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Abstract
In this paper we describe research that has been on-going within
our group for the past four years onsemantically-smart disk sys-
tems. A semantically-smart system goes beyond typical block-
based storage systems by extracting higher-level information
from the stream of traffic to disk; doing so enables new and in-
teresting pieces of functionality to be implemented withinlow-
level storage systems. We first describe the development of our
efforts over the past four years, highlighting the key technologies
needed to build semantically-smart systems as well as the main
weaknesses of our approach. We then discuss future directions
in the design and implementation of smarter storage systems.

1 Introduction
For the past four years our group has been working on
new ways to increase the functionality, performance, reli-
ability, and security of storage systems. Our approach has
been consistent throughout: how can we build the storage
systems of tomorrow, while living within the constraints
of the real world? This notion of “design within con-
straint” is one of the major research thrusts of our group:
too often, in the real world, one must deal with how things
are rather than how we want them to be.

In the world of storage, one of the main constraints one
encounters is that presented by the interface to storage.
Typically, a disk or RAID presents a linear array of blocks
to clients; each block can be read or written (SCSI is a
good example [21]). This interface has many advantages,
primarily in that it is a simple and portable way for file
systems and other direct clients of storage to access disk
drives. Virtually all of the complexity in head positioning,
error handling, and other details of drive access are hidden
from the client.

However, such a high-level abstraction has its down-
sides as well. As Lampson famously said, “Don’t hide
power” [15]; unfortunately, the array-based interface to
storage does just that, preventing a large number of
interesting and useful pieces of functionality from be-
ing implemented. For example, research suggests that
rotationally-aware disk schedulers would greatly improve
performance [14, 25]; unfortunately, the low-level in-

formation required to perform such scheduling is hid-
den behind the disk interface. Many other examples ex-
ist [8, 16, 23, 32, 33], but all have the same flavor: the
desired functionality requires information from both the
higher-level system (e.g., the file system)and the lower-
level system (e.g., the disk).

One natural solution to this problem is simply to change
the interface to storage [1, 11]. However, such change is
fraught with peril, requiring broad industry consensus and
massive upheaval in existing infrastructure.

Hence, we embarked on an alternate course: what
would be required to build the storage systems of tomor-
row despite the limitations of today’s interfaces? Many re-
searchers (including ourselves) have taken the “high road”
towards this end, building file systems that have more
awareness of the disk system underneath [5, 6, 7, 8, 22, 23,
24, 31]; here, we instead chose the “low road” of enhanc-
ing low-level storage systems with knowledge of the file
system’s above them. One motivating reason for choosing
the storage system as the target of innovation was a prac-
tical one: the multi-billion dollar storage industry largely
builds and ships block-level storage systems.

In this paper, we thus describe our work on
semantically-smart disk systems. As compared to a typ-
ical “dumb” storage device, a semantically-smart system
has knowledge of file system data structures and opera-
tions, and can use this knowledge to build new and in-
teresting storage systems. Our work has focused on im-
proving the performance [3, 30], reliability [29], and secu-
rity [27] of storage systems, by applying novel techniques
not possible in typical devices.

We present the development of our work over the past
four years, discussing key pieces of technology and re-
flecting on how each step led us down new paths. We
then discuss how such technology may filter into the in-
dustrial world, and the likely utility of semantically-smart
techniques over time. The most surprising aspect of our
work was the need for sound theoretical underpinnings;
both theory and practice are required to build correctly
functioning semantically-smart disks.

The rest of the paper is organized as follows. In Sec-



tion 2, we provide background, describing our work in
gray-boxtechniques. We then present the first and second
generation of semantically-smart disk prototypes, in Sec-
tions 3 and 4, respectively. We discuss the importance of
a theoretical framework in Section 5, present future direc-
tions in Section 6, and conclude in Section 7.

2 Background
Our work in semantically-smart disk systems finds its
roots in our earlier research ingray-boxtechniques [2, 4,
7, 17]. The basic idea behind the gray-box approach is
quite simple: when you are building a component within
a system, you often have a great deal of knowledge of
how the other components of that system are designed
and implemented. By taking advantage of the knowledge
within the component you are building, you are exploiting
the fact that these other components are notblack boxes:
rather, their inner-workings are known and hence can be
exploited. However, the knowledge that you have of other
components is not perfect (i.e., they are notwhite boxes).
Hence, dealing with this imperfect knowledge is often a
critical challenge in leveraging gray-box techniques.

As an example, consider an application that is going
to scan through a set of files. If the application knows
whether the underlying operating system has some of
these files in its cache, and the application has the flexi-
bility to choose the order of access, it should likely access
cached files first. Doing so improves latency (the files in
cache are accessed more quickly) as well as bandwidth
(if other files were accessed first, they may displace the
files in cache and thus the operating system would have to
fetch them from disk again).

The problem that arises in our example is that a given
operating system may not reveal this information. Thus,
the challenge becomes: how can we take advantage of our
gray-box knowledge of operating systems (i.e., that they
have caches, and that their cache replacement policies are
relatively well-known) to determine what the likely con-
tents of the cache are?

Many different approaches are possible. For example,
some of our earlier work demonstrated the utility of prob-
ing the cache [2]; by accessing a few blocks of a given
file, and timing how long it takes to access them, an ap-
plication can determine whether the file is present within
the cache (with high probability). Subsequent work took
a different route: by first learning the behavior of the
cache-replacement algorithm (e.g., whether it is recency-
or frequency-based and whether it uses history to make
replacement decisions), an application can then simulate
the replacement algorithm and build a reasonably accurate
model of the contents of the cache [4].

After this initial line of work targeting the application-
OS boundary, we began to consider the interface between
file systems and the block-level storage systems beneath

them. It soon became clear that the very simple inter-
face to storage, while having many benefits [33], is also
quite limited [8, 11]. Many interesting optimizations and
enhancements to functionality require information from
boththe file system and the storage system; however, such
information is difficult to come by, as neither layer in this
“storage stack” has information about the other layer.

One possible solution to this “information gap” is to
change the interface to storage; indeed, many people have
been advocating such a change for years [1, 11]. How-
ever, such change is problematic, for the following rea-
sons. First, the broad industry consensus required to in-
stantiate such a change is enormous; not only would disks
and RAIDs have to add new capabilities, but the clients of
such systems would also have to migrate to use them be-
fore the benefits were obvious (a “chicken-and-egg” prob-
lem). Second, changing to a successful new interface re-
quires one to anticipate many possible usage scenarios;
however good the design team, it is unlikely that all rele-
vant situations would be taken into account. Finally, such
change is expensive; huge investments are likely required
to enable them and make them pervasive.

Given the problem presented by the limited interface
between file systems and storage, and given that an ex-
plicit interface change was unattractive for a variety of
reasons, we soon found ourselves wondering: how far
could we get if we didn’t change the interface? What
if, instead, we built “smarter” storage systems, that ei-
ther learned or inferred information about the file systems
above them? In essence, could we obtain many of the ben-
efits of a new interfacewithout requiring a change to the
storage interface?

3 First-Generation Systems
It was with this mindset that we began work on our first ef-
fort about semantically-smart storage systems, published
in FAST ’03 [30]. This work had three major thrusts: a
tool (EOF) that could be used to automatically infer data
structures of a client file system, a set of run-time tech-
niques that a disk requires to determine relevant pieces
of file system information, and a collection of case stud-
ies to demonstrate the utility of semantic-awareness in
storage. An additional case study was later published in
ISCA’04 [3]. We now discuss these pieces in turn, de-
scribing the challenges of each as well as what we learned.

3.1 Offline Techniques:
Extracting Static Information with EOF

Our first challenge was a simple one: how would a disk
or RAID system gain knowledge of file system data struc-
tures? One approach is to simply embed static file system
information within the disk or RAID itself; such a sys-
tem comes built-in with knowledge of the file system data
structures and their locations on disk. Although this is



the approach we take in later work, we initially felt such
an approach was too limiting and wondered if we could
automate the process.

EOF (for “Extraction Of File systems”) is a tool that
does just that. The basic operation is simple. First, a user-
level process on the host issues a series of disk requests
to the disk. Then, an in-disk agent monitors the resultant
traffic. By carefully controlling the exact file operations
that are issued to the file system, EOF can infer a great
deal of knowledge about on-disk structures.

The technique that EOF uses isisolationcombined with
known patterns. For example, if two blocks get written to
disk during a given test, and we know that one is a data
block and the other is an inode, we can identify each as
follows. First, we can fill the data block with a known
pattern; by monitoring the contents of all written blocks,
the storage system can detect such data blocks. Then, be-
cause the disk knows that for the given workload, only
an inode and data block are written to disk, it can suc-
cessfully isolate the inode block (it is the block that is not
filled with a known pattern). In this manner, EOF can ac-
quire a remarkable amount of detailed information about
the on-disk structures of the file system.

3.2 On-line Techniques:
Classification, Association, and
Operation Inferencing

Beyond EOF, we realized that an important component
within any semantically-smart disk system wason-line in-
ference. Specifically, despite static knowledge, the disk
system needs to monitor current traffic to make inferences
about the state of the file system.

For example, the disk system may wish to know
whether a given block is live or dead. To make such an
inference, simply knowing the static location of bitmaps
is not enough; rather, one must examine the contents of
the bitmap (it is actually more complicated that this, as
we will see in Section 4).

Hence, we developed a set of basic on-line techniques
that semantically-smart disk systems could use to garner
this type of knowledge. The first and most basic is called
direct classification. With this technique, the disk system
examines the block address of a read or write request and
uses it to determine the type of the block. For example, if
a read or write is directed to the inode region of the disk,
simply checking the address is sufficient to determine that
the given block contains inodes.

A slightly more sophisticated form of classification is
known asindirect classification. With this technique, one
examines the contents of other blocks to determine the
type of a given block. For example, to determine that a
block holds directory contents (in a typical UNIX file sys-
tem), one must examine the inode that points to this block;
we call the process of monitoring inode contentsinode

snooping. Indirect blocks can be similarly identified.
A second technique we callblock association. This

technique is used to connect related blocks in a simple
and efficient manner. For example, when a data block is
read or written, it may be useful to know to which inode
the block belongs. A table that maps these associations
delivers exactly this information.

A final technique is what we termoperation inferenc-
ing. With this method, a semantically-smart disk can in-
fer when higher-level “operations” are invoked by the file
system above. For example, it may be useful to infer file
creations or deletions. In a UNIX file system, these oper-
ations can be detected by monitoring changes in file sys-
tem state. For example, by observing a change in an inode
bitmap, one can infer the creation or deletion of a file (a
bit that was 0 set to 1 indicates a creation, and a bit at 1
becoming 0 indicates deletion).

3.3 Case Studies
With our basic infrastructure and techniques in place, we
constructed a set of prototype semantically-smart disks
to demonstrate their utility. Most of our prototypes were
built as software pseudo-device drivers and mounted be-
neath real file systems. In a few cases (mentioned below),
we utilized simulation to explore the given idea.

The first case study we discuss is an in-disk implemen-
tation of track-aligned extents [23, 30]. The basic idea
here is to allocate files such that they fit within a track
if possible; by avoiding costly track-switches during file
access, performance can be improved. Our disk-level im-
plementation used its semantic knowledge of file system
structures to influence file system placement to become
track-aligned; specifically, by marking blocks that are on
track boundaries as allocated, the disk can coerce the file
system into allocating files in the proper manner. The re-
sulting performance improvement was noticeable (40%).

Our second case study focuses on caching. This sys-
tem, known as X-RAY [3], tries to infer the contents of
the OS cache by monitoring the stream of traffic the disk
generates. The key insight in X-RAY is that every time a
file is read, its inode is updated with a new access time and
eventually flushed to disk. By watching for inode access-
time updates, X-RAY can build a coarse model of what is
in the OS cache. Once X-RAY knows what is in the cache
above, it can do a better job of managing its own cache,
by aiming at exclusivity [34]. Simulations show that per-
formance can be dramatically improved with the smarter
second-level caching strategy X-RAY employs.

The final case study we focus on here is the im-
plementation of journaling beneath a non-journaling file
system [30]. This turned out to be the most difficult
case study to implement. At block level, what the
semantically-smart disk tries to infer is when a file sys-
tem “transaction” is taking place,e.g., when a group of



related updates are occurring. What makes this challeng-
ing is file system behavior; because file systems funda-
mentally delay, reorder, and sometimes filter out opera-
tions to disk, the disk has a difficult time decoding exactly
what has happened. Our solution to this problem at this
point was simple: mount the file system synchronously,
thus guaranteeing that all updates are reflected to disk in
a complete and timely manner. The result was a disk that
implemented journaling with all its associated benefits un-
der a non-journaling file system (in this case, Linux ext2).

3.4 Lessons Learned
Our first year of working on the project thus yielded many
interesting results. We saw that we could infer many
on-disk structures automatically, through the techniques
we developed for EOF. We also developed numerous on-
line techniques to determine the true state of the file sys-
tem and infer which operations it was invoking. Finally,
through our case studies, we observed the great potential
semantically-smart disk systems had, enabling new and
interesting storage functionality, all without change to the
file system above.

Our initial work also demonstrated numerous difficul-
ties with our approach. We had originally thought the
on-line techniques would be challenging to develop; we
soon understood that the asynchronous nature of mod-
ern file systems would greatly complicate any on-line in-
ference we wished to perform. Clearly there was more
to be understood here. We also came to see that em-
bedding static information about data structures in a disk
was probably reasonable; on-disk data structures tend to
evolve slowly and there are not too many file systems in
the world. Hence, we did not work to improve EOF or the
automatic data structure inference tools, instead assuming
any semantically-smart would ship with built-in knowl-
edge of important file system structures.

We also were surprised to learn of the difficulties of
working underneath the Linux ext2 file system. We chose
ext2 because we thought it would be the simplest to op-
erate underneath; instead, it soon proved to be the most
challenging. The primary reason for this hardship was
the laissez fairemanner in which ext2 writes blocks to
disk: unlike most UNIX -based file systems, ext2 imposes
no ordering of any kind on disk writes, making semantic
inference quite challenging (as we discuss further in§4).

Our broadest conclusion from this work came from our
experience with case studies. It was clear that with each
case study, we had learned a lot about the technology
needed to build semantically-smart systems. Hence, to
develop the technology further, we would need to find in-
teresting pieces of storage functionality to develop in the
semantically-smart way. We found ourselves ruminating
about the possibilities. We were looking for one such bit
of functionality, but we were lucky: we found two.

4 Second-Generation Systems
Our second generation of semantically-smart proto-
types took semantically-smart technology to new heights,
greatly increasing our own understanding of how such
systems could work. We also began to see the limitations
of the approach, which we believe was only possible be-
cause of the extremes to which we pushed the technology.
The primary contribution of this work is understanding
how to operate under file systems with asynchronous op-
erations when correctness is required.

This second generation of semantically-smart systems
is comprised of two in-depth case studies: D-GRAID,
which is a RAID array that degrades gracefully [29], and
FADED, a secure-deleting disk that operates under asyn-
chronous file systems [27] (hence removing the major
limitation in our earlier attempt at secure delete [30]).
We discuss each in turn, and then present the lessons we
learned through these two works.

4.1 D-GRAID: Degrading Gracefully
D-GRAID [29] exploits semantic intelligence within a
disk array to place file system structures across disks in
a fault-contained manner. Thus, when an unexpected fail-
ure of second disk occurs [12], D-GRAID continues to op-
erate, serving those files that can still be accessed. There
are two key techniques D-GRAID uses to provide this
higher level of availability.

The first technique is toreplicate naming and meta-
data structuresof the file system to a high degree while
using standard redundancy techniques for data. Thus,
with a small amount of overhead, excess disk failures do
not render the entire array unavailable. Instead, the entire
directory hierarchy can still be traversed, and only some
fraction of files will be missing, proportional to the num-
ber of missing disks.

The second technique isfault-isolated data placement.
To ensure that meaningful units of data are available un-
der failure, D-GRAID places semantically-related blocks
(e.g., the blocks of a file) within the storage array’s unit
of fault-containment (e.g., a disk). By observing the
natural failure boundaries found within an array, fail-
ures make semantically-related groups of blocks unavail-
able, leaving the rest of the file system intact. Unfortu-
nately, fault-isolated data placement improves availabil-
ity at a cost; related blocks are no longer striped across
the drives, reducing the parallelism found within most
RAID techniques [10]. To remedy this, D-GRAID imple-
mentsaccess-driven diffusionto improve throughput to
frequently-accessed files, by copying the blocks of “hot”
files across the drives of the system.

Underneath Linux ext2, determining which blocks are
semantically-related is challenging because blocks are dy-
namically typed (e.g., a block can be a user-data block, an
indirect-pointer block, or a directory-data block) and be-



cause the order of writes from the file system to disk can
be arbitrary. As a result, the storage system cannot always
accurately classify the type of each block. For example, a
blockB filled with indirect pointers can only be identified
as such by observing the corresponding inode,IB. How-
ever, due to the reordering behavior of the file system, it
is possible that in the time between the disk writes of the
inode and the indirect block, blockB was freed from the
original inode and was reallocated to another file as a nor-
mal data block. The disk cannot know this since the op-
erations took place in memory and were not reflected to
disk. Thus, the inference made by the semantic disk can
be wrong due to the inherent staleness of the information.

D-GRAID deals with this uncertainty by allowing the
fault-isolated placement of a file to be compromised for a
limited amount of time. However, this time is bounded,
because once the inode of a file is written, D-GRAID will
detect the correct classification and move the block ac-
cordingly. D-GRAID contains further optimizations to
reduce the number of misclassifications by checking that
the contents of possible indirect blocks appear valid (i.e.,
they contain some number of valid unique pointers or null
pointers, and only the first so many slots are non-null).

We implemented D-GRAID under both ext2 and VFAT,
and overall, D-GRAID behaves as desired. Our analysis
shows that D-GRAID allows users to access files when
additional disk failures occur within the RAID; with nam-
ing and meta-data replication, the percentage of accessi-
ble files matches the percentage of working disks. Even
better, if we utilize “process availability” as the figure of
merit (i.e., the number of processes that run unaffected un-
der disk failure), D-GRAID degrades much better than the
expected linear drop-off, because many processes access
no user files and therefore run successfully even if most
storage is unavailable.

4.2 FADED: Gone and Forgotten
Smarter storage systems need to understand whether
blocks are live or dead [32, 35]. We have investigated
how block liveness can be inferred within semantically-
smart storage; specifically, we have explored the difficult
case of how to infergenerational liveness, that is, whether
a block currently belongs to a given live file. In this
context, we implemented FADED (A File-Aware Data-
Erasing Disk), which implementssecure delete, ensuring
that deleted data cannot be recovered from the disk [28].
Secure delete functionality pushes on the disk’s ability to
perform correct inferences: a false positive in detecting a
delete leads to irrevocable deletion of valid data, while a
false negative results in deleted data being recoverable.

When FADED detects a file is deleted, FADEDshreds
all of the blocks belonging to that file by overwriting each
block multiple times with specific patterns. The fact that
a block should be shredded can be detected in different

ways: FADED may see that the corresponding bit in the
bitmap is cleared (indicating the block has been freed), the
generation count in an inode is incremented (indicating
the inode has been freed and reallocated), or the block is
pointed to by a different inode (indicating the block has
been freed and then reallocated to a different file).

The challenge we address is that, again given reorder-
ing and reuse in the file system, when a block is pointed
to by a different inode, FADED cannot definitively know
whether the current contents of the block are those for the
new or the old file. FADED deal with such uncertainty by
being conservative and converting an apparent correctness
problem into a performance problem (i.e., FADED may
perform more shredding operations than required). The
mechanism we introduce is that of aconservative over-
write, which erases past layers of data on the block, but
leaves the current contents of the block intact. Using con-
servative overwrites means that valid data can never be
inadvertently shredded, but it also has an associated over-
head: certain suspicious blocks need to be tracked and
shredded multiple times.

In our prototype implementation, we found that two
minor changes were needed in ext2 to operate correctly
on top of FADED: the first ensures that file truncates
are treated as deletes; the second ensures that our inabil-
ity to definitively classify indirect blocks does not lead
to missed deletes. When using FADED under a typi-
cal UNIX workload, we find that the implicit inferences
and conservative overwrites impose approximately a 10%
overhead compared to a disk with perfect information.

4.3 Lessons Learned
By implementing these two challenging case studies, we
learned a great deal about semantically-smart disk sys-
tems and the fundamental challenges they pose to system
designers. The most important lesson was that living with
uncertainty is at the core of building such systems; due to
the asynchronous nature of file systems, in the worst case
the disk system receives incomplete information regard-
ing the state of the file system at a given time.

We also learned that despite this imprecision, interest-
ing prototypes can still be constructed. Through careful
design, both D-GRAID and FADED worked around the
lack of complete information and achieved their goals.
However, in many cases subtle reasoning was required in
order to build robust working prototypes that handled all
corner cases. Indeed, many times we were deep into an
implementation and only then realized a problem with our
approach, requiring us to go back to the drawing board
and rethink what we were doing. The more we did this,
the more we realized that we needed more than just “being
careful”; what we needed was a theory of how file systems
and disks interacted.



5 Beyond Systems: Some Theory
We thus began an effort to build a more formal logic of
file system and disk interactions [26]. Although this logic
began as a means for reasoning about semantically-smart
disks, we soon realized that the possibilities were much
broader; indeed, such a logic could be used by file sys-
tem developers as well, to better understand the complex
interactions between file systems and disks.

The logic begins with a set of basic entities:contain-
ers, pointers, andgenerations. A file system is simply
a collection of containers, linked via pointers. When a
container is reused (i.e., freed and then used again), it rep-
resents a new generation.

The logic is then formulated throughbeliefsand ac-
tions. A belief is used to model the state of the file sys-
tem, either on-disk or in-memory, and an action changes
the state of the file system (and hence which beliefs are
true at a given time). Fundamental to understanding the
impact of actions on beliefs is theorderingamong the ac-
tions, and hence special care must be taken in constructing
the temporal relationship between actions. Proofs are fi-
nally constructed by starting with basic axioms and apply-
ing a series ofevent sequence substitutions; for example,
if (α happens beforeβ) impliesγ, then wherever we ob-
serve that (α happens beforeβ), we can simply replace
this subsequence withγ.

Some of our initial results are as follows. First, we
prove the correctness of existing file system consistency-
maintenance techniques such as soft updates [9]. Further,
we also show how the Linux ext3 file system is need-
lessly conservative in how it performs transaction commit,
demonstrating how the logic can be used to enable aggres-
sive performance optimizations. We show how the logic
can aid in the development of new functionality, by build-
ing and analyzing the correctness of aconsistent undelete
functionality in Linux.

Overall, we found that even a simple logical framework
such as ours was critical in the development of semantic
technology. Wherever reasoning about disk interaction is
required, we believe that a more formal approach is re-
quired to build robust and correct systems.

6 Future Directions
Throughout the semantic disks project, we learned a great
deal about file systems, disk systems, and their interac-
tions. We now harness that experience to look forward
and ruminate on the possible future of semantic disk tech-
nology in block-level storage and beyond.

One primary question regarding semantic techniques is
their applicability in the “real world”. As some of our case
studies are quite complex, it seems unlikely that an in-
dustry that must fundamentally be conservative will adopt
our approach. Therefore we think that successful indus-
try adoption will be aimed at less radical case studies.

For example, imagine a disk array that performed smarter
prefetching by paying attention to file boundaries. Al-
though this too requires semantic knowledge, it does not
require much, and if it is wrong, only (perhaps) perfor-
mance will suffer.

Another question is whether semantic inference can be
applied to other clients of disk systems, such as database
management systems. We have already performed some
initial work along these lines [28], and have met with
mixed success; while some techniques translate readily,
the more complex and specific data structures of a typi-
cal DBMS do complicate matters occasionally. However,
some DBMS structures are ripe for the kind of reverse en-
gineering we advocate; in particular the transaction log
is replete with information about what the DBMS is cur-
rently doing and hence a likely candidate for future se-
mantic technology.

Along these lines, we have also noticed that the sea
change in modern file systems towards journaling is likely
to make semantic inference easier rather than more diffi-
cult. As with a DBMS, a file system journal takes the
chaotic update sequence possible with a simple file sys-
tem such as ext2 and turns it into an orderly and hence
more understandable affair. Linux ext2 was perfect as a
file system to study semantically-smart disks underneath,
as it pushed us to deal with its extreme asynchrony and ar-
bitrary ordering of writes; future systems, if they are able
to interpret log contents, will likely be simpler and more
easily verified as correct.

One major change to the storage interface, towards
object-based disks, may also be on the horizon [1]; with
such change, will the need for semantic inference be ob-
viated? After all, these drives generally have more infor-
mation about how they are being used by clients than typ-
ical block-based disks; for example, with a straight one-
to-one file-to-object mapping, the drive can easily deter-
mine which blocks are currently free. However, even in
this evolved interface, we believe there is much room for
further inference and semantic technology. For example,
directory structure is not a part of the interface, and jour-
naling file systems and databases will still place logs on
disk; these structures and many others still require seman-
tic inference to become valuable sources of information
for storage systems.

Finally, we believe that there is a broader place for se-
mantic inference technology than simply building better
storage systems. Some current work of ours explores us-
ing low-level tracing and fault injection to better under-
stand file system performance [13, 18] and failure charac-
teristics [19, 20]. As systems grow increasingly complex,
tools to deconstruct their behavior will likely become an
integral part of the design, implementation, and mainte-
nance of said systems.



7 Conclusions
We have presented a retrospective of our work on
semantically-smart disk systems. This work began with
a simple question (“how smart can we make block-level
disks without changing the disk interface?”) and evolved
into the development of a series of increasingly challeng-
ing case studies and the beginnings of a more formal the-
ory for understanding file system and disk interactions. In
our modern world, avoiding the constraints placed upon
us by layering and other system structuring artifacts is
nearly impossible; with semantic inference, however, we
believe we have provided a means to reclaim some of what
is lost to the nature of such designs.
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