
DATA-DRIVEN MODELS IN STORAGE SYSTEM DESIGN

by

Florentina I. Popovici

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2007



i

I would like to thank to my advisors Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau for

guiding me through the graduate studies program. Those who have gone through the same process

know very well how invaluable is the role of the advisor. I have been very lucky to benefit from

advice from two excellent ones.

David DeWitt and Mark Hill, the other members of my committeeoffered great support and

guidance, and for that I thank them also. Having them on my committee helped me think more

about my research outside of the operating system umbrella.

The classes I took here at University of Wisconsin-Madison gave me a solid base to build

on when doing research. Thank you Bart Miller, Charles Fisher, David DeWitt (after taking your

classes I will always have a soft spot for databases), Guri Sohi, Ras Bodik for a wonderful teaching

job and for unveiling numerous insights.

A special thank you to Irina Athanasiu, my advisor in my undergraduate studies, for planting

the early seeds of my interest in doing research. You will be missed by all the students you wisely

advised and by many others who would not be able to benefit fromyour guidance.

Life in graduate school would have been so much different without colleagues and friends

here in Madison. Brainstorming sessions, all nighters before deadlines, ice cream breaks, terrace

outings, updates about the Packers and Badgers, to name a few, all were invaluable.

Not lastly, I thank you my family for continuous and unconditional support.



DISCARD THIS PAGE



ii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Problem: Complex Layers, Simple Interfaces . . . . . . .. . . . . . . . . . . 1
1.2 A Strawman Solution: Better Interfaces . . . . . . . . . . . . . .. . . . . . . . . 2
1.3 A Better Solution: Data-Driven Models . . . . . . . . . . . . . . .. . . . . . . . 3
1.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4
1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8
1.6 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

2 Application Specific Data-Driven Models . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Motivation and Definition . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 11
2.2 Disk Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14
2.3 Input Parameters for a Data-Driven Model of a Disk . . . . . .. . . . . . . . . . . 15

2.3.1 History of Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17
2.3.2 Inter-request Distance . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18
2.3.3 Request Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Think Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Operation Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 File System Level I/O Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 I/O Scheduling Background . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 21
3.2 A Different Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 23
3.3 The SMTF Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24



iii

Page

3.4 Reducing Input Parameters for The Disk Mimic . . . . . . . . . .. . . . . . . . . 25
3.4.1 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.4.2 Measured Service Times . . . . . . . . . . . . . . . . . . . . . . . . . .. 28

3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.6 Off-Line Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 32

3.6.1 Summary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Number of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.6.4 Disk Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 40

3.7 On-Line Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 43
3.7.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 44

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Application Level Freeblock Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Freeblock Scheduling Background . . . . . . . . . . . . . . . . . . .. . . . . . . 46
4.2 Application Level I/O Scheduling . . . . . . . . . . . . . . . . . . .. . . . . . . 49
4.3 Using the Disk Mimic for Freeblock Scheduling at Application Level . . . . . . . 50
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 51
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Log Skipping for Synchronous Disk Writes . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
5.1.1 Synchronous Disk Writes . . . . . . . . . . . . . . . . . . . . . . . . .. 54
5.1.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Performance Issues with Synchronous Disk Writes . . . . . .. . . . . . . . . . . 56
5.3 Log Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.3.1 Disk Head Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
5.3.2 Space Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
5.3.3 Crash Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Building the Disk Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 58
5.4.1 Skip Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Request Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Think Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.4 Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 67
5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
5.5.2 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



iv

Page

5.5.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Log Skipping Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70

5.6.1 Validating the Disk Model . . . . . . . . . . . . . . . . . . . . . . . .. . 71
5.6.2 Impact of Request Size . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73
5.6.3 Impact of Think Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Stripe Aligned Writes in RAID-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Small Writes in RAID-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 81
6.2 Stripe Aligned Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 83
6.3 RAID-5 Data-Driven Model . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 86
6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 87

6.4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Disk Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.2 Disk Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 92
7.3 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Write Everywhere File Systems . . . . . . . . . . . . . . . . . . . .. . . 93

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



DISCARD THIS PAGE



v

LIST OF TABLES

Table Page

3.1 Disk Characteristics. Configurations of eight simulated disks. Times for rotation,
seek, and head and cylinder switch are in milliseconds, the cylinder and track skews
are expressed in sectors. The head switch time is 0.79 ms. In most experiments, the
base disk is used.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Allowable Error for Interpolation. The table summarizes the percentage within
which an interpolated value must be relative to the probed value in order to infer
that the interpolation is successful. As more check points are performed between two
inter-request distances, the allowable error increases. The numbers were gathered
by running a number of different workloads on the simulated disks and observing
the point at which performance with interpolation degradesrelative to that with no
interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



DISCARD THIS PAGE



vi

LIST OF FIGURES

Figure Page

2.1 Common Setup of the Storage System.This figure shows an example of a possible
setup for a data intensive storage system. The layers that make up the system are
connected through narrow interfaces, that expose little information about the layers.. 12

3.1 Distribution of Off-Line Probe Times for Three Inter-Reque st Distances.Each
graph shows a different inter-request distance: 132 KB, 224KB, and 300 KB. Along
thex-axis, we show each of the 1000 probes performed (sorted by time) and along the
y-axis we show the time taken by that probe. These times are foran IBM 9LZX disk. . 27

3.2 Sensitivity to Summary Metrics. This graph compares the performance of a variety
of scheduling algorithms on the base simulated disk and the week-long HP trace. For
the SMTF schedulers, no interpolation is performed and 100 samples are obtained for
each data point. Thex-axis shows the compression factor applied to the workload.
They-axis reports the time spent at the disk.. . . . . . . . . . . . . . . . . . . . . . 31

3.3 Demerit Figures for SMTF with Probability, Mean, and Maximu m Summary
Metrics. Each graph shows the demerit figure for a different summary metric. These
distributions correspond to the one day from the experiments shown in Figure 3.2 with
a compression factor of 20.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Sensitivity to Number of Samples.The graph shows that the performance of SMTF
improves with more samples. The results are on the simulateddisk and the week-long
HP trace with a compression factor of 20. Thex-axis indicates the number of samples
used for SMTF. They-axis shows the time spent at the disk.. . . . . . . . . . . . . . . 34

3.5 Mean Values for Samples as a Function of Inter-request Distance. The graph on
top shows the mean time for the entire set of inter-request distances on our simulated
disk. The graph on the bottom shows a close-up for inter-request distances; other
distances have qualitatively similar saw-tooth behavior.. . . . . . . . . . . . . . . . 35



vii

Figure Page

3.6 Sensitivity to Interpolation. The graph shows performance with interpolation as
a function of the percent of allowable error. Different lines correspond to different
numbers of check points,N . Thex-axis is the percent of allowable error and they-
axis is the time spent at the disk. These results use the base simulated disk and the
week-long HP trace with a compression factor of 20.. . . . . . . . . . . . . . . . . . 37

3.7 Sensitivity to Disk Characteristics.This figure explores the sensitivity of scheduling
performance to the disk characteristics shown in Table 3.1.Performance is shown
relative to greedy-optimal. We report values for SMTF usinginterpolation. The per-
formance of SMTF without interpolation (i.e., all probes) is very similar.. . . . . . . . 40

3.8 Real Disk Performance. This graph shows the slowdown of C-LOOK when com-
pared to the SMTF configured off-line. The workload is a synthetically generated
trace and the numbers are averages over 20 runs. The standarddeviation is also re-
ported. Thex-axis shows the maximum inter-request distance existent inthe trace and
they-axis reports the percentage slowdown of the C-LOOK algorithm. . . . . . . . . 41

3.9 Performance of On-Line SMTF. The first graph compares the performance of differ-
ent variations of on-line SMTF; the performance of the last day of the week-long HP
trace is shown relative to off-line SMTF. The second graph shows that the performance
of Online-Set improves over time as more inter-request distances are observed.. . . . 42

4.1 Workload Benefits with Freeblock Scheduling. The leftmost bar shows the fore-
ground traffic with no competing background traffic, the middle bar with competing
traffic and no freeblock scheduler, and the rightmost bar with the freeblock scheduler. 52

5.1 Individual Service Times for 4 KB Requests. This graphs plots sorted individual
service times for requests of size 4 KB. The requests are issued sequentially, with no
think time, and the skip distance is 0. The disk used for experiments has a maximum
rotation latency of 6 ms. Most of the requests have a high service time, larger than a
full rotation. The average service time for these requests is 6.13 ms. . . . . . . . . . . 59

5.2 Average Service Times for 4 KB Requests.These graphs plot the average service
times for requests with a size of 4 KB, when the skip distance varies. The graph on
the top explores skip distances between -5 MB and 5 MB. We observe the ’sawtooth’
profile of the graph, explained by the varying amounts of rotational latency incurred
by the requests. The graph on the bottom is a zoom in for skip distances between
-200 KB and 200 KB. We notice that the minimum average servicetime occurs for a
skip distance of 28 KB.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



viii

Figure Page

5.3 Average Service Time for Requests when the Request Size Varies. We plot the
average service time for different request sizes, for two skip distances. The graph on
the top plots the service time for a 0 KB skip distance and the graph on the bottom
plots the service time for a 28 KB skip distance. We observe a smooth ascending curve
for service times associated with a 0 KB skip distance, whilethe graph on the bottom
shows a more irregular pattern.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Average Service Time for Requests when the Request Size and Skip Distance
Varies. The graph shows larger service times as the request size increases. There
are three plateaus with transition points around 28 KB and 144 KB. The transition
between the plateaus happens at different values for the skip distance.. . . . . . . . . 64

5.5 Choices for Skip Distance when the Request Size Varies.This graph shows which
skip distance will be recommended by miniMimic when the request size varies. We
notice that miniMimic will choose different skip distancesfor different request sizes.
Figure 5.3 and 5.4 show that the difference in the service time for different skip dis-
tances is noticeable.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Average Service Time for 4 KB Requests when the Think Time Varies.The graph
plots average service times when the think time varies and the skip distance is 0 KB.
The graph shows a periodic pattern, as the amount of rotational latency varies be-
tween minimum and maximum values. With no think time the requests incur large
rotational latencies, but as the think time increases the service time decreases be-
cause the target sectors are closer to the disk head. The diskhas a rotational latency
of 6 ms, which is reflected in the periodic pattern.. . . . . . . . . . . . . . . . . . . 66

5.7 Average Service Time for 4 KB Requests when the Think time andSkip Distance
Varies. The average service times associated with different think times varies with a
more complex pattern compared to the one observed when varying the request size.. . 67

5.8 MiniMimic Skip Distance Recommendations for SCSI Disk 1.MiniMimic predic-
tions for the skip distance to be used when a request has a given request size and is
preceded by a given think time, for the SCSI IBM 9LZX disk. Theshape of the graph
is highly irregular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 MiniMimic Skip Distance Recommendations for SCSI Disk 2.MiniMimic predic-
tions for the skip distance to be used when a request has a given request size and is
preceded by a given think time, for the second SCSI IBM 9LZX disk. . . . . . . . . . 69



ix

Figure Page

5.10 MiniMimic Skip Distance Recommendations for IDE Disk. The graph plots the
MiniMimic predictions for the skip distance to be used when arequest is characterized
by a given request size and preceded by a given think time, forthe IDE Western Digital
WDC WD1200BB drive. Similar to the SCSI disk the shape of the graph is irregular,
though the curve is less complex.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Predicted Versus Actual Service Times.This graph plots the actual service times
versus predicted service times for a request size of 8 KB. Theline labeled ’actual’
plots the sorted values of the service times for the individual requests. The actual and
predicted averages are within 1% of each other.. . . . . . . . . . . . . . . . . . . . 71

5.12 Performance Improvements when the Size of the Requests Varies - SCSI Disk
1. The graph shows the bandwidth (y-axis) when the size of the requests varies (x-
axis) and there is no think time. Each bar in the group of bars represents one log
optimization configuration: no optimization, checksumming, skipping, and checksum-
ming and skipping together. Each configuration sees an increase in performance when
the request size increases, as the positioning costs are amortized. In general, log skip-
ping performs better than transactional checksumming and pairing both skipping and
checksumming yields the best performance improvement.. . . . . . . . . . . . . . . 72

5.13 Performance Improvements when the Size of the Requests Varies - SCSI Disk 2.
The graph shows the bandwidth (y-axis) when the size of the requests varies (x-axis)
and there is no think time and when we use the second SCSI disk.The behavior is
similar to the first SCSI disk.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.14 Performance Improvements when the Size of the Requests Varies - IDE Disk. The
graph shows bandwidth (y-axis) when the request size varies (x-axis) and when using
an IDE disk. The observations are similar to those for the SCSI disk. In contrast
to the SCSI disk, we see a performance drop when the request size is larger than 12
blocks, but our data shows this is not a result of miniMimic mispredictions, but rather
a characteristic of the disk or device driver.. . . . . . . . . . . . . . . . . . . . . . . 74

5.15 Performance when Application Has Think Time - SCSI Disk 1. The graph plots
the bandwidth seen by the application when doing I/O (y-axis) when the workload has
think time (x-axis). Transactional checksumming benefits from increased think times
up to 5 ms, that reduce the rotational latency incurred by requests. The performance of
log skipping alone is sometimes less than transactional checksumming. Log skipping
paired with transactional checksumming continues to yieldthe best performance.. . . 75



x

Figure Page

5.16 Performance when Application Has Think Time - SCSI Disk 2. The graph plots
the bandwidth seen by the application when doing I/O (y-axis) when the workload
has think time (x-axis) for the second SCSI disk. When log skipping and transactional
checksumming are deployed together, they yield the best performance. . . . . . . . . . 76

5.17 Performance when Application Has Think Time - IDE Disk. The graph plots the
bandwidth seen by the application when doing I/O (y-axis) when the workload has
think time (x-axis) and when using an IDE disk. The trends are similar to the ones
noticed for the SCSI disk.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 RAID-5 Configuration. This figure shows an example of the block layout in a RAID-
5 left asymmetric configuration. The stripe spans 3 data disks, and there is one parity
disk per stripe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Layered Environment. This figure shows an example of a common encountered
environment, where applications are ran on guest operatingsystems that operate in
a virtualized environment. At the lower level of the storagesystem we have a RAID
system, present for reliability and performance reasons.. . . . . . . . . . . . . . . . 84

6.3 Determining Stripe Size. This figure shows the write bandwidth obtained when re-
quests from the guest OS are grouped into stripes of differing sizes. The experiments
were run on a RAID-5 system with three data disks, a chunk sizeof 16 KB, and a stripe
size of 48 KB. As desired, RAID-Mimic finds that the best bandwidth occurs when the
requests are aligned and grouped into requests of size 48 KB.. . . . . . . . . . . . . 85

6.4 Specialization for RAID-5. This experiment shows the benefit of using RAID-Mimic
to specialize the I/O of the guest OS to RAID-5. The four linescorrespond to the four
combinations of whether or not the OS or VMM attempts to alignwrites to the stripe
size of the RAID-5. The guest OS runs a synthetic workload in which it performs
sequential writes to 500 files; the average file size within the experiment is varied
along thex-axis. Smaller file sizes do not see performance improvements from the
technique because the workload does not generate whole stripes.. . . . . . . . . . . . 88



xi

ABSTRACT

Systems with high data demands depend on the efficiency of thestorage system to reach the high

performance that is expected from them. Unfortunately, because of the way these systems evolve,

this is not easy to achieve. Storage systems are expected to act as a monolithic unit, but they are

actually constructed as a stack of layers that communicate through narrow interfaces. Because the

information that flows between the layers is limited, it is difficult to implement many desirable

optimizations.

We propose to use data-driven models to alleviate this lack of information. These models are

empirical models that observe the inputs and outputs of the system being modeled, and then predict

its behavior based on those previous observations.

We particularly focus on data-driven models for disks, as good disk usage can improve the perfor-

mance of a system by orders of magnitude. It is difficult to model disks because of their intrinsic

complexity. The demands of deploying data-driven models on-line, in a running system, adds to

the challenge of modeling storage devices.

The data-driven models we develop are tailored to the specific applications that use them. This al-

lows us to build simplified models and to integrate them more seamlessly in an existing system. For

example, we built such models to aid in decisions made by a throughput-optimizing I/O scheduler

at the operating system level or to help lay out a write-aheadlog on disk such that synchronous

write requests do not incur unnecessary and expensive rotational latency overhead. We explore



xii

how to build models for different devices by building a partial data-driven model of a RAID-5

storage system, and use it to perform stripe-aligned writes.

In this dissertation we build data-driven models and use them in scheduling and layout applications

at the operating system and application level. Additionally we leverage experience from modeling

disk drives to model more complex storage systems as RAIDs. This allows us to validate the

generality of out approach. Through experiments we show that data-driven models can bring

significant performance improvements to the systems where they are deployed.



1

Chapter 1

Introduction

To reduce the complexity of building and testing software, systems are often organized into

layers[22, 42]. Layers have many benefits, as they decompose the problem of building vast soft-

ware systems into pieces that are easier to develop, reason about, and evolve. Proof of layering’s

success is easy to find; simply examine the network stack (with TCP and UDP built on IP built

on Ethernet), the storage stack (file systems built on RAID built on disks), or the basic operating

environment (an operating system on a virtual machine on thehardware itself) for excellent and

compelling examples.

Between each layer in a system is a well-definedinterface. As Lampson describes, each in-

terface is a “little programming language” [42], informingclients of the interface of the available

functionality. Not surprisingly, getting the “right” interface is a major challenge in the implemen-

tation of a layer [8, 25, 42, 75].

1.1 The Problem: Complex Layers, Simple Interfaces

Unfortunately, the layered approach breaks down when an individual layer becomes overly

complex while the interface remains simple. Such a combination is problematic as clients have

little or no access to the power and capabilities of the layer. The result is that the system cannot

exploit the full abilities of its components; too high of a tax has been paid for the simplicity that

layering brings.



2

This problem arises prominently today in the storage stack.At the bottom of this stack is a

modern disk. Although terrifically complex, disks provide the most bare-boned interface possible:

simple reads and writes to blocks organized in a linear array[3, 52, 91].

This read/write interface was successful for a time. By hiding details of disk geometry en-

abled clients (i.e., file systems) to become simpler and focus solely on the management of higher

level issues (e.g., consistency management [26, 32, 33], directory scalability [79], write perfor-

mance [53]); disks, in turn, improved their raw performancecharacteristics via more intelligent

caching and prefetching [80, 98], rotationally-aware positioning algorithms [54, 67], and other

low-level optimizations.

Recent work, however, demonstrates that much has been lost due to this simplified disk in-

terface [21, 44, 59, 62, 64, 71, 74, 75]. For example, with traxtents (track aligned extends) [61],

the data is allocated and accessed at track boundaries. Thisapproach avoids expensive rotational

latency and track switch overheads. Unfortunately, the track boundaries are not exported by the

disk, and the only alternative is to go through a lengthy probing phase in order to discover this

information.

1.2 A Strawman Solution: Better Interfaces

A simplistic solution to this problem would be to simply change interfaces when needed in

order to better expose the current capabilities of a layer. Within a disk system, this would imply a

new interface that exposes enough information and control to clients to enable the full utilization

of their internal caching, prefetching, scheduling, and other machinery.

Unfortunately, changing the interface of a well-established and broadly used layer is no simple

task, for the following reasons. First, an interface changemandates a change in all clients that

use the interface. Further, wide-scale industry agreementis required. Finally, and perhaps most

importantly, determining the “right” interface is the mostdifficult challenge of all. It is hard (if not

impossible) to anticipate all future uses of a layer; similarly, the improper choice of interface will

preclude certain internal implementations.



3

Many fields have accepted that not changing an interface is a baseline requirement for research

to have practical impact on a field. For example, many in the field of computer architecture focus

on microarchictectural improvements, thus enhancing performance or other characteristics beneath

a fixed instruction set architecture [18, 76, 99]. Work in networking [11] and virtualization [13, 88]

confirms the same viewpoint.

Thus, in this dissertation, we assume that the layers in the storage stack may have layers that

prevent clients from best utilizing them. We further assumethat this interface is not likely to

change, at least in any fundamental way, in the near (or distant) future. Thus, we require an

approach that will enable a client to make the most of a layer without interface change.

1.3 A Better Solution: Data-Driven Models

The approach we advocate is one we calldata-driven modeling. With data-driven modeling, a

client uses detailed measurement of a disk (or RAID) to buildup a working portrait of its behavior.

The client can then use this model to better predict or understand how the disk will behave and thus

enable the client to extract its full performance. Thus, a successful model is one that can accurately

and with low-overhead predict the behavior of a disk in a given scenario.

We build data-driven models in the following basic manner. The requests that are issued to

disk are recorded along with relevant input parameters. Therequests are timed, and their service

time is stored. In the prediction phase, when the model is asked to predict device behavior for a

specific request, it looks up how the device reacted when similar requests were issued, and predicts

its response based on the recorded history.

Our approach is an example of agray boxtechnique to systems building [8]. When building our

data-driven models, we often exploit our knowledge of how disks work in order to make the model

more accurate or better performing. These “short cuts” are critical; without them, the overhead of

a true black box data-driven approach would be prohibitive,as we will demonstrate.

Alternatives are possible. For example, one could exploit the wealth of disk simulators [27] or

analytical models [56, 73] in place of our data-driven approach. However, these approaches tend to



4

be too slow (detailed disk simulation often runs much slowerthan the disk itself) or too inaccurate

(overly simplified models cannot capture the needed level ofcomplexity). Thus, the data-driven

approach finds a sweet-spot between these two, being both fast enough and accurate enough to

enable their use in a running system.

1.4 Case Studies

There are many challenges in building data-driven models. For example, what are the important

request parameters to keep track of? How can one integrate these models into a running system,

keeping the space and computational overheads low? What characteristics of the device need to be

modeled for the policy that uses the model?

To answer these questions, we focus on four case studies. Thefirst three case studies revolve

around data-driven models for disks. They allow us to explore how to build these models in col-

laboration with applications with specific needs: I/O scheduling and layout. The fourth case study

explores data-driven models for a different device (RAID).

The first case study was presented in [49]. The second case study is part of [9]. The initial

work for the third case study started in the context of [21].

File System Level I/O Scheduling

We start by presenting a data-driven model of a disk that is used at the operating system level

by the I/O scheduler. The scheduler optimizes for throughput, and the model is used to predict the

service time for the requests that are queued.

I/O scheduling at the OS level needs to reach a delicate balance, an ideal scheduler being

accurate, simple to implement, and low overhead. There is a tension between these requirements,

and thus, current I/O schedulers tip the balance towards thelast two, while glossing over the

accuracy requirement. We show how a data-driven model can besimple to implement and low

overhead, and have increased accuracy.

The model we build is used in an on-line manner by the system, is configuration free, and

portable. These requirements are aligned with the real liferequirements of using a disk model



5

in a running system. Using the model to guide the system to make decisions needs to minimally

impact the system. Second, deploying the model should be done without the need to configure it

manually. Third, since the system could be deployed on top ofany arbitrary disk, the model has to

be portable and handle disks with diverse characteristics.

One concern in building models is identifying the importantparameters to track. We could

track all the parameters that might influence the behavior ofthe disk, but doing so would generate

excessive space overhead. Instead, we focus on identifyingonly the parameters that are needed for

predicting the disk behavior for the specific application that uses the model. We take advantage of

the implicit knowledge we have about how disks work in general, and for this case study identify

two types of parameters that are sufficient for modeling the disk: request type and inter-request

distance (a parameter that measures the distance in logicalblock number in between two requests).

This case study allows us to give an example of how these models can be deployed online in

a running system, using an arbitrary disk, without having torun an off-line configuration phase or

manually tune them. To overcome the lack of information, we use a hybrid approach, where we

pair a data-driven model of the disk with a traditional coarse disk model. When the information is

not available we use the traditional disk model, but as the model sees more requests, it accumulates

more information and is able to make predictions.

With this case study we show that it is possible to improve on the performance of the more

traditional disk schedulers already available by using a data-driven model that is built in an on-line

manner. The model is able to improve on previous ones by beingable to incorporate important disk

characteristics such as rotational latency, that was not captured by other more simplistic models.

Application Level Freeblock Scheduling

This case study uses a data-driven model of the disk to perform a different type of I/O schedul-

ing: freeblock scheduling. A freeblock scheduler is able toextract free bandwidth from the disk for

background applications such as disk scrubbing, by minimally impacting foreground applications.

The main idea of a freeblock scheduler is to make use of the times when the disk does not

actually transfer data from the platters. For example, whenrequests are serviced by the disk, they

often incur a rotational latency, which is the time the disk needs to wait for a target sector to come



6

under the disk head. A freeblock scheduler sends backgroundrequests to the disk to be serviced

while a foreground request incurs the rotational latency. Doing so allows the foreground request to

be serviced in the same time as before, while also servicing abackground requests. Thus, the disk

is better utilized.

This type of scheduler needs to use a model of the disk in orderto be able to assess if a

background request can be issued without affecting a foreground request. The model in this study

is used at application level as opposed to operating system level. Scheduling at application level

is difficult, as it is pointed out by Lumbet al. [44], who first proposed the freeblock scheduler

algorithm. They state that initially they thought that efficient freeblock scheduling can be done

only from inside the disk firmware.

We are able to leverage our experience from the previous casestudy and use a model built on

the same principles as before. We keep track of the same set ofparameters, but this time we use

the model predictions to estimate if a background request isgoing to impact the performance of a

foreground request.

This case study highlights the difficulties of using a model when there are other intervening

layers between the layer that uses the model and the layer that is modeled. Because the model

is used at application level, its usage is impacted by the functionality provided by the operating

system.

Log Skipping for Synchronous Disk Writes

The third case study uses a data-driven model of the disk to optimize workloads that perform

synchronous writes. While previous case studies looked at scheduling issues, this case study shows

how to use the model to guide the layout of data on disk.

Synchronous writes are frequently encountered in applications for which data reliability is

paramount. These applications want to be sure that the data they write is going to make it to disk

in the order it was intended. These precautions are necessary because the operating system can

perform write caching for performance reasons, and can delay actual disk writes till a later time

even if it reports to the application that the write operation completed successfully. It is obvious

that delayed writes combined with a system crash can generate data loss.



7

The problem associated with synchronous writes in a loggingenvironment comes from the

fact that they can incur extra rotational latencies. After asynchronous disk write finishes on disk,

the disk continues to move under the disk head, and a subsequent write to the next sector on disk

needs to wait almost a full rotation in order to complete. This situation transforms a workload

that is seemingly sequential in one that has performance similar to a random workload, which can

decrease performance by an order of magnitude.

This case study provides the opportunity to explore in more detail how to tailor a model for

a specific application need. For example, in this case the workload is write intensive and touches

only a small part of the disk. Thus, the model focuses on writerequests, and it has smaller space

requirements because it tracks only the part of the disk thatgets touched by the application.

For this case study we need to augment the previous disk modelwith additional parameters.

Since the application can have think time, the model needs totake into consideration the time that

passes between requests.

Stripe Aligned Writes in RAID-5

The fourth case study builds a data-driven model of a RAID-5 system. RAID systems are used

to increase the performance and reliability of a storage system. They are composed of two or more

disks, and can be configured with different schemes, according to the needs of the application.

We focus on RAID-5, a commonly encountered setup for RAIDs. This scheme uses a rotating

parity that enables recovery of data if one of the disk fails.The parity blocks are associated with a

stripe, which along with the parity constitutes a continuous segment of data that is laid on all the

disks part of the RAID. This layout is periodically repeatedfor the whole RAID.

We particularly target the performance regime during update requests. This workload can

yield expectantly low performance because the RAID needs toissue additional requests in order to

recompute the parity associated with a stripe and thus comply with the reliability contract presented

by this RAID scheme.

This performance degradation can be alleviated if the I/O scheduler issues requests that update

a whole stripe of the RAID instead of just part of it. Unfortunately, at operating system level the



8

scheduler does not have information about the size of the stripe, which is one of the information

that is needed in order to perform this optimization.

We propose to overcome this problem by using a partial RAID model. The data-driven model

determines the stripe size used in the RAID, and this information is incorporated by the I/O sched-

uler at the operating system level or virtual machine level.The scheduler decides whether to split

or merge incoming requests before issuing them to the RAID. By being stripe size aware, the I/O

scheduler issues writes for the whole stripe, thus getting around the update parity problem.

This case study shows the usage of data-driven models for a device whose characteristics vary

vastly from a hard disk device. Despite these differences, there are common lessons that we learned

from the previous studies, that are applicable to this case study. Similar to the previous ones, we use

timing of I/O requests, and we identify the important input parameters keep track. As previously,

we do not build a full RAID model, but we carve out only the portion that is required by the

application on hand.

1.5 Summary of Contributions

In this dissertation we propose the use of data-driven models in the storage system stack. We

study in more detail how to build models for modern disk drives because of their importance and

complexity.

Through examination of case studies, we find desirable characteristics of data-driven models.

Some of the characteristics are drawn from the way we use the models as an active component of

a running system. The models we propose are:

• Portable: The models we develop should be able to work on top of any diskdrive that is

part of a system. This requirement is important, as we want tobe able to deploy the models

on any system configuration.

• Automatically configured at run-time : Building the model automatically facilitates the use

of these models without the help of an administrator.



9

• Low overhead: Having the models be an integral part of the system means that they have

to integrate seamlessly in the existing systems, and to haveminimum interference on them.

This should translate both in low overheads of space and computation.

One advantage of data-driven models is that they can be tailored for a specific application.

For example, we do not model all the characteristics of a disk, but only those ones needed for

the application that uses the model. This reduces the complexity of the model, and allows for

optimizations in terms of space and computational overheads.

We identify the important parameters the models need to track when used for different appli-

cations like I/O scheduling or disk layout. Recording all the parameters that could influence the

behavior of the disk results in a prohibitive large amount ofdata to store and large prediction times.

We study the use of these models at several layers in the storage stack. As the layer that is

modeled is further away from the layer that builds the model,it becomes more difficult to build an

accurate model. The problem comes from the fact that each layer in the storage stack is complex

and can potentially influence the behavior of the requests that traverse it.

Through implementation in a real system and simulations we show that data-driven models can

be used in practice and that they increase the performance ofthe systems where they are deployed.

Some previous publications cover some of the work presentedin this dissertation [49], or present

the incipient ideas for some of the chapters [9], [21], [75].

1.6 Overview of the Dissertation

In the next chapter we present the definition of a data-drivenmodel and underline the charac-

teristics that are desirable for these models. We discuss inmore detail the parameters that could be

considered for building a model of a disk drive.

In Chapter 3 we build a model of a disk drive that is used by an operating system I/O sched-

uler. The scheduler uses the model to predict the service time for the requests that are queued. We

present the input parameters that are used by the model, and how they capture the disk behavior.



10

Additionally, we show how we decrease the space requirements for the model by using interpola-

tion. The disk model can be built online or offline, and we present a hybrid scheduling algorithm

that helps deploy a model in a system, even if the model did notsee enough requests to build a full

disk model.

Chapter 4 presents an application level scheduler that usesa disk model to decide if requests

from the application are going to influence other requests inthe system or not. With this case study

we explore the use of the previous disk model at a different layer in the storage system.

Chapter 5 uses a disk model to guide the layout of data on disk.The disk model differs from

the previous ones in the parameters that it considers.

Chapter 6 builds a data-driven model of a different device, aRAID system. This model is used

by an I/O scheduler to decide whether to split or merge requests. In this chapter we apply lessons

learned from building the data-driven disk models to build models for another device, and it helps

generalize our experience.

We conclude with Chapter 7 where we present related work, andwith Chapter 8 where we

summarize our findings and talk about future work.



11

Chapter 2

Application Specific Data-Driven Models

In this chapter we introduce data-driven models. We start bymotivating the use of data-driven

models, then define them. Specifically, we discuss how to build a data-driven model for disks.

In particular, we talk about the choice of input parameters and how they are incorporated by the

model.

2.1 Motivation and Definition

A data-driven model is an empirical model that captures the behavior of the device that it

models by observing the inputs that are fed to the device and then reproducing the output that was

recorded. We intend to use data-driven models in collaboration with a decision making entity in the

system. With the help of the model the policy can make better decisions, because of the increased

information available to it.

The need for these models becomes obvious when we observe thecommon setup of a data

intensive storage system. Consider as an example a web server hosted in a data center, depicted

in Figure 2.1. We can distinguish several layers, stacked ontop of each other: 1) application layer

- the web server that receives requests for pages from remoteclients; 2) operating system layer

that performs traditional functions, such as I/O scheduling and caching; 3) virtual machine layer,

present since it allows for ease of maintenance, better security, utilization, and portability; 4) RAID

storage, for good performance and reliability; 5) hard disks, the final stage of data.

All these layers are connected to their adjacent neighbors (usually two, one above and one be-

low in the stack) through a narrow interface that does not allow for significant information transfer



12

Figure 2.1 Common Setup of the Storage System.This figure shows an example of a possible
setup for a data intensive storage system. The layers that make up the system are connected through
narrow interfaces, that expose little information about the layers.

from one layer to another. This setup is beneficial because itprovides ease of development and

deployment of additional layers, but it also impacts the quality of decisions that can be made. It is

difficult to make a decision that involves information aboutanother layer, because that information

is usually not easily accessible.

For example, let us examine a disk scheduler within an operating system. One basic piece

of knowledge such a scheduler requires is how long a given request will take to be serviced by

the disk. This information allows the scheduler to reorder requests to minimize overall service

times. Unfortunately, this information is not available tothe scheduler, which thus typically use

approximate heuristics to make scheduling decisions (e.g., least distance first). We propose instead

to use a data-driven model of the disk to provide this information to the scheduler.

The data-driven models we propose will be deployed in an on-line manner, as part of a running

system. In many respects, the requirements of an on-line model are more stringent than those

of an off-line model. First, the on-line model shoulda beportable; that is, the model should

be able to capture the behavior of any disk drive that could beused in practice. Second, the



13

on-line model should haveautomatic run-time configuration, since one cannot know the precise

characteristics of the underlying device when constructing the model; it is highly undesirable if

a human administrator must interact with the model. Finally, the on-line model should havelow

overhead; the computation and memory overheads of an on-line model should be minimized such

that the model does not adversely impact system performance.

The use of a data-driven model provides ample opportunitiesfor simplification. The model can

be specialized for the problem domain in question. For example, if the model is used by an I/O

scheduler, it need not predict the individual seek time, track switch time, or cylinder switch time.

The scheduler needs to know only the service time of the requests to reorder them appropriately,

and that is the only characteristic of the system that the model needs to predict.

A data-driven model does not attempt to simulate the mechanisms or components internal to a

layer. Thus, there is no need for in-depth knowledge of how itworks. This is especially relevant

as layers become more complex, and as they incrementally evolve over short periods of time.

Another advantage of data-driven models is the availability of the data used to build the models.

This data is readily available: I/O requests flow through thesystem and they are trivially accessible

at the layer they traverse.

Data-driven models have been used in the context of artificial intelligence, data mining, ma-

chine learning, with applications in fields such as hydroinformatics. We propose their use in the

context of operating systems, with specific applications tomodeling components of the storage

stack.

The data-driven models we propose can be built in an on-line or off-line manner. In the off-line

case, the model is fully built before the system is deployed.In contrast, building a model on-line

requires a start-up phase: the model is built as the system runs and as it sees more requests. In

Chapter 3 we present a disk model that is built either off-line or on-line.

There are trade-offs for both of these options. Building a model on-line might require time for

the model to converge to the final version of the model, as the model gets built. In this start-up

phase the model might not be as exact as when it is fully built.In contrast, an off-line model can

be used and can give accurate predictions from the moment thesystem starts. Building the model



14

off-line requires an initial configuration phase, while theon-line version can be used immediately.

Another possible advantage of the on-line approach is that the model will capture the character-

istics of the current workload and the portion of the device that is exercised by the workload that

currently runs, thus minimizing the space taken up by the model and the configuration time. Build-

ing the model off-line needs to take a more conservative approach and cover all possible cases and

combination of parameters, which might result in wasted space and more time spent to configure

it.

We build data-driven models using a simple table-based approach, in which input parameters

to the simulated device are used to index into a table; the corresponding entry in the table gives

the predicted output for the device. A table-based approachis appropriate for on-line simulation

because it can portably capture the behavior of a variety of devices, requires no manual configu-

ration, and can be performed with little computational overhead. However, there is a significant

challenge as well: to keep the size of the table small, one must identify the input parameters that

significantly impact the desired outputs. The method for reducing this input space depends largely

upon the domain in which the on-line simulator is deployed. We will address this problem in the

upcoming chapters.

2.2 Disk Background

Disk drives are complex systems, and modeling them is challenging: they have mechanical

parts that move, and electronic systems for control. Thus, we consider them a good target in

studying data-driven models. In this section we present a short introduction on how disk drives

function and in the later sections we focus on describing a data-driven model for disks.

A disk drive contains one or moreplatters, where each plattersurfacehas an associated disk

head for reading and writing. Each surface has data stored ina series of concentric circles, or

tracks. A single stack of tracks at a common distance from the spindle is called acylinder. Modern

disks also contain RAM to perform caching; the caching algorithm is one of the most difficult

aspects of the disk to capture and model [73, 98].



15

Accessing a block of data requires moving the disk head over the desired block. The time for

this has two dominant components. The first component isseek time, moving the disk head over

the desired track. The second component isrotation latency, waiting for the desired block to rotate

under the disk head. The time for the platter to rotate is roughly constant, but it may vary around

0.5 to 1% of the nominal rate; as a result, it is difficult to predict the location of the disk head after

the disk has been idle for many revolutions. Besides these two important positioning components

there are other mechanical movements that need to be accounted for: head and track switch time.

A head switch is the time it takes for the mechanisms in the disk to activate a different disk head

to access a different platter surface. A track switch is the time it takes to move a disk head from

the last track of a cylinder to the first one of the next. The disk appears to its client as a linear

array of logical blocks; these logical blocks are then mapped to physical sectors on the platters.

This indirection has the advantage that the disk can reorganize blocks to avoid bad sectors and to

improve performance, but it has the disadvantage that the client does not know where a particular

logical block is located. If a client wants to derive this mapping, there are multiple sources of

complexity. First, different tracks have different numbers of sectors; specifically, due to zoning,

tracks near the outside of a platter have more sectors (and subsequently deliver higher bandwidth)

than tracks near the spindle. Second, consecutive sectors across track and cylinder boundaries are

skewed to adjust for head and track switch times; the skewingfactor differs across zones as well.

Third, flawed sectors are remapped through sparing; sparingmay be done by remapping a bad

sector (or track) to a fixed alternate location or by slippingthe sector (or track) and all subsequent

ones to the next sector (or track).

2.3 Input Parameters for a Data-Driven Model of a Disk

In this section we describe a data-driven model for hard disks. Given that the model uses a

table-driven approach to predict the time for a request as a function of the observable inputs, the

fundamental issue is reducing the number of inputs to the table to a tractable number. Each request

is defined by several parameters: whether it is a read or a write, its block number, its size, the time



16

of the request. At one extreme, the model can keep track of allpossible combinations of input

parameter values, but this leads to a prohibitively large number of input parameters as indices to

the table. Additionally, each request could possibly be influenced by the history of requests that

were previously issued to the disk. Considering this extra dimension increases the input parameter

space even more. For example, for a disk of size 250 GB it couldtake around 3 TB of space to store

information if the model considers request type, block number, size of the request, and interarrival

time.

We do not want to keep track of all possible combinations of input parameters, and their history,

and therefore, we make assumptions about the behavior of theI/O device for the problem domain

of interest. Given that our goal is for the model to be portable across the realistic range of disk

drives, and not to necessarily work on any hypothetical storage device, we can use high-level

assumptions of how disks behave to eliminate a significant number of input parameters. However,

the model will make as few assumptions as possible. In the following chapters we present how

to use a data-driven model for disks to solve several problems, and we will specialize the model

according to the specific problem at hand.

The general approach for building the model is to time the requests that are issued to the disk

and then fill in the appropriate place in the table associatedwith the corresponding input parameters

that characterize the request. Later on, when requests withthe same characteristics are seen by the

model, it can predict their behavior based on what it observed previously.

In the opinion of Ruemmler and Wilkes [56], the following aspects of the disk should be mod-

eled for the best accuracy: seek time (calculated with two separate functions depending upon the

seek distance from the current and final cylinder position ofthe disk head and different for reads

and writes), head and track switches, rotation latency, data layout (including reserved sparing areas,

zoning, and track and cylinder skew), and data caching (bothread-ahead and write-behind).

In the following sections we describe how different input parameters can affect the behavior

of the disk. More specifically we are going to present the effect of inter-request distance, request

size, think time, and type of request (read or write) on the request service time. These parameters



17

correspond roughly to the parameters that define a request, and thus can give us a good insight

about the expected disk behavior under varied inputs.

2.3.1 History of Requests

There are several approaches for incorporating the historyof requests, with the two extremes

being the following. At one end, the model could keep track ofall requests that were issued to the

device from the moment the system started. At the other end, the model could look only at the

current request issued.

The trade-offs for these approaches are the following. If the full history of requests is main-

tained, the space to hold it will grow prohibitively large. With a full history, the model could

capture the behavior of the device better. At the other extreme, if no history is maintained, then the

space overhead is reduced, but maybe the accuracy of the model is impacted.

We choose a solution in between the two extremes, taking intoconsideration that we want our

models to have a low space overhead and also capture the important characteristics of the device.

We base our decision on knowledge about how a disk drive works.

As an example, let us assume the disk head has to service two requests, with no think time

in between them. From a mechanical movement point of view, inorder to service the second

request, the disk head has to move from where the first requestfinished to the beginning of the

second request. Thus, intuitively, keeping track of the distance between the two requests is a good

indicator of the activity that the disk has to do in order to service the second one. We will look into

more detail in the next sections and chapters on how to define the distance and how it captures the

disk behavior.

Other disk characteristics to consider are think time, the type of request, or how caching and

prefetching effects are captured. We discuss think time andtype of request in more detail in the

next sections. The aspect which we model the least directly is that of general caching. However,

the model will capture the effects of simple prefetching, which is the most important aspect of

caching for scheduling [97]. For example, if a read of one sector causes the entire track to be

cached, then the model will observe the faster performance of accesses with distances less than



18

that of a track. In this respect, configuring the model on-line by observing the actual workload

could be more accurate than configuring off-line, since the locality of the workload is captured.

2.3.2 Inter-request Distance

We define the inter-request distance as the logical distancefrom the first block of the current

request to the last block of the previous request. This definition is similar to the one proposed

previously by other researchers [98]. We present some of thedisk characteristics that are captured

by keeping track of this input parameter.

Our approach accounts for the combined costs of seek time, head and track switches, and

rotation layout, in a probabilistic manner. That is, for a given inter-request distance, there is some

probability that a request crosses track or even cylinder boundaries. Requests of a given distance

that cross the same number of boundaries have the same total positioning time: the same number

of track seeks, the same number of head and/or track switches, and the same amount of rotation.

We note that the table-based method for tracking positioning time can bemoreaccurate than

that advocated by Ruemmler and Wilkes; instead of expressing positioning time as a value com-

puted as a sum of functions (seek time, rotation time, caching, etc.), the model records the precise

positioning time for each distance.

The cost incurred by the rotation of the disk has two components: the rotational distance be-

tween the previous and current request, and the elapsed timebetween the two requests (and thus,

the amount of rotation that has already occurred). Using inter-request distance probabilistically

captures the rotational distance. We refer to the effects ofthe amount of time elapsed from the last

request (think time) in one of the next subsections.

Data layout is incorporated fairly well by the model as well.The number of sectors per track

and number of cylinders impact our measured values in that these sizes determine the probability

that a request of a given inter-request distance crosses a boundary; thus, these sizes impact the

probability of each observed time in the distribution. One of the applications we are targeting

is I/O scheduling (Chapter 3). Although zoning behavior andbad sectors are not tracked by our

model, previous research has shown that this level of detaildoes not help with scheduling [97].



19

2.3.3 Request Size

Applications can write data in different sizes. Thus, the model must be able to capture the disk

behavior when request size varies. The model explores service times for a range of request sizes.

One might expect, for a given inter-request distance, that service time will increase linearly with

request size, under the assumption that the positioning time is independent of request size and that

the transfer time is a linear function of the request size. Weshow in the next chapters that this

expectation holds true for most inter-request distances wehave sampled.

We propose to deploy the disk model in tandem with a specific application. There are applica-

tions where modeling the request size is important, such as an application that writes transactions

to a log. In this situation, incorporating the request size in the model is required. Other applications

might only issue requests of a given size: for example a disk scrubber that reads 4 KB blocks from

the disk. In this situation, the associated model does not need to incorporate the request size as

part of the input parameters.

2.3.4 Think Time

Applications often have think time (i.e., computation time) between requests. Thus, the model

will see idle time between arriving requests and must account for the fact that the disk platters

continue to rotate between these requests. When in off-linemode, the model configures the think

time parameter by issuing requests to the disk as it varies the idle time between those requests. In

an on-line configuration mode, the model times the think timeand records the service time in the

corresponding entrance in the table.

In Chapter 3 we present how to use a data-driven model of the disk to help a throughput

optimizing I/O scheduler make decisions. More specifically, we target data-intensive servers. In

this environment the I/O requests have no think time, and thus, the model does not need to track it.

Of course, there are other instances when the think time doesneed to be incorporated, as we show

in Chapter 5.



20

2.3.5 Operation Type

The seek time for reads is likely to be less than that for writes, since reads can be performed

more aggressively. A read can be performed when a block is notyet quite available because the

read can be repeated if it was performed from the wrong sector; however, a write must first verify

that it is at the right sector to avoid overwriting other data.

In addition, the type of the last operation issued also influences service time [56]. To account

for these factors in our table-based model, the request type(read or write) of the current and

previous requests is one of the input parameters we keep track of.

Caching can also affect the service time of read or write requests. A read cache can store data

that was previously accessed from the disk, thus resulting in a shorter service time if the same data

is accessed again. A write back cache can delay writing data to disk, resulting in faster disk writes,

at the expense of risking loosing data. As mentioned previously, we can capture simple caching

and prefetching effects, though we do not specifically modelthe caching or prefetching policies.

Some of the applications we target in the next chapters do notrequire the model to keep track

of operation type as a parameter. For example, in Chapter 5 westudy how to optimize the small

write problem, and since the workload is write-only, the model does not need to consider operation

type as an input parameter.

2.4 Summary

In this chapter we introduced data-driven models and we discussed a concrete case of a model

for a disk drive. In particular we looked at the choice of input parameters. In the following chapters

we will present a more in-depth discussion of application specific data-driven models.



21

Chapter 3

File System Level I/O Scheduling

I/O scheduling is an important optimization in the storage stack, but implementing an efficient

I/O scheduler is challenging. In this chapter we address howto implement an I/O scheduler that is

aware of the underlying disk technology in a simple, portable, and robust manner. To achieve this

goal, we introduce the Disk Mimic, which meets the requirements of a data-driven on-line model

for disk scheduling.

The Disk Mimic is able to capture the behavior of a disk drive in a portable, robust, and efficient

manner. To predict the performance of a disk, the Disk Mimic uses a simple table, indexed by the

relevant input parameters to the disk, in this case the type of request and the inter-request distance.

The Disk Mimic does not attempt to simulate the mechanisms orcomponents internal to the disk;

instead, it simply reproduces the output as a function of theinputs it has observed.

We start by giving a short background introduction to I/O scheduling. We then present our

approach and the new scheduler we are proposing. We continueby an in depth description of

the model that is used in correlation with the scheduler and then we evaluate it in an off-line and

on-line setting.

3.1 I/O Scheduling Background

An I/O scheduler takes as input a set of I/O requests and it reorders them to accomplish a

target optimization: better throughput, quality of service, fairness, etc. We focus on schedulers

that optimize for throughput, which means they try to maximize the number of requests that are

serviced by the storage system.



22

There are two main axis along which the scheduler can be improved. One of them focuses on

the algorithm used to pick the requests to be issued. These algorithms are complex, and they are

recognized in the literature as being NP complete. The classic solution is to use a greedy algorithm,

that always picks the next ’best’ request out of the ones thatare currently waiting to be scheduled.

While this might not be globally optimal, it is preferable because of the lower computational costs.

There has been recent research in optimizations along this axis.

We are instead targeting improving the information that is used by the scheduler to decide what

is the ’best’ request to be picked next. Ideally, the scheduler knows for each request exactly how

long it will take to be serviced. Unfortunately this information is not readily available. To service

a request the disk has to perform mechanical positioning andelectronic adjustments, and thus,

predicting the service time from a layer above the disk is non-trivial. The interface to the disk is a

simple block based interface, that does not transfer information about the current state of the disk,

or service times.

In overcoming this information challenge, I/O schedulers took different approaches over time.

The underlying theme for all of them is that they obtain the information they need by using a static

model of the disk. The model used varied according to changesin disks characteristics.

Disk schedulers in the 1970s and 1980s focused on minimizingseek time, given that seek time

was often an order of magnitude greater than the expected rotational delay [34, 81, 94]. In the

early 1990s, the focus of disk schedulers shifted to take rotational delay into account, as rotational

delays and seek costs became more balanced [37, 67, 97].

At the next level of sophistication, a disk scheduler takes all aspects of the underlying disk

into account: track and cylinder switch costs, cache replacement policies, mappings from logical

block number to physical block number, and zero-latency writes. For example, Worthingtonet al.

demonstrate that algorithms that effectively utilize a prefetching disk cache perform better than

those that do not [97].

Many modern disks implement scheduling in the device itself. While this might suggest that

file system I/O scheduling is obsolete, there are several reasons why the file system should perform

scheduling. First, disks are usually able to schedule only alimited number of simultaneous requests



23

since they have more restrictive space and computational power constraints. Second, there are

instances when increased functionality requires the scheduling to be done at file system level.

For example, Iyer and Druschel introduce short waiting times in the scheduler to preserve the

continuity of a stream of requests from a single process rather than interleaving streams from

different processes [36]. Further, Shenoy and Vin implement different service requirements for

applications by implementing a scheduling framework in thefile system [72].

3.2 A Different Approach

As an alternative to the previous approaches, we propose to incorporate the Disk Mimic into

the I/O scheduler. By using adata-driven modelof the disk the scheduler can predict which request

in its queue will have the shortest positioning time. Although a variety of disk simulators exist [27,

41, 95], most are targeted for performing traditional, off-line simulations, and unfortunately, the

infrastructure for performing on-line simulation is fundamentally different.

We show that for disk scheduling, two input parameters are sufficient for predicting the posi-

tioning time: the logical distance between two requests andthe request type. However, when using

inter-request distance for prediction, two issues must be resolved. First, inter-request distance is

a fairly coarse predictor of positioning time; as a result, there is high variability in the times for

different requests with the same distance. The implicationis that the Disk Mimic must observe

many instances for a given distance and use an appropriate summary metric for the distribution;

experimentally, we have found that summarizing a small number of samples with the mean works

well. Second, given the large number of possible inter-request distances on a modern disk drive,

the Disk Mimic cannot record all distances in a table of a reasonable size. We show that simple

linear interpolation can be used to represent ranges of missing distances, as long as some number

of the interpolations within each range are checked againstmeasured values.

We propose a new disk scheduling algorithm, shortest-mimicked-time-first (SMTF), which

picks the request that is predicted by the Disk Mimic to have the shortest positioning time. We



24

demonstrate that the SMTF scheduler can utilize the Disk Mimic in two different ways; specif-

ically, the Disk Mimic can either be configured off-line or on-line, and both approaches can be

performed automatically. When the Disk Mimic is configured off-line, it performs a series of

probes to the disk with different inter-request distances and records the resulting times; in this sce-

nario, the Disk Mimic has complete control over which inter-request distances are observed and

which are interpolated. When the Disk Mimic is configured on-line, it records the requests sent by

the running workload and their resulting times. Note that regardless of whether the Disk Mimic is

configured off-line or on-line, the simulation itself is always performed on-line, within an active

system.

We show that the Disk Mimic can be used to significantly improve the throughput of disks

with high utilization. Specifically, for a variety of simulated and real disks, C-LOOK and SSTF

perform between 10% and 50% slower than SMTF. Further, we demonstrate that the Disk Mimic

can be successfully configured on-line; we show that while the Disk Mimic learns about the storage

device, SMTF performs no worse than a base scheduling algorithm (e.g., C-LOOK or SSTF) and

quickly performs close to the off-line configuration (i.e., after approximately 750,000 requests).

3.3 The SMTF Scheduler

We now describe the approach of a new file system I/O schedulerthat leverages the Disk Mimic.

We refer to the algorithm implemented by this scheduler as shortest-mimicked-time-first, or SMTF.

The basic function that SMTF performs is to order the queue ofrequests such that the request with

the shortest positioning time, as determined by the Disk Mimic, is scheduled next. However, given

this basic role, there are different optimizations that canbe made. The assumptions that we use for

this chapter are as follows.

First, we assume that the goal of the I/O scheduler is to optimize thethroughputof the storage

system. We do not consider the fairness of the scheduler. We believe that the known techniques

for achieving fairness (e.g., weighting each request by its age [37, 66]) can be added to SMTF as

well.



25

Second, we assume that the I/O scheduler is operating in an environment with heavy disk traffic.

Given that the queues at the disk may contain hundreds or eventhousands of requests [37, 66],

the computational complexity of the scheduling algorithm is an important issue [5]. Given these

large queue lengths, it is not feasible to perform an optimalscheduling decision that considers all

possible combinations of requests. Therefore, we considera greedy approach, in which only the

time for the next request is minimized [37].

To evaluate the performance of SMTF, we compare to the algorithms most often used in prac-

tice: first-come-first-served (FCFS), shortest-seek-time-first (SSTF), and C-LOOK. FCFS simply

schedules requests in the order they were issued. SSTF selects the request that has the smallest

difference from the last logical block number (LBN) accessed on disk. C-LOOK is a variation of

SSTF where requests are still serviced according to their LBN proximity to the last request ser-

viced, but the scheduler picks requests only in ascending LBN order. When there are no more such

requests to be serviced, the algorithm picks the request in the queue with the lowest LBN and then

continues to service requests in ascending order.

To compare our performance to the best possible case, we havealso implemented a best-case-

greedy scheduler for our simulated disks; this best-case scheduler knows exactly how long each

request will take on the simulated disk and greedily picks the request with the shortest positioning

time next. We refer to this scheduler as the greedy-optimal scheduler.

3.4 Reducing Input Parameters for The Disk Mimic

Given that the Disk Mimic uses a table-driven approach to predict the time for a request as a

function of the observable inputs, the fundamental issue isreducing the number of inputs to the

table to a tractable number. If the I/O device is treated as a true black box, in which one knows

nothing about the internal behavior of the device, then the Disk Mimic must assume that the service

time for each request is a function of all previous requests.Given that each request is defined by

many parameters (i.e., whether it is a read or a write, its block number, its size, the time of the



26

request, and even its data value), this leads to a prohibitively large number of input parameters as

indices to the table.

Therefore, the only tractable approach is to make assumptions about the behavior of the I/O

device for the problem domain of interest. Given that our goal is for the I/O scheduler to be portable

across the realistic range of disk drives, and not to necessarily work on any hypothetical storage

device, we can use high-level assumptions of how disks behave to eliminate a significant number

of input parameters; however, the Disk Mimic will make as fewassumptions as possible.

Our current implementation of the Disk Mimic predicts the time for a request from two input

parameters: therequest typeand theinter-request distance. We define inter-request distance as the

logical distance from the first block of the current request to the last block of the previous request.

The conclusion that request type and inter-request distance are key parameters agrees with that of

previous researchers [56, 83].

3.4.1 Input Parameters

As previously explained, read and write operations take different times to execute. Besides

this, as noted in [56, 27] the type of the last operation issued will also influence the service time.

In order to account for this in our table-based model we record the request type (read or write) of

the current and previous request as one of the input parameters.

The other input parameter we track is the inter-request distance between logical block ad-

dresses. We note that ordering requests based on the time fora given distance is significantly

different than using the distance itself. Due to the complexity of disk geometry, some requests that

are separated by a larger logical distance can be positionedmore rapidly; the relationship between

the logical block address distance and positioning time is not linear. Capturing this characteristic

is essential in providing a better I/O scheduler.

We mentioned in Chapter 2 how the inter-request distance captures seek and rotation charac-

teristics, as well as the layout characteristics of the disk. Probabilistically, requests with the same

inter-request distance will cross the same number of tracks, or incur the same number of cylinder

switches. Also, the layout of sectors on disk will be reflected in the time associated



27

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

T
im

e 
(m

s)

Number of requests

132 KB

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

T
im

e 
(m

s)

Number of requests

224 KB

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

T
im

e 
(m

s)

Number of requests

300 KB

Figure 3.1 Distribution of Off-Line Probe Times for Three Inter-Reque st Distances. Each
graph shows a different inter-request distance: 132 KB, 224KB, and 300 KB. Along thex-axis, we
show each of the 1000 probes performed (sorted by time) and along they-axis we show the time
taken by that probe. These times are for an IBM 9LZX disk.



28

The applications that we are targeting, high load storage servers, handle I/O intensive work-

loads. In these environments the scheduling queues are full, and there is no think time between the

I/O requests. If that were not the case, then the performanceof the I/O scheduler would not impact

the overall performance of the system. Thus, we consider that the think time is constant and equal

to zero, and we do not need to incorporate think time as an input parameter.

The size of the request is another possible candidate as an input parameter. For the workloads

we considered, we did not have to incorporate the request size as an input parameter, since the

request sizes did not vary a lot and did not show an impact whencomparing service times. It

is possible that for other workloads the request size would have to be sampled and possibly be

introduced as an input parameter as well.

Given the complexity associated with the inter-request distance, we concentrate on the issues

related to this input parameter. For different values of therequest type, the output of the Disk

Mimic has the same characteristics, and thus we do not need toexplore all the possible combina-

tions of the two input parameters in our further discussions. Hence when we refer to inter-request

distance we assume the request type is fixed.

3.4.2 Measured Service Times

To illustrate some of the complexity of using inter-requestdistance as predictor of request time,

we show the distribution of times observed. For these experiments, we configure the Disk Mimic

off-line as follows.

The Disk Mimic configures itself by probing the I/O device using fixed-size requests (e.g., 1

KB). For each of the possible inter-request distances covering the disk (both negative and positive),

the Disk Mimic samples a number of points of the same distance: it accesses a block the specified

distance from the previous block. To avoid any caching or prefetching performed by the disk,

the Disk Mimic accesses a random location before each new probe of the required distance. The

observed times are recorded in a table, indexed by the inter-request distance and the corresponding

operation type.



29

In Figure 3.1 we show a small subset of the data collected on anIBM 9LZX disk. The figure

shows the distribution of 1000 samples for three inter-request distances of 132 KB, 224 KB, and

300 KB. In each case, they-axis shows the request time of a sample and the points along the

x-axis represent each sample, sorted by increasing request time.

We make two important observations from the sampled times. First, for a given inter-request

distance, the observed request time is not constant; for example, at a distance of 132 KB, about

10% of requests require 1.8ms, about 90% require 6.8ms, and a few require almost 8ms. Given

this multi-modal behavior, the time for a single request cannot be reliably predicted from only the

inter-request distance; thus, one cannot usually predict whether a request of one distance will be

faster or slower than a request of a different distance. Nevertheless, it is often possible to make

reasonable predictions based upon the probabilities: for example, from this data, one can conclude

that a request of distance 132 KB is likely to take longer thanone of 224 KB.

Second, from examining distributions for different inter-request distances, one can observe that

the number of transitions and the percentage of samples witheach time value varies across inter-

request distances. The number of transitions in each graph corresponds roughly to the number of

track (or cylinder) boundaries that can be crossed for this inter-request distance.

This data shows that a number of important issues remain regarding the configuration of the

Disk Mimic. First, since there may be significant variation in request times for a single inter-

request distance, what summary metric should be used to summarize the distribution? Second,

how many samples are required to adequately capture the behavior of this distribution? Third,

must each inter-request distance be sampled, or is it possible to interpolate intermediate distances?

We investigate these issues in Section 3.6.

3.5 Methodology

To evaluate the performance of SMTF scheduling, we considera range of disk drive technol-

ogy, presented in Table 3.1. We have implemented a disk simulator that accurately models seek

time, fixed rotation latency, track and cylinder skewing, and a simple segmented cache. The first



30

Configuration rotation seek cyl track cyl sectors num
time 1 cyl 400 3000 switch skew skew per track heads

1 Base 6 0.8 6.0 8 1.78 36 84 272 10
2 Fast seek 6 0.16 1.32 1.6 1.00 36 46 272 10
3 Slow seek 6 2.0 33.0 40.0 2.80 36 127 272 10
4 Fast rotate 2 0.8 6.0 8 1.78 108 243 272 10
5 Slow rotate 12 0.8 6.0 8 1.78 18 41 272 10
6 Fast seek+rot 2 0.160 1.32 1.6 1.00 108 136 272 10
7 More capacity 6 0.8 6.0 8 1.78 36 84 544 20
8 Less capacity 6 0.8 6.0 8 1.78 36 84 136 5

Table 3.1Disk Characteristics. Configurations of eight simulated disks. Times for rotation, seek,
and head and cylinder switch are in milliseconds, the cylinder and track skews are expressed in
sectors. The head switch time is 0.79 ms. In most experiments, the base disk is used.

disk, also named thebase disk, simulates a disk with performance characteristics similar to an

IBM 9LZX disk. The seek times, cache size and number of segments, head and cylinder switch

times, track and cylinder skewing and rotation times are either measured by issuing SCSI com-

mands and measuring the elapsed time, or directly querying the disk, similar to the approach used

by Schindler and Ganger [60], or by using the values providedby the manufacturer. The curve

corresponding to the seek time is modeled by probing an IBM 9LZX disk for a range of seek

distances (measured as the distance in cylinders from the previous cylinder position to the current

one) and then curve fitting the values to use the two-functionequation proposed by Ruemmler and

Wilkes [56]. For short seek distances the seek time is proportional to the square root of the cylin-

der distance, and for longer distances the seek time is proportional to the cylinder distance. The

middle value in the seek column represents the cylinder distance where the switch between the two

functions occurs. For example, for the base disk, if the seekdistance is smaller than 400 cylinders,

we use the square root function.

For the other disk configurations we simulate, we start from the base disk and vary different

parameters that influence the positioning time. For example, disk configuration number 2 (Fast

seek) represents a disk that has a fast seek time and the numbers used to compute the seek curve are

adjusted accordingly, as well as the number of sectors that constitute the cylinder skew. Similarly

for disk configuration number 4 (Fast rotate) the time to execute a rotation is decreased by a



31

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

7.5e+06

8e+06

8.5e+06

9e+06

1 10 100

T
im

e 
(m

s)

Scaling factor

FCFS
SSTF

C_LOOK
SMTF min

SMTF probabilistic
SMTF max

SMTF median
SMTF mean

greedy-optimal

Figure 3.2 Sensitivity to Summary Metrics. This graph compares the performance of a variety
of scheduling algorithms on the base simulated disk and the week-long HP trace. For the SMTF
schedulers, no interpolation is performed and 100 samples are obtained for each data point. The
x-axis shows the compression factor applied to the workload.They-axis reports the time spent at
the disk.

factor of three and the number of track and cylinder skew sectors are increased. The other disk

configurations account for disks that have a slower seek time, slower rotation time, faster seek

time, faster rotation time and more or less capacity than thebase disk. In addition to using the

described simulated disks we also run our experiments on an IBM 9LZX disk.

To evaluate scheduling performance, we show results from a set of traces collected at HP

Labs [55]; in most cases, we focus on the trace for the busiestdisk from the week of 5/30/92 to

6/5/92. For our performance metric, we report the time the workload spent at the disk. To consider

the impact of heavier workloads and longer queue lengths, wecompress the inter-arrival time

between requests. When scaling time, we attempt to preservethe dependencies across requests

in the workload by observing the blocks being requested; we assume that if a request is repeated

to a block that has not yet been serviced, that this request isdependent on the previous request

first completing. Thus, we hold repeated requests, and all subsequent requests, until the previous

identical request completes.



32

3.6 Off-Line Configuration

The SMTF scheduler can be configured both on-line and off-line. We now explore the case

when the Disk Mimic has been configured off-line; again, although the Disk Mimic is configured

off-line, the simulation and predictions required by the scheduler are still performed on-line within

the system. As described previously, configuring the Disk Mimic off-line involves probing the

underlying disk with requests that have a range of inter-request distances. We note that even when

the model is configured off-line, the process of configuring SMTF remains entirely automatic and

portable across a range of disk drives. The main drawback to configuring the Disk Mimic off-line

is a longer installation time when a new device is added to thesystem: the disk must be probed

before it can be used for workload traffic.

3.6.1 Summary Data

To enable the SMTF scheduler to easily compare the expected time of all of the requests in

the queue, the Disk Mimic must supply a summary value for eachdistribution as a function of the

inter-request distance. Given the multi-modal characteristics of these distributions, the choice of

a summary metric is not obvious. Therefore, we evaluate five different summary metrics:mean,

median, maximum, minimum, andprobabilistic, which randomly picks a value from the sam-

pled distribution according to its probability.

The results for each of these summary metrics on the base simulated disk are shown in Fig-

ure 3.2. For the workload, we consider the week-long HP trace, scaled by the compression factor

noted on thex-axis. The graph shows that FCFS, SSTF, and C-LOOK all perform worse than each

of the SMTF schedulers; as expected, the SMTF schedulers perform worse than the greedy-optimal

scheduler, but the best approach is always within 7% for thisworkload. These results show that

using inter-request distance to predict positioning time merits further attention.

Comparing performance across the different SMTF approaches, we see that each summary met-

ric performs quite differently. The ordering of performance from best to worse is:mean, median,

maximum, probabilistic, andminimum. It is interesting to note that the scheduling performance



33

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
im

e 
(m

s)

Ordered requests

Summary metric: Probability   Percentage error: 5.4 %

probabil
disk

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
im

e 
(m

s)

Ordered requests

Summary metric: Mean   Percentage error: 5.8 %

mean
disk

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000 50000 60000

T
im

e 
(m

s)

Ordered requests

Summary metric: Maximum   Percentage error 21.7 %

max
disk

Figure 3.3 Demerit Figures for SMTF with Probability, Mean, and Maximu m Summary
Metrics. Each graph shows the demerit figure for a different summary metric. These distributions
correspond to the one day from the experiments shown in Figure 3.2 with a compression factor of
20.



34

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

7.5e+06

8e+06

8.5e+06

9e+06

1 10 100 1000

T
im

e 
(m

s)

Samples

FCFS
SSTF

C_LOOK
SMTF

greedy-optimal

Figure 3.4 Sensitivity to Number of Samples.The graph shows that the performance of SMTF
improves with more samples. The results are on the simulateddisk and the week-long HP trace
with a compression factor of 20. Thex-axis indicates the number of samples used for SMTF. The
y-axis shows the time spent at the disk.

of each summary metric is not correlated with its accuracy. The accuracy of disk models is often

evaluated according to itsdemerit figure[56], which is defined as the root mean square of the hori-

zontal distance between the time distributions for the model and the real disk. This point is briefly

illustrated in Figure 3.3, which shows the distribution of actual times versus the predicted times

for three different metrics:probabilistic, mean, andmaximum.

As expected, theprobabilistic model has the best demerit figure; with many requests, the

distribution it predicts is expected to match that of the real device. However, theprobabilistic

model performs relatively poorly within SMTF because the time it predicts for any one request

may differ significantly from the actual time for that request. Conversely, although themaximum

value results in a poor demerit figure, it performs adequately for scheduling; in fact, SMTF with

maximum performs significantly better than withminimum, even though both have similar demerit

figures. Finally, using themean as a summary of the distribution achieves the best performance,

even though it does not result in the best demerit figure; we have found thatmean performs best



35

0

2

4

6

8

10

12

14

-1500 -1000 -500 0 500 1000 1500

M
ea

n 
tim

e 
of

 r
eq

ue
st

 (
m

s)

Inter-request distance (MB)

Full Range

3

4

5

6

7

8

9

-109.4 -109.2 -109 -108.8 -108.6 -108.4

M
ea

n 
tim

e 
of

 r
eq

ue
st

 (
m

s)

Inter-request distance (MB)

Close-up

Figure 3.5Mean Values for Samples as a Function of Inter-request Distance.The graph on top
shows the mean time for the entire set of inter-request distances on our simulated disk. The graph
on the bottom shows a close-up for inter-request distances;other distances have qualitatively
similar saw-tooth behavior.

for all other days from the HP traces we have examined as well.Thus, for the remainder of our

experiments, we use the mean of the observed samples as the summary data for each inter-request

distance.



36

3.6.2 Number of Samples

Given the large variation in times for a single inter-request distance, the Disk Mimic must

perform a large number of probe samples to find the true mean ofthe distribution. However,

to reduce the time required to configure the Disk Mimic off-line, we would like to perform as

few samples as possible. Thus, we now evaluate the impact of the number of samples on SMTF

performance.

Figure 3.4 compares the performance of SMTF as a function of the number of samples to the

performance of FCFS, C-LOOK, SSTF, and optimal. As expected, the performance of SMTF

increases with more samples; on this workload and disk, the performance of SMTF continues to

improve up to approximately 10 samples. However, most interestingly, even with a single sample

for each inter-request distance, the Disk Mimic performs better than FCFS, C-LOOK, and SSTF.

3.6.3 Interpolation

Although the number of samples performed for each inter-request distance impacts the running

time of the off-line probe process, an even greater issue is whether each distance must be explicitly

probed or if some can be interpolated from other distances. Due to the large number of potential

inter-request distances on a modern storage device (i.e., two times the number of sectors for both

negative and positive distances), not only does performingall of the probes take a significant

amount of time, but storing each of the mean values is prohibitive as well. For example, given a

disk of size 10 GB, the amount of memory required for the tablecan exceed 800 MB. The size of

the table grows liniar with the size of the disk, thus especially for large disks we want to investigate

methods to reduce the size of the table.

From the point of view of data-driven models, there is no special requirement to use a table

based approach for storing the data. An alternative solution can be to curve fit a function accross

some of the points sampled by the model, and then use that function to make the predictions. Since

our main goal is not to have the best compact representation of the model, we do not focus more

on this problem.



37

5.6e+06

5.8e+06

6e+06

6.2e+06

6.4e+06

6.6e+06

6.8e+06

7e+06

0 5 10 15 20 25 30

T
im

e 
(m

s)

Percent error %

1 check
5 checks

10 checks
No interpolation

SSTF
C_LOOK

Figure 3.6 Sensitivity to Interpolation. The graph shows performance with interpolation as a
function of the percent of allowable error. Different linescorrespond to different numbers of check
points,N . Thex-axis is the percent of allowable error and they-axis is the time spent at the disk.
These results use the base simulated disk and the week-long HP trace with a compression factor
of 20.

We also note that it is not necessary that all the entries in the table end up being used. For

example, there can be workloads that exercise only a limitednumber of inter-requests distances.

This can be especially true for workloads with high locality. As an optimization, it is common

for file systems to try to layout data in such a way that files that are accessed together are places

close by on disk also. For example, ext3 allocates files in thesame directory together in the same

cylinder group.

We explore how some distances can be interpolated without making detailed assumptions about

the underlying disk. To illustrate the potential for performing simple interpolations, we show the

mean value as a function of the inter-request distance in Figure 3.5. The graph on the left shows

the mean values for all inter-request distances on our simulated disk. The curve of the two bands

emanating from the middle point corresponds to the seek curve of the disk (i.e., for short seeks,

the time is proportional to the square root of the distance, whereas for long, the time is linear with

distance); the width of the bands is relatively constant andcorresponds to the rotation latency of



38

Check Points Acceptable
N Error
1 1 %
2 2 %
3 5 %
4 10 %
5 15 %
10 20 %

Table 3.2Allowable Error for Interpolation. The table summarizes the percentage within which
an interpolated value must be relative to the probed value inorder to infer that the interpolation is
successful. As more check points are performed between two inter-request distances, the allowable
error increases. The numbers were gathered by running a number of different workloads on the
simulated disks and observing the point at which performance with interpolation degrades relative
to that with no interpolation.

the disk. The graph on the right shows a close-up of the inter-request distances. This graph shows

that the times follow a distinct saw-tooth pattern; as a result, a simple linear model can likely be

used to interpolate some distances, but care must be taken toensure that this model is applied to

only relatively short distances.

Given that the length of the linear regions varies across different disks (as a function of the track

and cylinder size), our goal is not to determine the particular distances that can be interpolated

successfully. Instead, our challenge is to determine when an interpolated value is “close enough”

to the actual mean such that scheduling performance is impacted only negligibly.

Our basic off-line interpolation algorithm is as follows. After the Disk Mimic performsS

samples of two inter-request distancesleft andright, it chooses a random distancemiddlebetween

left andright; it then linearly interpolates the mean value formiddlefrom the means forleft and

right. If the interpolated value formiddleis within error percent of the probed value formiddle,

then the interpolation is considered successful and all thedistances betweenleft and right are

interpolated. If the interpolation is not successful, the Disk Mimic recursively checks the two

smaller ranges (i.e., the distances betweenleft andmiddleand betweenmiddleand right) until

either the intermediate points are successfully interpolated or until all points are probed.

For additional confidence that linear interpolation is valid in a region, we consider a slight vari-

ation in whichN points betweenleft andright are interpolated and checked. Only if allN points



39

are predicted with the desired level of accuracy is the interpolation considered successful. The

intuition of performing more check points is that a higher error rate can be used and interpolation

can still be successful.

Figure 3.6 shows the performance of SMTF when distances are interpolated; the graph shows

the effect of increasing the number of intermediate pointsN that are checked, as well as increasing

the acceptable error,error, of the interpolation. We make two observations from this graph.

First, SMTF performance decreases as the allowable error ofthe check points increases. Al-

though this result is to be expected, we note that performance decreases dramatically with the error

not because the error of the checked distances is increased,but because the interpolated distances

are inaccurate by much more. For example, with a single checkpoint (i.e., N = 1) and an error

level of 5%, we have found that only 20% of the interpolated values are actually accurate to that

level and the average error of all interpolated values increases to 25% (not shown). In summary,

when error increases significantly, there is not a linear relationship for the distances betweenleft

andright and interpolation should not be performed.

Second, SMTF performance for a fixed error increases with thenumber of intermediate check

pointsN . The effect of performing more checks is to confirm that linear interpolation across these

distances is valid. For example, withN = 10 check points anderror = 5%, almost all interpolated

points are accurate to that level and the average error is less than 1% (also not shown).

Table 3.2 summarizes our findings for a wider number of check points. The table shows the

allowable error percentage as a function of the number of check points,N , to achieve scheduling

performance that is very similar to that with all probes. Thus, the final probe process can operate

as follows. If the interpolation of one distance betweenleft andright has an error less than 1%, it is

deemed successful. Otherwise, if two distances betweenleft andright have errors less than 2%, the

interpolation is successful as well. Thus, progressively more check points can be made with higher

error rates to be successful. With this approach, 90% of the distances on the disk are interpolated

instead of probed, and yet scheduling performance is virtually unchanged; thus, interpolation leads

to a 10-fold memory savings.



40

2 3 4 5 6 7 8
Disk configuration

1.0

1.2

1.4

1.6

1.8

2.0
S

lo
w

do
w

n
FCFS

C_LOOK

SSTF

SMTF

Figure 3.7 Sensitivity to Disk Characteristics. This figure explores the sensitivity of schedul-
ing performance to the disk characteristics shown in Table 3.1. Performance is shown relative
to greedy-optimal. We report values for SMTF using interpolation. The performance of SMTF
without interpolation (i.e., all probes) is very similar.

3.6.4 Disk Characteristics

To demonstrate the robustness and portability of the Disk Mimic and SMTF scheduling, we

now consider the full range of simulated disks described in Table 3.1. The performance of FCFS,

C-LOOK, SSTF, and SMTF relative to greedy-optimal for each of the seven new disks is summa-

rized in Figure 3.7. We show the performance of SMTF with interpolation. The performance of

SMTF with and without interpolation is nearly identical. Asexpected, FCFS performs the worst

across the entire range of disks, sometimes performing morethan a factor of two slower than

greedy-optimal. C-LOOK and SSTF perform relatively well when seek time dominates perfor-

mance (e.g., disks 3 and 4); SSTF performs better than C-LOOK in these cases as well. Finally,

SMTF performs very well when rotational latency is a significant component of request position-

ing (e.g., disks 2 and 5). In summary, across this range of disks, SMTF always performs better

than both C-LOOK and SSTF scheduling and within 8% of the greedy-optimal algorithm.

To show that SMTF can handle the performance variation of real disks, we compare the per-

formance of our implementation of SMTF to that of C-LOOK whenrun on the IBM 9LZX disk.



41

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 200 400 600 800 1000 1200 1400

S
lo

w
do

w
n 

C
_L

O
O

K

Maximum inter-request distance (MB)

Real disk: comparison SMTF off-line and C_LOOK

Figure 3.8Real Disk Performance.This graph shows the slowdown of C-LOOK when compared
to the SMTF configured off-line. The workload is a synthetically generated trace and the numbers
are averages over 20 runs. The standard deviation is also reported. Thex-axis shows the maximum
inter-request distance existent in the trace and they-axis reports the percentage slowdown of the
C-LOOK algorithm.

On the one week HP trace, we achieve a performance improvement of 8% for SMTF compared

C-LOOK and an improvement of 12% if idle time is removed from the trace. This performance

improvement is not as significant as it could be for two reasons. First, the IBM 9LZX disk has a

relatively high ratio of seek to rotation time; the performance improvement of SMTF relative to

C-LOOK is greater when rotation time is a more significant component of positioning. Second,

the HP trace exercises a large amount of data on the disk; whenthe locality of the workload is low

as in this trace, seek time further dominates positioning time.

To explore the effect of workload locality we create a synthetic workload of random 1 KB

reads and writes with no idle time; the maximum inter-request distance is varied, as specified on

thex-axis of Figure 3.8. This graph shows that the performance improvement of SMTF relative to

C-LOOK varies between 32% and 8% as the inter-request distance varies from 25 MB to 1.3 GB.

Given that most file systems (e.g., Linux ext2) try to optimize locality by placing related files in



42

the same cylinder group, SMTF can optimize accesses better than C-LOOK in practice. Thus, we

believe that SMTF is a viable option for scheduling on real disks.

SSTF C_LOOK
1.0

1.1

1.2

S
lo

w
do

w
n

Base-line

Pri no Interp

Pri with Interp

Set no Interp

Set with Interp

100

105

110

115

120

125

130

135

140

1 2 3 4 5 6

P
er

ce
nt

ag
e 

sl
ow

do
w

n 
%

 

Day

Performance of various hybrid versions

SSTF
C_LOOK

Set SSTF
Set SSTF interp

Set C_LOOK
Set C_LOOK interp

Figure 3.9Performance of On-Line SMTF.The first graph compares the performance of different
variations of on-line SMTF; the performance of the last day of the week-long HP trace is shown
relative to off-line SMTF. The second graph shows that the performance of Online-Set improves
over time as more inter-request distances are observed.



43

3.7 On-Line Configuration

We now explore the SMTF scheduler when all configuration is performed on-line. With this

approach, there is no overhead at installation time to probethe disk drive; instead, the Disk Mimic

observes the behavior of the disk as the workload runs. As in the off-line version, the Disk Mimic

records the observed disk times as a function of its inter-request distance, but in this case it has no

control over the inter-request distances it observes.

3.7.1 General Approach

For the on-line version, we assume that many of the lessons learned from off-line configuration

hold. First, we continue to use the mean to represent the distribution of times for a given inter-

request distance. Second, we continue to rely upon interpolation; note that when the Disk Mimic

is configured on-line, interpolation is useful not only for saving space, but also for providing new

information about distances that have not been observed.

The primary challenge that SMTF must address in this situation is how to schedule requests

when some of the inter-request distances have unknown times(i.e., this inter-request distance has

not yet been observed by the Disk Mimic and the Disk Mimic is unable to confirm that it can be

interpolated successfully). We consider two algorithms for comparison. Both algorithms assume

that there is a base scheduler (either C-LOOK or SSTF) which is used when the Disk Mimic does

not have sufficient information.

The first algorithm,Online-Priority, schedules only those requests for which the Disk Mimic

has information. Specifically,Online-Priority gives strict priority to those requests in the queue

that have an inter-request distance with a known time; amongthose requests with known times,

the request with the minimum mean time is picked. WithOnline-Priority, the base scheduler

(e.g., C-LOOK or SSTF) is only used when no inter-request distances for the current queue are

known. There are two problems with this approach. First, given its preference for scheduling

already known inter-request distances,Online-Prioritymay perform worse than its base scheduler.



44

Second, schedules with a diversity of distances may never beproduced and thus the Disk Mimic

may never observe some of the most efficient distances.

The second algorithm,Online-Set, improves on both of these limitations by using the decision

of the base scheduler as its starting point, and scheduling adifferent request only when the Disk

Mimic has knowledge that performance can be improved. Specifically, Online-Setfirst considers

the request that the base scheduler would pick. If the time for the corresponding distance is not

known by the Disk Mimic, then this request is scheduled. However, if the time is known, then all

of the requests with known inter-request distances are considered and the one with the fastest mean

is chosen. Thus,Online-Setshould only improve on the performance of the base schedulerand it

is likely to schedule a variety of inter-request distances when it is still learning.

3.7.2 Experimental Results

To evaluate the performance of the on-line algorithms, we return to the base simulated disk. The

left-most graph of Figure 3.9 compares the performance ofOnline-PriorityandOnline-Set, when

either C-LOOK or SSTF is used as the baseline algorithm and both with and without interpolation.

Performance is expressed in terms of slowdown relative to the off-line version of SMTF. We make

three observations from this graph.

First, and somewhat surprising, although C-LOOK performs better than SSTF for this work-

load and disk, SMTF performs noticeably better with SSTF than with C-LOOK as a base; with

C-LOOK, the Disk Mimic is not able to observe inter-request distances that are negative (i.e.,

backward) and thus does not discover distances that are close together. Second,Online-Setper-

forms better thanOnline-Priority with SSTF as the base scheduler. Third, although interpolation

does significantly improve the performance ofOnline-Priorityand ofOnline-Setwith C-LOOK, it

leads to only a small improvement withOnline-Setand SSTF. Thus, as with off-line configuration,

the primary benefit of interpolation is to reduce the memory requirements of the Disk Mimic, as

opposed to improving performance.



45

The right-most graph of Figure 3.9 illustrates how the performance ofOnline-Setimproves

over time as more inter-request distances are observed. We see that the performance of theOnline-

Setalgorithms (with and without interpolation) is better thanthe base-line schedulers of SSTF

and C-LOOK even after one day of the original trace (i.e., approximately 150,000 requests). The

performance ofOnline-Setwith SSTF converges to within 3% of the off-line version after four

days, or only about 750,000 requests.

3.8 Summary

In this chapter, we have explored some of the issues of using simulation within the system

to make run-time scheduling decisions; in particular, we have focused on how a disk simulator

can automatically model a range of disks without human intervention. We have shown that the

Disk Mimic can model the time of a request by simply observingthe request type and the logical

distance from the previous request and predicting that it will behave similarly to past requests with

the same parameters. The inter-request distance captures the combined cost of seek time, head

and track switches, as well as rotational latency; the layout of the sectors on disk is incorporated

probabilistically as well.

Under the workloads we explored, the size of the request did not differentiate as a parameter

that needed to be incorporated in the model. Another candidate input parameter for the model,

time passed between requests, did not need to be considered,given that the model is used in

collaboration with an I/O scheduler. The performance of theI/O scheduler is of interest when

there is a data intensive workload, without think times between the requests issued.

The Disk Mimic can configure itself for a given disk by either probing the disk off-line or, at a

slight performance cost, by observing requests sent to the disk on-line.

We have demonstrated that a shortest-mimicked-time-first (SMTF) disk scheduler can signifi-

cantly improve disk performance relative to FCFS, SSTF, andC-LOOK for a range of disk char-

acteristics.



46

Chapter 4

Application Level Freeblock Scheduling

In this chapter we present how the Disk Mimic can be used to implement a specialized sched-

uler at application level. We start by giving a description of the problem and the scheduler that we

are implementing. I/O scheduling at the application level is challenging because acquiring the in-

formation needed to decide what request to schedule next is more difficult to obtain. As presented

in the previous chapter, I/O scheduling at the OS layer is difficult. By moving the scheduler (at

least) one layer further away from the disk, the difficulty ofdoing scheduling increases even more,

since there is another layer (OS) that is traversed by the requests before they reach the disk.

We use a data-driven model of the disk that provides the information needed by the scheduler.

We present the model that we use and the challenges posed by deploying an application level

scheduler. We conclude with results and a summary.

4.1 Freeblock Scheduling Background

In this section we present the scheduler that we implementedwith the help of the Disk Mimic.

This scheduler was proposed previously by other researchers [43, 44].

A freeblock scheduler is an I/O scheduler that is able to extract free bandwidth from a disk.

The scheduler handles traffic coming from two classes of applications: foreground and background

applications. The goal is to service the requests made by foreground applications while interleaving

requests coming from the background applications. More importantly, this is done while minimally

impacting the performance seen by the foreground applications.



47

The idea used by a freeblock scheduler is to take advantage ofthe rotational latency incurred

while servicing foreground requests. In Chapter 2 we presented in detail the main components

that contribute to the service time:seek time, rotational time and transfer time. There are other

components that are part of the service time (head switch times, track switch times), and there

are disk functionalities that can impact the service time (caching, prefetching). For clarity we

will concentrate on the simpler case when a service time is composed of only the primary three

components enumerated above.

During rotational time the disk system is idle and just waitsfor the target sector to come under

the disk head. Ideally, this time would be zero, but once given a certain workload this is difficult

to achieve. With freeblock scheduling, background requests are serviced in the time taken by the

rotational latency of foreground requests, thus being serviced ’for free’.

We now explain in more detail how freeblock scheduling works. For example, let us assume

that the last foreground request, FR1, was serviced at disk location [C1,H1,S1], and that the next

one, FR2, is located at [C2,H1,S2]. In order to service the second request, the disk head needsto

move from cylinder C1 to C2, and then it needs to wait a half rotation (on average), in order to read

the data from sector S2. A background request BR located on the same cylinder and track with

FR1, at [C1,H1,S1 + 1], could be serviced immediately after it. After servicing BR, the disk head is

positioned at [C1,H1,S1 + 1 + sector length of BR]. In order to service FR2, the head needs to move

to the target cylinder C2, and then again wait for the disk to rotate to read the target sector needed

for FR2. This time, the amount of rotational latency incurred by FR2 will be smaller, because some

of it was used to make a useful data transfer for BR. The service time of FR2 is not affected, and

the storage system was able to service three requests, in thesame amount of time that it would

have served only the two foreground ones.

There are other scenarios for servicing a background request without interfering with the ser-

vice time of FR2. Similar to the previous example, the background request can be situated on the

same track with FR2. In this situation, the disk head seeks to the target cylinder, C2, services BR,

and then services FR2. Another scenario is to seek to another cylinder/track in order service BR,



48

and then seek again to C2 to service FR2. In this last situation, while still extracting free bandwidth,

the disk does extra seeks, and thus, does not make use of all possible available free bandwidth.

The amount of free bandwidth that can be extracted from a system depends on several factors.

First, the workload dictates the percentage of rotational latency that is available. At one extreme,

if the workload is completely composed of sequential requests, opportunities for inserting back-

ground requests without affecting the service time of the foreground requests are non-existent. At

the other extreme, a random workload of small requests, thataccess blocks in close proximity

(e.g.on the same cylinder block) will incur a lot of rotational latency (e.g., to 60% of the total

service time [44]). Second, the scheduling algorithm used to schedule the foreground requests can

influence the rotational latency incurred by the foregroundrequests. Requests scheduled with al-

gorithms similar to C-LOOK, that try to reduce seek times, will have more rotational latency than

those scheduled with SATF (Shortest Access Time First). Third, the geometry and generation of

the disk will also dictate the amount of the rotational latency that is available. For example, disks

optimized for random access have a smaller rotational latency.

It is useful to discuss the class of workloads that make up typical background applications.

As described in [44], representative applications are diskscrubbing, virus detection and backup

applications. A scrubbing application reads blocks from disk and checks that the data stored is still

valid. This helps detect disk sectors that go bad and allows the storage system to take proactive

action. Virus detection applications do static detection of viruses in files on disk, thus offloading

checks that otherwise might have to be done at runtime. Backup applications periodically save

data from disk to a different location, protecting against losing data when a disk fails. These

applications have in common the facts that they usually haveno runtime restrictions, access a large

section of the disk, and do not have any preference for the order of access.



49

4.2 Application Level I/O Scheduling

I/O scheduling is traditionally performed at the file systemor at lower levels, but there are

situations when it is valuable to consider deploying I/O scheduling at the application level. We

give three reasons why this is worth exploring.

First, application level scheduling allows for finely tailored scheduling policies. Mainstream

kernel distributions usually incorporate scheduling techniques that optimize for parameters that

are likely to be of interest to a majority of workloads. That is the case, for example, in throughput

scheduling, where the goal is to maximize the rate with whichthe system services requests. There

are applications that have special requirements and that are not serviced well by these techniques

alone. For example, a video player needs a scheduler that incorporates QoS guarantees, and that

can insure that frames are retrieved at a certain rate. Another example is given by the applications

we just mentioned at the end of the last section. These background applications could benefit from

a freeblock scheduler that is able to better utilize the system resources.

Second, the information required to perform a specialized type of scheduling is available most

often at application level, and it is lost or difficult to access at lower levels. For example, for free-

block scheduling, the file system would have to be able to distinguish between requests coming

from foreground or background requests. Unfortunately, the reverse could also be true. Imple-

menting scheduling at a higher level may require information from scheduling levels underneath

(e.g., file system level). We will address these challenges in the next sections.

The third reason relates to the actual process of developingand deploying the scheduling tech-

nique. It is less error prone to develop at user level rather than at kernel level. This approach will

require less familiarity with the kernel code, and less interference with code that could potentially

affect the stability of the system.

Related to the previous point, once an I/O scheduler implemented at application level proves

to be successful it is easier to make the argument to move its functionality to a lower level, for

example, at the file system level.



50

4.3 Using the Disk Mimic for Freeblock Scheduling at Application Level

There are two main challenges to overcome when implementinga freeblock scheduler at ap-

plication level. As we described in Section 4.1, deciding when to schedule a background request

requires detailed information about the disk: the scheduler needs to predict the rotation time asso-

ciated with a request. This information is not available to layers outside the disk firmware. The

initial proposal for the scheduler had it located in the diskfirmware and even the authors mention

that they believed it could only be done at that level [44] (later, they do proceed to implement it at

application level).

We address the first challenge by making use of the Disk Mimic.As described in the previous

sections, the Disk Mimic can predict average service times for I/O requests. A freeblock scheduler

can make use of these predictions.

Given a list of background requests, the freeblock scheduler uses its knowledge of the schedul-

ing algorithm (i.e., C-LOOK) to predict where a background request,BR, will be inserted into the

scheduling queue. After the scheduler has determined that the request will be inserted between

two requests,FRi andFRj, it calculates if the background request will harmFRj . This harm

is determined by indexing into the disk timing tableD with the linear block distance between the

requests; ifD(FRi−FRj) ≥ D(FRi−BR)+D(BR−FRj), then the background request does

not impact the time for the second foreground request andBR is allowed to proceed.

The freeblock scheduler schedules the one background request that has the least impact on

the foreground traffic (if any). Then, the scheduler blocks,waiting to be notified by the kernel

that the state of the disk queue has changed. When the scheduler wakes, it rechecks whether any

background requests can be serviced.

The model used for the disk is identical to the one described in Chapter 3. The model is built

by timing requests, and the input parameters that it keeps track of are the inter-request distance and

the type of request (read or write).

The second challenge occurs because the scheduler is at application level. It needs to find out

the LBA (logical block address) associated with the block requests issued by the applications, and



51

the state of the I/O scheduling queue at file system level. This information is needed in order

to find out what foreground requests are currently considered for scheduling and what sectors on

disks need to be accessed. We deal with this challenge by modifying the Linux kernel to expose

information about the scheduling queue and about the file offset to LBA translation.

At the application level we cannot control the scheduling decisions taken at the operating sys-

tem level. When a request is issued by the application, it is reordered at the operating system level

according to the scheduling policy in use. Thus the actions at the operating system level need to

be factored in, such that they do not affect the decisions made at application level. We export

information about the scheduling algorithm at operating system level and we use this algorithmic

information to issue requests only when the decisions at a lower level would not interfere with

those at the application level.

For the background applications considered, the workload is read-only, which results in a sim-

plified model. For example, the model does not need to keep track of additional service times for

write operations.

4.4 Experimental Results

We implemented an application level freeblock scheduler that uses the Disk Mimic and eval-

uated it in a Linux 2.4 environment. The machine used for experiments is a 550 MHz Pentium 3

processor with 1 GB of main memory and four 9 GB 10000 RPM IBM 9LZX SCSI hard drives.

To evaluate the freeblock scheduler we use a random-I/O workload in which the disk is never

idle: the foreground traffic consists of 10 processes continuously reading small (4 KB) files chosen

uniformly at random. The single background process reads from random blocks on disk, keeping

1000 requests outstanding.

As seen in Figure 4.1, the random foreground traffic in isolation achieves 0.67 MB/s. If back-

ground requests are added without support from the freeblock scheduler, foreground traffic is

harmed proportionately, achieving only 0.61 MB/s, and background traffic achieves 0.06 MB/s.



52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

FG
only

+BG +BG
+FreeSched

B
an

dw
id

th
 (

M
B

/s
)

Background
Foreground

Figure 4.1 Workload Benefits with Freeblock Scheduling. The leftmost bar shows the fore-
ground traffic with no competing background traffic, the middle bar with competing traffic and no
freeblock scheduler, and the rightmost bar with the freeblock scheduler.

However, if background requests use the freeblock scheduler, the foreground traffic still receives

0.66 MB/s, while background traffic obtains 0.1 MB/s of free bandwidth.

4.5 Summary

In this chapter we showed that the Disk Mimic can be used to successfully implement freeblock

scheduling at application level. The model required no modifications from its deployment at file

system level. However, the freeblock scheduler needed additional information from the file system:

scheduling queue state and LBA translation for a file system block.



53

Chapter 5

Log Skipping for Synchronous Disk Writes

In this chapter we introduce miniMimic, a specialized modelof the disk, that is used to solve

the synchronous disk writes problem. We start by presentingbackground information about syn-

chronous writes and performance issues that can occur in a file system that performs logging. We

show how the file system can predict the position of the disk head by using a data-driven model of

the disk, and how this is used to solve the synchronous write problem. The model is application

specific and, thus, we do not require that the model accurately predicts all aspects of the disk, but

only that it can estimate the disk head position when it is within the log.

As enumerated in the previous chapters, we have a number of requirements for the log model.

First, the model should be accurate for the particular disk being used in the system, but the model

does not need to be configurable for an arbitrary, hypotheticdisk. We use a data-driven model

whose parameters are automatically configured by measuringthe time of requests on a particular

disk. Furthermore, since the log model will be used on-line within the file system, we would like

the model to have low computational costs. This requirementindicates that table-based models is

an appropriate choice as well. We describe the model used, present results and conclude with a

summary.

5.1 Background

We first describe the small synchronous write problem, and then we give a brief tutorial about

how traditional journaling file systems, such as Linux ext3 [85], update a log on disk.



54

5.1.1 Synchronous Disk Writes

Over the years, researchers have introduced a wealth of performance optimizations into file

systems, contributing greatly to the current state of the art [26, 32, 33, 45, 53, 69, 79]. For exam-

ple, the original Berkeley Fast File System (FFS) [45] collocates files within the same directory,

greatly reducing read times under access patterns with spatial locality. The Log-structured File

System (LFS) [53] organizes all file system data and metadatain a log, hence improving perfor-

mance by asynchronously writing data to disk in long sequential segments. Finally, SGI’s XFS file

system [79] uses B-trees to store file system metadata such asdirectories; by doing so, performance

of workloads that access large directories is greatly enhanced.

However, despite these many advances in performance, one important workload remains par-

ticularly onerous for current file systems:small, synchronous disk writes. These workloads are

often generated by applications (e.g., a database management system) that force data to disk so as

to guarantee (a) on-disk persistence or (b) a proper sequencing of writes to enable crash recovery.

Unfortunately, synchronous writes perform quite poorly, even for file systems designed to improve

write performance [68]; when the application issues anfsync, the file system has no choice but to

force data to disk immediately, and thus incurs the cost of a disk seek, rotation, and transfer time

that such writing demands.

Higher-end systems attempt to overcome the synchronous write problem by employing addi-

tional (and potentially costly) hardware; for example, theNetwork Appliance WAFL filer [33]

incorporates non-volatile memory (NVRAM) to buffer many synchronous writes, and then issues

batches of such writes to disk asynchronously, greatly improving performance. Unfortunately,

commodity PC file systems typically do not have access to suchhardware. Commodity systems

are important to consider, since they are employed in a broadrange of performance-sensitive sce-

narios, from the desktop where they manage personal data (e.g., family photos, movies, and music)

to the server room where they form the back-end of important Internet services like Google [1].

Most modern file systems, including Linux ext3 [86] and ReiserFS [51], Microsoft’s NTFS [77],

and Apple’s HFS [6] all arejournalingfile systems, which write file system changes to an on-disk

log before updating permanent on-disk structures [32].



55

5.1.2 Logging

File systems and database management systems that require transactional semantics often rely

uponwrite-ahead loggingor journaling [19, 31, 32]. A variety of journaling file systems exist

today, such as ext3 [85], ReiserFS [51], JFS [10], and NTFS [77]. In our descriptions we will

explain how Linux ext3 performs journaling, although all ofthese file systems are similar in these

respects.

The basic idea in all journaling file systems is that information about pending updates is written

to thelog, or journal, on disk. The log can either be stored in a known portion of thedisk, or it may

be stored within a known file. The file system meta-data and data are also written to fixed locations

on the disk; this step is often calledcheckpointing. Forcing journal updates to diskbeforeupdating

the fixed locations of the data enables efficient crash recovery: a simple scan of the journal and

a redo of any incomplete committed operations bring the system to a consistent state. During

normal operation, the journal is treated as a circular buffer; once the necessary information has

been propagated to its fixed location on disk, journal space can be reclaimed.

Many journaling systems have a range of journaling modes, all of which impact performance

and consistency semantics. Indata journaling, the logging system writes both meta-data and data

to the log and thus delivers the strongest consistency guarantees. Inordered mode, the logging

system writes only meta-data to the log; ordered mode ensures that the data blocks are written

to their fixed locations before the meta-data is logged, giving sensible consistency semantics. Fi-

nally, writeback modemakes no guarantees about the ordering of data and meta-data, and thus has

the weakest consistency guarantees. Due to its strong consistency guarantees, we focus on data

journaling in this chapter.

The relative performance of the journaling modes depends largely on the workload. Data jour-

naling can perform relatively poorly when large amounts of data are written, since the data blocks

must be written twice: once to the log and again to their fixed locations. However, data journaling

performs relatively well when small, random writes are performed. In this case, data journaling

transforms the small random writes to sequential writes in the log; the random writes to the fixed



56

data locations can be performed in the background and, thus,may not impact application perfor-

mance.

5.2 Performance Issues with Synchronous Disk Writes

We now describe the sequence of operations that occur when a log is updated. A journaling

system writes a number of blocks to the log; these writes occur whenever an application explicitly

sync’s the data or after certain timing intervals. First, the system writes adescriptor block, contain-

ing information about the log entry, and the actual data to the log. After this write, the file system

waits for the descriptor blocks and data to reach the disk andthen issues a synchronouscommit

blockto the log; the file system must wait until the first write completes before issuing the commit

block in case a crash occurs.

In an ideal world, since all of the writes to the log are sequential, the writes would achieve se-

quential bandwidths. Unfortunately, in a traditional journaling system, the writes do not. Because

there is a non-zero time elapsed since the previous block waswritten, and because the disk keeps

rotating at a constant speed, the commit block cannot be written immediately. The sectors that

need to be written have already passed under the disk head andthe disk has to perform an almost

full rotation to be able to write the commit block.

We improve journaling performance withlog skipping; log skipping attempts to write the next

log entry to the current disk head position, thus minimizingrotational delay. We present this

technique in the following section.

5.3 Log Skipping

In this section we presentlog skipping, a novel technique for log optimization. We refer to

the file system component that performs the optimization as the log skipper. With log skipping

the log records are not allocated sequentially to the disk; instead, the log skipper writes the log

record where the disk head is currently positioned (or closeto it). Log skipping greatly improves

performance because the log write will not need to wait for the disk to rotate.



57

However, log skipping raises three new questions. First, how does the log skipper know where

the disk head is currently positioned? Second, how does the log skipper allocate space in the

log? Third, how does the new structure of the log impact crashrecovery? We address these three

questions in turn.

5.3.1 Disk Head Position

Log skipping needs information about where to write the current log blocks so that they incur

the smallest service time. This information can come from a disk model or it could be provided by

the disk, if the proper interface exists. Since current disks do not export such low-level information,

we explore how a disk model can be used. Given that this is a major issue to address, we describe

our disk model, miniMimic, in detail in Section 5.4.

5.3.2 Space Allocation

The log skipper needs to track the current free space in the log. After a write request arrives

and the log skipper determines the position of the disk head,the log skipper checks to see if the

corresponding disk blocks are free. If the blocks are free, the log skipper issues the request to that

location and marks the blocks as utilized.

If the blocks are not free, the log skipper looks for the next location in the log that could hold the

blocks. This location might not have an optimized service time, especially when the log is nearly

full. Similar to the ext3 file system, when the free space in the log is below a certain threshold, or

after a given time interval, the log is cleaned. We note that the space overhead for tracking the free

space in the log is not high; given that most logs are in the range of tens of megabytes, the space

for a suitable bitmap is only on the order of kilobytes.

Another potential concern is that the space utilization of the log with log skipping is no longer

likely to be optimal: the log may now have ’holes’ of free space that are too small for new requests

to fit. However, we feel that space utilization of the log is not a concern: disk capacities are



58

increasing at a much higher rate than disk performance. Thus, we believe that a small loss in disk

capacity is worth the large improvement in performance thatlog skipping can bring.

5.3.3 Crash Recovery

During crash recovery, a normal log is read sequentially from the head of the log to the last

committed transaction, and then it is replayed, assuring that the disk operations that safely made it

to the log are reflected in the disk state after the crash. Withlog skipping, the log data is interleaved

with free blocks, which means that the log skipper needs to pay special attention in reconstituting

the log before replaying it.

The descriptor and commit blocks in the normal log already contain magic numbers that dis-

tinguish them from other blocks on disk. The descriptor block also contains a sequence number

and the final disk location of the data blocks included in the transaction. Similarly, the commit

block contains a sequence number. Thus, log skipping does not need to change the format of the

descriptor and commit blocks.

After a crash, with log skipping, the log recovery process must read the entire log and reorder

the records according to their sequence numbers, starting from the sequence number of the head

of the log. Since log recovery is not frequent, we believe this added step in the recovery process

has a minimal impact.

5.4 Building the Disk Model

We now describe the model we use to predict where to synchronously write the data blocks

in the log. As in previous applications, the model we use is not intended to accurately predict all

aspects of the disk, but only certain characteristics of thedevice, more specifically to estimate the

disk head position within the log.

MiniMimic predicts the skip distance between synchronous write requests within the log that

will lead to the minimum average service time; miniMimic explicitly accounts for the size of

requests and the think time between requests. We have configured miniMimic on the logs for three



59

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  100  200  300  400  500

S
er

vi
ce

 T
im

e 
(m

s)

Sorted Requests

Figure 5.1 Individual Service Times for 4 KB Requests. This graphs plots sorted individual
service times for requests of size 4 KB. The requests are issued sequentially, with no think time,
and the skip distance is 0. The disk used for experiments has amaximum rotation latency of 6 ms.
Most of the requests have a high service time, larger than a full rotation. The average service time
for these requests is 6.13 ms.

different disks, two SCSI disks (both IBM 9LZX, different revisions and with different physical

characteristics) and an IDE WDC WD1200BB disk.

In the previous models we found that the two most important parameters to consider were

operation type(i.e., a read or a write) andinter-request distance(throught this chapter we refer to

inter-request distance as skip distance).

For log skipping, operation type is not relevant, since the only disk operations are writes. For

miniMimic, we also find that skip distance is a fundamental parameter. MiniMimic must also

incorporate two request parameters that previous on-line,measurement-drive disk models did not:

request size and think time.

We now describe how miniMimic incorporates these three parameters. We begin by consid-

ering skip distance in isolation, and then add in request size, and then think time. For clarity, we

mainly present data from a SCSI 9LZX disk.



60

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-6 -4 -2  0  2  4  6

A
ve

ra
ge

 S
er

vi
ce

 T
im

e 
(m

s)

Skip (MB)

 0

 1

 2

 3

 4

 5

 6

 7

-200 -150 -100 -50  0  50  100  150  200

A
ve

ra
ge

 S
er

vi
ce

 T
im

e 
(m

s)

Skip (KB)

Figure 5.2 Average Service Times for 4 KB Requests.These graphs plot the average service
times for requests with a size of 4 KB, when the skip distance varies. The graph on the top explores
skip distances between -5 MB and 5 MB. We observe the ’sawtooth’ profile of the graph, explained
by the varying amounts of rotational latency incurred by therequests. The graph on the bottom is
a zoom in for skip distances between -200 KB and 200 KB. We notice that the minimum average
service time occurs for a skip distance of 28 KB.



61

5.4.1 Skip Distance

We already showed that the skip distance between two requests is a fundamental parameter in

predicting the positioning time of a request. As described in previous sections, positioning time

includes seek, rotation, and head switch times. Due to the geometry of disks, and the mapping of

logical block numbers to tracks and platters on the disks, requests with the same skip distance will

have a distribution of positioning costs, where many of the requests have identical costs.

Figure 5.1 presents an example distribution of service times for different 4 KB write requests

with a skip distance of 0. The observations we made in previous chapters hold for this usage of the

model as well. MiniMimic summarizes this distribution of sampled service times with the mean

service time. Using the mean and using skip distance as a parameter, instead of using a functional

disk model with intimate knowledge of the mapping of logicalblocks to a particular sector and

platter on the physical disk, greatly simplifies our model, with only a small loss in predictive

power.

The average service time as a function of skip distance for the SCSI disk is shown in the first

graph of Figure 5.2. They-axis represents the average service time for 4 KB requests that are issued

with the skip distance specified on the x axis. A close-up for skip distances between -200 KB and

200 KB is shown in the second graph of Figure 5.2. The graphs show that the minimum average

service time of 1.57 ms is obtained with a skip distance of 28 KB. Thus, for a 4 KB request with

zero think time, miniMimic will recommend to the log skipperthat it write the next request at a

distance of 28 KB from the previous request.

5.4.2 Request Size

Applications write data in different sizes; the log skippermust be able to determine the best

skip distance for a given write request as a function of its size.

Thus, miniMimic explores the service times for a range of request sizes and skip distances

within the log. One might expect, for a given skip distance, that service time will increase linearly

with request size, under the assumption that the positioning time is independent of request size



62

and that the transfer time is a linear function of the requestsize. This expectation holds true for

most skip distances we have sampled, as exemplified by the graph with a skip distance of zero in

Figure 5.3.

However, for the skip distances that correspond to minimal service times (i.e., those that incur

minimal rotation delay), the service time is not linear withrequest size. An example of one such

skip distance, 28 KB, is shown in the second graph of Figure 5.3. In this case, service time

generally increases with the request size, but with a numberof outliers. With a skip distance of

28 KB, the disk is right on the edge of writing the first sector without waiting for a rotation; small

differences in the workload cause the disk to incur an extra rotation.

Figure 5.4 plots a 3-d graph of the average service time when both the request size and the skip

distance vary. We observe three plateaus in the service times, with two discontinuity points around

skip distances of 28 KB and 144 KB. It is important to note thatthe transition points between

the plateaus are not smooth; different request sizes have their low service times at different skip

distances.

This result is summarized in Figure 5.5, which shows that some request sizes have recom-

mended skip distances of 28 KB while others of 144 KB. As indicated in Figure 5.4, the difference

in service times between those two skip distances can be quite high for some request sizes.

5.4.3 Think Time

Applications writing data often have think time (i.e., computation time) between requests.

Thus, the log skipper will see idle time between arriving writes and must account for the fact

that the disk platters continue to rotate between these requests.

MiniMimic configures the think time parameter by issuing write requests to the log as it varies

the idle time between those requests. Although the full version of miniMimic must simultane-

ously account for skip distance, request size, and think time, we begin by examining think time in

isolation.

Figure 5.6 plots the average service time for 4 KB requests and a skip distance of 0 preceded

with a think time between 0 ms and 12 ms. The graph shows that increasing think time results in



63

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120  140  160  180  200

A
ve

ra
ge

 S
er

vi
ce

 T
im

e 
(m

s)

Request Size (KB)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120  140  160  180  200

A
ve

ra
ge

 S
er

vi
ce

 T
im

e 
(m

s)

Request Size (KB)

Figure 5.3 Average Service Time for Requests when the Request Size Varies. We plot the
average service time for different request sizes, for two skip distances. The graph on the top plots
the service time for a 0 KB skip distance and the graph on the bottom plots the service time for
a 28 KB skip distance. We observe a smooth ascending curve forservice times associated with a
0 KB skip distance, while the graph on the bottom shows a more irregular pattern.

smaller service times, up to think times a little larger than5 ms. This is explained by the fact that

the requests issued with no think time incur a large rotational latency, and increased think times



64

Skip (KB)

 4

 8

 12

 16

Request Size (KB)

Average Service Time (ms)

 50  100  150  200 0
 50

 100
 150

 200

Figure 5.4 Average Service Time for Requests when the Request Size and Skip Distance
Varies. The graph shows larger service times as the request size increases. There are three
plateaus with transition points around 28 KB and 144 KB. The transition between the plateaus
happens at different values for the skip distance.

allow time for the disk to rotate and bring the sectors that need to be written closer to the disk head.

As the think time increases past 6 ms, the sectors that need tobe written have passed under the

disk head already, and thus these requests again incur largerotational latencies to complete.

Figure 5.7 is a 3-d plot of average service times when both think time and skip distance are

varied. The plot shows that the relationship between skip distance and think time is a bit complex

and that interpolating values would be difficult.

5.4.4 Model Predictions

In this section, we have seen how miniMimic predicts the average service time of write requests

as a function of pairwise combinations of the three parameters: skip distance, request size, and

think time. To be used for log skipping, we would like miniMimic to recommend a skip distance

to minimize service time, as a function of request size and think time.



65

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100  120  140  160  180  200

S
ki

p 
D

is
ta

nc
e 

(K
B

)

Request Size (KB)

Figure 5.5 Choices for Skip Distance when the Request Size Varies.This graph shows which
skip distance will be recommended by miniMimic when the request size varies. We notice that
miniMimic will choose different skip distances for different request sizes. Figure 5.3 and 5.4 show
that the difference in the service time for different skip distances is noticeable.

To build the miniMimic, we sample the log off-line and measure all combinations of values for

skip distance (between 0 and 300 KB in 4 KB increments), request size (between 0 and 200 KB in

4 KB increments), and think time (between 0 and 7 ms in 200µs increments); for each combination,

we take 50 different samples. We note that our measurements are currently more exhaustive than

needed; given some knowledge of the workload, one could sample fewer values for the request

size and think times; given more assumptions about the disk performance characteristics, one

could sample fewer skip distances.

After miniMimic samples the disk log, it searches the set of measured values to find the skip

distance that generates the minimum average service time asa function of the request sizer and

think time t. This skip distance is the recommendation that miniMimic will make when when

called by the log skipper to synchronously write a request with sizer and think timet.



66

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12

A
ve

ra
ge

 S
er

vi
ce

 T
im

e 
(m

s)

Think Time (ms)

Figure 5.6 Average Service Time for 4 KB Requests when the Think Time Varies. The graph
plots average service times when the think time varies and the skip distance is 0 KB. The graph
shows a periodic pattern, as the amount of rotational latency varies between minimum and maxi-
mum values. With no think time the requests incur large rotational latencies, but as the think time
increases the service time decreases because the target sectors are closer to the disk head. The
disk has a rotational latency of 6 ms, which is reflected in theperiodic pattern.

These recommendations are graphically summarized in Figures 5.8, 5.9, and 5.10 for the two

SCSI IBM 9LZX disks and the IDE Western Digital WDC WD1200BB disk. We make the ob-

servation that the recommended skip distance curves for thethree logs are complex and irregular;

it would be difficult to interpolate the desired skip distance for sizes or think times that were not

measured directly.

In summary, we note that miniMimic is simple, portable, and accurate. Because miniMimic

only models the log portion of the disk, it contains relatively little data and can be configured

relatively quickly, especially compared to similar measurement-based approaches that model the

entire disk [49]. We have also found miniMimic to be portable; we initially developed miniMimic

for one of the SCSI disk and found that no changes were needed to configure it for the second

SCSI disk and the IDE disk. Finally, miniMimic is accurate; as we will show in the next sections,



67

 0
 1

 2
 3

 4
 5

 6

 0
 50

 100
 150

 2

 4

 6

Think Time (ms)

Average Service Time (ms)

Skip (KB)

Figure 5.7 Average Service Time for 4 KB Requests when the Think time andSkip Distance
Varies. The average service times associated with different think times varies with a more complex
pattern compared to the one observed when varying the request size.

miniMimic does a very good job in predicting the best skip distance for write requests of different

sizes and with different think times.

5.5 Experimental Setup

We now briefly describe our implementation of log skipping for evaluation, the transactional

workload that we use to drive our experiments, and our experimental environment.

5.5.1 Implementation

We have implemented log skipping in an emulated environment. The emulator is a user-level

program that mimics the logging component of a file system: itwrites log data to disk, it allocates

space to the log, and it cleans the log. The log skipper uses miniMimic to pick the location in the

log to write the next transaction to. The log skipper then issues the write requests to a real disk

through the raw interface.



68

Size (KB)

 50
 100

 150
 200  0  1  2  3  4  5  6  7

Think Time (ms)

 0

 50

 100

 150

Skip (KB)

Figure 5.8 MiniMimic Skip Distance Recommendations for SCSI Disk 1.MiniMimic predic-
tions for the skip distance to be used when a request has a given request size and is preceded by a
given think time, for the SCSI IBM 9LZX disk. The shape of the graph is highly irregular.

The emulator is trace-driven. The traces are collected beneath the file system and isolate the

disk traffic directed to the file system log. The traces have information about the type of log block

(i.e., descriptor block, data block, or commit block), the type ofoperation (i.e., read or write), the

logical block number for the request, and the time of issue.

5.5.2 Workload

To evaluate log skipping, we are most interested in transactional workloads. Therefore, we

collected traces from a modified version of the TPC-B benchmark. The TPC-B benchmark [84]

simulates the behavior of database applications that generate large amounts of disk traffic and that

need transactional processing. The benchmark issues a series of transactions. Each transaction is

made up of a group of small updates to records in three database tables: account, teller and branch,

and an update to a history file.



69

Size (KB)
 50

 100
 150

 200  0  1  2  3  4  5  6  7

Think Time (ms)

 50
 100
 150
 200

Skip (KB)

Figure 5.9 MiniMimic Skip Distance Recommendations for SCSI Disk 2.MiniMimic predic-
tions for the skip distance to be used when a request has a given request size and is preceded by a
given think time, for the second SCSI IBM 9LZX disk.

We have modified the TPC-B benchmark so that we can vary the think time in the application

and the size of each transaction; we also ensure that the transactions are written synchronously to

the disk. Exploring these new parameters permits us to explore behavior characteristic of a larger

number of transactional applications.

From a logging point of view, the traffic issued by our modifiedTPC-B benchmark translates

to a series of random synchronous write requests. When the application issues a synchronous 4 KB

write, the traffic generated to the log is a synchronous request of size 8 KB (i.e., descriptor and

data block) followed by another synchronous 4 KB request (i.e., commit block).

We have collected traces from our modified TPC-B benchmark for a variety of think times and

request sizes. The benchmark was run on a Linux 2.6 system, configured to use the ext3 file system

in data journaling mode.



70

Size (KB)
Think Time (ms)

 40
 80

 120
 160

 200  0  1  2  3  4  5  6  7  8

 0
 50

 100
 150
 200
 250
 300
 350

Skip (KB)

Figure 5.10 MiniMimic Skip Distance Recommendations for IDE Disk. The graph plots the
MiniMimic predictions for the skip distance to be used when arequest is characterized by a given
request size and preceded by a given think time, for the IDE Western Digital WDC WD1200BB
drive. Similar to the SCSI disk the shape of the graph is irregular, though the curve is less complex.

5.5.3 Environment

Our experiments are run on three different systems, two containing SCSI disks (IBM Ultrastar

9LZX) and the other an IDE disk (WDC WD1200BB). These are the same disks for which we

presented the profile data in Section 5.4. The experiments that use the SCSI disks were run on a

system with dual 550 MHz processors and 1 GB of memory. The experiments that use the IDE

disk were run on a system with a 2.4 GHz processor and 1GB of memory. For all experiments the

size of the log is set to 40 MB. When we do not specify otherwise, the data reported is from the

system that uses the first SCSI disk.

5.6 Log Skipping Results

We now explore the performance benefits of log skipping. We begin by validating the disk

model produced by miniMimic. We then measure performance improvements with log skipping



71

 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500

S
er

vi
ce

 T
im

e 
(m

s)

Requests (sorted)

actual
actual avg

predicted avg
predicted min

predicted max

Figure 5.11 Predicted Versus Actual Service Times.This graph plots the actual service times
versus predicted service times for a request size of 8 KB. Theline labeled ’actual’ plots the sorted
values of the service times for the individual requests. Theactual and predicted averages are
within 1% of each other.

and a complementary technique called transactional checksumming [50]. This technique elimi-

nates the need for a second synchronous write, and thus implicitly avoids the extra disk rotation.

Thus, only a single write operation is needed, instead of twopreviously with normal log operations.

Additionally, a checksum is written to the log along with thedescriptor block and data block. The

checksum allows the system to detect a partial write when thelog is read after a system crash.

We note that transactional checksumming is an orthogonal solution to log skipping. The two

techniques can be implemented separately or together. In this section we show the benefits of log

skipping both with and without transactional checksumming.

5.6.1 Validating the Disk Model

We start by exploring the accuracy of the disk model producedby miniMimic. In this experi-

ment, the log skipper replays a TPC-B trace in which the application issues 4 KB requests; thus,

for this workload, the log skipper will see two synchronous writes: one for 8 KB (i.e., the 4 KB



72

 0

 2

 4

 6

 8

 10

 12

 14

 16

32168421

B
W

 (
M

B
/s

ec
)

Number of Application Blocks/Xact

no chksm/no skip
no chksm/skip
chksm/no skip
chksm/skip

Figure 5.12 Performance Improvements when the Size of the Requests Varies - SCSI Disk
1. The graph shows the bandwidth (y-axis) when the size of the requests varies (x-axis) and there
is no think time. Each bar in the group of bars represents one log optimization configuration: no
optimization, checksumming, skipping, and checksumming and skipping together. Each configura-
tion sees an increase in performance when the request size increases, as the positioning costs are
amortized. In general, log skipping performs better than transactional checksumming and pairing
both skipping and checksumming yields the best performanceimprovement.

descriptor block and the 4 KB of data) and a second for 4 KB (i.e., the 4 KB commit block). The

log skipper uses miniMimic to choose the skip distance that will minimize service time on the

SCSI disk.

To evaluate miniMimic, we compare its predicted service times with the actual disk service

times measured during the experiment. For simplicity, we plot only the results for the synchronous

8 KB requests, but the results for the 4 KB requests in the workload are qualitatively similar. The

results are shown in Figure 5.11. The ’actual’ line shows thedisk service times measured during

the log skipping experiment for each of the 500 requests in the workload; the ’actual avg’ line

shows the average measured service time. The three predicted lines show the average, minimum,

and maximum values that miniMimic predicted.



73

 0

 5

 10

 15

 20

 25

32168421

B
W

 (
M

B
/s

ec
)

Number of Application Blocks/Xact

no chksm/no skip
no chksm/skip
chksm/no skip
chksm/skip

Figure 5.13Performance Improvements when the Size of the Requests Varies - SCSI Disk 2.
The graph shows the bandwidth (y-axis) when the size of the requests varies (x-axis) and there is
no think time and when we use the second SCSI disk. The behavior is similar to the first SCSI disk.

Our results indicate miniMimic has been configured correctly for the log skipping experiments

on this disk. Specifically, the measured average and predicted average are within 1% of each other.

Furthermore, the predicted minimum and maximum service times bound more than 99% of the

measured service times; a few measured service times exceedthe maximum predicted time due to

the smaller sample size (i.e., 50) used to configure miniMimic. In general, we can concludethat

miniMimic can be used to accurately predict the service timeof on-line requests.

5.6.2 Impact of Request Size

In the next set of experiments, we explore the performance improvements when a log optimizer

implements log skipping and/or log checksumming. As statedearlier, transactional checksumming

improves performance by reducing the number of synchronouswrites from two to one, while log

skipping improves performance by reducing the positioningtime of the synchronous writes. Thus,

the two log optimizations can be implemented individually or together; when the log skipping is



74

 0

 2

 4

 6

 8

 10

 12

 14

 16

36322824201612854321

B
W

 (
M

B
/s

ec
)

Number of Application Blocks/Xact

no chksm/no skip
no chksm/skip
chksm/no skip

chksm/skip

Figure 5.14 Performance Improvements when the Size of the Requests Varies - IDE Disk.
The graph shows bandwidth (y-axis) when the request size varies (x-axis) and when using an IDE
disk. The observations are similar to those for the SCSI disk. In contrast to the SCSI disk, we see
a performance drop when the request size is larger than 12 blocks, but our data shows this is not a
result of miniMimic mispredictions, but rather a characteristic of the disk or device driver.

implemented with transactional checksumming, log skipping minimizes the positioning time of

the single synchronous write in each log update.

We begin with the case where the TPC-B application issues synchronous writes of varying

sizes and there is no think time. We examine first the performance of the SCSI disk and then of the

IDE disk.

Figure 5.12 shows the bandwidth for the writes to the log on the SCSI disk. Along thex-axis

we vary the number of blocks that are synchronously written by the application. Note that this

number does not exactly correspond to the the number of blocks seen by the log optimizer, since

the application blocks do not include the descriptor or commit data and the application data may

not be perfectly aligned with the 4 KB blocks. For each of the workloads we show the perfor-

mance for logging with no optimizations (no chksm/no skip),with log skipping (no chksm/skip),

with transactional checksumming (chksm/no skip), and withboth log skipping and checksumming



75

 0

 2

 4

 6

 8

 10

 12

 14

6543210

B
W

 d
ur

in
g 

I/O
 (

M
B

/s
ec

)

Think Time (ms)

no chksm/no skip
no chksm/skip
chksm/no skip
chksm/skip

Figure 5.15 Performance when Application Has Think Time - SCSI Disk 1.The graph plots
the bandwidth seen by the application when doing I/O (y-axis) when the workload has think time
(x-axis). Transactional checksumming benefits from increased think times up to 5 ms, that reduce
the rotational latency incurred by requests. The performance of log skipping alone is sometimes
less than transactional checksumming. Log skipping pairedwith transactional checksumming con-
tinues to yield the best performance.

(chksm/skip). We do not measure the time to clean the log for any of the data points. We make

three observations for the figure.

First, for all logging styles, the delivered disk bandwidthimproves with increasing request

sizes. This improvement occurs because the positioning costs of the write are amortized over a

larger data payload. For example, even with no log optimizations, the disk bandwidth improves

from about 1 MB/s to about 7 MB/s as the number of written blocks increases from 1 to 32.

Second, for all request sizes, both log skipping and transactional checksumming significantly

improve the delivered bandwidth. For example, for an application issuing 4 KB updates (i.e., one

block), transactional checksumming improves bandwidth by91%, log skipping by 317%, and both

together by 459%.



76

 0

 2

 4

 6

 8

 10

 12

 14

6543210

B
W

 d
ur

in
g 

I/O
 (

M
B

/s
ec

)

Think Time (ms)

no chksm/no skip
no chksm/skip
chksm/no skip
chksm/skip

Figure 5.16Performance when Application Has Think Time - SCSI Disk 2.The graph plots the
bandwidth seen by the application when doing I/O (y-axis) when the workload has think time (x-
axis) for the second SCSI disk. When log skipping and transactional checksumming are deployed
together, they yield the best performance.

Third, for all request sizes, log skipping improves bandwidth whether or not transactional

checksumming is also used; furthermore, log skipping combines well with transactional check-

summing. Comparing across the optimization techniques, the best performance occurs when log

skipping and checksumming are combined, followed by log skipping alone, and then transactional

checksumming.

We have performed similar experiments on the second SCSI disk and on the IDE disk, as shown

in Figures 5.13 and 5.14. For the second SCSI disk we see similar relative performance of the

optimizations we tested.

We have performed similar experiments on the IDE disk, as shown in Figure 5.14. On the

IDE disk, we see two distinct performance regimes. In the first regime, when there are fewer

than 16 blocks per transaction, the relative performance ofthe different logging styles is similar

to that which we saw on the SCSI disk; however, on the IDE disk,the performance benefits of



77

 0

 2

 4

 6

 8

 10

 12

 14

76543210

B
W

 d
ur

in
g 

I/O
 (

M
B

/s
ec

)

Think Time (ms)

no chksm/no skip
no chksm/skip
chksm/no skip
chksm/skip

Figure 5.17 Performance when Application Has Think Time - IDE Disk. The graph plots
the bandwidth seen by the application when doing I/O (y-axis) when the workload has think time
(x-axis) and when using an IDE disk. The trends are similar to the ones noticed for the SCSI disk.

log skipping are even more pronounced. For example, with 12 blocks per transaction, bandwidth

improves from about 3 MB/s with no optimizations to about 10 MB/s with only log skipping.

However, in the second regime when the number of blocks per transaction increases past 12,

a significant performance drop occurs for all logging styles. Although log skipping continues to

improve performance in this regime, the relative improvement is much less dramatic. We believe

that this drop occurs because the write requests are being subdivided into smaller chunks before

reaching the IDE disk. Our evaluation shows that miniMimic continues to make accurate predic-

tions in this regime and to find the best skip distance, but therelative benefit of improving the

initial positioning time is smaller.

5.6.3 Impact of Think Time

Next we present results for workloads that have think time. In this case, the TPC-B application

writes transactions with four blocks and we vary the think time from 0 to 6 ms.



78

Figure 5.15 shows the delivered bandwidth for the first SCSI disk; the delivered bandwidth is

calculated as that seen by the application during I/O (i.e., without including the think time). We

make three observations from this graph.

First, the performance changes in an interesting way with think time, and the direction of the

performance change depends upon whether or not log skippingis used. Without log skipping,

bandwidth increases with larger think times up to 5 ms, afterwhich bandwidth decreases again.

This phenomena can be explained by Figure 5.6 which shows that larger think times produce

smaller service times; as explained previously, during thethink time, the disk rotates and the target

sectors move closer to the disk head. Since the SCSI disk has arotational latency near 6 ms, a

think time of 6 ms yields a bandwidth similar to the one achieved with a think time of 0 ms; thus,

performance decreases again with a think time of 6 ms. Transactional checksumming derives a

substantial benefit with a think time of 5 ms because the single synchronous write occurs near

the disk head. Logging with no optimizations does not exhibit much benefit, since only the first

synchronous write in each transaction is located near the disk head and the second synchronous

write still incurs the full rotation costs.

Second, there is no longer a strict performance ordering between log skipping and checksum-

ming: for some think times, log skipping is superior, while for others, transactional checksumming

is. For the think times between 3 and 5 ms when transactional checksumming is superior, log skip-

ping alone still benefits from reducing rotational latency,but not as much as log checksumming

alone benefits from performing only one synchronous disk operation.

Third, log skipping and transactional checksumming continue to work well together. For some

think times, log skipping dramatically improves the performance of transactional checksumming

alone (e.g., for think times between 0 and 2 ms and for 6 ms); however, for other think times, log

skipping does little to improve the performance of transactional checksumming. In all cases, log

skipping paired with transactional checksumming has the best performance across different think

times.

Finally, for some values of think time, log skipping does notperform as well as we would

expect; the performance loss is due to small mispredictionsin the disk model and thus the log



79

skipper does not choose the best skip distance. For example,when an application contains 3 ms

of think time, log skipping does not further improve upon transactional checksumming. In this

case, miniMimic predicts that the optimal skip distance is 96 KB and that the average service time

should be 3.35 ms. However, in the experiment, the average service time is significantly higher at

4.28 ms; examining the individual service times in more detail, we see that although most requests

finish in close to 3 ms, several requests incur an extra rotation. Thus, it appears that the log skipper

is slightly too aggressive in its skipping and a smaller skipdistance would improve performance;

specifically, for this workload with a 3 ms think time, a skip distance smaller than 96 KB would

incur slightly more rotation delay in the best cases, but would not suffer the worst case times by

missing the rotation.

Figure 5.16 presents results for the second SCSI disk. In this configuration, combining log

skipping and transactional checksumming yields the best performance, and the log skipping alone

has better performance than transactional checksumming.

Figure 5.17 shows the results for the IDE disk. On the IDE disk, the qualitative trends are sim-

ilar to those for the SCSI disk. In summary, we again see that transactional checksumming alone

can perform quite well when the think time of the applicationis matched to that of the rotational

latency of the disk. However, log skipping in combination with transactional checksumming pro-

vides the best performance; furthermore, this performanceis much more stable in the presence of

variations in application think time.

5.7 Summary

In this chapter we presented a specialized disk model, miniMimic, which is used to implement

a novel technique for optimizing the log operations for applications that perform synchronous disk

writes. Log skipping writes data to the log close to where thedisk head is situated, thus avoiding

incurring costly rotational latency.



80

MiniMimic is built specifically for the disk on which the log is written and is able to predict

minimum service times for write requests. The model takes into consideration request size and

think time as parameters when making a prediction.

We showed that it is possible to obtain improvements of more than 300% when using the log

skipper. We compared to another option for log optimizations, transactional checksumming, and

show that performance can improve up to 450% when the techniques are combined.



81

Chapter 6

Stripe Aligned Writes in RAID-5

In this chapter we present how a data-driven model can be usedto tune a system to better

operate a RAID-5 storage device. More specifically we are targeting the small write problem in

RAID-5 [16]. We start by describing when it occurs, and then we present a solution for alleviating

it, by incorporating a specialized RAID-5 data-driven model in the I/O scheduler. The goal of this

chapter is to explore the use of data-driven models beyond disk drives. In particular, we study if

we can apply the same lessons learned from modeling a disk drive to modeling a different device,

in this situation a RAID-5 system.

6.1 Small Writes in RAID-5

The term RAID (Redundant Array of Inexpensive Disks) [47] was coined in the 1980’s to

describe ways of configuring multiple disks while still having them appear as one disk to the

system that uses them. Various RAID configurations are designed to increase the reliability and

performance of the storage system, often by trading off diskcapacity.

One of the most widely used RAID configurations is RAID-5 [47]. In this setup, N disks are

used for storing both data and parity blocks. Data is writtento the system in units called “stripes”,

with each disk being allocated a “chunk”. Redundancy is supplied by parity blocks. A stripe spans

N-1 disks and the parity is stored on the remaining disk. The parity blocks are computed as simple

XOR operations on all the data blocks in a stripe and they are used to recover the data in case of

a disk failure. The position of the parity disk changes for every successive stripe, as illustrated in

Figure 6.1.



82

Figure 6.1RAID-5 Configuration. This figure shows an example of the block layout in a RAID-5
left asymmetric configuration. The stripe spans 3 data disks, and there is one parity disk per stripe.

Write operations require updates to the parity blocks alongwith updates to the data blocks. We

give an example of the sequence of operations required to update one data block. Let us assume

that block 5 shown in the example in Figure 6.1 is modified. TheRAID-5 system has to 1) read

the parity block corresponding to the modified block (P2), 2)compute a new parity that reflects the

new value for block 5, and then 3) write the new values for block 5 and parity P2’.

In this process, we notice that one logical update operationhas resulted in two additional oper-

ations: read and write of the parity block associated with the stripe that is modified. This situation

is known as the small write problem in RAID-5, as the performance of the storage system can

degrade significantly under write workloads because of the extra read-modify-write operations.

This performance degradation can occur for large writes as well, if the OS does not correctly

align or merge requests. The I/O scheduler is in charge with deciding the size and alignment of

requests issued to the disk, we are going to discuss these operations in more detail in Section 6.2.

Let us assume the system needs to update blocks 4, 5, and 6. TheI/O scheduler decides how

the requests are merged or split, but since it has no knowledge of the actual storage system that

’hides’ behind the simple logical block interface, it couldissue requests for the storage system in

the following sequence: update block 4, then update blocks 5and 6. In this scenario, the storage

system performs two read-modify-write operations for P2 (one for block 4 and one for blocks 5

and 6), although a better approach would have been to update the whole stripe in one operation.

Updating the stripe in one operation results in only one extra write operation, for the parity block

associated with the stripe.



83

6.2 Stripe Aligned Writes

Commodity operating systems typically view the underlyingstorage device in a very simple

manner: as a linear array of blocks addressed using a logicalblock number (LBN). Regardless

of the actual complexity of the storage device (e.g., whether it is a single disk, a RAID, or even

a MEMS device), the file system uses essentially the same unwritten contract [63], namely that

sequential accesses are faster than random, that accesses with spatial locality in the LBN space

are faster, and that ranges of the LBN space are interchangeable. However, this unwritten contract

belies the fact that how blocks are mapped to the underlying disks in a RAID or a MEMS device

changes its performance and reliability [17, 47, 58, 96, 63].

As demonstrated by the small writes problem, the lack of information about the underlying

storage system that services the I/O requests can adverselyaffect the performance of the system.

Thus, we propose to enhance the I/O scheduler, by making available to it the information required

to split and merge requests in a more efficient way.

The questions that we need to answer are the following: 1) what information is needed by the

scheduler; 2) what is the best place to perform this optimization; 3) how can this information be

obtained.

In order to better understand the information needed by the I/O scheduler we briefly describe

the choices that it has regarding splitting and merging requests. The I/O scheduler sees requests for

logical block numbers, in the following format: Request(LogicalBlockNumber, Size, DeviceNum-

ber, OperationType). TheLogicalBlockNumberrepresents the start of the sequence of blocks that

is requested,Sizeis the number of blocks affected by the request,DeviceNumberis the device

where the data is located, andOperationTypeis the type of operation (read or write).

As requests are issued by user applications, the scheduler builds a queue of requests, which it

orders according to the scheduling algorithm that is currently selected (FIFO, C-LOOK, anticipa-

tory scheduling, etc.). When a new I/O request arrives, the scheduler has a choice to merge the

request with a request that is already queued, or to queue therequest individually.



84

Figure 6.2 Layered Environment. This figure shows an example of a common encountered
environment, where applications are ran on guest operatingsystems that operate in a virtualized
environment. At the lower level of the storage system we havea RAID system, present for reliability
and performance reasons.

A request can be merged with another that is already queued only if the new request has blocks

that follow or precede it in sequential order and without gaps. Additionally, the operation type of

the requests have to be the same (either read or write), and the total length of the newly merged

request cannot exceed a maximum size, whose value is dependent on the system.

We ask the question about the best place to perform the optimization especially in the context

of current systems, where a guest operating system will often be hosted on top of a virtual machine

monitor (VMM) that in turn accesses the bare hardware (e.g., the RAID system), as shown in

Figure 6.2. There are many benefits to using virtualization,including server consolidation [92],

support for multiple operating systems and legacy systems [29], sandboxing and other security

improvements [28, 40], fault tolerance [12], and even live migration [20]. Most commodity servers

currently include or will soon include virtualization features [7, 46, 78].

In a virtualized environment, the VMM is a natural location to implement I/O scheduling. First,

commodity file systems can continue using their unwritten contract with the storage system and do



85

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
B

/s
)

Stripe size (KB)

Performance as Stripe Size Varies

Aligned
Not Aligned

Figure 6.3 Determining Stripe Size. This figure shows the write bandwidth obtained when re-
quests from the guest OS are grouped into stripes of differing sizes. The experiments were run on a
RAID-5 system with three data disks, a chunk size of 16 KB, anda stripe size of 48 KB. As desired,
RAID-Mimic finds that the best bandwidth occurs when the requests are aligned and grouped into
requests of size 48 KB.

not need to be modified to handle future devices with new performance characteristics. Second, in

a virtualized environment the guest OS sees a virtualized image of the device so it may not be able

to correctly determine the stripe boundaries within the RAID system. Third, the guest OS does not

have a a global view of the stream of requests; thus, it is difficult to infer if perturbations are from

partial stripe writes or from other guest OSes. Finally, theguest OS is oblivious to changes in its

environment; for example, if the VMM migrates the guest, theOS will not be aware of the change.

If the VMM layer is not present, the best place to put this optimization is at the next adjacent layer

to the RAID (e.g.the OS).

The answer to the third question, how to obtain the information about the stripe boundaries,

is needed for the I/O scheduler to perform RAID-aware splitting and merging. As mentioned,

this information is not available from the RAID system, since the interface to it is identical to the

interface of a regular disk. We propose the use of a simple data-driven model in order to feed the

needed information to the scheduler. We describe the model in the following section.



86

6.3 RAID-5 Data-Driven Model

We call the data-driven model of the RAID RAID-Mimic. With the help of RAID-Mimic, the

VMM I/O scheduler transforms and adapts the requests and behavior of the OS above to better

match the characteristics of the underlying RAID hardware.

The I/O scheduler merges and aligns adjacent write requestsfrom the guest OS such that the

requests are a multiple of the stripe size and are aligned to start and end at a stripe boundary.

Because a whole stripe is written to disk, the RAID can compute the associated parity without

incurring any additional disk activity.

For the I/O scheduler to perform the adaptation to the RAID system below, by splitting and

merging requests to be stripe-aligned, it needs to know the stripe size used to configure the RAID-5.

RAID systems do not typically export information about their internal configuration, such as their

RAID level, number of disks, block size, or stripe size. One could leverage existing techniques for

automatically deriving these parameters; however, these techniques require a synthetic workload

to be run on an otherwise idle system [21].

Rather than require this off-line configuration, RAID-Mimic is built online, and it dynamically

models the stripe size of the array. To build the model, we reorder and then observe the write band-

width of requests from each guest OS. Specifically, the RAID-Mimic instructs the I/O scheduler

to split and merge write requests such that it is able to observe the performance of requests with

different sizes and alignments. The model times each write and then builds a repository of the

corresponding times, grouped by size and alignment. From these observations the model can infer

the stripe size of an underlying RAID-5 array; stripes that are of the correct size (and alignment)

will have better bandwidth since they do not require extra read requests to recompute the parity

block.

To verify this configuration process, we run RAID-Mimic on a hardware RAID-5 with three

data disks and a chunk size of 16 KB. Thus, the configuration process should discover that the

stripe size is 48 KB. Figure 6.3 shows our results. Thex-axis shows the stripe size being tried;

the y-axis reports the bandwidth achieved using that stripe size. We display two lines: one for



87

which the requests are aligned correctly (on a multiple of the stripe size) and one in which they are

not. The figure shows that there is a substantial difference in bandwidth when the model finds the

correct stripe size. For example, when RAID-Mimic assumes astripe size of 48 blocks, bandwidth

is nearly 14 MB/s, compared to an average of about 9 MB/s otherwise. Thus, by searching for the

stripe size that gives the best bandwidth, RAID-Mimic is able to determine this parameter on-line.

6.4 Experimental Setup

We now describe the setup used to show the benefits of incorporating RAID-Mimic in the

VMM I/O scheduler. The environment is presented in Figure 6.2. We use Xen [23], an open

source virtual machine monitor. For our experiments we modify the disk scheduler and the disk

backend driver.

The host operating system is Linux 2.4.29 and the experiments are run on a Pentium III

550 MHz processor. The RAID used in experiments is an Adaptec2200S RAID controller, con-

figured as RAID-5 left asymmetric, with three data disks, a stripe size of 48 KB, and a chunk size

of 16 KB. The disks used are SCSI Ultrastar IBM9LZX disks.

The benefits of stripe-aligned writes are most apparent in workloads containing large write

requests. To illustrate this benefit, we consider a synthetic workload in which sequential writes

are performed to 500 files of differing sizes. Across experiments, we consider file sizes between

4 KB and 256 MB; within each experiment, we vary the size of each file uniformly within 0.5

and 1.5 times the average. The workload is generated by the guest OS and there is no other guest

competing for the IO bandwidth at that time. The hardware RAID system is again configured as a

RAID-5, with three data disks, a chunk size of 16 KB, and a stripe size of 48 KB.

6.4.1 Evaluation

Our measurements here assume that the I/O scheduler alreadyknows the correct stripe size,

that it can obtain using the techniques described in Section6.2. In our experiments, we consider



88

 0

 5

 10

 15

 20

256M16M1M64K4K

B
an

dw
id

th
 (

M
B

/s
)

Average File Size

The Effect of VMM-based Stripe Alignment

VMM (NA) / Host (A)
VMM (A) / Host (A)

VMM (NA) / Host (NA)
VMM (A) / Host (NA)

VMM Aligned

Not VMM Aligned

Figure 6.4 Specialization for RAID-5. This experiment shows the benefit of using RAID-Mimic
to specialize the I/O of the guest OS to RAID-5. The four linescorrespond to the four combinations
of whether or not the OS or VMM attempts to align writes to the stripe size of the RAID-5. The
guest OS runs a synthetic workload in which it performs sequential writes to 500 files; the average
file size within the experiment is varied along thex-axis. Smaller file sizes do not see performance
improvements from the technique because the workload does not generate whole stripes.

the four different combinations of whether the guest OS and/or the VMM attempts to perform

stripe-aligned writes.

Figure 6.4 shows our results. Each point represents the bandwidth obtained if the files have

the average size specified on thex-axis. We make three observations from these results. First

and foremost, there is a significant benefit to performing stripe-aligned writes for large files in the

VMM. For example, for 5 MB files, alignment within VMM improves performance from about

8 MB/s to over 15 MB/s. Second, this adaptation must be performed in the VMM, and not in the

OS. As shown by the lowest two lines, if the OS attempts to align stripes without cooperation from

VMM, it achieves no better performance than if it made no effort. In fact, as shown by the top two

lines, VMM achieves better performance when the OS simply passes along its requests rather than

when the OS attempts to align stripes as well.



89

6.5 Summary

In this chapter we presented a specialized model of RAID-5, that predicts only the required

RAID characteristics (e.g., stripe size) for improving storage system performance forwrite work-

loads. The model is built online and it is used by an I/O scheduler to make decisions for splitting

or merging requests. We compare system performance when theoptimization is performed at an

OS guest, as opposed to VMM layer. We conclude the VMM is the best place to perform this op-

timization in a virtualized environment, and we show performance improvement of almost 100%

in this situation.



90

Chapter 7

Related Work

In this chapter we present related work. We structure the chapter in several sections, in which

we talk about disk modeling in general and then disk modelingapplications to disk scheduling and

logging.

7.1 Disk Modeling

The classic paper describing models of disk drives is that byRuemmler and Wilkes [56]. The

main focus of this work is to enable an informed trade-off between simulation effort and the re-

sulting accuracy of the model. Ruemmler and Wilkes evaluatethe aspects of a disk that should be

modeled for a high level of accuracy, using thedemerit figure. Other researchers have noted that

additional non-trivial assumptions must be made to model disks to the desired accuracy level [41];

modeling cache behavior is a particularly challenging aspect [73].

Given that the detailed knowledge for modeling disks, such as head switch time, cylinder switch

time, data transfer overhead, is not available from documentation, researchers have developed in-

novative methods to acquire the information. For example, Worthingtonet al.describe techniques

for SCSI drives that extract time parameters such as the seekcurve, rotation speed, and command

overheads as well as information about the data layout on disk and the caching and prefetching

characteristics [98]. Many of these techniques are automated in later work [60].

Modeling storage devices using tables of past performance has also been explored in previous

work; in most previous cases [4, 30], high-level system parameters (e.g., load, number of disks,

and operation type) are used as indices into the table. Anderson [4] also uses the results on-line,



91

to assist in the reconfiguration of disk arrays. An approach similar to ours is that of Thornocket

al. [83]. In this work, the authors use stochastic methods to build a model of the underlying drive.

However, the application of this model is to standard, off-line simulation; specifically, the authors

study block reorganization, similar to earlier work by Ruemmler and Wilkes [54].

At a higher level, Seltzer and Small suggestin situ simulation as a method for building more

adaptive operating systems [70]. In this work, the authors suggest that operating systems can

utilize in-kernel monitoring and adaptation to make more informed policy decisions. By tracing

application activity, the VINO system can determine whether the current policy is behaving as

expected or if another policy should be switched into place.However, actual simulations of system

behavior are performed off-line, as a “last resort” when poor performance is detected.

Another approach to simulation can be to use artificial intelligence techniques such as CART

(Classification and Regression Trees) models [89] a technique that is similar to non-linear regres-

sion. In this situation, the models treat disks as a “black box”, with no assumptions about the

devices. Doing so requires considering all possible parameters that can impact performance. The

models need to be trained, and then the models can predict average service times per request.

While this approach has similarities with ours, the authorsdid not explore requirements to deploy

the model in an on-line manner or how to adapt it to application specific requirements.

The same problem of synchronous writes to a log is tackled in [24]. The authors notice the

same effect of skipping blocks, as the one we present and theypropose a linear model to keep track

and adjust the skipping distance in order to minimize the service time for synchronous writes. Our

model also incorporates think time to deal with applications that interleave computations with I/O

operations. It is not clear how the think time would need to beconsidered in their model.

Chiueh and Huang [87] also consider optimizing synchronousdisk writes. In order to predict

the disk head position they choose to use information about disk geometry, such as number of

heads, track size, platter rotation speed . This approach isdifficult to implement in practice, since

this information is not readily available, and thus makes the approach less portable. Even with

automated tools for extracting it, the complexity of disks requires the technique to be recalibrated

periodically.



92

In distributed systems there has been work [2, 15] that looksat performance debugging of

systems with multiple communicating components. Their approach uses timing, which is similar to

the way we build our models, but they focus on performance debugging and problem pinpointing,

and do not use their approach to optimize the system on-line.

7.2 Disk Scheduling

Disk scheduling has long been a topic of study in computer science [94]. Rotationally-aware

schedulers came into existence in the early 1990’s, throughthe work of Seltzeret al. [66] and Ja-

cobson and Wilkes [37]. However, perhaps due the difficulty of implementation, those early works

focused solely upon simulation to explore the basic ideas. Only recently have implementations

of rotationally-aware schedulers been described within the literature, and those are crafted with

extreme care [35, 100].

More recently, Worthingtonet al. [97] examine the benefits of even more detailed knowledge

of disk drives within OS-level disk schedulers. They find that algorithms that mesh well with the

modern prefetching caches perform best, but that detailed logical-to-physical mapping information

is not currently useful.

Anticipatory scheduling is a relatively recent schedulingdevelopment that is complementary to

our on-line simulation-based approach [36]. An anticipatory scheduler makes the assumption that

there is likely to be locality in a stream of requests from a given process; by waiting for the next

request (instead of servicing a request from a different process), performance can be improved.

The authors also note the difficulty of building a rotationally-aware scheduler, and instead use an

empirically-generated curve-fitted estimate of disk access-time costs; the Disk Mimic would yield

a performance benefit over this simplified approach.

7.3 Logging

A hardware solution for improving log performance is to use NVRAM (non-volatile RAM)

within the disk system. By placing the log in NVRAM, writes tothe log are fast and are still robust



93

to crashes and power failure. However, NVRAM is an expensiveapproach, not only in financial

terms, but in testing as well: ensuring that the log in NVRAM is interacting properly with the rest

of the system and really is robust to crashes can require significant testing.

We are aware of one other recent software solution for optimizing log operations:transactional

checksumming[50]. Transactional checksumming eliminates the need for asecond synchronous

write, and thus implicitly avoids the extra disk rotation. This solution performs a single write, but

writes a checksum along with the descriptor block and data tothe log. The checksum allows the

system to detect a partial write when the log is read after a system crash. We note that transactional

checksumming is an orthogonal solution to log skipping. Thetwo techniques can be implemented

separately or together.

7.3.1 Write Everywhere File Systems

There is a substantial body of work that has looked at file system optimizations that write data

close to where the disk head is positioned. The first mention that we are aware of dates to 1962 [39]

where the authors propose to write data on the drum that is closer to the disk head.

Eager writing [90] performs writes close to the disk head. While the authors also target small

synchronous writes, there are several differences from ourproposal. First, with eager writing

there is no disk model for predicting positions with small service time. Second, deploying the

solution requires either modifying the disk interface or moving functionality to be within the disk.

In contrast, the solution we present in Chapter 5 is simple and can be easily implemented without

interface or firmware changes. Third, since eager writing isperformed for the whole file system,

special care must be taken to build and maintain a persistentindirection map that tracks the current

disk block allocations. Since we target optimizations for the log, we do not require extensive

modifications to the file system or that additional structures are maintained.

There are other systems [14, 33] that write near the disk head, but their solutions cannot be

easily integrated into existing file systems, since they require special adjustments, for example,

self-identifying blocks. These previous solutions are also more heavyweight since they try to solve



94

a more general problem (e.g., block allocation for any block in the system, as opposed to only the

log).



95

Chapter 8

Conclusions

We started this dissertation with the observation that there are storage systems that have re-

quirements for high performance I/O and that there are limits to increasing performance. One of

the challenges is the lack of information about other layers, which we propose to alleviate by mod-

eling. The intrinsic complexity of layers and also requirements for using them in a running system

make previous modeling solutions not suitable.

As an outcome, there is a need for another approach to modeling these layers. We propose the

use of data-driven models. Data-driven models are empirical models that capture the behavior of

the device they model by observing the inputs that are fed to the device and then reproducing the

output that was recorded.

In this dissertation we present how to use data-driven models in the storage system stack. We

focus in particular on data-driven models for disks. We explore through case studies the particular

parameters that are important to track. In the case studies we present, we show how we can

improve performance by using the data-driven models. For example, in the case of I/O scheduling

we improve performance by over 30% compared to traditional disk schedulers like C-LOOK, and

over 300% when using the log skipper.



96

8.1 Lessons Learned

In the next subsections we summarize some of the lessons we learned.

Timing is a Powerful Operation: Use it for Building the Models

One lesson learned from all of the case studies is that timingI/O requests is a powerful method

for observing the behavior of the other parts of the system. I/O requests traverse the layers of the

storage stack, from the moment they are first issued at the application layer, to their final destination

(e.g., a hard disk), and then they return to the issuer. Their path can go through the operating system

layer, and possibly a virtual machine layer and RAID layer before retrieving the data from a hard

disk. Potentially, all the layers that are traversed by the request will put their fingerprint on it. For

example, the operating system can perform I/O scheduling onthe requests.

Similarly, the hard disk has to perform certain operations in order to service a request. For

example, the disk head has to move from the current cylinder to the destination, where the data

is located. Additionally, a new disk head may need to be activated, and the disk must wait for

the platters to rotate, until the target sectors come under the disk head. All of these activities are

accounted for when we record the total time a request takes toexecute.

Thus, timing how long a request takes to be serviced by the disk gives an accurate account of

the actual activities that happen when a request is serviced. There are, however, challenges with

this approach, that we discuss next. For example, the more intervening layers between the one that

times the requests and the layer that is modeled, the more difficult it can be to build an accurate

model.

Avoid Intervening Layers: Put the Model Closer to the Target

The challenge of intervening layers can be overcome by placing the model as close as possible

to the layer that is modeled. This situation was illustratedin the two case studies where we modeled

a disk drive and then used the model to perform I/O schedulingin either the operating system layer

or the application layer. In the second case study, where thescheduling was performed by the

application layer, we had to pay an extra effort to be sure that the intervening layer (the operating

system layer) does not interfere with the measurements and decisions of the model. Our solution



97

was to export the scheduling queue from the operating systemlayer to the application layer, so the

application was aware of the scheduling effects at the operating system.

Modifying the operating system to export information is notalways possible because the source

code might not be available. Also, simply because every modification in the kernel can possibly

introduce bugs, or interact with previously present functionality, operating system modifications

are generally avoided.

Even with the information about the scheduling queue, functionality available at the applica-

tion level is still limited. For example, scheduling of write requests is not possible in the setup

presented in Chapter 4 because the application does not knowat the moment when an allocating

write is issued where it is going to be allocated on disk. A possible solution will require more

help from the operating system, in the form of additional information to be exposed from that level

(in this situation, the location of the blocks on disk). These challenges underline the difficulties

to modeling and using a device when there are other interfering layers between the model and the

device modeled.

In a similar manner, in the RAID case study, we saw that implementing an I/O scheduling

optimization by issuing stripe sized and aligned writes is more efficient when placed at the virtual

machine monitor layer. The alternative was to place optimizations within the I/O scheduler of each

of the guest operating systems that run on top of the virtual machine monitor.

In our situation, the virtual machine monitor layer is a better choice for several reasons. First,

instead of modifying all the possible instances of the operating system in order to implement this

functionality, we can implement it only once at the VMM layer. Second, the guest operating

systems operate on an virtualized storage layer, which means that they might not even be aware

there is a RAID that services their requests. Even with that knowledge, the layout of data on disk

can be arbitrarily modified by the VMM, thus making the modeling more difficult.

This challenge is a variation on the older conundrum of whereto place functionality in a sys-

tem [57]. Some optimizations often require information from several layers in the storage stack.

For example, the anticipatory scheduling I/O scheduler [36] requires knowledge about the initia-

tor of a request and about the disk model. This information allows the scheduler to preserve the



98

spatial locality already existent in a stream of requests issued by an application. The anticipatory

scheduler is implemented at the operating system, though another alternative is to implement it at

the disk level. In this later case, the disk needs additionalinformation for each I/O request, namely

the process that issued the request.

In the case studies we presented we need to deploy models because of the lack of information

about other layers. We conclude that if there is a choice of where to place a functionality, it is more

beneficial to place the model closer to the device or entity that is actually modeled. This solution

avoids interferences to the model from other layers that separate it from the target that is modeled.

Portability is Important: Disks are Rarely the Same

Most of the systems that we are targeting have high data demands, and often they are deployed

on clusters of machines. The older concept that clusters arehomogeneous is no longer valid.

Disks fail [65, 82] and are replaced with newer revisions, clusters are continually upgraded or

expanded [48]. Newer disks, even from the same company, and from the same line of products,

can vary in their characteristics even from one revision to another. This means that portability is

paramount when implementing any optimization or policy upgrade, and this is one of the reasons

why we emphasized portability as an important characteristic of the models we proposed.

In Chapter 4 we showed through experiments that the SMTF scheduler we propose, a through-

put optimizing I/O scheduler, has better performance than the traditional schedulers, even when the

characteristics of the disk vary widely. In a simulation environment we configured the disks with

different parameters for the number of platters, rotation time, cylinder switch, track skew, cylinder

skew etc. We did not have to modify the model to accommodate these different parameters.

MiniMimic was used for modeling the part of the disk that holds a write ahead log and for

guiding layout of synchronous writes. We deployed the modelon SCSI and IDE disks with no

modifications. This was a nice validation of the requirementto have the model portable across

disks with several characteristics [3, 93].

Minimal Assumptions Keep the Model Simple: Graybox Techniques

In dealing with systems as complex as hard disks, we learned that making some minimal as-

sumptions about how the system behaves is beneficial. For example, a totally black box approach



99

to modeling would have been to consider all possible parameters that can influence the outcome of

the disk, and keep them as input parameters. For example, at one extreme, we could have tracked

all previous requests issued to the disk, with the assumption that the behavior of the current request

is influenced by all the other requests serviced by the disk.

This conservative approach would have rendered the deployment of these models in a running

system almost impossible. Due to space and computational overheads, we choose to leverage

knowledge about how the devices work and about how they are going to be used. For example,

in Chapter 3 we make use of the knowledge that the I/O scheduler is going to be used in a data

intensive system, and thus, the think time of the I/O requests is going to be zero, and think time

does not have to be incorporated in the model.

Additionally, using widely known information about how disks service requests helps to reason

about the input parameters that best capture the behavior ofthe device. Intuitively, the inter-request

distance is good predictor of the disk response: the disk head needs to move from the previous

location of the disk to the new one, traversing a number of tracks. Timing a request and associating

it with the inter-request distance captures aspects related to the disk geometry and data layout.

Low Overhead is a Requirement: Runtime Usage

Related to the previous point, the deployment of these models as an integral part of a system,

at runtime, makes low overhead an important characteristic. The models are used on the critical

path of I/O requests, thus, it is essential that they have a minimal impact on the system. This is

a departure from the previous approach to modeling, where the emphasis is mainly placed on the

accuracy of the model.

The low overhead requirement comes along two axes: time and space overhead. By using a

table based approach, finding a model prediction for a set of input parameters is reduced to simply

indexing in a table. On a current computer this operation will take microseconds.

The potential for space inflation required special care in designing the model used by the I/O

scheduler at the operating system. We used interpolation, which allowed us to reduce the total

space required by the model by 90%. With interpolation the model can make predictions for



100

sets of input parameters for which it does not have associated values, by using predictions for

’neighboring’ sets of parameters.

Even with interpolation, special care needs to be paid to thespace taken by the model, as it can

still grow large, especially when considering the increasing capacities of current hard disks. Thus,

we believe that a valid alternative is to use the model for applications similar to the synchronous

writes problem, where only a portion of the disk needs to be sampled by the model.

Alternatively, for the case study in Chapter 3, the I/O scheduler could make use of a hybrid

model. This model could employ a more traditional coarse model, similar to the one used by

C-LOOK, for large inter-request distances, where the seek time is the major component of the

service time. For the smaller inter-request distances, themodel would be the Disk Mimic, since

it is successful in modeling the rotational latency, which is a larger component of the service time

for this type of workload.

Unknowns are a Given: Learn as You Go

Deployment in a real system also requires a way of dealing with the unknown. For example,

we want to be able to deploy these models in a system, and have them run when the system is

taken out of the box. Unfortunately, we are faced with a problem: the model is asked to predict the

behavior of a device (a hard disk) that it did not have the chance to observe.

The on-line hybrid approach used with the SMTF scheduler is one solution to such a problem.

For the times where the data-driven model has no informationabout the disk, we make use of

a simpler disk model that does not require sampling the disk.This disk model is the one used

by traditional schedulers (like C-LOOK): it assumes that the service time is proportional with the

inter-request distance. Predictions of this model yield good enough performance till the data-driven

model takes over. The data-driven model continually monitors the requests issued and the behavior

of the disk, populating its table, and learning more about the disk as it sees more requests.

Model only what is Needed: Partial Models

The last observation we make is that we explored the possibility to develop partial models, as

opposed to full system models. For disk drives, we use modelsto predict service times since this

parameter is needed by the policies that use the models. Other parameters, such as rotations per



101

minute, or track-to-track switch times were not required and are not predicted by the model. This

allows us to keep the models simple, and again facilitates their deployment.

The schedulers we studied in the first two case studies neededto know which request is going

to be serviced faster, and respectively if servicing a request is going to influence the service time

of another one. The log skipper had to know where to write a logrecord on disk, such that the

service time is minimal. All of these case studies made use ofpredictions of service time from

the data-driven model. The last case study used a data-driven model to find out the stripe size of a

RAID-5.

8.2 Future Work

We see three main threads of future work that can be followed.First we can refine the process

we use to build the models. Second, we can explore in more detail building models for other

devices. Third, we can look past performance oriented optimizations and use data-driven models

to also improve reliability. We discuss in more detail each of these.

Refine the Process of Building the Model

The on-line models we have presented time the requests issued by an application. In the initial

phase, the model has not seen too many requests, so we need to make use of a simpler model. We

use a model that assumes that service time is proportional tothe linear distance in logical block

numbers between requests.

We can refine the process of building these interim models. Wecould make use of explicit

probes to test how the hard disk behaves for a combination of parameters that was not exercised

by requests coming from the application. This allows us to use the periods the disk is not utilized,

for example, to increase the number of inputs for which the model can make a prediction, or to

increase the accuracy for some combinations of input parameters for which the model did not

gather enough data.



102

The disadvantage of this approach is the pollution of the model with data that will never be

exercised by an actual workload. For example, if a workload exercises only the first half of the

disk, there is no point in gathering data for inter-request distances larger than that.

Each of these approaches is suitable for different types of workloads. If a workload is localized,

which means it accesses mostly data in within a certain distance of the current request, then using a

reactive approach would work best. In this case, the model does not need to sample all the possible

inter-request distances. Building the model benefits most from learning about the disk guided by

the workload.

In the alternative situation when the workload is highly random in the number of inter-requests

distances it exercised, it could be beneficial to be more proactive in learning about the disks during

idle periods. This will cut from the learning time and help build the model faster than waiting for

the requests to be issued by the application.

Model Other Devices

The second line of future work involves building data-driven models for different devices, and

modeling different aspects of the existing ones. As we mentioned, RAIDs are complex systems,

and doing scheduling for them is challenging also. The operating system I/O scheduler could use

a data-driven model of the RAID to better schedule requests.

One alternative would be to move towards a black box approach[38], where we do not try to

find out details about the RAID device setup, but use the same timing techniques as for building the

models for the hard disk. This exploration path might require more space and time to build up the

model because RAID systems have capacities larger than disks, and also they are more complex.

RAIDs can routinely have tens of GB or RAM, and can employ different caching, prefetching and

scheduling techniques. Care must be taken to incorporate these characteristics in the model.

To simplify the approach to modeling, we could make use of previous research [21] that looked

at finding out the characteristics of a RAID device: redundancy scheme, stripe and chunk size,

number of disks. With this information, we would know which disk in the RAID will service each

request, and could then use this information to perform scheduling on each disk in the RAID, using

an SMTF scheduler.



103

Look Beyond Performance

The third line of future work involves using data-driven models to predict reliability problems

or to help indicate the existence of a problem in an existing system. By their nature, data-driven

models observe systems and gather information about them over a long period of time. This

information can be used to build self monitoring systems that alert the administrator. For example,

when the system behaves in a manner that is inconsistent withprevious behavior, a data-driven

model can detect it since it has historical data. For example, the model can detect when requests

that used to have a service time of 5 ms have a service time of 11ms. In this situation, the model

can trigger an alarm and inform that there is a change in the way the system behaves.

Since the model observes what zones on the disk generate faulty behavior, the storage system

can take proactive action and reorganize the data in those areas, or start replicate it to prevent actual

data loss.

Another benefit from observing the disk accesses is that the model has information about what

data is frequently accessed, and thus, what data is important to the user. For example, the model can

detect ’hot’ data and proactively replicate it, such that a disk failure does not affect data availability.

8.3 Summary

In this dissertation we target a common problem encounteredin complex, data driven systems:

the need for information about the components of the system.This situation occurs because of the

way systems are built today, from layers interconnected with narrow interfaces, that do not expose

much about their internals.

While it seems natural for a system to have knowledge about everything that is going on within

it, this is often not the case. Typically, when a decision needs to be made, a layer has to make

assumptions about the behavior of other layers. Often theseassumptions oversimplify the behavior

of the other layers, causing the system as a whole to under perform. For example, the model

associated with the C-LOOK scheduler assumes that the distance in sectors varies linearly with the

service time. This approximation ignores the rotational time that can be a large component of the



104

service time, and thus, the I/O scheduling decisions could be improved with a model that does take

rotation into consideration.

We propose to improve the decisions that need to be made by using data-driven models. These

models are built empirically, by observing data that is readily available, namely the timing of

I/O requests that flow through the system. The big challenge in building these models is how to

integrate them seamlessly into a running system, while still yielding good predictions and high

performance.

Building models that run in an active system, on-line, was not the main focus of other ap-

proaches that use modeling or simulations [27, 56]. We have identified characteristics of data-

driven models that are desirable: portability, low overhead, automatic configuration.

We have focused our attention on disks and built models for them since extracting good perfor-

mance from disks can improve the performance of a storage system and the system as a whole by

orders of magnitude. Also, because of their complexity, disks are notoriously difficult to model,

thus building a model and incorporating it in a running system brings additional challenges that

had not yet been addressed.

We have used data-driven models for different tasks and needed to change the models according

to the requirements of the application that uses them. For example, for a throughput-optimizing

I/O scheduler we included inter-request distance and request type as part of the model, while for

optimizing synchronous writes we needed to add think time also.

We have explored data-driven models for different devices also, more specifically RAID. We

were able to leverage lessons learned from data-driven models to disks, which makes us optimistic

about further using these types of models elsewhere in the storage stack.

One of the main challenges in building the data-driven models comes from the requirement to

embed them in a running system. Especially the requirement to keep the space overhead low can

prove difficult to satisfy, considering the size of current hard disks with capacities of 500 TB. One

solution is to use techniques such as interpolation, to reduce the number of input parameters to

store. A second alternative is to use hybrid techniques, as explained earlier in this chapter. Finally,



105

the third alternative is to focus on applications that by their nature require sampling only of a

portion of the disk, such as the log skipper.

Thus, the best applications to use with data-driven models are those that require modeling of a

characteristic or portion of a device, rather than the wholedevice. This allows to keep the footprint

of the model small, and best integrate it in a system.

We conclude that data-driven models are a viable method of improving performance in a sys-

tem. They prove to be one solution to overcoming the lack of information present in many instances

of complex storage systems.



106

LIST OF REFERENCES

[1] Anurag Acharya. Reliability on the Cheap: How I Learned to Stop Worrying and Love
Cheap PCs. EASY Workshop ’02, October 2002.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for distributed systems of black boxes. InSOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems principles, pages
74–89, New York, NY, USA, 2003. ACM Press.

[3] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an Interface: SCSI vs. ATA. In
Proceedings of the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03),
San Francisco, California, April 2003.

[4] Eric Anderson. Simple table-based modeling of storage devices. Technical Report HPL-
SSP-2001-04, HP Laboratories, July 2001.

[5] M. Andrews, M. Bender, and L. Zhang. New Algorithms for the Disk Scheduling Problem.
In IEEE Symposium on Foundations of Computer Science (FOCS ’96), pages 550–559,
1996.

[6] Apple. Technical Note TN1150. http://developer.apple.com/technotes/tn/tn1150.html,
March 2004.

[7] R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. A. Lucke, N. Nayar, , and R. C.
Swanberg. Advanced virtualization capabilities of power5systems. IBM Journal of Re-
search and Development, 49(4):523–532, sept 2005.

[8] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and Control in
Gray-Box Systems. InProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 43–56, Banff, Canada, October 2001.



107

[9] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James Nugent, and Florentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 90–105, Bolton Landing
(Lake George), New York, October 2003.

[10] Steve Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html, 2000.

[11] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas: new techniques
for congestion detection and avoidance. InSIGCOMM ’94: Proceedings of the Conference
on Communications Architectures, Protocols and Applications, pages 24–35, New York,
NY, USA, 1994. ACM Press.

[12] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance.ACM Trans.
Comput. Syst., 14(1):80–107, 1996.

[13] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running commodity
operating systems on scalable multiprocessors. InProceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ’97), pages 143–156, Saint-Malo, France, October
1997.

[14] Chia Chao, Robert English, David Jacobson, Alexander Stepanov, and John Wilkes. Mime:
a high performance parallel storage device with strong recovery guarantees. Technical Re-
port HPL-CSP-92-9rev1, HP Laboratories, November 1992.

[15] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem determination
in large, dynamic, internet services, 2002.

[16] Peter Chen and Edward K. Lee. Striping in a RAID Level 5 Disk Array. InProceedings
of the 1995 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’95), pages 136–145, Ottawa, Canada, May 1995.

[17] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patter-
son. RAID: High-performance, Reliable Secondary Storage.ACM Computing Surveys,
26(2):145–185, June 1994.

[18] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout.
SIGPLAN Not., 34(5):1–12, 1999.

[19] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar, Bruce W. Leverett, W. Anthony Ma-
son, and Robert N. Sidebotham. The Episode File System. InProceedings of the USENIX
Winter Technical Conference (USENIX Winter ’92), pages 43–60, San Francisco, California,
January 1992.



108

[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. InPro-
ceedings of the 2nd Symposium on Networked Systems Design and Implementation (NSDI
’05), Boston, Massachusetts, May 2005.

[21] Timothy E. Denehy, John Bent, Florentina I. Popovici, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Deconstructing Storage Arrays. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS XI), pages 59–71, Boston, Massachusetts, October 2004.

[22] E. W. Dijkstra. The Structure of the THE Multiprogramming System.Communications of
the ACM, 11(5):341–346, May 1968.

[23] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Ian Pratt, Andrew Warfield,
Paul Barham, and Rolf Neugebauer. Xen and the Art of Virtualization. InProceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), Bolton Landing
(Lake George), New York, October 2003.

[24] Bill Gallagher, Dean Jacobs, and Anno Langen. A high-performance, transactional filestore
for application servers. InSIGMOD ’05: Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, pages 868–872, New York, NY, USA, 2005.
ACM Press.

[25] Gregory R. Ganger. Blurring the Line Between Oses and Storage Devices. Technical Report
CMU-CS-01-166, Carnegie Mellon University, December 2001.

[26] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance in File Systems. In
Proceedings of the 1st Symposium on Operating Systems Design and Implementation (OSDI
’94), pages 49–60, Monterey, California, November 1994.

[27] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The
DiskSim Simulation Environment - Version 2.0 Reference Manual.
http://citeseer.nj.nec.com/article/ganger99disksim.html.

[28] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A Virtual
Machine-Based Platform for Trusted Computing. InProceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03), Bolton Landing (Lake George), New
York, October 2003.

[29] R.P. Goldberg. Survey of Virtual Machine Research.IEEE Computer, 7(6):34–45, 1974.

[30] C. Gotlieb and G. MacEwen. Performance of movable-headdisk storage devices.Journal
of the Association for Computing Machinery, 20(4):604–623, 1973.

[31] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.



109

[32] Robert Hagmann. Reimplementing the Cedar File System Using Logging and Group Com-
mit. In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP
’87), Austin, Texas, November 1987.

[33] Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File Server
Appliance. InProceedings of the USENIX Winter Technical Conference (USENIX Winter
’94), San Francisco, California, January 1994.

[34] Micha Hofri. Disk scheduling: FCFS vs.SSTF revisited.Communications of the ACM,
23(11):645–653, 1980.

[35] L. Huang and T. Chiueh. Implementation of a rotation latency sensitive disk scheduler.
Technical Report ECSL-TR81, SUNY, Stony Brook, March 2000.

[36] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk scheduling framework to
overcome deceptive idleness in synchronous I/O. InProceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), pages 117–130, Banff, Canada, October
2001.

[37] D. M. Jacobson and J. Wilkes. Disk Scheduling Algorithms Based on Rotational Position.
Technical Report HPL-CSP-91-7, Hewlett Packard Laboratories, 1991.

[38] Terence Kelly, Ira Cohen, Moises Goldszmidt, and Kimberly Keeton. Inducing models of
black-box storage arrays. Technical Report HPL-2004-108,HP Laboratories, 2004.

[39] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Summer. One-level Storage System.
IRE Transactions on Electronic Computers, EC-11:223–235, April 1962.

[40] Samuel T. King and Peter M. Chen. Backtracking Intrusions. InProceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ’01), Banff, Canada, October
2001.

[41] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. A detailed simulation model of the
HP 97560 disk drive. Technical Report TR94-220, Dartmouth College, 1994.

[42] Butler W. Lampson. Hints for Computer System Design. InProceedings of the 9th ACM
Symposium on Operating System Principles (SOSP ’83), pages 33–48, Bretton Woods, New
Hampshire, October 1983.

[43] C. Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and E. Riedel. Towards Higher Disk Head
Utilization: Extracting “Free” Bandwidth From Busy Disk Drives. InProceedings of the 4th
Symposium on Operating Systems Design and Implementation (OSDI ’00), pages 87–102,
San Diego, California, October 2000.

[44] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Freeblock Scheduling Outside
of Disk Firmware. InProceedings of the 1st USENIX Symposium on File and Storage
Technologies (FAST ’02), pages 10–22, Monterey, California, January 2002.



110

[45] Marshall K. McKusick, William N. Joy, Sam J. Leffler, andRobert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[46] Microsoft. Microsoft virtual server. http://www.microsoft.com/windowsserversystem /vir-
tualserver/default.mspx.

[47] David Patterson, Garth Gibson, and Randy Katz. A Case for Redundant Arrays of In-
expensive Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the
Management of Data (SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[48] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andr Barroso. Failure trends in a large
disk drive population. InFAST’07: Proceedings of the 5th USENIX Conference on File and
Storage Technologies, 13-16 February 2007, San Jose, CA, USA, pages 17–28, 2007.

[49] Florentina I. Popovici, Andrea C. Arpaci-Dusseau, andRemzi H. Arpaci-Dusseau. Robust,
Portable I/O Scheduling with the Disk Mimic. InProceedings of the USENIX Annual Tech-
nical Conference (USENIX ’03), pages 297–310, San Antonio, Texas, June 2003.

[50] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. InPro-
ceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages
206–220, Brighton, United Kingdom, October 2005.

[51] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[52] Peter M. Ridge and Gary Field.The Book of SCSI 2/E. No Starch, June 2000.

[53] Mendel Rosenblum and John Ousterhout. The Design and Implementation of a Log-
Structured File System.ACM Transactions on Computer Systems, 10(1):26–52, February
1992.

[54] Chris Ruemmler and John Wilkes. Disk Shuffling. Technical Report HPL-91-156, Hewlett
Packard Laboratories, 1991.

[55] Chris Ruemmler and John Wilkes. Unix disk access patterns. InProceedings of the USENIX
Winter 1993 Technical Conference, pages 405–420, 1993.

[56] Chris Ruemmler and John Wilkes. An Introduction to DiskDrive Modeling. IEEE Com-
puter, 27(3):17–28, March 1994.

[57] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system
design.ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

[58] Stefan Savage and John Wilkes. AFRAID — A Frequently Redundant Array of Independent
Disks. InProceedings of the USENIX Annual Technical Conference (USENIX ’96), pages
27–39, San Diego, California, January 1996.



111

[59] J. Schindler, A. Ailamaki, and G. Ganger. Lachesis: robust database storage management
based on device-specific performance characteristics, 2003.

[60] J. Schindler and G. Ganger. Automated disk drive characterization. Technical Report CMU-
CS-99-176, Carnegie Mellon University, November 1999.

[61] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Characteristics. InProceedings
of the 1st USENIX Symposium on File and Storage Technologies(FAST ’02), Monterey,
California, January 2002.

[62] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki, and Gregory R.
Ganger. Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks. InPro-
ceedings of the 3rd USENIX Symposium on File and Storage Technologies (FAST ’04), San
Francisco, California, April 2004.

[63] Steven W. Schlosser and Gregory R. Ganger. MEMS-based storage devices and standard
disk interfaces: A square peg in a round hole? InProceedings of the 3rd USENIX Sympo-
sium on File and Storage Technologies (FAST ’04), pages 87–100, San Francisco, California,
April 2004.

[64] Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis, Minglong Shao, Anastassia
Ailamaki, Christos Faloutsos, and Gregory R. Ganger. On multidimensional data and mod-
ern disks. InProceedings of the 4th USENIX Symposium on File and Storage Technologies
(FAST ’05), San Francisco, California, December 2005.

[65] Bianca Schroeder and Garth Gibson. Disk failures in thereal world: What does an MTTF
of 1,000,000 hours mean to you? InProceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST ’07), pages 1–16, San Jose, California, February 2007.

[66] M. Seltzer, P. Chen, and J. Ousterhout. Disk schedulingrevisited. InProceedings of the
USENIX Winter 1990 Technical Conference, pages 313–324, Berkeley, CA, 1990.

[67] Margo Seltzer, Peter Chen, and John Ousterhout. Disk Scheduling Revisited. InProceed-
ings of the USENIX Winter Technical Conference (USENIX Winter ’90), pages 313–324,
Washington, D.C, January 1990.

[68] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains, and
Venkata Padmanabhan. File System Logging versus Clustering: A Performance Compar-
ison. In Proceedings of the USENIX Annual Technical Conference (USENIX ’95), pages
249–264, New Orleans, Louisiana, January 1995.

[69] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N.
Soules, and Christopher A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. InProceedings of the USENIX Annual Technical Conference
(USENIX ’00), pages 71–84, San Diego, California, June 2000.



112

[70] Margo I. Seltzer and Christopher Small. Self-Monitoring and Self-Adapting Systems. In
Proceedings of the 1997 Workshop on Hot Topics on Operating Systems, Chatham, MA,
May 1997.

[71] M. Shao, J. Schindler, S. Schlosser, A. Ailamaki, and G.Ganger. Clotho: decoupling mem-
ory page layout from storage organization, 2004.

[72] P. Shenoy and H.M. Vin. Cello: A Disk Scheduling Framework for Next-generation Oper-
ating Systems. InProceedings of the 1998 Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE’98), pages 44–55,
Madison, Wisconsin, June 1998.

[73] Elizabeth A. M. Shriver, Arif Merchant, and John Wilkes. An analytic behavior model for
disk drives with readahead caches and request reordering. In Proceedings of 1998 SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems, pages 182–191,
1998.

[74] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-Aware Semantically-Smart Storage. InProceedings
of the 4th USENIX Symposium on File and Storage Technologies(FAST ’05), pages 239–
252, San Francisco, California, December 2005.

[75] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Systems.
In Proceedings of the 2nd USENIX Symposium on File and Storage Technologies (FAST
’03), pages 73–88, San Francisco, California, April 2003.

[76] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. InISCA ’97: Proceed-
ings of the 24th annual international symposium on Computerarchitecture, pages 194–205,
New York, NY, USA, 1997. ACM Press.

[77] David A. Solomon.Inside Windows NT. Microsoft Programming Series. Microsoft Press,
2nd edition, May 1998.

[78] Sun Microsystems. Sun consolidation and virtualization.
http://www.sun.com/virtualization, 2007.

[79] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff
Peck. Scalability in the XFS File System. InProceedings of the USENIX Annual Technical
Conference (USENIX ’96), San Diego, California, January 1996.

[80] Nisha Talagala, Remzi H. Arpaci-Dusseau, and Dave Patterson. Microbenchmark-based
Extraction of Local and Global Disk Characteristics. Technical Report CSD-99-1063, Uni-
versity of California, Berkeley, 1999.



113

[81] Toby J. Teorey and Tad B. Pinkerton. A comparative analysis of disk scheduling policies.
Communications of the ACM, 15(3):177–184, 1972.

[82] The Data Clinic. Hard Disk Failure. http://www.dataclinic.co.uk/hard-disk-failures.htm,
2004.

[83] Niki C. Thornock, Xiao-Hong Tu, and J. Kelly Flanagan. AStochastic Disk I/O Simulation
Technique. InProceedings of the 1997 Winter Simulation Conference, pages 1079–1086,
1997.

[84] Transaction Processing Council. TPC Benchmark B Standard Specification, Revision 3.2.
Technical Report, 1990.

[85] Theodore Ts’o and Stephen Tweedie. Future Directions for the Ext2/3 Filesystem. InPro-
ceedings of the USENIX Annual Technical Conference (FREENIX Track), Monterey, Cali-
fornia, June 2002.

[86] Stephen C. Tweedie. Journaling the Linux ext2fs File System. InThe Fourth Annual Linux
Expo, Durham, North Carolina, May 1998.

[87] Tzi-cker Chiueh and Lan Huang. Track-based disk logging. InProceedings of International
Conference on Dependable Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda,
MD, USA, pages 429–438, 2002.

[88] Carl A. Waldspurger. Memory Resource Management in VMware ESX Server. InProceed-
ings of the 5th Symposium on Operating Systems Design and Implementation (OSDI ’02),
Boston, Massachusetts, December 2002.

[89] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, AnthonyBrockwell, Christos Faloutsos,
and Gregory R. Ganger. Storage device performance prediction with cart models.MAS-
COTS, 00:588–595, 2004.

[90] Randy Wang, Thomas E. Anderson, and David A. Patterson.Virtual Log-Based File Sys-
tems for a Programmable Disk. InProceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI ’99), New Orleans, Louisiana, February 1999.

[91] John Wehman and Peter den Haan. The Enhanced IDE/Fast-ATA FAQ. http://thef-
nym.sci.kun.nl/cgi-pieterh/atazip/atafq.html, 1998.

[92] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.Scale and Performance in the
Denali Isolation Kernel. InProceedings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, Massachusetts, December 2002.

[93] B. White, W. Ng, and B. Hillyer. Performance Comparisonof IDE and SCSI Disks. Bell
Labs Technical Report, 2001.



114

[94] Neil C. Wilhelm. An anomaly in disk scheduling: a comparison of FCFS and SSTF seek
scheduling using an empirical model for disk accesses.Communications of the ACM,
19(1):13–17, 1976.

[95] J. Wilkes. The pantheon storage-system simulator, 1995.

[96] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID Hierar-
chical Storage System.ACM Transactions on Computer Systems, 14(1):108–136, February
1996.

[97] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling algorithms for modern disk
drives. InProceedings of the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 241–251, Nashville, TN, USA, 16–20 1994.

[98] Bruce L. Worthington, Greg R. Ganger, Yale N. Patt, and John Wilkes. On-Line Extraction
of SCSI Disk Drive Parameters. InProceedings of the 1995 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’95), pages 146–156,
Ottawa, Canada, May 1995.

[99] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch prediction. InMICRO
24: Proceedings of the 24th annual international symposiumon Microarchitecture, pages
51–61, New York, NY, USA, 1991. ACM Press.

[100] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y. Wang, Kai Li, Arvind Krishnamurthy,
and Thomas E. Anderson. Trading capacity for performance ina disk array. InProceedings
of the 2000 Symposium on Operating Systems Design and Implementation, pages 243–258,
San Diego, 2000. USENIX Association.


