
Application Crash Consistency

By

Thanumalayan Sankaranarayana Pillai

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 12/13/2016

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Ben Liblit, Associate Professor, Computer Sciences
Michael Swift, Associate Professor, Computer Sciences
Jing Li, Assistant Professor, Electrical and Computer Engineering

© Copyright by Thanumalayan Sankaranarayana Pillai 2017

All Rights Reserved

i

To my parents.

ii

Abstract

APPLICATION CRASH CONSISTENCY
Thanumalayan Sankaranarayana Pillai

Crash consistency, i.e., making sure that data stays in a consistent state
after an unexpected system crash or power loss, is important for storage
reliability. Much previous research has focused on the crash consistency
of file systems and of traditional relational database management systems.
However, to ensure data safety, it is necessary to consider the crash con-
sistency of all layers of the storage stack. These include the single-node
application layer, the distributed systems layer if data is stored in a dis-
tributed fashion, and the internal consistency of storage devices when
using certain modern storage devices such as intelligent SSDs.

In this thesis, we focus on the application layer, which (along with the
file-system layer) forms a mandatory component of most modern storage
stacks. Modern applications offer users a rich set of features and manage
a huge amount of user data, in many cases requiring their data to be
crash consistent. For example, a version control system requires version
commit information to match the stored data even if a crash happens while
committing a new version, and a photo-viewing application requires that
thumbnails match photos.

In the first part of this thesis, we describe Alice, a tool that examines
real-world applications to determine whether they maintain crash consis-
tency correctly, and if they do not, reports the locations of errors in their

iii

source code. Alice uses state-space exploration to traverse targeted states
that will occur if a crash happens during the given application’s execution.
Alice is practical and easy to use: the state space is determined automati-
cally from a trace of the application’s execution, and each explored state is
checked for invariants directly by running the application’s recovery code.

In the second part of this thesis, we use Alice to study 11 real-world ap-
plications (including databases, key-value stores, version control systems,
distributed systems, and virtualization software) and investigate whether
they maintain crash consistency. We find a total of 60 vulnerabilities (i.e.,
error locations in source code that affect the application’s crash consis-
tency), many of which lead to severe consequences such as data corruption
and data loss. The study reveals that applications use complex update
protocols to persist state, and that the correctness of these protocols is
highly dependent on subtle behaviors of the underlying file system. We
examine which vulnerabilities are exposed in different existing file sys-
tems and how the observed vulnerabilities relate to file-system behavior.
The results can be used to determine if a file system is compatible with an
application and to design future file systems.

In the final part of this thesis, we present c2fs, a file system that im-
proves the correctness of application-level crash consistency protocols
while maintaining high performance. A key idea in c2fs is the abstraction
of a stream. Within a stream, updates are committed in program order,
thus helping correctness; across streams, there are no ordering restrictions,
thus enabling scheduling flexibility and high performance. We empiri-
cally demonstrate that applications running atop c2fs achieve high levels
of crash consistency. Further, we show that c2fs performance under stan-
dard file-system benchmarks is excellent, in the worst case on par with
the highest performing modes of Linux ext4, and in some cases notably
better. Overall, we demonstrate that both application correctness and high
performance can be realized in a modern file system.

iv

Acknowledgements

First and foremost, I would like to thank my advisors, Andrea and Remzi
Arpaci-Dusseau. They were excellent guides for my research work and
for the pursuit of my PhD degree, and excellent role models I learnt much
from. Their style of managing multiple students and handling challenging
tasks will keep influencing me.

The other members of my thesis committee – Mike Swift, Ben Liblit,
and Jing Li – helped shape this dissertation, and my discussions with them
gave rise to interesting ideas. I was fortunate to have taken classes under
both Mike Swift and Ben Liblit, and my interest in robustness, reliability,
and testing, came from these classes.

My PhD would not have been possible without the help and company
of other students in the computer science department, especially from
the ADSL group. During my initial years at grad school, they helped
me understand the difficulty and importance of getting a PhD. During
the later years, they kept me sane with arbitrary coffee breaks, random
exciting discussions in the hallways, useful feedback on research, and
shared feelings of existential crisis.

I survived grad school because of constant reminders that there were
more important things than rejected papers – from my family and friends
in India, and my roommates at Madison. The nature of grad school often
tempted (and sometimes succeeded) me to slip into my own cocoon and
remain detached from friends and family; I cannot thank them enough for
always bringing me back. I dedicate this thesis to my parents.

v

Contents

Abstract ii

Contents v

List of Tables viii

List of Figures xiii

1 Introduction 1
1.1 ALICE 4
1.2 Vulnerabilities Study 5
1.3 C2FS 7
1.4 Summary of Contributions 8
1.5 Outline 9

2 Background and Motivation 11
2.1 An Example 11
2.2 File-system Behavior 12
2.3 Journaling in Ext4 15
2.4 Definitions 20
2.5 Summary 23

3 ALICE 24

vi

3.1 Overview 25
3.2 Constructing Possible Crash States 27
3.3 State Exploration 39
3.4 Static Vulnerabilities 43
3.5 Implementation 46
3.6 Evaluation and Discussion 47
3.7 Limitations 53

4 Vulnerabilities Study 55
4.1 Manual Case Studies 56
4.2 Workloads and Checkers 65
4.3 Per-Application Summary 68
4.4 Summary of Vulnerabilities Found 73
4.5 Common Patterns 79
4.6 Impact on Current File Systems 83
4.7 Discussion 85
4.8 Summary 86

5 C2FS 87
5.1 The Ordering Hypothesis 88
5.2 Order: Bad for Performance 90
5.3 Order with Good Performance 92
5.4 Crash-Consistent File System 93
5.5 Implementation 101
5.6 Evaluation 103
5.7 Summary 117

6 Related Work 118
6.1 Tools to Find Crash Vulnerabilities 118
6.2 Vulnerabilities Survey 121
6.3 Atomicity Interfaces 122

vii

6.4 Fine-grained Ordering interfaces 125
6.5 Stream and Global Ordering 125
6.6 C2FS Implementation 126

7 Conclusion 128
7.1 Summary 129
7.2 Lessons Learnt 132
7.3 Future Work 135
7.4 Closing Words 138

Bibliography 139

viii

List of Tables

3.1 Logical Operations. List of logical operations employed by Alice. 29
3.2 System Calls and Logical Operations. The table lists which

system calls each logical operation might result from. Some system
calls can result in multiple logical operations. For instance, a write()
system call can result in both a overwrite and an append logical
operation, if the write straddles the current size of the file; a write()
can also result in a truncate followed by an append if the user did
a lseek() beyond the end of the file. The “ancillary” row simply
lists system calls that never directly result in a logical operation,
but influence the generation of other logical operations. Note that
the current version of Alice does not handle all system calls (e.g.,
mknod()), and might need to be extended in a straightforward manner
for applications that use them. ∗ mwrite is not an actual system call,
but denotes memory accesses to memory-mapped files. 30

3.3 Micro Operations. List of micro operations employed by Alice. . 31

ix

3.4 Default APM Informal Description. (a) translates logical op-
erations into micro operations; count× indicates micro operations
generated multiple times for a single logical operation (corresponds
to the size of the overwrite, append, or truncate). (b) shows ordering
constraints; Xi is the ith micro operation, Xi → Xj means that Xi

reaches the disk (is ordered before) Xj, and any-op(A) is any operation
on the logical entity A. 32

3.5 APMs Used. The table summarizes the APMs of common Linux
file systems. Legend: SAG: Size-Atomicity Granularity. CA: Content-
Atomicity. DO: Directory-Operations atomicity. The terms content
atomicity, size-atomicity granularity, directory-operations atomicity,
safe file flush, and safe rename, are explained below. Ordering between
file overwrites at the same offset and ordering related to output opera-
tions (further explained in Table 3.4) are satisfied in all the APMs of
this table but are not explicitly mentioned. 36

4.1 SQLite performance under rollback journaling. The table
represents throughput obtained when different configuration options
are toggled. Each row reports throughput when separately toggling
the relevant configuration option with all other options are set to
their default values. “Default” represents running SQLite without
changing any of the defaults (this switches on power-safe overwrite,
and switches off the others). The “Power-safe overwrite” row repre-
sents the performance when the option is switched off. We believe
that power-safe overwrite improves performance because writes now
happen at file-system-block granularity. “Atomic writes” represent
a configuration in which all writes are atomic. The configurations
do not necessarily represent correct behavior, and SQLite might be
vulnerable during a crash. 64

x

4.2 Vulnerabilities: File-System Behavior (default Alice APM).
The table shows the discovered static vulnerabilities categorized by the
type of file-system behavior they are related to, using Alice’s default
APM. The number of unique vulnerabilities for an application can
be different from the sum of the categorized vulnerabilities, since the
same source code lines can exhibit different behavior. ‡ The atomicity
vulnerability in Leveldb1.10 corresponds to multiple mmap() writes. 75

4.3 Vulnerabilities: Failure Consequences. The table shows the
number of static vulnerabilities resulting in each type of failure. †

Previously known failures, documented or discussed in mailing lists.
∗ Vulnerabilities relating to unclear documentation or typical user
expectations beyond application guarantees. # There are 2 fsck-only
and 1 reflog-only errors in Git. 78

4.4 Vulnerabilities on Current File Systems. The table shows the
number of vulnerabilities that occur on current file systems. The final
column compares this against the default Alice APM: all applications
are vulnerable under future file systems. 83

5.1 Seeks and Order. The table shows the number of disk seeks in-
curred and the total time taken when 25600 writes are issued to ran-
dom positions within a 2GB file with a HDD. Two different settings
are investigated: the writes can be re-ordered or the order of writes is
maintained using the FIFO strategy. The number of seeks incurred
in each setting and the LBA seek distance shown are determined from
a block-level I/O trace. We use a Intel® CoreTM 2 Quad Processor
Q9300 machine with 4 GB of memory running Linux 3.13, and a
Toshiba MK1665GSX 160 GB HDD. 89

xi

5.2 Consistency Testing. The first table shows the results of model-
based testing using Alice, and the second shows experimental testing
with BoB. Each vulnerability reported in the first table is a location in
the application source code that has to be fixed. The Images rows of the
second table show the number of disk images reproduced by the BoB
tool that the application correctly recovers from; the Time rows show
the time window during which the application can recover correctly
from a crash (x / y: x time window, y total workload runtime). For
Git, we consider the default configuration, unlike the previous chapter
that considers a safer configuration, since the safer configuration
results in bad performance (§5.6). 104

5.3 Single-fsync() Experiments. fsync() latencies in the first
column correspond to the data written by the fsync() shown in
the second column, while the total data shown in the third column
affects the available device bandwidth and hence performance in more
realistic workloads. 108

5.4 Single-stream Overheads: Data Written and CPU usage. The
table shows the total writes and CPU usage with a HDD, correspond-
ing to Figure 5.4(a). 111

xii

5.5 Case Study: Single Application Performance. The table shows
the performance and observed metrics of Git, LevelDB, and SQLite-
rollback run separately under different file-system configurations on
HDD. C2fs+ denotes running c2fs with unnecessary fsync() calls
omitted; in both c2fs configurations, the application runs in a single
stream. The user-level metrics characterize each workload; “appends”
and “overwrites” show how much appended and overwritten data
needs to be flushed by fsync() calls (and also how much remain
buffered when the workload ends). Overhead imposed by maintaining
order will be observed by fsync() calls in the c2fs configuration need-
ing to flush more data. The disk-level metrics relate the characteristics
to actual data written to the device. 115

xiii

List of Figures

2.1 Incorrect undo logging pseudocode. This pseudocode directly works

only on few file-system configurations, such as the data=journal mode of ext3/4.

offset and size correspond to the portion of the dbfile that should be modified.

Whenever the DBMS is started, the DBMS rolls back the transaction if the log file

exists and is fully written (determined using the size field). 12
2.2 Correct undo logging pseudocode. This pseudocode works in Linux

file-system configurations. “./” refers to the current directory. The red parts are

each additional measures needed for correctness. Comments explain which measures

are required by different file systems: we considered the default configurations of

ext2, ext3, ext4, xfs, and btrfs, and the data=writeback configuration of ext3/4

(denoted as ext3-wb and ext4-wb). 13

xiv

2.3 Simplified Ext4 Journaling. The figure shows the sequence of events that

happen when the user causes ext4 to modify metadata in the file-system blocks

B1 and B2 from α to β. The structures residing in main memory, the state of the

on-disk journal, and the on-disk (inplace) locations of blocks are shown. B1 : α

illustrates the block B1 containing the value α. The structure T1 : B1, B2 shows

the running transaction in main memory, containing a reference to the in-memory

blocksB1 andB2. T1 : begin and T1 : end in the on-disk journal are bookkeeping

information denoting the beginning and ending of the committed transaction; this

is a simplification, and more complex bookkeeping is added in ext4. The figure also

shows only metadata blocks: data blocks are not written on the journal, and are not

shown. 17

3.1 Alice: Steps To Find Vulnerabilities. The figure shows how
Alice converts user inputs into crash states and finally into crash
vulnerabilities. Black boxes are user inputs and grey boxes are optional
inputs. 27

4.1 LevelDB Protocol Diagram. The diagram shows the modularized
update protocol for LevelDB-1.15. Uninteresting parts of the pro-
tocol and a few vulnerabilities (similar to those already shown) are
omitted. Repeated operations in the protocol are shown as ‘N ×’
next to the operation, and portions of the protocol executed condition-
ally are shown as ‘? ×’. Blue-colored text simply highlights such
annotations and sync calls. Ordering and durability dependencies
are indicated with arrows; durability dependency arrows end in an
stdout micro-op. Dotted arrows correspond to safe file flush vul-
nerabilities. Operations inside brackets must be persisted together
atomically. Vulnerabilities shown are based on the default APM of
Alice. 67

xv

4.2 SQLite and Postgres Protocol Diagrams.The diagram shows the
update protocol for SQLite under the Rollback journaling mode and
for Postgres. Labelings have the same meaning as in the LevelDB
protocol diagram. Vulnerabilities shown are based on the default
APM of Alice. 69

4.3 GDBM and LMDB Protocol Diagrams. The diagram shows the
update protocol for GDBM and LMDB. Labelings have the same
meaning as in the LevelDB protocol diagram. Vulnerabilities shown
are based on the default APM of Alice. 70

4.4 HSQLDB Protocol Diagram. The diagram shows the modularized
update protocol for HSQLDB. Dependencies between modules are in-
dicated by the numbers on the arrows, corresponding to line numbers
in modules. The two dependencies marked with * are also durability
dependencies. Dotted arrows correspond to safe rename or safe file
flush vulnerabilities. Other labelings have the same meaning as in
the LevelDB protocol diagram. Vulnerabilities shown are based on
the default APM of Alice. 71

4.5 Protocol Diagrams for Version Control Systems. The diagram
shows the modularized update protocol of Git and Mercurial. De-
pendencies between modules are indicated by the numbers on the
arrows, corresponding to line numbers in modules. Dotted arrows
correspond to safe rename vulnerabilities. Other labelings have the
same meaning as in the LevelDB protocol diagram. Vulnerabilities
shown are based on the default APM of Alice. 72

4.6 Protocol Diagrams for Virtual Machines and Distributed Sys-
tems. The diagram shows the protocols for VMWare, HDFS, and
ZooKeeper. Labelings have the same meaning as in the LevelDB pro-
tocol diagram. Vulnerabilities shown are based on the default APM
of Alice. 74

xvi

5.1 Hybrid-granularity Journaling. Timeline showing hybrid-granularity
journaling in c2fs. Block X initially contains the value 〈a0,b0〉, TA
and TB are the running transactions of streams A and B; when B
commits, X is recorded at the block level on disk. 96

5.2 Order-preserving Delayed Allocation. Timeline of allocations
performed, corresponding to a system-call sequence. 100

5.3 Repeated fsync() Experiments. Histogram of user-observed
foreground latencies in our multi-fsync() experiments. Each exper-
iment is run for two minutes on a HDD. 109

5.4 Single-stream Overheads: Performance. Throughput under
standard benchmarks for c2fs, ext4, and ext4 under the data=journal
mode (ext4-dj), all normalized to ext4-dj. Varmail emulates a multi-
threaded mail server, performing file creates, appends, deletes, reads,
and fsync() in a single directory. Randwrite does 200K random
writes over a 10 GB file with an fsync() every 100 writes. Webserver
emulates a multithreaded web server performing open-read-close on
multiple files and a log file append. Createfiles uses 64 threads to cre-
ate 1M files. Seqwrite writes 32 GB to a new file (1 KB is considered
an op in (c)). Fileserver emulates a file server, using 50 threads to
perform creates, deletes, appends, and reads, on 80K files. The file-
server, varmail, and webserver workloads were run for 300 seconds.
The numbers reported are the average over 10 runs. 110

xvii

5.5 Case Study: Multiple Application Performance. Performance of

Git and SQLite-rollback run simultaneously under different configurations on

HDD, normalized to performance under ext4 configuration. Ext4-bad configura-

tion runs the applications on ext4 with consistency sacrificed in Git. C2fs-2 uses

separate streams for each application on c2fs. Ext4 uses ext4 with consistent Git.

C2fs-1 runs both applications in the same stream on c2fs. C2fs+ runs applications

in separate streams without unnecessary fsync. Workload: Git adds and commits

a repository 25 times the size of Linux; SQLite repeatedly inserts 120-byte rows

until Git completes. 117

1

1
Introduction

Application complexity is increasing over the years: compared with simple,
modular Unix applications [45], modern applications are huge monoliths,
offering users a rich set of features and managing a huge amount of user
data [32]. In many cases, storing extra data allows the application to
provide new features (e.g., Firefox stores browsing history to provide
autocomplete). Many applications require that certain invariants on the
data hold across system crashes. For example, Firefox requires that entries
in the browsing history correctly correlate URLs with possible search
terms, while a photo-viewing application requires that thumbnails match
photos [110]. An application is deemed consistent when its invariants hold.

Crash consistency is a fundamental problem in systems research [8, 31,
59, 73], particularly in file systems, database management systems, and
key-value stores. Crash consistency is hard to get right: consider the ten-
year gap between the release of commercial database products (e.g., System
R [8] and DB2 [59]) and the development of a working crash consistency
algorithm (ARIES [58]). Even after ARIES was invented, another five years
passed before the algorithm was proven correct [42, 52].

Crash consistency for file systems has been heavily studied and im-
proved. The file-systems community has developed a standard set of
techniques to provide metadata consistency in the face of crashes: log-
ging [4, 12, 31, 72, 93, 103], copy-on-write [34, 53, 73, 92], soft updates [27],
and other similar approaches [14, 25]. While bugs exist in the file systems

2

that implement these methods [49], the core techniques are highly tested
and well understood.

However, few researchers have focused on application-level crash con-
sistency, despite its importance. For example, consider a typical modern
photo management application (e.g., iPhoto) that not only stores the pho-
tos a user takes, but also information relevant to a photo library, including
labels, events, and other photo metadata. No user wants a system that
loses photos or other relevant information simply because a crash occurred
while the photo application was trying to update its internal database.

Because of the absence of research, unlike file-system crash consis-
tency, crash consistency for applications is still problematic. Most data-
management applications (databases like SQLite [91], key-value stores
like LevelDB [29]) implement complex update protocols to remain crash-
consistent while still achieving high performance. Similar to early file
system and database schemes, it is difficult to ensure that update pro-
tocols maintain consistency after a crash [83]. Maintaining application
consistency would be relatively simple (though not trivial) if all state were
mutated synchronously; however, such an approach is prohibitively slow.
Moreover, to achieve robustness in practice, since applications are var-
ied and many by nature (compared to file systems), significant effort is
needed to test each of them. The update protocols must hence handle a
wide range of corner cases that are executed rarely, are relatively untested,
and are (perhaps unsurprisingly) error-prone. Thus, safety measures for
correctness are desired and necessary.

Moreover, since the majority of modern applications are built atop file
systems, application-level crash consistency depends on the behavior and
semantics (after a crash) of the underlying file system. For instance, many
applications depend (for crash consistency) on how file systems behave
when a file is replaced using the rename() system call [101]. Specifically,
crash invariants are held only if the entire file (including both the contents

3

of the file and the file name) is replaced atomically with respect to a system
crash. This dependency is sometimes a bug, caused by a misunderstanding
of the behavior guaranteed by file systems after a crash. It is also sometimes
intentional, to provide reasonable application performance over different
file systems: the complex application techniques required for correctly
maintaining crash invariants in file systems with weak behavior (such as
non-atomic file replacement) might degrade performance in those already
providing strong behavior (such as atomic replacement). For the safe
execution of applications, many modern file systems explicitly ensure
atomic file replacement (during certain sequences of system calls), even
though this is not a part of the POSIX standard.

Beyond atomic file replacement, which is perhaps a widely known
problem, application-level consistency is also affected by other undoc-
umented (and unexplored) crash-related behavior that differs between
file systems [97]. This severely constrains the portability of applications.
There is no consensus on what file-system behavior affects application-
level consistency, and what behaviors file systems should hence guar-
antee. In addition, the lack of well-defined file-system behavior pre-
vents careful applications from optimizing their update protocols, thus
reducing efficiency. Previous techniques for file-system internal consis-
tency [5, 13, 15, 27, 34, 73, 103, 104] have not investigated their (unintended)
consequences on application-level consistency.

This thesis studies and improves crash consistency at the application
layer. The thesis focuses on single-node applications and libraries that
are built directly atop file systems, but touches upon distributed applica-
tions as examples. Focusing on single-node applications is necessary as a
first step, since distributed applications are often built as a higher layer
upon single-node data-management components (e.g., BigTable upon Lev-
elDB [9]; this thesis studies LevelDB). Single-node applications are also
sufficiently complex, as the subsequent chapters will show.

4

In the following sections, we outline and elaborate the main parts of
the thesis. We then provide a summary of its contributions and an outline
for the rest of this thesis.

1.1 ALICE

To study application-level crash consistency, we need to understand how
consistency is implemented in practice in modern applications, and whether
it is implemented correctly. This is no easy task: since building a high-
performance application-level crash-consistency protocol is not straight-
forward, many applications implement complex update protocols that are
spread across multiple source files. The protocols are also inherently tied
to other aspects of the application, such as concurrency isolation.

To analyze applications, we develop Alice, a novel framework that en-
ables us to systematically study application-level crash consistency. Alice
takes advantage of the fact that, no matter how complex the application
source code, the update protocol boils down to a sequence of file-system re-
lated system calls. Given the system call trace of an application workload,
Alice can find crash vulnerabilities (i.e., incorrectness in update protocols)
that are exposed for a specified set of file-system crash behavior. Alice
achieves this by constructing a state space from possible permutations
of the trace, and then exploring the space in a targeted, heuristical man-
ner. The heuristics allow Alice to discover most vulnerabilities in the
application within a practical amount of time.

Note that the correctness of update protocols (i.e., vulnerabilities that
are exposed) depends on file-system behavior. With Alice, the user sup-
plies an abstract persistence model (APM) of the file system to be considered.
The abstract persistence model is a novel representation that expresses the
crash-behavior of a file system. While being simple to specify, an APM
allows calculating (and generating) all possible states of the file system

5

that become visible after a system crash, given a certain application work-
load. Thus, APMs can also be used to specify and understand file-system
behavior in general, in addition to their usecase in Alice.

APMs are more advantageous than providing a file-system implemen-
tation because they can also be used for future file systems that are still
being designed. They also ensure that vulnerabilities are not omitted
simply because the provided file-system version has trivial differences
in crash behavior (which nevertheless influence application consistency)
from other versions. Thus, APMs allow testing whether applications work
portably across different versions of a file system. Alice can also be used
to determine all file-system behaviors that the given application depends
on for correctness: to find vulnerabilities that can be exposed on any file
system, one simply uses an abstract persistence model that is generic and
unconstrained.

Alice presents the discovered vulnerabilities to the user using the
unique notion of static crash vulnerabilities (defined in the next chapter)
that allows incorrectness in update protocols to be expressed and under-
stood in an intuitive manner. Static crash vulnerabilities directly correlate
incorrectness to the source code lines responsible for the incorrectness.
Furthermore, Alice produces as its output an annotated representation of
update protocols (called protocol diagrams) that abstract away low-level
details to clearly present the underlying logic, thus allowing the user to
easily understand the application’s consistency mechanism.

1.2 Vulnerabilities Study

To study how consistency is implemented in practice in modern appli-
cations, it is necessary to consider a variety of popular applications that
differ on the format of data stored, access patterns optimized for, and
crash-consistency requirements. To achieve this goal, we first analyze two

6

applications (SQLite and LevelDB) without using Alice, examining past
bug reports and mailing list interactions with developers, and manually
analyzing their source code and system-call trace. This allows us to under-
stand the context within which to interpret Alice’s results when applied
to applications. We then apply Alice to eleven important applications, to
study and analyze their update protocols.

The applications studied include relational databases (SQLite [91], Post-
greSQL [99], HSQLDB [35]), key-value stores (GDBM [28], LMDB [94], Lev-
elDB [29]), version control systems (Git [47], Mercurial [54]), distributed
systems (HDFS [81], ZooKeeper [2]), and virtualization software (VMWare
Player [107]). We find a total of 60 vulnerabilities across applications: sev-
eral discovered vulnerabilities have severe consequences such as data
corruption or application unavailability. The study includes a detailed
understanding of update protocols constructed directly from Alice out-
put, finding which vulnerabilities are exposed on various existing file
systems, determining whether a new file-system design will harm current
applications, and, a high-level discussion of why vulnerabilities occur.

More interestingly, we found interesting patterns that provide insights
for file-system developers. For example, we found that many applications
use a variant of write-ahead-logging; while applications are very careful
about updating data in-place, they are not as careful about logged data,
resulting in a number of vulnerabilities. Since writes to logged data are file
appends, it happens that simple file system design decisions can prevent
these vulnerabilities without affecting performance.

To summarize, the study indicates that a high number of vulnerabilities
result because the current file-system interface is not intuitive for develop-
ers. More specifically, vulnerabilities occur because of two reasons. First,
file systems persist user-issued updates to disk in an order different from
the order in which they are issued. For example, writing data to a file and
then renaming it can result in the rename operation sent to the disk before

7

the data, and can send the written data to disk in an order different from
the issued write. Second, file systems might persist user-issued updates
partially in different ways. For example, renaming a file can either happen
atomically with respect to a system crash, result in both the source and
the destination links present after the crash, or neither present.

1.3 C2FS

Thus, a file system that persists user-issued updates to the disk in their
issued order helps applications achieve crash consistency. However, many
file system developers have determined that such ordering is performance
prohibitive; as a result, most modern file systems reduce internal ordering
constraints. For example, many file systems (including ext4, xfs, btrfs,
and the 4.4BSD fast file system) re-order application writes, and some
file systems commit directory operations out of order (e.g., btrfs [65]).
Similarly, lower levels of the storage stack re-order aggressively, to reduce
seeks and obtain grouping benefits [36, 39, 74, 76].

However, we hypothesize that a carefully designed and implemented
file system can achieve both ordering and high performance. We explore
this hypothesis in the context of the Crash-Consistent File System (c2fs),
a new file system that enables crash-consistent applications by provid-
ing intuitive behavior (guaranteeing both the required ordering and the
atomicity) while delivering excellent performance.

The key new abstraction provided by c2fs, which enables the goals of
high performance and correctness to be simultaneously met, is the stream.
Each application’s file-system updates are logically grouped into a stream;
updates within a stream, including file data writes, are guaranteed to
commit to disk in order. Streams thus enable an application to ensure
that commits are ordered (making recovery simple); separating updates
between streams prevents false write dependencies and enables the file system

8

to re-order sufficiently for performance.
Underneath this abstraction, c2fs contains numerous mechanisms for

high performance. Critically, while ordering updates would seem to overly
restrict file-system implementations, this thesis shows that the journaling
machinery found in many modern systems can be adopted to yield high
performance while maintaining order. More specifically, c2fs uses a novel
hybrid-granularity journaling approach that separately preserves the order
of each stream; hybrid-granularity further enables other needed optimiza-
tions, including delta journaling and pointer-less metadata structures.
C2fs takes enough care to retain optimizations in modern file systems (like
ext4) that appear at first to be incompatible with strict ordering, with new
techniques such as order-preserving delayed allocation.

We show that most applications and standard benchmarks perform
excellently on c2fs with only a single stream per application. Thus, c2fs
makes it simple and straightforward to achieve crash consistency efficiently
in practice without much developer overhead.

1.4 Summary of Contributions

The following are the contributions of this thesis.

Alice. The Alice tool allows a user to study the update protocol of any
application and find crash vulnerabilities in the application.

Abstract Persistence Models. The thesis provides a way to model
a file system that describes all possible states that a partition (of the file
system) might be left in, in the event of a sudden crash.

Static Crash Vulnerabilities. The number of failures observed dur-
ing crash-recovery cannot be directly used to understand the causes of
the failures or quantitatively evaluate the correctness of application code.
This thesis provides a quantitative and intuitive way to describe the incor-

9

rectness seen in an application’s update protocol.

Vulnerabilities Found. This thesis studies 11 widely-used applica-
tions and finds 60 vulnerabilities among them, and in the process, demon-
strates Alice’s utility with real applications.

Vulnerability Patterns Found. This thesis identifies file-system
behaviors that cause most of the found vulnerabilities, along with the
common impacts of the vulnerabilities when they are exposed.

Stream API. The Stream API is an extension to the file-system interface
that drastically reduces the number of vulnerabilities exposed, with little
developer effort, while allowing file systems to maintain high performance.

C2fs. The c2fs file system is an efficient implementation of the Stream API
that preserves the desirable qualities of the widely used ext4 file system,
while increasing the correctness of application update protocols.

1.5 Outline

The rest of this thesis is organized as follows.

Background. The behavior of a file system after recovering from a crash
(and the semantics it provides in such an event) differs between file sys-
tems; the behavior is often related to the crash-consistency technique used
internally within the file system. Chapter 2 explains the relationship be-
tween application-level crash consistency and the crash-recovery behavior
of file systems, highlighting the behavioral differences between popular
file systems. It also briefly explains the crash-consistency technique used
by the ext4 file system, since we later build upon this technique to improve
application-level crash consistency.

Alice. Chapter 3 describes the Alice tool, abstract persistence models,
and static crash vulnerabilities. The chapter also includes preliminary

10

evaluation about the effort required to use Alice, the running time of
Alice, and the effectiveness of the heuristics used by Alice to target a
subset of the state space of crashes.

Vulnerabilities Study. Chapter 4 describes the manual examination
of LevelDB and SQLite, and the manual analysis of 11 applications. This
chapter also serves to demonstrate the practical usability of Alice.

C2FS. Chapter 5 explains the Stream API, c2fs, and their evaluation.

Related Work. Chapter 6 describes other work focusing on application-
level crash consistency and how they relate to this thesis.

Conclusion and Future Work. Chapter 7 summarizes the thesis,
describes possible future work, and the lessons learnt.

11

2
Background and Motivation

In this chapter, we explain how application-level crash consistency is
achieved atop the file-system interface (§2.1), how the correctness of
application-level consistency varies with file-system behavior (§2.2), and
the internal crash-consistency mechanism of the ext4 file system (§2.3).
We also define a few terms (§2.4) and conclude with a summary (§2.5).

2.1 An Example

To ensure crash consistency, the application developer must craft an up-
date protocol that orchestrates modifications of the persistent state of the
file system. Since applications communicate with file systems through
the POSIX system-call interface [98], an update protocol is essentially a
carefully-constructed sequence of system calls (such as file writes, renames,
and other file-system calls) that updates underlying files and directories
in a recoverable way.

Let us look at an example demonstrating the complexity of implement-
ing crash consistency: a simple database management system (DBMS)
that stores its data in a single file. Whenever the DBMS updates the file to
perform a transaction, it wants the effects of the transaction to be atomic
across a system crash. To maintain transactional atomicity across a system
crash, the DBMS can use an update protocol called undo logging: before

12

creat(log);

Making a backup in the log file
write(log, "<offset>,<size>,<data>");

write(dbfile, offset, data); # Actual update

unlink(log); # Deleting the log file

creat(log);

write(log, "<offset>,<chksum>,

 <size>,<data>");

fsync(log);

fsync(./);

write(dbfile, offset, data);

fsync(dbfile);

unlink(log);

fsync(./);

Log file can end up with garbage,
in ext2, ext3-wb, ext4-wb

write(log) and write(dbfile) can
re-order in all considered configurations

write(dbfile) can re-order after unlink(log) in all
considered configurations except ext3’s default mode

creat(log) can be re-ordered after
write(dbfile), according to warnings
in Linux manpage . Occurs on ext2.

Iff durability is desired, in all considered configurations

fsync(dbfile) needed in ...
ext2 Needed
ext3.w Needed
ext3.d Unnecessary
ext4.w
ext4.d Needed
btrfs Needed
xfs Needed
reiserfs Needed

fsync(log) needed in ...
ext2 Needed
ext3.w Needed
ext3.d Needed
ext4.w Needed
ext4.d Needed
btrfs Needed
xfs Needed
reiserfs Needed

TODO: Ask btrfs whether creat(DONE) followed by fsync(/)
guarantees durability of the created file.

Checksum needed in ...
ext2 Needed
ext3.w Needed
ext3.d Unnecessary
ext4.w Needed
ext4.d Unnecessary
btrfs Unnecessary
xfs Unncessary?
reiserfs Unnecessary

Figure 2.1: Incorrect undo logging pseudocode. This pseudocode directly works
only on few file-system configurations, such as the data=journal mode of ext3/4. offset and
size correspond to the portion of the dbfile that should be modified. Whenever the DBMS is
started, the DBMS rolls back the transaction if the log file exists and is fully written (determined
using the size field).

updating the file, the DBMS simply records those portions of the file that
are about to be updated in a separate log file. Figure 2.1 shows the pseu-
docode, using POSIX system calls. After completing the transaction, the
DBMS will delete the log file. Whenever the DBMS is started, it checks
if the log file exists – if so, a system crash happened during a previous
transaction, and the DBMS appropriately rolls-back the transaction using
the log file.

In an ideal world, one would expect the pseudocode in Figure 2.1 to
work on all file systems implementing the POSIX interface. Unfortunately,
the pseudocode does not work on any widely-used file-system configura-
tion; in fact, even within a single file system, a different set of measures
are required to make it work on each configuration of the file system.

2.2 File-system Behavior

The correctness of the application’s crash-consistency protocol inherently
depends on the semantics of system calls with respect to a system crash, i.e.,
the crash behavior of the file system. However, while the POSIX standard

13

creat(log);

Making a backup in the log file
write(log, "<offset>,<size>,<data>");

write(dbfile, offset, data); # Actual update

unlink(log); # Deleting the log file

creat(log);

write(log, "<offset>,<chksum>,

 <size>,<data>");

fsync(log);

fsync(./);

write(dbfile, offset, data);

fsync(dbfile);

unlink(log);

fsync(./);

Log file can end up with garbage,
in ext2, ext3-wb, ext4-wb

write(log) and write(dbfile) can
re-order in all considered configurations

write(dbfile) can re-order after unlink(log) in all
considered configurations except ext3’s default mode

creat(log) can be re-ordered after
write(dbfile), according to warnings
in Linux manpage . Occurs on ext2.

Iff durability is desired, in all considered configurations

fsync(dbfile) needed in ...
ext2 Needed
ext3.w Needed
ext3.d Unnecessary
ext4.w
ext4.d Needed
btrfs Needed
xfs Needed
reiserfs Needed

fsync(log) needed in ...
ext2 Needed
ext3.w Needed
ext3.d Needed
ext4.w Needed
ext4.d Needed
btrfs Needed
xfs Needed
reiserfs Needed

TODO: Ask btrfs whether creat(DONE) followed by fsync(/)
guarantees durability of the created file.

Checksum needed in ...
ext2 Needed
ext3.w Needed
ext3.d Unnecessary
ext4.w Needed
ext4.d Unnecessary
btrfs Unnecessary
xfs Unncessary?
reiserfs Unnecessary

Figure 2.2: Correct undo logging pseudocode. This pseudocode works in Linux
file-system configurations. “./” refers to the current directory. The red parts are each additional
measures needed for correctness. Comments explain which measures are required by different
file systems: we considered the default configurations of ext2, ext3, ext4, xfs, and btrfs, and the
data=writeback configuration of ext3/4 (denoted as ext3-wb and ext4-wb).

specifies the effect of a system call in memory, it does not fully define how
disk state is mutated in the event of a crash. File systems take advantage
of this lack of standardization to improve performance, without much
regard about the viewpoint of an application developer. Each file system
(and each configuration within a single file system) persists application
data differently, resulting in different kinds of intermediate disk states,
and leaving programmers guessing.

Because file systems buffer writes in memory and send them to disk
later, from the perspective of an application, most file systems can re-
order the effects of system calls before persisting them on disk. In the
previous example, with some file systems (ext2, ext4, xfs, and btrfs in their
default configurations, but not ext3), the deletion of the log file can be
re-ordered before the write to the database file. On a system crash in
these file systems, the log file might be found already deleted from the

14

disk, while the database has been updated partially. Other file systems
can persist a system call partially in seemingly nonsensical ways: in ext2
and non-default configurations (the data=writeback mode) of ext3 and ext4,
while writing (appending) to the log file, a crash might leave garbage data
in the newly-appended portions of the file. In such file systems, during
recovery, one cannot differentiate whether the log file contains garbage or
undo information.

Figure 2.2 shows the measures needed for undo logging to work on
different Linux file-system configurations. Almost all measures simply
resort to using the fsync() system call, which flushes a given file (or
directory) from the buffer cache to the disk, and is used to prevent the
file system from re-ordering updates. The fsync() calls can be arbitrarily
costly, depending on how the file system implements them; an efficient
application will hence try to avoid fsync() calls when possible. With
only a subset of the fsync() calls, however, an implementation will be
consistent only on some file-system configurations.

Note that it is not practical to use a verified implementation of a single
update protocol across all applications; the update protocols found in
real applications vary widely and can be more complex than Figure 2.2.
The choice can depend on performance characteristics; some applications
might aim for sequential disk I/O, and prefer an update protocol that
does not involve seeking to different portions of a file. The choice can also
depend on usability characteristics. For example, the presence of a sepa-
rate log file (as described above) unduly complicates common workflows,
shifting the burden of recovery to include user involvement. The choice
of update protocol is also inherently tied to the application’s concurrency
mechanism and the format used for its data structures.

What can applications rely on? File-system developers seem to agree
on two rules that govern what information is preserved across system
crashes. The first is subtle: information already on disk (file data, directory

15

entries, file attributes etc.) is preserved across a system crash, unless one
explicitly issues an operation affecting it. In other words, information
should be preserved when the user does not issue any modifications.

The second rule deals with fsync() and similar constructs (msync(),
O_SYNC, etc.) in UNIX-like operating systems. An fsync() on a file guar-
antees that the file’s data and attributes are on the storage device when
the call returns, but with some subtleties. A major subtlety with fsync()
is the definition of “storage device”: after information is sent to the disk
by fsync(), it can reside in an on-disk cache, and hence can be lost during
a system crash (except in some special disks). Operating systems provide
ad-hoc solutions to flush the disk cache to the best of their ability; since
you might be running atop a fake hard drive [16], nothing is promised.
Another subtlety relates broadly to directories – directory entries of a file
and the file itself are separate entities, and can each be separately sent to
the disk; an fsync() on one does not imply persistence of the others.

2.3 Journaling in Ext4

The difference in crash behavior between file systems is not deliberate,
and is often a side effect of the internal crash-consistency mechanism of
each file system. For instance, many file systems use a technique known as
journaling (also known write-ahead logging) to simplify and ensure internal
crash consistency. Journaling is similar to the undo logging protocol dis-
cussed previously (though employed at the file-system layer). Specifically,
before making updates, the file system records the updates in a journal; if
a crash happens, the file system retrieves from the journal those updates
that were in progress and replays them.

Since updates are added sequentially to the journal, this simplistic form
of journaling (often known as full data journaling) makes the file system
exhibit a fully-ordered crash behavior. However, an optimized variation of

16

journaling only records updates to certain file-system metadata structures
(since only these concern file-system consistency), thus changing the crash
behavior exhibited to applications. File systems can also adopt other crash-
consistency techniques, such as soft updates and copy-on-write, along
with numerous optimizations and implementation variations that might
change with each version of the file system.

We now examine the internal crash-consistency technique used by
the ext4 file system, an optimized form of journaling, highlighting a few
optimizations and design details. The case study provides a background
for the c2fs file system that forms the final part of this thesis and is built
upon ext4; it also illustrates the complexity of ext4’s technique and how
crash behavior can be subtly dependent on implementation details.

We first describe a simplified version of ext4’s technique; the descrip-
tion also contains an important characteristic of ext4 journaling: journaling
occurs at block granularity. We then explain optimizations over the simpli-
fied version explained so far, focusing on three more important character-
istics: ext4 journaling batches multiple sets of atomic metadata updates
(delayed logging [23]), uses a circular journal, and delays forced checkpointing
until necessary. The block-granularity and circular aspects are a challenge
for a file system that implements the Stream API, while delayed logging
and checkpointing are important optimizations that any derivative file
system should retain.

Basics

In simple Linux file systems, modifications made by the user are first made
to an in-memory copy (in the Linux buffer cache) of the corresponding
on-disk block. They are then propagated to their locations on disk. To
maintain internal file-system metadata consistency, ext4 requires the atom-
icity (in the event of a crash) of sets of metadata modifications (e.g., all
metadata modifications involved in creating a file). It also requires an

17

T1:endT1:begin B2:βB1:β

Timeline Main
Memory

On-disk Journal

#0
Initial

B2:αB1:α

On-disk
Inplace

B2:αB1:α

B2:β

T1 : B1 ,B2

B1:β B2:αB1:α#1
User
Action

B2:βB1:β B2:βB1:β#3
Checkpoint

T1:endT1:begin B2:βB1:βB2:βB1:β B2:αB1:α#2
Commit

B2:βB1:β B2:βB1:β#4
Checkpoint

Figure 2.3: Simplified Ext4 Journaling. The figure shows the sequence of events
that happen when the user causes ext4 to modify metadata in the file-system blocks B1 and B2

from α to β. The structures residing in main memory, the state of the on-disk journal, and the
on-disk (inplace) locations of blocks are shown. B1 : α illustrates the block B1 containing the
value α. The structure T1 : B1, B2 shows the running transaction in main memory, containing
a reference to the in-memory blocks B1 and B2. T1 : begin and T1 : end in the on-disk journal
are bookkeeping information denoting the beginning and ending of the committed transaction;
this is a simplification, and more complex bookkeeping is added in ext4. The figure also shows
only metadata blocks: data blocks are not written on the journal, and are not shown.

order to be maintained between these sets of modifications. To achieve
this, ext4 creates a journal: a sequential region on disk, allocated when
the file-system is created.

Figure 2.3 illustrates a simplified version of ext4 journaling. The in-
memory copies of blocks, the state of the on-disk journal, and the on-disk
locations of blocks are shown. We refer to the actual on-disk locations of

18

blocks as inplace locations, to distinguish them from any copies that are
temporarily stored in the journal.

Figure 2.3 illustrates the sequence of events that happen when the user
performs a metadata operation (such as creating a file), and causes ext4 to
modify metadata structures in the file-system blocks B1 and B2. The figure
shows the initial state of the in-memory copies of the file-system blocks in
#0, containing the data α, and their final version after the modifications
in #1 (containing the data β). Since both block modifications relate to a
single logical metadata change (i.e., file creation), ext4 requires them to be
atomic across a system crash. Hence, at this point, the modifications to
the in-memory copies are not directly propagated to their on-disk copies.

Instead, ext4 associates B1 and B2 with an in-memory data structure
called the running transaction, Ti (shown in Figure 2.3 #1). The running
transaction is then committed as shown in Figure 2.3 #2, i.e., the updated
contents of all the associated blocks of Ti and some bookkeeping informa-
tion are written to an on-disk journal. Now, the transaction is checkpointed:
first, the updated contents of the in-memory copies are propagated to
their inplace locations (Figure 2.3 #3), and then the transaction is deleted
from the on-disk journal (Figure 2.3 #4). If a crash happens in between,
and the bookkeeping information of any transaction in the on-disk journal
indicates that the complete transaction has been recorded, then steps #3
and #4 are repeated after the crash.

Delayed logging

In our previous description, we explained that after metadata is modified
in main memory, the running transaction is committed to the on-disk jour-
nal. However, ext4 does not immediately commit the running transaction,
since that would be inefficient if a single metadata block is modified mul-
tiple times. Instead, ext4 waits for the user to perform more operations;
the resulting set of block modifications are also associated with Ti. Ext4

19

commits the running transaction only periodically, or when the user de-
sires durability (by issuing a system call such as fsync()). When Ti starts
committing, a new running transaction (Ti+1) is created to deal with future
metadata operations. Thus, ext4 always has one running transaction, and
at most one committing transaction (although each transaction in ext4 can
include multiple user-level operations).

Delayed checkpointing

Once Ti finishes committing, the updated blocks are not immediately
propagated to their inplace locations on disk. Instead, they are written
in the background by Linux’s page-flushing daemon in an optimized
manner (for example, taking care of disk scheduling). Furthermore, ext4
employs techniques that coalesce such writebacks. For example, consider
that a block recorded in Ti is modified again in Tj; instead of writing
back the version of the block recorded in Ti and Tj separately, ext4 simply
ensures that Tj is committed before Ti’s space is reused. Since the more
recent version (in Tj) of the block will be recovered on a crash without
violating atomicity, the earlier version of the block will not matter. Similar
optimizations also apply when committed blocks are later unreferenced,
such as when a directory gets truncated.

Thus, there can be multiple transactions on the journal that have not
yet been written back to their inplace locations on disk, i.e., that have been
committed but not yet checkpointed. If a crash happens, after reboot-
ing, ext4 scans each transaction written in the journal sequentially. If a
transaction is fully written, the blocks recorded in that transaction are
propagated to their actual locations on disk; if not, ext4 stops scanning the
journal. Thus, the atomicity of all block updates within each transaction
are maintained. Maintaining atomicity implicitly also maintains order
within a transaction, while the sequential scan of the journal maintains
order across transactions.

20

Circular journal

The previous subsection explains that delaying checkpointing as much
as possible might coalesce and reduce the amount of total I/O; however,
it does not deal with the size of the journal being finite. The on-disk
journal file is circular: when space runs out, committed transactions in the
tail of the journal are freed and that space is reused for recording future
transactions. Ext4 ensures that before a transaction’s space is reused, the
blocks contained in it are first propagated to their inplace locations (if the
page-flushing mechanism had not yet propagated them).

For circular journaling to work correctly, ext4 requires a few invariants.
One invariant is of specific interest in c2fs: the number of blocks that can
be associated with a transaction is limited by a threshold. To enforce the
limit, before modifying each atomic set of metadata structures, ext4 first
verifies that the current running transaction (say, Ti) has sufficient capacity
left; if not, ext4 starts committing Ti and uses Ti+1 for the modifications.

2.4 Definitions

The following are the detailed definitions of a few terms used in this thesis.
System crash. A sudden power loss of the entire computer system, or a
software bug (such as a kernel panic) that immediately prevents further
communication with the disk subsystem and requires the system to be
restarted for further operation. Note that this thesis mostly assumes a
single-node machine such as a workstation or a laptop.
Application crash guarantees. Any invariants the user expects from an
application, after a system crash happens, and when the user reboots
the machine and restarts the application. For some applications, guaran-
tees are well specified; for example, some database management systems
promise ACID transactions. Guarantees for some applications are not
defined, but are desired (and sometimes assumed) by convention; a photo-

21

editing application is expected to not corrupt a photo on a power loss. The
thesis specifies the guarantees assumed when they are not well defined.
Crash consistency protocol. The steps that the application takes to en-
sure its crash guarantees. We use the term crash-consistency mechanism to
describe the general logic of the protocol instead of the exact steps taken.
We also use the term crash-consistency implementation when the protocol
might vary slightly with different versions of the application, and we are
referring specifically to a particular version’s protocol.
Update protocol. One part of the crash-consistency protocol. It refers
specifically to the steps that the application takes while modifying its data;
for example, the application might make a backup of the original data
before modifying it.
Recovery protocol. Other part of the crash-consistency protocol. Refers to
the steps taken when the application is restarted after a system crash; for
example, the application might restore data from a backup taken during
the update protocol.
File-system crash behavior. When an application issues system calls that
modify files and directories, and a system crash happens, after rebooting
the machine (and allowing the file system to perform its recovery), there
can be a variety of states in which the files and directories might be found.
For example, if the application issues a write() system call to modify two
bytes in a file and a system crash happens, the file might have both bytes
modified, only one modified, or both unmodified. The variety of states
that might occur depends on the file system; only certain file systems
might allow the state where only one byte has been modified. The term
crash behavior broadly defines the states that the file system allows to occur
when the application modifies files and directories in a specific way.
Crash vulnerability. A violation of application crash guarantees possible
under certain file-system behavior and certain timings of system crash. In
the context of the terms errors, faults, and failures [33], the term vulnerability

22

encompasses errors and faults; we specifically use the term static vulnerabil-
ities and dynamic vulnerabilities (defined later) similar to errors and faults,
respectively. However, the term faults is usually used for misbehaviors
that result in failures unless they are handled; vulnerabilities result in
failures only if a system crash happens under certain conditions. Thus,
our usage of vulnerabilities is similar to security literature, if a system crash
is considered equivalent to a malignant adversary.
Vulnerability exposure. The event of the vulnerability actually occurring
during a system crash (i.e., the system-crash timing is satisfied and the file
system behaves in the required way). A failure.
Window of vulnerability. The time interval during which, if a system
crash happens, a particular vulnerability will be exposed. For the window
of vulnerability to exist, the underlying file system must behave such that
the vulnerability can be exposed.
Ordering. The term ordering refers to a specific constraint on file-system
crash behavior. Consider an application that issues two modifications
(to files and directories) and a system crash happens; for example, the
application creates file A and then file B. The file system might only allow
states where, if the second modification is visible to the user, the first is
also visible; in the example, if the application finds file B to exist after
the crash, it can certainly also find file A. We say such a file system has
ordered the modifications, maintained the ordering of the modifications, or
persisted the modifications in-order. If the application finds B but not A,
we say the file system has re-ordered the modifications, violated the ordering,
or persisted the modifications out-of-order.
Full ordering and global ordering. When the file system maintains or-
dering between all types of modifications, we say the file system is fully
ordered or maintains full ordering (however, we omit the word fully when
the meaning is apparent from the context). If a file system does not main-
tain ordering between all modifications, we term it a re-ordering file system

23

or out-of-order file system. The term global ordering refers to ordering being
maintained across all processes and threads. For example, a file system
that maintains the ordering between all modifications within the same
thread but not across threads, maintains full ordering only within each
thread, and does not maintain global ordering.

2.5 Summary

To summarize this chapter, efficient implementations of application-level
crash consistency are inherently complex. The varying and non-intuitive
crash behavior of different file systems make it further difficult to imple-
ment application consistency correctly. The exact crash behavior of file sys-
tems are an unintentional consequence of their internal crash-consistency
implementations, which are often intricate and complex.

24

3
ALICE

In this chapter, we describe a tool, the application-level intelligent crash
explorer (Alice), for studying the update protocols of existing I/O applica-
tions. Alice examines whether the update protocols are correct, or if they
assume any behavior about the underlying file systems. Alice achieves its
goal by constructing different on-disk file states that may result due to a
crash and then verifying application correctness on each created state.

Unlike other approaches [109, 111] that simply test an application atop
a given storage stack, Alice finds the generic set of file-system behaviors
required for application correctness without being restricted to only a
specified file system. Alice targets specific states that are prone to reveal
crash vulnerabilities in different source lines and associates discovered
vulnerabilities with the exact source lines involved. Alice achieves this by
constructing file states directly from the system-call trace of an application
workload. The states to be explored and verified can be described purely
in terms of system calls: the actual storage stack is not involved. Alice can
also be used to abstractly test the safety of new file systems.

This chapter first provides an overview of Alice, and then how it cal-
culates states possible during a system crash using an Abstract Persistence
Model (APM). Next, the chapter describes how these states are selectively
explored so as to discover application requirements and how discovered
vulnerabilities are reported associated with source code lines. The chapter
also describes our prototype implementation of Alice and its limitations.

25

3.1 Overview

The basic idea employed by Alice for checking a particular application is
simple. The user first supplies Alice with an initial snapshot of the files
used by the application (typically an entire directory), and a workload
script that exercises the application (such as performing a transaction).
The user also supplies Alice with a checker script corresponding to the
workload that verifies whether invariants of the workload are maintained
(such as atomicity of the transaction). Alice runs the checker atop different
crash states, i.e., the state of files after rebooting from a system crash that
can occur during the workload. Alice then produces a logical represen-
tation of the update protocol (that was executed during the workload),
vulnerabilities in the protocol, and the source code lines associated with
each vulnerability. Alice also lists the file-system crash behaviors that
need to be guaranteed for the update protocol to be correct.

Listing 3.1 shows example workload and checker scripts for a key-value
store written in Python. The workload inserts a few key-value pairs, while
the checker tries opening the database and retrieving any inserted keys.
Note that the checker does not deal with the internal implementation of the
application, but is rather simply another application workload that is run
on simulated crash states. If the checker finds that the database cannot be
opened, or the retrieved key-value pairs do not match expectations, it exits
with an error and additionally prints an error message to stderr identifying
the violated invariant (Python’s assert statement does both). Notice how
the checker also checks for the durability expected from the key-value store;
Alice supplies the checker with any externally visible information that
has been output when the crash happened, and the checker in Listing 3.1
simply checks if all keys can be retrieved if the message ‘Done’ had been
printed at the time of the crash.

The exact crash states possible for a workload varies with the file system.
For example, depending on the file system, appending to a file can result

26

Workload

Opening database
db = simplekv.open(’mydb’)

Inserting key-value pairs
db[’x’] = ’foo1’
db[’y’] = ’foo2’

Flushing them to disk
db.sync()
print ’Done’

Checker

db = simplekv.open(’mydb’)
assert(db is not None)

c = len(db.keys())
if alice.printed(’Done’):
....# Should be durable
....assert c == 2
else:
....# Only inserted pairs
....# can exist
....assert c in [0,1,2]

The inserts were atomic
if c == 1:
....assert db[’x’] == ’foo1’
elif c == 2:
....assert db[’x’] == ’foo1’
....assert db[’y’] == ’foo2’

Listing 3.1: Workload and Checker. Simplified Python workload and checker
scripts for a key-value store. The workload inserts two key-value pairs into an
empty database (assumed to already exist) and flushes them to disk. The checker
checks whether the database can be opened, and whether the retrieved key-value
pairs are sensible, atomic, ordered, and durable after the db.sync() call.

in the file containing either a prefix of the data persisted, with random
data intermixed with file data, or various combinations thereof. Alice
uses file-system Abstract Persistence Models (APMs) to define the exact crash
states possible in a given file system. By default, Alice uses an APM with
few restrictions on the possible crash states, so as to find the generic file-
system crash guarantees required for application correctness. However,
Alice can be restricted to find vulnerabilities occurring only on a specific
file system, by supplying the APM of that file system. We discuss how

27

open(“xxx”) = 4
write(4, “hi”) =2
.......

Application
Workload

Logical
Operations

Initial
Snapshot

Abstract
Persistence

Model

Micro-ops

Crash State:
Files + Terminal Output

1. Update Protocol
2. Dynamic vulnerabilities
3. File-system behaviors required for correctness

strace

Initial State
(logical entities)

Checker
 Legend

.......... Inputs

.........,. Optional Inputs

.........,. Output

Exploration
Strategy

Static vulnerabilities with source line numbers

Figure 3.1: Alice: Steps To Find Vulnerabilities. The figure shows how
Alice converts user inputs into crash states and finally into crash vulnerabilities.
Black boxes are user inputs and grey boxes are optional inputs.

APMs are specified and used by Alice, in the next section.

3.2 Constructing Possible Crash States

Figure 3.1 shows the various steps followed by Alice to find crash vulner-
abilities. Alice first records the initial state of the files and directories (on

28

which the user-supplied workload is about to be run) as a set of logical
entities. It then runs the application workload and obtains a system-call
trace, which is converted into a sequence of logical operations; the trace
represents an execution of the application’s update protocol. Finally, Alice
uses the sequence of logical operations along with the Abstract Persistence
Model of a file system to calculate the different crash states that are possible
from the initial state. We now explain these steps in detail.

Logical File-System State and Logical Operations

Alice represents the initial state of the file system (as well as other states,
described subsequently) as a set of logical entities. There are two types
of logical entities: file inode entities store the size and data contents of a
regular file, while directory inode entities are an associative map of file
names to either file or directory inodes. Note that neither of these entities
correspond to the internal data structures of a particular file system. Rather,
the entities represent the state of files and directories as observed by the
application, in a format independent of the file-system implementation.

After running the application workload, Alice converts the trace of sys-
tem calls and memory accesses obtained to a sequence of logical operations.
Logical operations abstract away details such as current read and write
offsets, and file descriptors, and transform a large set of system calls and
other I/O producing behavior into a small set of file-system operations.
For example, write(), pwrite(), writev(), pwritev(), and mmap()-writes
are all translated into overwrite or append logical operations.

The list of all logical operations is detailed in Table 3.1, and the system
calls they result from are shown in Table 3.2. Logical operations capture
three aspects of the obtained trace: modifications performed by the applica-
tion to the in-memory version of the initial state, the times at which data is
explicitly flushed by the application to the disk (sync() logical operation),
and any outputs of the application that relate to durability expectations

29

Logical operation Meaning
overwrite(inode, offset,
count, data) Write to regular file, with no change to its size.

append(inode, old_size,
new_size, data)

Write just beyond the current size of a regular
file and increase the size of the file.

truncate(inode, old_size,
new_size)

Change the size of a file without writing data
to the file; the size can be either increased or
decreased.

link(dir_inode, link_name,
link_inode, link_count)

Create a link to a new or existing regular file or
a directory. The link_count parameter records
the total number of links that point to the
link_inode across the entire file system after
this operation.

unlink(dir_inode,
link_name, link_count) Remove a file or directory link.

rename(source_dinode,
source_name, dest_dinode,
dest_name, inode)

The rename() system call.

sync(inode) Synchronize the in-memory and on-disk state
of an inode.

output(data) Application prints to the screen; can be con-
figured for other relevant outputs, such as
network messages.

Table 3.1: Logical Operations. List of logical operations employed by Alice.

after a crash. Note that all these aspects are file-system agnostic.
Producing logical operations requires more than examining only sys-

tem calls and memory accesses that directly induce I/O. For example, the
clone() and close() system calls influence file descriptors, and hence
must be examined as well; other such ancillary system calls are shown in
the last row of Table 3.2. Alice produces logical operations by simulating
a replay of the system-call trace and associating logical entities (i.e., file or
directory inodes) with the resulting operations.

Note that, while many different logical operations can be performed on

30

Logical
operation

Results from

overwrite pwrite, pwritev, write, writev, mwrite∗
append pwrite, pwritev, write, writev
truncate fallocate, ftruncate, truncate, pwrite, pwritev, write, writev,

openat, open
link link, mkdir, openat, open, creat
unlink rmdir, unlink
rename rename
sync fdatasync, fsync, msync, sync, pwrite, pwritev, write, writev
output write
ancillary chdir, clone, close, dup, dup2, dup3, execve, fchdir, fchmod,

fchown, fcntl, fcntl64, lseek, mmap, mmap2, mremap, mun-
map, shmat, shmctl, shmdt, shmget, vfork, read, readv

Table 3.2: System Calls and Logical Operations. The table lists which
system calls each logical operation might result from. Some system calls can result
in multiple logical operations. For instance, a write() system call can result
in both a overwrite and an append logical operation, if the write straddles the
current size of the file; a write() can also result in a truncate followed by an
append if the user did a lseek() beyond the end of the file. The “ancillary”
row simply lists system calls that never directly result in a logical operation, but
influence the generation of other logical operations. Note that the current version
of Alice does not handle all system calls (e.g., mknod()), and might need to be
extended in a straightforward manner for applications that use them. ∗ mwrite is
not an actual system call, but denotes memory accesses to memory-mapped files.

logical entities, there is no direct operation that creates or deletes an entity;
Alice instead models an infinite number of logical entities that are never
allocated or deallocated, but only rather simply changed. Specifically, the
link() operation, if resulting from the creation of a file or a directory,
associates with itself an entity from the infinite pool that has never been
previously associated.

31

Micro operation Meaning
write(inode, offset,...........
count, data)

A data write to a file. Two special values
for data are zeros and random; random writes
garbage data to the file, imitating a file system
that exposes uninitialized data regions. This
micro operation does not change the file size;
writes beyond the end of a file cause data to
be stored without changing file size.

change_file_size(..........................
inode, size)

Changes the size of a file inode. Increasing the
file size beyond the point where data has been
explicitly written to the file exposes uninitial-
ized data region similar to a write(random)

create_dir_entry() Creates a directory entry in a directory, and
associates a file inode or directory with it.

delete_dir_entry() Removes a directory entry.
output() Application output

Table 3.3: Micro Operations. List of micro operations employed by Alice.

Abstract Persistence Models

Logical operations are sufficient to determine all possible in-memory file-
system states that are visible to the application while it is running. By
nature, the in-memory states are independent of the particular file system
being used underneath. Alice, however, is interested in the states that
become visible following a system crash and reboot; the set of such possible
crash states depends on the file system used.

Alice determines the possible crash states of the workload by consid-
ering a particular file system’s Abstract Persistence Model (APM). An
APM is a model of the file system that, when applied to a sequence of
logical operations and initial state, enumerates all possible crash states for
the file system. More specifically, an APM converts a sequence of logical
operations into a list of micro-operations and ordering constraints between
the operations in the list, which can then be applied on the initial state to

32

Logical Operation Micro Operations
overwrite count× write(data)

change_file_size
write(zeros)
write(data){count×append

truncate change_file_size
write(zeros){count×

link create_dir_entry
unlink delete_dir_entry + truncate if last link

if dest exists: unlink(dest)
rename create_dir_entry(dest)

delete_dir_entry(source)
sync No micro operation

output output

(a) Converting Logical Operations to Micro Operations.

Description Constraint
Overwriting writei(inodeA, offsetB, count=1, dataC)→
same offset writej(inodeA, offsetB, count=1, dataD) ∀ i < j

sync(A) flushes any-opi(A)→ any-opk ∀ syncj(A) s.t. i < j < k
all operations on A

Output outputi()→ any-opj ∀ i < j

(b) Ordering Constraints.
Table 3.4: Default APM Informal Description. (a) translates logical op-
erations into micro operations; count× indicates micro operations generated
multiple times for a single logical operation (corresponds to the size of the over-
write, append, or truncate). (b) shows ordering constraints; Xi is the ith micro
operation, Xi → Xj means that Xi reaches the disk (is ordered before) Xj, and
any-op(A) is any operation on the logical entity A.

determine the possible crash states. Each micro-operation represents an
atomic modification that is internally performed by the file system on the
logical entities; possible micro operations are shown in Table 3.3. Note
that, while the conversion of logical operations is dependent on the file

33

system’s APM, the resultant micro operations and ordering constraints
can be interpreted in a manner independent of the file system.

To understand APMs further, consider a single rename() logical opera-
tion where the destination doesn’t previously exist. The logical operation
can be achieved through two micro operations: a create_dir_entry(destination)
and a delete_dir_entry(source). In the absence of any ordering con-
straints, such conversion can result in four different crash states: both
the destination and the source links existing, neither existing, only the
source existing, and only the destination existing. Some file systems do
not allow a crash state where neither the destination or the source ex-
ist; the APM of such file systems specify an ordering constraint that the
create_dir_entry needs to be performed before the delete_dir_entry.
If the file system performs renames atomically, its APM can specify an addi-
tional ordering constraint, that delete_dir_entry needs to be performed
before create_dir_entry; this results in a circular ordering dependency
which imposes the desired atomicity.

Note the output micro operation in Table 3.3. In Alice, each crash state,
in addition to specifying the state of the file system at the time of the crash,
also includes information about all externally visible outputs at the time
of the crash. This leads to two mandatory rules in all APMs (irrespective
of the file system). The first rule is that all output logical operations are
converted directly into a output micro operation. The second rule is an
ordering constraint: all output micro operations are performed before
all micro operations resulting from future logical operations (i.e., if the
application prints a message on screen and then writes a file, the write
cannot reach the disk before the message is printed).

Alice can be configured with the APM of any file system, but uses a
hypothetical file system by default, with the aim of finding and report-
ing many vulnerabilities that can be exposed in multiple real-world file
systems (ensuring that the application can be crash consistent atop multi-

34

ple file systems). We now first explain the default APM and then briefly
describe how other APMs can be used with Alice.

Default APM

Alice is always required to be configured with an APM, and will hence
always examine crash states possible with a particular file system (corre-
sponding to the APM). However, ideally, by default, we wanted Alice to
find all vulnerabilities in the given application without assuming a file
system. To reconcile these contradictory requirements, Alice uses the
APM of a hypothetical file system that can result in many crash states as its
default APM, intending to capture the worst-case behavior of a multitude
of file systems. The default APM achieves this goal by generating micro
operations from logical operations at byte-granularity and imposing only
a few ordering constraints on them. In the next subsection, we highlight
how this strategy can capture the worst-case behavior of many real-world
file systems.

Table 3.4 describes the default APM, while Listing 3.2 shows an example
translating system calls into micro operations and ordering constraints
using the APM. Table 3.4(a) shows how each logical operation is broken
down into micro operations. File data operations (overwrites, appends,
and truncates) are broken down at the byte level, thus encompassing our
expected worst-case behavior of future NVM-specific file systems. The
count× notation in Table 3.4(a) for the file operations thus corresponds
to the number of bytes involved in the logical operation. Both the append
and truncate operation increment the file size and write information for
each individual byte; appending to a file introduces garbage data (the state
when only change_file_size has happened), then zeros (write(zeros)
has happened), and finally the actual data. Note that directory operations
are broken into individual directory-entry operations, again encompassing
our expected worst-case behavior of file systems.

35

The ordering constraints imposed by the default weak APM are shown
in Table 3.4(b). First, if data in a particular position in the file is written
more than once, the earlier versions should reach the disk before the later
versions; this follows the working of unified buffer caches found in modern
operating systems [82]. Second, all micro operations followed by a sync
on a file A are ordered after writes to A that precede the sync; we thus
assume a file system that takes sufficient care to force file data (regular or
directory) to disk on a fsync(), fdatasync(), or msync() system call. The
final constraint concerns the output logical operation described previously.

Other APMs

Alice can also model the behavior of real file systems when configured
with other APMs. Table 3.5 summarizes the APMs of five Linux file-
system configurations: ext3 under the data=journal mode, under the default
data=ordered mode, and under the data=writeback mode, and the default
mode of ext4 and btrfs. We based the APMs in Table 3.5 on previous work
that seeks to understand their behavior [65], and validated them based
on our understanding of ext3 and ext4 and by communicating with btrfs
developers [64].

Note that, by their nature, the APMs in Table 3.5 will not correspond
exactly to the file systems: behavior of these file systems has so far been un-
specified, can change between versions [66, 67], and even their developers
are confused about the behavior [64]. Since file systems are not required to
maintain good crash behavior, and our APMs are not officially guaranteed
by file systems, file-system developers can always change the provided
behavior in future versions. Hence, we have based the APMs on their
current (as of May 2014) high-level design and optimizations, intending
to cover past, current, and future versions of their file systems. In the
future, APMs can allow file-system developers themselves to accurately
specify the crash behavior that is to be expected of their file system, and

36

Ordering SAG CA DO
ext3-j All operations are ordered. 4K X X

ext3-o Directory operations, appends, and trun-
cates ordered among themselves. Over-
writes ordered before non-overwrites. All
operations ordered before every sync.

4K X X

ext3-w Directory operations and file-size opera-
tions ordered among themselves, and be-
fore sync operations. All operations on
inode X ordered before sync on X.

4K × X

ext4-o Safe rename, safe file flush are satis-
fied. Directory operations ordered among
themselves. All operations on inode X or-
dered before sync on X.

4K X X

btrfs Safe rename, safe file flush are satisfied.
All operations on inode X ordered before
sync on X.

4K X X

default All operations on inode X ordered before 1 × ×
APM sync on X. byte

Table 3.5: APMs Used. The table summarizes the APMs of common Linux
file systems. Legend: SAG: Size-Atomicity Granularity. CA: Content-Atomicity.
DO: Directory-Operations atomicity. The terms content atomicity, size-atomicity
granularity, directory-operations atomicity, safe file flush, and safe rename, are
explained below. Ordering between file overwrites at the same offset and ordering
related to output operations (further explained in Table 3.4) are satisfied in all the
APMs of this table but are not explicitly mentioned.

to implement their file system accordingly.
Table 3.5 summarizes the ordering constraints of each APM and how

logical operations are split. All APMs obey the ordering constraints spec-
ified in Table 3.4(b), and these constraints are not explicitly listed in Ta-
ble 3.5; the additional ordering constraints for each APM is described. The
constraints for ext4-o and btrfs include safe rename and safe file flush. The

37

safe rename constraint orders all writes to a file before a future rename
of the file. The safe file flush constraint orders all directory operations on
directory entries in a file’s path (up to the root of the file system) before
a sync on the file. These ordering constraints are further explained in
Chapter 4 (§4.5).

We describe how logical operations are split in Table 3.5 using the
columns size-atomicity granularity, content atomicity, and directory-operations
atomicity. Logical operations are split for all APMs as in Table 3.4(a), except
for the changes described in these columns. The size-atomicity granularity
column describes how overwrite, append, and truncate logical opera-
tions are split; if the granularity of size atomicity is 4096, they are split at
4096-byte boundaries of file offset.

The content atomicity column actually describes circular ordering con-
straints that impose atomicity for micro operations generated from the
append and truncate logical operations. If there is a X on the column,
circular ordering constraints are added for each set of change_file_size,
write(zeros), and write(data) micro operations generated from an append
logical operation. Similarly, with truncate, circular ordering constraints
are added for each pair of change_file_size and write(zeros). Thus,
if there is a X on the column, on a crash, an append or truncate cannot
result in garbage being visible at the end of the file after rebooting. The
directory-operations atomicity column similarly describes circular order-
ing constraints that impose the atomicity of all micro operations resulting
from each link, unlink, and rename logical operation. The terms size atom-
icity, content atomicity, and directory-operations atomicity are further used in
Chapter 4 (§4.5).

As an example, let us consider the APM in the ext3-j row in Table 3.5;
it differs from the default APM (final row) as follows. First, logical op-
erations are broken down into micro operations at the block (4096 byte)
level for file data and without zero writes during appends. Second, or-

38

dering constraints specify that each micro operation requires all previous
micro operations to be persisted. Finally, the APM imposes the atomicity
of rename, truncate, and the unlink logical operations, and block-level
atomicity of the append operation (i.e., no garbage will be observed by
the user) by using circular ordering constraints.

State Re-construction

As explained, using the APM, Alice can translate the system-call trace
into micro operations and calculate ordering dependencies amongst them.
We now explain how to generate crash states from the micro operations
and ordering dependencies.

Consider a simple workload that generates two micro operations (say,
A and B) without any ordering constraints between them, and that a crash
happens during the workload or immediately after. By the time of the
crash, both operations might have been applied to the initial state on disk,
or neither operation might have, or only one of the operations might have.
Thus, there are four possible crash states (i.e., 〈A B〉, 〈_ _〉, 〈A _〉, 〈_ B〉).

Note that the permutation among the micro operations does not matter
in the construction of the crash state: 〈A B〉 and 〈B A〉 represent identical
crash states. This is because of a property of micro operations and logical
entities that is inherent in their definition: applying a set of micro opera-
tions to an initial state results in the same final state, irrespective of the
order in which they are applied. This property is apparent for a simple
workload, such as writing two bytes of file data. To stress this further,
assume a slightly complex workload with the following two system calls:

mkdir(/X); mkdir(/X/Y);
They generate the following micro operations, assuming the inode entity
of the root directory is 2, the inode entity assigned to X is 3, and to Y is 4:

create_dir_entry(dir=2, entry=‘X’, inode=3) — A

create_dir_entry(dir=3, entry=‘Y’, inode=4) — B

39

Applying the micro operationA first and thenB (〈AB〉) represents creating
the directory entry X on inode 2 (pointing to inode 3) and then the entry
Y on inode 3 (pointing to inode 4). Applying B first and then A (〈B A〉)
first creates entry Y on inode 3 (inode 3 is not yet reachable from the root
directory and is thus invisible to the application) and then creates entry X
on inode 2 (making inode 3 visible). Also note that, in this example, the
states 〈_ _〉 and 〈_ B〉 appear equivalent to the application, since inode 3
is not visible without micro operation A, and micro operation B operates
on inode 3. We do not discuss such application-visible state equivalence
for now, and consider each set of micro operations to form a unique crash
state; optimizations using such equivalence are discussed in Section 3.5.

Thus, each set of the micro operations can result in a unique crash state.
If we consider a workload that generates N micro operations without any
ordering constraints, there are 2N possible unique crash states. Ordering
constraints reduce the number of valid crash states. For example, if the
constraints state that B should be ordered after A in the initial example,
the crash state 〈_ B〉 is invalid.

Hence, to reconstruct crash states, Alice selects different sets of the
translated micro operations that obey the ordering constraints. It then
applies each operation in the selected set sequentially to the logical entities
in the initial file-system state, producing the state of the logical entities
after the crash. For each such reconstructed logical crash state, Alice then
converts the logical entities back into actual files and supplies them to the
checker, which then verifies the crash state.

3.3 State Exploration

The space of all possible crash states for a given sequence of micro op-
erations and ordering constraints (i.e., for a given system-call trace) can
be huge. By default, Alice targets specific crash states that concern the

40

ordering and atomicity of each individual system call, as explained in the
following subsections. The intuition behind this strategy is to explore a
few representative crash states for each error that a developer might make
while implementing the application’s update protocol. If desired, the user
can configure Alice with a different exploration technique.

Atomicity across System Calls

The programmer might have accidentally assumed that multiple system
calls are persisted together atomically, and Alice first constructs a set of
crash states designed to check for such a requirement. The requirement is
easy to check: if the protocol hasN system calls, Alice constructs one crash
state for each prefix (i.e., the first X system calls, ∀ 1 < X < N) applied.
In the sequence of crash states generated in this manner, the first crash
state to have an application invariant violated (i.e., where the checker fails)
indicates the start of an atomic group. The invariant will hold once again
in crash states where all the system calls in the atomic group are applied. If
Alice determines that a system callX is part of an atomic group, it does not
proceed with constructing further crash states that involve the ordering
and atomicity of X as discussed in the next subsections.

System-Call Atomicity

The programmer might have assumed that a single system call will always
be persisted atomically. Alice tests this for each system call by applying
all previous system calls to the initial state, and then generating crash
states corresponding to different intermediate states of the system call.
Note that there can be many possible intermediate states for a file write
or truncate system call. For example, a 10-byte write() system call in the
default APM can result in 210 states, since it generates 10 micro operations.
Similarly, 10-block writes would result in 210 states in file systems such as

41

btrfs and ext3, since these file systems break write() system calls at block
granularity.

Hence, for file overwrites, file appends, and file truncates, we explore
only a subset of the possible intermediate states. Assuming that the appli-
cation writes some user-level data structure in the system call, the goal is to
produce intermediate states that result in a medley of cases where different
fields in the data structure are persisted partially, and when some fields
are persisted without the others. Examining crash states where the data
structure is persisted partially will likely reveal any crash vulnerabilities.

We now explain the intermediate states explained for file overwrites.
We then briefly describe the states explored for truncates and appends,
and for directory operations.

File Overwrites

With file overwrites, we explore three intermediate states for each micro
operation constituting the system call; to understand the intermediate
states explored, consider an example where the system call has been split
into three micro operations, A, B, and C. First, the state where only the
part is persisted among all parts is explored (i.e., only A, only B, only C).
Second, the state where only the part is not persisted is explored (i.e., B C
for part A, A C for part B, A B for part C). Third, we explore the state
where all parts up to the considered part are persisted (i.e., only A for part
A, AB for part B, ABC for part C).

Thus, for each overwrite, we explore 3 ×M states, where M is the
number of micro operations the system call has generated. For most
non-default APMs modeling real file systems, since micro operations are
generated from the system call at the block (or sector) granularity of the
file system, this strategy results in a practical number of states. However,
since the default APM has byte-granularity micro-operations, the strategy
is impractical for bigger writes.

42

Hence, with the default APM, instead of exploring three intermediate
states for each micro operation, the micro operations are grouped into
chunks, and the three intermediate states are explored per chunk. Specifi-
cally, the micro operations are first grouped into 4 KB chunks (a common
block size), and the three states are explored per chunk; then, they are
grouped into 512 B chunks (a common sector size) and the states explored;
then, all the micro operations forming the system call are grouped into
three equally sized chunks and the states explored.

File Appends and Truncates

We follow a similar strategy for appends and truncates. With truncates,
for non-default APMs, if micro operations can result in the file containing
garbage, the strategy automatically investigates states containing garbage.
For the default APM, chunks are grouped together such that the garbage-
filled state corresponding to each chunk is also investigated. For appends,
the strategy also investigates zero-filled states.

Directory Operations

For directory operations, enumerating all possible intermediate states
when testing atomicity is practical, and is followed by Alice. Note that
a system call performing a directory operation (such as unlink()) might
also include a file truncate; in such cases, only selective intermediate states
are considered for the truncate (per the strategy described previously),
while all possible states are considered for the rest of the system call.

Ordering Dependency among System Calls

The programmer might assume various system calls are persisted in the
relative order in which they were issued. Consider a workload that pro-
duces N system calls without any ordering constraints imposed by the

43

underlying APM, such as N file creations in the default APM. There are
2N −N− 1 different crash states where a crash has happened with some
system calls persisted out-of-order (but all persisted system calls were
persisted atomically). Thus, testing all states where system calls have been
persisted out-of-order is impractical, similar to the situation explained in
the previous section.

Hence, the default exploration strategy tests a subset of the crash states
caused by re-ordering. Specifically, for every possible pair of system calls
in the workload, we test the crash state produced by re-ordering those two
system calls, with all the other system calls having persisted atomically and
in-order. To achieve this for the pair of two system calls A and B, where
A occurs before B during the application’s execution, Alice applies the
micro operations corresponding to every system call from the beginning
of the protocol until B, except for A.

Summary

To summarize, Alice’s default exploration strategy is not exhaustive (and
hence not complete). The default strategy does not test crash states where
more than one system call had persisted partially (i.e., not atomically),
more than one pair of system calls were persisted out-of-order at the time
of the crash, or a combination of both these scenarios. It also only tests
a subset of the states concerning parial persistence of each system call.
However, we found that the exploration strategy discovers most appli-
cation vulnerabilities in a practical amount of time; this is quantitatively
discussed in Section 3.6.

3.4 Static Vulnerabilities

The previous sections elaborate how Alice re-constructs a targeted set of
crash states possible under the given workload, and how the user-supplied

44

checker is run on each re-constructed state. The checker might determine
that the expected application-level invariants are satisfied in some of the
re-constructed states, and are not satisfied on others. Each of the crash
states where invariants are violated represents a possible failure scenario
for the application. We now address how to present to the user the list of
crash states where invariants are violated. We first introduce the reader to
a simple but useful method, dynamic vulnerabilities, and then to a better
method, static vulnerabilities.

Dynamic Vulnerabilities

A naive strategy is to simply list the crash states where invariants are
violated, with each state described in terms of the micro operations that
constitute the state. However, this strategy does not provide informa-
tion on how each state was constructed, and hence does not provide any
directly usable information regarding the cause behind the observed in-
consistencies.

With the default state-exploration technique followed by Alice, a bet-
ter strategy can be used; the observed inconsistencies can be described
in terms of whether they can be fixed by atomically persisting multiple
system calls together, by atomically persisting a particular system call,
or by maintaining the order between a pair of system calls. We term the
vulnerabilities described in such a way that provides directly usable in-
formation (in terms of system calls in the trace) about the inconsistency
as dynamic vulnerabilities. Note that the precise definition of dynamic
vulnerabilities depends on the state-exploration technique. Hence, if a
user decides to customize the exploration technique (as described in the
previous section), the user also has to re-define the method used to identify
unique dynamic vulnerabilities from a list of inconsistent crash states.

Even though dynamic vulnerabilities provide better information than
a simple list of crash states, they still represent failures and not errors. For

45

example, consider an application workload issuing ten writes in a loop;
the system-call trace would then contain ten write() system calls. If each
write is required to be atomic for application correctness, ten dynamic
vulnerabilities are detected, since dynamic vulnerabilities are described
in terms of the system calls in the trace; however, they are all caused by a
single source line. Thus, simply providing Alice with a longer running
workload will output more dynamic vulnerabilities, although they might
be caused by the same number of errors as reported in a shorter workload.

Static Vulnerabilities

Alice solves this problem using stack-trace information to correlate all
10 system calls (i.e., the 10 dynamic vulnerabilities, or the 10 failures) to
a single error, or a single static vulnerability. One way to report static
vulnerabilities is to simply report the set of unique stack traces among
the different dynamic vulnerabilities detected. In the previous example,
all 10 dynamic vulnerabilities have the same stack trace, and will hence
correspond to a single static vulnerability. While this method of reporting
static vulnerabilities might be sufficient in practice for developers, it is not
sufficient for a detailed study of the number of logical errors and their
implications in applications, as in Chapter 4. This is because a single error
might correspond to two different stack traces; for example, an application
workload might trigger the same application action (that happens to cause
a dynamic vulnerability) from different places.

Hence, Alice chooses the innermost stack frame from the stack trace of
each dynamic vulnerability, and reports the number of such unique stack
frames across all dynamic vulnerabilities. This is more meaningful than
using the entire stack trace: even if the same application action (that causes
a dynamic vulnerability) is called from different places in the application
workload, since the resulting dynamic vulnerabilities will have the same
innermost stack frame, only one static vulnerability will be reported. In

46

the rest of this thesis, any report of the number of vulnerabilities in a
particular application corresponds to the number of such static vulnera-
bilities discovered, i.e., the number of errors discovered in the application
instead of the number of failures discovered. To identify errors, we use
the number of unique innermost stack frames rather than the number of
unique stack traces.

Note that, in some applications, the innermost stack frame is actually a
wrapper to the C-library, and hence the number reported might be less
than the actual number of vulnerabilities. As an example, consider two
separate modules of an application, each requiring a write() to be atomic.
If both modules issue the write() via the same wrapper function, since
the wrapper function forms the innermost stack frame in the dynamic vul-
nerability, both will be reported as a single static vulnerability. To combat
this, Alice can be configured to choose an alternate set of representative
stack frames (instead of only the innermost) while determining static vul-
nerabilities. In Chapter 4, we configure Alice to choose a non-default stack
frame for applications that we know use such wrapper libraries (LevelDB,
Git, and SQLite).

3.5 Implementation

Alice consists of around 4000 lines of Python code, and also traces memory-
mapped writes in addition to system calls. It employs a number of op-
timizations. First, Alice caches crash states, and constructs a new crash
state by incrementally applying micro-operations onto a cached crash state.
Second, we found that the time required to check a crash state was often
much higher than the time required to incrementally construct a crash
state. Hence, Alice constructs crash states sequentially, but invokes check-
ers concurrently in multiple threads. Third, different micro-op sequences
can lead to the same crash state, as explained in Section 3.2. For example,

47

different micro-op sequences may write to different parts of a file, but if
the file is unlinked at the end of sequence, the resulting disk state is the
same. Therefore, Alice hashes crash states and only checks the crash state
if it is new. Finally, we found that many applications write to debug logs
and other files unrelated to application correctness. Alice allows filtering
out system calls related to these files with configuration options.

While logical entities, APMs, and micro operations are necessary ab-
stractions for the basic methodology used by Alice to discover crash vul-
nerabilities, logical operations only simplify the methodology and are not
strictly necessary. In some cases, however, we found that using logical op-
erations as a hard abstraction makes the methodology more complex. For
example, consider the fact that APMs describe the conversion of logical op-
erations into micro operations. It is possible that, for some file systems, the
micro operations for a overwrite logical operation depends on whether
the overwrite resuled from a pwrite() or a write() system call. Therefore,
defining APMs to be entirely based on logical operations requires each
logical operation to also encode such information. Instead, we treat logical
operations as a soft abstraction in Alice: while they are often used as such,
in unusual cases, an APM or a customized state-exploration technique can
instead refer directly to the system-call trace.

3.6 Evaluation and Discussion

In this section, we discuss the following questions:

• How difficult is it to write workloads and checkers?

• How much time does running Alice take?

• Does Alice’s default state-space exploration strategy offer sufficient
space coverage?

48

We answer these questions based on our experience in using Alice to
find crash-consistency vulnerabilities in eleven important applications,
further described in Chapter 4. Specifically, in this section, we examine
and discuss in detail a specific case that is relevant to each question, and
perform additional experiments when necessary.

Workloads and Checkers

Alice can be considered similar to a unit-testing framework: it stresses the
given testcase to find vulnerabilities, and hence only discovers vulnerabili-
ties associated with the testcase. In Alice, a testcase corresponds to the
combination of a workload and a checker. We now discuss the workload
and checker used to study the LevelDB application in the next chapter; we
find LevelDB to be a representative example for the effort required to write
workloads and checkers. We first provide a brief overview of LevelDB,
and then discuss the workload and the checker.

LevelDB is a key-value store that mainly supports Put(key, value) and
Get(key) operations, along with other operations such as deletes and atomic
batches of multiple Puts. LevelDB guarantees that Put operations are
atomic and ordered with respect to a system crash. Puts are also guaran-
teed to be immediately durable if a sync flag is set.

On Put operations, LevelDB stores the inserted key-value pairs in a log
file. When the file reaches a threshold size, it is compacted into a query-
optimized table file, and any future Puts are stored in a new log file. When
certain thresholds are reached, old table files are further compacted into
newer table files (optimizing them further for queries). Note that this de-
scription of LevelDB’s write protocol is simplified in many aspects, includ-
ing concurrency and crash consistency; LevelDB auguments the protocol
carefully with checksums and fsync() for crash consistency. More details
of LevelDB are discussed in the next chapter.

49

Workload

Our workload for LevelDB consists of 40 lines of C++ code, including 15
lines of helper code that generates random strings. Although small, the
workload was designed carefully based on a conceptual understanding of
the application’s write protocol.

The workload performs 10 Put calls (50 KB each) that trigger two com-
pactions (including a compaction of old table files into new table files),
with the sync flag set in the last Put. The workload also, initially, adjusts
the threshold sizes triggering compaction in LevelDB to a smaller value
(64 KB) than the default. In addition, the workload closes and opens the
database again, to trigger a part of LevelDB’s write protocol that is run
only when opening a pre-existing database.

Thus, we used a conceptual understanding of the write protocol (ex-
plained previously) to design the workload. The conceptual understanding
was required to trigger each unique part of the protocol, such as normal
insertions into the log, durable (synchronous) insertions, and compactions.
We also used the understanding to examine all the parts of the write
protocol while reducing the overall size of the workload: we did this by
reducing the compaction threshold. Smaller workloads result in smaller
system-call traces, reducing the number of states explored by Alice and
its running time as described in the next section.

Such a conceptual understanding of the write protocol will be easily
available to the authors of the protocol, i.e., the developers of the ap-
plication. In our case, we initially studied the protocol from LevelDB’s
documentation. We then wrote a workload that simply inserted 10,000 key-
value pairs (20 lines of C++ code) and supplied it to Alice, and examined
Alice’s representation of the exact workload protocol (which Alice out-
puts in a user-friendly format using logical operations). This examination
revealed that the exact write protocol remained the same for different com-
pactions of log files, and for different compactions of old table files. Thus,

50

we gained confidence that one log compaction and one table compaction
in our final workload were sufficient to examine the compaction-related
portion of the write protocol. We also repeated this process to test whether
the exact protocol differed for different key-value sizes, or if separate parts
of the write protocol were invoked while opening and closing the database.
We used our observations to craft the 40-line final workload described
previously.

Other applications described in the next chapter required similar effort
to design the workload. With four applications (Git, Mercurial, HDFS,
and Zookeeper), since the applications allowed many different actions to
be performed (instead of just Put and Get), our workloads examined only
a few of the actions.

Checker

Our LevelDB checker contains 90 lines of C++ code. It tries to open the
database, and if successful, checks for corrupted data, atomicity, ordering,
and durability if the crash happened after the synchronous Put.

Unlike the workload, which required a understanding of the applica-
tion’s protocol for effectiveness, the checker only required knowing the
crash-consistency guarantees of the application. However, we had to ex-
amine the documentation manually to determine the guarantees and the
correct options to open the database correctly; many applications include
configuration options that either disable proper recovery after a crash
or trade-off crash consistency for performance while running. Our Lev-
elDB checker enables the options paranoid_checks, and tries the function
RepairDB() on a detected error before actually failing.

Other applications required more effort for writing the checker. For
instance, consider Git; Git specifies many interactive, manual steps that are
meant to be performed by an user if failures are observed after a system
crash. Our checker hence requires much text-processing code.

51

Summary

To summarize, writing an effective workload is easy if a conceptual under-
standing of the application’s write protocol is known. Similarly, writing
a checker is easy once the correct usage of the application, and the exact
guarantees expected of it, are determined.

Running Time

We measured the time taken by Alice to find vulnerabilities in LevelDB-
1.15 on a machine with an Intel Core 2 Quad Processor Q9300 and 4 GB of
memory running Linux 3.13, with a HDD (Toshiba MK1665GSX 160 GB).
Alice uses the default APM and the default state exploration strategy, and
uses 4 threads to invoke checkers, with the state reconstruction performed
in a separate thread.

The LevelDB workload described in the previous section results in
166 logical operations corresponding to 369 micro operations with the
default APM. Alice explores a total of 5121 crash states in 1321 seconds,
of which 802 seconds is spent in invoking checkers. Note that the 802
seconds represents running checkers in parallel: each individual checker
execution takes 0.626 seconds on average.

With other applications, invoking checkers contributed to an even
higher percentage of the total running time. For example, with Git, the
workload results in 53 logical operations (99 micro operations), and Alice
explores a total of 1692 crash states in 1434 seconds. If the Git checker
were to be substituted with the /bin/echo tool, however, Alice takes 124
seconds to test Git.

Effectiveness of State Space Exploration

The default state-space exploration strategy in Alice is intuitively designed
to explore programmer errors. However, it is possible that other crash

52

states also result in vulnerabilities. To measure the effectiveness of Alice’s
default exploration strategy, we compare it to a customized exploration
strategy described here.

The customized strategy explores all unique crash states (i.e., all possi-
ble sets of micro operations), except for those associated with system calls
already found to cause vulnerabilities using the default strategy. Specifi-
cally, the customized strategy chooses each possible set of micro operations,
validates it with the ordering constraints of the default APM, and verifies
whether all previously-known culprit system calls are present in their
entirety in the set. If the currently chosen set satisfies these conditions,
the corresponding state is explored.

On checking LevelDB-1.15 with the customized strategy, after running
for 72 hours, 514126 states were explored and no additional vulnerabilities
were found. As will be described in the next chapter, a detailed manual
examination of LevelDB also did not find more vulnerabilities. Thus,
these results provide more confidence that the default exploration strategy
sufficiently covers the state space to find most crash vulnerabilities.

Summary

In summary, Alice proves to be a practical tool to find vulnerabilities in
applications. Effective workloads and checkers can be designed with a
simple conceptual understanding of the write protocol. Alice takes less
than an hour to examine complex applications, with the majority of the
time consumed by the user-specified checker. The state-space exploration
strategy followed by Alice proves effective in finding vulnerabilities while
reducing the total time taken.

53

3.7 Limitations

Alice is not complete, in that there may be vulnerabilities that are not
detected by Alice: Alice’s default exploration technique does not explore
all possible crash states. It also requires the user to write application
workloads and checkers; we believe workload automation is orthogonal to
the goal of Alice, and various model-checking techniques can be used to
augment Alice. For workloads that use multiple threads to interact with
the file system, Alice serializes system calls in the order they were issued;
in most cases, this does not affect vulnerabilities as the application uses
some form of locking to synchronize between threads. Alice currently
does not handle file attributes or features such as file holes; it would be
straight-forward to extend Alice to do so.

54

open(path ="/ x2VC ") = 10

Logical operation: None
Micro operations: None
Ordered after: None

write(fd=10, size =2, "ab")

Logical operation: overwrite(inode=8, offset=0, count=2, data=“ab”)
Micro operations: #1 write(inode=8, offset=0, size=1, data=“a”)
Micro operations: #2 write(inode=8, offset=1, size=1, data=“b”)
Ordered after: None

fsync (10)

Logical operation: sync(inode=8)
Micro operations: None
Ordered after: None

write(fd=10, size =2, "cd")

Logical operation: overwrite(inode=8, offset=2, count=2, data=“cd”)
Micro operations: #1 write(inode=8, offset=2, size=1, data=“c”)
Micro operations: #2 write(inode=8, offset=3, size=1, data=“d”)
Ordered after: #1, #2

link(oldpath ="/ x2VC", newpath ="/ file ")

Logical op: link(dir_inode=2, link_name=‘file’, link_inode=8, link_count=2)
Micro operations: #5 create_dir_entry(dir=2, entry=‘file’, inode=8)
Ordered after: #1, #2

write(fd=1, data =" Writes recorded ", size =15)

Logical operation: output(“Writes recorded”)
Micro operations: #6 output(“Writes recorded”)
Ordered after: #1, #2

Listing 3.2: Example: System Calls Converted To Micro Operations.
Micro-operations resulting from each system call in a trace are shown along
with their ordering dependencies when using the default APM. Logical entities
are shown as inode numbers; the inode number assigned to x2VC is 8, and for the
root directory is 2. Some details of the shown system calls have been omitted.

55

4
Vulnerabilities Study

In this chapter, we study the update protocols of real-world applications.
We first perform an extensive manual study of two applications (LevelDB
and SQLite), examining their update protocol, previously reported crash
vulnerabilities, and the relationship between the application’s configu-
ration, performance, and crash consistency. The manual study provides
us insight into how an automatic study can be designed for real-world
applications. We then use Alice to examine 11 widely-used applications
(focusing on single-node applications), to find whether their update pro-
tocols have been implemented correctly, whether file-system behavior
significantly affects application users, and which file-system behaviors
are thus important. Our study thus requires finding vulnerabilities un-
der an abstract file system and understanding them in terms of relevant
file-system behavior, a unique advantage of Alice.

The applications used in the study each represent different domains,
and range in maturity from a few years-old to decades-old. We study three
key-value stores (LevelDB [29], GDBM [28], LMDB [94]), three relational
databases (SQLite [91], PostgreSQL [99], HSQLDB [35]), two version con-
trol systems (Git [47], Mercurial [54]), two distributed systems (HDFS [81],
ZooKeeper [2]), and a virtualization software (VMWare Player [107]). We
study two versions of LevelDB (1.10, 1.15), since they vary considerably in
their update-protocol implementation. Note that the consequences of the
vulnerabilities we find are not easily quantified; they vary based on user

56

expectations in the deployed environment. Moreover, we also consider
file-system behaviors that may not be common now (such an non-atomic
sector-level data writes) but may become prevalent in the future by using
the default APM in Alice. Hence, the results are not suited to relatively
quantify and compare the correctness between different applications.

4.1 Manual Case Studies

We performed a manual study of crash consistency in two applications,
SQLite and LevelDB-1.10. The purpose of our manual study is to under-
stand how crash consistency has been previously dealt with by application
developers and users in real applications, so as to provide the correct
context within which we can perform a broader automated study that is
described in the next section.

To achieve this goal, we first understood the crash invariants guar-
anteed by both applications, and their conceptual update protocol as
described in the design documents. We also examined developer attitudes
towards file-system behavior and past vulnerabilities already fixed in each
application. We then manually examined system-call traces to identify
potential vulnerabilities and verified them by introducing environmental
changes to increase the window of vulnerability and a system crash during
the window.

4.1.1 LevelDB

LevelDB [29], already introduced in the previous chapter, is a persistent
key-value store originally developed in Google. LevelDB is widely de-
ployed; the Chromium web browser uses it as an embedded storage library.
To our knowledge, LevelDB does not formally document the guarantees
it provides on a system crash. However, the documentation and exam-
ples [22] suggested that inserting a key-value pair is atomic (with respect

57

to a system crash), ordered after all previous inserts, and depending on a
configuration option (sync), durable. LevelDB also provides a few configu-
ration options on how to deal with I/O errors and recovery that concerned
crash consistency: we use the safer (but not default) configuration options
of verify_checksums and paranoid_checks.

Update Protocol

LevelDB’s write protocol was briefly described in Chapter 3. To review,
LevelDB adds inserted key-value pairs to a log file until it reaches a thresh-
old, and then switches to a new log file. During the switch, a background
thread starts compacting the old log file to a query-friendly table (ldb or
sst) file. During compaction, LevelDB first writes data to the new table file,
updates pointers to point to the new file (by appending to a manifest), and
then deletes the old log file. LevelDB also periodically compacts multiple
old table files into a new table file.

Vulnerabilities

There was one bug related to crash consistency in LevelDB that was re-
ported previously and subsequently fixed (Bug #68, detailed later); this
bug happens only in select file systems. With manual examination, we
discovered four more places where LevelDB was vulnerable and reported
them to the LevelDB bug database [46].

For the manual examination, we first gained a conceptual understand-
ing of LevelDB’s write protocol, and then wrote workloads that exercised
various parts of the protocol; these steps are similar to writing a workload
for Alice as described previously. We then ran the workloads, collected
system-call traces, and examined the traces. With our knowledge of Lev-
elDB’s recovery protocol and the crash behavior of various file systems,
we looked for suspicious patterns in the system-call trace that did not
correspond to our understanding of LevelDB’s recovery protocol. Unlike

58

writing a workload for Alice, we had to examine system calls in detail; the
process took about 15 days. We then tested each suspicious pattern in the
system-call trace for a crash vulnerability; this was done by modifying the
source code to mainly introduce timing changes, re-running the workload,
and then manually hard-rebooting the machine.

We now describe both the previously reported vulnerability in LevelDB
and those we found using manual examination. We also describe the file-
system behavior required to expose the vulnerability, how we reproduced
the vulnerability manually, and the ticket number in the bug database
corresponding to the vulnerability.
Bug #68: This bug had been previously reported and fixed. When open-
ing a database, LevelDB updates a file by first creating a temporary file,
writing new contents to it, then renaming it over the original file. However,
LevelDB does not flush the contents of the file to disk before issuing the
rename(). If the file system does not make sure that the new data within
the file is persisted before the rename(), a system crash might result in
the (renamed) file not containing the desired contents; LevelDB reports
corruption in this case.
Bug #183: During the initial creation of a database, LevelDB writes ini-
tialization data to a newly-created table file, then writes a pointer to the
data in a newly-created manifest file (without any fsync() in-between). If
the system crashes during the creation, the pointer might get written to
the disk first, before the data in the table file; after reboot, LevelDB would
report an error if the user tries to recreate (or open) the database.

We reproduced the vulnerability by modifying LevelDB to call an
fsync() on the manifest file and sleep for a few seconds, immediately
after writing the pointer. We ran the workload on ext4 and rebooted
the machine during the sleep, after which we observed the pointer on
the manifest file without the table file containing initialization data, and
LevelDB reporting an error.

59

Bug #187: LevelDB switches log files when they reach a certain size. Lev-
elDB does not ensure that the old log is completely on disk before switching
to the new log file; if the new log is persisted but the old one is not, Lev-
elDB recovers the entries in the new log file without being aware of the
loss of older entries, violating the order of the inserted key-value pairs.

We reproduced the vulnerability similar to the previous vulnerability,
by introducing an fsync() on the new log file and a sleep, immediately
after writing to the new log file. We manually crashed the machine as soon
as the sleep started, thus avoiding the old log file’s data from being flushed
(from the buffer cache) to the disk by the background flushing daemon. On
reporting this vulnerability, we found there was some confusion among
the developers and users of LevelDB as to whether the ordering of inserts
is guaranteed, but it was then resolved.
Bug #189: When compacting log files into table files, the table file is first
created with a temporary name, all data is written to it (and flushed),
then atomically renamed; finally, the log files are unlinked. However, the
rename is not explicitly persisted before unlinking the log files. On a crash,
the old log files might be permanently deleted, while the new file still
exists under the temporary name (and is hence not recognized by LevelDB).
After recovery, either corruption is reported, or some (previously existing)
key-value pairs disappear without any indication of an error.

This vulnerability cannot be reproduced on the current version of ext4
using only timing changes; it only happens on other file systems (such
as btrfs). Since we were not experienced with timing effects in other file
systems, to reproduce the vulnerability, we removed the rename calls,
and crashed the machine after the unlinks. We observed the previously
mentioned failures when we tried to read the database after rebooting.
Bug #190: LevelDB assumed that performing an fsync() or fdatasync()
on a file also flushes the directory entry of the file (as well as directory
entries in its path). If the file system does not guarantee this property,

60

there were multiple chances of corruption within LevelDB.
This vulnerability can also not be reproduced in ext4 with only timing

changes. To reproduce it, we took a file that we suspected required its di-
rectory entry to be flushed for correctness. We modified LevelDB to unlink
the file after an fsync() was called on it (but not on its parent directory),
and immediately crashed the machine after the unlink (by sleeping after
the unlink and manually rebooting the machine). We observed corruption
when we tried to read the database after rebooting the machine. This
vulnerability has been partially fixed by the developers since we reported
it (LevelDB now explicitly also flushes the directory entry, but only for
manifest files).

Summary

LevelDB does not formally document the invariants maintained across a
crash, but a reasonable set of invariants can be determined from the usage
examples provided in the documentation. LevelDB’s update protocol is
complex, and some parts of the update protocol are triggered only for spe-
cific input workloads (e.g., periodic compaction of old table files requires
long-running workloads). A vulnerability was previously reported and
resolved; careful manual examination allows us to identify four more.

4.1.2 SQLite

SQLite [91] is a relational database that provides ACID guarantees, and is
widely used as an embedded library in desktop and mobile applications.
SQLite features an inbuilt crash-recovery test suite [89] that rigorously
tests SQLite’s crash invariants during power failures. This, combined
with the long history of bug fixing in SQLite, seemingly leaves it portable
across file systems: on examining it manually, we found no evidence of
vulnerabilities. A few past bugs are interesting, and are described further

61

subsequently in this section. We also describe a mismatch between the
crash invariants documented and implemented by SQLite.

Because of the extensive testing, the protocol used by SQLite to ensure
crash invariants is pessimistic: performance is sacrificed. The developers
recognize this, and present a solution in the form of a set of configurable
options, each of which slightly changes the protocol (thus improving
performance). The developers suspect that, given different underlying
storage and file systems, a subset of these configuration options can be
switched on without sacrificing correctness. Thus, each option depends on
a specific file-system behavior; however, the developers do not understand
which of these behaviors are satisfied by existing file systems [86]. In this
section, we also describe the configuration options (related to file-system
behaviors) that SQLite provides and their performance impact.

Update Protocol

SQLite allows a choice of two different protocols, rollback journaling and
write-ahead logging. Rollback journaling is older and the default; write-ahead
logging is newer, faster, and seems more performance-resistant to different
file-system behaviors, but does not support some of SQLite’s features such
as transactions across multiple databases. We focus on rollback journaling
for our manual study.

In rollback journaling, when the user modifies a database, SQLite first
creates a temporary journal file, and appends a copy of some information
in the database file to the journal file. The database file is then actually up-
dated, and after that, the journal is deleted. If the update was interrupted
due to a crash, the journal file will be left on-disk; if SQLite finds a valid
journal while opening the database, it recovers the contents appropriately.

62

Configurable File-System Behavior

We present here five relevant configuration options in SQLite that opti-
mize the protocol according to the behavior of the underlying file system.
We also evaluated SQLite’s performance when each of these options are
(separately) toggled, using two micro-benchmarks. The insert benchmark
creates six tables of two columns each, and inserts a number of rows in
each of them; each insert is a separate transaction. The update benchmark
first inserts 300 rows into each table, then measures the performance of the
SQL UPDATE statement on all rows in each table; each update (containing
all rows in a table) is a transaction.

The observed performance is shown in Table 4.1. Note that the eval-
uated configurations do not necessarily represent correct behavior: de-
pending on the file system, SQLite might be vulnerable during a crash.
We used a single core machine running Ubuntu 12.04, a 80 GB hard drive
with ext4-current, and SQLite version 3.7.17.
Safe append: During recovery after a system crash, SQLite must find out
if the journal file is valid, or if a crash happened while the journal file was
being written to. Validity is checked using a header in the journal file; the
header is marked valid only after the rest of the journal file is updated and
flushed using fsync(). All writes to the journal file are appends; the extra
fsync() is hence necessary only if the file system allows an user to observe,
after a crash, the file-size increase of an append without actual data in the
appended region (i.e., allows observing garbage in the appended region).
If a file system does not allow such behavior, SQLite can detect the validity
of the journal file without the extra fsync().
Power-safe overwrite: This option assumes that no data in a given file,
other than those explicitly over-written, are ever affected by a system crash.
SQLite decides the granularity of information copied to the journal file
based on this parameter. This property is probably true in most modern
file systems (and storage stacks), and is switched on by default in the

63

current version of SQLite.
Atomic writes: Given a granularity of atomicity, this option assumes that
all write() calls lesser than that granularity are atomic (with respect to
system crash). Thus, if a transaction is smaller than this granularity, SQLite
can directly modify the database without using a journal file.
Sequential writes: This option assumes that, if a sequence of write()
calls are issued, all calls only get persisted in-order. Thus, all fsync()
operations required while creating the journal file and writing information
to it, can be omitted.
Synchronous directory operations: When the temporary journal file is
created, and also during a couple of other directory operations, SQLite
normally flushes the directory after the operation. This configuration
option omits the directory flushes.

Table 4.1 shows that each option significantly affects throughput. Espe-
cially important are the performance effects of safe append: this is an option
that can be safely switched on with most modern file systems. Also, we
modified SQLite to implement a new option corresponding to only those
directory flushes that can be omitted on ext4; it performs similar to syn-
chronous directory operations. We believe that power-safe overwrite improves
performance because writes now happen at file-system-block granularity.

Past Bugs and Vulnerabilities

We examined all bugs from October 2009 to May 2013 in SQLite’s bug
database; we also studied a few older bugs that seemed interesting. Among
the studied bugs, three specifically affect system crashes [87, 88, 90].

An early bug reported in SQLite [87] (before the introduction of the
crash-test suite) concerns the requirement of separately flushing the direc-
tory entry of a file after flushing the file; SQLite was modified to fsync()
the parent directory after creating files. The developers were concerned
about performance while fixing this issue.

64

File-System Behavior Throughput (X/s)
Configuration Insert Update

Default 10.25 9.23
Atomic writes 33.39 (+226%) 32.62 (+253%)
Safe append 14.47 (+41%) 12.62 (+37%)
Sequential write 33.88 (+231%) 32.52 (+252%)
Power-safe overwrite 10.43 (+2%) 10.33 (+12%)
Synchronous directory 11.24 (+10%) 9.98 (+8%)

Table 4.1: SQLite performance under rollback journaling. The table
represents throughput obtained when different configuration options are toggled.
Each row reports throughput when separately toggling the relevant configuration
option with all other options are set to their default values. “Default” represents
running SQLite without changing any of the defaults (this switches on power-safe
overwrite, and switches off the others). The “Power-safe overwrite” row represents
the performance when the option is switched off. We believe that power-safe
overwrite improves performance because writes now happen at file-system-block
granularity. “Atomic writes” represent a configuration in which all writes are
atomic. The configurations do not necessarily represent correct behavior, and
SQLite might be vulnerable during a crash.

A later bug [90] deals with recovery. During recovery, SQLite wrote
the contents of the journal file to the database file, and then deleted the
journal file; the database file was never flushed in-between. Thus, if a
system crash happened again during recovery, the database file might be
permanently left in a partially-recovered (corrupt) state.

The third bug [88] deals with entries being appended to a log file,
in SQLite’s other update protocol (write-ahead logging). When the log
of entries exceeds a certain threshold, SQLite wraps around, and starts
writing entries again from the beginning of the log. However, without
any flushes, such a wrap-around of the log could cause an older, invalid
transaction to get replayed during recovery, causing corruption.

65

Summary

SQLite has reasonably well-defined crash invariants, two sets of update
protocols, and a testing framework for its update protocols. SQLite offers
many configuration options that tweak its update protocols to take ad-
vantage of specific file-system behaviors, complicating reasoning about
correctness. However, because of its crash-testing framework, three vul-
nerabilities have been previously reported and fixed in the protocols. We
performed a detailed manual examination similar to that described for
LevelDB, involving around 15 days of manual effort, but were unable to
find any suspicious patterns that could be vulnerable in the trace.

4.2 Workloads and Checkers

As explained in the previous section, many applications have configuration
options that change the update protocol and the guarantees offered (i.e.,
invariants maintained) on a system crash. Furthermore, the guarantees
might not be well defined; indeed, for some applications (Git, Mercurial),
we could not find any documented guarantees. Hence, when using an
automated tool to understand application update protocol and discover
vulnerabilities, it is important to consider the configurations and the work-
load tested, and the checker used. We now discuss the workloads and
checkers for each application class. Where applicable, we also present
the guarantees we believe each application makes to users, information
garnered from documentation, mailing-list discussions, interaction with
developers, and other relevant sources.

Key-value Stores and Relational Databases. For LevelDB, LMDB,
GDBM, HSQLDB, SQLite-Rollback, SQLite-WAL, and PostgreSQL, the
workload tests different parts of the protocol, typically opening a database
and inserting enough data to trigger checkpoints (or compactions with
LevelDB). The checkers check for atomicity, ordering, and durability of

66

transactions. We note here that GDBM does not provide any crash guaran-
tees, though we believe lay users will be affected by any loss of integrity.
Similarly, SQLite does not provide durability under the default update
protocol (i.e., default journal mode; we became aware of this only after
interacting with developers), but its documentation seems misleading. We
enable checksums on LevelDB.

Version Control Systems. Git’s crash guarantees are fuzzy; mailing-
list discussions suggest that Git expects a fully-ordered file system [48].
Mercurial does not provide any guarantees, but does provide a plethora
of manual recovery techniques. Our workloads add two files to the repos-
itory and then commit them. The checker uses commands like git-log,
git-fsck, and git-commit to verify repository state, checking the integrity
of the repository and the durability of the workload commands. The check-
ers remove any leftover lock files, and perform recovery techniques that
do not discard committed data or require previous backups.

Virtualization and Distributed Systems. The VMWare Player work-
load issues writes and flushes from within the guest; the checker repairs
the virtual disk and verifies that flushed writes are durable. HDFS is
configured with replicated metadata and restore enabled. HDFS and
ZooKeeper workloads create a new directory hierarchy; the checker tests
that files created before the crash exist. In ZooKeeper, the checker also
verifies that quota and ACL modifications are consistent.

If Alice finds a vulnerability related to a system call, it does not search
for other vulnerabilities related to the same call. If the system call is
involved in multiple, logically separate vulnerabilities, this has the effect
of hiding some vulnerabilities. Most tested applications, however, have
distinct, independent sets of failures (e.g., dirstate and repository corruption
in Mercurial, consistency and durability violation in other applications).
To combat this, we use different checkers for each type of failure, and
report vulnerabilities for each checker separately. Specifically, we use a

67

creat(x.ldb)

N x append(x.ldb)

fdatasync(x.ldb)

creat(new.log)

creat(mani-new)

[N x append(mani-new)]
fsync(parent-dir)

fdatasync(mani-new)

creat(tmp)

append(tmp)

fdatasync(tmp)

[rename(tmp, current)]
unlink(mani-old)

unlink(old.log)

{? x

{? x

(i) LevelDB compaction

creat(new.log)

[N x append(new.log)]
? x fdatasync(new.log)

stdout(done)

(ii) LevelDB insert

Legend
Safe flush, rename

Other ordering

Atomicity[]

Figure 4.1: LevelDB Protocol Diagram. The diagram shows the modularized
update protocol for LevelDB-1.15. Uninteresting parts of the protocol and a few
vulnerabilities (similar to those already shown) are omitted. Repeated operations
in the protocol are shown as ‘N ×’ next to the operation, and portions of the
protocol executed conditionally are shown as ‘? ×’. Blue-colored text simply
highlights such annotations and sync calls. Ordering and durability dependencies
are indicated with arrows; durability dependency arrows end in an stdout micro-
op. Dotted arrows correspond to safe file flush vulnerabilities. Operations inside
brackets must be persisted together atomically. Vulnerabilities shown are based
on the default APM of Alice.

separate checker for dirstate and repository corruption in Mercurial, and
separate checkers for durability and the other consistency requirements
(atomicity and ordering) for LevelDB, HSQLDB, and GDBM.

Summary. Across the 11 applications, our workloads test a total of 34

68

configuration options that tweak the update protocol and change appli-
cation guarantees. Our checkers are conceptually simple: they do read
operations to verify workload invariants for that particular configuration,
and then try writes to the datastore. However, some applications have
complex invariants, and recovery procedures that they expect users to
carry out (such as removing a leftover lock file). Our checkers are hence
complex (e.g., about 500 LOC for Git), invoking all recovery procedures
we are aware of that are expected of normal users. If application invariants
for the tested configuration are explicitly and conspicuously documented,
we consider violating them as failure; otherwise, our checkers consider
violating a lay user’s expectations as failure.

4.3 Per-Application Summary

We now discuss the logical update protocols of the applications examined.
Figures 4.1–4.6 illustrate the update protocols for different applications,
showing the logical operations in the protocol (organized as modules) and
discovered vulnerabilities. The vulnerabilities shown are for the default
APM in Alice, and thus make the weakest assumptions about the crash
behavior of the underlying file system.

Databases and Key-Value Stores

LevelDB’s protocol, explained earlier, is designed to efficiently work with
LSM trees [61] and allows multiple levels of compaction. The protocol is
shown in Figure 4.1; Alice finds more vulnerabilities in LevelDB compared
to our manual study. For example, a crash can result in the appended
portion of a log file containing garbage. LevelDB’s recovery code does
not properly handle this situation, and the user gets an error if trying to
access the inserted key-value pair. The proper behavior for LevelDB, in
this situation, is to simply discard they key-value pair and report to the

69

creat(journal)

N x append(journal)

fsync(journal)

fsync(parent-dir)

write(journal)

fsync(journal)

write(db)

fsync(db)

unlink(journal)

stdout(done)

(A) SQLite

write(pg xlog)

fdatasync(pg xlog)

write(pg clog)

fdatasync(pg clog)
....

[write(pg control)]
fsync(pg control)

(B) Postgres
checkpoint

Figure 4.2: SQLite and Postgres Protocol Diagrams.The diagram shows the
update protocol for SQLite under the Rollback journaling mode and for Postgres.
Labelings have the same meaning as in the LevelDB protocol diagram. Vulnera-
bilities shown are based on the default APM of Alice.

user that the key was not found (since a crash occurred before the entire
key-value pair was made durable).

Figure 4.2(A) shows the rollback configuration of SQLite which uses
a simple version of undo logging. SQLite stores its entire database in a
single file, shown as db in Figure 4.2(A). For undo logging, the existing
contents of the database that are about to be modified are first copied onto
a journal file, the database is then modified, and finally, the journal file is
deleted. Another configuration of SQLite (SQLite-WAL) uses write-ahead
logging: the new data is written to a log file first, and the database is then
modified. Postgres uses a more complex version of write-ahead logging,
briefly shown in Figure 4.2(B). The log file to which new data is written
is called pg_xlog, while pg_clog and pg_control maintain the metadata
required for logging (such as transaction identifiers) with yet another log;

70

creat(db)

N x append(db)

fsync(db)

N x append(db)

N x write(db)

? x fsync(db)

stdout(done)

(A) GDBM create
and insert

write(mdb file)

append(mdb file)

fdatasync(mdb file)

[write(mdb file)]
file sync range(mdb file)

(B) LMDB

Figure 4.3: GDBM and LMDB Protocol Diagrams. The diagram shows the
update protocol for GDBM and LMDB. Labelings have the same meaning as in
the LevelDB protocol diagram. Vulnerabilities shown are based on the default
APM of Alice.

more details can be found in the Postgres documentation [69].
LMDB (a key-value store) stores all database information in a single file

(in a tree structure) and uses shadow-paging (copy-on-write), as shown
in Figure 4.3(B). Any Put() to the database is first written to unused por-
tions of the database file (sometimes appended), and then a pointer in
the beginning of the file is changed to indicate the newly written data;
space use information is recorded along with the data write to the unused
portion. Alice found that LMDB requires the final pointer update (106
bytes) in the copy-on-write tree to be atomic. HSQLDB (Figure 4.4) uses a
combination of write-ahead logging and update-via-rename, on the same
files, to maintain consistency. The update-via-rename is performed by first
separately unlinking the destination file, and then renaming; out-of-order
persistence of rename(), unlink(), or log creation causes problems.

71

creat(tmp)0
append(tmp)1
fsync(tmp)2

[unlink(props)]3
rename(tmp, props)4

(i) HSQLDB update
props

[append(log)]
N x fsync(log)

creat(stmp)

append(stmp)

fsync(stmp)

(i) update props

unlink(log)

unlink(script)

[rename(stmp, script)]
(i) update props

i(4
)*

i(4)* (i)
4

(i)
3

(i)3

(ii) HSQLDB
shutdown

Figure 4.4: HSQLDB Protocol Diagram. The diagram shows the modularized
update protocol for HSQLDB. Dependencies between modules are indicated by
the numbers on the arrows, corresponding to line numbers in modules. The two
dependencies marked with * are also durability dependencies. Dotted arrows
correspond to safe rename or safe file flush vulnerabilities. Other labelings have
the same meaning as in the LevelDB protocol diagram. Vulnerabilities shown are
based on the default APM of Alice.

Version Control Systems

Git and Mercurial maintain meta-information about their repository in
the form of logs. The Git protocol is illustrated in Figure 4.5(A). Git stores
information in the form of object files, which are never modified; they are
created as temporary files, and then linked to their permanent file names.
Git also maintains pointers in separate files, which point to both the meta-
information log and the object files, and are updated using update-via-
rename. Mercurial, in contrast, uses a journal to maintain consistency,

72

mkdir(o/x)0
creat(o/x/tmp y)1

N x append(o/x/tmp y)2
fsync(o/x/tmp y)3

link(o/x/tmp y, o/x/y)4
unlink(o/x/tmp y)5

(A)(i) Git store object

creat(index.lock)

N x (i) store object

append(index.lock)

[rename(index.lock, index)]
stdout(finished add)

N x (i) store object

creat(branch.lock)

append(branch.lock)

append(branch.lock)

append(logs/branch)

append(logs/HEAD)

rename(branch.lock, x/branch)

stdout(finished commit)

(i)0,(i)4
(i)0,(i)4

(i)
0,

(i)
4

(A)(ii) Git add commit

creat(tmp)

append(tmp)

[rename(tmp, dirstate)]
(B)(i) Mercurial update dirstate

...
creat(journal)

creat(filelog)

[append(journal)]
N x append(filelog)

...
[append(journal)]
[append(manifest)]
[append(journal)]
append(changelog)

rename(journal, undo)
...

creat(tmp)

append(tmp)

[rename(tmp, fncache)]...
update dirstate

...

{N x

(B)(ii) Mercurial commit

Figure 4.5: Protocol Diagrams for Version Control Systems. The diagram
shows the modularized update protocol of Git and Mercurial. Dependencies
between modules are indicated by the numbers on the arrows, corresponding to line
numbers in modules. Dotted arrows correspond to safe rename vulnerabilities.
Other labelings have the same meaning as in the LevelDB protocol diagram.
Vulnerabilities shown are based on the default APM of Alice.

using update-via-rename only for some unimportant information.
We find many ordering dependencies in the Git protocol, as shown in

73

Figure 4.5(A). This result is not surprising, since mailing-list discussions
suggest Git developers expect total ordering from the file system. We
also find a Git vulnerability involving atomicity across multiple system
calls; a pointer file being updated (via an append) has to be persisted
atomically with another file getting updated (via an update-via-rename).
In Mercurial, we find many ordering vulnerabilities for the same reason,
not being designed to tolerate out-of-order persistence.

Virtualization and Distributed Systems

Figure 4.6 shows the update protocol for VMWare Player, HDFS, and
ZooKeeper. VMWare Player’s protocol is simple. VMWare maintains a
static, constant mapping between blocks in the virtual disk, and in the
VMDK file (even for dynamically allocated VMDK files); directly overwriting
the VMDK file maintains consistency (though VMWare does use update-via-
rename for some small files). Both HDFS and ZooKeeper use write-ahead
logging. We find that ZooKeeper does not explicitly persist directory
entries of log files, which can lead to lost data. ZooKeeper also requires
some log writes to be atomic.

4.4 Summary of Vulnerabilities Found

Alice finds 60 static vulnerabilities in total across all applications; most
vulnerabilities are shown in the protocol diagrams in the previous section,
and all vulnerabilities are shown in Tables 4.2 and 4.3. The 60 static vul-
nerabilities correspond to 156 dynamic vulnerabilities; as explained in the
previous chapter, Alice uses stack trace information to coalesce the higher
number of dynamic vulnerabilities (i.e., failures) to the fewer number of
static vulnerabilities (i.e., errors). Dynamic vulnerabilities themselves are
already coalesced from multiple failed crash states: applications failed in
more than 4000 crash states. However, multiple failed crash states often

74

creat(tmp)

append(tmp)

fsync(tmp)

[rename(tmp, x.vmdk)]
write(x-split1)

fsync region(x-split1){N x

(A) VMWare write-flush

....
creat(tmp)

append(tmp)

[rename(tmp, seen txid)]
creat(ckpt)

append(ckpt)

fsync(ckpt)

creat(md5.tmp)

N x append(md5.tmp)

fsync(md5.tmp)

rename(md5.tmp, md5)

rename(ckpt, fsimage)
....

(B) HDFS update

mkdir(v)

creat(v/log)

append(v/log)

trunc(v/log)

append(v/log)

[write(v/log)]
? x write(v/log)

? x write(v/log)

fdatasync(v/log)

stdout(done)

’’

{? x

(C) ZooKeeper

Figure 4.6: Protocol Diagrams for Virtual Machines and Distributed
Systems. The diagram shows the protocols for VMWare, HDFS, and ZooKeeper.
Labelings have the same meaning as in the LevelDB protocol diagram. Vulnera-
bilities shown are based on the default APM of Alice.

correspond to the same system call, especially when testing for system-call
atomicity in the default exploration strategy. Specifically, breaking a single
system call in multiple ways might cause many of the corresponding crash

75

states to fail; however, they are considered a single dynamic vulnerability.

A
pp

lic
at

io
n

Types

U
ni

qu
e

st
at

ic
vu

ln
er

ab
ili

tie
s

A
cr

os
s-

sy
sc

al
ls

at
om

ic
ity Atomicity Ordering Durability

A
pp

en
ds

an
d

tr
un

ca
te

s

Si
ng

le
-b

lo
ck

ov
er

w
ri

te
s

Re
na

m
es

an
d

un
lin

ks

Sa
fe

fil
e

flu
sh

Sa
fe

re
na

m
es

O
th

er

Sa
fe

fil
e

flu
sh

O
th

er

Leveldb1.10 1‡ 1 1 2 1 3 1 10
Leveldb1.15 1 1 1 1 2 6
LMDB 1 1
GDBM 1 1 1 2 5
HSQLDB 1 2 1 3 2 1 10
Sqlite-Roll 1 1
Sqlite-WAL 0
PostgreSQL 1 1
Git 1 1 2 1 3 1 9
Mercurial 2 1 1 1 4 2 10
VMWare 1 1
HDFS 1 1 2
ZooKeeper 1 1 2 4
Total 6 4 3 9 6 3 18 5 7 60

Table 4.2: Vulnerabilities: File-System Behavior (default Alice APM).
The table shows the discovered static vulnerabilities categorized by the type of
file-system behavior they are related to, using Alice’s default APM. The number
of unique vulnerabilities for an application can be different from the sum of the
categorized vulnerabilities, since the same source code lines can exhibit different
behavior. ‡ The atomicity vulnerability in Leveldb1.10 corresponds to multiple
mmap() writes.

Table 4.2 shows the vulnerabilities classified by the affected file-system

76

behavior, and 4.3 shows the vulnerabilities classified by failure conse-
quence. Table 4.3 also separates out those vulnerabilities related only to
user expectations and not to documented guarantees, with an asterik (∗);
many of these correspond to applications for which we could not find any
documentation of guarantees.

Two different configurations considered in SQLite use different proto-
cols, and the different versions of LevelDB differ on whether their protocols
are designed around the mmap() interface. Tables 4.2 and 4.3 hence show
these configurations of SQLite and LevelDB separately. All other config-
urations (in all applications) do not change the basic protocol, but vary
on the application invariants; among different configurations of the same
update protocol, all vulnerabilities are revealed in the safest configuration.
Tables 4.2 and 4.3, and the rest of the paper only show vulnerabilities we
find in the safest configuration, i.e., we do not count separately the same
vulnerabilities from different configurations of the same protocol.

We find many vulnerabilities have severe consequences such as silent
errors or data loss. Seven applications are affected by data loss, while
two (both LevelDB versions and HSQLDB) are affected by silent errors.
The cannot open failures include failure to start the server in HDFS and
ZooKeeper, while the failed reads and writes include basic commands (e.g.,
git-log, git-commit) failing in Git and Mercurial. A few cannot open
failures and failed reads and writes might be solvable by application experts,
but we believe lay users would have difficulty recovering from such failures
(our checkers invoke standard recovery techniques). We also checked
if any discovered vulnerabilities are previously known, or considered
inconsequential. The single PostgreSQL vulnerability is documented; it
can be solved with non-standard (although simple) recovery techniques.
The single LMDB vulnerability is discussed in a mailing list, though there
is no available workaround. All these previously known vulnerabilities
are separated out in Table 4.3 (†). The five dirstate fail vulnerabilities in

77

Mercurial are shown separately, since they are less harmful than other
vulnerabilities (though frustrating to the lay user). Git’s fsck-only and reflog-
only errors are potentially dangerous, but do not affect normal usage.

We interacted with the developers of eight applications, reporting a
subset of the vulnerabilities we found. Our interactions convince us that
the vulnerabilities will affect users if they are exposed. The other appli-
cations (GDBM, Git, and Mercurial) were not designed to provide crash
guarantees, although we believe their users will be affected by the vulner-
abilities found should an untimely crash occur. Since the vulnerabilities
will not surprise a developer of these applications, we did not report them.
We also did not report documented vulnerabilities and those concerning
partial renames (usually dismissed as they are not commonly exposed).

To our knowledge, application developers have acted on six of the
vulnerabilities we find; one (LevelDB-1.10) is now fixed, another (LevelDB-
1.15) was fixed parallel to our discovery, and three (HDFS, and two in
ZooKeeper) are under consideration as of November 2016. The SQLite
developers suggested that the discovered durability vulnerability (under
rollback journaling) is not guaranteed by SQLite, but we opined that the
documentation is misleading; the latest version of SQLite has an explicit
configuration option that controls durability (although still switched off
by default).

We have found that developers often dismiss other vulnerabilities
which do not (or are widely believed to not) get exposed in current file
systems, especially relating to out-of-order persistence of directory op-
erations. The fact that only certain operating systems allow an fsync()
on a directory is frequently referred to; both HDFS and ZooKeeper re-
spondents lament that such an fsync() is not easily achievable with Java.
An interesting fact is that the developers did consider a particular set of
fsync() calls on directories important: of the six acted-on vulnerabilities,
three relate to not explicitly issuing an fsync() on the parent directory

78

Application Si
le

nt
er

ro
rs

D
at

a
lo

ss

C
an

no
to

pe
n

Fa
ile

d
re

ad
s

an
d

w
ri

te
s

Other
Leveldb1.10 1 1 5 4
Leveldb1.15 2 2 2
LMDB read-only open†

GDBM 2∗ 3∗

HSQLDB 2 3 5
Sqlite-Roll 1∗

Sqlite-WAL
PostgreSQL 1†

Git 1∗ 3∗ 5∗ 3#∗

Mercurial 2∗ 1∗ 6∗ 5 dirstate fail∗

VMWare 1∗

HDFS 2∗

ZooKeeper 2∗ 2∗

Total 5 12 25 17 9

Table 4.3: Vulnerabilities: Failure Consequences. The table shows the
number of static vulnerabilities resulting in each type of failure. † Previously
known failures, documented or discussed in mailing lists. ∗ Vulnerabilities re-
lating to unclear documentation or typical user expectations beyond application
guarantees. # There are 2 fsck-only and 1 reflog-only errors in Git.

after creating and calling fsync() on a file. However, not issuing such an
fsync() is perhaps more safe in modern file systems than out-of-order
persistence among different directory operations. We believe the develop-
ers’ interest in issuing fsync() calls on parent directories arises from the

79

Linux documentation explicitly recommending this action.
Summary. Alice detects 60 vulnerabilities in total, with 5 resulting in

silent failures, 12 in loss of durability, 25 leading to inaccessible applica-
tions, and 17 returning errors while accessing certain data. Alice is also
able to detect previously known vulnerabilities.

4.5 Common Patterns

We now examine vulnerabilities related to different file-system behaviors,
describing common patterns amongst them. Since durability vulnerabili-
ties show a separate pattern, we consider them separately.

Atomicity across System Calls

Four applications (including both versions of LevelDB) require atomicity
across system calls. The required atomicity are all shown in previous pro-
tocol diagrams: appends to mani-new and new.log in LevelDB (Figure 4.1),
the creation and appends to db in GDBM (Figure 4.3(A)), an append and
rename to different files in Git (Figure 4.5(A)) and a long sequence of
different system calls in Mercurial (Figure 4.5(B)).

For three applications, the consequences seem minor: inaccessibility
during database creation (of an empty database) in GDBM, dirstate corrup-
tion in Mercurial, and an erratic reflog in Git. LevelDB’s vulnerability has
a non-minor consequence, but was fixed immediately with LevelDB-1.15
(when LevelDB started using read()-write() instead of mmap()).

In general, we observe that this class of vulnerabilities seems to affect
applications less than other classes. This result may arise because these
vulnerabilities are easily tested: they are exposed independent of the file
system (i.e, via process crashes), and are easier to reproduce. Alternatively,
if such vulnerabilities have serious consequences, there is a high chance

80

that they affect many users (due to process crashes) and will hence be
noticed and fixed by the developers.

Atomicity within System Calls

Append atomicity. Surprisingly, three applications require appends to
be content-atomic, i.e., the appended portion should contain actual data.
In the absence of content atomicity, if a crash happens after appending
to a file (but before an fsync() or fdatasync() is called), the application
might observe that the size of the file has increased after rebooting, but
with the extended portion of the file containing garbage data. The fail-
ure consequences are severe, such as corrupted reads (HSQLDB), failed
reads (LevelDB-1.15), and repository corruption (Mercurial). Filling the
appended portion with zeros instead of garbage still causes failure; in
ext4, only the current implementation of delayed allocation (where file
size does not increase until actual content is persisted) works.

Applications might also be dependent on the size-atomicity of appends,
i.e., when performing an append of size X, is the file size atomically ex-
tended by X? Size-atomicity can be thought of in different granularities;
we investigate whether applications require the file size to be extended
at a granularity of 4K blocks. However, most appends seemingly do not
need to be size-atomic at even a 4K-block granularity: only Mercurial is
affected, and the affected append also requires content-atomicity.

Overwrite atomicity. LMDB, PostgreSQL, and ZooKeeper require
small writes (< 200 bytes) to be atomic. Both the LMDB and PostgreSQL
vulnerabilities are previously known.

We do not find any multi-block overwrite vulnerabilities, and even
single-block overwrite requirements are typically documented. This find-
ing is in stark contrast with append atomicity; some of the difference can
be attributed to the default APM (overwrites are content-atomic), and to
some workloads simply not using overwrites. However, the major cause

81

seems to be the basic mechanism behind application update protocols:
modifications are first logged, in some form, via appends; logged data is
then used to overwrite the actual data. Applications have careful mech-
anisms to detect and repair failures in the actual data, but overlook the
presence of garbage content in the log.

Directory operation atomicity. Since most file systems provide atomic
directory operations, one would expect that most applications would be
vulnerable to such operations not being atomic. However, we do not find
this to be the case for certain classes of applications. Databases and key-
value stores do not employ atomic renames extensively; consequently, we
observe non-atomic renames affecting only three of these applications
(GDBM, HSQLDB, LevelDB). Non-atomic unlinks seemingly affect only
HSQLDB (which uses unlinks for logically performing renames), and we
did not find any application affected by non-atomic truncates.

Ordering between System Calls

Applications are extremely vulnerable to system calls being persisted out
of order; we find 27 vulnerabilities.

Safe renames. On file systems with delayed allocation, a common
heuristic to prevent data loss is to persist all data (including appends and
truncates) of a file before subsequent renames of the file [50]. We find that
this heuristic only matches (and thus fixes) three discovered vulnerabilities,
one each in Git, Mercurial, and LevelDB-1.10. A related heuristic, where if
an existing file is opened with the O_TRUNC flag and modified, then the file
is flushed to the disk immediately on a corresponding close() system call,
does not affect any of the vulnerabilities we discovered. Also, the effect
of the heuristics varies with minor details: if the safe-rename heuristic
does not persist file truncates, only two vulnerabilities will be fixed; if the
O_TRUNC heuristic also acts on new files, an additional vulnerability will
be fixed.

82

Safe file flush. An fsync() on a file does not guarantee that the file’s
directory entry is also persisted. Most file systems, however, persist di-
rectory entries that the file is dependent on (e.g., directory entries of the
file and its parent). We found that this behavior is required by three
applications for maintaining basic consistency.

Durability

We find vulnerabilities in seven applications resulting in durability loss.
Of these, only two (GDBM and Mercurial) are affected because an fsync()
is not called on a file. Six applications require fsync() on directories: three
are affected by safe file flush discussed previously, while four (HSQLDB,
SQLite, Git, and Mercurial) require other fsync() calls on directories. As a
special case, with HSQLDB, previously committed data is lost, rather than
data that was being committed during the time of the workload. In all,
only four out of the twelve vulnerabilities are exposed when full ordering
is promised: many applications do issue an fsync() call before durability
is essential, but do not fsync() all the required information.

Summary

We believe our study offers several insights for file-system designers. Fu-
ture file systems should consider providing ordering between system calls,
and atomicity within a system call in specific cases. Vulnerabilities involv-
ing atomicity of multiple system calls seem to have minor consequences.
Requiring applications to separately flush the directory entry of a created
and flushed file can often result in application failures. For durability, most
applications explicitly flush some, but not all, of the required information;
thus, providing ordering among system calls can also help durability.

83

Application ext3-j ext3-o ext3-w ext4-o btrfs default
Leveldb1.10 1 1 3 2 4 10
Leveldb1.15 1 1 2 2 3 6
LMDB 1
GDBM 2 3 3 3 4 5
HSQLDB 4 10
Sqlite-Roll 1 1 1 1 1 1
Sqlite-WAL 0
PostgreSQL 1
Git 2 2 2 2 5 9
Mercurial 3 3 4 6 8 10
VMWare 1
HDFS 1 2
ZooKeeper 1 1 1 1 4
Total 10 12 16 17 31 60

Table 4.4: Vulnerabilities on Current File Systems. The table shows the
number of vulnerabilities that occur on current file systems. The final column
compares this against the default Alice APM: all applications are vulnerable
under future file systems.

4.6 Impact on Current File Systems

Our study thus far has utilized an abstract (and weak) file system model
(i.e., APM) in order to discover the broadest number of vulnerabilities. We
now utilize the file-system APMs specified in Table 3.5 to understand how
modern protocols would function atop a range of modern file systems
and configurations. Thus, we focus on Linux ext3 (including writeback,
ordered, and data-journaling mode), Linux ext4, and btrfs.

Table 4.4 shows the vulnerabilities reported by Alice for each file sys-
tem. Note that a significant number of vulnerabilities are exposed on all

84

examined file systems. However, some applications show no vulnerabil-
ities on any of the considered real-world APMs; the flaws we found in
these applications do not manifest on today’s file systems (but may do so
on future systems).

Ext3 with journaled data exposes the fewest vulnerabilities and hence is
the safest of the considered file systems (however, it has low performance,
as discussed in the next chapter). This is to be expected, since it provides
the most intuitive and strongest crash behavior to applications: operations
are never re-ordered, directory operations are always atomic, and data
operations are atomic at 4K-granularity. The only vulnerabilities exposed
are those requiring atomicity across system calls (all four mentioned in
Section 4.5) and the four durability vulnerabilities that occur even when
full ordering is promised (one each in GDBM, SQLite-Rollback, Git, and
Mercurial). All exposed durability vulnerabilities are known to application
developers: GDBM does not guarantee any consistency, the discussion
with SQLite developers was previously mentioned, and Git and Mercurial
do not issue any fsync() with their default options (though we configure
them with stronger options).

Ext3 with ordered data behaves similar to ext3 with journaled data, ex-
cept that it can re-order file overwrites. This relaxation results in two addi-
tional vulnerabilities being exposed: one in GDBM, and one in ZooKeeper.
Ext3 with writeback data further relaxes crash behavior: it does not provide
content atomicity during appends, and hence additionally exposes two
vulnerabilities in LevelDB-1.10, one in LevelDB-1.15, and one in Mercurial.

Ext4 with ordered data is the default file system prevalent in current
Linux systems, and has crash behavior similar to ext3 with ordered data.
However, ext4 can re-order file appends. Such re-ordering causes ext4 to
expose an additional vulnerability each in LevelDB-1.10 and LevelDB-1.15,
and three more in Mercurial, when compared to ext3 with ordered data.

Btrfs is a modern file system with a significantly different CoW-based

85

design compared to the ext3 and ext4, and is being adopted currently in
some Linux distributions (such as SUSE). It can re-order all operations,
including directory operations, but implements the safe renames and safe
file flush heuristics discussed previously. The extensive re-ordering results
in 31 vulnerabilities being exposed.

Summary. Application vulnerabilities are exposed on many current
file systems. The vulnerabilities exposed vary between file systems. Hence,
testing applications on only a few file systems is not sufficient: multiple
file systems (or Alice’s strategy of a hypothetical weak file system) should
be considered when testing application correctness.

4.7 Discussion

We now consider why crash vulnerabilities occur commonly even among
widely used applications. We find that application update protocols are
complex and hard to isolate and understand. Many protocols are layered
and spread over multiple files. Modules are also associated with other
complex functionality (e.g., ensuring thread isolation). This complexity
leads to issues that are obvious with a bird’s eye view of the protocol: for
example, HSQLDB’s protocol has 3 consecutive fsync() calls to the same
file (increasing latency). Logical representations of update protocols as in
Figures 4.1–4.6 (obtained using Alice) can help solve the problem.

Another factor contributing to crash vulnerabilities is poorly written,
untested recovery code. In LevelDB, we find vulnerabilities that should
be prevented by correct implementations of the documented update pro-
tocols. Some recovery code is non-optimal: potentially recoverable data is
lost in several applications (e.g., HSQLDB, Git). Mercurial and LevelDB
provide utilities to verify or recover application data; we find these utilities
hard to configure and error-prone. For example, LevelDB’s recovery com-
mand works as expected only when (seemingly) unrelated configuration

86

options (paranoid checksums) are set up properly, and sometimes ends up
further corrupting the data-store. We believe these problems are a direct
consequence of the recovery code being infrequently executed and insuffi-
ciently tested; it is imperative that developers use tools such as Alice to
extensively test recovery code.

Convincing developers about crash vulnerabilities is sometimes hard:
there is a general mistrust surrounding such bug reports. Usually, devel-
opers are suspicious that the underlying storage stack might not respect
fsync() calls [71], or that the drive might be corrupt. We hence believe
that most vulnerabilities that occur in the wild are associated with an
incorrect root cause, or go unreported.

Unclear documentation of application guarantees contributes to the
confusion about crash vulnerabilities. During discussions with developers
about durability vulnerabilities, we found that SQLite, which proclaims it-
self as fully ACID-complaint, does not provide durability (even optionally)
with the default storage engine, though the documentation suggests it
does. Similarly, GDBM’s GDBM_SYNC flag does not ensure durability. When
suspicious, users should employ tools such as Alice to determine guaran-
tees directly from the code, bypassing the problem of bad documentation.

4.8 Summary

In the real world, application-level crash consistency is dangerously de-
pendent upon file-system behavior, and the correctness of applications
varies even among different widely-used file systems. Among the 11 appli-
cations analyzed, we find 60 vulnerabilities, of which more than half can
be exposed even under current file systems. Some of the vulnerabilities
result in severe consequences like corruption or data loss. In the next
chapter, we look at how the situation can be addressed.

87

5

C2FS

The work described in our thesis so far, as well as other research else-
where [109], show that widely used applications written by experienced
developers (such as Google’s LevelDB and Linus Torvalds’s Git) have crash-
consistency vulnerabilities. Correctly implementing crash-consistency pro-
tocols has proved to be difficult for a variety of reasons. First, as described
in Chapter 2, the correctness inherently depends on the exact semantics
of the system calls in the update protocol with respect to a system crash.
Because file systems buffer writes in memory and send them to disk later,
from the perspective of an application the effects of system calls can get
re-ordered before they are persisted on disk.

Second, the recovery protocol must correctly consider and recover from
the multitude of states that are possible when a crash happens during the
update protocol. Application developers strive for update protocols to be
efficient, since the protocols are invoked during each modification to the
data store; more efficient update protocols often result in more possible
states to be reasoned about during recovery.

Finally, crash-consistency protocols are hard to test, much like con-
currency mechanisms, because the states that might occur on a crash are
non-deterministic. Since efficient protocol implementations are inherently
tied to the format used by the application’s data structures and concurrency
mechanisms, it is impractical to re-use a single, verified implementation

88

across applications.
In this chapter, we argue that it is practical to construct a file system
that automatically improves application crash consistency. We base our
arguments on the following hypotheses:
The Ordering Hypothesis: Existing update and recovery protocols (mostly)
work correctly on an ordered and weakly-atomic file system (the exact
definition of these terms is explained subsequently).
The Efficiency Hypothesis: An ordered and weakly-atomic file system
can be as efficient as a file system that does not provide these properties,
with the proper design, implementation, and realistic workloads.

The initial section of this chapter briefly explains the ordering hypothe-
sis, providing a summary of the related results from the previous chapter.
It also describes the challenges involved in constructing an efficient file
system that satisfies the ordering hypothesis and our reasoning behind
the efficiency hypothesis. The rest of this chapter describes the design
and implementation of a file system, c2fs, that we believe satisfies both
hypotheses, and an evaluation that validates our belief.

5.1 The Ordering Hypothesis

We hypothesize that most vulnerabilities that exist in application-level
update protocols depend on two specific file-system guarantees. File
systems that provide these guarantees, therefore, automatically mask
application vulnerabilities. The first guarantee, and the major focus of
our work, is that the effect of system calls should be persisted on disk in
the order they were issued by applications; a system crash should not
produce a state where the system calls appear re-ordered. The second
(minor) guarantee is that, when an application issues certain types of
system calls, the effect of the system call should be atomic across a system
crash. Such weak atomicity is specifically required for system calls that

89

Time (s) Seeks Median seek distance (sectors)
Re-ordered 25.82 23762 120

FIFO 192.56 38201 2002112

Table 5.1: Seeks and Order. The table shows the number of disk seeks incurred
and the total time taken when 25600 writes are issued to random positions within a
2GB file with a HDD. Two different settings are investigated: the writes can be re-
ordered or the order of writes is maintained using the FIFO strategy. The number
of seeks incurred in each setting and the LBA seek distance shown are determined
from a block-level I/O trace. We use a Intel® CoreTM 2 Quad Processor Q9300
machine with 4 GB of memory running Linux 3.13, and a Toshiba MK1665GSX
160 GB HDD.

perform directory operations, such as file creation and file deletion. Weak
atomicity also includes stipulations about writes to files, but only at a sector
granularity (i.e., there is generally no need to guarantee that arbitrarily
large writes are atomic). This stipulation affects both writing to existing
portions of a file (i.e., overwriting) and appending data to the end of a
file. However, appending data to the end of a file includes an additional
condition: both increasing the file size and the writing of data to the newly
appended portion of the file should be atomic together (but the append
can be broken down into chunks at sector boundaries).

The fundamental reason that order simplifies the creation of update
protocols is that it drastically reduces the number of possible states that
can arise in the event of a crash, i.e., the number of states that the recovery
protocol has to handle. For example, consider an update protocol that
simply overwrites n sectors in a file; if the file system maintains order
and weak atomicity, only n crash states are possible, whereas 2n states
are possible if the file system can re-order. Maintaining order makes it
easier to reason about the correctness of recovery for both humans and
automated tools such as Alice.

For quantitative evidence, consider the 60 vulnerabilities discussed in
the previous chapter: 16 are tolerated by maintaining weak atomicity alone,

90

while 27 are tolerated by guaranteeing order. Of the remaining, 12 are
durability vulnerabilities; however, 8 of these 12 will be masked if the file
system guarantees order, as described in the previous chapter (Section 4.5).
Thus, in all, 50 of the 60 vulnerabilities are addressed by maintaining order
and weak atomicity; the remaining 10 have minor consequences and are
readily tolerated or have already been fixed.

5.2 Order: Bad for Performance

Most real-world deployed file systems (such as btrfs) already maintain
the weak atomicity required to mask application-level crash-consistency
vulnerabilities. However, all commonly deployed file-system configura-
tions (including ext4 in metadata-journaling mode, btrfs, and xfs) re-order
updates, and the re-ordering only seems to increase with each new version
of a file system (e.g., ext4 re-orders more than ext3 [65]; newer versions of
ext4 re-order even more [102], as do newer systems like btrfs [65]). While
maintaining update order is important for application crash consistency, it
has traditionally been considered bad for performance, as we now discuss.

At low levels in the storage stack, re-ordering is a fundamental tech-
nique that improves performance. To make this case concrete, we created
a workload that issues writes to random locations over a disk. Forcing
these writes to commit in issue order takes roughly eight times longer
than a seek-optimized order (Table 5.1). Approaches that constrict write
ordering are insufficient for both hard drives [76] and SSDs [39].

Higher up the stack, ordering can induce negative and surprising
performance degradations. Consider the following code sequence:

write(f1);
write(f2);
fsync(f2);
truncate(f1);

91

In this code, without mandated order, the forced writes to f2 can move
ahead of the writes to f1; by doing so, the truncate obviates the need for any
writes to f1 at all. Similarly, if the user overwrites f1 instead of truncating
it, only the newer data needs to be written to disk.

We call this effect as write avoidance: not all user-level writes need
to be sent to the disk, but can instead be either forgotten due to future
truncates or coalesced due to future overwrites. Re-ordering allows write
avoidance across fsync() calls. Global write ordering, in contrast, implies
that if writes to f2 are being forced to disk, so must writes to f1. Instead
of skipping the writes to f1, the file system must now both write out its
contents (and related metadata), and then, just moments later, free said
blocks. If the write to f1 is large, this cost can be high.

We call this situation, where fsync() calls reduce write avoidance in
an ordered file system, a write dependence. Write dependence is not limited
to writes by a single application; any application that forces writes to disk
could cause large amounts of other (potentially unneeded) I/O to occur.
When write dependence does not improve crash consistency, as when it
occurs between independent applications, we term it a false dependence, an
expected high-cost of maintaining global order.

Apart from removing the chance for write avoidance, write dependence
also worsens application performance in surprising ways. For example, the
fsync(f2) becomes a high-latency operation, as it must wait for all previous
writes to commit, not just the writes to f2. The overheads associated with
write dependence can be further exacerbated by various optimizations
found in modern file systems. For example, the ext4 file system uses a
technique known as delayed allocation, wherein it batches together multiple
file writes and then subsequently allocates blocks to files. This important
optimization is defeated by forced write ordering.

92

5.3 Order with Good Performance

We believe it is possible to address the overheads associated with main-
taining order in practice. To reduce disk-level scheduling overheads, a
variety of techniques have been developed that preserve the appearance
of ordered updates in the event of a crash while forcing few constraints
on disk scheduling. For example, in ext4 data journaling, all file-system
updates (metadata and data) are first written to a journal. Once committed
there, the writes can be propagated (checkpointed) to their in-place final
locations. Note that there are no ordering constraints placed upon the
checkpoint writes; they can be re-ordered as necessary by lower layers
in the storage stack to realize the benefits of low-level I/O scheduling.
Further, by grouping all writes into a single, large transaction, writes are
effectively committed in program order: if a write to f1 occurs before a
write to f2, they will either be committed together (in the same transaction),
or the write to f2 will commit later; never will f2 commit before f1.

Unfortunately, total write ordering, as provided with data journaling,
exacts a high performance cost: each data item must be written twice,
thus halving disk bandwidth for some workloads. For this reason, most
journaling file systems only journal metadata, maintaining file-system
crash consistency but losing ordering among application writes. What
would be ideal is the performance of metadata-only journaling combined
with the ordering guarantees provided by full data journaling.

However, even if an efficient journaling mechanism is used, it does
not avoid overheads due to false dependence. To address this problem,
we believe a new abstraction is needed, which enables the file system to
separate update orderings across different applications. We believe that
false dependence within an application is rare and does not typically arise.

Thus, we are left with two open questions. Can a metadata-only journal-
ing approach be adopted that maintains order but with high performance?
Second, can a new abstraction eliminate false dependence? We answer

93

these questions in the affirmative with the design of c2fs.

5.4 Crash-Consistent File System

In this section, we describe c2fs, a file system that embraces application-
level crash consistency. C2fs has two goals: preserving the program order
of updates and weak atomicity, and performance similar to widely-used
re-ordering file systems. So as to satisfy these goals, we derive c2fs from
the ext4 file system. Ext4 is widely used, includes many optimizations
that allow it to perform efficiently in real deployments, and includes a
journaling mechanism for internal file-system consistency. In c2fs, we
extend ext4’s journaling to preserve the required order and atomicity in
an efficient manner without affecting most optimizations already present
in ext4.

The key idea in c2fs is to separate each application into a stream, and
maintain order only within each stream; writes from different streams
are re-ordered for performance. This idea has two challenges: metadata
structures and the journaling mechanism need to be separated between
streams, and order needs to be maintained within each stream efficiently.
C2fs should solve both without affecting existing file-system optimizations.
In this section, we first explain the streams abstraction, how streams are
separated, and how order is maintained within a stream.

Streams

C2fs introduces a new abstraction called the stream; each application usu-
ally corresponds to a single stream. Writes from different streams are
re-ordered for performance, while order is preserved within streams for
crash consistency. We define the stream abstraction such that it can be
easily used in common workflows; as an example, consider a text file f1
that is modified by a text editor while a binary file f2 is downloaded from

94

the network, and they are both later added to a VCS repository. Initially,
the text editor and the downloader must be able to operate on their own
streams (say, A and B, respectively), associating f1 with A and f2 with B.
Note that there can be no constraints on the location of f1 and f2: the user
might place them on the same directory. Moreover, the VCS should then
be able to operate on another stream C, using C for modifying both f1 and
f2. In such a scenario, the stream abstraction should guarantee the order
required for crash consistency, while allowing enough re-ordering for the
best performance possible.

Hence, in c2fs, streams are transient and are not uniquely associated
with specific files or directories: a file that is modified in one stream might
be later modified in another stream. If two streams perform operations
that affect logically related data (such as the same offsets of a file), the
file system takes sufficient care so that the temporal order between those
operations is also maintained. We loosely define the term related such that
related operations do not commonly occur in separate streams within a
short period of time; if they do, the file system might perform inefficiently.
For example, separate directory entries in a directory are not considered
related (since it is usual for two applications to create files in the same
directory), but the creation of a file or directory is considered related to
the creation of its parent. Overall, the abstraction is flexible: while we
expect most applications to use a single stream, if needed, applications
can also use separate streams for individual tasks.

The stream interface allows all processes and threads belonging to an
application to easily share a single stream, but also allows a single thread
to switch between different streams if necessary. Specifically, we provide
a setstream(s) call that creates (if not already existing) and associates
the current thread with the stream s . All future updates in that thread
will be assigned to stream s ; when forking (a process or thread), a child
will adopt the stream of its parent. By default, the init process is assigned

95

an init stream. We expect most applications (whose write performance
are user visible) to issue a single setstream() call in the beginning of the
application, but to not make any other changes to their code. The API is
further explained in Section 5.5.

Separating Multiple Streams

In c2fs, the basic idea used to separately preserve the order of each stream
is simple: c2fs extends the journaling technique to maintain multiple in-
memory running transactions, one corresponding to each stream. When-
ever a synchronization system call (such as fsync()) is issued, only the
corresponding stream’s running transaction is committed. All modifi-
cations in a particular stream are associated with that stream’s running
transaction, thus maintaining order within the stream (optimizations re-
garding this are discussed in the next section).

Using multiple running transactions poses a challenge: committing one
transaction without committing others (i.e., re-ordering between streams)
inherently re-orders the metadata modified across streams. However, in-
ternal file-system consistency relies on maintaining a global order between
metadata operations; indeed, this is the original purpose of ext4’s jour-
naling mechanism. It is hence important that metadata modifications in
different streams be logically independent and be separately associated
with their running transactions. We now describe the various techniques
that c2fs uses to address this challenge while retaining the existing opti-
mizations in ext4.

Hybrid-granularity Journaling

Ext4’s journaling mechanism (described in Chapter 2) works at block-
granularity: entire blocks are associated with running transactions, and
committing a transaction records the modified contents of entire blocks.

96

Figure 5.1: Hybrid-granularity Journaling. Timeline showing hybrid-
granularity journaling in c2fs. Block X initially contains the value 〈a0,b0〉,
TA and TB are the running transactions of streams A and B; when B commits, X
is recorded at the block level on disk.

C2fs uses hybrid-granularity journaling, where byte-ranges (instead of entire
blocks) are associated with the running transaction, but transactional
commits and checkpointing still happen at block-granularity.

C2fs requires byte-granularity journaling because separate metadata
structures modified by different streams might exist in the same file-system
block. For example, a single block can contain the inode structure for two
files used by different applications; in block-granularity journaling, it is
not possible to associate the inodes with the separate running transactions
of two different streams.

Block-granularity journaling allows many optimizations that are not
easily retained in byte-granularity. A major optimization affected in ext4
is data coalescing during checkpoints: even if multiple versions of a block
are committed, only the final version is sent to its in-place location. Since

97

the buffer cache and storage devices manage data at block granularity,
such coalescing becomes complicated with a byte-granularity journal.

To understand hybrid-granularity journaling, consider the example
illustrated in Figure 5.1. In this example, blockX initially contains the bytes
〈a0b0〉. Before allowing any writes, c2fs makes an in-memory copy (say,
X0) of the initial version of the block. Let the first byte of X be modified by
stream A into a1; c2fs will associate the byte range X0−0 with the running
transaction TA of stream A (Xi−j denotes the ith to jth bytes of block X),
thus following byte-granularity. Let stream B then modify the second
byte into b1, associating X1−1 with TB; the final in-memory state of Xwill
be 〈a1b1〉. Now, assume the user calls fsync() in stream B, causing TB to
commit (TA is still running). C2fs converts TB into block-granularity for the
commit, by super-imposing the contents of TB (i.e., X1−1 with the content
b1) on the initial versions of their blocks (i.e, X0 with content 〈a0b0〉), and
committing the result (i.e., 〈a0b1〉). When TB starts committing, it updates
X0 with the value of X that it is committing. If the user then calls fsync()
in A, X0−0 is super-imposed on X0 (〈a0b1〉), committing 〈a1b1〉.

Thus, hybrid-granularity journaling performs in-memory logging at
byte-granularity, allowing streams to be separated; the delayed-logging
optimization of ext4 is unaffected. Commits and checkpoints are block-
granular, thus preserving delayed checkpointing.

Delta Journaling

In addition to simply associating byte ranges with running transactions,
c2fs allows associating the exact changes performed on a specific byte
range (i.e., the deltas). This technique, which we call delta journaling, is
required when metadata structures are actually shared between different
streams (as opposed to independent structures sharing the same block).
For example, consider a metadata tracking the total free space in the file
system: all streams need to update this metadata.

98

Delta journaling in c2fs works as follows. Assume that the byte range
X1−2 is a shared metadata field storing an integer, and that stream A adds
i to the field and stream B subtracts j from the field. C2fs associates the
delta 〈X1−2 : + i〉 to the running transaction TA and the delta 〈X1−2 : − j〉 to
the running TB. When a transaction commits, the deltas in the committing
transaction are imposed on the initial values of their corresponding byte
ranges, and then the results are used for performing the commit. In our
example, if X1−2 initially had the value k, and stream B committed, the
value (k− j) will be recorded for the byte range during the commit; note
that hybrid-granularity journaling is still employed, i.e., the commit will
happen at block-granularity.

In ext4, shared metadata structures requiring delta journaling are the
free inode count and the free block count, which concern global state. As
multiple streams can modify the same directory, delta journaling is also
needed for the nlink and the modification time fields of directory inodes.

Pointer-less Data Structures

Metadata in file systems often use data structures such as linked lists and
trees that contain internal pointers, and these cause metadata operations
in one stream to update pointers in structures already associated with
another stream. For example, deleting an entry in a linked list will require
updating the next pointer of the previous entry, which might be associated
with another stream. C2fs eliminates the need to update pointers across
streams by adopting alternative data structures for such metadata.

Ext4 has two metadata structures that are of concern: directories and
the orphan list. Directories in ext4 have a structure similar to linked lists,
where each entry contains the relative byte-offset for the next entry. Usu-
ally, the relative offset recorded in a directory entry is simply the size of
the entry. However, to delete a directory entry di, ext4 adds the size of di
to the offset in the previous entry (di−1), thus making the previous entry

99

point to the next entry (di+1) in the list. To make directories pointer-less,
c2fs replaces the offset in each entry with a deleted bit; deleting an entry sets
the bit, and the insert and scan procedures are modified appropriately.

The orphan list in ext4 is a standard linked list containing recently
freed inodes and is used for garbage collecting free blocks. The order of
entries in the list does not matter for its purposes in ext4. We convert the
orphan list into a pointer-less structure by substituting it with an orphan
directory, thus reusing the same data structure.

Order-less Space Reuse

C2fs carefully manages the allocation of space in the file system such
that re-ordering deallocations between streams does not affect file-system
consistency. For example, assume stream A deletes a file and frees its
inode, and stream B tries to create a file. The allocation routines in ext4
might allocate to B the inode that was just freed by A. However, if B
commits before A, and then a crash occurs, the recovered state of the file
system will contain two unrelated files assigned the same inode.

Ext4 already handles the situation for block allocation (for reasons
of security) by reusing blocks only after the transaction that frees those
blocks has fully committed. In c2fs, we extend this solution to both inode
and directory-entry reuse. Thus, in our example, B will reuse A’s freed
inode only if A has already been committed.

Maintaining Order Within Streams

We saw in the previous section how to separate dependencies across inde-
pendent streams; we now focus on ordering the updates within the same
stream. Ext4 uses metadata-only journaling: ext4 can re-order file appends
and overwrites. Data journaling, i.e., journaling all updates, preserves
application order for both metadata and file data, but significantly reduces

100

Figure 5.2: Order-preserving Delayed Allocation. Timeline of allocations
performed, corresponding to a system-call sequence.

performance because it often writes data twice. A hybrid approach, selec-
tive data journaling (SDJ) [12], preserves order of both data and metadata
by journaling only overwritten file data; it only journals the block point-
ers for file appends. Since modern workloads are mostly composed of
appends, SDJ is significantly more efficient than journaling all updates.

We adopt the hybrid SDJ approach in c2fs. However, the approach still
incurs noticeable overhead compared to ext4’s default journaling under
practical workloads because it disables a significant optimization, delayed
allocation. In our experiments, the createfiles benchmark results in 8795
ops/s on ext4 with delayed allocation on a HDD, and 7730 ops/s without
(12% overhead).

Without delayed allocation, whenever an application appends to files,
data blocks are allocated and block pointers are assigned to the files im-
mediately, as shown in the second column of Figure 5.2. With delayed
allocation (third column), the file system does not immediately allocate
blocks; instead, allocations for multiple appends are delayed and done
together. For order to be maintained within a stream, block pointers need
to be assigned immediately (for example, with SDJ, only the order of al-
locations is preserved across system crashes): naive delayed allocation
inherently violates order.

C2fs uses a technique that we call order-preserving delayed allocation to

101

maintain program order while allowing delayed allocations. Whenever
a transaction Ti is about to commit, all allocations (in the current stream)
that have been delayed so far are performed and added to Ti before the
commit; further allocations from future appends by the application are
assigned to Ti+1. Thus, allocations are delayed until the next transaction
commit, but not across commits. Since order is maintained within Ti via
the atomicity of all operations in Ti, the exact sequence in which updates
are added to Ti does not matter, and thus the program order of allocations
is preserved.

However, the running transaction’s size threshold poses a challenge:
at commit time, what if we cannot add all batched allocations to Ti? C2fs
solves this challenge by reserving the space required for allocations when
the application issues the appends. Order-preserving delayed allocation
thus helps c2fs achieve ext4’s performance while maintaining order. For
the createfiles benchmark, the technique achieves 8717 ops/s in c2fs.

5.5 Implementation

We describe our implementation of c2fs in this section. C2fs changes 4,500
lines of source code (ext4 total: 50,000 lines). Of these, preserving order
required only 500 lines while implementing multiple streams was more
complicated and involved the rest of the changes. Overall, most of the
changes (3,000 lines) are related to the journaling code within ext4.
Stream API. The setstream() call takes a flags parameter along with
the stream. One flag is currently supported: IGNORE_FSYNC (ignore any
fsync() calls in this stream). We provide a getstream() call that is used,
for example, to find if the current process is operating on the init stream
or a more specific stream. A streamsync() call flushes all updates in the
current stream.
Separating Multiple Streams. Our prototype implementation of streams

102

incurs CPU overhead, because the journaling code manages each byte
range separately, and we do not use optimized in-memory data structures.
We implemented two optimizations to reduce overhead. First, contiguous
byte ranges in the same stream are merged and tracked together under
common scenarios. Second, we maintain an (in-memory) pointer from
the metadata structure stored in each byte-range to the corresponding
byte-range in running transactions.

We applied the pointer-less data structures technique only for ext4’s
linear directories and the inode orphan list; this proved sufficient for our
purposes. The technique can also be adopted for ext4’s hashed directories
and extended attributes if the related features of the file system are found
necessary. Also, our implementation currently limits the maximum size
of directories: a fixed number of blocks are allocated to each directory
during its creation, and inserted entries are contained within those blocks.
This limitation can be removed by applying the pointer-less technique to
the extent map of directories.
Maintaining Order Within Streams. An implementation challenge for
order-preserving delayed allocation is that the allocations need to be per-
formed when a transaction is about to commit, but before the actual com-
mitting starts. We satisfy these requirements without much complexity
by performing the allocations in the T_LOCKED state of the transaction, a
transient state in the beginning of every commit when all file-system up-
dates are blocked. A more efficient implementation can carefully perform
these allocations before the T_LOCKED state.

To correctly maintain the order of file updates, SDJ requires careful
handling when data is both appended and overwritten on the same block.
For example, consider an append when Ti was running and an overwrite
when Ti is committing (when Ti+1 is running); to maintain order, two
versions of the block must be created in memory: the old version (that
does not contain the overwrite) must be used as part of Ti’s commit, and the

103

new version must be journaled in Ti+1. C2fs handles these cases correctly.

5.6 Evaluation

This section answers the following questions. The first question validates
the ordering hypothesis, and the rest of the questions evaluate the effi-
ciency hypothesis:

• Does c2fs improve application crash consistency?

• Does c2fs effectively use streams to eliminate the overhead of write
dependencies?

• How does c2fs perform in standard file system benchmarks run in a
single stream?

• What is the performance effect of maintaining order on real applica-
tion workloads?

We performed a set of experiments to answer these questions. For the
experiments, we use an Intel® CoreTM 2 Quad Processor Q9300 with 4 GB
of memory running Linux 3.13, with either an SSD (Samsung 840 EVO
500 GB) or a HDD (Toshiba MK1665GSX 160 GB).

Reliability

Improvements in application crash consistency under an ordered, weakly
atomic file system can be understood from the study in the previous chap-
ter. We now re-examine the results, by using Alice to compare ext4 (APM
used in the previous chapter) and c2fs (APM with system calls weakly
atomic and in-order) with five applications that exhibit crash inconsisten-
cies on ext4: LevelDB, SQLite, Git, Mercurial, and ZooKeeper. Different
from the previous chapter, we use newer versions of the applications that

104

Application ext4 c2fs
LevelDB 1 0

SQLite-Roll 0 0
Git 2 0

Mercurial 5 2
ZooKeeper 1 0

(a) Vulnerabilities found

Application ext4 c2fs

LevelDB Images 158 / 465 427 / 427
Time (s) 24.31 / 30 30 / 30

Git Images 84 / 112 96 / 96
Time (s) 9.95 / 40 40 / 40

(b) Consistent post-reboot disk states
produced by BoB

Table 5.2: Consistency Testing. The first table shows the results of model-
based testing using Alice, and the second shows experimental testing with BoB.
Each vulnerability reported in the first table is a location in the application source
code that has to be fixed. The Images rows of the second table show the number of
disk images reproduced by the BoB tool that the application correctly recovers from;
the Time rows show the time window during which the application can recover
correctly from a crash (x / y: x time window, y total workload runtime). For Git,
we consider the default configuration, unlike the previous chapter that considers
a safer configuration, since the safer configuration results in bad performance
(§5.6).

have fixed some of the vulnerabilities discovered in the previous chapter.
Furthermore, we do not check durability in Git and Mercurial, since they
never call fsync() under the configurations we test here.

The results of our testing are shown in Table 5.2(a). Ext4 results in
multiple inconsistencies: LevelDB fails to maintain the order in which

105

key-value pairs are inserted, Git and Mercurial can result in repository
corruption, and ZooKeeper may become unavailable. With c2fs, the only
inconsistencies were with Mercurial. These inconsistencies are exposed
on a process crash with any file system, and therefore also occur dur-
ing system crashes in c2fs; they result only in dirstate corruption, which
can be manually recovered from and is considered to be of minor conse-
quence [55]. Thus, our model-based testing reveals that applications are
significantly more crash consistent on c2fs than ext4.

We used the BoB tool [65] to test whether our implementation of c2fs
maintains weak atomicity and ordering, i.e., whether the implementation
reflects the model used in the previous testing. BoB records the block-level
trace for an application workload running on a file system, and reproduces
a subset of disk images possible if a crash occurs. BoB generates disk
images by persisting blocks in and out of order; each image corresponds
to a time window during the runtime where a crash will result in the
image. These windows are used to measure how much time the application
remains consistent.

We used Git and LevelDB to test our implementation; both these appli-
cations have crash vulnerabilities that are easily exposed on a re-ordering
file system. We ran the applications atop both c2fs and ext4 with BoB. Note
that, our workloads for Git and LevelDB (same as in the previous chapter)
finish quickly (within a second) and also dirty only a small amount of data
(less than 4 MB), but the dirty data remains buffered in memory when the
workload finishes. For BoB to correctly work, it needs to observe all the
dirtied data getting flushed to the disk; furthermore, for BoB to correctly
calculate the consistency time windows, the dirtied data should be nat-
urally flushed to disk by the background buffer-cache flushing daemon.
To illustrate, consider a workload that dirties two files, first A and then B,
and requires them to be sent to disk in-order to maintain consistency. If B
is flushed immediately by the application before exiting, but A remains in

106

the buffer cache and is flushed by the background daemon only 30 seconds
later, the application had a inconsistent window of 30 seconds.

Hence, for our measurements with BoB to be correct, we let our Git and
LevelDB workloads sleep for a time period upon completing the workload,
until we are certain that all dirtied data have been flushed from the buffer
cache (30 seconds for LevelDB, 40 for Git). Table 5.2(b) shows our results.

With ext4, both applications can easily result in inconsistency if a
system crash happens during the workload. For example, LevelDB on
ext4 is consistent only on 158 of the 465 images reproduced; a system
crash can result in being unable to open the datastore after reboot, or
violate the order in which users inserted key-value pairs. Similarly, with
Git on ext4, Git will not recover properly if a crash happens during 30.05
seconds of the 40 second runtime of the workload. Note that the time
windows shown in Table 5.2(b) depend mainly on the frequency of the
background flushing daemon, and hence are similar for both our HDD
and SSD (Table 5.2 reports numbers where BoB runs with the HDD).

However, with c2fs, we were unable to reproduce any disk state in
which LevelDB or Git are inconsistent. We hence conclude that our im-
plementation of c2fs provides the desired properties for maintaining ap-
plication consistency. To summarize both our Alice and BoB results, c2fs
noticeably improves the state of application crash consistency. We next
evaluate whether this is achieved with good performance.

Multi-stream Benefits

Maintaining order causes write dependence during fsync() calls and im-
poses additional overheads, since each fsync() call must flush all previous
dirty data. In the simplest case, this results in additional fsync() latency;
it can also prevent writes from being coalesced across fsync() calls when
data is overwritten, and prevent writes from being entirely avoided when

107

the previously written data is deleted. We now evaluate if using separate
streams in c2fs prevents these overheads.

We devised three microbenchmarks to study the performance effects
of preserving order. The append microbenchmark appends a large amount
of data to file A, then writes 1 byte to file B and calls fsync() on B. Thus,
the append benchmark stresses the fsync() call’s latency. The truncate
benchmark truncates fileA after calling fsync() while overwrite overwrites
A after the fsync(); these benchmarks stress whether or not writes are
avoided or coalesced.

We use two versions of each benchmark. In the simpler version, we
write 100 MB of data in file A and measure the latency of the fsync() call
and the total data sent to the device. In another version, a foreground
thread repeatedly writes B and calls fsync() every five seconds; a back-
ground thread continuously writes to A at 20 MB/s, and may truncate A
or overwrite A every 100 MB, depending on the benchmark. The purpose
of the multi-fsync() version is to understand the distribution of fsync()
latencies observed in such a workload.

We ran the benchmarks on three file-system configurations: ext4, which
re-orders writes and does not incur additional overheads, c2fs using a
single stream (c2fs-1), and c2fs with modifications of A and B in separate
streams (c2fs-2). Table 5.3 and Figure 5.3 show our results.

For the append benchmark, in ext4, the fsync() completes quickly
in 0.08 seconds since it flushes only B’s data to the device. In c2fs-1, the
fsync() sends 100 MB and takes 1.28 seconds, but c2fs-2 behaves like ext4
sinceA and B are modified in different streams. Repeated fsync() follows
the same trend: most fsync() calls are fast in ext4 and c2fs-2 but often take
more than a second in c2fs-1. A few fsync() calls in ext4 and c2fs-2 are
slow due to interference from background activity by the page-flushing
daemon and the periodic journal commit.

With truncates, ext4 and c2fs-2 never send file A’s data to disk, but

108

Micro- File fsync() fsync() Total
Benchmark system latency (s) written (MB) written (MB)

ext4 0.08 0.03 100.19
Append c2fs-1 1.28 100.04 100.18

c2fs-2 0.08 0.03 100.20
ext4 0.07 0.03 0.18

Truncate c2fs-1 1.28 100.04 100.21
c2fs-2 0.05 0.03 0.20
ext4 0.08 0.03 100.19

Overwrite c2fs-1 1.27 100.04 300.72
c2fs-2 0.07 0.03 100.20

Table 5.3: Single-fsync() Experiments. fsync() latencies in the first
column correspond to the data written by the fsync() shown in the second
column, while the total data shown in the third column affects the available device
bandwidth and hence performance in more realistic workloads.

c2fs-1 sends the 100 MB during fsync(), resulting in higher latency and
more disk writes. Most repeated fsync() calls in ext4 and c2fs-2 are fast,
as expected; they are slow in c2fs-1, but still quicker than the append
benchmark because the background thread would have just truncated A
before some of the fsync().

With overwrites, in both ext4 and c2fs-2, only the final version of A’s
data reaches the disk: in c2fs-2, SDJ considers the second modification
of A an append because the first version of A is not yet on disk (this
still maintains order). In c2fs-1, the first version is written during the
fsync(), and then the second version (overwrite) is both written to the
journal and propagated to its actual location, resulting in 300 MB of total
disk writes. Repeated fsync() calls are slow in c2fs-1 but quicker than
previous benchmarks because of fewer disk seeks: with this version of
the benchmark, since A is constantly overwritten, data is only sent to the

109

(a) Append (b) Truncate (c) Overwrite

Figure 5.3: Repeated fsync() Experiments. Histogram of user-observed
foreground latencies in our multi-fsync() experiments. Each experiment is run
for two minutes on a HDD.

journal in c2fs-1 and is never propagated to its actual location.
These results show that c2fs is effective at avoiding write dependence

overheads when multiple streams are used. The results also show that,
within a stream, write dependence can cause noticeable overhead. For cer-
tain applications, therefore, it is possible that dividing the application into
multiple streams is necessary for performance. The subsequent sections
show that the majority of the applications do not require such division.

Single-stream Overheads

The previous experiments show how c2fs avoids the performance over-
heads across streams; we now focus on performance within a stream. The
performance effects of maintaining order within a stream are affected by
false dependencies between updates within the stream, and hence depend
significantly on the pattern of writes. We perform our evaluation using
the Filebench [24, 95] suite that reflects real-world workload patterns and

110

0

1

2

3

4
N

o
rm

a
liz

e
d

 P
e

rf
o

rm
a

n
c
e

varmail

randwrite

createfiles

seqwrite

fileserver

webserver

8
4

7
.5

5
8

3
0

4
4

2
8

.9

7
1

.4
2

1
3

2
1

2

7
0

1
.3

8

5
8

8
7

9
6

8
7

.8

1
2

3
.6

6

1
3

2
4

4

6
8

0
.8

3

5
8

8
7

1
8

8
7

.5

1
2

5
.9

1

1
3

1
9

6

ext4-dj ext4 c2fs

(a) HDD Performance

0

1

2

3

varmail

randwrite

createfiles

seqwrite

fileserver

webserver

6
2

1
2

3
6

4
6

8
2

9
4

8
8

.9

5
3

1

1
3

4
3

7

5
8

7
5

4
1

1
8

1
1

0
6

4

2
6

8

1
1

3
2

1
3

6
1

4

5
8

2
3

3
5

9
7

1
0

7
8

7

2
6

9

1
1

1
1

1
3

5
5

2

(b) SSD Performance
Figure 5.4: Single-stream Overheads: Performance. Throughput under
standard benchmarks for c2fs, ext4, and ext4 under the data=journal mode (ext4-
dj), all normalized to ext4-dj. Varmail emulates a multithreaded mail server,
performing file creates, appends, deletes, reads, and fsync() in a single directory.
Randwrite does 200K random writes over a 10 GB file with an fsync() every
100 writes. Webserver emulates a multithreaded web server performing open-
read-close on multiple files and a log file append. Createfiles uses 64 threads to
create 1M files. Seqwrite writes 32 GB to a new file (1 KB is considered an op in
(c)). Fileserver emulates a file server, using 50 threads to perform creates, deletes,
appends, and reads, on 80K files. The fileserver, varmail, and webserver workloads
were run for 300 seconds. The numbers reported are the average over 10 runs.

111

Writes CPU
(KB/op) (µs/op)

ext4-dj ext4 c2fs ext4 c2fs
varmail 3.42 2.91 2.98 59.9 67.2

randwrite 8.1 4.1 8.1 16.8 24.4
createfiles 12.22 5.53 5.49 89.1 94.4
seqwrite 2.0 1.0 1.0 0.9 2.4
fileserver 1093 321 327 1040 2937
webserver 0.49 0.24 0.15 74.4 75.5

Table 5.4: Single-stream Overheads: Data Written and CPU usage. The
table shows the total writes and CPU usage with a HDD, corresponding to
Figure 5.4(a).

microbenchmarks, and compare performance between ext4 (false depen-
dencies are not exposed) and c2fs (false dependencies are exposed because
of ordering within streams). Another source of overhead within streams
is the disk-level mechanism used to maintain order, i.e., the SDJ technique
used in c2fs. Hence, we compare performance between ext4 (no order), c2fs
(order-preserving delayed allocation and SDJ), and ext4 in the data=journal
mode (ext4-dj, full data journaling). We compare performance both with a
HDD (disk-level overheads dominated by seeks) and an SSD (seeks less
pronounced).

The overall results are shown in Figure 5.4 and Table 5.4; performance
is most impacted by overwrites and fsync() calls. We now explain the
results obtained on each benchmark.

The varmail benchmark performs appends, deletes, and fsync() calls.
Since each append is immediately followed by an fsync(), there is no
additional write dependence due to ordering. Performance is dominated
by seek latency induced by the frequent fsync() calls, resulting in similar
performance across ext4 and c2fs. Ext4-dj issues more writes but incurs
less seeks (since data is written to the journal rather than the in-place

112

location during each fsync()), and performs 20% better in the HDD and
5% better in the SSD.

Randwrite overwrites random locations in an existing file and calls
fsync() every 100 writes. Since the fsync() calls always flush the entire
file, there is no additional write dependence due to ordering. However,
the overwrites cause both c2fs (SDJ) and ext4-dj (full journaling) to write
twice as much data as ext4. In the HDD, all file systems perform similarly
since seeks dominate performance; in the SSD, additional writes cause a
12% performance decrease for c2fs and ext4-dj.

Createfiles and seqwrite keep appending to files, while fileserver issues
appends and deletes to multiple files; they do not perform any overwrites
or issue any fsync() calls. Since only appends are involved, c2fs writes
the same amount of data as ext4. Under the HDD, similar performance is
observed in c2fs and in ext4. Under SSDs, createfiles is 4% slower atop c2fs
because of delayed allocation in the T_LOCKED state, which takes a notice-
able amount of time (an average of 132 ms during each commit); this is an
implementation artifact, and can be optimized. For all these benchmarks,
ext4-dj writes data twice, and hence is significantly slower. Webserver in-
volves mostly reads and a few appends; performance is dominated by
reads, all file systems perform similarly.

Table 5.4 compares the CPU usage of c2fs and ext4. For most workloads,
our current implementation of c2fs has moderately higher CPU usage; the
significant usage for fileserver and seqwrite is because the workloads are
dominated by block allocations and de-allocations, which is especially
CPU intensive for our implementation. This can be improved by adopting
more optimized structures and lookup tables (§5.5). Thus, while it does
not noticeably impact performance in our experiments, reducing CPU
usage is an important future goal for c2fs.

Overall, our results show that maintaining order does not incur any in-
herent performance overhead for standard workloads when the workload

113

is run in one stream. False dependencies are rare and have little impact
for common workloads, and the technique used to maintain order within
streams in c2fs is efficient.

Case Studies

Our evaluation in the previous sections shows the performance effects of
maintaining order for standard benchmarks. We now consider three real-
world applications: Git, LevelDB, and SQLite with rollback journaling;
we focus on the effort required to maintain crash consistency with good
performance for these applications in c2fs and ext4. For ext4, we ensure that
the applications remain consistent by either modifying the application to
introduce additional fsync() calls or using safe application configuration
options. All three applications are naturally consistent on c2fs when run
on a single stream.
Single Application Performance. We first ran each application in its own
stream in the absence of other applications, to examine if running the
application in one stream is sufficient for good performance (as opposed
to dividing a single application into multiple streams). Specifically, we try
to understand if the applications have false dependencies. We also con-
sider their performance when fsync() calls are omitted without affecting
consistency (including user-visible durability) on c2fs.

The results are shown in Table 5.5. For Git, we use a workload that adds
and commits the Linux source code to an empty repository. While Git is
naturally consistent atop c2fs, it requires a special option (fsyncobjectfiles)
on ext4; this option causes Git to issue many fsync() calls. Irrespective of
this option, Git always issues 242 MB of appends and no overwrites. In
c2fs, the 242 MB is sent directly to the device and the workload completes
in 28.9 seconds. In ext4, the fsync() calls needed for correctness causes
many disk flushes and 1.4 GB of journal commits, and the workload takes
2294 seconds (80× slower).

114

For SQLite, we insert 2000 rows of 120 bytes each into a table. SQLite
issues fsync() calls frequently, and there are no false dependencies in c2fs.
However, SQLite issues file overwrites (31.83 MB during this workload),
which causes data to be sent to the journal in c2fs. Sending the overwritten
data to the journal improves the performance of c2fs in comparison to ext4
(1.28×). Because SQLite frequently issues an fsync() after overwriting
a small amount (4 KB) of data, ext4 incurs a seek during each fsync()
call, which c2fs avoids by writing the data to the journal. SQLite can also
be heavily optimized when running atop c2fs by omitting unnecessary
fsync() calls; with our workload, this results in a 685× improvement.

For LevelDB, we use the fillrandom benchmark from the db_bench tool
to insert 250K key-value pairs of 1000 bytes each. Atop ext4, we needed to
add additional fsync() calls to improve the crash consistency of LevelDB.
LevelDB on c2fs and the fixed version on ext4 have similar write avoidance,
as can be seen from Table 5.5. Since LevelDB also does few file overwrites,
it performs similarly on c2fs and ext4. With c2fs, existing fsync() calls in
LevelDB can be omitted since c2fs already guarantees ordering, increasing
performance 5×.

Thus, the experiments suggest that false-dependency overheads are
minimal within an application. In two of the applications, the ordering
provided by c2fs can be used to omit fsync() calls to improve performance.

Multiple Application Performance. We next test whether c2fs is effective
in separating streams: Figure 5.5 shows the performance when running
Git and SQLite simultaneously. The situation in current real-world de-
ployments is exemplified by the ext4-bad configuration in Figure 5.5: both
applications are run on ext4, but Git runs without the fsyncobjectfiles option
(i.e., consistency is sacrificed). The c2fs-2 configuration is the intended use
case for c2fs: Git and SQLite are in separate streams on c2fs, achieving
consistency while performing similar to ext4-bad. (SQLite performs better

115

Throu- User-level Metrics Disk-level Metrics

ghput fsync() Append Overw- Flushes Data (MB)
(MB) rite(kB) Journal Total

G
it

ext4 17

fil
es

/s 38599 242 0 77198 1423 1887
c2fs 1351 0 242 0 10 18 243

c2fs+ 1351 0 242 0 10 18 243

SQ
Li

te ext4 5.23

op
s/

s 6000 31.56 31.83 12000 70 170
c2fs 6.71 6000 31.56 31.83 12000 117 176

c2fs+ 4598 0 0.32 0 0 0 0

Le
ve

lD
B ext4 5.25

M
B

/s 598 1087 0.01 1196 16.3 1131
c2fs 5.1 523 1087 0 1046 16.2 1062

c2fs+ 25.5 0 199 0 2 0.074 157

Table 5.5: Case Study: Single Application Performance. The table shows
the performance and observed metrics of Git, LevelDB, and SQLite-rollback run
separately under different file-system configurations on HDD. C2fs+ denotes
running c2fs with unnecessary fsync() calls omitted; in both c2fs configurations,
the application runs in a single stream. The user-level metrics characterize each
workload; “appends” and “overwrites” show how much appended and overwritten
data needs to be flushed by fsync() calls (and also how much remain buffered
when the workload ends). Overhead imposed by maintaining order will be observed
by fsync() calls in the c2fs configuration needing to flush more data. The disk-
level metrics relate the characteristics to actual data written to the device.

under c2fs-2 because c2fs sends some data to the journal and reduces seeks,
as explained previously.) Thus, c2fs achieves real-world performance while
improving correctness.

The c2fs-1 configuration demonstrates the overhead of global order by
running Git and SQLite in the same stream on c2fs; this is not the intended
use case of c2fs. This configuration heavily impacts SQLite’s performance
because of (false) dependencies introduced from Git’s writes. Running
applications in separate streams can thus be necessary for acceptable
performance.

116

The ext4 configuration re-iterates previous findings: it maintains cor-
rectness using Git’s fsyncobjectfiles on ext4, but Git is unacceptably slow
due to fsync() calls. The c2fs+ configuration represents a secondary use
case for c2fs: it runs the applications in separate streams on c2fs with un-
needed fsync() calls omitted, resulting in better SQLite performance (Git
is moderately slower since SQLite uses more disk bandwidth).

Thus, running each application in its stream achieves correctness with
good performance, while global order achieves correctness but reduces
performance.
Developer Overhead. Achieving correctness atop c2fs (while maintaining
performance) required negligible developer overhead: we added one
setstream() call to the beginning of each application, without examining
the applications any further. To omit unnecessary fsync() calls in c2fs
and improve performance (i.e., for the c2fs+ configuration), we used the
IGNORE_FSYNC flag on the setstream() calls, and added streamsync()
calls to places in the code where the user is guaranteed durability (one
location in LevelDB and two in SQLite).

Correctness with ext4 required two additional fsync() calls on Lev-
elDB and the fsyncobjectfiles option on Git. The changes in ext4 both re-
duced performance and were complicated; we carefully used results from
the Alice study to determine the additional fsync() calls necessary for
correctness. Note that, while we happened to find that Git’s fsyncobjectfiles
makes it correct on ext4, other changes are needed for other file systems
(e.g., btrfs).

Thus, developer effort required to achieve correctness atop c2fs while
maintaining performance is negligible; additional effort can improve per-
formance significantly.

117

0

1

10

100

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

ext4-bad c2fs-2 ext4 c2fs-1 c2fs+

2
.6 4

.3

4
.2

 o
p

s
/s

0
.9

7

1
1

2
2

1
0

6
5

9
6

3

9
.7

3
 f

ile
s
/s

1
2

6
9

8
0

4

SQLite

Git

Figure 5.5: Case Study: Multiple Application Performance. Performance of
Git and SQLite-rollback run simultaneously under different configurations on HDD, normalized
to performance under ext4 configuration. Ext4-bad configuration runs the applications on ext4
with consistency sacrificed in Git. C2fs-2 uses separate streams for each application on c2fs.
Ext4 uses ext4 with consistent Git. C2fs-1 runs both applications in the same stream on c2fs.
C2fs+ runs applications in separate streams without unnecessary fsync. Workload: Git adds and
commits a repository 25 times the size of Linux; SQLite repeatedly inserts 120-byte rows until
Git completes.

5.7 Summary

This chapter presents the stream abstraction as a practical solution for
application-level crash consistency. We describe the stream API and the
c2fs file system, an efficient implementation of the API. The effectiveness of
streams is based on two hypotheses. We use real applications to validate
consistency atop c2fs, thus validating the ordering hypothesis. We then
compare performance with ext4, finding that c2fs maintains (and some-
times signficantly improves) performance while improving correctness,
thus validating the efficiency hypothesis. Our results also suggest that
developer effort for using the streams API is negligible and practical.

118

6
Related Work

This chapter presents research work related to each part of this thesis. We
begin with tools and techniques that help in finding application crash vul-
nerabilities and in modeling file-system crash behavior, and then describe
studies that examine crash vulnerabilities in real applications. Finally,
we explain proposed solutions to application-level crash consistency that
form an alternative to the Stream API, and various research work that is
related to our design of c2fs.

6.1 Tools to Find Crash Vulnerabilities

Explode [109] has a similar flavor to Alice: the authors use in-situ model
checking to find crash vulnerabilities on different storage stacks. Alice
differs from Explode in four significant ways. First, Explode requires
the target storage stack to be fully implemented; Alice only requires a
model of the target storage stack, and can therefore be used to evaluate
application-level consistency on top of proposed storage stacks, while they
are still at the design stage. Second, Explode requires the user to carefully
annotate complex file systems using choose() calls; Alice requires the user
to only specify a high-level APM. Third, Explode reconstructs crash states
by tracking I/O as it moves from the application to the storage. Although
it is possible to use Explode to determine the root cause of a vulnerability,

119

we believe it is easier to do so using Alice since Alice checks for failures
associated with each system call, which is further associated directly with
a particular source code line and call stack. Fourth, Explode stops at
finding crash vulnerabilities; by helping produce protocol diagrams, Alice
contributes to understanding the protocol itself.

Zheng et al. [111] describe a tool to find crash vulnerabilities in databases.
They contribute a standard set of workloads that stress databases and check
ACID properties; the workloads and checkers can be used with Alice. Un-
like Alice, Zheng et al. do not systematically explore vulnerabilities of
each system call. Their tool resembles Bob [65] (described in Section 5.6)
but with additional heuristics, and is hence limited by the re-orderings and
non-atomicity exhibited by a particular (implemented) file system during
a single workload execution. Thus, their work is more suited for finding
vulnerabilities that are commonly exposed under a given file system.

Alice is influenced by SQLite’s internal testing tool [91]. The tool works
at an internal wrapper layer within SQLite, and also only deals with a
subset of system calls, which are used by SQLite. It also does not allow
being configured with a specific file-system model. Hence, unlike Alice,
it is not helpful for generic testing.

Jiang et al. [37] describe C3, another tool that finds crash vulnerabilities
(their work follows Alice), and evaluate the tool with applications such as
text editors that use simpler crash-consistency protocols than those tested
using Alice. The core method used by C3 to reproduce crash states is the
same as Bob (described in Section 5.6). To deal with the low state-space
coverage implicit in this method, the authors develop a technique of au-
tomatically inducing timing-changes for the given input workload. C3

also does not use an invariant checker, instead simply detecting whether a
crashed file-system state is similar to the file-system state observed while
running the input workload. The invariant-checking methodology used
by C3 does not work for the complex applications that Alice targets, while

120

generating alternative workloads with varying timing effects is unneces-
sary (does not improve coverage) with Alice. However, C3’s technique of
using Bob with generated timing-differing workloads might be advanta-
geous than Alice in that an APM is not required when validating atop
pre-existing storage stacks.

Following Alice, Bornholt et al. [6] implement a model checker, Fer-
rite, that operates on the crash-behavior specifications of file systems (the
specifications are similar to Alice’s APM). Since Ferrite is built using
Rosette [100], it allows program synthesis and verification based on SAT
and SMT solvers, and hence allows discovering crash vulnerabilities. To
our knowledge, the tool neither considers the presence of an explicit recov-
ery protocol (instead requiring checking-invariants be described in terms
of the file-system state), and hence is not practical for complex applications,
nor has been applied on any real-world applications.

Koskinen and Yang [41] recently defined application-level crash re-
coverability in terms of a formal model that allows crash consistency to
be thought of similar to reachability. This allows the authors to build
Eleven82, a tool that finds recoverability bugs or proves their absence
using a symbolic search through the input and crash state space; the
authors use the tool to analyze seven of the applications that Alice investi-
gated. Eleven82 offers a better solution than Alice in theory, but currently
has practical concerns; for instance, it does not support nested directory
structures.

Woodpecker [20] can be used to find crash vulnerabilities when sup-
plied with suspicious source code patterns to guide symbolic execution.
Woodpecker can both have false positives, since a given pattern might
appear in a non-vulnerable part of the source code, and will have false
negatives, since it is impossible to determine all patterns that can result
in vulnerabilities. However, Woodpecker can be used to quickly check a
given source code and warn the developer about previously known vulner-

121

ability patterns appearing in the code. Woodpecker is complementary to
Alice’s methodology; Alice is fundamentally different from Woodpecker’s
approach, as it does not require prior knowledge of patterns in checked
applications.

RacePro [43], a testing tool for concurrency bugs, records system calls
and replays them by splitting them into small operations, similar to micro
operations in Alice. Unlike Alice, it does not test crash consistency.

Chen et al. [10, 11] focus on crash consistency at the file-system layer,
defining formal logic (termed Crash Hoare logic) and designing a file
system with crash behavior proved to correspond to a specification. Ala-
gappan et al. [1] broadly explore specifying crash behavior across different
layers of the storage stack, and describe techniques to improve both cor-
rectness and performance using the specifications. Both these works are
complementary to Alice, focusing on the same end goal of improving the
crash reliability of storage, but at different layers.

6.2 Vulnerabilities Survey

To our knowledge, there are only few studies on the crash consistency
of real-world applications; none are as extensive as ours. Explode [109]
broadly studies multiple layers of the storage stack, including file systems,
RAID, and applications. It investigates four applications (BerkeleyDB,
CVS, Subversion, and an unnamed version control system) and finds 11
failures across them. Of these, the authors are able to accurately identify
the source error locations for only 3 failures, one each in CVS, Subversion,
and the other version control system; the authors are unable to suggest
the error locations for 6 failures observed in BerkeleyDB. Hence, the data
presented by Explode is not sufficient to understand the file-system be-
haviors associated with the vulnerabilities or identify common patterns
present across applications.

122

Zheng et al. [111] focus on databases, and use a standard set of work-
loads to test 8 databases atop the ext4 and xfs file systems. They report
whether each of the tested databases hold the A, C, and D parts of the
ACID property. The methodology used by Zheng et al. makes it cumber-
some to identify the source error locations corresponding to an observed
failure, and the authors report (as case studies) on the error locations
corresponding to only three of the failures discovered. Thus, similar to
Explode, the data is not sufficient to understand associated file-system
behaviors or common patterns.

Koskinen and Yang [41], whose work follows ours, examine a subset
of the same applications as Chapter 4 and observe failures, but do not
describe or comment further on the failures observed. C3 [37], which also
follows our work, examines text editors, the GNU make utility, and other
applications that only implement simple forms of crash consistency; they
find failures, but do not further examine the data.

6.3 Atomicity Interfaces

Transactional file systems have a long history [77] and allow applications
to delegate most crash-consistency requirements to the file system. They
give applications easy-to-use transactional interfaces with ACID seman-
tics, and aim to remove complexity within applications and thus reduce
vulnerabilities. Hence, they provide an alternative to the Stream API for
achieving application-level crash consistency.

Recent work in this space includes Amino [108], Valor [85], and Win-
dows TxF [56]. More recent research has recognized that the ACID se-
mantics of transactional file systems affect both flexibility [62] and per-
formance [57] by imposing a specific isolation and concurrency control
mechanism on their users. Hence, researchers have proposed atomicity-
only file systems (i.e., they do not provide isolation when compared to

123

transactional file systems), by Vermat et al. [106], Park et al. [62], and
CFS [57]. There also exist OS-level transaction support as advocated by
TxOS [68].

Such interfaces allow adding crash consistency easily to applications
which do not already implement them, and help heavily optimized ap-
plications that trade portability for performance [51]. File systems im-
plementing atomicity interfaces take advantage of the close interaction
possible with other kernel subsystems (such as the buffer cache) to improve
performance. If the storage medium has atomic capabilities, then these file
systems might transparently use the capabilities to improve performance.

For applications with existing consistency implementations, propo-
nents of atomicity interfaces and transactional file systems advocate re-
placing the existing implementation with the interface provided by the file
system. This is not trivial to achieve (though perhaps much easier than
writing a new consistency implementation). For instance, consider the
SQLite database, and assume that we want to replace its consistency im-
plementation using a straightforward begin_atomic()–end_atomic() interface
provided by the file system.

A simple attempt at achieving this would be to switch off SQLite’s
journaling (i.e., its consistency mechanism) and add a begin_atomic() when
the user requests a transaction start and end_atomic() when the user re-
quests a commit. This attempt does not work for two reasons. First, it
removes (does not implement) SQLite’s ROLLBACK command (i.e., abort
transaction) and the SAVEPOINT command (which allows an aborted
transaction to continue from a previous point in the transaction). Second,
unless the file system provides isolation (which recent research argues
against), it requires re-implementing isolation and concurrency control,
since SQLite’s isolation mechanism is inherently tied to its consistency
mechanism (for both rollback journaling and WAL).

In addition to converting the application to use the file-system pro-

124

vided atomicity interface, in practice, a programmer has to maintain two
versions of application code, since the application will often be run in envi-
ronments without the atomic file system. Also note that we have discussed
an ideal atomic interface so far, and there are usually further concerns.
For instance, if the file system guarantees the durability of all atomic up-
dates, and the application does not desire durability, performance will be
lost. If durability is optional, and the file-system instead promises global
ordering between atomic updates, performance degradation due to false
dependencies will arise. If neither ordering nor durability is guaranteed,
applications would often require additional measures to achieve consis-
tency. If stream-ordering is provided between atomic updates, the effort
required to use the atomicity interface would be strictly greater than that
to use streams (assuming an already existing consistency implementation).

To summarize, adopting atomicity interfaces to overcome vulnerabil-
ities is nonoptimal in applications with existing consistency implemen-
tations. One challenge is simply the changes required: CFS [57], with
arguably the most user-friendly atomic interface, requires changing 38
lines in SQLite and 240 lines in MariaDB; although the number of lines
changed might appear small compared to the total size of the application,
much developer effort resides in identifying the places to be changed
(and to be left unchanged), i.e., the changes themselves are more compli-
cated. Another challenge is portability: until the interfaces are widely
available, the developer must maintain both the existing consistency pro-
tocol and a protocol using the atomic interface; this has deterred such
interfaces in Linux [19]. Finally, the complexity of data structures and
concurrency mechanisms in modern applications (e.g., LSM trees) are not
directly compatible with a generic transactional interface; Windows TxF, a
transactional interface to NTFS, is being considered for deprecation due
“due to its complexity and various nuances which developers need to consider as
part of application development” [56].

125

In contrast, the Stream API focuses on masking vulnerabilities in exist-
ing application-level consistency implementations. C2fs advocates a single
change to the beginning of applications. The applications can then be run
without further modification on both stream-enabled and stream-absent
file systems, gaining correctness with stream-enabled file systems.

6.4 Fine-grained Ordering interfaces

Much previous work has proposed new interfaces that allow the appli-
cation developer to express ordering dependencies among file-system
updates. Burnett [7] and Featherstitch [25] propose an interface to express
the exact ordering required as directed acyclic graphs. OptFS [12] intro-
duces the osync() call to express ordering dependencies, and compares
it against the fsync() call, which imposes both ordering and durability.
These interfaces allow applications to achieve system-crash consistency
efficiently, with less complexity than with the current file-system interface.

Such interfaces allow better performance, but require developers to
specify the exact ordering required, and as such are not optimal for fix-
ing existing protocol implementations. The interfaces are instead best
suited for applications that are willing to trade off programmer overhead
to get micro-managed performance gains. In contrast, the Stream API
aspires to mask vulnerabilities in existing applications while involving the
programmer minimally.

6.5 Stream and Global Ordering

Streams resemble dependency queues from HP’s classical MPE XL operating
system [40]. However, the internal implementation of dependency queues,
their application-level usage, and applicability to current operating sys-
tems are unclear. Also very related to the Stream API is recent work by

126

Pelley et al. [63], which separates and studies the write ordering imposed
for persistence and memory consistency in NVRAMs. But, Pelley et al.’s
work does not deal with file systems or the file system interface.

Some file systems provide global ordering as a side effect of their
internal consistency mechanisms, including specific modes of ext3 and
ext4. LinLogFS [21] is an example that is explicitly designed for providing
global ordering. All such generic file systems that provide global ordering
suffer from the performance penalities described in Chapter 5 (Section 5.2).
BPFS [18] provides efficient global ordering and atomicity, but is designed
to be run on NVRAM with transactional primitives. Xsyncfs [60] provides
global ordering and avoids performance effects due to false dependencies
by buffering user-visible outputs; this approach is complementary to our
approach of reducing false dependencies.

6.6 C2FS Implementation

C2fs builds upon seminal work in database systems [30, 58] and file-system
crash consistency [17, 23, 26, 27, 31, 73, 75, 78], but is unique in assembling
different techniques required to efficiently implement the stream API.
Specifically, c2fs uses journaling [17, 31] for order within a stream, but
applies techniques similar to soft updates [26, 27, 78] for separating streams.
Log-structured approaches [73, 75] can be an alternate method for order
within streams, consisting of different performance trade-offs, but have
not been explored in c2fs.

Thus, c2fs uses a design with different classic consistency techniques,
one each for ordering within streams and for separating ordering between
streams. This approach is necessary: using soft updates directly for a long
chain of dependent writes ordered one after the other (as c2fs promises
within a stream) will result in excessive disk seeks.

In principle, one should be able to easily construct a stream-ordered

127

file system atop a fine-grained ordering interface. However, the direct
implementation of ordering in Featherstitch [25] uses the soft-updates
approach, which is incompatible as described previously. The osync()
interface used by OptFS [12] does not allow separating the effect of false
dependencies between streams, and is hence insufficient for implementing
streams. C2fs uses the SDJ technique from OptFS but optimizes it; the
original relies on specialized hardware (durability notifications) and de-
creased guarantees (no durability) for efficiency. Block-level guarantees of
atomicity and isolation, such as Isotope [80] and TxFlash [70], can simplify
c2fs’ separation of streams, but techniques in Section 5.4 are still needed.

128

7
Conclusion

The reading and writing of data, one of the most fundamental aspects of
any Von Neumann computer, is surprisingly subtle and full of nuance. For
example, consider access to a shared memory in a system with multiple
processors. While a simple and intuitive approach, known as “strong con-
sistency”, is easiest for programmers to understand and reason about [44],
many weaker models exist and are widespread (e.g., x86 total store or-
dering [79]); such approaches improve system performance, but at the
cost of making reasoning about system behavior more complex and error
prone. Fortunately, a great deal of time and effort has gone into thinking
about such memory models [84], and, as a result, most multiprocessor
applications are not caught unaware.

In many ways, this thesis simply tries to understand similar subtelities
involved in local file systems, i.e., the systems that manage data stored in
your desktop computer, on your cell phone [38], or serve as the underlying
storage beneath large-scale distributed systems such as HDFS [81]. We
first study the easiest model for the users of these file systems (i.e., applica-
tions), designing a tool for understanding applications in the process, and
then propose a model that is most aligned to the ideal model while still
providing performance. In this chapter, we first summarize each part of
this thesis (§7.1), discuss the various lessons we learnt through the course
of this thesis (§7.2), and possible future work (§7.3).

129

7.1 Summary

In this section, we discuss the summary of each part of this thesis.

ALICE

In the first part of this thesis, we looked at the Alice tool which helps
understand the crash-consistency protocols of applications and finds vul-
nerabilities in the protocols. Alice works by analyzing the system-call trace
of the application produced from a user-supplied workload. It determines
and reconstructs various crash states that might result from the trace, and
then runs a user-supplied checker on each reconstructed state. Among
all possible crash states for the obtained system-call trace, Alice targets a
specific subset designed to find more vulnerabilities while examining few
states. Results are presented to the user as static crash vulnerabilities, each
vulnerability corresponding to a location in the source code that causes a
violation of the application’s crash consistency.

Crash states are determined in Alice by first representing the initial
file-system state of the application workload as a set of logical entities, and
converting the system-call trace into file-system-agnostic logical operations
operating on these entities. The logical operations are then converted
into micro operations; this conversion differs between file systems, and
depends on the crash behavior of the file system that the user is interested
in. The user hence supplies the crash behavior to Alice as an APM (abstract
persistence model) of the file system. The APM also specifies ordering
constraints between the resulting micro operations, which are taken into
account when determining crash states.

We also evaluated the usability of Alice by considering the effort re-
quired to write workloads and checkers. We evaluate the running time for
Alice and the effectiveness of targeting only a subset of crash states for a
specific application (LevelDB). A more encompassing (but less quantita-

130

tive) evaluation of Alice is left to the next chapter of this thesis.

Vulnerabilities Study

In the next part of this thesis, we first examined two applications, SQLite
and LevelDB, to understand developer and user attitudes towards crash
consistency in the real world. For both applications, we examined previous
mailing list discussions and bug reports. We considered configuration
options in the applications that deal with file-system crash behavior and
with the crash guarantees of the application. We also studied the source
code and the system-call trace of these applications, and tried to manually
find crash vulnerabilities in them.

With LevelDB, we found that one vulnerability had been previously
reported, and we discovered four other vulnerabilities; we also found that
LevelDB did not formally document its crash guarantees. With SQLite,
three vulnerabilities had previously been reported and fixed, and we did
not find any more, perhaps because SQLite has an internal testing tool for
crash consistency. However, SQLite has multiple configuration options
that can improve performance if the crash-behavior of the underlying file
system is known.

We then examined 11 applications using Alice, and found 60 vulner-
abilities in them. Chapter 4 reports on the update protocol observed in
each application and the interesting vulnerabilities found in them. We
explained the results in terms of the common patterns observed across
applications, consolidating the vulnerabilities both based on their failure
consequences as well as the associated file-system behavior: vulnerabili-
ties lead to corruption and unavailability, and can be associated with crash
behavior that is becoming more common in modern file systems.

We analyzed the vulnerabilities exposed for different modern file sys-
tems. We observed that more and more vulnerabilities are exposed by
each file system in the following sequence: ext3 under the data-journaled

131

mode, ordered mode, writeback mode, ext4 under the ordered mode,
and btrfs. We also commented on our interaction with developers when
reporting the vulnerabilities: crash vulnerabilities can easily be misre-
ported and understood to be device failures, and application developers
are misinformed about file-system crash behavior.

C2FS

In the final part, we proposed c2fs, a solution to application-level crash
consistency. We first explained the file-system behavior that is most com-
patible with the application requirements for correctness: full ordering
and weak atomicity. Next, we explained why full ordering is bad for
performance: false write dependencies might occur, reducing coalescing,
avoidance, and other overheads depending on the storage stack.

We then introduced the hypothesis that forms the basis of c2fs: false de-
pendencies that have noticeable performance impact only occur between
applications; so long as full ordering is provided only within each applica-
tion, performance overhead can be avoided. Based on this hypothesis, we
introduced the Stream API. With minimal developer effort, the API can be
used to distinguish between write requests from different applications at
runtime; a file system can thus ensure application correctness by providing
the required ordering without impacting performance. With slightly more
developer effort, the API also supports increasing application performance
by orders of magnitude while maintaining correctness.

We explained the design for the c2fs file system. The file system is
derived from ext4, but changes the journaling methodology to separately
ensure ordering within each stream (but not across streams). C2fs takes
many measures to ensure that performance optimizations in ext4 are not
affected, while ordering (and hence application correctness) is provided.

We evaluated c2fs on many aspects. We evaluated whether our imple-
mentation of c2fs correctly provides full ordering by using the BoB tool,

132

and whether full ordering provides correctness when applications are
configured practically (unlike in Chapter 4, wherein the safest configura-
tion is used). We evaluated whether our implementation of c2fs re-orders
between streams to avoid performance impact under false dependencies.
These experiments show that c2fs provides the required ordering, full or-
dering improves application-level crash consistency, and that c2fs re-orders
sufficiently between streams.

We then used the Filebench suite to evaluate whether running each
benchmark in a single stream introduces any impactful false dependencies;
we found that it does not, as hypothesized. We also use SQLite, LevelDB,
and Git to evaluate whether false dependencies are introduced within
each application, whether running the applications simultaneously in
different streams provides good performance, and the developer effort
required to run applications in separate streams. We found c2fs provides
good performance, and the required developer effort is trivial.

7.2 Lessons Learnt

We now discuss the various lessons we learnt throughout the course of
this thesis.

Manual studies are important

We first focused on manually studying crash consistency protocols and
vulnerabilities in two applications before using any automated tools. In
hindsight, this was important, especially because there was little previ-
ous research insight into this area: only Explode previously reported on
application crash consistency. The manual study contributed many impor-
tant design decisions for the Alice tool, and enabled us to appropriately
interpret the results of our study. From the manual study, we determined
that a tool that intercepts at the device layer and records a block trace, and

133

then determines crash states based on the trace, is not sufficient for finding
application crash vulnerabilities. This is because many vulnerabilities are
often hidden by non-deterministic flushing actions by the file system at
the buffer-cache layer. Hence, enumerating possible crash states at the
block layer will not produce those states that would have resulted if the
buffer cache were flushed in a different order by the file system.

Similarly, the manual study also revealed that the application’s recov-
ery protocol needs to be considered to determine crash vulnerabilities
(instead of simply considering the file-system state after the crash) and
that associating the vulnerabilities with their source lines is important
for understanding them. These aspects of Alice are significantly different
from other tools because of the manual study, as described in Chapter 6,
and are important for the effectiveness of Alice. We also interpreted our
results correctly because of the manual study; this is important because of
the inherent difficulty involved in reporting vulnerabilities and in describ-
ing file-system behavior to developers.

Specification is important

Throughout this thesis, we observe many situations where the ultimate
reason for incorrectness and failure is the absence of clear specification. At
the application layer, the guarantees provided in application documenta-
tion might be confusing (or simply absent); an example is SQLite’s absence
of a durability guarantee by default, and GDBM’s absence of any crash
consistency guarantees (despite a synchronous flag). Indeed, only some
application developers have a clear view of the exact guarantees provided,
and many offer only probabilistic guarantees.

On the other hand, most application developers are confused about
the crash behavior of file systems. Some developers believe that POSIX
requires file systems to have good crash behavior, such as requiring that
directory operations are sent to the disk in-order. Unfortunately, there is

134

little clarity as to what exactly POSIX defines with regards to crashes [3,
105], leading to much debate and little consensus.

Consider practical runtime environments

The Stream API and the c2fs file system is based on the hypothesis that,
within an application, there are few false dependencies that cause perfor-
mance overhead. We also verified this quantitatively by running standard
benchmarks. Assuming that the hypothesis is true, note that the subset
of experiments we used to validate the hypothesis does not require the
Stream API nor most techniques in c2fs for good performance. Instead, a
much simpler file system that maintains global ordering while avoiding
the journaling overhead of writing data twice will perform sufficiently
with these experiments. This is because these experiments, based on
standard file-system benchmarks, do not consider multiple applications
running simultaneously: the benchmarks themselves only represent a
single application.

Hence, if we had only considered standard benchmarks that are used
commonly in file-system research, we would have falsely concluded that
false dependencies never arise, and that the simpler global-ordering file
system provides good performance while improving correctness. The
requirement for both the Stream API and an efficient implementation of the
API is borne out of the requirement of considering a practical deployment
environment, in which multiple applications are run together.

Thus, considering practical environments can present challenges and
opportunities for further research. We designed both the Stream API and
c2fs to separate updates between applications, and verified both our hy-
pothesis and the performance of our implementation by using customized
benchmarks mimicking a practical environment.

135

Intuitive semantics must be the default

When designing any interface, a trade-off occurs between hiding imple-
mentation details and providing stronger semantics. The default file-
system interface takes the approach of weak semantics about crash be-
havior, and leaves the exact semantics to the file-system implementation.
Many file systems, taking advantage of this, provide only non-intuitive
behavior to applications, arguing both for performance and simplicity of
the file system.

In Chapter 5, we derived the file-system crash behavior that is most
compatible with application crash consistency from the data in the pre-
vious chapter. However, one should note that the behavior required is
simply the most intuitive from an application developer’s perspective.
Given the impact that providing such an intuitive behavior has on appli-
cation consistency, we believe that the approach taken by the file-system
interface happens to be wrong. Ideally, other than situations where it is
impossible to provide durable file-system behavior (such as in a file system
running on volatile main memory), the file-system interface would offer
intuitive and strong crash semantics by default, but let the application
choose weaker semantics if it desires performance.

7.3 Future Work

We now discuss the different directions for future work.

Crash Vulnerabilities in Distributed Applications

This thesis focuses on crash consistency for single-node applications.
While Chapter 4 considers HDFS and ZooKeeper, they are run in the
local mode and the single-node configurations, respectively. Hence, while
the discovered vulnerabilities in HDFS and ZooKeeper affect their crash

136

consistency, we do not consider situations such as a single node crashing
while other nodes are still running.

Alagappan et al. [1] have studied the crash consistency of distributed
systems by considering a broader correlated crash scenario than our study:
they run the distributed system on multiple nodes, and consider the situ-
ation where all nodes crash at the same time. Much of the challenge in
investigating correlated crashes stems from the fact that each node can
possess its own crash state after the crash; the possible crash states of the
entire system is equivalent to the valid cross product of possible individual
crash states. However, correlated crashes do not consider the situation
where each individual node can crash independent of the other nodes,
and thus does not examine an important set of crash states.

Investigating the crash consistency of distributed systems is interesting
for two reasons. First, since a part of the system is running while another
part crashes, there are chances of relevant information being modified
while crash recovery is still in progress. Second, distributed systems might
have more ways of detecting and recovering from crashes, since data is
replicated. Studying distributed crash consistency is also not straightfor-
ward (provided Alice) due to the first reason. Hence, we find it imperative
to study distributed crash consistency in the future.

Workload Characterization for Stream API

The idea behind the Stream API is that overhead-inducing false depen-
dencies do not commonly occur within an application. We have provided
evidence for this hypothesis by considering standard benchmarks and a
few applications. However, future work can investigate the hypothesis
further, since our experiments lack some interesting details.

The first aspect that future work can improve upon, when consider-
ing this hypothesis, is to simply inspect more real-world applications.
Second, future work should characterize applications, perhaps based on

137

the number of false dependencies occurring within an application, and
how each of these dependencies can impact performance. One can also
imagine characterizing each false dependency, such as whether they af-
fect write coalescing, write avoidance, or other file-system optimizations
like delayed allocation. Such studies will help design file systems where
little overhead is observed for any prevalent false dependencies in com-
mon applications. They will also provide insight into whether separating
applications into multiple streams can satisfy performance goals with
unexpected application workloads, and the developer effort involved.

The final aspect that future work should consider is the interaction
between multiple applications. We claimed that false dependencies oc-
curring between different applications might impact performance, and
provided evidence for this with some experiments. However, we did not
characterize whether some applications can be affected more by false de-
pendencies because of other applications, or whether some applications
can affect other applications more. Such a study would reveal if it is possi-
ble to club multiple applications into the same stream; if so, this would
allow streams (and fully ordered file systems) to be easily adapted.

Application Crash Consistency under Persistent Memory

The default abstract persistence model in Chapters 3 and 4 models a file
system that guarantees atomicity of data writes only at the byte level,
mainly in consideration of file systems atop persistent memory. We also
find some vulnerabilities where applications require sector-level atomicity.

However, our results only indicate that studying crash consistency
under persistent memory is interesting; future work should investigate
further details. Future work can investigate crash consistency using ap-
plications that are optimized for persistent memory, to understand the
common patterns that occur in such applications. It can also consider the
APM of realistic persistent-memory file systems, and devise techniques

138

to check crash consistency when new storage interfaces (instead of the
standard file-system interface) are used for accessing persistent memory.
Future work can also propose solutions for improving crash consistency in
practice under persistent-memory environments: the trade-offs involved
will be different from those considered for the Stream API and c2fs.

7.4 Closing Words

Application-level crash consistency is hard to implement efficiently. This
thesis, in accordance with anecdotal evidence, concurs that many imple-
mentations are incorrect. On the one hand, application developers blame
such incorrectness on non-intuitive crash guarantees from the file system.
On the other, most file-system developers and researchers either assume
that applications run correctly with traditional file-system guarantees
(which are often undefined or misunderstood), or consider it entirely the
application developers’ burden.

Similar problems have been faced before in other areas of computer
systems, in the domains of multiprocessor shared memory and distributed
systems. Those problems have been overcome by creating new abstrac-
tions, understanding various trade-offs, and and even thinking about
the problem with analogies to baseball [96]. In this thesis, we present
the stream abstraction and the c2fs file systems as practical solutions for
application-level crash consistency; we find that c2fs maintains (and some-
times signficantly improves) performance while improving correctness.

139

Bibliography

[1] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Correlated Crash Vulnerabilities. In
Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI ’16), Savannah, Georgia, November 2016.

[2] Apache. Apache Zookeeper. http://zookeeper.apache.org/.

[3] Austin Group Defect Tracker. 0000672: Necessary step(s) to synchro-
nize filename operations on disk. http://austingroupbugs.net/
view.php?id=672.

[4] Steve Best. JFS Overview. http://jfs.sourceforge.net/project/
pub/jfs.pdf, 2000.

[5] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File
Systems. http://opensolaris.org/os/community/zfs/docs/zfs_
last.pdf, 2007.

[6] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishna-
murthy, Emina Torlak, and Xi Wang. Specifying and Checking
File System Crash-Consistency Models. In Proceedings of the 21st
International Conference on Architectural Support for Programming Lan-

http://zookeeper.apache.org/
http://austingroupbugs.net/view.php?id=672
http://austingroupbugs.net/view.php?id=672
http://jfs.sourceforge.net/project/pub/jfs.pdf
http://jfs.sourceforge.net/project/pub/jfs.pdf
http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf
http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf

140

guages and Operating Systems (ASPLOS 21), Atlanta, Georgia, April
2016.

[7] Nathan C. Burnett. Information and Control in File System Buffer Man-
agement. PhD thesis, University of Wisconsin-Madison, Oct 2006.

[8] Donald D Chamberlin, Arthur M Gilbert, and Robert A Yost. A
history of system r and sql/data system. In VLDB, pages 456–464,
1981.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes,
and Robert Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), pages 205–218, Seattle,
Washington, November 2006.

[10] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for
Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP ’15), Monterey,
California, October 2015.

[11] Haogang Chen, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek,
and Eddie Kohler Nickolai Zeldovich. Specifying crash safety for
storage systems. In The Fifteenth Workshop on Hot Topics in Operating
Systems (HotOS XV), Kartause Ittingen, Switzerland, May 2015.

[12] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic
Crash Consistency. In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP ’13), Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

141

[13] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic
Crash Consistency. In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP ’13), Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

[14] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Consistency Without Ordering. In
Proceedings of the 10th USENIX Symposium on File and Storage Tech-
nologies (FAST ’12), pages 101–116, San Jose, California, February
2012.

[15] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Consistency Without Ordering. In
Proceedings of the 10th USENIX Symposium on File and Storage Tech-
nologies (FAST ’12), San Jose, California, February 2012.

[16] Chris Davies. Fake hard-drive has short-term
memory not 500GB. http://www.slashgear.com/
fake-hard-drive-has-short-term-memory-not-500gb-08145144/.

[17] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar, Bruce W. Lev-
erett, W. Anthony Mason, and Robert N. Sidebotham. The Episode
File System. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’92), pages 43–60, San Francisco, California, January
1992.

[18] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o
through byte-addressable, persistent memory. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP ’09), Big
Sky, Montana, October 2009.

http://www.slashgear.com/fake-hard-drive-has-short-term-memory-not-500gb-08145144/
http://www.slashgear.com/fake-hard-drive-has-short-term-memory-not-500gb-08145144/

142

[19] Jonathan Corbet. Better than POSIX? Retrieved April 2016 from
https://lwn.net/Articles/323752/.

[20] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. Verifying
systems rules using rule-directed symbolic execution. In Proceedings
of the eighteenth international conference on Architectural support for
programming languages and operating systems, pages 329–342. ACM,
2013.

[21] Christian Czezatke and M. Anton Ertl. LinLogFS: A Log-structured
Filesystem for Linux. In Proceedings of the USENIX Annual Technical
Conference (FREENIX Track), San Diego, California, June 2000.

[22] Jeff Dean and Sanjay Ghemawat. Leveldb. https://rawgit.com/
google/leveldb/master/doc/index.html.

[23] Linux Documentation. XFS Delayed Log-
ging Design. Retrieved April 2016 from
https://www.kernel.org/doc/Documentation/filesystems/xfs-
delayed-logging-design.txt.

[24] Filebench. Filebench. Retrieved March 2016 from
https://github.com/filebench/filebench/wiki.

[25] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los
Reyes, Shant Hovsepian, Andrew Matsuoka, and Lei Zhang. Gen-
eralized File System Dependencies. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), pages 307–320,
Stevenson, Washington, October 2007.

[26] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules,
and Yale N. Patt. Soft Updates: A Solution to the Metadata Update
Problem in File Systems. ACM Transactions on Computer Systems
(TOCS), 18(2), May 2000.

https://rawgit.com/google/leveldb/master/doc/index.html
https://rawgit.com/google/leveldb/master/doc/index.html

143

[27] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance
in File Systems. In Proceedings of the 1st Symposium on Operating
Systems Design and Implementation (OSDI ’94), pages 49–60, Monterey,
California, November 1994.

[28] GNU. GNU Database Manager (GDBM). http://www.gnu.org.ua/
software/gdbm/gdbm.html, 1979.

[29] Google. LevelDB. https://code.google.com/p/leveldb/, 2011.

[30] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[31] Robert Hagmann. Reimplementing the Cedar File System Using
Logging and Group Commit. In Proceedings of the 11th ACM Sym-
posium on Operating Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

[32] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. A File Is Not a File: Un-
derstanding the I/O Behavior of Apple Desktop Applications. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

[33] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach (4th Edition). Morgan Kaufmann, 2006.
With contributions by Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Krste Asanovic, Robert P. Colwell, Thomas M. Conte, Jose
Duato, Diana Franklin, David Goldberg, Wen-mei W. Hwu, Norman
P. Jouppi, Timothy M. Pinkston, John W. Sas, David A. Wood.

[34] Dave Hitz, James Lau, and Michael Malcolm. File System Design for
an NFS File Server Appliance. In Proceedings of the USENIX Winter

http://www.gnu.org.ua/software/gdbm/gdbm.html
http://www.gnu.org.ua/software/gdbm/gdbm.html
https://code.google.com/p/leveldb/

144

Technical Conference (USENIX Winter ’94), San Francisco, California,
January 1994.

[35] HyperSQL. HSQLDB. http://www.hsqldb.org/.

[36] D. M. Jacobson and J. Wilkes. Disk Scheduling Algorithms Based
on Rotational Position. Technical Report HPL-CSP-91-7, Hewlett
Packard Laboratories, 1991.

[37] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu, Xiaoxing Ma,
and Jian Lu. Crash consistency validation made easy. In Proceedings
of the ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE ’16), Seattle, WA, USA, November 2016.

[38] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting
Storage for Smartphones. In Proceedings of the 10th USENIX Sympo-
sium on File and Storage Technologies (FAST ’12), San Jose, California,
February 2012.

[39] Jaeho Kim, Jongmoo Choi, Yongseok Oh, Donghee Lee, Eunsam
Kim, and Sam H. Noh. Disk Schedulers for Solid State Drives. In
EMSOFT, Grenoble, France, October 2009.

[40] Alan J. Kondoff. The MPE XL Data Management System Exploit-
ing the HP Precision Architectures for HPâŁ™s Next Generation
Commercial Computer Systems. In IEEE Compcon Proceedings, San
Fransisco, California, 1988.

[41] Eric Koskinen and Junfeng Yang. Reducing Crash Recoverability to
Reachability. In The 43rd SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’16), St. Petersburg, FL, USA,
January 2016.

[42] Dean Kuo. Model and verification of a data manager based on aries.
ACM Trans. Database Syst., 21(4):427–479, December 1996.

http://www.hsqldb.org/

145

[43] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng
Yang, , and Jason Nieh. Pervasive Detection of Process Races in
Deployed Systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP ’11), Cascais, Portugal, October
2011.

[44] Leslie Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transactions on
Computers, September 1979.

[45] Butler Lampson. Computer Systems Research – Past and Present.
SOSP 17 Keynote Lecture, December 1999.

[46] LevelDB. LevelDB Issues List. http://code.google.com/p/
leveldb/issues/list.

[47] Linus Torvalds. Git. http://git-scm.com/, 2005.

[48] Linus Torvalds. Git Mailing List. Re: what’s the current
wisdom on git over NFS/CIFS? http://marc.info/?l=git&m=
124839484917965&w=2, 2009.

[49] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Shan Lu. A Study of Linux File System Evolution. In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies (FAST
’13), San Jose, California, February 2013.

[50] LWN. That massive filesystem thread. http://lwn.net/Articles/
326471/.

[51] MariaDB. Fusion-io NVMFS Atomic Write Support. Retrieved April
2016 from https://mariadb.com/kb/en/mariadb/fusion-io-nvmfs-
atomic-write-support/.

http://code.google.com/p/leveldb/issues/list
http://code.google.com/p/leveldb/issues/list
http://git-scm.com/
http://marc.info/?l=git&m=124839484917965&w=2
http://marc.info/?l=git&m=124839484917965&w=2
http://lwn.net/Articles/326471/
http://lwn.net/Articles/326471/

146

[52] Cris Pedregal Martin and Krithi Ramamritham. Toward formalizing
recovery of (advanced) transactions. In Advanced Transaction Models
and Architectures, pages 213–234. Springer, 1997.

[53] Chris Mason. The Btrfs Filesystem. oss.oracle.com/projects/
btrfs/dist/documentation/btrfs-ukuug.pdf, September 2007.

[54] Matt Mackall. Mercurial. http://mercurial.selenic.com/, 2005.

[55] Mercurial. Dealing with Repository and Dirstate Corrup-
tion. Retrieved April 2016 from https://www.mercurial-
scm.org/wiki/RepositoryCorruption.

[56] Microsoft. Alternatives to using Transactional NTFS. Re-
trieved April 2016 from https://msdn.microsoft.com/en-
us/library/windows/desktop/hh802690(v=vs.85).aspx.

[57] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and
Young Ik Eom. Lightweight Application-Level Crash Consistency
on Transactional Flash Storage. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC ’15), Santa Clara, CA, July 2015.

[58] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 17(1):94–162, March
1992.

[59] C Mohan, Bruce Lindsay, and Ron Obermarck. Transaction man-
agement in the r* distributed database management system. ACM
Transactions on Database Systems (TODS), 11(4):378–396, 1986.

[60] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M Chen, and
Jason Flinn. Rethink the Sync. In Proceedings of the 7th Symposium on

oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
http://mercurial.selenic.com/

147

Operating Systems Design and Implementation (OSDI ’06), pages 1–16,
Seattle, Washington, November 2006.

[61] Patrick OâŁ™Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
OâŁ™Neil. The Log-Structured Merge-Tree (LSM-tree). Acta Infor-
matica, 33(4):351–385, 1996.

[62] Stan Park, Terence Kelly, and Kai Shen. Failure-Atomic Msync ():
a Simple and Efficient Mechanism for Preserving the Integrity of
Durable Data. In Proceedings of the EuroSys Conference (EuroSys ’13),
Prague, Czech Republic, April 2013.

[63] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory
persistency. In Proceedings of the 41st International Symposium on
Computer Architecture (ISCA ’14), Minneapolis, MN, USA, June 2014.

[64] Thanumalayan Sankaranarayana Pillai. Ordering of directory opera-
tions maintained across system crashes in Btrfs? Retrieved Nov 2016
from https://www.spinics.net/lists/linux-btrfs/msg32217.html,
March 2014.

[65] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applica-
tions. In Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, Colorado, October 2014.

[66] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Crash Consistency. Communications
of the ACM, 58(10), October 2015.

148

[67] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Crash Consistency: Rethinking the
Fundamental Abstractions of the File System. ACM Queue, 13(7),
July 2015.

[68] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach,
Alexander Benn, and Emmett Witchel. Operating Systems Transac-
tions. In Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California, December
2008.

[69] Postgres. PostgreSQL: Documentation: 9.1: WAL Internals. http:
//www.postgresql.org/docs/9.1/static/wal-internals.html.

[70] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Transactional Flash. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

[71] Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Co-
erced Cache Eviction and Discreet-Mode Journaling: Dealing with
Misbehaving Disks. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN ’11), Hong Kong, China, June
2011.

[72] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[73] Mendel Rosenblum and John Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

http://www.postgresql.org/docs/9.1/static/wal-internals.html
http://www.postgresql.org/docs/9.1/static/wal-internals.html
www.namesys.com

149

[74] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive
Modeling. IEEE Computer, 27(3):17–28, March 1994.

[75] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl
Staelin. An Implementation of a Log-Structured File System for
UNIX. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’93), pages 307–326, San Diego, California, January
1993.

[76] Margo Seltzer, Peter Chen, and John Ousterhout. Disk Scheduling
Revisited. In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter ’90), pages 313–324, Washington, D.C, January 1990.

[77] Margo I. Seltzer. File System Performance and Transaction Support. PhD
thesis, EECS Department, University of California, Berkeley, Jun
1993.

[78] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A.
Smith, Craig A. N. Soules, and Christopher A. Stein. Journaling
Versus Soft Updates: Asynchronous Meta-data Protection in File
Systems. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’00), pages 71–84, San Diego, California, June 2000.

[79] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. X86-TSO: A Rigorous and Usable Program-
mer’s Model for x86 Multiprocessors. Communications of the ACM,
July 2010.

[80] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and Hakim
Weatherspoon. Isotope: Transactional Isolation for Block Storage.
In Proceedings of the 14th USENIX Conference on File and Storage Tech-
nologies (FAST ’16), Santa Clara, California, February 2016.

150

[81] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings of the
26th IEEE Symposium on Mass Storage Systems and Technologies (MSST
’10), Incline Village, Nevada, May 2010.

[82] Chuck Silvers. UBC: An Efficient Unified I/O and Memory Caching
Subsystem for NetBSD. In Proceedings of the USENIX Annual Technical
Conference (FREENIX Track), San Diego, California, June 2000.

[83] Stewart Smith. Eat My Data: How everybody gets file I/O wrong.
In OSCON, Portland, Oregon, July 2008.

[84] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Mem-
ory Consistency and Cache Coherence. Morgan & Claypool Publishers,
2011.

[85] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok,
and Charles P. Wright. Enabling Transactional File Access via
Lightweight Kernel Extensions. In Proceedings of the 7th USENIX
Symposium on File and Storage Technologies (FAST ’09), San Francisco,
California, February 2009.

[86] SQLite. Atomic Commit In SQLite. http://sqlite.org/
atomiccommit.html.

[87] SQLite. Creation and deltions of files should fsync() directory.
https://www2.sqlite.org/cvstrac/tktview?tn=410.

[88] SQLite. Database corruption following power-loss in WAL mode.
http://www.sqlite.org/src/info/ff5be73dee.

[89] SQLite. How SQLite Is Tested. http://www.sqlite.org/testing.
html.

http://sqlite.org/atomiccommit.html
http://sqlite.org/atomiccommit.html
https://www2.sqlite.org/cvstrac/tktview?tn=410
http://www.sqlite.org/src/info/ff5be73dee
http://www.sqlite.org/testing.html
http://www.sqlite.org/testing.html

151

[90] SQLite. Missing call to xSync() following rollback. http://www.
sqlite.org/src/info/015d3820f2.

[91] SQLite. SQLite transactional SQL database engine. http://www.
sqlite.org/.

[92] Sun Microsystems. ZFS: The last word in file systems. www.sun.com/
2004-0914/feature/, 2006.

[93] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike
Nishimoto, and Geoff Peck. Scalability in the XFS File System. In
Proceedings of the USENIX Annual Technical Conference (USENIX ’96),
San Diego, California, January 1996.

[94] Symas. Lightning Memory-Mapped Database (LMDB). http://
symas.com/mdb/, 2011.

[95] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A Flex-
ible Framework for File System Benchmarking. ;login: The USENIX
Magazine, 41(1), June 2016.

[96] Doug Terry. Replicated Data Consistency Explained Through Base-
ball. MSR Technical Report, October 2011.

[97] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Joo-
young Hwang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau. Towards Efficient, Portable Application-Level Consistency.
In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems
(HotDep ’13), Farmington, PA, November 2013.

[98] The Open Group. POSIX.1-2008 IEEE Std 1003.1. http://pubs.
opengroup.org/onlinepubs/9699919799/, 2013.

[99] The PostgreSQL Global Development Group. PostgreSQL. http:
//www.postgresql.org/.

http://www.sqlite.org/src/info/015d3820f2
http://www.sqlite.org/src/info/015d3820f2
http://www.sqlite.org/
http://www.sqlite.org/
www.sun.com/2004-0914/feature/
www.sun.com/2004-0914/feature/
http://symas.com/mdb/
http://symas.com/mdb/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.postgresql.org/
http://www.postgresql.org/

152

[100] Emina Torlak and Rastislav Bodik. A Lightweight Symbolic Virtual
Machine for Solver-aided Host Languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, New York, NY, USA, June 2014.

[101] Theodore Ts’o. Don’t fear the fsync! http://thunk.org/tytso/
blog/2009/03/15/dont-fear-the-fsync/.

[102] Theodore Ts’o. ext4: remove calls to ext4_jbd2_file_inode()
from delalloc write path. Retrieved April 2016 from
http://lists.openwall.net/linux-ext4/2012/11/16/9.

[103] Stephen C. Tweedie. Journaling the Linux ext2fs File System. In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[104] Stephen C. Tweedie. EXT3, Journaling File System. olstrans.
sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html,
July 2000.

[105] Valerie Aurora. POSIX v. reality: A position on O_PONIES. http:
//lwn.net/Articles/351422/.

[106] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya Srivilliputtur
Mannarswamy, Terence P. Kelly, and Charles B. Morrey III. Failure-
Atomic Updates of Application Data in a Linux File System. In
Proceedings of the 13th USENIX Conference on File and Storage Technolo-
gies (FAST ’15), Santa Clara, California, February 2015.

[107] VMWare. VMWare Player. http://www.vmware.com/products/
player.

[108] Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez
Zadok. Extending ACID Semantics to the File System Via Ptrace.
ACM Transactions on Storage (TOS), 3(2):1–42, June 2007.

http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://lwn.net/Articles/351422/
http://lwn.net/Articles/351422/
http://www.vmware.com/products/player
http://www.vmware.com/products/player

153

[109] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A
Lightweight, General System for Finding Serious Storage System Er-
rors. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November 2006.

[110] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Box: Towards Reliability and Consis-
tency in Dropbox-like File Synchronization Services. In HotStorage
’13, San Jose, California, June 2013.

[111] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillib-
ridge, Elizabeth S Yang, Bill W Zhao, and Shashank Singh. Torturing
Databases for Fun and Profit. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	ALICE
	Vulnerabilities Study
	C2FS
	Summary of Contributions
	Outline

	Background and Motivation
	An Example
	File-system Behavior
	Journaling in Ext4
	Definitions
	Summary

	ALICE
	Overview
	Constructing Possible Crash States
	State Exploration
	Static Vulnerabilities
	Implementation
	Evaluation and Discussion
	Limitations

	Vulnerabilities Study
	Manual Case Studies
	Workloads and Checkers
	Per-Application Summary
	Summary of Vulnerabilities Found
	Common Patterns
	Impact on Current File Systems
	Discussion
	Summary

	C2FS
	The Ordering Hypothesis
	Order: Bad for Performance
	Order with Good Performance
	Crash-Consistent File System
	Implementation
	Evaluation
	Summary

	Related Work
	Tools to Find Crash Vulnerabilities
	Vulnerabilities Survey
	Atomicity Interfaces
	Fine-grained Ordering interfaces
	Stream and Global Ordering
	C2FS Implementation

	Conclusion
	Summary
	Lessons Learnt
	Future Work
	Closing Words

	Bibliography

