WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Scale and Performance
In A

Filesystem Semi-Microkernel

ling Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan*, Andrea C.Arpaci-Dusseau, Remzi H.Arpaci-Dusseau

University of Wisconsin — Madison
Rutgers University™

HW is Fast - but SW Appears Slow

How to close the HW-SW performance gap in storage stack!?

Latenc
| 3us Y

L

~ system call,
~_interrupt handling,
indirect cache pollution etc.

ety
O

6.5us

- EXPRESS)®

raw device

ats

Barroso et. al, Attack of the Killer Microseconds, 2017/

Existing Solutions

Libraries directly access the device
« E.g., Strata (SOSP-17), SplitFS (SOSP-19)

* Complicate the device access isolation and sharing

Move Filesystems to the device
* E.g., DevFS (FAST-18), CrossFS (OSDI-20)
* “Smarter-HW” assumption and unknown HW constraints

user space

App

App
ib-FS

Lib-FS 1 [L

g

kernel-FS

kernel space

user space

App
Lib

App
Lib

Device +

Existing Solutions

Libraries access the device

* “Smarter-HW” assumption a known HW constraints

Realistic Assumption: Ultra-fast Devices and NVMe protocol

user space

App

App
ib-FS

Lib-FS 1 [L

g

kernel-FS

kernel space

user space

App
Lib

App
Lib

Device +

Our Approach: Filesystem Semi-Microkernel

What is a “Semi-Microkernel’?
* An OS subsystem that runs as a user-level process
* Works in tandem with the monolithic kernel

user space
App App
Lib Lib

FS

Device

kernel space

Other OS
Subsystems

Our Approach: Filesystem Semi-Microkernel

user space

What is a “Semi-Microkernel™? Aop | [App
* An OS subsystem that runs as a user-level process Lib Lib
* Works in tandem with the monolithic kernel

FS

Device

Prior networking semi-microkernels
* Snap (SOSP-19),TAS (Eurosys-19)

Possible for storage now
* User-level device drivers

kernel space

Other OS
Subsystems

Benefits of Filesystem Semi-Microkernels

user space kernel space
Development and Deployment Velocity App | [App
* Developing tools and libraries for “application” code Lib Lib Other OF
 Rapidly adopt hardware and tailor for applications — Subsystems
Performance

* Optimize for device access (avoid the kernel SW overhead)
* Scale filesystem independently from applications

Simplify the sharing and permission
* Untrusted applications cannot access the device

Challenges

Base Performance
* Inter-process communication
e Device access

Random Read

Lib <

\ 4

Challenges

Base Performance
* Inter-process communication
e Device access

Random Read

Lib <

Challenges

Base Performance
* Inter-process communication
e Device access

Random Read

Lib <

Challenges

Random Read

Lib <

Base Performance
* Inter-process communication
e Device access

Scale up and down
* Dynamic and heterogeneous application demands
* Invest just-right amount of CPU

* Fully utilize the devices ~
: } simultaneously
* Keep up with the apps

Challenges

Random Read

Base Performance
* Inter-process communication

e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands
* Invest just-right amount of CPU

* Fully utilize the devices ~
: } simultaneously
* Keep up with the apps

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands

* Invest just-right amount of CPU
* Fully utilize the devices

Scan

° Keep up W|th the aPPS } SImU|taneous|y

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands

* Invest just-right amount of CPU
* Fully utilize the devices

Scan

° Keep up W|th the aPPS } SImU|taneous|y

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands
* Invest just-right amount of CPU

* Fully utilize the devices

Scan

, simultaneousl Burst Hotk
* Keep up with the apps } 4 urst Hotkeys

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down

* Dynamic and heterogeneous application demands o
* Invest just-right amount of CPU

* Fully utilize the devices ~

* Keep up with the apps } simultaneouisly Burst Hotkeys

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands

* Invest just-right amount of CPU
* Fully utilize the devices

Scan

° Keep up W|th the aPPS } SImU|taneous|y

Challenges

Random Read

Base Performance
* Inter-process communication
e Device access Append

Scale up and down
* Dynamic and heterogeneous application demands

* Invest just-right amount of CPU
* Fully utilize the devices

Scan

° Keep up W|th the aPPS } SImU|taneous|y

uFS: A Filesystem Semi-microkernel

Build for performance and scalability from scratch

* Fully functional with crash consistency guaranteed by journaling
Ensure lock-free access for main data structures
Dynamically partition inodes to filesystem threads

Adapt # of uFS cores according to filesystem demands
Implemented by C++ (~35K LoC)

uFS offers good base performance and excellent scalability
* 1.2X-4.6X throughput compared to ext4 when running 10 LevelDB instances

Outline

Introduction

uFS Architecture
Design
Evaluation

Conclusion

10

uFS Architecture

Fd [1]2]3]4]5] i8]a!vFd
Yy

FH|f1|f2

F

I
ue

=

ile Cache

uLib

threadl thread?2

:
8

init() exit()

YvY

OS Kernel

@ App-Wi MsgRing
@ Shared Mem

Pinned Mem

worke rg \\\\
N\
N\

- O
Qpair =
uServer

11

uFS Architecture

App-1 App-2
uServer _ -
: , : Fd [1]2[3]4[5] i8}9ivFd uL
* Directly accesses the device via NVMe commands o T T
* Non-blocking: polling the device - 5 _ threadl _ _ thread? _
|
* Manage pinned memory as block buffer cache & | !F”e Cache | @ ! @ | @
| |
| 21l 8
init() exit()
OS Kernel
@ App-Wi MsgRing
@ Shared Mem Opai

N\ inne em . —

uServer

11

uFS Architecture

uServer

* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)
* Open-lease management (vFd)

Fd
FH

App-1 App-2

[1]2]3]4]5] i8]o!
LK 2R T STl
f1f2[f3

& File Cache

uLib

threadl thread?2

:
0

init() exit()

OS Kernel

O

Y

App-Wi MsgRing
Shared Mem

Pinned Mem

YvY

iy

S~
S~
Se
~
S
~

workerg

Q
\\
=

Qpair =

Devices

uServer

11

uFS Architecture

uServer

* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)
* Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

App-1 App-2

Fd
FH

[1]2]3]4]5] [s]o!
Yy

f1|f2

I
ue

=

File Cache

uLib

threadl thread?2

7

O\

init() exit()

OS Kernel

Pinned Mem

2

ol o

S~
~
-
~
~
~
S
~

workers
Qpair E
uServer

12

uFS Architecture

uServer
* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)

* Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

uLib e uServer
* Control: shared-mem IPC (cache-line-size message)

Fd
FH

[1[2[3]4
Yy

f1|f2

I
ue

F

c=alnis

ile Cache

uLib

threadl thread?2

App-2

init()

exit()

OS Kernel

YvY

O\

Pinned Mem

Ss
S
-~

.
Qpair =

Devices

uServer

12

uFS Architecture

uServer — .
: L Fd [1]2[3]4]5] is]oivFd uLib
* Directly accesses the device via NVMe commands X

FH[f1]f2]f3] ...

* Non-blocking: polling the device P threadl . threadz

 Manage pinned memory as block buffer cache & | !Fne Cache
uLib

* POSIX-API

 App-integrated file cache (lease-based) R N R R .

* Open-lease management (vFd) 0S Kernel g Work;‘%
The OS kernel only involves for initial S

h nti ion (fs ini App-Wi MsgRing N\ .
authentication (fs_init) Q) s LB

. \ | pair mm
uLib = uServer =

* Control: shared-mem IPC (cache-line-size message) uServer

* Data: customized malloc in uLib

* ulLib shares pages with uServer 19

uFS Architecture

. . App-1 App-2
uServer: single worker is not enough |—————= n
. . Fd [1]2[3[4]5] i8i9ivFd Ut
* More computing power to saturate device HTFTRTT T
* In-mem op capacity limited by one core s P S - Bl
& ! !File Cache : @ :: @ : @
I I I
| A I /s | ’75
uServer — multiple workers —E el | V4
* Scalable by design: avoid sharing inse) | | exico éﬂ@& ‘@@i@

NS S
OS Kernel WO% Wlé W23
P NN A
@ App-Wi MsgRing

@ Shared Mem - [|
] . .
-Qpalr —

N\ inne em c

uServer

13

uFS Architecture

. . App-1 App-2
uServer: single worker is not enough | ——— —
_ . Fd [1]2[3[4]5] i8i9ivFd Ut
* More computing power to saturate device HTFTRTT T
* In-mem op capacity limited by one core v -l e
& File Cache : @ :: @ : @
6&] | E I 5 I 5
. [;) o/ [o7
uServer — multiple workers e el | A
e Scalable by design: avoid sharing init() | | extt0 éﬂ@& ‘@@i@
* Each worker has several private data S P
OS Kernel WO le WZE
structures RS 1M
* [in-mem] block buffer cache €D hopwisgring
* [in-mem] data bitmaps @ Shared 1 a Y J
. . . . reeTem — == (Dpair =
HW gpair to submit device requests N Finned Mem |¢
uServer

private J| private Lprivate
data? ™ data” ™ data

13

uFS Architecture

. . App-1 App-2
uServer:single worker is not enough |—————— n
. . Fd [1[2[3[4]5] [819ivrd .

* More computing power to saturate device cHIETRTST T

* In-mem op capacity limited by one core v -l e

File Cache : @ :: @ : @
I I I

el R AL

uServer — multiple workers b i /A erve
* Scalable by design: avoid sharing init() | | exit
* Each worker has several private data > N s
OS Kernel WO le W23
structures -—--G1-
* [in-mem] block buffer cache € appwivisgring
* [in-mem] data bitmaps @ Shared Mo o y J
* HW gpair to submit device requests N Finned Mem |$
* Each App-W_{i} has separate message ring ! Server
* Threads in one app will share the ring private J| private LP';;’::GJ

aswng 13

Design Overview

Design Overview

Data parallelism for scalability
* Shared-nothing architecture
* Divide filesystem states and data into threads

14

Design Overview

Data parallelism for scalability
* Shared-nothing architecture
* Divide filesystem states and data into threads

Runtime Inode Ownership

14

Design Overview

Data parallelism for scalability
* Shared-nothing architecture
* Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
* Data partitioning must be dynamic
* Decides number of cores uFS needs

Runtime Inode Ownership

14

Design Overview

Data parallelism for scalability Runtime Inode Ownership
* Shared-nothing architecture
* Divide filesystem states and data into threads

The dynamic nature of filesystem workloads Dynamic Load Management
* Data partitioning must be dynamic * Load balancing
] e Core allocation
* Decides number of cores uFS needs

Design Overview

Data parallelism for scalability Runtime Inode Ownership
* Shared-nothing architecture
* Divide filesystem states and data into threads

The dynamic nature of filesystem workloads Dynamic Load Management

* Data partitioning must be dynamic * Load balancing
] e Core allocation
e Decides number of cores uFS needs

Designs for essential filesystem features

* Performance and scalability in a holistic solution

* Dentry cache, permission checking, etc.
* Scalable journaling for crash consistency

Design Overview

Data parallelism for scalability
* Shared-nothing architecture
* Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
* Data partitioning must be dynamic
* Decides number of cores uFS needs

Designs for essential filesystem features

* Performance and scalability in a holistic solution

* Dentry cache, permission checking, etc.
* Scalable journaling for crash consistency

Runtime Inode Ownership

Dynamic Load Management
* Load balancing
e Core allocation

Non-blocking Shared Structures

14

Runtime Inode Ownership

Each group of inodes is exclusively accessed by one worker

* No need for synchronization
W0 WI W2 W3

@
Decouple the namespace and the ownership
* Inodes in one directory can be owned by two workers SN

‘R AR

Asymmetric Workers o0 c0000

* A primary worker (WO0) O Directory Inode
* Owns all the directory inodes: handle all the directory ops @ File Inode

* Default owner of all the file inodes
* Coordinates the inode reassignment protocol through message passing

* Secondary workers: file ops
15

Runtime Inode Ownership

Each group of inodes is exclusively accessed by one worker

* No need for synchronization
I W2 W3

2

WO

Decouple the namespace and the ownership
* Inodes in one directory can be owned by two workers

',3\

Asymmetric Workers o0 o

* A primary worker (W0) O Directory Inode
* Owns all the directory inodes: handle all the directory ops @ File Inode
* Default owner of all the file inodes
* Coordinates the inode reassignment protocol through message passing

* Secondary workers: file ops
15

Runtime Inode Ownership

Each group of inodes is exclusively accessed by one worker

* No need for synchronization
W0 WI W2 W3

3118

Decouple the namespace and the ownership
* Inodes in one directory can be owned by two workers SN
© ?\
Asymmetric Workers @0
* A primary worker (W0) O Directory Inode
@ File Inode

* Owns all the directory inodes: handle all the directory ops
* Default owner of all the file inodes
* Coordinates the inode reassignment protocol through message passing

* Secondary workers: file ops
15

Runtime Inode Ownership

Each group of inodes is exclusively accessed by one worker

* No need for synchronization
W0 WI W2 W3

©
Decouple the namespace and the ownership ©
* Inodes in one directory can be owned by two workers SN
© ?\
Asymmetric Workers @@
* A primary worker (W0) O Directory Inode
@ File Inode

* Owns all the directory inodes: handle all the directory ops
* Default owner of all the file inodes
* Coordinates the inode reassignment protocol through message passing

* Secondary workers: file ops
15

Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

W0 WI W2 W3 W4

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
@ File Inode

LoadMng
+/- core
Rebalance

16

Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

W0 WI W2 W3 W4

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
@ File Inode

LoadMng
+/- core
Rebalanct

16

Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

LB:50%=>WIJWO WI1 W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
LoadMng N @ File Inode

+/- core
Rebalanct
(X X) 16

Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

which inodes
to migrate?

=>WIJWO WI1 W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
N @ File Inode

LB: 50%

LoadMng
+/- core
Rebalanct

Dynamic Load Management: Algorithms

Load balancing
* Towards minimizing congestion on each core

Core allocation
* Meets a per-core CPU utilization goal

* Answer the “what if” questions by algorithmically emulating the load balancing results
* Load balancing as a black-box
* What if [add one core | no change | remove one core]

which inodes
to migrate?

W0 WI W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
LoadMng N @ File Inode

[:+/- core
Rebalancl
000 17

LB: 50% => wl

Employ Non-blocking Shared Structures Judiciously

...... hashmap
Dentry Cache and Permission Checking T Ta :
* Recursive HashMap //bﬂﬂ

* Only the primary worker can update and all can read
* Leverage industrial-quality lock-free data structures M-

18

Employ Non-blocking Shared Structures Judiciously

...... hashmap.....
Dentry Cache and Permission Checking T Ta :
R R r i H hM 'oon:y//o
ecursive .as ap b nn

* Only the primary worker can update and all can read -
* Leverage industrial-quality lock-free data structures M-

Global Logic Journal that allows maximal parallelism

* Each worker can initialize journal transactions independently for owned inodes
o Negllglble overhead added atomically allocate journal blocks

* Recording logic modification is lightweight \

* Minimal critical section when reserving journal blocks Tl e

Circular Buffer

Evaluation

uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel

uFS dynamically scales to match demand
* Load Balancing Experiments
* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

Platform
* Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU

* Linux 5.4,SPDK 18.04

19

Evaluation

uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel

uFS dynamically scales to match demand
* Load Balancing Experiments
uFS performs and scales well with real applications
More detailed results in our paper

Platform
* Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU
* Linux 5.4, SPDK 18.04

20

Determining Number of uServer Cores

Ty 1 > App Start
0.81 0.81
0.61 0.61 ~ App Lower Load
c 0.41m, 0.41 ® App Stop
o 0.2’ 0.2'
= % 2 4 6 8 10 12 9% 2 4 6 8 10 12
N 1 17
= 0.8 0.81
et
= 0.6 0.6
2 0.4- 0.4 Each worker’s effective
O 92 0.2 CPU utilization reflects
0 : : : : : | 0 : : : ‘ : , i
) ,
E 19 2 4 6 8 10 12 1() 2 4 6 8 10 12 an app’s f||esystem
© 0.8 0.8 demand
D 0.6/ 0.6
(=
L 0.4 0.4
- i i
%5 0.2 0.2
X 0 0
= 0 2 4 6 8 10 12 0 2 4 6 8 10 12
O 1 1
=08 0.81
0.6 0.6
0.4 0.4
0.2 0.2
05 3 2 8 8 10 12 % 3) 6 8 10 12 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling 21

Determining Number of uServer Cores

Ty 1 > > App Start
0.81 0.81
0.61 0.61 ~ App Lower Load
c 0.41m, 0.41 ® App Stop
o 0.2’ 0.2'
= % 2 4 6 8 10 12 9% 2 4 6 8 10 12
N 1 17
= 0.8 0.81
et
= 0.6 0.6
2 0.4- 0.4 Each worker’s effective
O 92 0.2 CPU utilization reflects
0 : : : : : | 0 - : : ‘ : , i
) ,
E 19 2 4 6 8 10 12 1() 2 4 6 8 10 12 an app’s f||esystem
© 0.8 0.8 demand
D 0.6/ 0.6
(=
L 0.4 0.4
- i i
%5 0.2 0.2
X 0 0
= 0 2 4 6 8 10 12 0 2 4 6 8 10 12
O 1 1
=08 0.81
0.6 0.6
0.4 0.4
0.2 0.2
05 3 2 8 8 10 12 % 3) 6 8 10 12 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling 22

c

PU Utilizatio

Worker Effective C

1
0.8

0.6

0.4~

0.21

>

1
0.8+
0.6+
0.4+
0.21

Determining Number of uServer Cores

>

%
.

o
(o)

0.6+

0.21

0.8

0.6
0.4+
0.21

0.8
0.6
0.4+
0.2

0

15
0.8
0.6+
0.4
0.21

0

0

0

» App Start

~ App Lower Load
® App Stop

Each worker’s effective

CPU utilization reflects

an app’s filesystem
demand

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

23

Determining Number of uServer Cores

c

PU Utilizatio

Worker Effective C

1

1

» App Start

~ App Lower Load
® App Stop

Each worker’s effective
CPU utilization reflects

12 an app’s filesystem
demand

| 2 >

0.8] 0.8]
0.6 0.6
0.4-~L‘ 0.4
0.2 0.2

?p 10 12 ?o 2 4 6 8 10 12
0.8 0.8]
0.6 0.61
0.4 0.4
0.2 0.2

?_o ' 1 10 12 ?o 2 4 6 8 10
0.81 0.8]
0.61 0.6]
0.47 0.41
0.2 0.2

?o 10 12 ?p 2 4 6 8 10 12
0.81 0.8]
0.61 0.61
0.4 0.4
0.2 0.2

% 10 12 % 2 4 6 8 10

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

24

Determining Number of uServer Cores

c

PU Utilizatio

Worker Effective C

1

1

» App Start

~ App Lower Load
® App Stop

Each worker’s effective
CPU utilization reflects

12 an app’s filesystem
demand

> >

0.8 0.8
0.6 0.6
0.4"'|41 R . 0.4‘
0.21 0.21

0 ; :) , - : : : -

0 2 4 10 12 0 2 4 6 8 10 12
17 > 17
0.8 0.81
0.6 0.6
0.4+ 0.4
0.2 0.21

%% 2 4 10 12 % 5 4 6 8 10

17 > 17
0.8 0.8
0.6 0.6
0.47 0.41
0.2 0.2

0 - : . 0 , ‘ - : : ‘
;0 2 4 10 12 0 2 4 6 8 10 12
0.8 0.8
0.6 0.6
0.41 0.41
0.21 0.21

% 2 4 10 12 % 2 a4 6 8 10

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

25

Determining Number of uServer Cores

c

PU Utilizatio

Worker Effective C

» App Start

~ App Lower Load
® App Stop

Each worker’s effective
CPU utilization reflects

12 an app’s filesystem
demand

1 > 1 >
0.8+ 0.8+
0.6 0.6+
0'4_1 * e 5% 0.4‘
0.21 0.2
0 , ' - , 0 , - - - - '
0 2 4 6 10 12 0 2 4 6 8 10 12
17 > 17
0.8 0.8
0.6+ 0.6
0.4 0.4
0.2 0.21
0 , ' - , 0 - ' ' ‘ '
0 2 4 6 10 12 0 2 4 6 8 10
17 > 17
0.8+ 0.8+
0.6+ 0.6
0.4 0.4
0.2+ 0.2
0 ‘ ' 0 ! ‘ ; ' - ‘
1(_) 2 4 6 10 12 10 2 4 6 8 10 12
0.8+ 0.8+
0.6+ 0.6+
0.4/ 0.41
0.2+ I 0.2
0 ‘ - - ' 0 i ' ! ' '
0 2 4 6 10 12 0 2 4 6 8 10

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

26

Determining Number of uServer Cores

c

PU Utilizatio

Worker Effective C

» App Start

~ App Lower Load
® App Stop

Each worker’s effective
CPU utilization reflects

12 an app’s filesystem
demand

1 > 1 >
0.8+ 0.8+
0.6 0.6
0'4_1-1 e 5% 0.4‘
0.2 0.21
0 : : : : :) : : : : : .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
17 > 17
0.8 0.8
0.6+ 0.6
0.4 0.4
0.2 0.2
0 : : : . 0 : : : ‘ :
0 2 4 6 8 10 12 0 2 4 6 8 10
17 > 17
0.8+ 0.8+
0.6 0.6
0.4 0.4
0.2+ 0.2
0 : .0 : ‘ : : : ‘
10 2 4 6 8 10 12 .0 2 4 6 8 10 12
| 2
0.8+ 0.8+
0.6+ 0.6+
0.41 0.41
0.21 0.2
0 ‘ : I- : : .0 : : : : :
0 2 4 6 8 10 12 0 2 4 6 8 10

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

27

c

PU Utilizatio

Worker Effective C

1
0.8

0.6

0.4~

0.21

>

1
0.8+
0.6+
0.4+
0.21

Determining Number of uServer Cores

>

%
.

o
(o)

0.6+

0.21

0.8
0.6
0.4+
0.21

0

[0
0.8
0.6-
0.44

0.2

N
o)}

0

15
0.8
0.6+
0.4
0.21

0

0

0

» App Start
~ App Lower Load
® App Stop

Each worker’s effective

CPU utilization reflects

an app’s filesystem
demand

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

28

Determining Number of uServer Cores

. ; > . ; > » App Start

0.61 0.61 ~ App Lower Load
c 0.41m, e » - 0.41 ® App Stop
o 0.2’ 0.2'
® % 5 4 6 8 10 12 % 5 p 6 8 10 12
N 1 > ! >
= 0.8 0.81
et
= 0.6 0.6
2 0.4/ 0.4 Each worker’s effective
O 92 0.2 CPU utilization reflects
e 2 2 2 3 8 o 13 00 3 2 3 8 10 12 an app’s filesystem
i > \ > N
0 0.8 0.8 ’ demand
Qo6 0.6
(=
L 0.4 0.4
- i i
g 0.2 55
5 ‘1’9 3 4 6 8 10 12 fp 3 4 6 5 10 12

> - > =

= 0.8 0.81

0.6 0.6

0.41 0.4

0.2 0.2

% 3) 6 5 10 12 % 3 4 5 8 1o~ 12 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling 29

Determining Number of uServer Cores

LA 1 > > App Start

0.81 0.81

0.61 0.61 . App Lower Load
c 0.41m, e & PR 0.41 ® App Stop
o 0.2’ 0.2'
= % 3 4 6 8 10 12 % 3 4 6 8 10 12
N 1 > 1 >
= 0.8 0.81
= 0.61 0.6
2 0.4/ 0.4 Each worker’s effective
o %2 0.2 CPU utilization reflects
d>) OQ 2 4 6 8 10 12 OQ 2 4 6 8 10 12 an app’s filesystem
= > o ! > S
t 0.8 0.8 “ demand
Qo6 0.6
(=
L 0.4 0.4
- i i
%5 0.2 0.2
X 0 | - - ! : | 0 , ‘ . . : ‘
5 0 2 4 6 8 10 12 0 2 4 6 8 10 12
; > (] | 2 ()

0.81 0.81

0.6 0.6

0.4 0.4

0.2 0.2

% 3 y 6 8 0 12 % 3 3 8 8 10 12 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling 50

c

PU Utilizatio

Worker Effective C

1
0.8

0.6

0.4~

0.21

>

-

1
0.8+
0.6+
0.4+
0.21

Determining Number of uServer Cores

>

%
.

o
(o)

0.6+

0.21

0.8
0.6

0.4+
0.21

0.8
0.6
0.4+
0.2

N
o)}

0
15
0.8
0.6+
0.4
0.21

0

0

0

» App Start

~ App Lower Load
® App Stop

Each worker’s effective

CPU utilization reflects

an app’s filesystem
demand

13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

31

Determining Number of uServer Cores

c

PU Utilizatio

Worker Effective C

1 1 » App Start
08l » ® sl > = i
0.61 0.61 . App Lower Load
0.4~ — = 0.4
0.2- J“-—_'L__.l 0.2- S Appstop
0 . , .0 , - .
[0 4 6 8 10 120 2 4 6 8 10 12
0.8 > P S
0.6/ 0.6/
0.4 0.4 Each worker’s effective
0.2 I 0.2 CPU utilization reflects
OQ : 4 6 8 10 12 OQ 2 4 6 8 10 12 an app’s filesystem
1 > o 1 > o
0.81 0.81 demand
0.6/ 0.6/
0.41 0.41
0.2+ 0.2
0 - , .0 , . ‘
;0 4 6 8 10 12 0 2 4 6 8 10 12
> o > (M)
0.8] 0.8]
0.6/ 0.6/
0.41 0.41
0.2+ 0.2
% 4 6 8 10 12 % 2 4 6 8 10 13 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU

Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

32

Determining Number of uServer Cores

1 1

» App Start
0.8 S 0.8 > \Y
0.6 0.6 . App Lower Load
0.4, — -~ 0.41
G 02 J“"‘L_.l 0.2, S App Stop
©

2 3 4 5 6 7 8 9 10 11 12 (sec)

one worker per app - dynamic core allocation

= 0 2 4 6 8 10 12 0 2 4 6 8 10 12
o 1 ‘ 1 > o
= 0.8 0.81

0.61 0.6

0.41 0.4

0.2 0.2

% 5 4 6 8 10 12 % 5 4 6 8 10 12 Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling =

Core Allocation Experiments

8 workloads: each changes one factor by N steps along the time
* Factor example: think-time, data screw degree, request size
* uFS delivers between 91% to 98% throughput of Max
* uFS controls number of cores as needed

 —> Max: allocate one worker per app Max: uses 6 cores

©

= 6 t

S @

3 S48 -

=) et 46 4.3

= ‘S 3.6

2 * 3.6 2334
e o :

— o 2.4

© © 2.4

4] © 2.2

N 212

N > 1.

© <

£

S 0

z a0 a1 b-0 b1 c0 c1 d-0 d-1 a0 a1 b-0 b-1 c0 c1 d-0 d-1

Each workload contains 6 clients

34

—_

Throughput

LevelDB: uFS Performs and Scales Well with Real Apps

fillse fillrand csb-a csb-b csb-c csb-d csb-e csb-f
3M 9 4M Y y Y y Y y 2M y 500K y Y y
... ¥an0s
o+ o o o o o o o Sy
12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910
write-only write-only write-heavy read-heavy read-only read-latest range-heavy read-modify-write
— uFS ext4

uFS can scale much better than ext4
uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

—_

Throughput

LevelDB: uFS Performs and Scales Well with Real Apps

ycsb-b ycsb-c ycsb-d ycsb-e

fillrand ycsb-a
Y

1M 1M 2M 500K

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910
write-only write-only write-heavy read-heavy read-only read-latest range-heavy read-modify-write

— uFS ext4

uFS can scale much better than ext4
uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

—_

Throughput

LevelDB: uFS Performs and Scales Well with Real Apps

¥ Number of cores (when #app=10)

4 8 6 5

fillrand ycsb-a
Y

M ycsb-b ™ ycsb-c oM ycsb-d 500K ycsb-e

12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910
write-only write-only write-heavy read-heavy read-only read-latest range-heavy read-modify-write

— uFS - ext4

uFS can scale much better than ext4
uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

37

Conclusion

uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

* Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
* Performs and scales well under various workloads
* Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/

38

https://research.cs.wisc.edu/adsl/Software/uFS/

Conclusion

uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

* Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
* Performs and scales well under various workloads
* Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/

Thank you!

38

https://research.cs.wisc.edu/adsl/Software/uFS/

