear leveling to ensure a long device lifetime. Meé#eve that any
solution that does not have this property is not viable, asnaaufacturer would
like to be so vulnerable to failure.

We demonstrate the benefits of nameless writes by portingithex ext3 file
system to use a nameless SSD. Through extensive analysis@amwated name-
less SSD and comparison with different FTLs, we show the fitesnaf the new
interface, in both reducing the space costs of indirectiat improving random-
write performance. Overall, we find that compared to an SSD ukes a hybrid
FTL (one that maps most SSD area at a coarse granularity andlbasea at a fine
granularity), a nameless SSD uses a much smaller fractiomeafory for indirec-
tion while improving performance by an order of magnitudesome workloads.

1.4 Hardware Experience with Nameless Writes

To evaluate our nameless writes design, we built and use@&Bregulator. In the
past, most other research on flash-based SSDs also useat&muar emulation
for evaluation [6, 74, 78, 40],

There is little known about real-world implementation eanffs relevant to
SSD design, such as the cost of changing their commandadneerfMost such

knowledge has remained the intellectual property of SSDufsaturers [43, 30,
32, 73], who release little about the internal workings dittdevices. This situ-
ation limits the opportunities for research innovation @wrflash interfaces, new
OS and file system designs for flash, and new internal managesoéware for

SSDs.

Simulators and emulators suffer from two major sources aféaracy. First,
they are limited by the quality of performance models, whtdly miss important
real-world effects. Second, simulators and emulationnofienplify systems and
may leave out important components, such as the softwask st&d to access an
SSD. For example, our SSD emulator suffers from a few linaitest, including a
maximum throughput (lowest latency) of emulated deviceyiise described in
Chapter 3.

Nameless writes require changes to the block interfaceh flemnagement al-
gorithms within the device, the OS storage stack, and theyfdéeem. Thus, evalu-
ating nameless writes with emulation alone may miss impbitsues of nameless
writes. Meanwhile, the nameless writes design is an idaadlidate for studying
the difference between real hardware and simulation or &ioal because of the
changes needed by nameless writes at different storage Tdyerefore, we sought
to validate our nameless writes design by implementing d laardware prototype.

We prototype nameless writes with the OpenSSD Jasmine Seiwaie plat-
form [86]. The OpenSSD evaluation board is composed of codim&SD parts,
including a commercial flash controller, and supports sdeshGtorage interfaces
(SATA). It allows the firmware to be completely replaced, dahdrefore enables
the introduction of new commands or changes to existing cana® in addition to
changes to the FTL algorithms. As a real storage device vatfopmance com-
parable to commercial SSDs, it allows us to test new SSD dgsigth existing
file-system benchmarks and real application workloads.

During prototyping, we faced several challenges not faeds our design and
evaluation of nameless writes with emulation or in publiéskerk on new flash
interfaces. First, we found that passing new commands fhaniite-system layer
through the Linux storage stack and into the device firmwarsed substantial
engineering hurdles. For example, the I/O scheduler musikmhich commands
can be merged and reordered. Second, we found that retuadohgsses with a
write command is difficult with the ATA protocol, since thernmal ATA I/O return
path does not allow any additional bits for an address. Thiptalls from the
device to the host file system as required by the migratiolbazits turned out to
be challenging, since all ATA commands are sent from the todste device.

To solve these problems, we first tried to integrate the nasselrites inter-

10

faces into the SATA interface and implement all namelestewifunctionality en-
tirely within the firmware running on the OpenSSD board. Heeveit turned out
that passing data from the device to the host OS through tiAeid{€rface is ex-
tremely difficult.

This difficulty led us to a split-FTL design. A minimal FTL oihé device
exports primitive operations, while an FTL within the hosh Qses these primi-
tives to implement higher-level functionality. This spliésign simplifies the FTL
implementation and provides a convenient mechanism to \wookind hardware
limitations, such as limited DRAM or fixed-function hardwear

Our evaluation results demonstrate that the namelessswriaedware proto-
type using the split-FTL design significantly reduces thenoegy consumption as
compared to a page-level mapping FTL, while matching théopmance of the
page-level mapping FTL, the same conclusion we find with dsiD @mulation.
Thus, the split-FTL approach may be a useful method of implging new inter-
face designs relying on upcalls from an SSD to the host.

1.5 A File System De-virtualizer

Nameless writes provide a solution to remove the exceseertibn in flash-based
SSDs (and the cost of this indirection) by using a new interfaetween file systems
and flash-based SSDs. Specifically, with nameless writesfilth system sends
only data and no logical address to the device; the devigeahecates a physical
address and returns it to the file system for future reads. &deodstrated with
both emulation and real hardware that nameless writeS®ignily reduce both the
space and the performance cost of SSD virtualization. Heweameless writes
have their own shortcomings.

First, the nameless writes solution requires fundamemahges to the device
I/O interface. It also requires substantial changes in theceé firmware, the file
system, the OS, and the device interface. Our hardwareiergerwith nameless
writes demonstrates that they are difficult to integrate ixisting systems (see
Chapter 5) and may need a complete redesign of the storage sta

Another problem with nameless writes is that all 1/Os arevidieralized at the
same time when they are written. The overhead of namelegsswhus occurs for
all writes. However, such overhead caused by de-indineatam be hidden if de-
indirection is performed at device idle time and not for aé tvrites. An emerging
type of storage systems maintain the device indirectioprlaly software [46]. In
such case, the indirection mappings do not need to be renaiviie time. Using
techniques like nameless writes to remove indirection rimaygfor all the data can

11

turn out to be unnecssary and cause more overhead than needed

To address the problems with nameless writes, we propos€ilthesystem
De-Virtualizer (FSDV), a mechanism to dynamically remove the indirection in
flash-based SSDs with small changes to existing systems. basie technique
is simple; FSDV walks through the file system structures drahges file system
pointers from logical addresses to physical addressesngDsn does not require
changes in normal 1/0Os. Unlike nameless writes which reguall I/0s to be de-
virtualized, the FSDV tool can be invoked dynamically (feample, when the de-
vice is idle). We believe that FSDV provides a simple and dyicavay to perform
de-virtualization and can be easily integrated into exgs8ystems.

One major design decision that we made to achieve the goajratndic de-
virtualization is the separation of different address spaand block status within
a file system. Initially, the file system allocates logicatla$ses on top of a vir-
tualized device in the traditional way; all blocks are in thgical address space
and the device uses an indirection table to map them tol¢hiEce address space
FSDV then walks through and de-virtualizes the file systerfterivards, the de-
virtualized contents are in thghysical address spa@nd corresponding mappings
in the device are removed. The file system later allocatesomatvrites data for
user workloads; the device will add new mappings for these, dausing blocks to
be mapped from logical or old physical addresses to currevitd addresses.

A block thus can be in three states: a mapped logical blocla@ped physical
block, or a direct physical block. The first two require imdition mapping entries.
When the mapping table space for them is large, FSDV can lokéavto move
data from the first two states to the direct state. It can atsionmked periodically
or when the device is idle. FSDV thus offers a dynamic sotutmremove excess
virtualization without any fundamental changes to exgfite systems, devices, or
I/O interface.

Another design question that we met is related to how we Ieatidl address
mapping changes caused by the device garbage collectiowesndeveling oper-
ations. During these operations, the device moves flashsgagew locations and
thus either changes their old mappings or adds new mappintiey originally
were direct physical blocks). In order for FSDV to procesd esmove the map-
pings caused by these operations, we choose to associatbleek with its inode
number and record the inode number if the device moves thiskkdnd creates a
mapping for it. Later, when FSDV is invoked, it processes files correspond-
ing to these inode numbers and removes the mappings creatadde of garbage
collection or wear leveling.

We change the write interface to let the file system send tbdeimumber

12

associated with a block when writing it. Though this chargyenade to a normal
I/O interface (something we try to avoid), it only changes fbrward direction
(from the file system to the device). As will be described iaptler 5, the direction
from the device to the file system turns out to be the majoraditfy when changing
the interface with existing hardware and software stackerdfore, we believe that
our change to the write interface for FSDV is a viable onehifuture, we plan to
explore other options to deal with address mapping charmesed by the device.

We implemented FSDV as a user-level tool and modified the #et3ystem
and the SSD emulator for it. The FSDV tool can work with botmaunted and
mounted file systems. We evaluate the FSDV prototype withroabenchmarks
and show through emulation that FSDV significantly redu¢esdost of device
virtualization with little performance overhead. We alsaifid that by placing most
of the functionality in FSDV, only small changes are needethe file system, the
OS, the device, and the I/O interface.

1.6 Overview

The rest of this dissertation is organized as follows.

e Background: Chapter 2 provides a background on flash memory, flash-
based SSDs, file systems, and the ext3 file system.

e Flash-based SSD Emulator:Before delving into our solutions to remove
excess indirection in flash-based SSDs, we first presentapi@h3 a flash-
based SSD emulator that we built for various flash-relatedarech and the
research work in this dissertation. As far as we know, weladitst to build
and use an SSD emulator for research work; all previous rgdseges SSD
simulators. We describe the challenges and our solutiobsikd an accurate
and flexible SSD emulator.

e De-indirection with Nameless Writes: Our first solution to remove excess
indirection in flash-based SSDs is the new interface, nasaeleites. Chap-
ter 4 discusses the design of the nameless writes interfat¢he changes
needed in the file system and in the SSD for nameless writesnelas
writes largely reduce the indirection memory space cost @artbrmance
overhead in SSDs.

Chapter 5 describes our efforts to build nameless writegalardware, the
challenges that we did not foresee with emulation, and dutisas to them.

13

e De-indirection with a File System De-Virtualizer: Our second solution
for de-indirection in flash-based SSDs is the mechanism & aystem de-
virtualizer (FSDV). Chapter 6 describes our design of thB¥ &echanism.
The FSDV mechanism requires no or few changes to the I/Cfaterthe OS
and file system, and the SSD, yet is able to dynamically rethemdirection
in flash-based SSDs.

e Related Work: In Chapter 7, we first discuss systems that exhibit excess
indirection and other efforts to perform de-indirectione\Wien present re-
search work in flash memory and storage interfaces that &edeto this
dissertation.

e Conclusions and Future Work: Chapter 8 concludes this dissertation with
a summary of our work, the lessons we have learned, and asdisouof
future work.

14

15

Chapter 2

Background

This chapter provides a background of various aspects thahtegral to this dis-
sertation. First, since we focus on removing the excessdaiibn in flash-based
SSDs, we provide a background discussion on flash memoryastdifiased SSDs,
their internal structures and the softwares that manage.thée then describe the
basics of file systems with a focus on the ext3 file system; wieenaarious changes
to ext3 to achieve the goal of de-indirection. Finally, weadiss the block interface
between host OSes and block devices and the SATA interfatmatogy which
supports the block interface.

2.1 Flash-based SSD: An Indirection for Flash Memory

We now provide some background information on the relevapeets of NAND
flash technology. Specifically, we discuss their internalicttire, NAND-flash-
based SSDs, and the software that manages them.

2.1.1 Flash Memory and Flash-based SSDs
NAND Flash Memory Internals

Figure 2.1 illustrates the internals of a NAND flash memory. c& NAND flash

memory cell (representing a bit) contains a floating gate) (MGSFET [80, 20].

Each gate can store one (SLC) or more (MLC/TLC) bits of infation. The FG
is insulated from the substrate by the tunnel oxide. Afteharge is forced to
the FG, it cannot move from there without an external forcexceSs electrons
can be brought to (program) or removed from (erase) a cealiallysperformed
by the Fowler-Nordheim (FN) tunneling. After a page is venitt(programmed),

16

Control Gate

Floating Gate

Insulating
Oxide

Drain —_—
Bit Line

Ground

Figure 2.1:Internals of A Flash Memory Cell. This graph illustrates what a NAND
flash memory cell looks like. There are two transistor gatesifol and floating), which

are insulated by thin layers of oxide layer. The number aftedas in the insulated floating
gate determines the bit or bits (SLC or MLC/TLC) of the ceb. change the amount of
electrons in the floating gate, voltages between the cogtité and source or drain are
applied.

it needs to be erased before subsequent writes. Dependitige amount of the
charges stored in the FG, a cell can be in two or more logietést A cell encodes
information via voltage levels; thus, being able to distiistp between high and low
voltage is necessary to differentiate a 1 from a 0 (for SLCrenwmltage levels are
required for MLC and TLC) [38]. MLC and TLC are thus denserrtt&LC but
have performance and reliability costs.

NAND flash reads and writes are performed at the granulafifyash page
which is typically 2KB, 4 KB, or 8 KB. Before writing to a flashage, a larger
sizeerase blockusually between 64 KB to 4 MB) must be erased, which sets all
the bits in the block to 1. Writes (which change some of theol8s) can then
be performed to all the flash pages in the newly-erased blbtkontrast to this
intricate and expensive procedure, reads are relativedygstforward and can be
readily performed in page-sized units.

Writing is thus a noticeably more expensive process thadimgaFor example,
Gruppet al. report typical random read latencies of A2 (microseconds), write
(program) latencies of 200s, and erase times of roughly 1503 [37]. Thus, in
the worst case, both an erase and a program are required faeaamd a write will
take more than 100 longer than a read (141in the example numbers above).

17

SSD
Controller RAM
FTL
BA | pea | Read Cache
Firmware |
Write Buffer |
Flash Memory Chips
Plane Plane
i —]
ooB 00B
| Page | |
=
| Page | | .
Erase Block || Erase Block || |

Figure 2.2:Internals of Flash-based SSD.We show the internals of a typical flash-
based SSD, which contains a controller, a RAM space, and af $ietsh chips.

An additional problem with flash is its endurance [90]. Eack Bperation
causes some damage to the oxide by passing a current thioeighitle and plac-
ing a high electric field across the oxide, which in turn resuh a degradation
in threshold voltage. Over time it becomes increasinglfialift to differentiate a
1 from a 0 [1, 13]. Thus, each flash erase block has a lifetimectwgives the
number of P/E cycles that the device should be able to perfafore it fails. Typ-
ical values reported by manufacturers are 100,000 cyctedADD SLC flash and
10,000 for MLC, though some devices begin to fail earlientbapected [37, 70].

18

Flash-based SSDs

A Solid-state drivdSSD is a storage device that uses (usually non-volatile) mem-
ory for data storage. Most modern SSDs use flash memory astbgige medium,;
early SSDs also use RAM or other similar technology. No haksdor any device
with mechanical moving parts are used in SSDs. Compareddditnal hard disk
drives HDDs), SSDs have better performance (especially random peaiuce)
and are more shock resistant and quieter. Flash-based 38@aka cheaper and
consume less energy than RAM. Thus, they have gained arasingefoothold in
both consumer and enterprise market.

Flash-based SSDs usually contain a set of NAND flash memapg.can in-
ternal processor that runs SSD-management firmware, anédlb SRAM and/or
DRAM. The processor runs the flash management firmware. Temel RAM is
used to store the SSD indirection mapping table and somefionex read cache or
a write buffer, too. More details about the SSD firmware angpiray tables will
be discussed in the next section.

The flash memory chips are used to store data persistendgh fhemory are
often organized first into flash pages, then into flash erasekb] then into planes,
dies, and finally into flash chips [6]. An out of ban@@®B) area is usually associ-
ated with each flash page, storing error correction c&d&d) and other per-page
information. To improve performanced., bandwidth), the flash memory chips are
often organized in a way so that multiple flash planes can tessed in parallel [6].
Figure 2.2 gives an illustration of flash-based SSD inteongdnization.

Modern NAND flash-based SSDs appear to a host system as gestbesice
that can be written to or read from in fixed-size chunks, milehrhodern HDDs.
SSDs usually provide a traditional block interface thro®&ATA. In recent years,
high-end SSDs start to use the PCle bus or RPC-like intesféarebetter perfor-
mance and more flexibility [31, 65, 72].

2.1.2 Flash Memory Management Software

For both performance and reliability reasons and to prottigetraditional block

I/0 interface, most flash devices virtualize their physiesources using Blash
Translation Layer(FTL) that manages the underlying flash memory and exports
the desired disk-like block interface. FTLs serve two imtaot roles in flash-based
SSDs; the first role is to improve performance, by reducirggrihmber of erases
required per write. The second role is to increase therifetdf the device through
wear leveling by spreading erase load across the blocks of the devicdaithee

of any one block can be postponed (although not indefinitely)

19

Log Blocks
00B 00B
[LBAS [V I+
\
\ | [mBAT v
\ "
! \ Free Data Block
Data Blocks
00B
[LBAO [V |7
[BAL | 1 |
r
[LBA3 | 1 |

Figure 2.3: lllustration of a Hybrid FTL before a Merge Operation In this
example, there are two log blocks and three data blocks is®ie with a hybrid FTL, each
containing four 4 KB flash pages. The data blocks contain Ij&pén total; the SSD thus
exposes an effective adddress space of 48 KB«(4XB) to the OS. The log blocks are full
and a merge operation is triggered. First, to get a free b|dble third data block (LBA 8
to 11) is erased, since all its pages are invalid. The FTL threnges logical pages LBA
0 to 3 from their current valid location (two log blocks andeodata block) to the erased
free data block. After the merge operation, the old data klgeftmost data block) can be
erased.

Both of these roles are accomplished through the simplaentgat of indirec-
tion. Specifically, the FTL maps logical addresses (as sgghébhost system) to
physical blocks (and hence the name) [42]. Higher-end FEvenoverwrite data
in place [35, 40, 59, 60, 62]; rather, they maintain a set ofiVa” blocks that have

20

Log Blocks
00B 00B
[BAs] 1]

LBA 8

<

LBA 1

Data Blocks
Free Data Block

008 00B 00B
[CTF]
T F]
[T F]
CTF] [LBA7 [1]

Figure 2.4:lllustration of a Hybrid FTL after a Merge Operation This figure
gives an illustration of a typical hybrid FTL after a mergeeasption. After the merge

operation, the old data block (leftmost data block) has beersed and becomes a free
block.

recently been erased and write all incoming data (in pazgdschunks) to these
blocks, in a style reminiscent of log-structured file systdit¥]. Some blocks thus
become “dead” over time and can be garbage collected; &qikaning can com-
pact scattered live data and thus free blocks for futureaisag

The hybrid FTLs use a coarser granularity of address mapfisgally per
64 KB to 4 MB flash erase block) for most of the flash memory nedgg, 80% of
the total device space) and a finer granularity mapping (lysper 2-KB, 4-KB, or
8-KB flash page) for active data [59, 60]. Therefore, the liybpproaches reduce
mapping table space for a 1 TB SSD to 435 MB, as apposed to 2 Gpintatable
space if addresses are mapped all at 4-KB page granularity.

The page-mapped area used for active data is usually chikdoit block area

the block-mapped area used to store data at their final tocadicalled thedata
block area The pages in a log block can have any arbitrary logical ad® Log-

21

structured allocation is often used to write new data to digeldlocks. The rest of
the device is a data block area used to store data blocksiitfitta locations. The
pages in a data block have to belong to the same erase @dapked 4-KB pages
in a 256 KB consecutive logical block address range). Theitiynapping FTL

maintains page-level mappings for the log block area anckdievel mappings for
the data block area.

When the log block area is full, costly merge operations mveked. A merge
operation is performed to free a data blocknbgrgingall the valid pages belonging
to this data block to a new free block; afterwards the old @édak can be erased.
Figures 2.3 and 2.4 illustrate the status of a hybrid SSDrbedad after the merge
operation of a data block (which contains LBAs 0 to 3). Aftdastmerge operation,
two pages in two log blocks are invalidated. To free a log klal the pages
in it need to be merged to data blocks. Thus, such merge amesadre costly,
especially for random writes, since the pages in a log blecklelong to different
data blocks. Therefore, some hybrid FTLs maintain a segldog block for
sequential write streams [60]. When the sequential logkbisdull, it is simply
switched with its corresponding data block.

Hybrid FTLs also perform garbage collection for data bloakken the total
amount of free data blocks are low. The merge operationsetetrfree a data
block are the same as described above. To reduce the costloinserging, a
victim data block is often chosen as the data block that hadehst amount of
valid data.

FTLs also performwear leveling a technique to extend the life of SSDs by
spreading erases evenly across all blocks. If a block amtadt data, it will be
written to and erased more often and approaches its lifdtimiefaster than blocks
with cold data. In such case, a wear leveling operation aqaplgiswap the block
containing hot data with a block containing cold data [6]teAthis operation, the
corresponding mapping table is updated to reflect the newiphiyaddresses of the
swapped data—another reason for indirection in flash-b&8S&5. In order for the
FTL to know the erase cycles and temperature of a block, tisée keep certain
bookkeeping. Most FTLs maintain an erase count with eacbkbl@o measure
the temperature of a block, a simple technique is to recadithe when any of
the pages in a block is last accessed. A more accurate methiodrécord the
temperature of all the pages in a block; this method requiree space with each
flash page to store the temperature information.

In summary, flash-based SSDs are a type of virtualized stadagice, which
uses indirection to hide its internal structures and opmratand to provide a tradi-
tional block 1/O interface.

22

2.2 File System: An Indirection for Data Management

File systems are software systems that organize data anti@ran easy-to-use
abstract form for storage devices [10].

Most file systems view a storage device as a contiglagisal address space
and often divide it into fix-sized blocks (e.g. 4 KB). Datadis are first structured
into files; files are then organized into a hierarchy of divdes. To manage data
with such structures, file systems keep their own metadata, &s block pointers to
identify blocks belonging to a file, file size, access rightsj other file properties.

File systems serve as an indirection layer and map data ffemrfi file offsets
to logical addresses. A data block is read or written witfilésoffset. File systems
allocate logical block addresses for new data writes. Bisnare often used to
track the allocation status of the device; a bit represettgieal block address and
is set when the block is allocated. Accordingly, file systgradorm de-allocation
for deletes and truncates, and unset the bit in the bitmdg siFstems also perform
allocation and de-allocation for file system metadata imalar way as data alloca-
tion and de-allocation. For reads and (in-place) overarifitle systems look up the
file system metadata and locate their logical block addses€ertain file system
metadata (e.g., superblock, root directory block) havedfiegations so that they
can always be found without any look-ups.

2.2.1 The Ext3 File System

We now give a brief description of a concrete example of filstexy, theext3
file system. Ext3 is a classic file system that is commonly usadany Linux
distributions [10]; thus, we choose to use ext3 in all ourkgan this dissertation.

A file in ext3 is identified by the structure afodewith a uniqueinode number
Ext3 uses a tree structure of pointers to organize data ir.aTihe inode can be
viewed as the tree root, it points to a small numbeg{(twelve) of data blocks.
When the file is bigger than this amount of data, the inode @bsats to anndirect
block which in turn points to a set of data blocks. If the file is etggger,double
or triple indirect blocks are used which points to one or two leveladirect blocks
and eventually to data blocks.

The address space in ext3 is split into block groups, eactarong equal size
of blocks. Each block group contains a block group desariptdata block bitmap,
an inode bitmap, an inode table, indirect blocks, and daiakisl Ext3 uses the
bitmaps for data and inode allocation and de-allocatiome@ories are also stored
as files. Each directory contains the informatierg(file/subdirectory name, inode
number) of the files or the subdirectory in the directory. Urgg2.5 illustrates the

23

Directory D,
IV
Inode I,
La/\
Indirect L
Block 3
b/ N\ N\,

Data
Block Ls L,

|

Super |Group Data Block |Inode |Inode Data

block | Descriptor | Bitmap Bitmap | Table Blocks

Block Groups

Figure 2.5:An lllustration of the Ext3 File System. This figure shows a simple
illustration of the ext3 file system data structures and @kdayouts. In the top part of
the graph, we show the directory and file tree. This exampdéhfis one level of indirect
blocks and is pointed to directly by the root directory. Thutbm part of the graph shows
the layout of the ext3 block group.

directory, file, and block group structures of ext3.

Ext3 also provides reliability and fast recovery through tachnique of jour-
naling. Ext3 has three journaling modes: journal mode whetb metadata and
data are written to the journal, ordered mode where only dag¢gais journaled but
data are guaranteed to be written to disk before metadate jotirnal are written,
and writeback mode where only metadata is journaled ane ikevo ordering of
metadata and data writes. We choose the ordered mode in thdmwihis disser-
tation, since it is a widely used journaling mode.

In summary, file systems such as ext3 organize data into filelmectory struc-
tures and provide consistency and reliability through tehhique of indirection
(in the form of file system metadata). File system metadatsesses the means of
file system indirection. However, there are certain spacepgnformance cost to

24

maintain this indirection. Combined with the indirectionflash-based SSDs, we
see excess indirection with a file system running on top of%D.S

2.3 Block Interface and SATA

Most flash-based SSDs work as block devices and connect 0 $hieosts using
theblock interface The block interface is also the most common interface foeiot
storage devices such as hard disks. Thus, in this sectionvera prief background
description of the block interface and a particular har@éwaterface that supports
the block interface: the SATA interface.

The block interface transfers data in the form of fix-sizedckt between a
block device and the host OS. All reads and writes use the &dmok size. The
block interface exposes a single address space (the l@gidaéss space) and sup-
ports sequential and random access to any block addressefoclAl/O is sent
from the OS to the device with its block address, a buffer tmesthe data to be
written or read, and the direction of the I/©Oe(, read or write). The OS expects a
return from the block interface with the status and errohef ¥O and the data to
be read.

SATA Interface

The SATA (Serial Advance Technology Attachment) interfeca common inter-
face that works with block devices [85]. It is a replacemeantthe older PATA
(Parallel ATA) interface and uses serial cable for host eation. There are three
generations of SATA: SATA 1.0 whose communication rate %3hit/s, SATA 2.0
(3 Ghit/s), and SATA 3.0 (6 Gbhit/s).

The SATA interface technology uses layering and containgraé layers on
both the transmit (host OS) and the receive (device) sidet@sn in Figure 2.6.
The application and command layers receive commands frerndst or the device
and then set up and issue commands to the lower layers. Tisptnd layer is re-
sponsible for the management of Frame Information Strast(iflSes). It formats
and passes FISes to the link layer. The link layer convetsidt frames and pro-
vides frame flow control. Finally, the physical layer penfar the actual physical
transmission.

ATA commands can be classified into I/O commands and nonedgremands.
Within 1/0O commands, there are both PIO (Programmed 10) aMALQDirect
Memory Access) read and write commands. Both PIO and DMA B@mands
have similar forms. The input fields (from host to device)luide the command

Host OS

!

Device

!

Application Layer

Application Layer

v T

v

Command Layer

Command Layer

v T

v 1

Transport Layer

Transport Layer

v T

v

Link Layer

Link Layer

25

b1 v 1

Physical Layer Physical Layer

T A

Physical Connection

Figure 2.6:Layered Structure of SATA. This graph demonstrates the layers in the
SATA technology. On both the host and the device side, thefiéva layers: application,
command, transport, link, and physical layers. The phydmger performs the actual
physical communication.

type, the logical block address and the size of the I/O rdgaes the device. The
return fields (from device to host) include the device, stdiits, error bits, and
possibly the error LBA. The status bits represent the statuke device é.g, if
busy). For a normal I/O command return, only the status b#&seat. The error bits
encode the type of error the command encounters. If thereésrar {.e., error bits
are set), then the first logical block address where the exaurs is also returned
to the host.

The non-data commands in ATA are used for various purposeh, as device

26

configurations, device reset, and device cache flush. The figdds of the non-
data commands may include features, LBA, sector countcdeand command.
The output fields may include status, error, LBA, and size.

In summary, the block interface is a simple and convenidatfice for reading
and writing in fixed block size to storage devices. The hardwaterface that
supports block 1/0s is more complex; the SATA interface tedbgy uses multiple
layers on both host and device sides. The SATA interface lasoa strict set of
command protocols and is thus difficult to change.

2.4 Summary

In this chapter, we give different pieces of background ffer test of the disserta-
tion.

We first discuss the technology of flash memory and flash-b&&tak, their
internals and the software that controls and manages theoh. sdftware layer uses
indirection to hide the internal structures and operatmfrftash-based SSDs. With
this indirection, a block is mapped from its logical addresgs physical address.
In this process, the SSD software performs allocation ipthesical address space.

We then give a brief overview of file systems and a particulangple file
system, the Linux ext3 file system. The file system is anotesllof indirection
to map a block from its file and file offset to its logical addre§ he file system
performs allocation in the logical address space. Thus,egeaedundant levels of
address allocation and indirection mappings.

Finally, we describe the interface between the file systedntlam typical flash-
based SSDs: the block interface and the SATA technology.

27

Chapter 3

A Flash-based SSD Emulator

Because of the increasing prevalence of flash-based SSDsamndunsolved prob-
lems of them, a large body of research work has been condunctied recent years.
Most SSD research relies on simulation [6, 40, 74].

Simulation is a common technique to model the behavior otegy. A storage
device simulator often takes an I/0O event and its arrivagtas its input, calculates
the time the 1/O is supposed to spent with the device, andnetiis time as out-
put [15]. A model of a certain device is usually used to caltailthe 1/O request
time. Simulation provides a convenient way to evaluate nesigh and is relatively
easy to implement and debug.

Over the past years, a few SSD simulators have been built aighped. The
Microsoft Research’s SSD simulator is one of the first puBBD simulators and
operates as an extension to the DiskSim framework [6]. The PBshSim is
another SSD simulator that operates with DiskSim and irckel/eral page-level,
block-level, and hybrid FTLs [53]. Leet al. built a stand-alone SSD simulator
with a simple FTL [56].

These SSD simulators have been used extensively in manyesgarch works [6,
40, 22, 96]. However, simulation has its own limitationstsEisimulators cannot
be used directly to evaluate real workloads on real systdResl workloads and
benchmarks have to be converted specifically for a simuldtotthis process of
transitioning, different aspects of the workloads and tystesn can be lost or al-
tered. Second, with simulation, many real system propedied interfaces are
simplified. For example, it is difficult to model multithrdad behavior with a
simulator. Thus, simulation alone is not enough for all eatibn situations and
requirements.

Emulation provides another way to evaluate a storage desistorage device

28

emulator tries to mimic the behavior of a real device. Fongxea, it returns an I/O
request at the same wall clock time as what the real devicédweturn. A device
emulator also uses a real interface to the host OS. Real gamkland benchmarks
can thus run directly on an emulator. Device emulation is #gpecially useful to
evaluate the interaction of host OS and the device.

Accurate emulation is difficult because of different reasteyn effects, con-
straints, and non-deterministic nature [36]. The majotlehge in implementing
an SSD emulator is to accurately model the SSD performanaehws much closer
to CPU and RAM than traditional hard disks.

We implemented an SSD emulator and use it throughout diffgrarts of this
dissertation. The overall goal of our emulation effort idtoable to evaluate new
designs €.g, SSD de-indirection) using important metrics with comm&bShard-
ware configurations. We leverage several techniques taceedarious computa-
tional overhead of the emulator.

Because of the difficulty in building an always-accurate ko and the lim-
ited knowledge of the internals of real SSDs, we do not aimuitdban always-
accurate emulator that works for all metrics and all SSD goméitions. The goal
of our emulator is not to model one particular SSD perfectly to provide in-
sight into the fundamental properties and problems of iffetypes of SSD FTLs.
For example, our emulator can accurately emulate writeopmdnce for common
types of SSDs, but not read performance; writes are theebettk to most SSDs
and the focus of this dissertation.

As a result, we built a flexible and generally accurate SSDlatoiy which
works as a block device with the Linux operating system. Quatuation results
show that our SSD emulator has low computational overheddsaaccurate for
important metrics and common types of SSDs. As far as we kwavgre the first
to implement an SSD emulator and use it to evaluate new design

The rest of this chapter is organized as follows. We firstudisour design and
implementation of our SSD emulator in Section 3.1. We thes@nt the evaluation
results of the emulator in Section 3.2. Finally, we dischsdimitations of our SSD
emulator in Section 3.3 and summarize this chapter in Seé&ti.

3.1 Implementation

We built a flash-based SSD emulator below the Linux block fajteprocesses
block 1/0 requests sent from the file system. The SSD emulserthe standard
block interface to the host OS and can be used as a traditiboek device. Inter-
nally, we implemented the emulator as a Linux pseudo blogicde

29

Our goal is to have a generally accurate and flexible SSD eorusa that
different SSD and host system designs can be evaluated @dthworkloads and
benchmarks. Since the latency and throughput of modernilaséd SSDs is much
closer to those of RAM and CPU than hard disks, the main atngdi¢o build an
SSD emulator is to accurately emulate the performance di-lased SSDs and
minimize the computational and other overhead of the emwldt is especially
difficult to emulate the parallelism in a multi-plane SSDr Ezample, if a single
I/O request takes 103, then parallel 10 requests to 10 SSD planes will have the
effect of finishing 10 requests in 108. In the former case (single request), the
emulator only needs to finish all its computation and othecessing of a request
within 100us, while in the later case, the emulator needs to finish 10 stgue the
same amount of time. Thus, reducing the computational eesrtof the emulator
is important.

We now describe the design and implementation of our SSDaorund our
solution to the challenges discussed above.

3.1.1 Mechanism

We use three main techniques to build an efficient and accwaiulator. First,
we store all data in main memory, including file system mde@dad data, FTL
address mapping table, and other data structures used bynilator. Second, we
separate the data storage and the device modeling oper&titwmo threads. Third,
we avoid CPU time as much as possible at the probable costrobnyeoverhead.

Our original implementationOesign 3 used a single thread to perform all
tasks, including storing or reading data from memory andutate request re-
sponse time by modeling the SSD behavior. Doing so made thetime spent
by the emulator for a request higher than the request resdons. Therefore, we
separate the emulator into two parts in our next dediggsign 3; each part uses
a single thread. The major thread is a thread passed fronmetinelkwith a block
I/0 request. It first makes a copy of each request and plaeesoiby on a request
gueue. It then performs data storage for the request. Wehislthread the data
storage thread. We use another thread that takes requestteorequest queue,
models SSD behavior, and calculates the response time oédnest.

The data storage thread is responsible for storing an@vetg data to or from
memory. Initially with Design 2, we implemented the dataage thread in a way
that for each write, it allocates a memory space, copiesdltetd be written at the
allocated space, and keeps a mapping in a hash table. THenraptation turned
out to be too costly in computational time. Insteadiesign 3(our final design),
we pre-allocate all the memory space for the emulated derideassociate each

30

oS
Data Store Thread l SSD Model Thread

Enqueue Copied Request

Original Request l \ x
FIFO
Request

Queue

Store / Read Data

!

RAM SSD Model

I

Timer
Delay

I
I
I

4

Figure 3.1:Design of the SSD Emulator. This figure describes the basic architecture
of the SSD emulator, which contains two threads, the data siioead and the SSD model-
ing thread. When an 1/O request is received from the file aystiee main thread makes a
copy of it and passes both copies to the two threads to penfioemory store/retrieval and
SSD simulation. When both threads finish their processhmgreéquest is returned to the
file system.

flash page in the emulated SSD statically with a memory slob{igh an array
table). Reading and writing thus simply involve an arrayklap and memory
copy. In this way, no memory allocation or hash table looksupecessary for each
I/0 request. Figure 3.1 illustrates the final design of ouD®&8&ulator.

The SSD modeling thread models SSD behavior and maintaitB@ ueue
of /0 requests that are passed from the main thread. Forl&ackquest, its logi-
cal block address, its direction, and its arrival time arespd to an SSD simulator.
The SSD simulator simulates SSD behavior with a certain Hid_@lculates the
response time of the request. The SSD model is a separateonentpand can be

31

replaced by other models. We implemented the SSD simulasedon the PSU
objected-oriented SSD simulator codebase [11]. The PSU&8Bbase contains
the basic data structures and function skeletons but nemmgtation of FTLs, ad-
dress mapping, garbage collection, wear leveling, or I/@lfgism and queueing;
we implemented these functionalities. We will discuss nd#tils about our SSD
model and its FTLs in the next section.

To accurately emulate the response of an I/O request, wartisger, a high-
resolution and high-precision Linux kernel timer, to set thme the SSD is sup-
posed to finish the 1/0O request. When the SSD model returnetinse time, if
it is larger than the current time, then we set the hrtimers® this response time.
Otherwise, the hrtimer uses the current time.(it expires immediately). The lat-
ter case happens when the computation time of the SSD motigber than the
(modeled) latency of an I/O request; in this case, the emulail not be able to
accurately emulate the performance of the modeled SSDefdrey it is important
to minimize the computation in the SSD model when implenmgntihe SSD FTLs.

An 1/O request is considered finished when both the datagedraead and the
modeling thread have finished their processing of the I/ ddia storage thread
is considered finished with its processing when it has storegad the I/O data
to or from memory. The modeling thread is considered finisiveeén the timer
expires. Both threads can return the I/O request to the twbsn the other thread
and itself have both finished their processing. We maintaiidantifier with each
I/0 to indicate if a thread has finished processing it.

3.1.2 SSD Model

We now discuss our implementation of the SSD simulator andwe model SSD
hardware structures and software FTLs. Figure 3.2 illtestréhe architecture of
the modeled SSD.

We model the SSD internal architecture in the following wBye SSD contains
a certain number of packages (flash chips); each packageimeatset of dies; each
die has a set of planes. A plane is the unit for I/O paralleligaplane contains a
set of flash erase blocks, which are the unit of the erase tiquera\n erase block
contains a set of flash pages, which are the units of reads atesw There is
also an OOB area with each flash page, which is used to stoqgagermetadata,
such as the logical block address of the page and the pagebmliThe logical
block address is used to construct the address mappingdabiey SSD start up
and recovery. The valid bit is used during garbage colleciiod wear leveling. A
real SSD also usually stores EEC bits in the OOB area; we dmodel the error
correcting behavior of the SSD. We also store certain infdion with each erase

32

SSD Model

RAM

FTL |/0 Buffer

LBA | DBA %//%e

>
IS
«n

Bus 7'y I¢ At
""""") A v
Plane Plane
—— i
Planeg% Plane 77
Register Register ////%
1 00B QOB
23 Page [|
(Page | ||||
[Page [| [Page | |||
M}f Erase Block |

Flash Memory Chips

Figure 3.2:Structures of the SSD Model. This figure describes the internal structures
of the SSD model. At different circled numbers, there afermint types of delay (example

values in Table 3.1).

block, such as the last update time of the block. The update i used during
wear leveling to identify the temperature of the data in @semblock.

We model the SSD firmware with two FTLs, a page-level mappihg &d a
hybrid FTL. Both FTLs make use of multiple planes and paliabel/O requests to
as many planes as possible. To minimize CPU time, we use tainésy instead of
hash table to store all the FTL mapping tables. To reduce atatipnal time, we
also maintain a free block queue, so that a full scan is natired| to find a new
block. We now discuss more details that are specific to eathar@ the garbage
collection and wear-leveling operations of both FTLs.

33

Page-level FTL

The page-level mapping FTL keeps a mapping for each datalggeen its logi-
cal and physical address. For writes, the page-level mggpii. performs alloca-
tion in a log-structured fashion. The FTL maintains an a&cblock in each plane
and appends new writes to the next free page in the block. Thealso paral-
lelizes writes in round-robin order across all the planes. rEads, the page-level
mapping FTL simply looks up its mapping table and finds itsgitgl address; it
then performs the read from this physical address.

Hybrid FTL

We implemented a hybrid mapping FTL similar to FAST [60], alhiuses dog
block areafor active data and data block areao store all the data. One sequential
log block is dedicated for sequential write streams. All titleer log blocks are
used for random writes. The rest of the device is a data bloek ased to store
data blocks at their final locations. The pages in a data biasle to belong to
the same erase block.f, 64 4 KB pages in a 256 KB consecutive logical block
address range). The pages in a random-write log block cae aay arbitrary
logical addresses. We choose to use log-structured dthoctat write random data
to the log blocks. The hybrid mapping FTL maintains pagellevappings for the
log block area and block-level mappings for the data bloelaar

Garbage Collection and Wear Leveling

We implemented a simple garbage collection algorithm andhple wear-leveling
algorithm with both the page-level mapping and the hybrighpirag FTLs.

The garbage collection operation is triggered when the murobfree blocks
in a plane is low. The garbage collector uses a greedy metmbdezycles blocks
with the least live data. During garbage collection, bloakis all invalid pages are
first selected for recycling. The garbage collector simphses them. The block
with the greatest number of invalid pages is then selectad.valid pages in these
blocks are written out into a new block. For the page-leveppiag FTL, the valid
pages are simply written into any free space on any plane lj@wese to parallelize
these writes to different planes). For the hybrid mapping,R® garbage collect a
data block, a merge operation is triggered; the valid pagegither copied from
the old data block or current log blocks into a new free block.

We implemented a wear-leveling algorithm similar to a poergi algorithm [3].
The wear-leveling algorithm is triggered when the overabwof the SSD is high.
The SSD considers both block wear and data temperaturegdinénwear leveling

34

operation. A block whose amount of remaining erase cyclésssthan a certain
percentage of the average remaining erase cycles of thiedilothe SSD is consid-
ered for wear leveling. The SSD then selects the block wetttdidest data (oldest
update time) and swaps its content with the worm block; tmeesponding address
mapping entries are also updated accordingly. Notice tbedlse of the need in
the wear-leveling algorithm, the SSD also keeps track ofdéuta temperature in
each block and stores it with the block.

3.2 Evaluation

In this section, we present our evaluation results of our 88MDlator. We begin
our evaluation by answering the questions of how accurateethulator is and
what kind of SSDs the emulator is capable of modeling. Ouromggal of the

emulator is to have low computational overhead so that itazamurately emulate
common types of SSDs with important workloads. After finding the accuracy
and capability of our emulation, we delve into the study ofrendetailed aspects
of the SSD and different FTLs. All experiments are perforroad 2.5 GHz Intel

Quad Core CPU with 8 GB memory.

The followings are the specific questions we set to answer.

What is the computational overhead of the emulator?

How accurate does the emulator need to be to model an SSD fartia-p
ular metric? Can the emulator model common type of SSDs fpontant
metrics?

What is the effect of multiple parallel planes on the perfante of an SSD?

How does the page-level mapping FTL compare to the hybridomgmne?

e What is the performance bottleneck of the hybrid mapping Bmtd why?

Table 3.1 describes the configurations we used in our evatuathere are dif-
ferent kinds of latency associated with various SSD infestractures as shown in
Figure 3.2. We use two types of flash memory; SSD1 emulate&dan generation
of flash memory and SSD2 emulates a newer generation.

3.2.1 Emulation Overhead

We first evaluate the computational overhead of our SSD domuld@he compu-
tational overhead limits the type of SSDs the emulator cadehaccurately; if

35

Configuration SSD1 | SSD2
SSD Size 4GB 4GB
Page Size 4KB 4KB
Block Size 256 KB | 256 KB
Number of Plane$ 10 10
Hybrid Log Block Area* 5% 5%
Page Read Latency 25us 65us
Page Write Latency 200us 85us
Block Erase Latency 1500us | 1000us
Bus Control Delay 2us 2us
Bus Data Delay 10us 10us
RAM Read/Write Delay lus lus
Plane Register Read/Write Delay 1us lus

Table 3.1: SSD Emulator Configurations. *Number of planes and amount of hy-
brid log block area use the values in the table as default@dut may vary for certain
experiments.

the 1/0O request time of an SSD is faster than the computaiina taken by the
emulator, then we cannot model this SSD accurately. Thusgaal is to have an
generally low computational overhead. However, becausiesofon-deterministic
nature of real-time emulation, we allow small amount of ieusl.

To evaluate the computational overhead of the emulator,ngtestudy the total
time spent in the emulator for an 1/0 requé%t without including the SSD mod-
eled request timé@'y (i.e, Tr = 0). Figure 3.3 plots the cumulative distribution
of the total emulation time of synchronous sequential andoen writes with the
page-level mapping and the hybrid mapping FTLs. We use theutative dis-
tribution, since our goal of the emulator is to have an oVdoal computational
overhead but allow occasional outliers with higher ovedhdélae cumulative distri-
bution serves to measure if we meet this goal.

Overall, we find that the computational overhead of our etouls low; the
majority of the requests havi; from 25 to 3Qus for both sequential and random
workloads and for both FTLs. Comparing different workloaasl FTLs, we find
that random writes with the hybrid mapping FTL has higher katien time than all
the others. There is also a long tail, indicating a small neindb outliers that have
extremely high computational overheagld, 1000us). We suspect that the high
computational overhead and outliers are due to the comperations of random
writes (.g, merge and garbage collection) with the hybrid mapping FTL.

To further study the emulator overhead and understand wheteottleneck is,

36

100

—~ i LAl e
S
S8 ;
3 b
£ 60 ' — Page_seq
'(QQ ' = Page_rand
© 40 : - - Hybrid_seq
= ' == Hybrid_rand
3 :
2 20 b
) L]
(@] I
0 ’2 i ‘
10 25 100 1000

Emulation Time (usec)

Figure 3.3:CDF of the Emulation Time. We perform sustained synchronous 4 KB
sequential and random writes with the page-level mappirdjthe hybrid mapping FTLs
and plot the cumulative distribution of the time spent atéhrulator ("g). The SSD model
thread does all its modeling computation but always returreso modeled request time
(Tr =0).

=
o
o
A}
1
1
1

[o]
o

Cumulative Distribution (%)
(2]
o

404
20+
’
0 " -t ; i " i
0 5 10 15 20 25 30

Data Store Time (usec)

Figure 3.4: CDF of Data Store Time. This figure plots the cumulative density of
the time spent at the data store thread using 4 KB sequentiggdswvith the page-level
mapping FTL. The results for the hybrid mapping FTL and fordam writes are similar
to this graph.

we separately monitor the computational and memory store taken by the two
threads in the emulator to process each I/O requgst(dT),). The time taken
by the data storage thread includes the time to store or r@adm memory and
other computational time of the thread. The time taken byStBB modeling thread
includes all the computational time taken by it but not thezalcmodeled response
time of the I/O requesti(z = 0).

Figure?? plots the cumulative distributions of the time taken by thséadstore
thread. The figure plots the distribution of synchronousisatjal writes using the
page-level mapping FTL, but the other workloads and FTL allehsimilar distri-

37

1007 0 oetieewyewed s = mmammsmEmm==s
’_1 ’
[]
801 '

604

40

20+ /

0 . :
10 100 1000
SSD Model Time (usec)

— Page_seq
- - Page_rand
== Hybrid_seq
== Hybrid_rand

Cumulative Distribution (%)

Figure 3.5:CDF of time spent by the SSD modeling thread for each 1/0 requst.
We perform sustained synchronous 4 KB sequential and randiss with the page-level
mapping and the hybrid mapping FTLs. This figure presentstineulative density of the
computational spent at the SSD modeling thread. The soldrépresents the SSD model
with the page-level mapping FTL and the dotted line represtve hybrid mapping FTL.

bution; the data store thread is not affected by the SSD nwdgpe of workloads
(as long as the block size in the workloads is the same). Wetiatcthe memory
store time has a median of L2 and is lower than the total emulation time. We
also find that the time taken by the data store thread has &wmahce, indicating
that memory store is a stable operation that is not affecegidikloads or types of
FTLs.

Figure 3.5 plots the cumulative distributions of the timestaby the SSD mod-
eling thread with sequential and random writes and both Hgegevel mapping
and the hybrid mapping FTLs. We find that the SSD model thraleekta median of
27 to 31us for the page-level mapping FTL and 29 to@5for the hybrid mapping
FTL. The SSD modeling time is similar to the total emulationd and is always
bigger than the data store time; the shape of the distribsitdd the SSD model time
is also similar to the distributions of the total emulatiome (Figure 3.3). These
findings indicate that SSD modeling is the bottleneck of telator.

Similar to the total emulation time, we find that random vgitgth the hybrid
mapping FTL has higher modeling time and a longer tail th&weioivorkloads and
FTL. We find that the computational time of the SSD simulasdrigher with merge
operation and garbage collection operation; these opesatiappen more often and
have higher cost with the hybrid mapping FTL than the pagetmapping FTL.
Fortunately, when an I/O request involves merge or garbaliection operations,
its response time is also higher than a request without thesetions; therefore,
the higher computational overhead is hidden.

38

3.2.2 Emulation Accuracy and Capability

After knowing the computational overhead of the emulatas, further study the
accuracy of the emulator and what types of SSDs it is capdi@malating.

In this set of experiments, we include the simulated SSDesgtime of a
requestl’r in the total emulation timé&,. To study the accuracy of the emulator,
we set all requests in an experiment to use a fixed SSD requesi, (i.e., the
timer in the emulator is always set to return a request atithe of its arrival time
plus Tr). The request timdi ranges from O to 40s. Notice that the request
time does not include the queueing delay, which the SSD doryarforms before
sending a request to the SSD simulator (see Figure 3.1 foerthdator process
flow). Also notice that even though we use a fixed SSD reques, tive still let
the SSD simulator perform its calculation as usual.

Figure 3.6 plots the medians of the emulator time for diffiéfBz’s with se-
qguential writes and the page-level mapping FTL. The target tepresents the
fixed request time we set with the SSD modgk). From the figure, we can see
that when the simulated request time is equal to or less tfass,lthe total time
spent at the emulator is always around.i26even when the request time isiG(,
the emulator returns a request as soon as it finishes bothataestbre and SSD
modeling computation). When the request time is more thams1the total time
spent at the emulator is alway$:9 longer than the request time. This (fixed) ad-
ditional time is mainly due to the queueing delay, which isrgghefore a request
goes into the SSD model and thus not include@’#n Thus, the emulator can ac-
curately model these larger request times, but the lowgsiest time the emulator
can model is 17s.

Figure 3.7 plots the medians of the emulator time for diffiéf@; s with random
writes and the page-level mapping FTL. We find that the lowegtiest time the
emulator can model is 1/9s.

Similarly, we perform sequential and random writes with tiybrid mapping
FTL and plot the medians of the emulator in Figures 3.8 and\8@find that the
lowest request time the emulator can model ig.2®r sequential writes and 21s
for random writes.

From the above experiments, we see that the emulator ha# afliaminimum
request time that it is capable of emulating accurately liseaf the computational
overhead observed with the emulator (from 17 tq.2%or different workloads and
FTLs).

Since we model SSDs with parallel planes, we must take inteideration the
implication of such parallelism on emulation. With parbijdanes, the emulator
needs to finish processing multiple requebts, (one for each plane) in the unit time

39

w B a
o o o

Emulation Time (usec)
N
o

Target without Queueing

=
o
|

o

10 17 20 30 40
Model Request Time (usec)

o

Figure 3.6:Medians of Emulation Time with Sequential Writes and the pag-
level mapping FTL. The SSD simulator uses a fake fixed modeled requesttimé
to 40us) for all requests in an experiment. For each experiment, edgom sustained
synchronous 4 KB sequential writes and calculate the medfghe emulation timéz.
The “Target” line represents the target SSD model requasefl’;. This model time does
not include any queueing effect. The dotted line repregtsinimal SSD request time
the emulator can emulate accurately.

504
1
— 1
[S] 1
O 40
9 I
~ 1
2 30 '
[1
1
S 20/
k| :
g 104 Target without Queueing
L 1
19
0 i L i i)
0 10 20 30 40 50

Model Request Time (usec)

Figure 3.7:Medians of Emulation Time with Random Writes and the page-
level mapping FTL. The SSD simulator uses a fake fixed modeled requestZtine
(O to 40us) for all requests in an experiment. For each experiment, ergom sustained
synchronous 4 KB random writes (within a 2 GB range) and dateithe median of the em-
ulation timeT'r. The “Target” line represents the target SSD model requiest T'y,. This
model time does not include any queueing effect. The datteddpresents the minimal
SSD request time the emulator can emulate accurately.

of a per-plane request. To demonstrate this limitation, lwethe area of the SSD
configuration space where our emulator can accurately miodégure 3.10 (with
sequential writes and the page-level mapping FTL). For ad ®&h 10 parallel
planes, this emulation limit means that the emulator cay acturately model
per-plane request time of 173 or higher. The dot in Figure 3.10 represents the

40

a
o

] 1
— 1
O 1
g 401 1
= 1
~ 1
g 304 '
c I
5 20 ,
s .
g 10/ iTarget without Queueing
w 1
19
0 w L : w w
0 10 20 30 40 50

Model Request Time (usec)

Figure 3.8:Medians of Emulation Time with Sequential Writes and the hylrid
mapping FTL. The SSD simulator uses a fake fixed modeled requesTtifr(€ to 40us)
for all requests in an experiment. For each experiment, wéopa sustained synchronous
4 KB sequential writes and calculate the median of the ermdimeTs. The “Target”
line represents the target SSD model request fime This model time does not include
any queueing effect. The dotted line represents the mirth88l request time the emulator
can emulate accurately.

50
1
— 1
[S] 1
@ 40
9 I
~ 1
2 301 ~ :
[1
1
S 20/
k| |
g 10 Target without Queueing
L 1
21
0 ‘ . : ‘
0 10 20 30 40

Model Request Time (usec)

Figure 3.9:Medians of Emulation Time with Random Writes and the hybrid
mapping FTL. The SSD simulator uses a fake fixed modeled requestiif(® to 40u.s)
for all requests in an experiment. For each experiment, wéopm sustained synchronous
4 KB random writes (within a 2 GB range) and calculate the raedif the emulation time
Tg. The “Target” line represents the target SSD model requiesé '5,. This model time
does not include any queueing effect. The dotted line repteghe minimal SSD request
time the emulator can emulate accurately.

write configuration we use in later chapters (Chapters 4 andWw& can see that
the write configuration we choose is within the accurate eaofjthe emulator.
For other workloads and FTLs, the relationship of numberlaf@s and minimal
per-plane request time is similar. For example, the emutza model per-plane
request time of 210s with random writes and the hybrid mapping FTL. Notice that

41

204

Number of Planes
[[
o [6)]

a1
L

0 ' ' ' ' ' ' ‘
0 50 100 150 200 250 300 350
Latency (us)

Figure 3.10:Capability of the Emulator This figure illustrates the relationship of
number of parallel planes and the minimal per-plane requies¢ that our emulator can

model accurately. The grey area represents the configuraii@ce that can be accurately
modeled. The black dot represetnts the configuration wesehéar evaluation in the rest
of this dissertation.

random writes in real SSDs are also slower than sequentissmswith the hybrid
mapping FTL, which means that the 218is sufficient for modeling random write
performance, too.

For most kinds of flash memory, the unit flash page read timess than
100us. Thus, the emulator is not fit for accurately modeling flasideewith typ-
ical number of parallel planes in the SSD. This dissertafaord most other flash
research) focus on improving write performance, which elibttleneck of flash-
based SSDs. The emulator can accurately model flash writeisi{vinave larger
access time than reads) and is fit for the evaluation in tisisediation.

3.2.3 Effect of Parallelism

I/O parallelism is an important property of flash-based S#ia$ enables better
performance than a single flash chip. We model the 1/O pédisstieacross multiple
planes in our SSD emulator. We now study the effect of suchllglism.

Figure 3.11 shows the throughput of sustained 4 KB randortesvith vary-
ing number of planes for the page-level mapping and hybrigpimg FTLs. We
find that the random write throughput increases linearihwaitore planes using
the page-level mapping FTL for SSD1. The page-level mappifigallocates new
write across planes in a round robin fashion to paralleli@s to all the planes; with
more planes, the write throughput is expected to increamehybrid mapping FTL,
we find that the random write throughput also increases withenplanes. How-
ever, the effect of increasing planes is not as big as forfmageg mapping FTL,

42

o
& 50/
X
= 401
>
£ 301 ® Page-level_SSD2
=3 ® Page-level SSD1
S 201 O Hybrid_SSD2
= OHybrid_SSD1
F 104 ybrid_
0 - EE R LS LA LR LR S AL S
0 5 10 15 20

Number of Planes

Figure 3.11: Random Write Throughput with Different Numbers of Planes.
Throughput of sustained 4 KB random writes with differentbers of planes for Page-
Level and Hybrid FTLs. For each data point, we repeat randamtew of a 2 GB file until
the systems go into a steady state.

8007 @

N OHybrid_SSD1
7004 O Hybrid_SSD2
@ 6001 AN ® Page-level_SSD1
= ﬂ‘ AN m Page-level_SSD2
é\ 500+ . oo -
@ 400 . S -
T . -0
;300— ‘a...___
e L I =T .
Z 200 °
100 1
0 ‘ == > 4
0 5 10 15 20

Number of Planes

Figure 3.12:Random Write Avg Latency with Different Numbers of Planes.
Average latency of sustained 4 KB random writes with diffemembers of planes for Page-
Level and Hybrid FTLs. For each data point, we repeat randanitew of a 2 GB file until
the systems go into a steady state.

since the major reason for poor hybrid mapping random wetdopmance is its
costly merge operation and this operation has a high pedioce cost even with
multiple planes.

Looking at SSD2 and the data point from 10 to 20 planes for SS&ilfind
that the write throughput of the SSD emulator flattens atmoiddb KIOPS. This
result conforms with the SSD emulator performance linotati

We further look at the average request latencies for diftenember of planes
and plot them in Figure 3.12. We find a similar conclusion aghinoughput results:
the random write average latency decreases with more pimesrly for the page-
level mapping FTL and sub-linearly for the hybrid mapping T

43

N

A

o
)

@ 2001
)
=
< 150
>
a
Ny
© 100
>
o
e
~ 504
0 ||
Sequential Random

M PageSSD1 M HybridSSD1 PageSSD2 M HybridSSD2

Figure 3.13: Write Performance of the page-level mapping and the hybrid
mapping FTLs. All experiments are performed with a 4 GB SSD with 10 parallel
planes using two types of flash memory, SSD1 and SSD2. Alkpeeiments use 4 KB
block size and are performed in the 4 GB range.

3.2.4 Comparison of Page-level and Hybrid FTLs

The page-level mapping and hybrid mapping FTLs are two mgjoes of FTLs
that differ in the granularity of mappings they maintain gfigpage granularity for
the page-level mapping FTL and combination of erase blockflash page gran-
ularity for the hybrid mapping FTL). We now present the résof comparing the
page-level mapping and the hybrid mapping FTLs, consideiie mapping table
space they use and their write performance.

The mapping table for the 4 GB SSD is 4 MB with the page-levgbpimag FTL
and is 0.85 MB with the hybrid mapping FTL. The page-level piag FTL keeps
a 32-bit pointer for each 4 KB flash page, making the mappiblgtsize 4 MB. The
hybrid mapping FTL uses 20% log block area and 80% data bloek. aor the
log block area, it keeps a mapping for each 4 KB page; for the biack area, it
keeps a mapping for each 256 KB erase block, making the t@pping table size
0.85 MB. Thus, the page-level mapping FTL uses more mapjibig tspace than
the hybrid mapping FTL.

Figure 3.13 presents the write performance results of tigeevel mapping
and hybrid mapping FTLs. The sequential write throughputte page-level map-
ping and hybrid mapping FTLs is similar. But the random wiiiteoughput of the
hybrid mapping FTL is much lower than the page-level mapjgimg. We also find
that as expected, SSD2 has higher write throughput than $3bth page-level
mapping and hybrid mapping FTLs, since the flash page witiéady is lower for
SSD2.

44

=
o
o

N
o

< u [dle

< 807 Mergeldle
_E MergeRead
T 601 m MergeWrite
’g_ m Erase

9 401 B NormalWrite
[S)

‘g

O

6 10 20 30 40 50
Amount of Log Blocks (%)

o

Figure 3.14:Cost of Different Operations with Hybrid FTL. Throughput of sus-
tained 4 KB random writes with different amount of log blookslybrid FTLs. For each
data point, we repeat random writes of a 1 GB file until theeyst go into a steady state.

3.2.5 Study of Hybrid FTL

Since random writes are the bottleneck of the hybrid mappihy, it is impor-
tant to learn the cause of its poor random write performaliée.now study what
factors affect random write performance and the reasorh@pbor random write
performance.

To closely study random write performance and the opersttba FTL uses
during random writes, we break down the FTL utilization idifierent operations,
including normal writes, block erases, writes and readindumerge operations,
idle time during merge operations, and other idle time. FEdgRi14 plots the per-
centage of all these operations on all the planes duringorangrites. Figure 3.15
takes a close look at the operations other than the idle tigefind that the merge
operations take the majority of the total SSD time and nonwréks only take up
around 3% to 9% of the total time. As explained in Chapter @ ntierge operation
of the hybrid mapping FTL is costly because of the valid datpying and block
erases. Surprisingly, with multiple planes, there is albiga idle time during the
merge operations. While a data page is copied from a planegitire merge op-
eration, other planes can be idle. As a result, the mergeatipes are the major
reason for poor random writes, even though they are not etv@s often as nor-
mal writes (specifically, it is invoked once per 64 4 KB writedree a 256 KB log
block).

Since the costly merges are triggered when the log blockiarkdi, the size
of the log block area is likely to affect the random write penfiance of the hybrid
mapping FTL. To study this effect, we change the amount oblogks in Figures
3.14 and 3.15. We find that with more log blocks, the amountafmal write

45

=
o
o

MergeRead
B MergeWrite
H Erase
® NormalWrite

®
o
|

[o2]
o
!

Cost of Operation (%)
N
o

N
o
!

o

6 10 20 30 40 50
Amount of Log Blocks (%)

Figure 3.15:Cost of Different Operations with Hybrid FTL. Throughput of sus-
tained 4 KB random writes with different amount of log blookslybrid FTLs. For each
data point, we repeat random writes of a 1 GB file until theeyst go into a steady state.

10+

_E
U)\ 84 ""
g 0SSD2 o=
Q 0ssD1 -
X 6 .a"“ _--0
-~ P (//‘
E_ xo //,,@
2 4 L e
S »
F 2 o
0
0 10 20 30 40 50

Amount of Log Blocks (%)

Figure 3.16:Random Write Throughput with Different Amount of Log Blocks .
Throughput of sustained 4 KB random writes with differenbant of log blocks in Hybrid
FTLs. For each data point, we repeat random writes of a 1 GBIfili@l the systems go into
a steady state.

operation time increases and the cost of merge operatiawisr] With more log
blocks, there is more space for active data. The merge opeiaist is lower, since
more data will be merged from the log block area and less ditithenmerged from
the data block area; the latter is costlier than the former.

Figure 3.16 plots the random write throughput of the hybrapping FTL with
different sizes of log blocks. We can see that the randonewhibughput increases
with more log blocks, conforming with the results in the @igm break-down
analysis. However, more log blocks requires a larger mappable; for exam-
ple, 50% log blocks require a 2.03 MB mapping table, while 268oblocks only
require a 0.85 MB mapping table.

46

3.3 Limitations and Discussions

There are certain limitations with our SSD emulator. In théstion we discuss
these limitations.

First, our SSD emulator simplifies certain aspects in a r&&).3-or example,
we do not emulate the write buffer and the read cache avaiiabinany modern
SSDs. The interface between the SSD emulator and the host 8$bisimplified
to using the Linux kernel block I/O request interface. InlitgaSSDs usually
use the SATA interface to connect to the host OS and the SAl&fate is more
complicated and restricted than the kernel block 1/O iatest

Second, we model SSD FTLs based on previous publicationsiandn real
SSDs since there is no public information about details afiro@rcial SSD inter-
nals. Reverse engineering commercial SSDs may be a vidokiosoto learn their
internal FTLs. However, our initial effort to reverse enggn a commercial SSD
turns out to be difficult; we leave it for future work.

Third, even though we use different techniques to reducectimeputational
overhead of the emulator, such overhead still limits theedpef the emulator and
thus the type of SSDs it can emulate accurately. For exarttpgeemulator cannot
emulate a fast flash-based SSD with many parallel planesthE@ame reason, it
is difficult to emulate a DRAM-based SSD or other fast deviegh our emulator.
One possible way to alleviate the computational limitatadrthe emulator is to
parallelize the SSD simulator computation across multfJ cores.

Finally, our SSD emulator is implemented as a Linux pseudckbtriver and
does not work with other operating systems.

3.4 Summary

In this chapter, we described the SSD emulator that we larik¥aluation of vari-
ous designs in this dissertation and in other research ors SBi2 emulator works
as a pseudo block device with Linux. Workloads and appbecatican run easily
with the emulator in a real system. The SSD model we use inridagor sim-
ulates different components and operations of typical modash-based SSDs.
We implemented two FTLs for the emulator: the page-levelpirapFTL and the
hybrid mapping FTL.

A major challenge we found in the process of building the edtaulis the diffi-
culty in making the emulator accurate with SSD models thatiniernal parallism.
We used several different techniques to reduce the compuahioverhead of the
emulator so that it can accurately model important types etfies with common

a7

types of SSDs, even those with internal parallism.

Our evaluation results show that the emulator is reasorfabtyand can accu-
rately emulate most SSD devices. We further study the pagg-napping and the
hybrid mapping FTLs and found that the hybrid mapping FTL pasr random
write performance, mainly because of the costly merge dpesait uses to free
new blocks.

48

49

Chapter 4

De-indirection with Nameless
Writes

When running a file system on top of a flash-based SSD, excéisedtion exists
in the SSD and creates both memory space and performandeeadetOne way to
remove such redundant indirection is to remove the need&SED to create and
use indirection. Such a goal can be achieved by changingGhaterface between
the file system and the SSD.

In this chapter, we introduce nameless writes, a new |/Qfaxte to remove
the costs of the indirection in flash-based SSDs [9, 97]. Aelass write sends
only data and no namé¢€., logical block address) to the device. The device then
performs its allocation and writes the data to a physicatibldress. The physical
block address is then sent back to the file system by the dawnidehe file system
records it in its metadata for future reads.

In designing the nameless writes interface, we encountevedmajor chal-
lenges. First, flash-based SSDs migrate physical blockausecof garbage col-
lection and wear leveling; the file system needs to be infdrat®ut such address
change so that future reads can be directed properly. Sefome use nameless
writes as the only write interface, then there will be a highfgrmance cost and in-
creased engineering complexity because of the behaviecafsive updates along
the file system tree.

We solve the first problem with migration callback which informs physical
address changes to the file system, which then updates itslatatto reflect the
changes. We solve the second problem by treating file systetadata and data
differently and use traditional writes for metadata and el@ss writes for data; the
physical addresses of metadata thus do not need to be mtormecorded in the

50

file system, stopping the recursive updates.

We built an emulated nameless-writing SSD and ported theX .@xt3 file sys-
tem to nameless writes. Our evaluation results of namelésssiand its compar-
ison with other FTLs show that a hameless-writing SSD useshnhess memory
space for indirection and improves random write perforneasignificantly as com-
pared to the SSD with the hybrid FTL.

The rest of this chapter is organized as follows. In Sectidnwle present
the design of the nameless write interface.ln Section 4€2skow how to build a
nameless-writing device. In Section 4.3, we describe hopott the Linux ext3
file system to use the nameless-writing interface, and ini@ed.4, we evaluate
nameless writes through experimentation atop an emulaetless-writing de-
vice. Finally, we summarizes this chapter in Section 4.5.

4.1 Nameless Writes

In this section, we discuss a new device interface that emsdldsh-based SSDs
to remove a great deal of their infrastructure for indireicti We call a device
that supports this interfaceNameless-writing DeviceTable 4.1 summarizes the
nameless-writing device interfaces.

The key feature of a nameless-writing device is its abilitpérform nameless
writes; however, to facilitate clients (such as file systetosise a nameless-writing
device, a number of other features are useful as well. Incpdat, the nameless-
writing device should provide support for a segmented afdepace, migration
callbacks, and associated metadata. We discuss theseefeatuthis section and
how a prototypical file system could use them.

4.1.1 Nameless Write Interfaces

We first present the basic device interfacedNaimeless Writesnameless (new)
write, nameless overwrite, physical read, and free.

The nameless write interface completely replaces theiegisirite operation.
A nameless write differs from a traditional write in two immpEnt ways. First, a
nameless write does not specify a target addiessg name); this allows the device
to select the physical location without control from theenli above. Second, after
the device writes the data, it returnplysicaladdressi(e., a name) and status to
the client, which then keeps the name in its own structurduftoire reads.

The nameless overwrites interface is similar to the naredlesw) write inter-
face, except that it also passes the old physical addrg¢¢sfbe device. The device

51

Virtual Read
down: virtual address, length
up: status, data
Virtual Write
down: virtual address, data, length
up: status

Nameless Write
down: data, length, metadata
up: status, resulting physical address(es)
Nameless Overwrite
down: old physical address(es), data, length, metadata
up: status, resulting physical address(es)
Physical Read
down: physical address, length, metadata

up: status, data
Free
down: virtual/physical addr, length, metadata, flag
up: status
Migration [Callback]
up: old physical addr, new physical addr, metadata

down: old physical addr, new physical addr, metadata

Table 4.1: The Nameless-Writing Device Interfaces. The table presents the
nameless-writing device interfaces.

frees the data at the old physical address(es) and therrmpsrionameless write.

Read operations are mostly unchanged; as usual, they takauashe physical
address to be read and return the data at that address amasdrsdécator. A slight
change of the read interface is the addition of metadataeimibut, for reasons that
will be described in Section 4.1.4.

Because a hameless write is an allocating operation, a easelriting device
needs to also be informed of de-allocation as well. Most S&f2s to this interface
as thefree or trim command. Once a block has been freed (trimmed), the device is
free to re-use it.

Finally, we consider how the nameless write interface cdngcutilized by a

typical file-system client such as Linux ext3. For illusipat we examine the op-
erations to append a new block to an existing file. First, tleedystem issues

52

a nameless write of the newly-appended data block to a nasyelgting device.

When the nameless write completes, the file system is infdmwhés address and
can update the corresponding in-memory inode for this filthabit refers to the

physical address of this block. Since the inode has beergeldarhe file system
will eventually flush it to the disk as well; the inode must bstten to the device

with another nameless write. Again, the file system waitgHerinode to be writ-

ten and then updates any structures containing a referertice inode. If nameless
writes are the only interface available for writing to therage device, then this
recursion will continue until a root structure is reacheadr fle systems that do
not perform this chain of updates or enforce such orderingh @s Linux ext2,

additional ordering and writes are needed. This probleneofinrsive update has
been solved in other systems by adding a level of indiredigog, the inode map

in LFS [77]).

4.1.2 Segmented Address Space

To solve the recursive update problem without requiringstanttial changes to
the existing file system, we introduce a segmented addres= spith two seg-

ments (see Figure 4.1): thirtual address spacgewhich uses virtual read, virtual
write and free interfaces, and thhysical address spacehich uses physical read,
nameless write and overwrite, and free interfaces.

The virtual segment presents an address space from blotkeghV — 1,
and is a virtual block space of siZé blocks. The device virtualizes this address
space, and thus keeps a (small) indirection table to majgsesdo the virtual space
to the correct underlying physical locations. Reads antewito the virtual space
are identical to reads and writes on typical devices. Thetkends an address and
a length (and, if a write, data) down to the device; the dexéqdies with a status
message (success or failure), and if a successful reackdhested data.

The nameless segment presents an address space from btbobgghP — 1,
and is a physical block space of siZz&blocks. The bulk of the blocks in the
device are found in this physical space, which allows tylpieaned reads; however,
all writes to physical space are nameless, thus prevertimglient from directly
writing to physical locations of its choice.

We use a virtual/physical flag to indicate the segment a blsdk and the
proper interfaces it should go through. The size of the tvgorsnts are not fixed.
Allocation in either segment can be performed while therstiis space on the
device. A device space usage counter can be maintainedgqipose.

The reason for the segmented address space is to enablestéensyto largely
reduce the levels of recursive updates that would occur evithh nameless writes.

53

Virtual Reads Physical Reads
Virtual Writes Nameless Writes
Virtual Address Space Physical Address Space
Vo |vi]va]vs PO|P1|P2|P3|P4|P5]|P6|P7]|P8|PO
|
pAee -
D[Voop2 |---b-d--
> V2 P3 frro-efeecpee Ihey
indirection
table

Po|Pi|P2|P3|[Pa|P5|[Pe|P7|P8|Po

Figure 4.1: The Segmented Address SpaceA nameless-writing device provides a
segmented address space to clients. The smaller virtualespiows normal reads and
writes, which the device in turn maps to underlying physdlisehtions. The larger physical
space allows reads to physical addresses, but only nameiées. In the example, only
two blocks of the virtual space are currently mapped, VO a2d®/physical blocks P2 and
P3, respectively.

File systems such as ext2 and ext3 can be designed such ddasimand other
metadata are placed in the virtual address space. Such $ilensy can simply
issue a write to an inode and complete the update withoutimgéa modify direc-
tory structures that reference the inode. Thus, the seguemtdress space allows
updates to complete without propagating throughout thectbiry hierarchy.

4.1.3 Migration Callback

Several kinds of devices such as flash-based SSDs need @tenigita for reasons
like wear leveling. We propose thaigration callbackinterface to support such
needs.

A typical flash-based SSD performs wear leveling via indiogc it simply
moves the physical blocks and updates the map. With namelites, blocks in
the physical segment cannot be moved without informing thesfistem. To allow
the nameless-writing device to move data for wear levelamgiameless-writing
device usesnigration callbacksto inform the file system of the physical address
change of a block. The file system then updates any metadaitngoto this
migrated block.

54

4.1.4 Associated Metadata

The final interface of a nameless-writing device is used tab&nthe client to

quickly locate metadata structures that point to data ldockhe complete spec-
ification for associated metadata supports communicatietadata between the
client and device. Specifically, the nameless write comnisiedtended to include
a third parameter: a small amount of metadata, which is gtergly recorded ad-
jacent to the data in a per-block header. Reads and migrasithacks are also
extended to include this metadata. The associated metadagpt with each block

buffer in the page cache as well.

This metadata enables the client file system to readily ifjetiie metadata
structure(s) that points to a data block. For example, i@ @& can locate the
metadata structure that points to a data block by the inod#ey the inode gener-
ation number, and the offset of the block in the inode. Forsfjigtems that already
explicitly record back references, such as btrfs and NoB§E {Be back references
can simply be reused for our purposes.

Such metadata structure identification can be used in deasks. First, when
searching for a data block in the page cache, we obtain thadaiet information
and compare it against the associated metadata of the datestih the page cache.
Second, the migration callback process uses associatedlateto find the meta-
data that needs to be updated when a data block is migratedllyi-iassociated
metadata enables recovery in various crash scenarioshwigevill discuss in de-
tail in Section 4.3.7.

One last issue worth noticing is the difference between #s®@ated meta-
data and address mapping tables. Unlike address mappileg,tée associated
metadata is not used to locate physical data and is only ugddebdevice dur-
ing migration callbacks and crash recovery. Thereforeaiit lse stored adjacent to
the data on the device. Only a small amount of the associa&tddata is fetched
into device cache for a short period of time during migratbatibacks or recov-
ery. Therefore, the space cost of associated metadata ts smatler than address
mapping tables.

4.1.5 Implementation Issues

We now discuss various implementation issues that ariskerconstruction of a
nameless-writing device. We focus on those issues différem a standard SSD,
which are covered in detail elsewhere [40].

A number of issues revolve around the virtual segment. Mopbrtantly, how
big should such a segment be? Unfortunately, its size depesalily on how the

55

client uses it, as we will see when we port Linux ext3 to use elags writes in
Section 4.3. Our results in Section 4.4 show that a smallaiitsegment is usually
sufficient.

The virtual space, by definition, requires an in-memoryrection table. For-
tunately, this table is quite small, likely including siregbage-level mappings for
each page in the virtual segment. However, the virtual addspace could be made
larger than the size of the table; in this case, the devicddimave to swap pieces of
the page table to and from the device, slowing down accesetuittual segment.
Thus, while putting many data structures into the virtualcspis possible, ideally
the client should be miserly with the virtual segment, inasrtb avoid exceeding
the supporting physical resources.

Another concern is the extra level of information naturaiported by expos-
ing physical names to clients. Although the value of physizames has been ex-
tolled by others [27], a device manufacturer may feel thahsoformation reveals
too much of their “secret sauce” and thus be wary of adoptiray &n interface.
We believe that if such a concern exists, the device could loah modified forms
of the true physical addresses, thus trying to hide the eaddtesses from clients.
Doing so may exact additional performance and space ovdshparhaps the cost
of hiding information from clients.

4.2 Nameless-Writing Device

In this section, we describe our implementation of an eredlatameless-writing
SSD. With nameless writes, a nameless-writing SSD can hasienpler FTL,
which has the freedom to do its own allocation and wear lageliWe first dis-
cuss how we implement the nameless-writing interfaces hed propose a new
garbage collection method that avoids file-system intemaciWe defer the discus-
sion of wear leveling to Section 4.3.6.

4.2.1 Nameless-Writing Interface Support

We implemented an emulated nameless-writing SSD that pesfdata allocation
in a log-structured fashion by maintaining active bloclat tre written in sequen-
tial order. When a nameless write is received, the deviaxates the next free
physical address, writes the data, and returns the phyaitthess to the file sys-
tem.

To support the virtual block space, the nameless-writingogemaintains a
mapping table between logical and physical addresses deitiee cache. When

56

the cache is full, the mapping table is swapped out to the fasiage of the SSD.
As our results show in Section 4.4.1, the mapping table ditgpical file system
images is small; thus, such swapping rarely happens inipeact

The nameless-writing device handles trims in a manner aindl traditional
SSDs; it invalidates the physical address sent by a trim cangimDuring garbage
collection, invalidated pages can be recycled. The devs® iavalidates the old
physical addresses of overwrites.

A nameless-writing device needs to keep certain assoaiagtadata for name-
less writes. We choose to store the associated metadataabh palge in its Out-
Of-Band (OOB) area. The associated metadata is moved tgetth data pages
when the device performs a migration.

4.2.2 In-place Garbage Collection

In this section, we describe a new garbage collection mefthrodameless-writing
devices. Traditional FTLs perform garbage collection oraatlblock by reclaim-
ing its invalid data pages and migrating its live data pageasetv locations. Such
garbage collection requires a nameless-writing devicaftwrmn the file system of
the new physical addresses of the migrated live data; theydem then needs to
update and write out its metadata. To avoid the costs of salthacks and addi-
tional metadata writes, we proposeplace garbage collectignwhich writes the
live data back to the same location instead of migrating isirAilar hole-plugging
approach was proposed in earlier work [66], where live datased to plug the
holes of most utilized segments.

To perform in-place garbage collection, the FTL selectswaickate block using
a certain policy. The FTL reads all live pages from the chdsenk together with
their associated metadata, stores them temporarily inersgpacitor- or battery-
backed cache, and then erases the block. The FTL next wrédis¢ pages to their
original addresses and tries to fill the rest of the block witites in the waiting
gueue of the device. Since a flash block can only be writtem@direction, when
there are no waiting writes to fill the block, the FTL marks fhee space in the
block as unusable. We call such spacasted space During in-place garbage
collection, the physical addresses of live data are notgd@nThus, no file system
involvement is needed.

Policy to choose candidate block: A natural question is how to choose blocks
for garbage collection. A simple method is to pick blockshaiihe fewest live
pages so that the cost of reading and writing them back isnmzed. However,
choosing such blocks may result in an excess of wasted spaaarder to pick

57

a good candidate block for in-place garbage collection, inweta minimize the
cost of rewriting live data and to reduce wasted space dwarhage collection.
We propose an algorithm that tries to maximize the benefitramimize the cost
of in-place garbage collection. We define the cost of garlzadiecting a block
to be the total cost of erasing the block. (), reading {},qge_reaqd) @and writing

(Tpage_write) live data (Vyq) in the block.

cost = Tergse + (Tpage_read + Tpage_write) * Nyalid

We define benefit as the number of new pages that can poteriigNvritten
in the block. Benefit includes the following items: the catraumber of waiting
writes in the device queue\W,qi:_write), Which can be filled into empty pages im-
mediately, the number of empty pages at the end of a bldgk.(), which can be
filled at a later time, and an estimated number of future witased on the speed
of incoming writes §..:t¢). While writing valid pages,.i;¢) and waiting writes
(Nwait_write), NEW writes will be accumulated in the device queue. We @atior
these new incoming writes B,qgc write * (Nvatid + Nwait_write) * Swrite. SiNce
we can never write more than the amount of the recycled spacerfumber of
invalid pages.NV;..q«iiq) Of a block, the benefit function uses the minimum of the
number of invalid pages and the number of all potential neitesir

benefit = min(Ninvalida Nwait-write + Nlast (41)
+Tpage_write * (Nvalid + Nwait-write) * Swrite) (42)

The FTL calculates thé<4/" ratio of all blocks that contain invalid pages
and selects the block with the maximal ratio to be the garlzadjection candi-
date. Computationally less expensive algorithms coulddasel o find reasonable
approximations; such an improvement is left to future work.

4.3 Nameless Writes on ext3

In this section we discuss our implementation of namelegeswn the Linux ext3
file system with its ordered journal mode. The ordered jolimganode of ext3 is
a commonly used mode, which writes metadata to the jourrdivaites data to
disk before committing metadata of the transaction. It ples ordering that can
be naturally used by nameless writes, since the nameléssgnnterface requires
metadata to reflect physical address returned by data writésen committing
metadata in ordered mode, the physical addresses of dafeskdoe known to the

58

file system because data blocks are written out first.

4.3.1 Segmented Address Space

We first discuss physical and virtual address space separatid modified file-
system allocation on ext3. We use the physical address <pastore all data
blocks and the virtual address space to store all metadatztiges, including su-
perblocks, inodes, data and inode bitmaps, indirect blodkectory blocks, and
journal blocks. We use the type of a block to determine wthrdthg in the virtual
or the physical address space and the type of interfacegst thoough.

The nameless-writing file system does not perform allooatibthe physical
address space and only allocates metadata in the virtuedssldpace. Therefore,
we do not fetch or update group bitmaps for nameless blookatibon. For these
data blocks, the only bookkeeping task that the file systeatusi¢o perform is
tracking overall device space usage. Specifically, the fistesn checks for total
free space of the device and updates the free space courgaravtiata block is
allocated or de-allocated. Metadata blocks in the virtuglsical address space
are allocated in the same way as the original ext3 file systiens, making use of
existing bitmaps.

4.3.2 Associated Metadata

We include the following items as associated metadata ofaatdack: 1) the inode
number or the logical address of the indirect block that tsaio the data block, 2)
the offset within the inode or the indirect block, 3) the ierageneration number,
and 4) a timestamp of when the data block is last updated arabeid, Items 1 to
3 are used to identify the metadata structure that pointsdata block. Item 4 is
used during the migration callback process to update thadatd structure with
the most up-to-date physical address of a data block.

All the associated metadata is stored in the OOB area of affiagh. The total
amount of additional status we store in the OOB area is less4B bytes, smaller
than the typical 128-byte OOB size of 4-KB flash pages. Faabdity reasons, we
require that a data page and its OOB area are always writbemclly.

4.3.3 Write

To perform a nameless write, the file system sends the dataha@ndssociated
metadata of the block to the device. When the device finisimesreeless write and
sends back its physical address, the file system updatesdbe br the indirect

59

block pointing to it with the new physical address. It alsdafes the block buffer
with the new physical address. In ordered journaling modetadata blocks are
always written after data blocks have been committed; thudisk metadata is
always consistent with its data. The file system performsvenites similarly. The
only difference is that overwrites have an existing physiciiress, which is sent
to the device; the device uses this information to invaéidae old data.

434 Read

We change two parts of the read operation of data blocks ipliysical address
space: reading from the page cache and reading from thecalhygvice. To search
for a data block in the page cache, we compare the metadaga (edy., inode
number, inode generation number, and block offset) of thelblo be read against
the metadata associated with the blocks in the page cachie Huffer is not in
the page cache, the file system fetches it from the devicg itsiphysical address.
The associated metadata of the data block is also sent vethetid operation to
enable the device to search for remapping entries duringelewear leveling (see
Section 4.3.6).

4.3.5 Free

The current Linux ext3 file system does not support the SSD &peration. We
implemented the ext3 trim operation in a manner similar tigd.eXrim entries are
created when the file system deletes a block (named or nasheldstrim entry
contains the logical address of a named block or the phyaidiess of a nameless
block, the length of the block, its associated metadata tlam@ddress space flag.
The file system then adds the trim entry to the current joumnaalsaction. At the
end of transaction commit, all trim entries belonging to ttansaction are sent
to the device. The device locates the block to be deletedyubia information
contained in the trim operation and invalidates the block.

When a metadata block is deleted, the original ext3 de-atilae process is per-
formed. When a data block is deleted, no de-allocation i®paed (i.e., bitmaps
are not updated); only the free space counter is updated.

4.3.6 Wear Leveling with Callbacks

When a nameless-writing device performs wear leveling,igrates live data to
achieve even wear of the device. When such migration happiimslata blocks in
the physical address space, the file system needs to be edaabout the change

60

of their physical addresses. In this section, we describethe nameless-writing
device handles data block migration and how it interacth whe file system to
performmigration callbacks

When live nameless data blocks (together with their astatimetadata in the
OOB area) are migrated during wear leveling, the namelegsigvdevice creates
a mapping from the data block’s old physical address to i pleysical address
and stores it together with its associated metadatanmgaation remapping table
in the device cache. The migration remapping table is uséattie the migrated
physical address of a data block for reads and overwriteghwhay be sent to the
device with the block’s old physical address. After the maggas been added,
the old physical address is reclaimed and can be used by futtites.

At the end of a wear-leveling operation, the device sendsgaation callback
to the file system, which contains all migrated physical adsies and their asso-
ciated metadata. The file system then uses the associatedateto locate the
metadata pointing to the data block and updates it with the pteysical address
in a background process. Next, the file system writes changeddata to the de-
vice. When a metadata write finishes, the file system deldtdwacallback entries
belonging to this metadata block and sends a response tcetheed informing
it that the migration callback has been processed. Fintéy,device deletes the
remapping entry when receiving the response of a migratiback.

For migrated metadata blocks, the file system does not neeel itformed of
the physical address change since it is kept in the virtudiess$ space. Thus, the
device does not keep remapping entries or send migratidibaclis for metadata
blocks.

During the migration callback process, we allow reads arehwrites to the
migrated data blocks. When receiving a read or an overwtiting the callback
period, the device first looks in the migration remappinddab locate the current
physical address of the data block and then performs thestqu

Since all remapping entries are stored in the on-device RA&fkdre the file
system finishes processing the migration callbacks, we mmaput of RAM space
if the file system does not respond to callbacks or resporalsltaly. In such a
case, we simply prohibit future wear-leveling migratiomdillfile system responds
and prevent block wear-out only through garbage collection

4.3.7 Reliability Discussion

The changes of the ext3 file system discussed above may causeeliability
issues. In this section, we discuss several reliabilityassand our solutions to
them.

61

There are three main reliability issues related to nameleties. First, we
maintain a mapping table in the on-device RAM for the virtadtéiress space. This
table needs to be reconstructed each time the device powéegloer after a normal
power-off or a crash). Second, the in-memory metadata candogsistent with
the physical addresses of nameless blocks because of aaftaskriting a data
block and before updating its metadata block, or becausecodsh during wear-
leveling callbacks. Finally, crashes can happen duringlace garbage collection,
specifically, after reading the live data and before wriiirtmack, which may cause
data loss.

We solve the first two problems by using the metadata infdonahaintained
in the device OOB area. We store logical addresses with dagaspin the virtual
address space for reconstructing the logical-to-physiddtess mapping table. We
store associated metadata, as discussed in Section 4ith 4)lwmameless data. We
also store the validity of all flash pages in their OOB area.nvé@ntain an invariant
that metadata in the OOB area is always consistent with tteeiddhe flash page
by writing the OOB area and the flash page atomically.

We solve the in-place garbage collection reliability peshlby requiring the
use of a small memory backed by battery or super-capacimic<hat the amount
of live data we need to hold during a garbage collection dfmerdés no more than
the size of an SSD block, typically 256 KB, thus only addingreab monetary cost
to the whole device.

The recovery process works as follows. When the deviceiitestave perform
a whole-device scan and read the OOB area of all valid flasbspgreconstruct
the mapping table of the virtual address space. If a crashtected, we perform
the following steps. The device sends the associated niatad#éhe OOB area
and the physical addresses of flash pages in the physicasalgpace to the file
system. The file system then locates the proper metadatdses. If the physical
address in a metadata structure is inconsistent, the fiteraygpdates it with the
new physical address and adds the metadata write to a dedlicahsaction. After
all metadata is processed, the file system commits the taoisaat which point
the recovery process is finished.

4.4 Evaluation

In this section, we present our evaluation of nameless switean emulated nameless-
writing device. Specifically, we focus on studying the fallng questions:

e What are the memory space costs of nhameless-writing degaapared to
other FTLs?

62

Configuration Value
SSD Size 4GB
Page Size 4KB
Block Size 256 KB
Number of Planes 10
Hybrid Log Block Area 5%
Page Read Latency 25us
Page Write Latency 200us
Block Erase Latency 1500us
Bus Control Delay 2us
Bus Data Delay 10us
RAM Read/Write Delay lus
Plane Register Read/Write Delay 1us

Table 4.2: SSD Emulator Configuration. This table presents the configuration we
used in our SSD emulator. The components for each configuratin be found in Fig-
ure 3.2

e What is the overall performance benefit of nameless-writiegices?

e What is the write performance of nameless-writing devicel®¥ and why
is it different from page-level mapping and hybrid mapping-6?

e What are the costs of in-place garbage collection and theheaes of wear-
leveling callbacks?

e Is crash recovery correct and what are its overheads?

We implemented the emulated nameless-writing device wittf5&D emulator
described in Chapter 3. We compare the nameless-writingteétloth page-level
mapping and hybrid mapping FTLs. We implemented the emdilasmeless-
writing SSD and the nameless-writing ext3 file system on &i64-inux 2.6.33
kernel. The page-level mapping and the hybrid mapping SSUlaors are built
on an unmodified 64-bit Linux 2.6.33 kernel. All experimeats performed on a
2.5 GHz Intel Quad Core CPU with 8 GB memory.

4.4.1 SSD Memory Consumption

We first study the space cost of mapping tables used by ditf&8D FTLs: nameless-
writing, page-level mapping, and hybrid mapping. The magpable size of page-
level and hybrid FTLs is calculated based on the total sizh®flevice, its block

63

Image Size| Page| Hybrid | Nameless
328MB | 328KB 38KB 2.7KB
2GB 2MB | 235KB 12KB
10GB| 10MB | 1.1MB 31KB
100GB| 100MB | 11MB 251 KB
400GB | 400MB | 46 MB 1MB
1TB 1GB | 118MB 2.2MB

Table 4.3:FTL Mapping Table Size. Mapping table size of page-level, hybrid, and
nameless-writing devices with different file system imagbg configuration in Table 4.2
is used.

size, and its log block area size (for hybrid mapping). A nies®writing device
keeps a mapping table for the entire file system’s virtuak@skispace. Since we
map all metadata to the virtual block space in our namelegsiy implementa-
tion, the mapping table size of the nameless-writing deidcdependent on the
metadata size of the file system image. We use Impressiots ¢dgate typical file
system images of sizes up to 1 TB and calculate their metadads.

Table 4.3 shows the mapping table sizes of the three FTLsdifttrent file
system images produced by Impressions. Unsurprisingtyptilge-level mapping
has the highest mapping table space cost. The hybrid mapgisga moderate
space cost; however, its mapping table size is still quitgelaover 100 MB for a
1-TB device. The nameless mapping table has the lowest spateeven for a 1-
TB device, its mapping table uses less than 3 MB of space ficdyfile systems,
reducing both cost and power usage.

4.4.2 Application Performance

We now present the overall application performance of nasselriting, page-
level mapping and hybrid mapping FTLs with macro-benchrea¥ke use varmail,
fileserver, and webserver from the filebench suite [83].

Figure 4.2 shows the throughput of these benchmarks. Wehaebdth page-
level mapping and nameless-writing FTLs perform betten ti@ hybrid mapping
FTL with varmail and fileserver. These benchmarks contair8®0and 70.6%
random writes, respectively. As we will see later in thigieeg the hybrid mapping
FTL performs well with sequential writes and poorly with dam writes. Thus,
its throughput for these two benchmarks is worse than therdthio FTLs. For
webserver, all three FTLs deliver similar performanceg¢siit contains only 3.8%
random writes. We see a small overhead of the namelesswvR{TL as compared

64

600+

% 500
m

= 400

o 3001

200

0 K

Varmail FileServer WebServer
M Page M Nameless | Hybrid

ut (

Through

Figure 4.2:Throughput of Filebench. Throughput of varmail, fileserver, and webmail
macro-benchmarks with page-level, nameless-writing,rayimtid FTLs.

N w B a
o o o o

Throughput (KIOPS)
=
o

0

Sequential Random
B Page M Nameless' Hybrid5% /il Hybrid10%= Hybrid20%

Figure 4.3:Sequential and Random Write Throughput. Throughput of sequential
writes and sustained 4-KB random writes. Random writes adopmed over a 2-GB
range.

to the page-level mapping FTL with all benchmarks, which vilediscuss in detalil
in Sections 4.4.5 and 4.4.6.

In summary, we demonstrate that the nameless-writing deadbieves excel-
lent performance, roughly on par with the costly page-leygroach, which serves
as an upper-bound on performance.

65

4.4.3 Basic Write Performance

Write performance of flash-based SSDs is known to be muchentben read per-
formance, with random writes being the performance bat&n Nameless writes
aim to improve write performance of such devices by givingdievice more data-
placement freedom. We evaluate the basic write performafaaur emulated
nameless-writing device in this section. Figure 4.3 shdwesthroughput of se-
guential writes and sustained 4-KB random writes with pieaget mapping, hybrid
mapping, and nameless-writing FTLs.

First, we find that the emulated hybrid-mapping device hagjaential through-
put of 169 MB/s and a sustained 4-KB random write throughp, 830 IOPS. A
widely used real middle-end SSD has sequential throughipup to 70 MB/s and
random throughput of up to 3,300 IOPS [44].

Second, the random write throughput of page-level mappird) reameless-
writing FTLs is close to their sequential write throughpscause both FTLs allo-
cate data in a log-structured fashion, making random whgdgve like sequential
writes. The overhead of random writes with these two FTLs e®ritom their
garbage collection process. Since whole blocks can becdevelsen they are over-
written in sequential order, garbage collection has theekiveost with sequential
writes. By contrast, garbage collection of random data mauri the cost of live
data migration.

Third, we notice that the random write throughput of the iylnapping FTL
is significantly lower than that of the other FTLs and its oveqgential write
throughput. The poor random write performance of the hybrapping FTL re-
sults from the costly full-merge operation and its correspog garbage collection
process [40]. Full merges are required each time a log blefikéd with random
writes, thus a dominating cost for random writes.

One way to improve the random write performance of hybrigppesl SSDs is
to over-provision more log block space. To explore that, &ey\the size of the
log block area with the hybrid mapping FTL from 5% to 20% of Wieole device
and found that random write throughput gets higher as the afizhe log block
area increases. However, only the data block area reflecsfiibctive size of the
device, while the log block area is part of device over-pmning. Therefore,
hybrid-mapped SSDs often sacrifice device space cost fterlrandom write per-
formance. Moreover, the hybrid mapping table size increasth higher log block
space, requiring larger on-device RAM. Nameless writegeaetsignificantly bet-
ter random write performance with no additional over-psaMiing or RAM space.

Finally, Figure 4.3 shows that the nameless-writing FTL loasoverhead as
compared to the page-level mapping FTL with sequential andom writes. We

66

—~ 50
(7))
[l
O 401
<
g 30
Q.
S 201 |~ Page-level
g — Nameless
= 10| ™= Hybrid
|_
0 ‘ ‘ ‘
1 2 3 4

Random Write Working Set (GB)

Figure 4.4: Random Write Throughput. Throughput of sustained 4-KB random
writes over different working set sizes with page-levemakess, and hybrid FTLs.

100+

[e]
o
|

Moved Data (GB)
[o2]
o

401 |~ ~ Page-level e
— Nameless P
i Hybrid 7
0 — ‘
1 2 3 4

Random Write Working Set (GB)
Figure 4.5:Migrated Live Data. Amount of migrated live data during garbage collec-

tion of random writes with different working set sizes witlge-level, nameless, and hybrid
FTLs.

explain this result in more detail in Section 4.4.5 and 4.4.6

4.4.4 A Closer Look at Random Writes

A previous study [40] and our study in the last section shoat tandom writes
are the major performance bottleneck of flash-based devM&snow study two
subtle yet fundamental questions: do nameless-writingcdsvperform well with

67

=
o
=}
=
o
S
=
o
S

mIdle

= Merge Read
Merge Write
Erase

m Normal Write

Cost of Operation (%)
Cost of Operation (%)
Cost of Operation (%)

20

N I T 0

1 2 3 4 1 2 3 4 1 2 3 4
Random Write Working Set (GB) Random Write Working Set (GB) Random Write Working Set (GB)

Figure 4.6:Device Utilization. Break down of device utilization with the page-level,
the nameless, and the hybrid FTLs under random writes adrdift ranges.

different kinds of random-write workloads, and why do theytperform hybrid
devices.

To answer the first question, we study the effect of workirtigsez® on random
writes. We create files of different sizes and perform snsth#é-KB random writes
in each file to model different working set sizes. Figure f@dvss the throughput of
random writes over different file sizes with all three FTLse ¥Wd that the work-
ing set size has a large effect on random write performannarkless-writing and
page-level mapping FTLs. The random write throughput cge¢HeTLs drops as the
working set size increases. When random writes are pertbower a small work-
ing set, they will be overwritten in full when the device filad garbage collection
is triggered. In such cases, there is a higher chance of {iriotks that are filled
with invalid data and can be erased with no need to rewritedata, thus lowering
the cost of garbage collection. In contrast, when randorteware performed over
a large working set, garbage collection has a higher cosé gitocks contain more
live data, which must be rewritten before erasing a block.

To further understand the increasing cost of random wrisethe working set
increases, we plot the total amount of live data migratechdugarbage collection
(Figure 4.5) of random writes over different working seesizvith all three FTLs.
This graph shows that as the working set size of random winggases, more
live data is migrated during garbage collection for theskdg; Tesulting in a higher
garbage collection cost and worse random write performance

Comparing the page-level mapping FTL and the namelessagrETL, we
find that nameless-writing has slightly higher overheadmine working set size
is high. This overhead is due to the cost of in-place garbafjeation when there
is wasted space in the recycled block. We will study this bbgad in details in the
next section.

We now study the second question to further understand thieofadandom

68

- - Page-level
14 | — Nameless
= Hybrid

Avg Response Time (log(usec))

0 20 40 60 80 100
Sync Frequency

Figure 4.7: Average Response Time of Synchronous Random Writes4-KB
random writes in a 2-GB file. Sync frequency represents thebeu of writes we issue
before calling an fsync.

writes with different FTLs. We break down the device utitiza into regular
writes, block erases, writes during merging, reads durieggmg, and device idle
time. Figure 4.6 shows the stack plot of these costs ovehi@etFTLs. For page-
level mapping and nameless-writing FTLs, we see that themtajst comes from
regular writes when random writes are performed over a smaking set. When
the working set increases, the cost of merge writes and £raseases and be-
comes the major cost. For the hybrid mapping FTL, the majst ob random
writes comes from migrating live data and idle time duringgigg for all working
set sizes. When the hybrid mapping FTL performs a full metgeads and writes
pages from different planes, thus creating idle time on gdahe.

In summary, we demonstrate that the random write througbiighie nameless-
writing FTL is close to that of the page-level mapping FTL dadsignificantly
better than the hybrid mapping FTL, mainly because of théycogerges the hybrid
mapping FTL performs for random writes. We also found thahhbwameless-
writing and page-level mapping FTLs achieve better randaitesthroughput when
the working set is relatively small because of a lower gagbaailection cost.

4.4.5 In-place Garbage Collection Overhead

The performance overhead of a nameless-writing device mamedrom two dif-
ferent device responsibilities: garbage collection andmeveling. We study the
overhead of in-place garbage collection in this sectionvaedr-leveling overhead

69

40+

30+

204

10+

Throughput (KIOPS)

Workloadl Workload?2
M Page Nameless

Figure 4.8:Write Throughput with Wear Leveling. Throughput of biased sequen-
tial writes with wear leveling under page-level and namgle$Ls.

| Metadata| RemapTbl
Workloadl | 2.02 MB ‘ 321 KB

Workload2 | 5.09 MB | 322 KB

Table 4.4:Wear Leveling Callback Overhead. Amount of additional metadata writes
because of migration callbacks and maximal remapping talde during wear leveling
with the nameless-writing FTL.

in the next section.

Our implementation of the nameless-writing device usesasidce merge to
perform garbage collection. As explained in Section 4.&#&n there are no wait-
ing writes on the device, we may waste the space that has beently garbage
collected. We use synchronous random writes to study tlash@ad. We vary the
frequency of calling'syncto control the amount of waiting writes on the device;
when the sync frequency is high, there are fewer waitingasin the device queue.
Figure 4.7 shows the average response time of 4-KB randotesawiith different
sync frequencies under page-level mapping, namelessgyrénd hybrid mapping
FTLs. We find that when sync frequency is high, the namele#fg device has
a larger overhead compared to page-level mapping. Thidheadris due to the
lack of waiting writes on the device to fill garbage-collettgpace. However, we
see that the average response time of the nameless-writingsFstill lower than
that of the hybrid mapping FTL, since response time is worserwthe hybrid FTL
performs full-merge with synchronous random writes.

70

1.54

0.51

Amount of Data Moved (GB)
—

Workloadl Workload?2
M Page Nameless

Figure 4.9:Migrated Live Data during Wear Leveling. Amount of migrated live
data during wear leveling under page-level and namelesssFTL

4.4.6 Wear-leveling Callback Overhead

Finally, we study the overhead of wear leveling in a namelestng device. To
perform wear-leveling experiments, we reduce the lifetmh&SSD blocks to 50
erase cycles. We set the threshold of triggering wear leygel be 75% of the
maximal block lifetime, and set blocks that are under 90%hef average block
remaining lifetime to be candidates for wear leveling.

We create two workloads to model different data temperadmck SSD wear:
a workload that first writes 3.5-GB data in sequential ordsdt then overwrites
the first 500-MB area 40 times (Workload 1), and a workload tvarwrites the
first 1-GB area 40 times (Workload 2). Workload 2 has more latd @nd triggers
more wear leveling. We compare the throughput of these wadd with page-
level mapping and nameless-writing FTLs in Figure 4.8. Tireughput of Work-
load 2 is worse than that of Workload 1 because of its moraufretjwear-leveling
operation. Nonetheless, the performance of the namelgssgyv=TL with both
workloads has less than 9% overhead.

We then plot the amount of migrated live data during wearliegewith both
FTLs in Figure 4.9. As expected, Workload 2 produces morerdezaling mi-
gration traffic. Comparing page-level mapping to namelessng FTLs, we find
that the nameless-writing FTL migrates more live data. Wthemameless-writing
FTL performs in-place garbage collection, it generatesenmoigrated live data, as
shown in Figure 4.5. Therefore, more erases are caused baggacollection with
the nameless-writing FTL, resulting in more wear-levelingocation and more

71

wear-leveling migration traffic.

Migrating live nameless data in a nameless-writing devieates callback traf-
fic and additional metadata writes. Wear leveling in a nagseleriting device also
adds a space overhead when it stores the remapping tabledgmated data. We
show the amount of additional metadata writes and the maxira of the remap-
ping table of a nameless-writing device in Figure 4.4. We both overheads to
be low with the nameless-writing device: an addition of & 6 MB metadata
writes and a space cost of less than 350 KB.

In summary, we find that both the garbage-collection and iesaling over-
heads caused by nameless writes are low. Since wear levelimgt a frequent
operation and is often scheduled in system idle periods, xpeda both perfor-
mance and space overheads of a nameless-writing devicegeebdower in real
systems.

4.4.7 Reliability

To determine the correctness of our reliability solutiore wwject crashes in the
following points: 1) after writing a data block and its met#al block, 2) after
writing a data block and before updating its metadata bl8Llkfter writing a data
block and updating its metadata block but before committivegmetadata block,
and 4) after the device migrates a data block because of exggirlg and before the
file system processes the migration callback. In all casessuecessfully recover
the system to a consistent state that correctly reflects riiew data blocks and
their metadata.

Our results also show that the overhead of our crash recqrecess is rel-
atively small: from 0.4 to 6 seconds, depending on the amofiimhconsistent
metadata after crash. With more inconsistent metadatavédead of recovery is
higher.

4.5 Summary

In this chapter, we introduced nameless writes, a new writgface built to reduce
the inherent costs of indirection. With nameless writes, fite system does not
perform allocation and sends only data and no logical addethe device. The
device then sends back the physical address, which is storde file system
metadata.

In implementing nameless writes, we met a few challangad) as the recur-
sive update problem and the device block migration probMm solve these prob-

72

lems by introducing address space separation (logical ysigal address space)
and new types of interface (migration callback). Through ithplementation of
nameless writes on the Linux ext3 file system and an emulaeteless-writing
device, we demonstrated how to port a file system to use namefétes.

Through extensive evaluations, we found that namelesesidtrgely reduce
the mapping table space cost as compare to the page-levpingamnd the hybrid
mapping FTLs. We also found that for random writes, namelas®s largely
outperforms the hybrid mapping FTL and matchs the pagd-leapping FTL.
Overall, we show the great advantage of nameless writes fraiim worlds: the
good performance like the page-level mapping FTL and thdlsmapping table
space that is even less than the hybrid mapping FTL.

73

Chapter 5

Hardware Experience of
Nameless Writes

As with most research work of flash memory, we evaluated ooratess writes
design not with real hardware but with our own SSD emulatamufators and
emulators are convenient and flexible to build and use. Heweimulation and
emulation have their limitations.

The nameless writes design makes substantial changesli@theerface, the
SSD FTL, and the file system. Our SSD emulator lies directlpvbehe file sys-
tem and talks to it using software function calls, and thuspsifies the system
which the nameless writes design is supposed to change ugecé the changes
required by nameless writes at different storage layersgiess writes are an ideal
choice for studying the differences between real hardwgstesis and simula-
tion/emulation, as well as the challenges in building a nnage interface for real
storage systems.

Therefore, we decided to build a hardware prototype of nasselrites and use
it to validate our nameless writes design. In this chapterdigcuss our hardware
experience with implementing nameless writes with the & Jasmine hard-
ware platform [86], the challenges of building namelesgsegrivith real hardware,
and our solutions to them [79].

Our evaluation results of the nameless writes hardwarefymt agrees with
the conclusions we made in Chapter 4. nameless writes Yyargelove the excess
indirection in SSDs and its space and performance costs.

The rest of this chapter is organized as follows. We first idiesche architec-
ture of the hardware board we use in Section 5.1. We thensfigtie challenges
of porting nameless writes to hardware in Section 5.2. Weepreour solutions to

74

YEly weiw wela pey peie Ve
| L] L 4 L]

1
b HE HEL HEL L H

Figure 5.1:0penSSD Architecture The major components of OpenSSD platform are
the Indilinx Barefoot SSD controller; internal SRAM, SDRAMd NAND flash; special-
ized hardware for buffer management, flash control, and nmgmatility functions; and
debugging UART/JTAG ports.

these challenges and the implementation of the nameletsswardware prototype
in Section 5.3. In Section 5.4, we evaluate the namelesssnérdware prototype.
Finally, we summarize this chapter in Section 5.5.

5.1 Hardware Platform

We use the OpenSSD platform [86] (Figure 5.1) as it is the mapgb-date open
platform available today for prototyping new SSD desigrsuses a commercial
flash controller for managing flash at speeds close to contgn8&iDs. We proto-
type a nameless-writing SSD to verify its practicality ardidate if it performs as
we projected in emulation earlier.

5.1.1 OpenSSD Research Platform

The OpenSSD board is designed as a platform for implemeitmpevaluating
SSD firmware and is sponsored primarily by Indilinx, an SSQibtooller manufac-
turer [86]. The board is composed of commodity SSD parts:nditihx Barefoot

ARM-based SATA controller, introduced in 2009 for secondayation SSDs and

75

Controller ARMT7TDMI-S Frequency 87.5MHz
SDRAM 64 MB (4 B ECC/128B)|| Frequency 175MHz
Flash 256 GB Overprovisioning| 7%

Type MLC async mode Packages 4
Dies/package | 2 Banks/package | 4
Channel Width| 2 bytes Ways 2
Physical Page | 8 KB (448 B spare) Physical Block | 2MB
Virtual Page 32KB Virtual Block 4MB

Table 5.1: OpenSSD device configuration. This table summarizes the hardware
configuration in the OpenSSD platform.

still used in many commercial SSDs; 96 KB SRAM; 64 MB DRAM faosng the
flash translation mapping and for SATA buffers; and 8 slotsling up to 256 GB
of MLC NAND flash. The controller runs firmware that can sendd/rite/erase
and copyback (copy data within a bank) operations to the flaslks over a 16-bit
I/O channel. The chips use two planes and have 8 KB physicggarlhe device
uses large 32 KB virtual pages, which improve performancstiiying data across
physical pages on two planes on two chips within a flash bamiseeblocks are
4 MB and composed of 128 contiguous virtual pages.

The controller provides hardware support to acceleratenwamna processing in
the form of command queues and a buffer manager. The commaeks pro-
vide a FIFO for incoming requests to decouple FTL operatiftsom receiving
SATA requests. The hardware provides separate read arel sorimand queues,
into which arriving commands can be placed. The queue pesvadast pathfor
performance-sensitive commands. Less common commancis,as\TA flush
idle andstandbyare executed on slow paththat waits for all queued commands
to complete. The device transfers data from the host usireparate DMA con-
troller, which copies data between host and device DRAMubhoa hardware
SATA buffer manager (a circular FIFO buffer space).

The device firmware logically consists of three componeststewn in Fig-
ure 5.2: host interface logic, the FTL, and flash interfaggclo The host inter-
face logic decodes incoming commands and either enqueesiththe command
gueues (for reads and writes), or stalls waiting for quewsdmands to complete.
The FTL implements the logic for processing requests, anokes the flash in-
terface to actually read, write, copy, or erase flash datae OpenSSD platform
comes with open-source firmware libraries for accessinghtirdware and three
sample FTLs. We use the page-mapped GreedyFTL as our hegsitlirses log

76

_____________________ "
! command Event 1

Queue Queue

FTL

Bad Block
Manager

NAND

[Buffer Manager]

Host Interface Logic

S=N

Flash Interface Logic

Figure 5.2:0penSSD Internals. Major components of OpenSSD internal design are
host interface logic, flash interface logic, and flash tratisin layer.

structured allocation and thus has good random write padace. It is similar to
the page-level mapping FTL we used in our emulation in Chiahte

5.2 Challenges

Before delving into the implementation details of the naaslwrites design with
the OpenSSD platform and the SATA interface, we first disthiehallenges we
encountered in integrating nameless writes with real harewand a real hardware
interface.

Nameless writes present unique implementation challebgesuse they change
the interface between the host OS and the storage devicalygatew commands,
new command responses, and unrequested up-calls. TaliteChapter 4 lists the
nameless writes interfaces.

When moving from emulation (Chapter 3) to real hardware,amby the hard-
ware SSD needs to be ported to nameless writes, but the hardwerface and the
OS stack do as well. Figure 5.2 describes how our SSD emwdatbthe real SSD
work with the OS.

The emulator sits at the OS block layer and interacts wittQBehrough soft-
ware interfaces. 1/0Os are passed between the file systenhamdriulator using the
bio structure. Adding new types of interfaces is easy. For exantpe nameless

e

File System }

1 Nameless Write Interface

SSD Emulator

Request [] }
[Queue B Block Layer and 1/O Scheduler
[SCS| Layer }
ATA Command ATA Layer
Queue

!

AHCI Driver
A

SATA Interface

A 4

Real SSD

Figure 5.3:Architecture of OS Stack with Emulated and Real SSD.This graph
illustrates the OS stack above a real SSD with SATA interfAseopposed to the stack to
the real device, the emulator is implemented directly belmnfile system.

write command is implemented by adding a command type flaggibio structure;
the physical address returned by a nameless write is impietidy reusing the
logical block address field of the bio structure, which igthaterpreted specially
by a file system that works with nameless writes. Adding thgration callback is
also relatively easy: the device emulator calls a kernettion, which then uses a
kernel work queue to process the callback requests.

The interaction between the OS and the real hardware devioeuch more
involved than with the emulator. 1/0O requests enter theagferstack from the file
system and go through a scheduler and then the SCSI and A&fslénefore the
AHCI driver finally submits them to the device. To implementr dblardware pro-
totype, we have to integrate the nameless writes interfatoethis existing storage
architecture. Implementing a new interface implies thednechange the file
system and the OS stack, the ATA interface, and the hardw@ie $he biggest
challenge in this process is that some part of the storagk stdixed in the hard-

78

ware and cannot be accessed or changed. For example, mustAGiA interface is
implemented in the hardware ports and cannot be change€(sg#er 2 for more
details). Certain parts of the OpenSSD platform cannot lzm@bd or accessed
either, such as the OOB area.

5.2.1 Major Problems

We identified four major problems while implementing narsslevrites with the
real hardware system: how to get new commands through théo@#ge stack into
the device, how to get new responses back from the device thdave upcalls
from the device into the OS, and how to implement commandsinvihe device
given its hardware limitations.

First, the forward commands from the OS to the device pasaigfir several
layers in the OS, shown in Figure 5.2, which interpret andoacéach command
differently. For example, the I/O scheduler can merge retpu® adjacent blocks.
If it is not aware that theirtual-write andnameless-writeommands are different,
it may incorrectly merge them into a single, larger requ&bus, the I/O scheduler
layer must be aware of each distinct command.

Second, the reverse-path responses from the device to trereOdfficult to
change. The nameless writes interface returns the phyailthkess for data fol-
lowing a nameless write. However, the SATA write commandmairesponse has
no fields in which an address can be returned. While, the eesponse allows
an address to be returned, both the AHCI driver and the ATArlayterpret error
responses as a sign of data loss or corruption. Their errutlés retry the read
operation again with the goal of retrieving the page, and theeze the device by
resetting the ATA link. Past research demonstrated thedigtosystems often retry
failed requests automatically [39, 76].

Third, there are no ATA commands that are initiated by thaaevNameless
writes require upcalls from the device to the OS for migmatiallbacks. Imple-
menting upcalls is challenging, since all ATA commands aitgited by the OS to
the device.

Finally, the OpenSSD platform provides hardware suppartife SATA proto-
col (see Figure 5.2) in the form of hardware command queugs&ATA buffer
manager. When using the command queues, the hardware dogeneothe com-
mand itself and identifies the command type from the quegant iWhile firmware
can choose where and what to enqueue, it can only enqueueetds: fihe logical
block addressli§a) and request lengtmimsegmenfsFurthermore, there are only
two queues (read and write), so only two commands can exasudigst commands.

79

5.3 Implementation Experiences

In this section, we discuss how we solve the challenges n$fearing the nameless
writes design from emulation to real hardware and our egpeg with implement-
ing nameless writes on the OpenSSD hardware with the Lintnekand the SATA
interface. We focus our discussion on changes in the laysgoswvthe file system,
since the file system changes are the same for the emulatdthenell hardware.

5.3.1 Adding New Command Types

To add a new command type, we change the OS stack, the ATAadogerand
the OpenSSD firmware. We now discuss the techniques we uséatrmducing
new command types. We also discuss the implementation ohaeveless writes
commands that do not involve return field changes or updati) of which we
leave for later sections in this chapter.

Forward commands through the OS: At the block-interface layer, we seek to
leave as much code unmodified as possible. Thus, we augnoektielquests with
an additional command field, effectively adding our new cands as sub-types
of existing commands. The nameless write, the namelessvatesrand the virtual
write commands are encoded using three special sub-typhgivei normal write
command. We also use the normal write command to encodeithe&€dmmand.
The trim command, however, does not send any data but onék lalddresses to
the device. The virtual and physical read commands are edcoda similar way
with normal read commands.

We modified the 1/O scheduler to only merge requests with dngescommand
and sub-type. The SCSI and ATA layers then blindly pass thetye field down
to the next layer. We also modified the AHCI driver to commateccommands
to the OpenSSD device. As with higher levels, we use the agprof adding a
sub-type to existing commands.

ATA interface: Requests use normal SATA commands and pass the new request
type in thersvlreserved field, which is set to zero by default.

OpenSSD request handling: Within the device, commands arrive from the SATA
bus and are then enqueued by the host-interface firmward-Thasynchronously

pulls requests from the queues to be processed. Thus, thehkeyge needed for
new requests is to communicate the command type from agrigdmmands to

the FTL, which executes commands. We borrow two bits fromie¢hgth field of

the request (a 32-bit value) to encode the command type. ThalBcodes these
length bits to determine which command to execute, and ewdke function for

the command. This encoding ensures that the OpenSSD hardisas the fast

80

path for new variations of reads and writes, and allows mleltvariations of the
commands.

5.3.2 Adding New Command Return Field

Nameless writes pass data but no address, and expect toe texéturn a physical
address or an error indicating that the write failed. Pasdata without an address
is simple, as the firmware can simply ignore the address. Mewa write reply
message only contains 8 status bits; all other fields arevet@nd can not be used
to send physical addresses through the ATA interface.

Our first attempt was to alter the error return of an ATA wraedturn physical
addresses for nameless writes. On an error return, theedesitsupply the address
of the block in the request that could not be written. Thigrseg promising as a
way to return the physical address. However, the deviceAH€I driver, and the
ATA layer interpret errors as catastrophic and thus we coatdise errors to return
the physical address.

Our second attempt was to re-purpose an existing SATA cordrietalready
returns a 64-bit address. Only one command in the ATA prdtoco
READNATIVEMAXADDR returns an address. The OS would first send
READNATIVEMAXADDR, to which the nameless-writing device returns the next
available physical address. The OS would then record theigdiyaddress and send
the nameless write command with that address.

We found that using two commands for a write raised new probld-irst, the
READNATIVEMAXADDR command is an unqueuable command in the SATA
interface, so both the ATA layer and the device will flush ggtgommands and
hurt performance. Second, the OS may reorder nameless wifterently than the
READNATIVEMAX ADDRcommands, which can hurt performance at the device
by turning sequential writes into random writes. Worseutitg is that the OS may
send multiple independent writes that lie on the same flashalipage. Because
the granularity of file-system blocks (4 KB) is different mnanternal flash virtual
pages (32 KB), the device may try to write the virtual pagecéeniithout erasing
the bock. The second write silently corrupts the virtualgiagata.

Therefore, neither of these two attempts to integrate aiphlyaddress in the
write return path with the ATA interface succeeded. We d#ferdiscussion of our
final solution to Section 5.3.4.

81

5.3.3 Adding Upcalls

The migration-callbackcommand raised additional problems. Unlédé existing
calls in the SATA interface, a nameless-writing device canagate this up-call
asynchronously during background tasks such as wearngvatid garbage collec-
tion. This call notifies the file system that a block has bedsceted and it should
update metadata to reflect the new location.

To implement migration callbacks, we first considered phgpking the upcalls
on responses to other commands, but this raises the samlemrob returning
addresses described above. Alternatively, the file systerd @eriodically poll for
moved data, but this method is too costly in performancergitie expected rarity
of up-calls. We discuss our final solution in the next section

5.3.4 Split-FTL Solution

Based on the complexity of implementing the full namelessesiinterface within
the device, we opted instead to implemersipdit-FTL design, where the responsi-
bilities of the FTL are divided between firmware within thevide and an FTL layer
within the host operating system. This approach has beeh fosd®Cl-attached
flash devices [33], and we extend it to SATA devices as wellthla design, the
device exports a low-level interface and the majority of Hlihctionality resides
as a layer within the host OS.

We built the nameless-writing FTL at the block layer below file system and
the 1/0O scheduler and above the SCSI, ATA, and AHCI layerguife 5.4 shows
the design. The FTL in the host OS implements the full set tdrfaces listed
in Table 4.1 in Chapter 4; the device implements a basic fimaviat provides
flash-page readflash-page writeandflash-block eraseThe host FTL converts a
command in the nameless-write interface into a sequenaeldvel flash opera-
tions.

We built the nameless-write FTL below the 1/O schedulercaiplacing the
FTL above the I/O scheduler creates problems when allagatiysical addresses.
If the FTL performs its address allocation before requestsip the 1/0 scheduler,
the 1/O scheduler may re-order or merge requests. If the FSEigas multiple
physical addresses from one virtual flash page, the schreahalg not coalesce the
writes into a single page-sized write. The device may sediplailwrites (with
different physical addresses) to the same virtual flash péitput erases and thus
result in data corruption.

The nameless-writing FTL processes I/O request queuesdiiey are sent to
the lower layers. For each write request queue, the FTL fimusaaflash virtual

82

[File System J
Nameless Write 4 Nameless Write
Commands Upcalls
[ReqUESt g Block Layer and I/O Scheduler]
Queue .
Nameless Write 2 Nameless Write
Commands Upcalls
{ Nameless-Writing FTL J
Page Read, Page Write, 4
Block Erase v
[SCSI Layer }
[ATA Command ATA Layer
Queue

!

AHCI Driver

F 3

SATA Interface

v
Raw OpenSSD

Figure 5.4:Nameless Writes Split-FTL Architecture. This figure depicts the archi-
tecture of the split-FTL design of nameless writes. Modt@hameless writes functionality
is implemented as a layer within the host operating systestogbthe file system and the
block layer). The nameless writes interfaces are impleatkinétween the nameless-writing
FTL and the block layer. The device (OpenSSD) operates aw 8aah device.

page and assigns physical addresses in the virtual page ¢k in the request
gueue in a sequential order. We change the 1/0 scheduldotalequest queue to
be at most the size of the flash virtual page (32 KB with OpenSg§aing beyond
the virtual page size does not improve write performancecbutplicates FTL
implementation. We choose not to use the same flash virtgg peross different
write request queues, since doing so will lead to data coomiplower layers may
reorder request queues, resulting in the device write the sartual page without
erasing it. The write performance is highly dependent onsihe of the request
gueues, since each request queue is assigned a flash vatygl larger request

83

gqueues result in more sequential writes at the device |&uatrefore, to improve
random write performance, we change the kernel I/O schetlutaerge any writes
(virtual or physical) to the nameless-writing SSD devicee Weéat virtual writes in
a similar way as physical writes. The only difference is théien we assign a
physical address to a virtual write, we keep the address imgpthe FTL.

For read requests, we disallow merging of physical andaiireads and do not
change other aspects of the I/O scheduler. For virtual rereeltook up the address
mapping in the FTL.

The FTL in the host OS maintains all metadata that were allyirmain-
tained by the device firmware, including valid pages, the bieck list, block erase
counts, and the bad block list. Orflash used byfsync() the FTL writes all the
metadata to the device and records the location of the ntatatla fixed location.

The FTL uses the valid page information to decide which bloafarbage col-
lect. It reads the valid pages into host DRAM, erases thekblaed then writes the
data to a new physical block. Once the data has been movexhds smigration-
callbackto notify the file system that data has been moved. Becaud€Tthés in
the host OS, this is a simple function call.

Running the FTL in the kernel provides a hospitable devekprenvironment,
as it has full access to kernel services. However, it may bee rdifficult to opti-
mize the performance of the resulting system, as the kaidel+TL cannot take
advantage of internal flash operations, such as copy-baddi¢iently move data
within the device. For enterprise class PCl-e devices,dteside FTLs following
NVM-express specification can implement the block intexfdectly [72] or use
new communication channels based on RPC-like mechanisshs [6

5.3.5 Lessons Learned

The implementation of nameless writes with OpenSSD and Teidterfaces im-
parted several valuable lessons.

e The OS storage stack’s layered design may require each iyt differ-
ently for the introduction of a new forward command. For epéamnew
commands must have well-defined semantics for request siehedsuch as
which commands can be combined and how they can be reordered.

e The device response paths in the OS are difficult to changereldre, de-
signs that radically extend existing communication frora tievice should
consider the data that will be communicated.

84

e Upcalls from the device to the OS do not fit the existing comication
channels between the host and the device, and changingrtrelquath for
returning values is significantly more difficult than intcemihg new forward
commands. Thus, it may be worthwhile to consider new reveosemu-
nication channels based on RPC-like mechanisms [65] toement block
interface for PCI-e devices following the NVM-express sfieation [72].

e Building the nameless-writing FTL below the block layer iimpler than at
the device firmware since the block layer has simpler inte$aand interacts
with the file system directly.

¢ Allowing the host OS to write directly to physical addresseslangerous,
because it cannot guarantee correctness properties sacisaing the era-
sure of a flash page before it is written. This is particuladyngerous if the
internal write granularity is different than the granutnised by the OS.

o With the knowledge of SSD hardware configuration, the kelf@escheduler
can be changed to improve 1/0O performance with an in-keriiél. F

5.4 Evaluation

Our overall goal of implementing nameless writes in a hardwaototype is to
validate our design choices. We evaluate the memory spat@enformance of
nameless writes prototype with the split-FTL design.

We evaluate the hameless writes prototype to validate tHferpgance claims
of the interface and memory consumption as projected eamli8ection 4.4. We
compare the nameless writes prototype against the Open&sirie page-mapped
FTL. We measure performance wiilo microbenchmarks and memory consump-
tion with different file system images. We execute the experits on an OpenSSD
board with two flash chips (8 flash banks with 64 GB total).

Figure 5.5 shows the random (4 KB blocks) and sequentiabvarid read per-
formance with the baseline OpenSSD FTL and nameless wrikes.sequential
writes, sequential reads, and random reads, the nametésgyWTL has similar
IOPS as the baseline page-mapped FTL. It assigns physidadssds in sequential
order, which is the same as the baseline FTL. For randomsyritemeless writes
perform better than the baseline but worse than sequential of either FTL. Even
though we change the I/O scheduler to merge random writegingi¢he random
write request queue size is smaller than the size of the fliaslalvpage.

Table 5.2 presents the memory usage of the page-mapped EThenameless-
writing FTL with different file system image sizes (from 4 G& 48 GB), which

85

15000 4

10000

a
o
o
o

1/0 Operations per second

| . 1

sSwW RW SR RR
M Baseline NamelessWrites

Figure 5.5: Read and Write Performance. This figure presents the IOPS of the
OpenSSD FTL and the nameless writes split-FTL for fio bendksx{aequential and ran-
dom reads and writes with a 4 KB request size).

File System Size
FTL ‘ 4GB 8GB 16 GB 32GB 48 GB
Page-Map| 2.50MB 9.10MB 17.8MB 35.1MB 52.8MB
Nameless| 94KB 189KB 325KB 568KB 803KB

Table 5.2: FTL Memory Consumption. This table presents the memory usage of
the baseline page-level mapping FTL and the namelessagiiTL. We use Impressions
to generate typical file system images with different sizes.

we created using Impressions [4]. The memory consumpticiudes the address
mapping tables and all additional FTL metadata. The namelesing FTL uses
much less memory than the page-mapped FTL. Unlike the pagmped FTL, the
nameless-writing FTL does not need to store the addressingpfor nameless
writes (data) and only stores address mappings for virtudésv(metadata).

Overall, we find that the core nameless writes design ped@imilarly to the
page-mapped FTL and provides significant memory savingsagesaed earlier in
Chapter 4.

5.5 Summary

In this chapter, we described our experience with buildiagneless writes with the
OpenSSD hardware board, the challenges in moving nameléss ¥o hardware,
and our solutions to them.

The biggest challenges we met in our hardware experienagharging the I/O

86

return path and adding upcalls from the device, neither o€lwive foresaw when
we built nameless writes with emulation.

Because of the restrictions of ATA interface, we change thmeless writes
design to use two split parts, an FTL at the OS block layerrtteatages most of the
responsibilities of a nameless-writing device, and a semmplv FTL that manages
a raw SSD device. We show through evaluation that this desayks well with a
real hardware system, and achieves the same benefits ofiidection as with our
original nameless writes design using emulation.

Overall, we found our hardware experience to be rewardirgearned a set of
new lessons in how hardware and real systems can be diffeoemsimulation and
emulation. Even because of a single restriction in realysard, the whole system
may need to be re-designed.

87

Chapter 6

A File System De-Virtualizer

We demonstrated in Chapters 4 and 5 that nameless writeblaréodargely re-
move SSD indirection and its space and performance costsetw, the nameless
writes solution has a few drawbacks. First, nameless wrégaire fundamental
changes to the file system, the OS, the device, and the detedaice. Second,
the nameless-write approach creates unnecessary ovdrbeaase it performs de-
indirection for all data writes; instead, de-indirectioancbe performed at device
idle time to hide its overhead.

To overcome the drawbacks of nameless writes, we proposel¢heystem De-
Virtualizer (FSDV), a mechanism to dynamically remove the indirection in flash
based SSDs with small changes to existing systems. FSDVssrdevel tool that
walks through file system structures and changes file systénteps to physical
addresses; when pointers ate-virtualized the logical to physical address map-
pings in the SSD can be removed. FSDV can be invoked peribgigzhen the
memory pressure in SSD is high, or when the device is idle.

We implemented a prototype of FSDV and modified the ext3 fisdesy and our
emulated flash-based SSD for it. Our evaluation results @\F&emonstrate that
FSDV largely reduces device mapping table space in a dynanc It achieves
this goal with small performance overhead on foreground.l/O

The rest of this chapter is organized as follows. We presenbasic design of
FSDV in Section 6.1. We then describe our implementatiomefRSDV tool, the
changes to the ext3 file system, and our SSD emulator for FABéction 6.2. In
Section 6.3, we present our evaluation results of FSDV.Iinge summarize this
chapter in Section 6.4.

88

6.1 System Design

In this section, we present the overall design of FSDV, awd ihteracts with the
device and the file system that support FSDV. We design FSIVthé following
goals in mind.

1. Indirection mappings can be (largely) removed in a dycamnay. Doing so
allows FSDV to be able to remove the device virtualizationntaned either
inside the device hardware or in the host software.

2. The performance overhead of FSDV should be low, so thak thal be
negligible impact on normal I/Os.

3. There should only be small changes in file systems, OSegedérmware,
and device /O interfaces. Doing so will allow for an easyegration of
FSDV into existing systems.

FSDV is a user-level tool that runs periodically or when regktb remove the
excess virtualization of a virtualized storage device. WR&DV is not running,
a normal file system runs with the storage device in a largeiypadified way.
The file system performs block allocation in tlegical address spacelhe device
allocatesdevice addresseand maintains an indirection mapping from logical to
device addresses. When the mapping table space pressugh,is=BDV can be
invoked to perform de-virtualization to remove indirectimappings. FSDV can
also be invoked periodically or when the device is idle.

6.1.1 New Address Space

FSDV de-virtualizes a block by changing the file system moitihat points to it
(i.e., the metadata) to use the device address. After FSDV daalires a block,
it is moved from the logical address space to inysical addresspace and di-
rectly represents a device addreis.(no mapping is maintained for the block).
As workloads perform new 1/Os, the file system allocates nata ¢h the logical
address space and overwrites existing data in the physidaéss space. For the
former, the device adds a mapping from the logical addrefisetaevice address.
For the latter, the device adds a mapping from the old phlyaoidress to the new
device address.

Figure 6.1 gives an example of FSDV address spaces andgtidirenappings.
Since a block can be in different address spaces, we needhadniet distinguish
logical addresses from physical ones. We discuss our méth®elction 6.2.

89

Logical Address Space Physical Address Space
[L01L1 |_L2 |L3 }'La”\... |Ln| po|p1|P2|pP3|Pa|.. [Pn
] I
: -
| == =1
ST olu>p2 Lo
|
SR o 13500 F—=
|
Bwi v wane > PZ% D1 T | :
l______é_l_
[===—=p====- =
Eiviriasinseiie
| : 1
AR I
po|p1]p2|D3|D4a].. [pn

Device Address Space

Figure 6.1:FSDV Address SpacesDevice address space represents the actual physi-
cal addresses in the device. The file system sees both lagidghysical addresses. In this
example, the logical addresses L1 and L3 are mapped to theedagdresses D2 and DO
through the device mapping table; the physical address R2aigped to the device address
D1. The physical addresses P3 and P4 are unmapped and glirepilesent the device ad-
dresses D3 and D4. The logical addresses LO, L2, and L4 (stedorepresent the logical
addresses that have been freed (either by a file system deleteSDV de-virtualization).

For future reads after FSDV runs, the device checks if theeemapping entry
for the block. If there is, the device serves the reads aft@apping, and if not, the
device reads directly from the device address.

Another cause for address mapping change and addition hifsical address
migration during different flash device operations. As afldsvice is accessed by
different types of data, its flash blocks will be in differestites and the device per-
forms garbage collection or wear leveling operations. Blo#ise operations involve
migration of physical blocks. When a directly mapped blosknigrated to a new
device address, a new mapping will be added to map from itd@lite address to
its current device address. FSDV also needs to remove tle@senappings.

The challenge in handling address mapping addition caugetiedbdevice is
that there is no way of knowing what files the migrated blogksd(their mapping)
belong to. A simple way to handle these mappings is to scanpandrm de-
virtualization to the whole file system; these mappings autkntually be removed
in the process. However, the performance cost of whole-g¢é&sing can be high,
especially for large file systems. We choose another methadive the problem,

90

involving associating each block to the file to which it bejen Specifically, we
change the file system write interface to also include thdeémmumber and let the
device store it with the block. When the device migrates a&lblend adds a new
mapping, it records the inode number the block belongs t@\F®ill process
these files in its later run.

6.1.2 FSDV Modes

FSDV can run offline (with unmounted file system) or onlinetfwinounted file
system). The offline FSDV works with an unmounted file systékfter the file
system has been unmounted (either by user or forcefully WFSFSDV goes
through the file system data structures and processes filensyaetadata to de-
virtualize file system pointers. The de-virtualized fileteys is then mounted.

The offline FSDV provides a simple and clean way to performsfyigtem
de-virtualization. However, it requires file systems to Ioenounted before it can
start processing and is not suitable for most storage sgst€éhus, we also design
an online version of FSDV which runs while the file system isumed and fore-
ground I/Os run in a (largely) unaffected fashion. The maiifflerence between
the online FSDV and the offline one is that it needs to make thatit does not
leave any inconsistency in page cache or for ongoing I/OB\H8teracts with the
file system through the FSDV-supporting device to isolagellocks it processes
from the file system.

6.2 Implementation

In this section, we discuss our implementation of the FS, time offline and the
online version of it. To support FSDV, changes in device fiares, file systems,
and OSes are needed. We also discuss these changes inftilis. sec

6.2.1 File System De-virtualizer

We now describe our implementation of the offline and thenenkSDV and a few
optimizations we make for better FSDV performance.

Offline File System De-Virtualizer

The offline FSDV works with unmounted file systems. As expdiin Section 2.2.1,
for most file systems like ext2, ext3, and ext4, a file can beetkas a tree structure
with the inode of the file at the tree root, indirect blocks éatent blocks) in the

91

Inode
Indirect
FS Block
Data
Block
. LBA | DBA LBA | DBA
Device
L D, L Dy
L, D,
L, D,
(a) (b)

Figure 6.2:FSDV Processing a File TreeThe left part of the graph (a) represents the
status of a file in the file system and the device mapping taftgdoFSDV runs. The right
part (b) represents a status in the middle of a FSDV run. L1lahdave been devirtualized
to D1 and D2. The indirect block containing these pointers Ao been rewritten. The
mappings from L1 to D1 and L2 to D2 in the device have been rethas well.

middle of the tree, and data blocks at the leaf level. FSDVidealizes a file by
walking through the file tree structure and processing nagsallocks from bottom
up (.e., from the metadata blocks that directly point to the datakdao the in-
ode). We choose to use the bottom-up fashion because indlgibythe time when
FSDV processes an upper-level metadata block, all its remitave already been
processed; FSDV can update this metadata block with thedevate addresses of
all its children.

For each pointer in a metadata block, FSDV sends the addrasthe pointer
uses (either logical or physical address) to the device amdies for its current
device address. If the device returns a device address,thieemetadata block
will be updated to use this address. After all the pointerthenmetadata block
have been processed, FSDV writes the metadata block bable tevice (if it is
changed) and informs the device to remove the correspomdappings. When a
mapping from a logical address is removed, the file systemagitis updated to
unset the corresponding bit. Figure 6.2 gives an exampl&bBhprocessing a file
tree.

To de-virtualize inodes, we change the way of locating aménfsom using

92

the inode number to using the device address of the inod bliod the offset of
the inode within the inode block. After FSDV de-virtualizak per-file metadata
blocks as described above, FSDV starts to process inodethamaetadata blocks
pointing to themi(e., directory blocks). FSDV changes the pointer pointing to an
inode to use the device address of the inode block and the'modfset within

it. If the inode is de-virtualized from an inode number (itsgmal form), the
file system inode bitmap will also be updated. Currently, wendt de-virtualize
directory inodes, since processing directory data strastis more complicated
and directories only account for a small part of typical fystems [5]; we leave
de-virtualizing directory inodes for future work.

Finally, we do not need to deal with any metadata in file sygtemals. When
unmounted, a file system’s journal is checkpointed. Thuegetlare no outstanding
transactions and the journal is empty. We do not de-virzedtlock group bitmap
blocks, group description blocks, or superblocks eitliagesthey only account for
a small space in the file system.

Online De-Virtualizer

The online FSDV runs while the file system is mounted. Most®hiechanisms
are the same as the offline FSDV. However, since we allow fotegl I/Os to be
performed while the online FSDV is running, we need to make sbat such a
situation does not leave the file system inconsistent. Teeaehthis goal, FSDV
informs the file system (through the device) about the blackants to isolate; the
file system then flushes all the page caches correspondifigese blocks. When
FSDV is processing these blocks, the device will preventoorg I/Os to them
simply by stalling the 1/Os until FSDV finishes its procesgiiThe FSDV process
registers a special process ID with the device, so that I89ged by FSDV will
never be blocked.

We have two options in terms of blocking granularity for thdime FSDV: at
each file and at each metadata block. If we choose blockirtgedile granularity,
the device sends the inode identity to the file system, whieh flushes all page
caches belonging to this file. The device keeps track of tbdarthat FSDV is
processing and stalls all file system 1/Os with this inodel (f8DV finishes pro-
cessing it. The per-file method is conceptually simple arsoviell with the way
FSDV performs de-virtualization: one file at a time. Howewvecreates a higher
performance overhead, especially for big files, since altkd belonging to a file
are flushed from the page cache and all I/Os of the file areedtalhen FSDV is
processing the file.

If we choose blocking at the metadata block level, FSDV selidhe block

93

numbers which the metadata block points to and the metadat& humber it-

self to the file system (again, through the device). The filtesy then flushes
the corresponding blocks from the page cache. The devigeskieack of these
block addresses and prevent I/Os to them until FSDV finisisggrocessing of the
metadata block.

Optimization Policies

We introduce a couple of optimizations to reduce the ovethwaFSDV. First,
since FSDV runs periodically, it does not need to procesdikbe that have not
been changed (overwritten or appended) since the last ia8DYV. We change the
file system to record the updated files (particularly, indce®l to send the list of
such inodes to the device during journal commit. Notice thatdo not need to
worry about the consistency of such updated inode list; é\they are wrong, the
file system will still be consistent, since FSDV will just pass unnecessarye,
unchanged) files.

To further reduce the run time of FSDV, we can choose not toge® hot data
with FSDV, since they will soon be overwritten after FSDV ddualizes them.
The file system sends the update time of the inodes togetitietivei changed inode
list to the device. FSDV useshmt inode thresholdo only process files that are not
accessed recently. For example, if we set the hot inodehibict$o be 1/10 of the
time window between two FSDV runs, the latter run will ignéine inodes that are
updated within 1/10 of such time window.

6.2.2 Device Support

We have changed our SSD emulator (described in Chapter 3)pioogt FSDV.
Most part of the emulated SSD and its FTL are not changed. Ehea still
performs device address allocation for writes. We choosest log-structured
allocation and page-level mapping for better performarieer reads, the device
looks up its mapping table and either read it directly frora tievice address or
read the device address after mapping. For a write, the elegimords the inode
number associated with the write in the OOB area adjacehetdata page that the
device assigns the write to. When the device migrates a da@ guring a garbage
collection or wear leveling operation, it also moves thedem@mumber to the new
OOB area. If a mapping is added because of this migratiorgdkiee also records
the inode number for FSDV to process in its next round.

FSDV interacts with the FSDV-supporting device using ndritt operations
and simple ioctl commands. Table 6.1 summarizes the imesfhetween FSDV

94

and the device. When FSDV queries the device for the devidesad of a block,
the device looks up its mapping and returns the mapped addréise no-mapping-
found state to FSDV. After processing and writing new met@atéock, FSDV tells
the device to remove corresponding mappings.

For performance optimization of FSDV, the device also rdsdhe files (their
inode identities) that have been updated from the last rdfS@V (from the new
inode list that the file system sends to the device). FSDVsead processes these
new files. When FSDV finishes all its processing, the devitetee all the recorded
new inodes. We choose to only store the new file record in delRi&M and not
permanently on flash memory, since even if the new file recldsit or is wrong,
it will not affect the consistency or correctness of the fifstem (but FSDV may
perform de-virtualization to unnecessary files).

The device works with the file system and FSDV for I/O flushing &locking
to support online FSDV. Specifically, when FSDV informs thevide about its
intention to process a file or a block, the device sends sudomiation to the file
system. Once the file system finishes the flushing and FSDYé staprocess the
file or the block, the device blocks foreground 1/Os to the ditethe block until
FSDV finishes its processing.

Finally, the device also works with FSDV for reliability golems, €.g, it keeps
certain FSDV operation logs and sends the replay informatoFSDV during
recovery). We defer the reliability discussion to Sectich4.

6.2.3 File System Support

We ported ext3 to support FSDV. We now describe the changemake to ext3
and the design choices that we make.

For 1/0O operations other than writes, there is no change eteedth the file
system and the OS, which is one of our major goals with FSD¥ flle system
performs its own allocation and maintains its logical addrepace. The file system
data structures are mostly unchanged (the only exceptiimg Iblee inode identifi-
cation method as described earlier in Section 6.2.1).

95

Get Device Address

FSDV to device:
device to FSDV
description:
Remove Mapping
FSDV to device:
device to FSDV
description:

logical/physical address
device address
look device to FSDV device address

logical/physical address
if success
remove mapping entry

Get Map Table Size

FSDV to device:
device to FSDV
description:
Get New Inodes
FSDV to device:
device to FSDV
description:
Log Operation
FSDV to device:
device to FSDV
description:
Flush File/Block
FSDV to device:
device to FSDV
description:
Check File/Block
FSDV to device:
device to FSDV
description:
Block File/Block
FSDV to device:
device to FSDV
description:

Unblock File/Block

FSDV to device:
device to FSDV
description:

null
mapping table size
get device mapping table size

null
new inode list
get new inode list from device

logical/physical address
if success
log addresses for FSDV reliability

inode/block number
null
inform FS to flush the file/block

inode/block number
null
wait for file/block to be flushed

inode/block number
null
start blocking 1/Os to the file/block

inode/block number
null
unblock 1/Os to the file/block

Table 6.1:Interfaces between FSDV and the FSDV-supporting devicekne table
presents the interface between FSDV and the FSDV-suppaléivice. All the commands
are initiated by FSDV to the device.

96

Write

down: data, length, inode number

up: status, data

description: write with associated inode number
Trim Block

down: block number

up: null

description: invalidate a block
Add New Inodes

down: new inode list

up: null

description: add new inodes to device
Flush File/Block

down: null

up: inode/block number

description: inform FS to flush the file/block
Done Flush File/Block

down: inode/block number

up: null

description: inform the device that file/block is flushed

Table 6.2:Interface between the File System and the FSDV-supporting &vice
The table presents the interface between the file systenistipatrted to FSDV and the
FSDV-supporting device. The last three commands are footiii@e FSDV only. The
"Add New Inodes” command is for FSDV performance optimaati

We make a few changes of ext3 to support FSDV. First, to djstgh logical
addresses from physical ones, we add to each physical adifrevalue of the
total device size; thus, the logical and the physical addspsces never overlap.
We also change the device size boundary check to accommulugeal addresses
(the total size is doubled since we have two non-overlappiidress spaces).

Second, we change the way the file system tracks addressspat@erforms
de-allocation to support FSDV. The file system uses the &giddress bitmaps
to track allocated logical addresses and uses a free spantecdo track the total
amount of actual allocated (device) addresses. When a EHatdvirtualized from
its logical address, its corresponding bit in the file sysbémap is unset. Doing so
will create more free logical addresses than the actualsippaee in the device. The
file system uses the free block counter to keep track of theuatnaf free space
and does not change it during FSDV operations. During dilmcathe file system
checks this counter to determine the actual free spaceridftedevice. When the

97

file system deletes a block in the physical address spac#letlsgstem updates the
free block counter but does not change any bitmaps. Whenl¢ghgyBtem deletes
a block in the logical address space, it updates both theabiamd the free block
counter. The file system also sends a trim command to theal&yiaform it about
the de-allocation.

Third, the file system tracks the inode that a block belongsvteen it is allo-
cated) and sends the inode identity to the device during @ wri

Finally, the file system works with the device to support malFSDV. Specifi-
cally, when the device sends the request of flushing a file twckpthe file system
adds such information (inode identity or block number) toakaqueue. A work
gueue handler then processes these files or blocks. Forthédilile system flushes
all the blocks belonging to this file from the page cache asd ealears the inode
cache. For a block, the file system simply flushes it from thgepesache. After
the file system finishes the flushing process, it informs thécdewith the inode
identity or the block numbers. Table 6.2 summarizes thefates between the file
system and the device (those that are changed because of) FSDV

6.2.4 Reliability Issues

Finally, several reliability and consistency issues cgplea during the de-virtualization
process of FSDV. For example, the FSDV tool can crash befarempletes its
de-virtualization operations of a file, leaving the metadaitthe file inconsistent.
Another situation can happen with the online FSDV, wheréR8BV tool dies and

the device continues blocking file system I/Os.

We solve the reliability-related problems using severahtégues. First, we
make sure that the device never deletes the old metadataititthe new version
of it has been committed. When the new metadata block isamritts old version is
invalidated at the same time; this operation is an ovenarigt most normal devices
already invalidates old blocks atomically with overwritedecond, FSDV logs all
the old addresses a metadata block points to before FSD¥gses the metadata
block. Doing so makes sure that if FSDV crashes after writgnew metadata
but before the device removes the old mappings of the paintethis metadata
block, the device can remove these mappings on recovery.n\WB®V finishes
its processing, the log on the device is removed. If a cragipdres before FSDV
finishes, the logs will be replayed during recovery. Finalle set a timeout of
device blocking file system 1/Os to prevent dead or unredpersSDV tool.

98

6.3 Evaluation

In this section, we present our experimental evaluation3D¥ Specifically, we
answer the following questions.

1. What are the changes to the file systems, the OS, the dewivedie, and
the device I/O interface? Are the changes small and can theabily im-
plemented with existing systems?

2. How much indirection mapping space can FSDV remove? Ganrikmoved
in a dynamic way?

3. How does the amount of inodes processed by FSDV affect &ppimg table
space reduction and performance of FSDV?

4. What is the difference between different FSDV modes? Hogsdhe offline
mode compare to the online mode of FSDV? How do the onlindilgeand
per-block modes compare?

5. What is the performance overhead of FSDV? How much doesd/F8fect
normal foreground 1/Os?

6. How does the optimization techniques affect the perfoigaaand mapping
table results?

We implemented the FSDV prototype as a user-level FSDV tou, changed
our emulated SSD device (described in Chapter 3), the ex3ygtem, and the
OS to support FSDV. The FSDV tool is implemented usingfitkcode base. We
change several aspects of our SSD emulator to support FSB¥I& make small
changes to the ext3 file system and the OS (the block layerrircpiar) to support
FSDV.

The total lines of code in the file system and the OS is 201 a#@3sn the de-
vice. Most of these changes are for handling de-allocatimhRSDV performance
optimization.

Experimental environment: All experiments were conducted on a 64-bit Linux
2.6.33 server, which uses a 3.3 GHz Intel i5-2500K processdrl6 GB of RAM.
The emulated SSD used in our experiments has 5 GB size, 1epéesh planes,

4 KB flash pages, and 256 KB erase blocks. Flash page read aedoperations
take 25 and 200 microseconds and erase operation takesllisBeoinds.
Workloads: We use a set of different types of workloads for our evalumatio
To mimic typical file system images, we use the Impressiont[#]. For more

99

Workloads| Total Size| Files | FileSize
F1 512MB | 1000 | 512KB
F2 1GB | 2000| 512KB
F3 2GB | 2000 1MB
F4 4GB | 2000 2MB
F5 4GB | 4000 1MB
11 3.6GB| 3000| 1.2MB

Table 6.3:Workloads Description This table describes the workloads property: the
number of files and directories in the workloads and the agerde size. Workloads F1
to F5 represent different FileServer workloads from theBinch suite [83] (with varying
number of files and directories). The workload 11 represémadile system image generated
using Impressions [4].

H Inode
m 81 M Indirect
é Data f—
N 6
ﬁ emaining Space
2 4
|—
g’ [
S 21
5
=
0 /
F1 F2 F3 F4 F5 11

Figure 6.3:Mapping Table Space Reduction. We invoke the offline FSDV after run-
ning different FileServer and Impressions workloads. Tgeré shows the mapping table
space (in different types) reduction because of FSDV. Thebgdow the horizontal line
represents the remaining amount of the mapping table sgeatd=SDV does not remove.

controlled workloads, we use the FileServer macro-bencknmathe FileBench
suite [83] with different numbers of directories and diffiat average file sizes.
Table 6.3 summarizes the settings used with these workloads

6.3.1 Mapping Table Reduction and FSDV Run Time

We first evaluate the mapping table space reduction of FSE®&/ntajor goal of
FSDV is to reduce the mapping table space needed in a vituhtievice. Fig-

100

Inodes
m IndirectBlocks

44 w Data
Unmount+Mount
3| B Other

2 4

1 ;

o) B
F1 F2 F3 F4 F5 11

Figure 6.4:FSDV Run Time. This figure plots the run time of the offline FSDV when
de-virtualizing different FileServer and Impressions Woads. We break down the run
time into time spent on de-virtualizing inodes, indireabdils, and data blocks, time to
unmount and mount the file system, and the rest of the FSDV time

Run Time (sec)

ure 6.3 presents the amount of removed mapping tables wifdreatit FileServer
workloads and the Impressions file system image. Specifieal show the amount
of removed mapping entries for data blocks, indirect bloaksde blocks, and the
amount of remaining mappings.

We find that FSDV reduces device mapping table size by 75% % @&6g,
from 8.4 MB to 0.3 MB for the F5 workload). Most of the mappiraiple reduction
is with data blocks, which conforms with the fact that typifiee system images
consist of data blocks [5]. We also find that larger files resubigger data block
and indirect block mapping table reduction. Inode block piag reduction in-
creases with more files but is overall negligible for the $dever workloads. The
Impressions workload has more inode block mapping reduditd less indirect
block reduction as compared to the FileServer workloaddicating that it has
smaller file sizes. Finally, there is a small part of mappitigg FSDV does not
remove; most of these mappings are for global file systemda&dasuch as block
group description blocks, data and inode bitmaps, and fecttiry blocks. Overall,
we find that indirection mappings can be largely removed.

We also measure the run time of FSDV for these workloads; éoeirogoals
is to have short FSDV run time so that it has less impact orgforend 1/Os €.9,
FSDV can be scheduled during device idle time). Figure 6ofvshthe time taken
to run FSDV with the FileServer workloads and the Impresside system image.
Overall, we find that the run time of FSDV is small (from 2 to T@eds). We

101

0 20 40 60 80 100
Percentage of Processed Inodes (%)

Mapping Table Size Reduction (MB)

Figure 6.5:Mapping Table Space Reduction over Different Amount of Inods.
This figure plots the amount of mapping table space reducethdyffline FSDV with
different amount of inodes for the Impressions workloa8.@66).

further break down the run time into the time spent on prangssappings of data
blocks, indirect blocks, and inode blocks, mount and unrhtimre, and the rest of
the time €.g, time spent on reading block group description blocks). \we fhat
most of the FSDV time is spent on processing data and indinecks and such
time increases with larger file size and larger file system. siz

6.3.2 Impact of Increasing Amount of Processed Inodes

One of the challenges we met in designing FSDV is the way ofllras address
mappings added by the device. Currently, we handle them agpgihg the write
interface to include the inode number, so that FSDV can pooaly these changed
files and not the whole file system. An alternative to this fgobis to let FSDV
scan the whole file system image. Thus, it is important toystiad effect of reduc-
ing the amount of processed filesd, by passing the inode number) on mapping
table space reduction and FSDV performance.

To study this effect and the cost of whole file system scanmmegchange the
number of inodes (from 0 to 100% of the total number of inodka) we process
and evaluate the reduced mapping table size and FSDV rumiith¢he file system
image generated by Impressions (I11). For each percentdge, wae randomly
select a set of inodes to process and invoke the offline FSB #dfe whole file
system image has been written.

Figure 6.5 plots the amount of reduced mapping table spaiasighe number

102

Run Time (sec)

0 20 40 60 80 100
Percentage of Processed Inodes (%)

Figure 6.6: Run Time over Different Amount of Inodes. This figure plots the
offline FSDV run time with different amount of inodes for thgltessions workload (I-
3.6G).

of processed inodes. Overall, we find that for most of the dimeth more inodes
processed, more mappings are removed. However, suctorsaip is not linear.

For example, there is a sudden increase from 40% to 60% ohtides. There
is also a sudden increase and drop in the amount of reducepimgagable space
at 20% of the inodes. The file system generated by Impressiassa certain file
size distribution (which mimics real file systems); certfilies can be much bigger
than the rest of the files. Because of the randomness in theweraglect inodes to
process, at 20% FSDV may happen to process one or more ofgfiebj resulting

in a large reduction of mapping table space.

Figure 6.6 plots the time taken to run FSDV with different amioof processed
inodes. As the number of inodes increase, the FSDV run tiswintreases. Dif-
ferent from the mapping table size results, we find that thdirme increase is more
steady.

Overall, we find that increasing the number of inodes to begssed by FSDV
results in more mapping table space reduction but higher\F&D time. The
Impressions file system image that we use only has 3.6 GB tata; large file
system, the time to scan the whole file system can be much rigfteerefore,
frequent whole file-system scans by FSDV are not a viabldisaluone needs to
either reduce the number of inodes to process (our curréutice®) or increase the
frequency of FSDV (our future work).

103

== NoFSDV

— OnlinePerBlock
12, ~~OnlinePerFile
= = Offline

)
=3 <
[]
N 4 n
» B8 :
Q
3 '
= :
2 4 ;
£ 4
=}] -
© I ae="" L m="
=
0 ‘ ‘ ‘
0 60 120 180
Time (sec)

Figure 6.7:Mapping Table Space Over Time. This figure plots the mapping table
space change over time running the FileServer F3 workloattswo FSDV, offline FSDV,
and per-block and per-file online FSDV.

6.3.3 Comparison of Different Modes of FSDV

Offline and online are the two options of invoking FSDV. Thdirma FSDV further
has two options, per-file and per-block processing. We n@sent our evaluation
results on the difference of these modes.

We first evaluate the mapping table space reduction of diftemodes of FSDV.
In this set of experiments, we repeat the FileServer F3 wark(each running for
60 seconds) and examine the mapping table space changeheFaifline FSDV
we unmount the file system after each run, invoke FSDV, and theunt the file
system. Figure 6.7 plots the mapping table space changes théee is no FSDV
running {.e., normal kernel), when running the offline FSDV, and when imgn
the per-block and per-file online FSDV.

We first find that without FSDV, the mapping table size accatad as the
workloads runs. The initial increase in the mapping talde giime 0 to 5 seconds)
is due to the way FileBench runs; it pre-allocates diree®and files before run-
ning 1/0s. With FSDV (both offline and online), the mappingleasize decreases

and stays low, suggesting that FSDV can dynamically redudieeiction mapping
cost.

Comparing the offline and the online modes, we find that theneffFSDV
decreases the mapping table size periodically (when ivikied), while the online
FSDV decreases the mapping table size when it first runs @&dapping table size
stays low. The online FSDV is triggered by the threshold oppiiag table size;

104

when the mapping table size is above the threshold, theeoRIBDV is triggered.
Therefore, the mapping table size always stays at or belewhtteshold. Between
the per-file and per-block online FSDV, we do not see a sigmificlifference.

2,
1.6+
1.24

0.8+

Run Time (sec)

0.4+

0 B
F2 F3
M PerFile PerBlock M Offline

Figure 6.8:Run Time of Different Modes of FSDV. This figure plots the run time
of the offline FSDV, per-file online FSDV, and per-block calfSDV with the F2 and F3
workloads. Each run time value is an average of mutiple runs.

We then evaluate the run time of different modes of FSDV. Hexuse both
the FileServer F2 and F3 workloads; F2 has the same numbdesfa F3 but
contains smaller files. Figure 6.8 plots the average run thtke offline, per-file
online, and per-block online FSDV with these workloads. Vst fiind that the
per-block online FSDV takes longer time to run than the derdiline FSDV; the
per-block FSDV exchange information with the device andfilbesystem for each
block (e.g, syncing and blocking the block), creating higher overttbhad the per-
file FSDV, which only does such operations once for each filem@aring with
the offline FSDV, the online modes have longer run time witlyda files and file
systems (F3), suggesting that the overhead of syncing aa#tibt data is higher.

For the online mode, one important overhead it causes isltio&ibg of fore-
ground 1/Os; we evaluate such blocked time for both the peraind per-block
online FSDV modes. Figure 6.9 plots the average time that ttDa block are
blocked because of the per-file or the per-block FSDV. As etquk the per-file
FSDV blocks I/Os much longer than the per-block mode, sineehale file is
blocked when per-file FSDV is processing a block in it, eveutih the rest of the
file is not being processed. We also find that when file sizerggetathe blocked
time (with both per-file and per-block modes) is longer.

Overall, we find that the online FSDV allows more dynamismhi@ mapping

105

100 -

10+

14
1A

Avg 1/0 Blocked Time (msec)

F2 F3
M PerFile PerBlock

Figure 6.9:1/0 Blocked Time. This figure plots the average time a foreground 1/O is
blocked to a block (in log scale) because of the per-file amebpeck FSDV when running
the FileServer F2 and F3 workloads.

table space reduction than the offline mode. The online jmekbmode takes
longer running time than the per-file mode but requires snddreground 1/O
blocking time.

1000 1
800 1
600 -
400 4
200+

0

Baseline Offline OnlinePerFileOnlinePerBlock

Throughput (MB/s)

Figure 6.10:Throughput of Foreground I/Os. This figure plots the throughput of
foreground 1/0Os with no FSDV, with offline FSDV, and with pések and per-file online
FSDV when running the FileServer F3 workload.

106

no_FSDV
6. — FSDV_Th_1/10
— FSDV_Th_1/20
54| — FSDV_Th_1/40
— FSDV_No_Thresh

Mapping Table Size (MB)
w

0 60 120 180 240
Time (sec)

Figure 6.11:Mapping table size over time

6.3.4 Overhead on Normal Operations

The impact of FSDV on normal 1/0s.€., when the FSDV tool is running) is an-
other important metric; one of our goals of FSDV is to have ioywact on normal
I/Os. We also evaluate the performance overhead of the efilivd online (per file
and per block) FSDV on normal I/Os with the FileBench maceodhmark.

Figure 6.10 presents the throughput of normal 1/0Os when FBDt running,
using the unmodified Linux kernel, the OS ported to the offfi&DV and the OS
ported to the online FSDV (per file and per block). We find thagrall, the over-
head of FSDV on normal I/Os is low. The overhead in normal [f@rations under
the kernel ported to the offline FSDV is mostly due to the FS[P¥roization to
only process changed inodes; the file system records and gemdpdated inodes
to the device periodically. In addition to this overheack tmline FSDV also re-
quires file system to sync blocks, causing it to have higherlmad than the offline
FSDV.

6.3.5 Optimization Results

Finally, we run one FileServer workload F2 and invoke the ¥Sbol periodi-
cally (every one minute) to evaluate the effect of FSDV optation policies. Fig-
ure 6.11 presents the mapping table size change over tirhebasic FSDV, with
FSDV using different hot data thresholds, and without FSThé hot data thresh-
old is set so that the files that are updated within 1/10, 1424, 1/40 of the time
window between two FSDV runs are not processed.

107

«» 1000 ;1.2
(O]

B

£ 00| "
§ 10.8 §
@ 600 -
8 10.6 qé
& 400] =
5 0.4 é
£ 200 Loz

2 }

=}

2

O,

0 1/40 1/20 1/10
M Inodes RunTime

Figure 6.12:Effect of different FSDV threshold

We find that the smaller the hot data threshold is, the morepingpable space
is reduced; the basic FSDV reduces most amount of mappitey tahen hot data
threshold is small, more file will be processed. Figure 6H@\s the run time and
number of processed inode with these different hot datsliotds. The run time is
the average of all FSDV runs. We find that a lower thresholi€feanodes ignored)
results in more inodes to be processed; thus its run timsdslalver. However, the
run time of threshold 1/20 and 1/10 is similar because of ttelfrun-time cost of
FSDV.

6.4 Summary and Discussion

In this chapter, we presented the File System De-Virtualizdich dynamically
reduces the virtualization cost in flash-based SSDs. FSIoves such cost by
changing file system pointers to use device addresses. Armegign decision
we made is to use separate address spaces, so that blocke ichamtified as in
different status. We designed several modes of FSDV, offtinéne per-file, and
online per-block, which have different benefits and costs.

We implemented FSDV as a user-level tool and ported the drt8yfstem and
the emulated SSD to support FSDV. Our evaluation resultodstrated that FSDV
can remove SSD indirection costs significantly in a dynamagy.wVe also found
that there is only a small overhead on foreground 1/Os witB¥S

Comparing with nameless writes, we found that FSDV requimegh less
change to the OS than nameless writes. The lines of code foeleas writes

108

in the OS is 4370 and is 201 for FSDV. The /O interface charegabse of FSDV
is also much smaller than nameless writes; only the writeraarmd needs to be
changed to include the inode number in the path from the OBetal¢vice, while

nameless requires fundamental changes to the I/O interfabe change FSDV
makes to the write interface can easily be integrated irgoAlfA interface, since
it only changes the forward path from the OS to the devicealkinFSDV is more

dynamic than nameless writes. FSDV can be invoked at any (&nge when the

memory space pressure in the device is high or when the devidie), thus caus-
ing less overhead to foreground 1/0Os. Nameless writes aistariace change to
all the 1/0s, and thus presents an overhead to all foregré@=d

109

Chapter 7

Related Work

This chapter discusses various research efforts and retdmy that are related
to this dissertation. We first discuss literatures on flasmorg and flash-based
storage systems. We then discuss other systems that exkdei$s indirection and
previous efforts to remove excess indirection. We closedhapter with with other
efforts in new storage system interfaces.

7.1 Flash-based Storage

In recent years, flash-based storage have become prevaleath consumer and
enterprise environment, and various new techniques artdrsgshave been pro-
posed for different problems related to flash-memory s&rdg this section, we
discuss related works on various aspects of flash-baseatstor

7.1.1 Flash Memory Management Software

Most flash-based SSDs use a flash translation layer (FTLjtualize their internal
resources. To reduce the memory size required to store thpintatable for each
flash page (usually 2 KB to 8 KB page size), most modern SSD kifksa hybrid
approach to map most of the data at flash erase block gragulasually 64 KB
to 1 MB) and a small part of page-level mapping for on-goir@sl/ A large body
of work on flash-based SSD FTLs and file systems that manage lias been
proposed in recent years [24, 34, 48, 59, 60].

The poor random write performance of hybrid FTLs has dravengibn from
researchers in recent years. The demand-based Flashaliamdlayer (DFTL)
was proposed to address this problem by maintaining a pagé4napping table

110

and writing data in a log-structured fashion [40]. DFTL sw®its page-level map-
ping table on the device and keeps a small portion of the magpzble in the
device cache based on workload temporal locality. Howedeeryworkloads that
have a bigger working set than the device cache, swappingattteed mapping ta-
ble with the on-device mapping table structure can be costigre is also a space
overhead to store the entire page-level mapping table oicalehe need for a
device-level mapping table is obviated with nameless wriiled FSDV. Thus, we
do not pay the space cost of storing the large page-level mgpgble in the device
or the performance overhead of swapping mapping tableesntri

A different approach to reduce the cost of indirection magpn SSDs is to
move the SSD virtualization layer and the indirection magpiables from SSDs
to a software layer in the host. DFS is one such approach,endneoftware FTL
in the host manages all the address allocations and mappmgsp of raw flash
memory [46]. With this approach, the cost of virtualizatisithin the device is
removed, but such cost (though reduced) still exists in tst. Hnstead of moving
the FTL indirection layer to the host, nameless writes anBVF&move the excess
device indirection and thus do not incur any additional niagpable space cost at
the host. Moreover, nameless writes and FSDV both work wétshflbased SSDs
instead of raw flash memory.

File systems that are designed for flash memory have also firegosed in
recent years [41, 92, 93]. Most of these file systems usetlogtared allocation
and manage garbage collection and flash wears. With suchyfiterss directly
managing flash memory, there is no excess indirection orgbecsated indirection
mapping table cost. However, these file systems can only wwittk raw flash
memory. They require knowledge of the flash memory intersalsh as OOB
area size. Operating directly on flash hardware can also hgetaus as we have
shown in Chapter 5. Instead, nameless writes and FSDV rem@ess indirection
by making small changes to existing file systems and flaskeb&SDs and thus
provide a more generalized solution.

7.1.2 Hardware Prototypes

Research platforms for characterizing flash performanceraimbility have been
developed in the past [14, 17, 26, 57, 58]. In addition, tHexee been efforts
on prototyping phase-change memory based prototypes [7, l2dwever, most
of these works have focused on understanding the archigdtadeoffs internal
to flash SSDs and have used FPGA-based platforms and lodizarsaato mea-
sure individual raw flash chip performance characterisefficacy of ECC codes,
and reverse-engineer FTL implementations. In additionstrR®GA-based proto-

111

types built in the past have performed slower than commiegS®s, and prohibit
analyzing the cost and benefits of new SSD designs. Our nasnedétes proto-

typing efforts use OpenSSD with commodity SSD parts and havaternal flash

organization and performance similar to commercial SS2r&lare other projects
creating open-source firmware for OpenSSD for research8f7fand educational
purposes [25]. Furthermore, we investigated changes tiiasle-device interface,
while past work looks at internal FTL mechanisms.

7.2 EXxcess Indirection and De-indirection

Excess indirection exists in many systems that are widedg tigday, as well as in
research prototypes. In this section, we first discuss a feer systems that exhibit
excess indirection besides flash-based SSDs, the focus diskertation. We then
discuss previous efforts in removing excess indirection.

Excess indirection arises in memory management of opegratistems run-
ning atop hypervisors [16]. The OS manages virtual-to-aaysnappings for each
process that is running; the hypervisor, in turn, managgsipal-to-machine map-
pings for each OS. In this manner, the hypervisor has fultrcbover the memory
of the system, whereas the OS above remains unchanged,lblissiaware that it
is not managing a real physical memory. Excess indirecéadd to both space and
time overheads in virtualized systems. The space overhmaeés from maintain-
ing OS physical addresses to machine addresses mappingctoipage and from
possible additional space overhead [2]. Time overheads agiwell in cases like
the MIPS TLB-miss lookup in Disco [16].

Excess indirection can also exist in modern disks. For exampodern disks
maintain a small amount of extra indirection that maps batbsg to nearby loca-
tions, in order to improve reliability in the face of writeilfares. Other examples
include ideas for “smart” disks that remap writes in ordeimiprove performance
(for example, by writing to the nearest free location), whiave been explored
in previous research such as Loge [28] and “intelligentkslig89]. These smart
disks require large indirection tables inside the drive tprthe logical address of
the write to its current physical location. This requiremgrtroduces new relia-
bility challenges, including how to keep the indirectiobltapersistent. Finally,
fragmentation of randomly-updated files is also an issue.

File systems running atop modern RAID storage arrays peoaitbther excel-
lent example of excess indirection. Modern RAIDs often fegjindirection tables
for fully-flexible control over the on-disk locations of laks. In AutoRAID, a level
of indirection allows the system to keep active blocks inrorigd storage for per-

112

formance reasons, and move inactive blocks to RAID to irsgedfective capac-
ity [91] and overcome the RAID small-update problem [75]. <a file system
runs atop a RAID, excess indirection exists because theyei maps logical
offsets to logical block addresses. The RAID, in turn, magicial block addresses
to physical (disk, offset) pairs. Such systems add memagespverhead to main-
tain these tables and meet the challenges of persistingifestacross power loss.

Because of the costs of excess indirection, system desidia@e long sought
methods and techniques to reduce the costs of excess tmalirgtvarious systems.

The Turtles project [12] is an example of de-indirection irualized environ-
ment. In a recursively-virtualized environment (with hygeors running on hyper-
visors), the Turtles system installs what the authors refersmulti-dimensional
page tablesTheir approach essentially collapses multiple page $dhte a single
extra level of indirection, and thus reduces space and twveeheads, making the
costs of recursive virtualization more palatable.

Finally, we want to point out another type of redundancy dredrémoval of it:
the redundancy (duplication) in data and de-duplicati@) @8, 55]. Different from
de-indirection whose purpose is to reduce the space and rgesuost of excess
indirection, the main purpose of de-duplication is to remoedundant copies of
data to save storage space. The basic technique of deatiguids simple, only
one copy of redundant data is stored and multiple pointettig@opy represent the
(redundant) copies of the data. Maintaining and accessicly sructures can cause
overhead, even though the cost has been reduced largeltheveast years [98]. In
contrast, the technique of de-indirection removes therrédat indirection directly
without adding additional metadata ¢, pointers), and thus does not have the same
overhead as de-duplication. The major cost of de-indmacthowever, lies in the
need to change storage system and interface design.

7.3 New Storage Interface

In this section, we discuss several new types of storagdaces that are related to
this dissertation.

Range writes [8] use an approach similar to nameless wriRange writes
were proposed to improve hard disk performance by lettiegfile system spec-
ify a range of addresses and letting the device pick the fingsipal address of a
write. Instead of a range of addresses, nameless writesoaspacified with any
addresses, thus obviating file system allocation and malingation responsibil-
ity to the device. Problems such as updating metadata afterswn range writes
also arise in nameless writes. We propose a segmented adgrase to lessen

113

the overhead and the complexity of such an update processthémdifference is

that nameless writes target devices that need to maintainat@f data placement,
such as wear leveling in flash-based devices. Range writgst tmaditional hard

disks that do not have such responsibilities. Data placemih flash-based de-
vices is also less restricted than traditional hard disk&esflash-based memory
has uniform access latency regardless of its location.

In addition to nameless writes, there have been researctoamahercial efforts
on exposing new flash interfaces for file systems [45], cacl®@®, 43, 67, 78],
key-value stores [32], and object stores [49, 50, 96]. Hardhere is little known
to the application developers about the customized coneatian channels used
by the SSD vendors to implement new application-optimizedrface. We focus
on these challenges in our hardware prototype and propdsioss to overcome
them.

While we re-use the existing SATA protocol to extend the S8@rface in
our hardware prototype, another possibility is to bypassstbrage stack and send
commands directly to the device. For example, Fusion-iothadecent NVM Ex-
press specification [72] attach SSDs to the PCI express lhishwallows a driver to
implement the block interface directly if wanted. Similathe Marvell DragonFly
cache [65] bypasses SATA by using an RPC-like interfacectlirdrom a device
driver, which simplifies integration and reduces the lagesfoccommunication.

114

115

Chapter 8

Future Work and Conclusions

The advent of flash-memory technology presents both oppitytand challenges.
A major issue of flash-based SSDs is the space and performastef its indirec-
tion.

In this dissertation, we proposed the technique of de-@tiion to remove the
SSD-level indirection. We started with presenting our effan building an accu-
rate SSD emulator in Chapter 3. The emulator was used ingatés in this disser-
tation and can be used by general SSD-related research. eivgtbsented a new
type of interface, the nameless writes, to remove SSD-lied#ection in Chap-
ter 4. Next, we discussed our experience with prototypingeiass writes with
real hardware in Chapter 5. Finally, in Chapter 6, we preskainother method
to perform de-indirection, a file system de-virtualizer,iethovercomes the draw-
backs of nameless writes. We focus on flash-based SSDs a®ausajcase but
the technique of de-indirection is applicable to other $ypé virtualized storage
devices.

In this chapter, we first summarize our de-indirection téghes and emulation
and hardware experience in Section 8.1. We then list a sessbhs we learned in
Section 8.2. Finally, we outline future directions where aark can possibly be
extended in Section 8.3.

8.1 Summary

In this section, we summarize the contributions of thisetisdion. We first review
the experience of building SSD emulator and implementing design on real
hardware. We then discuss the two methods of performingdieeiction: nameless
writes and FSDV.

116

8.1.1 Emulation and Hardware Experience

We implemented an SSD emulator, which works as a Linux psélmizk device
and supports three types of FTLs, page-level, hybrid, antetess-writing FTLs.
To model common types of SSDs with parallel planes, we |gesaeveral tech-
niques to reduce the computational overhead of the emul&ior example, we
separate data storage and SSD modeling into differentdbreaur evaluation re-
sults show that the emulator can model writes accuratells eoimmon types of
SSDs.

Beyond our efforts in building an accurate SSD emulator, lse built the new
design of nameless writes with real hardware. When builtiiegnameless writes
hardware prototype, we met a set of new challenges that wadtitbresee with
emulation. For example, two major challenges are to integtata in the 1/0 return
path and to add upcalls from the device to the host OS. We pezpa split-FTL
approach, which leaves low-level flash operations in thecdeand runs the bulk
of the FTL in the host OS.

Implementing nameless writes in a hardware prototype wasbatantial ef-
fort, yet ultimately proved its value by providing a conerelemonstration of the
performance benefits of the nameless writes design.

Overall, we found that the effort required to implement nkes® writes on
hardware is comparable to the effort needed to implemenSihednulator. While
we faced challenges integrating new commands into the bpgraystem and
firmware, with the SSD emulator we have also struggled torately model real-
istic hardware and to ensure that we appropriately handiedwrent operations.
With real hardware, there is no need to validate the accuwhnoyodels, and there-
fore, OpenSSD is a better environment to evaluate new SSDries

8.1.2 De-indirection with Nameless Writes

Our first method to perform de-indirection is nameless \&rigenew write interface
built to reduce the inherent costs of indirection. With nésg writes, only data
and no name (logical address) is sent by the file system toabieed The device
allocates a physical address and returns it to the file syfteruture reads and
overwrites.

We met several challenges in designing and implementingetems writes.
First, there is a high performance cost caused by recurgigiatas to de-virtualize
a block. We solve this problem by introducing the separatibaddress space into
logical and physical ones. Another challenge we met is tlesl der flash-based
SSDs to migrate physical blocks requires the physical adéeto be changed in

117

the file system. We used a new interface to upcall from thecdeai the file system
to inform it about the physical address change.

We ported the Linux ext3 file system to nameless writes antl bameless
writes with both our SSD emulator and with real hardware. &auation results
with both emulation and real hardware showed that namelatsswgreatly reduced
space costs and improved random-write performance.

8.1.3 File System De-Virtualizer

Our second method to perform de-indirection is the File &ysDe-Virtualizer,
which does not require fundamental changes to the OS andiétface (a major
drawback of nameless writes). FSDV is a light-weight usgel tool which scans
file system pointers and change them to use device physidetssks. FSDV can
be invoked periodically, when device mapping table is atmtiereshold, or when
the device is idle. We implemented an offline version of FSBNch requires the
file system to be unmounted and mounted before and after tb¥ 8. We also
implemented an online version, which does not require setiictiment of the file
system.

To achieve the goal of dynamic de-virtualization, we preuba new design
to separate different address spaces and block statuswaifiiie system. A block
can use a logical block address which the device maps tovtsadaddress, an old
physical address which the device maps to its current dexddeess, or a device
address with which no mapping is needed. We change the fitersy® treat
bitmap as a tracking of block status in the logical addresse@nd to use a free
block counter for allocation.

Our evaluation results of FSDV show that it can remove dewid&ection cost
in a dynamic way with little overhead to foreground I/Os. ieodound that FSDV
requires much less change to the OS is more dynamic than essnagtites.

8.2 Lessons Learned

In this section, we present a list of general lessons we dghwhile working on
this dissertation.

Excess indirection can be removed

Excess indirection exists in flash-based SSDs. From ouriexpe of name-
less writes and FSDV, we find that such excess indirectiorbearemoved.
Nameless writes remove the SSD indirection by changing/théniterface.

118

FSDV removes the SSD indirection by dynamically reading eina@nging
file system pointers. As a result, both the space and perfarenaverhead of
indirection is largely reduced. We believe that such dexgation techniques
can be generalized into other systems that exhibit excdggation.

Accurate emulation of fast devices that have internal pdedism is difficult

From our SSD emulation experience, we find that implemerg&f models
(i.e. different FTLs) is relatively straightforward, while mak the emulator
work accurately with real systems requires careful thigkamd much more
efforts.

A major challenge we find in implementing the SSD emulatobisupport
SSD internal parallelism. To emulate the parallel procgssi multiple I/O

requests using a single thread is difficult. Currently, we tgo threads to
separately perform data storage and SSD modeling. Our &mnigaccurate
enough for the purpose of this dissertation (we focus onegit However,
to emulate faster operations accurately with more paisttefe.g, the faster
read operations with 20 parallel planes), our SSD emulatoot accurate
enough; increasing the number of cores used by the emulatobe one
solution.

Hardware is different from simulation and emulation

From our hardware experience with building nameless woitethie OpenSSD
board, we learned a set of lessons and found that real systiémeal hard-
ware is much different from simulation and emulation.

First, we found that the OS stack to a real device (SATA-cote® is more
complex than to an emulator. One needs to be careful whegratieg new
commands in this stack (and different schedulers in th&stac

A bigger problem we met when we implemented nameless writeseal
hardware is the difficulty in sending data from the devicehto®S both as a
return of a file system write and as a upcall initiated by thaade

These and other problems that we met when building the haedmaameless
writes prototype were not foreseen when we built namelegeswvith the

SSD emulator. The lesson we learned in this experience itieshould
always have existing real systems in mind when designingsystems.

Interface change is hard

Our initial thought when designing de-indirection methdads flash-based
SSDs is that through a simple interface change like nameleisss, de-

119

indirection can be removed easily. However, when we stadddild name-
less writes with real systems and real hardware, we fountitierface
change is actually very difficult.

Two major difficulties we met with nameless writes are addila¢a to the
return path of normal writes and augmenting the control path device
upcalls. These operations require significant changeset@1iiA protocol
and many OS layers, and turned out to be extremely difficufnf@ement.

Because of these difficulties, we started to think about nelutisns for

de-indirection and designed the file system de-virtualiZ&s compared to
nameless writes, FSDV requires only small changes to thet&® and the
I/O interface, all of which can be implemented with real heade systems.
Another advantage of FSDV is that it can dynamically remdwe ¢ost of
indirection. For example, it can be scheduled at devicetidie. Nameless
writes, on the other hand, add an overhead to each write.

Our efforts to build new interface with existing systems destrated that the
ability to extend the interface to storage may ultimatelyibeted by how
easily changes can be made to the OS storage stack. Redeatrphoposes
radical new interfaces to storage should consider how suidviae would
integrate into the existing software ecosystem. Intragiyiciew commands
is possible by tunneling them through native commands.

8.3 Future Work

De-indirection is a general technique to remove excessdatibn; we believe it
can be used in systems other than flash-based SSDs as wdliiis Isettion, we
outline various types of future work of de-indirection.

8.3.1 De-indirection with Other File Systems

Porting other types of file systems to use nameless writesF&iaV would be
an interesting future direction. Here, we give a brief dsston about these file
systems and the challenges we foresee in changing them toanseless writes
and FSDV.

Linux ext2: The Linux ext2 file system is similar to the ext3 file systemeptc
that it has no journaling. While we rely on the ordered jolimade to provide
a natural ordering for the metadata update process of nameletes in ext3, we

120

need to introduce an ordering on the ext2 file system. Poetxtig)to FSDV on the
other hand is straightforward, since FSDV does not requisecadering and does
not change the journaling part of ext3.

Copy-On-Write File Systems and Snapshots: As an alternative to journaling,
copy-on-write(COW) file systems always write out updates to new free space;
when all of those updates have reached the disk, a root wteu® updated to
point at the new structures, and thus include them in the sitathe file system.
COW file systems thus map naturally to nameless writes. Altlesrto free space
are mapped into the physical segment and issued nameldsslgoot structure is
mapped into the virtual segment. The write ordering is nfaciééd, as COW file
systems all must wait for the COW writes to complete befosaiigy a write to the
root structure anyway.

A major challenge to perform de-indirection with COW file ®mas or other
file systems that support snapshots or versions is thatptaulietadata structures
can point to the same data block. For both nameless write$-8my/, multiple
metadata blocks need to be updated to de-virtualize a blodke possible way to
control the number of metadata updates is to add a small amnbimdirection for
data blocks that are pointed to by many metadata structareadditional problem
for nameless writes is the large amount of associated methdaause of multiple
pointers. We can use file system intrinsic back references) as those in btrfs, or
structures likeBacklog[63] to represent associated metadata.

Extent-Based File Systems: One final type of file systems worth considering are
extent-basedile systems, such as Linux btrfs and ext4, where contigueg®ns
of a file are pointed to via (pointer, length) pairs insteacaafingle pointer per
fixed-sized block.

Modifying an extent-based file system to use nameless witesgd require a
bit of work; as nameless writes of data are issued, the fileesysvould not (yet)
know if the data blocks will form one extent or many. Thus,yowhen the writes
complete will the file system be able to determine the outcdrager writes would
not likely be located nearby, and thus to minimize the nundfexxtents, updates
should be issued at a single time.

For FSDV, instead of the file tree that uses indirect blocks, éxtent tree
needs to be processed to use physical addresses, which salythe continu-
ity of the original logical addresses. Therefore, anothecianism is needed that
de-virtualizes extent trees.

Extents also hint at the possibility of a new interface foimirection. Specifi-

121

cally, it might be useful to provide an interfacereservea larger contiguous region
on the device; doing so would enable the file system to ensateatlarge file is
placed contiguously in physical space, and thus affordgghaljhicompact extent-
based representation.

8.3.2 De-indirection of Redundant Arrays

As flash-based storage is gaining popularity in enterpreténgs, a major prob-
lem to be solve is the reliability of such storage. Redungaswutions such as
RAID [75] can be used to to provide reliability. One way to Iduieliable and
high-performance storage layer is to use arrays of flaseeb&SDs [64, 94].

The major problem with de-virtualizing redundant arraysS&Ds is how un-
derlying physical addresses of the devices and their magrétiue to garbage col-
lection and wear-leveling) can be associated with file sgstgructure and RAID
construction.

Another important issue of de-virtualizing RAID is to maiirt the array for-
mation, such as mirroring and striping. Since we do not namrdddress mapping
after de-indirection, it is difficult to maintain such arrformation. For example,
a nameless write can be allocated to two different physiddtesses on a mir-
rored pair. Since the file system stores only one physicaleaddof the data, we
cannot locate the data on the other mirrored pair. Even if leeate the same
physical address on both pair, one of them can be migratedliffeaent physical
address because of garbage collection or wear-levelingileBiproblems happen
with striping and parity, too.

8.3.3 De-indirection in Virtualized Environment

Another interesting environment which can use de-indinacof storage devices
is the virtualized environmenie(g, when a guest OS uses a flash-based SSD as
its storage device). The virtualized environment provideth opportunities and
challenges to perform de-indirection.

With the virtualized environment, the hypervisor has bret@ntrol and more
freedom in its access to various guest states. For examplently FSDV requires
the file system to send the inode number with each block writéle the hypervisor
can acquire such information (the inode number) by peakitagthe guest memory.
With this and other similar techniques performed by the hyiger, we believe that
the guest file system and its device interface will requir@nonly small changes.

Another situation in the virtualized environment is the aédevice indirection
layer in software [46]. The major challenge and differentehis situation is to

122

provide dynamic de-indirection; the indirection table @p#or a guest can be dy-
namically allocated and changed over time. The hypervisas tan dynamically
remove a certain amount of indirection from one guest. FS®¥n initial effort
to provide such dynamism; we believe that better solutiofist ¢0 make use of
hypervisor and the virtualized environment.

8.4 Closing Words

As software and hardware are getting more complex and aky lik remain so in
the future, redundant levels of indirection can exist inngka system for different
reasons. Such excess indirection results in both memoesgad performance
overhead.

We believe that after carefully examining the cause of exdedirection, we
can remove the redundant indirection without changing deddayered structure
of an existing system. We hope that this dissertation cgnm teslearchers and sys-
tem builders by demonstrating how redundant indirectionlmaremoved. We also
hope that this dissertation serves as a hint for future sysdtesigner to be cautious
about adding another level of indirection.

Bibliography

[1] A. Modelli and A. Visconti and R. Bez. Advanced flash memogliability. In Proceedings

(2]

(3]

(4]

(5]

(6]

of the IEEE International Conference on Integrated CirdDésign and Technology (ICICDT
'04), Austin, Texas, May 2004.

K. Adams and O. Agesen. A Comparison of Software and Harévirechniques for x86 Vir-
tualization. InProceedings of the 13th International Conference on Aedtitral Support for

Programming Languages and Operating Systems (ASPLOS 3d#ttle, Washington, March
2008.

N. Agarwal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Mase, and R. Panigrahy. Design
Tradeoffs for SSD Performance. Rroceedings of the USENIX Annual Technical Conference
(USENIX '08) Boston, Massachusetts, June 2008.

N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dumse Generating Realistic Impres-
sions for File-System Benchmarking. Rroceedings of the 7th USENIX Symposium on File
and Storage Technologies (FAST '08an Francisco, California, February 2009.

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. LorchFi#e-Year Study of File-System
Metadata. InProceedings of the 5th USENIX Symposium on File and Storagendlogies
(FAST '07) San Jose, California, February 2007.

N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Ma®sand R. Panigrahy. Design
tradeoffs for ssd performance. WUSENIX 2008.

[7] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Samson. Onyx: A protoype

phase-change memory storage arrayHttStorage 2011.

[8] A. Anand, S. Sen, A. Krioukov, F. Popovici, A. Akella, A..@rpaci-Dusseau, R. H. Arpaci-

Dusseau, and S. Banerjee. Avoiding File System Micromanage with Range Writes. In
Proceedings of the 8th Symposium on Operating SystemsrDasitylmplementation (OSDI
'08), San Diego, California, December 2008.

[9] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and V. Peiialnan. Removing the costs of

[10]

[11]

[12]

indirection in flash-based ssds with nameless write$idtStorage 2010.

R. H. Arpaci-Dusseau and A. C. Arpaci-Dussea@perating Systems: Three Easy Pieces
Arpaci-Dusseau Books, 0.5 edition, 2012.

B. Tauras, Y. Kim, and A. Gupta. PSU Objected-Orientddsk based SSD simulator.
http://csl.cse.psu.edu/?q=node/321.

M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. HdrEA. Gordon, A. Liguori,
O. Wasserman, and B.-A. Yassour. The Turtles Project: Demigl Implementation of Nested

123

124

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Virtualization. InProceedings of the 9th Symposium on Operating SystemsrDarsibimple-
mentation (OSDI '1Q)Vancouver, Canada, December 2010.

S. Boboila and P. Desnoyers. Write Endurance in FlasheBr Measurements and Analysis.
In Proceedings of the 8th USENIX Symposium on File and Storagen®dlogies (FAST '10)
San Jose, California, February 2010.

S. Boboila and P. Desnoyers. Write endurance in flasredriMeasurements and analysis. In
FAST, 2010.

J. S. Bucy and G. R. Ganger. The DiskSim Simulation Envinent Version 3.0 Reference
Manual. Technical Report CMU-CS-03-102, Carnegie Mellariversity, January 2003.

E. Bugnion, S. Devine, and M. Rosenblum. Disco: Runr@ognmodity Operating Systems on
Scalable Multiprocessors. Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP '97)pages 143-156, Saint-Malo, France, October 1997.

T. Bunker, M. Wei, and S. Swanson. Ming II: A flexible diatm for nand flash-based research.
In UCSD TR CS2012-09782012.

S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, Jrifnel, S. Kleiman, C. Small, and
M. W. Storer. Mercury: Host-side Flash Caching for the Datmt€r. InProceedings of the
2012 IEEE Symposium on Mass Storage Systems and Techsd@&T 2012)April 2012.

Cade Metz. Flash Drives Replace Disks at Amazon, FaueboDropbox.
htpp://lwww.wired.com/wiredenterprise/2012/06/flagttedcenters/all/, 2012.

P. Cappelletti, C. Golla, and E. Zanofilash Memories Kluwer, 1999.

A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Guptand S. Swanson. Moneta: A high-
performance storage array architecture for next-gemgration-volatile memories. ItEEE
Micro, 2010.

F. Chen, T. Luo, and X. Zhang. CAFTL: A content-awaretilagnslation layer enhancing the
lifespan of flash memory based solid state drivesFAST, 2011.

V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, antl RArpaci-Dusseau. Consistency
Without Ordering. InProceedings of the 10th USENIX Symposium on File and Stdrage-
nologies (FAST '12)San Jose, California, February 2012.

T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lew H.-J. Song. System Software for
Flash Memory: A Survey. IfProceedings of thei 5th International Conference on Embddd
and Ubiquitous Computing (EUC '0gpages 394—404, August 2006.

Computer Systems Laboratory, SKKU. Embedded Systessdgn Class.http://csl.
skku. edu/ | CE3028S12/ Overvi ew.

J. D. Davis and L. Zhang. FRP: a nonvolatile memory resealatform targeting nand flash.
In Workshop on Integrating Solid-state Memory into the Sterdgerarchy, ASPLOS2009.

D. R. Engler, M. F. Kaashoek, and J. W. O'Toole. ExokérAe Operating System Architec-
ture for Application-Level Resource ManagementPhoceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP ;9iges 251-266, Copper Mountain Resort, Col-
orado, December 1995.

R. M. English and A. A. Stepanov. Loge: A Self-OrgangiBisk Controller. InProceed-
ings of the USENIX Winter Technical Conference (USENIX &i®2), pages 237-252, San
Francisco, California, January 1992.

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

125

Facebook. Facebook FlashCache. http://ww. git hub. coni f acebook/
fl ashcache.
Fusion-io Inc. directCache. http://ww. fusi oni 0. conl dat a- sheet s/

di rect cache.
Fusion-io Inc. ioDrive2ht t p: / / ww. f usi oni 0. cont pr oduct s/ i odri ve2.

Fusion-io Inc. ioMemory Application SDKht t p: / / www. f usi oni 0. com pr oduct s/
i omenor ysdk.

Fusion-io Inc. ioXtreme PCl-e SSD Datasheet.htt p://ww. f usi oni 0. com
i oxtrene/ PDFs/i oXt reneDS_v. 9. pdf.

E. Gal and S. Toledo. Algorithms and Data StructuresHiash Memories ACM Computing
Surveys37:138-163, June 2005.

E. Gal and S. Toledo. Algorithms and data structuredlésh memories. IMCM Computing
Surveys2005.

J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Buoy &. R. Ganger. Timing-accurate Stor-
age Emulation. IfProceedings of the 1st USENIX Symposium on File and Stoed@dlogies
(FAST '02) Monterey, California, January 2002.

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. kalai, P. H. Siegel, and J. K. Wolf.
Characterizing Flash Memory: Anomalies, Observationd, Applications. InProceedings of
MICRO-42 New York, New York, December 2009.

L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak FuafrBAND Flash Memory. In
Proceedings of the 10th USENIX Symposium on File and Stdegfenologies (FAST '12pan
Jose, California, February 2012.

H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaasseau, and R. H. Arpaci-Dusseau.
Improving file system reliability with i/o shepherding. 8DSR pages 293-306, October 2007.

A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash Trarigla Layer Employing Demand-

Based Selective Caching of Page-Level Address MappingsPraneedings of the 14th In-

ternational Conference on Architectural Support for Pragmming Languages and Operating
Systems (ASPLOS XI\Pages 229-240, Washington, DC, March 2009.

J.-Y. Hwang. F2FS: Flash-friendly file system, 2013e$anted at the Embedded Linux Con-
ference.

Intel Corp. Understanding the flash translation lay#y ¢pecification, December 1998. Appli-
cation Note AP-684.

Intel Corp. Intel Smart Response Technologyhtt p://downl oad.intel.com
desi gn/ fl ash/ nand/ 325554. pdf , 2011.

Intel Corporation. Intel X25-M Mainstream SATA Solfstate Drives.
ftp://downl oad. intel.conf design/flash/ NAND/ mai nst r ean!
mai nstream sat a- ssd- dat asheet . pdf.

W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: & fidystem for virtualized flash
storage. IFAST, 2010.

W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS: Ad-8ystem for Virtualized Flash
Storage. IProceedings of the 8th USENIX Symposium on File and Stoegf@dlogies (FAST
'10), San Jose, California, February 2010.

126

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee. A Grbaged Wear-Leveling Algorithm for
Large-Capacity Flash Memory Storage System®riiceedings of the 2007 international con-
ference on Compilers, architecture, and synthesis for elthbe systems (CASES '0Dctober
2007.

J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A Superblocls@&hFlash Translation Layer for
NAND Flash Memory. InProceedings of the 6th ACM & IEEE International conference o
Embedded software (EMSOFT '0&eoul, Korea, August 2006.

Y. Kang, J. Yang, and E. L. Miller. Efficient storage mgeaent for object-based flash mem-
ory. In Proceedings of the 18th Annual Meeting of the IEEE Inteorai Symposium on
Modeling, Analysis and Simulation of Computer and Telecomication Systems (MASCOTS
2010) August 2010.

Y. Kang, J. Yang, and E. L. Miller. Object-based scm: Aficégent interface for storage class
memories. InProceedings of the 27th IEEE Conference on Mass StoragerSysind Tech-
nologies (MSST 201,1May 2011.

A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-Mem&ased File System. IRro-

ceedings of the USENIX 1995 Winter Technical ConfereNegv Orleans, Louisiana, January
1995.

T. Kgil and T. N. Mudge. Flashcache: A nand flash memony éidche for low power web
servers. ICASES2006.

Y. Kim, B. Tauras, A. Gupta, D. M. Nistor, and B. Urgaomka-lashSim: A Simulator for
NAND Flash-based Solid-State Drives. Pmoceedings of the 1st International Conference on
Advances in System Simulation (SIMUL '0Bprto, Portugal, September 2009.

S. Kleiman. Flash on compute servers, netapp in¢dPTS 2009.

R. Koller and R. Rangaswami. 1/0O deduplication: Utitig content similarity to improve /O
performance. IFAST, 2010.

J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh. &P8: Configurable and Accurate
Clock Precision Solid State Drive Simulator. Broceedings of the Annual ACM Symposium
on Applied Computing (SAC '09%onolulu, Hawaii, March 2009.

S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swan, Arvind, , and J. Kim.
BlueSSD: An open platform for cross-layer experiments fordhflash-based ssds.Workshop
on Architectural Research Prototyping010.

S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim. FlexFS: a flégiftash file system for mic nand
flash memory. I'Usenix ATC2009.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim. LAST: Locality-Aawe Sector Translation for NAND
Flash Memory-Based Storage SysteimsProceedings of the International Workshop on Stor-
age and I/O Virtualization, Performance, Energy, Evaloatand Dependability (SPEED2008)
February 2008.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Pand H.-J. Song. A Log Buffer-Based
Flash Translation Layer Using Fully-Associative Sectoar&lation. IEEE Transactions on
Embedded Computing Systers2007.

A. Leventhal. Flash Storage Toda&CM Queue6(4), July 2008.

S.-P. Lim, S.-W. Lee, and B. Moon. FASTer FTL for EntasprClass Flash Memory SSDs.
May 2010.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

127

P. Macko, M. Seltzer, and K. A. Smith. Tracking Back Refeces in a Write-Anywhere File
System. IrfProceedings of the 8th USENIX Symposium on File and Stoegj@®logies (FAST
'10), San Jose, California, February 2010.

Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakagard Dahlia Malkhi. Differential
RAID: Rethinking RAID for SSD Reliability. IrProceedings of the EuroSys Conference (Eu-
roSys '10) Paris, France, April 2010.

Marvell Corp. Dragonfly platform family. htt p: // www. marvel | . com st or age/
dragonfly/, 2012.

J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,dam. E. Anderson. Improving the
Performance of Log-Structured File Systems with Adaptivetidds. InProceedings of the
16th ACM Symposium on Operating Systems Principles (SOBAPpages 238-251, Saint-
Malo, France, October 1997.

M. Mesnier, J. B. Akers, F. Chen, and T. Luo. Differetgid storage services. BOSR2011.

D. T. Meyer and W. J. Bolosky. A Study of Practical Dedagtion. InProceedings of the
9th USENIX Symposium on File and Storage Technologies (FE§TSan Jose, California,
February 2011.

MjM Data Recovery Ltd. Bad Sector Remappiihg.t p: / / www. ukdat ar ecovery. con!
articl es/ bad- sect or-remappi ng. ht m .

N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, &hares, and F. Trivedi. Bit error
rate in nand flash memories. Rroceedings of the 46th IEEE International Reliability Blog
Symposium (IRPS '08Phoenix, Arizona, April 2008.

D. Narayanan, E. Thereska, A. Donnelly, S. Elniketyd aa Rowstron. Migrating server
storage to SSDs: analysis of tradeoffs. Aroceedings of the EuroSys Conference (EuroSys
'09), Nuremburg, Germany, April 2009.

NVM Express. Nvm express revision 1.0t t p: / / www. nvexpr ess. or g/ i ndex.
php/ downl oad_fil e/ view 42/ 1/, July 2011.

OCZ Technologies. Synapse Cache SSDhttp://ww. oczt echnol ogy. cont
ocz- synapse- cache-sata-iii-2-5-ssd. htm.

Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less fordrgterformance: Balancing cache
size and update cost of flash memory cache in hybrid storadersg. INFFAST, 2012.

D. Patterson, G. Gibson, and R. Katz. A Case for Redunfarays of Inexpensive Disks
(RAID). In Proceedings of the 1988 ACM SIGMOD Conference on the Marnageof Data
(SIGMOD '88) pages 109-116, Chicago, lllinois, June 1988.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, Hz8nawi, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. IRON file systems. 3©SP pages 206—220, 2005.

M. Rosenblum and J. Ousterhout. The Design and Implémtien of a Log-Structured File
System.ACM Transactions on Computer Systef¥(1):26-52, February 1992.

M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A lightight, consistent and durable
storage cache. IRuroSys2012.

M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-DusseandaR. H. Arpaci-Dusseau. Getting
Real: Lessons in Transitioning Research Simulations irdodivare Systems. IRroceedings

of the 11th USENIX Symposium on File and Storage Technal¢BkST '13) San Jose, Cali-
fornia, February 2013.

128

[80] M. She.Semiconductor Flash Memory ScalirighD thesis, University of California, Berkeley,
2003.

[81] G. Soundararajan, V. Prabhakaran, M. Balakrishnagh,TaWobber. Extending SSD Lifetimes
with Disk-Based Write Caches. IRroceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST '1@®an Jose, California, February 2010.

[82] D. Spinellis. Another Level of Indirection. In A. Orammd G. Wilson, editorsBeautiful
Code: Leading Programmers Explain How They Thickapter 17, pages 279-291. O'Reilly
and Associates, 2007.

[83] Sun Microsystems. Solaris Internals: FileBendftt p: // ww. sol ari si nt ernal s.
com wi ki /i ndex. php/ Fi | eBench.

[84] Sun-Online. Sun Storage F5100 Flash Ardayt p: / / www. sun. com F5100.
[85] S.S. TechnologyDonovan AndersanMindshare Press, 2007.

[86] The OpenSSD Project. Indilinx Jasmine Platforimt t p: / / www. openssd- pr oj ect .
org/ w ki / The_OpenSSD_Pr oj ect .

[87] The OpenSSD Project. Participating Instituthst p: / / ww. openssd- pr oj ect . or g/
wi ki / Jasnmi ne_QpenSSD _Pl atform

[88] VLDB Lab. SKKU University, Koreahtt p: / /| db. skku. ac. kr.

[89] R. Wang, T. E. Anderson, and D. A. Patterson. Virtual {Based File Systems for a Pro-
grammable Disk. InProceedings of the 3rd Symposium on Operating Systems rDasit)
Implementation (OSDI '99New Orleans, Louisiana, February 1999.

[90] Western Digital. NAND Evolution and its Effects on SwlState Drive (SSD) Useable Life.
http://www.wdc.com/WDProducts/SSD/whitepapers/ enNAEvolution.0812.pdf, 2009.

[91] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. Th® KAutoRAID Hierarchical Storage
System.ACM Transactions on Computer Systeti¥(1):108-136, February 1996.

[92] D. Woodhouse. JFFS2: The Journalling Flash File Systeersion 2, 2003. htt p:
/lsources.redhat.conljffs2/jffs2.

[93] YAFFS. YAFFS: A flash file system for embedded use, 20@6t p: / / www. yaf fs. net /.

[94] Yiying Zhang and Andrea C. Arpaci-Dusseau and Remzi Hha&i-Dusseau. Warped mirrors
for flash. InProceedings of the 29th IEEE Conference on Massive Data§ofMSST '13)
Long Beach, California, May 2013.

[95] Yiying Zhang and Leo Prasath Arulraj and Andrea C. Aigaaosseau and Remzi H. Arpaci-
Dusseau. De-indirection for flash-based ssds with namelesss. In Proceedings of the
10th USENIX Symposium on File and Storage TechnologiesT(F%S, San Jose, California,
February 2012.

[96] Youyou Lu and Jiwu Shu and Weimin Zheng. Extending tlfetitne of flash-based storage
through reducing write amplification from file systems. Rroceedings of the 10th USENIX
Symposium on File and Storage Technologies (FAST 9a&) Jose, California, February 2013.

[97] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. HpAci-Dusseau. De-indirection for
Flash-based SSDs with Nameless WritesPioceedings of the 10th USENIX Symposium on
File and Storage Technologies (FAST "13pn Jose, California, February 2012.

[98] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Botikeck in the Data Domain Dedu-
plication File System. IrProceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST '08pan Jose, California, February 2008.

