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HW is Fast - but SW Appears Slow

How to close the HW-SW performance gap in storage stack!?
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Existing Solutions

Libraries directly access the device
« E.g., Strata (SOSP-17), SplitFS (SOSP-19)

* Complicate the device access isolation and sharing

Move Filesystems to the device
* E.g., DevFS (FAST-18), CrossFS (OSDI-20)
* “Smarter-HW” assumption and unknown HW constraints
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Existing Solutions

Libraries access the device

* “Smarter-HW” assumption a known HW constraints

Realistic Assumption: Ultra-fast Devices and NVMe protocol
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Our Approach: Filesystem Semi-Microkernel

What is a “Semi-Microkernel’?
* An OS subsystem that runs as a user-level process
* Works in tandem with the monolithic kernel
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Our Approach: Filesystem Semi-Microkernel

user space

What is a “Semi-Microkernel™? Aop | [ App
* An OS subsystem that runs as a user-level process Lib Lib
* Works in tandem with the monolithic kernel

FS

Device

Prior networking semi-microkernels
* Snap (SOSP-19),TAS (Eurosys-19)

Possible for storage now
* User-level device drivers
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Benefits of Filesystem Semi-Microkernels

user space kernel space
Development and Deployment Velocity App | [ App
* Developing tools and libraries for “application” code Lib Lib Other OF
 Rapidly adopt hardware and tailor for applications — Subsystems
Performance

* Optimize for device access (avoid the kernel SW overhead)
* Scale filesystem independently from applications

Simplify the sharing and permission
* Untrusted applications cannot access the device




Challenges

Base Performance
* Inter-process communication
e Device access
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uFS: A Filesystem Semi-microkernel

Build for performance and scalability from scratch

* Fully functional with crash consistency guaranteed by journaling
Ensure lock-free access for main data structures
Dynamically partition inodes to filesystem threads

Adapt # of uFS cores according to filesystem demands
Implemented by C++ (~35K LoC)

uFS offers good base performance and excellent scalability
* 1.2X-4.6X throughput compared to ext4 when running 10 LevelDB instances
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uFS Architecture
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uFS Architecture
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uFS Architecture

uServer

* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)
* Open-lease management (vFd)
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uFS Architecture

uServer

* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)
* Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)
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uFS Architecture

uServer
* Directly accesses the device via NVMe commands
* Non-blocking: polling the device
* Manage pinned memory as block buffer cache

uLib
* POSIX-API
* App-integrated file cache (lease-based)

* Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

uLib e uServer
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uFS Architecture

uServer — .
: L Fd [1]2[3]4]5] is]oivFd uLib
* Directly accesses the device via NVMe commands X
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* ulLib shares pages with uServer 19



uFS Architecture
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uFS Architecture
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uFS Architecture
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Design Overview

Data parallelism for scalability
* Shared-nothing architecture
* Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
* Data partitioning must be dynamic
* Decides number of cores uFS needs

Designs for essential filesystem features

* Performance and scalability in a holistic solution

* Dentry cache, permission checking, etc.
* Scalable journaling for crash consistency

Runtime Inode Ownership

Dynamic Load Management
* Load balancing
e Core allocation

Non-blocking Shared Structures
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Runtime Inode Ownership

Each group of inodes is exclusively accessed by one worker

* No need for synchronization
W0 WI W2 W3

@
Decouple the namespace and the ownership
* Inodes in one directory can be owned by two workers SN

‘R AR

Asymmetric Workers o0 c0000

* A primary worker (WO0) O Directory Inode
* Owns all the directory inodes: handle all the directory ops @ File Inode

* Default owner of all the file inodes
* Coordinates the inode reassignment protocol through message passing

* Secondary workers: file ops
15
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Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

W0 WI W2 W3 W4

@ Primary Core
@ Active Core
@ Unactive Core

O Directory Inode
@ File Inode

LoadMng
+/- core
Rebalance
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Dynamic Load Management

Separate load managing thread (LoadMng)
* Periodically gathers load stats from each worker (a monitoring window)
* Decides per-worker [load goal] = Informs each worker the desired goal to achieve
* Decides number of cores =» (De)activates cores

Worker invokes inode reassignment

* Tracks per-inode stats
* Given [load goal], decides which groups of inodes to be re-assigned

which inodes
to migrate?

=>WIJWO WI1 W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
N @ File Inode

LB: 50%

LoadMng
+/- core
Rebalanct




Dynamic Load Management: Algorithms

Load balancing
* Towards minimizing congestion on each core

Core allocation
* Meets a per-core CPU utilization goal

* Answer the “what if” questions by algorithmically emulating the load balancing results
* Load balancing as a black-box
* What if [add one core | no change | remove one core]

which inodes
to migrate?

W0 WI W2 W3 W4

@ @ Primary Core

@ Active Core
@ Unactive Core

O Directory Inode
LoadMng N @ File Inode

[:+/- core
Rebalancl
000 17
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Employ Non-blocking Shared Structures Judiciously

...... hashmap
Dentry Cache and Permission Checking T Ta :
* Recursive HashMap //bﬂﬂ

* Only the primary worker can update and all can read
* Leverage industrial-quality lock-free data structures M-

18



Employ Non-blocking Shared Structures Judiciously

...... hashmap.....
Dentry Cache and Permission Checking T Ta :
R R r i H hM 'oon:y//o ............
ecursive .as ap b nn

* Only the primary worker can update and all can read -
* Leverage industrial-quality lock-free data structures M-

Global Logic Journal that allows maximal parallelism

* Each worker can initialize journal transactions independently for owned inodes
o Negllglble overhead added atomically allocate journal blocks

* Recording logic modification is lightweight \

* Minimal critical section when reserving journal blocks Tl e

Circular Buffer




Evaluation

uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel

uFS dynamically scales to match demand
* Load Balancing Experiments
* Core Allocation Experiments

uFS performs and scales well with real applications
* LevelDB and YCSB workloads

Platform
* Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU

* Linux 5.4,SPDK 18.04
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Evaluation

uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel

uFS dynamically scales to match demand
* Load Balancing Experiments
uFS performs and scales well with real applications
More detailed results in our paper

Platform
* Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU
* Linux 5.4, SPDK 18.04
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Determining Number of uServer Cores
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Core Allocation Experiments

8 workloads: each changes one factor by N steps along the time
* Factor example: think-time, data screw degree, request size
* uFS delivers between 91% to 98% throughput of Max
* uFS controls number of cores as needed

 —> Max: allocate one worker per app Max: uses 6 cores
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Each workload contains 6 clients
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Throughput

LevelDB: uFS Performs and Scales Well with Real Apps
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— uFS ext4

uFS can scale much better than ext4
uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance
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Throughput

LevelDB: uFS Performs and Scales Well with Real Apps

¥ Number of cores (when #app=10)
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— uFS - ext4

uFS can scale much better than ext4
uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance
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Conclusion

uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

* Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
* Performs and scales well under various workloads
* Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/
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Conclusion

uFS: a filesystem semi-microkernel

* Designs for modern storage device performance delivery and scalability
* Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

* Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
* Performs and scales well under various workloads
* Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/

Thank you!
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