Schedulability in Local and Distributed Storage Systems

By
Suli Yang
A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2017

Date of final oral examination: September 8th, 2017

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Aditya Akella, Professor, Computer Sciences

Michael M. Swift, Associate Professor, Computer Sciences

Lisa L. Everett, Professor, Physics

All Rights Reserved

© Copyright by Suli Yang 2017

To my advisors

ii

Acknowledgments

During my first years in the graduate school, I was naive, clueless and
depressed, without the slightest idea about what a Ph.D is like and what I
want to do with my life. Then I met Remzi in an undergraduate operating
systems class. He is a great lecturer, but more importantly, he always
seems so happy, content and enjoying his life. I decided that if I do the
same thing as he does, maybe I would be as happy as he is. That is how
I started working with Remzi and later Andrea on my Ph.D in computer
sciences.

Of course life is not that simple; I did not get the panacea for all prob-
lems in my life. Indeed, getting a Ph.D is more difficult than I expected
and I hit several down points during the process. However, looking back,
I think working with Andrea and Remzi is still one of the best decisions
I have ever made in my life. Both of them are the kind of professors who
put their students first and offer their help unconditionally. I was not
always an easy student to work with. When I was going nowhere in my
research, when I failed to even show up and deliver anything, when I kept
rejecting their suggestions, they did not abandon me. Instead they always
try to help me in any ways they can, even when I was constantly failing
them. This kind of unconditional support is something I never experi-
enced before (or even knew existed), and it changes my life in a profound

way.

iii

I also learn so much by just observing them: their light-hearted atti-
tude to life, their empathy to others, how they prioritize, and their strong
relationship between each other. Their wisdom just sparkles in every cor-
ners of life. I can still quote Remzi, "being smart is a small gift", and An-
drea, "things do not get easier".

On top of that, they are also the best academic advisors a student can
ask for. Remzi has the amazing ability to simplify complex material into
clear concepts, while Andrea does wonders when organizing seemingly
scattered ideas into compelling, coherent stories. However, these seem al-
most secondary when compared to how they inspired me in my life. I thus
extend my greatest thanks to my advisors, Andrea and Remzi Arpaci-
Dusseau, and dedicate this dissertation to them.

I am fortunate to spend my Ph.D years in UW-Madison with so many
brilliant faculty members; going to their classes often feel like a blessing
because of the exciting intellectual engagement one can expect. In par-
ticular, I thoroughly enjoyed Lisa Everett’s elegant development of quan-
tum mechanics in PHY731, Aditya Akella’s passionate discussion on SDN
researches in CS838 and Dieter van Melkebeek’s rigorous analysis of al-
gorithms in CS787. I would also like to thank Sau Lan Wu, my former
advisor in Physics department, for supporting me during my first year in
graduate school and introducing me to several professors when I decided
to switch to computer sciences.

Interning at NetApp has benefited me in many ways; I feel very lucky
to have the opportunity to work in the Advanced Technology Group with
many great mentors and colleagues. I would like to thank Kiran Srini-
vasan, Swetha Krishnan, Kishore Udayashankar, Jingxin Feng and Sethu-
raman Subbiah for being great mentors and Siva Jayasenan for being a
terrific manager. They are always around to answer my questions despite
how busy they are, and they are incredibly understandable and support-

ive when my depression gets in the way of my work.

iv

I learned a great deal from my peers at UW-Madison and it is truly a
privilege to work with them. It would not have been possible for me to
finish the Split-1/O project without the help of Tyler Harter. He acted as
a mentor to me and taught me many things about research, from meeting
advisors in an effective way to visualizing data with the least ink pos-
sible. He is also a wonderful friend who I feel I can confide in. Jing
Liu is a pleasure to work with; her attention to details complements me
and improves our project in ways that I cannot. Zev Weiss helped proof-
reading our paper under a tight timeline and offered invaluable advice.
I also thank Ram Alagappan, Yuvraj Patel, Jun He, Sudarsun Kannan,
Lanyue Lu, Samer Al-Kiswany, Thanumalayan Pillai, Aishwarya Gane-
san, Leo Arulraj, Yupu Zhang, Yiying Zhang and many other students in
the Arpaci-Dusseau group for their insightful discussion and feedbacks.

Many good friends have been a great support to me during my PhD.
I especially want to thank Peisi Huang for being there during the good
and bad times of my life; she is truly a friend in need. I thank Jinlu
Miao, Siyuan Zhang and Yijin Wang for being wonderful roommates and
friends; I still smile when looking at gifts from them. I thank Linhai Song,
Wenfei Wu, Lingiao Qin and Sihui Yang for their friendship and the many
meals they shared with me. Finally, I thank Yushen Li and Emir Habul

for the good time we shared and the life lessons I learned from them.

Contents

Acknowledgments ii
Contents v
Abstract ix
1 Introduction 1
1.1 Scheduling in Local Storage Systems 5

1.2 Scheduling in Distributed Storage Systems 8

1.3 Overview Lo 10

2 Split-Level I/0O Scheduling on Local File Systems 11
21 Background L. 12
211 TheStorageStack 12

212 Framework Architectures 14

22 Motivation o oo oo 15
221 Framework Support for Schedulers 16

2.2.2 File-System Challenges 18

2.3 Split Framework Design 25
231 CauseMapping 26

232 Cost Estimation 27

233 Reordering 28

Vi

24 Split SchedulinginLinux. 29
241 Cross-Layer Tagging 30
242 SchedulingHooks. 30
2.4.3 Implement a Split-Level Scheduler 34
244 Implementation Effort and Overhead 34
2.5 Scheduler Case Studies 36
2.5.1 AFQ: Actually Fair Queuing 37
252 Deadline 39
253 TokenBucket 41
254 Implementation Effort 47
2.6 File System Integration 47
2.7 Real Applications 49
271 Databases 50
2.7.2 Virtual Machines (QEMU) 53
2.7.3 Distributed File Systems (HDFS) 54
28 Conclusion 56
Thread Architecture Diagrams 58
3.1 Thread Architecture Diagrams 59
32 TADalyzer 62
3.2.1 Automatic Discovery 62
322 Limitations. 63
33 HBase/HDFS 64
331 RequestFlow 66
332 Summary. 68
34 MongoDB 68
341 RequestFlow 68
342 Summary. 70
35 Cassandra 70
351 RequestFlow 72

352 Summary. 000 73

vii

36 RiakKV 73
361 RequestFlow 73
3.62 Summary. 75

37 Conclusions 75

Maat: Toward Schedulability on Distributed Storage Systems 76

41 TADSimulation 78
411 Design 78
41.2 Simplifications o000 81

42 The Maat Principle 82
421 NoSchedulingPoints 82
422 Unknown ResourceUsage 85
4.2.3 Hidden Contention 87
424 Blocking L oo L 91
425 Ordering Constraint 92
42.6 Summary and Discussion 94

43 ApplyingMaattoHBase 96
431 NoScheduling 97
43.2 Unknown ResourceUsage 98
4.3.3 Hidden Contention 100
434 Blocking oo L. 101
43.5 Ordering Constraints 103

44 HBase-Maat Implementation 106
441 Implementation Experience 106
442 TAD Validation 107

45 AnalyzingOtherTADs 112
451 MongoDB 112
452 Cassandra 117
453 Riak. 121
454 Discussions o 125

4.6 Conclusions 126

viii

5 Related Work 127
5.1 Scheduling in Local Storage System 127
5.2 Scheduling in Distributed Storage Systems 130

6 Conclusions and Future Work 133
6.1 Summary 133
62 LessonsLearned 134
6.3 FutureWork 136

6.3.1 Scalable Scheduling Architecture 136

6.3.2 Completeness of the Maat Principle: A Formal Analysis138

6.3.3 Build a Natively Schedulable Storage System 139
64 ClosingWords 140

Bibliography 141

ix

Abstract

Scheduling is the key-enabler in any resource sharing systems, be it the
operating system or the shared data center. By controlling which client or
application is serviced, critical features including fair sharing, through-
put guarantees, low tail latency and performance isolation can be suc-
cessfully realized. The storage stack, which provides persistence of data,
is one of the most important components in almost all systems. However,
scheduling in storage stacks has largely remained an unsolved problem;
existing storage systems offer very weak, if any, performance guarantees.
In this dissertation, we look at the scheduling problem in modern, multi-
layer storage systems, including the local and distributed storage stacks.

For the local storage stack, we first demonstrate that traditional block-
level I/O schedulers are unable to meet throughput, latency and isolation
goals. To overcome the limitations of traditional scheduling frameworks,
we introduce split-level I/O scheduling, a new framework that splits I/O
scheduling logic across handlers at three different layers: block, system
call, and page cache. By utilizing the split-level framework, we build a
variety of novel schedulers to readily achieve these goals: our Actually
Fair Queuing scheduler reduces priority-misallocation by 28 x; our Split-
Deadline scheduler reduces tail latencies by 4 x ; our Split-Token scheduler
reduces sensitivity to interference by 6 x. We show that the framework is

general and operates correctly with disparate file systems (ext4 and XFS).

Finally, we demonstrate that split-level scheduling serves as a useful foun-
dation for databases (SQLite and PostgreSQL), hypervisors (QEMU), and
distributed file systems (HDFS), delivering improved isolation and per-
formance in these important application scenarios.

Effective scheduling in existing distributed storage systems has re-
mained difficult despite repeated attempts from both industry and academia;
these systems usually provide weak or no performance guarantees. We
introduce Maat, an approach to systematically examining the schedu-
lability of a system, identifying its scheduling problems and enabling
effective scheduling in the system. Following the Maat approach, We
use Thread Architecture Diagrams (TADs) to describe the behavior and in-
teractions of different threads in a system, and show both how to con-
struct TADs for existing systems as well as utilize TADs to identify crit-
ical scheduling problems. We identify five fundamental problems that
prevent a system from being Maat-adherent and show that these prob-
lems arise in existing systems, making it difficult or impossible to real-
ize various scheduling goals. By applying the Maat guideline, we derive
HBase-Maat, a flexible scheduling architecture for HBase that can realize
the desired scheduling disciplines even when presented with challenging
workloads.

1

Introduction

Resource sharing has always been one of the central problems in com-
puter science, and it is becoming a theme of many technical trends go-
ing on today [49, 53, 96]. Operating system are built around the idea
of sharing computer hardware and software resources among different
programs [21, 38, 75]. Virtualization extends this idea further, enabling
hardware resources to be shared among different virtual machines, each
running its own operating system [30, 70, 115]. Such sharing across op-
erating systems has had abundant success in recent years [119]. Software
containers, such as Docker [87] and Linux Kernel Containment (LXC) [97],
present a different way to achieve similar level of sharing as virtual ma-
chines. Instead of running multiple operating systems on the same hard-
ware, the kernel of the operating system is equipped to allow multiple
isolated user-space instances, and each instance looks like a full OS envi-
ronment from the the user’s point of view.

Cloud computing has brought us a new economical model of resource
sharing; the cloud vendor provides a pool of computing resources in the
data centers, including hardware, networking, storage and softwares, and
other parties utilize these resources on demand with minimal manage-
ment effort [23, 86]. Cloud computing relies on sharing of resource to
achieve coherence and economy of scale. With significant capital and op-
erational benefits, the cloud computing model is becoming prevalent in

recent years. It reached $209 billion revenue in 2016, and is projected to
affect more than $1 trillion in IT spendings by 2020 [42].

Scheduling is the key-enabler in any resource-sharing systems, be it
the operating system, virtual machine monitor or the shared data cen-
ter. Through careful scheduling, a single resource can be multiplexed
between multiple clients, creating the illusion that each client has its own
resource. By controlling which client or application is serviced, critical
features including fair sharing [55, 80, 81, 109, 123], throughput guaran-
tees [102, 128], low tail latency [39, 56, 117, 130] and performance isola-
tion [19, 103, 114] can be successfully realized.

In this dissertation we focus on the sharing of storage resources and the
scheduling problems arising from it. We broadly classify storage as the
hardware and software used to provide persistence of data, despite com-
puter crashes or power outages. The explosion of data volume, the mag-
nification of data criticality, and the increasing dependency of businesses
on big data in recent years have made storage one of the most important
computing resources. In the meantime, storage resource scheduling and
isolation have largely been an unsolved problem due to some unique chal-
lenges that are not present when scheduling other resources, such as CPU
or network. First, storage scheduling decisions have both short term and
long term ramifications. For example, when a scheduler makes a decision
of where to write data, it will affect performance later when data is being
read back. Second, the overall capacity of the storage system is affected
by the workload running on top of it and the scheduling decisions being
made. Finally, the consistency constraints associated with data usually
limits the flexibility of scheduling.

The aforementioned challenges make it a difficult task to schedule
storage resources. This task is further complicated by the fact that modern
storage systems are often quite complex and have different components

interacting with each other. One question naturally arises: where should we

place scheduling logic in such complex systems to effectively meet our scheduling
goals? The answer to this question is not as obvious as it may seem like,
because the interactions between different components of the system can
have unexpected effects on scheduling, making it hard to enforce schedul-
ing disciplines at any given place in the system. For example, information
critical in making scheduling decisions may get lost in interactions be-
tween components; or one component could impose artificial limitations
on scheduling done at other components, leading to poor performance of
the system. We have observed both phenomena in commonly-used sys-
tems, and they can affect performance by orders of magnitude.

Previous works [31, 62, 89, 100] on scheduling in storage systems have
mostly focused on optimizations within a single layer or component in
the system. Not much thought was given to why scheduling is placed
at this particular layer/component, or how the rest of the system could
affect scheduling. These kind of approaches have led to poor performance
and failure to meet scheduling goals, both in local and distributed storage
systems. For example, traditionally I/O scheduling for a local host has
always been done at the block level, but as we will show later (§2.2.2), the
file system running on top of the block layer has a major impact on I/O
scheduling, and can render scheduling decisions made at the block layer
useless. Such block-level scheduling causes long I/0O latency, unfairness in
I/0 resource allocation, and failure to isolation.

More recent work, such as Pisces [103], PriorityMeister [130] and Red-
line [126], have taken a more holistic view of the storage system and rec-
ognized the necessity to schedule at multiple points in the system. For
example, Redline [126] tries to avoid unresponsiveness in the local stor-
age system by scheduling at both the buffer cache level and the block
level; Pisces [103] aims at providing isolation and fairness for multi-tenant
cloud storage by combining proxy-level replica selection, node-level weight

allocation and global-level data migration. However, these projects are

mostly concerned about how to realize a particular scheduling goal or
policy (e.g., fairness), and achieve it by carefully tunning the scheduling
algorithms. We, on the other hand, believe that a few basic mechanisms
could be built into the complex storage stack so that one could easily real-
ize any scheduling policy she has in mind, be it fairness, isolation, meeting
of deadline, or others.

In this dissertation, we examine how we could build such schedul-
ing mechanisms in modern complex storage systems. We first look at
the local storage stack in a single computer node. We show that current
approach, namely the block-level I/O scheduling, provides insufficient
mechanisms to realize important I/O scheduling policies. The building
of local storage scheduling mechanisms leads to split-level 1/O scheduling,
a novel scheduling framework in which a scheduler is constructed across
several layers. By implementing a judiciously selected set of handlers at
key junctures within the storage stack (namely, at the system-call, page-
cache, and block layer), a developer can implement a scheduling disci-
pline with full control over behavior of different layers and with no loss
in high- or low-level information. We demonstrate the generality of split
scheduling by implementing three new schedulers: AFQ (Actually-Fair
Queuing) provides fairness between processes, Split-Deadline observes
latency goals, and Split-Token isolates performance, and show vast im-
provements (6x - 28x) over similar schedulers in other frameworks.

We then study the scheduling problem of distributed storage systems.
We investigate popular distributed storage systems including HBase /HDEFS,
MongoDB, and Riak. We identify five fundamental scheduling problems
in these systems: a lack of local scheduling control points, unknown re-
source usage, hidden competition between threads, uncontrolled thread
blocking, and ordering constraints upon requests. These problems are
commonly present in widely-used storage systems, and make it difficult

or impossible to realize scheduling disciplines. We introduce Thread Ar-

chitecture Diagrams (TADs) to describe the behaviors and interactions of
different threads in a system, and show both how to construct TADs for
existing systems as well as utilize TADs to identify critical scheduling
problems. We introduce Maat, an approach to solve the scheduling prob-
lems and provide effective scheduling. By applying the Maat guidelines,
we derive HBase-Maat, a flexible scheduling architecture for HBase that
can realize the desired scheduling disciplines even when presented with
challenging workloads.

The central finding of this dissertation is that schedulers need proper sup-
port. A scheduler can only be effective when it is placed at the right place
of the system, given the right information and empowered of enough con-
trol to reorder the requests. In all system we studied, we found ineffec-
tive scheduling not because of inadequate scheduling algorithm, but in-
sufficient support to the scheduler from the system. This dissertation is
thus about how to add scheduling support to various existing systems to
enable different scheduling policies; it also suggests design principles to

make future systems more scheduling friendly.

1.1 Scheduling in Local Storage Systems

Deciding which I/O request to schedule, and when, has long been a core
aspect of the operating system storage stack [18, 21, 62-64, 79, 91, 99—
101, 122]. Each of these approaches has improved different aspects of I/O
scheduling; for example, research in single-disk schedulers incorporated
rotational awareness [63, 64, 100]; other research tackled the problem of
scheduling within a multi-disk array [121, 127]; more recent work has
targeted flash-based devices [68, 89], tailoring the behavior of the sched-
uler to this new and important class of storage device. All of these op-
timizations and techniques are important; in sum total, these systems

can improve overall system performance dramatically [54, 100, 127] as

well as provide other desirable properties (including fairness across pro-
cesses [26] and the meeting of deadlines [126]).

MostI/O schedulers (hereafter just “schedulers”) are built at the block
level within an operating system, beneath the file system and just above
the device itself. Such block-level schedulers are given a stream of re-
quests and are thus faced with the question: which requests should be
dispatched, and when, in order to achieve the goals of the system?

Unfortunately, making decisions at the block level is problematic, for
two reasons. First, and most importantly, the block-level scheduler fun-
damentally cannot reorder certain write requests; file systems carefully
control write ordering to preserve consistency in the event of system crash
or power loss [45, 59]. Second, the block-level scheduler cannot perform
accurate accounting; the scheduler lacks the requisite information to de-
termine which application was responsible for a particular I/O request.
Due to these limitations, block-level schedulers cannot implement a full
range of policies.

An alternate approach, which does not possess these same limitations,
is to implement scheduling much higher in the stack, namely with sys-
tem calls [37]. System-call scheduling intrinsically has access to necessary
contextual information (i.e., which process has issued an I/O). Unfortu-
nately, system-call scheduling is no panacea, as the low-level knowledge
required to build effective schedulers is not present. For example, at the
time of a read or write, the scheduler cannot predict whether the request
will generate I/O or be satisfied by the page cache, information which can
be useful in reordering requests [20, 112]. Similarly, the file system will
likely transform a single write request into a series of reads and writes,
depending on the crash-consistency mechanism employed (e.g., journal-
ing [59] or copy-on-write [98]); scheduling without exact knowledge of
how much I/O load will be generated is difficult and error prone.

We introduce split-level 1/O scheduling, a novel scheduling framework

in which a scheduler is constructed across several layers. By implement-
ing a judiciously selected set of handlers at key junctures within the stor-
age stack (namely, at the system-call, page-cache, and block layers), a
developer can implement a scheduling discipline with full control over
behavior and with no loss in high- or low-level information. Split sched-
ulers can determine which processes issued I/O (via graph tags that track
causality across levels) and accurately estimate I/O costs. Furthermore,
memory notifications make schedulers aware of write work as soon as
possible (not tens of seconds later when writeback occurs). Finally, split
schedulers can prevent file systems from imposing orderings that are con-
trary to scheduling goals.

We demonstrate the generality of split scheduling by implementing
three new schedulers: AFQ (Actually-Fair Queuing) provides fairness be-
tween processes, Split-Deadline observes latency goals, and Split-Token
isolates performance. Compared to similar schedulers in other frame-
works, AFQ reduces priority-misallocation errors by 28 x, Split-Deadline
reduces tail latencies by 4x, and Split-Token improves isolation by 6x for
some workloads. Furthermore, the split framework is not specific to a sin-
gle file system; integration with two file systems (ext4 [83] and XFS [107])
is relatively simple.

Finally, we demonstrate that the split schedulers provide a useful base
for more complex storage stacks. Split-Token provides isolation for both
virtual machines (QEMU) and data-intensive applications (HDFS), and
Split-Deadline provides a solution to the database community’s “fsync
freeze” problem [3, 11, 12]. In summary, we find split scheduling to be
simple and elegant, yet compatible with a variety of scheduling goals,

file systems, and real applications.

1.2 Scheduling in Distributed Storage Systems

Modern distributed storage systems are complex, concurrent programs.
Many systems are realized via an intricate series of stages, queues, and
thread pools, based loosely on the SEDA design principles [120]. Un-
derstanding how to introduce scheduling control into these systems is
challenging; a single request may flow through numerous stages across
multiple machines before being completed.

To address the scheduling problem in the highly concurrent distributed
storage systems, we introduce Maat, an approach to systematically ex-
amining the schedulability of a system, identifying its scheduling prob-
lems, and enabling scheduling control in the system. The Maat principle,
named after the Egyptian concept of order, specifies three conditions that
make realizing a scheduling policy easy:

Completeness — the system provides necessary scheduling points so that
a global policy can be translated into local scheduling plans at these points.
Local enforceability — the local scheduling plans can be implemented. At
each scheduling point, the system provides both enough information and
control to the local scheduler to make implementing the plan possible.
Independent scheduling — the decisions made by one local scheduler do
not have unexpected effects at other scheduling points.

Following the Maat principle, we first demonstrate a method to dis-
cover the schedulability of these systems. Our method traces a system
of interest under various workloads and produces a Thread Architecture
Diagram (TAD); by analyzing a TAD, scheduling problems can be dis-
cerned, pointing towards solutions that introduce necessary scheduling
controls. We produce TADs for four important and widely-used scalable
storage systems: HBase/HDFS [46, 104], Cassandra [73], MongoDB [34],
and Riak [71], and highlight weaknesses in each systems’ scheduling ar-
chitecture. Our analysis centers around five common problems that cause

violation of the Maat conditions and in turn lead to inadequate schedul-

ing: a lack of local scheduling control points, unknown resource usage,
hidden competition between threads, uncontrolled thread blocking, and
ordering constraints upon requests.

The solutions to overcome these difficulties, and thus enable schedul-
ing control in existing systems, are based on two core classes of tech-
niques. The first are direct methods, which explicitly alter the existing
thread architecture to avoid a specific scheduling problem; direct tech-
niques can sometimes be more challenging to implement, depending on
the exact concurrency architecture. The second are indirect methods, which
use information to overcome scheduling limitations; indirect approaches
[80,117,130] are easier to incorporate but more approximate in the schedul-
ing control they provide.

To show the benefits of the Maat approach, we apply it to the most
complex system that we studied, HBase /HDFS. We first identify its schedul-
ing problems; then through a combination of direct and indirect methods,
we show how HBase-Maat can be transformed to provide schedulabil-
ity. Specifically, HBase-Maat improves performance (by a factor of 3) un-
der intense resource competition and thus enables fair-sharing of system
throughput; HBase-Maat also significantly improves performance under
mixed workloads (sometimes by a factor of 50) by enabling cached (fast)
requests to be fairly serviced; finally, HBase-Maat achieves proper isola-
tion despite variances in request amount, size, and other workload fac-
tors. Although we utilize implementation to demonstrate the ultimate
efficacy of Maat, we also show how targeted simulations are useful in
schedulability analysis, especially when considering alternatives. To this
end, we also build a simulation framework to facilitate the scheduling
study in other SEDA-based systems.

10

1.3 Overview

We now briefly describe the contents of the different chapters in this dis-
sertation.

In Chapter 2 we discuss in detail the scheduling problems in the lo-
cal storage stack, especially in the presence of modern file systems. We
then introduce the split-level I/O framework to solve these problems and
enable the developers to implement a full range of scheduling policy.

In Chapter 3 we demonstrate how to produce a Thread Architecture Dia-
gram (TAD) to discover the schedulability of a distributed storage system.
We also study the scheduling behavior of four popular systems, namely
HBase/HDFS, Cassandra, MongoDB and Riak under the lens of TAD.

In Chapter 4 we introduce the Maat scheduling principle. Using the
Maat principle, we identify five scheduling problems that commonly arise
in distributed storage systems, and general solutions to solve these prob-
lems and add scheduling control into existing systems.

In Chapter 5 we summarize previous effort people made toward schedul-
ing in storage systems and discuss how they are related to this disserta-
tion.

Chapter 6 summarizes our studies and highlights some general lessons
we learn. We also discuss possible future works here.

11

2

Split-Level 1/O Scheduling on Local
File Systems

Deciding which I/O request to schedule, and when, has long been a core
aspect of the operating system storage stack [18, 21, 62-64, 79, 91, 99-101,
122]. In this chapter, we first show the traditional block-level and syscall-
level scheduling are problematic and cannot implement a full range of
policies. We then introduce split-level I/O scheduling, a novel schedul-
ing framework in which a scheduler is constructed across several layers.
The split-level scheduling framework enables a developer to implement
a scheduling discipline with full control over behavior and with no loss
in high- or low-level information.

The rest of this chapter is organized as follows. We first give some
background on how 1/0O scheduling works and the role a scheduling
framework plays(§2.1). We then evaluate existing frameworks and de-
scribe the challenges they face (§2.2). Next we discuss the principles of
split scheduling (§2.3) and our implementation in Linux (§2.4). We then
implement three split schedulers as case studies (§2.5), discuss integra-
tion with other file systems (§2.6), and evaluate our schedulers with real
applications (§2.7). Finally, we conclude (§2.8).

12

2.1 Background

In this section we give some background information on the structure of
the local storage stack and how different types of I/O scheduling frame-

works operate.

2.1.1 The Storage Stack

Schedulers allocate disk I/O to processes, but processes do not typically
use hard disks or SSDs directly. Instead, there is a complex storage stack
sitting in between the applications and the storage device. We use Linux
as an example here to introduce the basic structure of local storage stacks;
the storage stacks in FreeBSD [95] and other operating systems [8] are
similar.

As shown in Figure 2.1, the first component with which Linux pro-
grams (processes) interact when processing data is the virtual file system
(VES); through VFS the process could invoke the same generic system
calls (open(), read(), write(), etc.) to access file data for different file
systems on different media.

VES encapsulates a variety of individual file systems implementations,
including ext4 [7], XFS [107], Btrfs [82], and others [24, 29, 111]. Individual
file systems implement the generic VFS methods, translating file accesses
into block I/Os; they typically use the page cache to speed up the data
accesses. Complex mechanisms are implemented within individual file
systems to improve performance or to ensure consistency; for example,
some file systems may delay allocating disk space for a new file to oppor-
tunistically optimize the disk layout, or use journal transactions to log file
updates. As we will see later (§2.2.2), these mechanisms may cause many
difficulties for I/O scheduling.

The block level requests issued by the file systems are sent to the block
layer, which then forwards the requests to the storage devices. For Linux,

13

[Applications (processes) J
O O O C
c iS] v <
(9] o] + s
Ql (o] ~ o
o < < =
Y i = v

Page
cache

BIOs (block 1/0s)

Block Layer

(o) (oo) (ooamee) (=)

requests

y

{ Devices J

Figure 2.1: Simplified Linux Storage Stack Diagram.

which schedules I/0O at the block level, different block-level schedulers
(e.g., CFQ, deadline) can also be attached at this layer; these schedulers
control which requests to dispatch to the underlying devices, and when,
to achieve various goals such as fairness or latency guarantees. It is also
possible to schedule I/Os at other layers in the storage stack, which we

discuss next.

14

2.1.2 Framework Architectures

Following the old wisdom of separating mechanisms and policies, I/O
scheduling in the local storage stack is usually separated into the schedul-
ing framework and individually schedulers. The framework provides a
running environment to different schedulers, while an individual sched-
uler is responsible for realizing a particular scheduling policy (e.g., fair-
ness or latency guarantee).

Scheduling frameworks offer hooks to which individual schedulers
can attach; via there hooks, a framework passes information and exposes
control to schedulers. Schedulers implement these hooks to achieves var-
ious scheduling goals. Different scheduling frameworks provide hooks
at different points in the storage stack; we categorize frameworks by the
level at which the hooks are available. Figure 2.2 shows the architecture
of different types of scheduling frameworks.

Figure 2.2(a) illustrates block-level scheduling, the traditional approach
implemented in Linux [10], FreeBSD [95], and other systems [8]. Clients
initiate I/ O requests via system calls, which are translated to block-level
requests by the file system. Within the block-scheduling framework, these
requests are then passed to the scheduler along with information describ-
ing them: their location on storage media, size, and the submitting pro-
cess. Based on such information, a scheduler may reorder the requests ac-
cording to some policy. For example, a scheduler may accumulate many
requests in its internal queues and later dispatch them in an order that
improves sequentiality.

Figure 2.2(b) show the system-call scheduling architecture (SCS) pro-
posed by Craciunas et al. [37]. Instead of operating beneath the file system
and deciding when block requests are sent to the storage device, a system-
call scheduler operates on top of the file system and decides when to issue
I/Orelated system calls (read, write, etc.). When a process invokes a sys-
tem call, the scheduler is notified. The scheduler may put the process to

15
(a) Block (b) SCS (c) Split

System Call - —m—

Memory

.

w

Block ~gmRw] R
Drive | Drive

B Reording Accounting

9
@

Figure 2.2: Scheduling Architectures. The boxes show where scheduler
hooks exist for reordering I/O requests or doing accounting. Sometimes reads

and writes are handled differently at different levels, as indicated by “R” and
IIWII.

sleep for a time before the body of the system call runs. Thus, the sched-
uler can reorder the calls, controlling when they become active within the
file system.

Figure 2.2(c) shows the hooks of the split framework, which we de-
scribe in a later section (§2.4.2). In addition to introducing novel page-
cache hooks, the split framework supports select system-call and block-
level hooks.

2.2 Motivation

Block-level schedulers are severely limited by their inability to gather in-
formation from and exert control over other levels of the storage stack.

As an example, we consider the Linux CFQ scheduler, which supports

16

an ionice utility that can put a process in idle mode. According to the
man page: “a program running with idle I/O priority will only get disk time
when no other program has asked for disk I/O” [9]. Unfortunately, CFQ has
little control over write bursts from idle-priority processes, as writes are
buffered above the block level.

We demonstrate this problem by running a normal process A along-
side an idle-priority process B. A reads sequentially from a large file. B is-
sues random writes over a one-second burst. Figure 2.3 shows the result:
B quickly finishes while A (whose performance is shown via the CFQ line)
takes over five minutes to recover. Block-level schedulers such as CFQ are
helpless to prevent processes from polluting write buffers with expensive
I/0. As we will see, other file-system features such as journaling and de-
layed allocation are similarly problematic.

The idle policy is one of many possible scheduling goals, but the dif-
ficulties it faces at the block level are not unique. In this section, we con-
sider three different scheduling goals, identifying several shared needs
(§2.2.1). Next, we show existing frameworks are fundamentally unable
to meet scheduler needs when running in conjunction with a modern file
system (§2.2.2).

2.2.1 Framework Support for Schedulers

We now consider three commonly used I/O schedulers: CFQ [2], Dead-
line [4], and token-bucket [108], identifying what framework support is
needed to implement these schedulers correctly.

CFQ: CFQ aims to allocate I/O resources fairly between processes
based on their priorities [2]. To do so, CFQ must be able to track which
process is responsible for which I/O requests, estimate how much each
request costs, and reorder higher-priority requests before lower-priority
requests. Other schedulers such as SFQ [50] and YFQ [28] share similar
goals with CFQ.

17

150 - |_3’s one-second burst
5 125 4~
=
— 100 -
-
=
S 75-
-
© 50 -
<
|_
» 251
<
O 1 1 1 1 1 1 1 1 1 1
O 1 2 3 4 5 6 8 9 10

Time (minutes)

Figure 2.3: Write Burst. B's one-second random-write burst severely degrades
A’s performance for over five minutes. Putting Bin CFQ’s idle class provides no

help.

Deadline: The Deadline scheduler observes deadlines for I/O oper-
ations, offering predictable latency to applications that need it [4]. The
deadline scheduler needs to map an application’s deadline setting to each
request and issue lower-latency requests before other requests.

Token-Bucket: The token-bucket scheduler caps the resources an ap-
plication may use, regardless of overall system load [108]. Limits are use-
ful when resources are purchased and the seller does not wish to give
away free I/O. The token-bucket scheduler needs to know the cost and
causes of I/O operations in order to throttle correctly.

Although the above schedulers have distinct goals, they have three
common needs. First, schedulers need to be able to map causes to identify
which process is responsible for an I/O request. Second, schedulers need
to estimate costs in order to optimize performance and perform accounting
properly. Third, schedulers need to be able to reorder 1/O requests so that

18

Scheduler Goal Support Needed
CM CE R @)

CFQ [2] Fairness % X X
Deadline [4] Deadline X % %
Token-Bucket [108] Isolation X X %

QUASIO [66] Low Response Time % Task-1/O Dependency
BAA [118] Fairness&Efficiency % % %
FIOS [89] Fairness&Efficiency % % %
Stream Scheduling [124] High Throughput xX
PARDA [55 Fairness ® ®
EW-Sched [129] Low Latency t IS
Freeblocks [78] High Utilization x x
Semi-preemptible IO [40] Priority Enforcement % % %
Faccade [77] Deadline X % %

Table 2.1: Framework Support Needed by Different Schedulers. CM:
Cause Mapping, CE: Cost Estimation, R: Reordering, O: Other support needed.

the operations most important to achieving scheduling goals are served
first.

In fact, these three requirements (cause mapping, cost estimation and
reordering) are shared among most schedulers. To illustrate, we list in Ta-
ble 2.1 the above three schedulers as well as the I/O schedulers proposed
in the last 15 years in the USENIX Conference on File and Storage Tech-
nologies (FAST), one of the leading conferences on I/O and storage tech-
nologies. We could see that providing cause mapping, cost estimation
and reordering capacity could sufficiently meet the need of all proposed
schedulers except for one. Unfortunately, as we will see, current block-
level and system-call schedulers cannot provide all the support sched-

ulers need.

2.2.2 File-System Challenges

As we discuss earlier(§2.1.1), schedulers allocate disk I/O to processes,
but processes do not typically use hard disks or SSDs directly. Instead,

processes request service from a file system, which in turn translates re-

19

quests to disk I/O. Unfortunately, file systems make it challenging to
satisfy the needs of the scheduler. We now examine the implications
of writeback, delayed allocation, journaling, and caching for schedulers,
showing how these behaviors fundamentally require a restructuring of

the I/O scheduling framework.

2.2.2.1 Delayed Writeback and Allocation

Delayed writeback is a common technique for postponing I/O by buffer-
ing dirty data to write at a later time. Procrastination is useful because
the work may go away by itself (e.g., the data could be deleted) and, as
more work accumulates, more efficiencies can be gained (e.g., sequential
write patterns may become realizable).

Some file systems also delay allocation to optimize data layout [83,
107]. When allocating a new block, the file system does not immediately
decide its on-disk location; another task will decide later. More infor-
mation (e.g., file sizes) becomes known over time, so delaying allocation
enables more informed decisions.

Both delayed writeback and allocation involve file-system level dele-
gation, with one process doing I/O work on behalf of other processes. A
writeback process submits buffers that other processes dirtied and may
also dirty metadata structures on behalf of other processes. Such del-
egation obfuscates the mapping from requests to processes. To block-
level schedulers, the writeback task sometimes appears responsible for
all write traffic.

We evaluate Linux’s priority-based block scheduler, CFQ (Completely
Fair Queuing) [2], using an asynchronous write workload. CFQ aims to
allocate disk time fairly among processes (in proportion to priority). We
launch eight threads with different priorities, ranging from 0 (highest)
to 7 (lowest): each writes to its own file sequentially. A thread’s write
throughput should be proportional to its priority, as shown by the ex-

20

Throughput I/O Submitter
25 = 100 % =
20 75 % =
0 50 % =
= 10 -
0, —
5 - 25 %
0 0% ==—TTTTT1rT1TT1
01234567
Priority Priority

Figure 2.4: CFQ Throughput. The left plot shows sequential write through-
put for different priorities. The right plot the portion of requests for each priority
seen by CFQ. Unfortunately, the “Completely Fair Scheduler” is not even slightly
fair for sequential writes.

pectation line of Figure 2.4 (left). Unfortunately, CFQ ignores priorities,
treating all threads equally. Figure 2.4 (right) shows why: to CFQ all the
requests appear to have a priority of 4, because the writeback thread (a
priority-4 process) submits all the writes on behalf of the eight benchmark
threads.

2.2.2.2 Journaling

Many modern file systems use journals for consistent updates [24, 83,
107]. While details vary across file systems, most follow similar journal-
ing protocols to commit data to disk; here, we discuss ext4’s ordered-
mode to illustrate how journaling severely complicates scheduling.
When changes are made to a file, ext4 first writes the affected data
blocks to disk, then creates a journal transaction which contains all re-

lated metadata updates and commits that transaction to disk, as shown

21

Journal Batch

M1 M2 | commit -

A C B checkpoint

Figure 2.5: Journal Batching. Arrows point to events that must occur before
the event from which they point. The event for the blocks is a disk write. The
event for an fsync is a return.

in Figure 2.5. The data blocks (D;, D,, D3) must be written before the
journal transaction, as updates become durable as soon as the transac-
tion commits, and ext4 needs to prevent the metadata in the journal from
referring to data blocks containing garbage. After metadata is journaled,
ext4 eventually checkpoints the metadata in place.

Transaction writing and metadata checkpointing are both performed
by kernel processes instead of the processes that initially caused the up-
dates. This form of write delegation also complicates cause mapping.

More importantly, journaling prevents block-level schedulers from re-
ordering. Transaction batching is a well-known performance optimiza-
tion [59], but block schedulers have no control over which writes are batched,
so the journal may batch together writes that are important to scheduling
goals with less-important writes. For example, in Figure 2.5, suppose A is
higher priority than B. A’s fsync depends on transaction commit, which
depends on writing B’s data. Priority is thus inverted.

When metadata (e.g., directories or bitmaps) is shared among files,
journal batching may be necessary for correctness (not just performance).
In Figure 2.5, the journal could have conceivably batched M; and M, sep-
arately; however, M; depends on D,, data written by a process C to a

22

Fsync Latency of A (s)
O O P P NN W
o o1 ©O o1 O 01 O

1 1 1 1 1 |

1 2 3 4
Data Flush Size of B (MB)

o

Figure 2.6: 1/0O Latency Dependencies. Thread A keeps issuing fsync
to flush one block of data to disk, while thread B flushes multiple blocks using
fsync. This plot shows how A’s latency depends on B's 1/O size.

different file, and thus A’s fsync depends on the persistence of C’s data.
Unfortunately (for schedulers), metadata sharing is common in file sys-
tems.

The inability to reorder is especially problematic for a deadline sched-
uler: a block-request deadline completely loses its relevance if one re-
quest’s completion depends on the completion of unrelated I/Os. To
demonstrate, we run two threads A (small) and B (big) with Linux’s Block-
Deadline scheduler [4], setting the block-request deadline to 20 ms for
each. Thread A does 4 KB appends, calling fsync after each. Thread B
does N bytes of random writes (N ranges from 16 KB to 4 MB) followed
by an fsync. Figure 2.6 shows that even though A only writes one block
each time, A’s fsync latency depends on how much data B flushes each
time.

Most file systems enforce ordering for correctness, so these problems
occur with other crash-consistency mechanisms as well. For example, in

23

log-structured files systems [98], writes appended earlier are durable ear-

lier.

2.2.2.3 Caching and Write Amplification

Sequentially reading or writing N bytes from or to a file often does not
result in N bytes of sequential disk I/O for several reasons. First, file sys-
tems use different disk layouts, and layouts change as file systems age;
hence, sequential file-system I/O may become random disk I/O. Second,
file-system reads and writes may be absorbed by caches or write buffers
without causing I/O. Third, some file-system features amplify I/O. For
example, reading a file block may involve additional metadata reads, and
writing a file block may involve additional journal writes. These behav-
iors prevent system-call schedulers from accurately estimating costs.

To show how this inability hurts system-call schedulers, we evaluate
SCS-Token [36]. In SCS-Token, a process’s resource usage is limited by the
number of tokens it possesses. Per-process tokens are generated at a fixed
rate, based on user settings. When the process issues a system call, SCS
blocks the call until the process has enough tokens to pay for it.

We attempt to isolate a process A’s I/O performance from a process
B by throttling B’s resource usage. If SCS-Token works correctly, A’s per-
formance will vary little with respect to B’s I/O patterns. To test this be-
havior, we configure A to sequentially read from a large file while B runs
workloads with different I/O patterns. Each of the B workloads involve
repeatedly accessing R bytes sequentially from a 10 GB file and then ran-
domly seeking to a new offset. We explore 7 values for R (from 4 KB to
16 MB) for both reads and writes (14 workloads total). In each case, B is
throttled to 10 MB/s.

Figure 2.7 shows how A’s performance varies with B’s I/O patterns.
Note the large gap between the performance of A with B reading vs. writ-
ing. When B is performing sequential writes, A’s throughput is as high as

24

1254 e A (w/ B writing)
w
m 100 -
+— 75 . __—"
3 _________
Q.
S 50 - A’s std dev: 41.1 MB
-] .
o Lt A (w/ B reading)
= 25%.._.
e It B reading

0 — . . , B writing

1
4K 16K 64K 256K 1M 4M 16M
<+randp's Run Size (Bytes) S€d*

Figure 2.7: SCS Token Bucket: Isolation. The performance of two processes
is shown: a sequential reader, A, and a throttled process, B. B may read (black) or
write (gray), and performs runs of different sizes (x-axis).

125 MB/s; when B is performing random reads, A’s throughput drops to
25 MB/s in the worst case. Writes appear cheaper than reads because
write buffers absorb I/O and make it more sequential. Across the 14
workloads, A’s throughput has a standard deviation of 41 MB, indicating
A is highly sensitive to B’s patterns. SCS-Token fails to isolate A’s perfor-
mance by throttling B, as SCS-Token cannot correctly estimate the cost of
B’s I/O pattern.

2.2.2.4 Discussion

Table 2.2 summarizes how different needs are met (or not) by each frame-
work. The block-level framework fails to support correct cause mapping
(due to write delegation such as journaling and delayed allocation) or
control over reordering (due to file-system ordering requirements). The

system-call framework solves these two problems, but fails to provide

25

Block Syscall Split
Cause Mapping| % v v
Cost Estimation| ¢/ ® v
Reordering| % 4 v

Table 2.2: Framework Properties. A v indicates a given scheduling func-
tionality can be supported with the framework, and an 8 indicates a functionality
cannot be supported.

enough information to schedulers for accurate cost estimation because
it lacks low-level knowledge. These problems are general to many file
systems; even if journals are not used, similar issues arise from the or-
dering constraints imposed by other mechanisms such as copy-on-write
techniques [25] or soft updates [45]. Our split framework meets all the
needs in Table 2.2 by incorporating ideas from the other two frameworks
and exposing additional memory-related hooks.

2.3 Split Framework Design

Existing frameworks offer insufficient reordering control and accounting
knowledge. Requests are queued, batched, and processed at many layers
of the stack, thus the limitations of single-layer frameworks are unsur-
prising. We propose a holistic alternative: all important decisions about
when to perform I/O work should be exposed as scheduling hooks, re-
gardless of the level at which those decisions are made in the stack. We
now discuss how these hooks support correct cause mapping (§2.3.1), ac-
curate cost estimation (§2.3.2), and reordering (§2.3.3).

26

P1 P2 P3: writeback (proxy for {1,2})
dirty\ fiirty /;roxy ldirty ldirty

Data Page Journal Page Meta Page
causes: {1,2} causes: {1,2} causes: {1,2}

Figure 2.8: Set Tags and I/O Proxies. Our tags map metadata and journal
I/O to the real causes, P1 and P2, not P3.

2.3.1 Cause Mapping

A scheduler must be able to map I/O back to the processes that caused it
to accurately perform accounting even when some other process is sub-
mitting the I/O. Metadata is usually shared, and I/Os are usually batched,
so there may be multiple causes for a single dirty page or a single request.
Thus, the split framework tags I/O operations with sets of causes, instead
of simple scalar tags (e.g., those implemented by Mesnier et al. [88]).

Write delegation (§2.2.2.1) further complicates cause mapping when
one process is dirtying data (not just submitting I/O) on behalf of other
processes. We call such processes proxies; examples include the writeback
and journaling tasks. Our framework tags proxy process to identify the
set of processes being served instead of the proxy itself. These tags are
created when a process starts dirtying data for others and cleared when
it is done.

Figure 2.8 illustrates how our framework tracks multiple causes and
proxies. Processes P1 and P2 both dirty the same data page, so the page’s
tag includes both processes in its set. Later, a writeback process, P3,
writes the dirty buffer to disk. In doing so, P3 may need to dirty the
journal and metadata, and will be marked as a proxy for {P1, P2} (the
tag is inherited from the page it is writing back). Thus, P1 and P2 are

27

delete
v file 2
, N~

write buffer: | 7 P> 7 21?21?17
— E
____________________________)
file-system allocation g
____________________________ 2
o

request queue: |88 |89 12|13 |14 (15|16

Figure 2.9: Accounting: Memory vs. Block Level. Disk locations for
buffered writes may not be known (indicated by the question marks on the blocks)
if allocations are delayed.

considered responsible when P3 dirties other pages, and the tag of these
pages will be marked as such. The tag of P3 is cleared when it finishes
submitting the data page to the block level.

2.3.2 Cost Estimation

Many policies require schedulers to know how much I/O costs, in terms
of device time or other metrics. An1/0O pattern’s cost is influenced by file-
system features, such as caches and write buffers, and by device proper-
ties (e.g., random I/O is cheaper on flash than hard disk).

Costs can be most accurately estimated at the lowest levels of the stack,
immediately above hardware (or better still in hardware, if possible). At
the block level, request locations are known, so sequentiality-based mod-
els can estimate costs. Furthermore, this level is below all file-system fea-
tures, so accounting is less likely to overestimate costs (e.g., by counting
cache reads) or underestimate costs (e.g., by missing journal writes).

Unfortunately, writes may be buffered for a long time (e.g., 30 seconds)
before being flushed to the block level. Thus, while block-level account-

ing may accurately estimate the cost of a write, it is not aware of most

28

writes until some time after they enter the system via a write system call.
Thus, if prompt accounting is more important than accurate accounting
(e.g., for interactive systems), accounting should be done at the memory
level. Without memory-level information, a scheduler could allow a low-
priority process to fill the write buffers with gigabytes of random writes,
as we saw earlier (Figure 2.3).

Figure 2.9 shows the trade-off between accoun