DATA-DRIVEN MODELS IN STORAGE SYSTEM DESIGN

by

Florentina |. Popovici

A dissertation submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2007

[

| would like to thank to my advisors Andrea Arpaci-Dussead Bemzi Arpaci-Dusseau for
guiding me through the graduate studies program. Those aW®done through the same process
know very well how invaluable is the role of the advisor. | Bdyeen very lucky to benefit from
advice from two excellent ones.

David DeWitt and Mark Hill, the other members of my committdéered great support and
guidance, and for that | thank them also. Having them on mynoittee helped me think more
about my research outside of the operating system umbrella.

The classes | took here at University of Wisconsin-Madisamegme a solid base to build
on when doing research. Thank you Bart Miller, Charles Fidbavid DeWitt (after taking your
classes | will always have a soft spot for databases), Gunii 8as Bodik for a wonderful teaching
job and for unveiling numerous insights.

A special thank you to Irina Athanasiu, my advisor in my uggladuate studies, for planting
the early seeds of my interest in doing research. You will iesed by all the students you wisely
advised and by many others who would not be able to benefit jaum guidance.

Life in graduate school would have been so much differenhavit colleagues and friends
here in Madison. Brainstorming sessions, all nightersigefi@adlines, ice cream breaks, terrace
outings, updates about the Packers and Badgers, to nameallfesre invaluable.

Not lastly, I thank you my family for continuous and uncotatital support.

DISCARD THIS PAGE

TABLE OF CONTENTS

Page
LIST OF TABLES e e e s e \Y;
LIST OF FIGURES e e e e s s s Vi
ABSTRACT Xi
1 Introduction e 1

1.1 The Problem: Complex Layers, Simple Interfaces 1

1.2 A Strawman Solution: Better Interfaces 2
1.3 ABetter Solution: Data-DrivenModels 3
1.4 CaseStudies. 4
1.5 Summary of Contributions 8
1.6 Overviewofthe Dissertation c..... 9
2 Application Specific Data-DrivenModels 11
2.1 Motivationand Definition L e 11
2.2 DiskBackground 14
2.3 Input Parameters for a Data-Driven ModelofaDisk 15
2.3.1 Historyof Requests. 17
2.3.2 Inter-requestDistance e 18
2.3.3 RequestSize 19
234 ThinkTime e 19
235 OperationType o i 02
2.4 SUMMANY . . . e e e e e e e 20
3 File System Level I/O Scheduling 21
3.1 /0 Scheduling Background 21
3.2 AbDifferentApproach e 23

3.3 The SMTF Scheduler 24

Page
3.4 Reducing Input Parameters for The Disk Mimic 25
3.4.1 InputParameters 26
3.4.2 Measured Service Times i 28
3.5 Methodology 29
3.6 Off-Line Configuration e 32
3.6.1 SummaryData 32
3.6.2 NumberofSamples. 6 3
3.6.3 Interpolation 36
3.6.4 DiskCharacteristics e 40
3.7 On-Line Configuration 43
3.7.1 General Approach 3 4
3.7.2 ExperimentalResults o L 44
3.8 Summary ... e e e e e 45
Application Level Freeblock Scheduling 46
4.1 Freeblock Scheduling Background 46
4.2 Application Level I/O Scheduling 49
4.3 Using the Disk Mimic for Freeblock Scheduling at Apptica Level 50
4.4 ExperimentalResults e 51
4.5 SUMMAIY o e e e e e e e e e 52
Log Skipping for Synchronous Disk Writes. 53
5.1 Background 53
5.1.1 Synchronous Disk Writes 54
5.1.2 Logging e e e e e 55
5.2 Performance Issues with Synchronous Disk Writes 56
5.3 LogSKIipping 956
5.3.1 DiskHead Position Lo 57
5.3.2 SpaceAllocation e 57
5.3.3 CrashRecovery e 8 5
5.4 Buildingthe DiskModel 58
541 SkipDistance e 16
542 RequestSize e 61
543 ThinkTime e 62
5.4.4 Model Predictions 64
55 ExperimentalSetup e 67
5.5.1 Implementation 6.7

55.2 Workload 68

Page
553 Environment 70
5.6 LogSkippingResults 70
5.6.1 \Validatingthe DiskModel 71
5.6.2 Impactof RequestSize 73
5.6.3 Impactof Think Time 77
5.7 Summary e e 79
6 Stripe Aligned WritesinRAID-5 81
6.1 SmallWritesinRAID-5 e 81
6.2 Stripe Aligned Writes e e 83
6.3 RAID-5Data-DrivenModel 86
6.4 ExperimentalSetup e 87
6.4.1 Evaluation 87
6.5 Summary 89
7 RelatedWork e 90
7.1 DiskModeling 90
7.2 DiskScheduling. 92
7.3 Logging e 29
7.3.1 Write Everywhere File Systems 93
8 CoNCIUSIONS e 95
8.1 LessonslLearned 96
8.2 Future Work 101
8.3 Summary e e 310

LISTOF REFERENCES 106

DISCARD THIS PAGE

LIST OF TABLES

Table

3.1

3.2

Page

Disk Characteristics. Configurations of eight simulated disks. Times for rotation
seek, and head and cylinder switch are in milliseconds, yiader and track skews

are expressed in sectors. The head switch time is 0.79 msosherperiments, the
basediskisused. 30

Allowable Error for Interpolation. The table summarizes the percentage within
which an interpolated value must be relative to the probeldievan order to infer

that the interpolation is successful. As more check poirggarformed between two
inter-request distances, the allowable error increasebe fiumbers were gathered

by running a number of different workloads on the simulateskksland observing

the point at which performance with interpolation degradeisitive to that with no
interpolation. 38

DISCARD THIS PAGE

Vi

LIST OF FIGURES

Figure Page

2.1

3.1

3.2

3.3

3.4

3.5

Common Setup of the Storage Systenilhis figure shows an example of a possible
setup for a data intensive storage system. The layers th&emp the system are
connected through narrow interfaces, that expose littferimation about the layers.. 12

Distribution of Off-Line Probe Times for Three Inter-Reque st Distances. Each
graph shows a different inter-request distance: 132 KB, RB4 and 300 KB. Along
thex-axis, we show each of the 1000 probes performed (sortednigy and along the
y-axis we show the time taken by that probe. These times aenflBM 9LZX disk. . 27

Sensitivity to Summary Metrics. This graph compares the performance of a variety

of scheduling algorithms on the base simulated disk and gekvong HP trace. For

the SMTF schedulers, no interpolation is performed and Hpfes are obtained for

each data point. The-axis shows the compression factor applied to the workload.
They-axis reports the time spentatthedisk. 31

Demerit Figures for SMTF with Probability, Mean, and Maximu m Summary
Metrics. Each graph shows the demerit figure for a different summatyiend hese
distributions correspond to the one day from the experisiehown in Figure 3.2 with
acompressionfactorof20.. L 33

Sensitivity to Number of Samples.The graph shows that the performance of SMTF
improves with more samples. The results are on the simuthsécand the week-long

HP trace with a compression factor of 20. Thexis indicates the number of samples
used for SMTF. Thg-axis shows the time spentatthedisk.. 34

Mean Values for Samples as a Function of Inter-request Distace. The graph on

top shows the mean time for the entire set of inter-requasaices on our simulated
disk. The graph on the bottom shows a close-up for intergstjdistances; other
distances have qualitatively similar saw-tooth behavior.. 35

Vii

Figure Page

3.6

3.7

3.8

3.9

4.1

5.1

5.2

Sensitivity to Interpolation. The graph shows performance with interpolation as

a function of the percent of allowable error. Different I;eorrespond to different
numbers of check pointdy. Thez-axis is the percent of allowable error and the

axis is the time spent at the disk. These results use the bastated disk and the
week-long HP trace with a compression factorof20. 37

Sensitivity to Disk Characteristics. This figure explores the sensitivity of scheduling
performance to the disk characteristics shown in Table Pé&rformance is shown
relative to greedy-optimal. We report values for SMTF usirtgrpolation. The per-
formance of SMTF without interpolation (i.e., all probes)ery similar. 40

Real Disk Performance. This graph shows the slowdown of C-LOOK when com-
pared to the SMTF configured off-line. The workload is a sgtithlly generated
trace and the numbers are averages over 20 runs. The stardsidtion is also re-
ported. Ther-axis shows the maximum inter-request distance existeheitrace and
they-axis reports the percentage slowdown of the C-LOOK algamit 41

Performance of On-Line SMTF. The first graph compares the performance of differ-
ent variations of on-line SMTF; the performance of the last df the week-long HP
trace is shown relative to off-line SMTF. The second gramwstthat the performance

of Online-Set improves over time as more inter-requesadcsds are observed. . . . 42

Workload Benefits with Freeblock Scheduling. The leftmost bar shows the fore-
ground traffic with no competing background traffic, the nhedolar with competing
traffic and no freeblock scheduler, and the rightmost bahwhie freeblock scheduler. 52

Individual Service Times for 4 KB Requests. This graphs plots sorted individual
service times for requests of size 4 KB. The requests aredsseguentially, with no
think time, and the skip distance is 0. The disk used for éxgeits has a maximum
rotation latency of 6 ms. Most of the requests have a highiegetime, larger than a

full rotation. The average service time for these reques&i3ms.. 59

Average Service Times for 4 KB RequestsThese graphs plot the average service
times for requests with a size of 4 KB, when the skip distaades: The graph on

the top explores skip distances between -5 MB and 5 MB. Wewebte 'sawtooth’

profile of the graph, explained by the varying amounts oftiotel latency incurred

by the requests. The graph on the bottom is a zoom in for skiarties between

-200 KB and 200 KB. We notice that the minimum average setwvieeoccurs for a
skipdistance of 28KB. 60

Figure

5.3

5.4

5.5

5.6

5.7

5.8

5.9

viii

Average Service Time for Requests when the Request Size Vasi. We plot the
average service time for different request sizes, for twjo distances. The graph on
the top plots the service time for a 0 KB skip distance and thptgon the bottom
plots the service time for a 28 KB skip distance. We observeomth ascending curve
for service times associated with a 0 KB skip distance, whigegraph on the bottom
shows amore irregular pattern.. L

Average Service Time for Requests when the Request Size andi® Distance

Varies. The graph shows larger service times as the request sizearses. There
are three plateaus with transition points around 28 KB and XB. The transition
between the plateaus happens at different values for tipedé$tance..

Choices for Skip Distance when the Request Size Varie$his graph shows which
skip distance will be recommended by miniMimic when theestsize varies. We
notice that miniMimic will choose different skip distandesdifferent request sizes.
Figure 5.3 and 5.4 show that the difference in the service fion different skip dis-
tancesisnoticeable..

Average Service Time for 4 KB Requests when the Think Time Vaes. The graph
plots average service times when the think time varies am@kip distance is 0 KB.
The graph shows a periodic pattern, as the amount of rotatitatency varies be-
tween minimum and maximum values. With no think time theesgguncur large
rotational latencies, but as the think time increases theise time decreases be-
cause the target sectors are closer to the disk head. Théhdisla rotational latency
of 6 ms, which is reflected in the periodic pattern.

Average Service Time for 4 KB Requests when the Think time an&kip Distance
Varies. The average service times associated with different thim&d varies with a
more complex pattern compared to the one observed whemggitye request size. .

MiniMimic Skip Distance Recommendations for SCSI Disk 1.MiniMimic predic-
tions for the skip distance to be used when a request has a gagiest size and is
preceded by a given think time, for the SCSI IBM 9LZX disk. shiage of the graph
ishighlyirregular. e

MiniMimic Skip Distance Recommendations for SCSI Disk 2.MiniMimic predic-
tions for the skip distance to be used when a request has a gdeglest size and is
preceded by a given think time, for the second SCSI IBM 9LZX di.

Page

64

66

67

68

Figure Page

5.10

5.11

5.12

5.13

5.14

5.15

MiniMimic Skip Distance Recommendations for IDE Disk. The graph plots the
MiniMimic predictions for the skip distance to be used whescpest is characterized

by a given request size and preceded by a given think timthédDE Western Digital

WDC WD1200BB drive. Similar to the SCSI disk the shape ofridgghgs irregular,
thoughthecurveislesscomplex. 70

Predicted Versus Actual Service Times.This graph plots the actual service times
versus predicted service times for a request size of 8 KB.lilbdabeled "actual’

plots the sorted values of the service times for the indaliczquests. The actual and
predicted averages are within 1% of eachother. 71

Performance Improvements when the Size of the Requests Vas - SCSI Disk

1. The graph shows the bandwidti+#éxis) when the size of the requests varies (
axis) and there is no think time. Each bar in the group of bagresents one log
optimization configuration: no optimization, checksumgmskipping, and checksum-
ming and skipping together. Each configuration sees an as&én performance when

the request size increases, as the positioning costs aretiaenh In general, log skip-

ping performs better than transactional checksumming adrg both skipping and
checksumming yields the best performance improvement.. 72

Performance Improvements when the Size of the Requests Vas - SCSI Disk 2.

The graph shows the bandwidt-éxis) when the size of the requests variesXis)

and there is no think time and when we use the second SCSITh&kbehavior is
similarto the first SCSIdisk. 73

Performance Improvements when the Size of the Requests Vas - IDE Disk. The

graph shows bandwidthy{axis) when the request size variesaxis) and when using

an IDE disk. The observations are similar to those for the ISfi§&k. In contrast

to the SCSI disk, we see a performance drop when the requessdarger than 12
blocks, but our data shows this is not a result of miniMimispredictions, but rather

a characteristic of the disk or devicedriver.., 74

Performance when Application Has Think Time - SCSI Disk 1. The graph plots

the bandwidth seen by the application when doing i/@xis) when the workload has
think time (-axis). Transactional checksumming benefits from incieésiek times

up to 5 ms, that reduce the rotational latency incurred byuests. The performance of
log skipping alone is sometimes less than transactionatkwenming. Log skipping
paired with transactional checksumming continues to yileédbest performance. . . 75

Figure Page

5.16

5.17

6.1

6.2

6.3

6.4

Performance when Application Has Think Time - SCSI Disk 2. The graph plots

the bandwidth seen by the application when doing leaxis) when the workload

has think time £-axis) for the second SCSI disk. When log skipping and tictitszal
checksumming are deployed together, they yield the befstrpeance.. 76

Performance when Application Has Think Time - IDE Disk. The graph plots the
bandwidth seen by the application when doing li@akis) when the workload has
think time ¢-axis) and when using an IDE disk. The trends are similar ®dhes
noticed forthe SCSIdisk.. 77

RAID-5 Configuration. This figure shows an example of the block layout in a RAID-
5 left asymmetric configuration. The stripe spans 3 datasjliskd there is one parity
diskperstripe. e 82

Layered Environment. This figure shows an example of a common encountered
environment, where applications are ran on guest operasygfems that operate in

a virtualized environment. At the lower level of the storagstem we have a RAID
system, present for reliability and performancereasons. 84

Determining Stripe Size. This figure shows the write bandwidth obtained when re-
quests from the guest OS are grouped into stripes of diffesines. The experiments
were run on a RAID-5 system with three data disks, a chunlo$iz& KB, and a stripe

size of 48 KB. As desired, RAID-Mimic finds that the best batttiwccurs when the
requests are aligned and grouped into requests of size48KB.. 85

Specialization for RAID-5. This experiment shows the benefit of using RAID-Mimic
to specialize the 1/0O of the guest OS to RAID-5. The four laoeeespond to the four
combinations of whether or not the OS or VMM attempts to algtes to the stripe

size of the RAID-5. The guest OS runs a synthetic workloadhiohait performs
sequential writes to 500 files; the average file size withim ékperiment is varied
along thez-axis. Smaller file sizes do not see performance improvesrignh the
technique because the workload does not generate whobestri. 88

Xi

ABSTRACT

Systems with high data demands depend on the efficiency sftdinage system to reach the high
performance that is expected from them. Unfortunatelyabse of the way these systems evolve,
this is not easy to achieve. Storage systems are expectetl @8 a monolithic unit, but they are
actually constructed as a stack of layers that communibab@¢h narrow interfaces. Because the
information that flows between the layers is limited, it iffidult to implement many desirable

optimizations.

We propose to use data-driven models to alleviate this lddkformation. These models are
empirical models that observe the inputs and outputs ofytbies being modeled, and then predict

its behavior based on those previous observations.

We particularly focus on data-driven models for disks, asdydisk usage can improve the perfor-
mance of a system by orders of magnitude. It is difficult to elatisks because of their intrinsic
complexity. The demands of deploying data-driven modekiraa in a running system, adds to

the challenge of modeling storage devices.

The data-driven models we develop are tailored to the spegpplications that use them. This al-
lows us to build simplified models and to integrate them meesdessly in an existing system. For
example, we built such models to aid in decisions made byauthput-optimizing I1/0O scheduler

at the operating system level or to help lay out a write-aHegdn disk such that synchronous

write requests do not incur unnecessary and expensivearmhiatency overhead. We explore

Xil

how to build models for different devices by building a palrtilata-driven model of a RAID-5

storage system, and use it to perform stripe-aligned writes

In this dissertation we build data-driven models and usmtimescheduling and layout applications
at the operating system and application level. Additionak leverage experience from modeling
disk drives to model more complex storage systems as RAIDss dllows us to validate the

generality of out approach. Through experiments we show dhta-driven models can bring

significant performance improvements to the systems wihesedre deployed.

Chapter 1

Introduction

To reduce the complexity of building and testing softwasestesms are often organized into
layers[22, 42]. Layers have many benefits, as they decompose tidepnaf building vast soft-
ware systems into pieces that are easier to develop, reasom, @and evolve. Proof of layering’s
success is easy to find; simply examine the network stack (W&P and UDP built on IP built
on Ethernet), the storage stack (file systems built on RAIM ba disks), or the basic operating
environment (an operating system on a virtual machine orh#éndware itself) for excellent and
compelling examples.

Between each layer in a system is a well-defingdrface As Lampson describes, each in-
terface is a “little programming language” [42], informintients of the interface of the available
functionality. Not surprisingly, getting the “right” inteace is a major challenge in the implemen-
tation of a layer [8, 25, 42, 75].

1.1 The Problem: Complex Layers, Simple Interfaces

Unfortunately, the layered approach breaks down when awithal layer becomes overly
complex while the interface remains simple. Such a comiawnas problematic as clients have
little or no access to the power and capabilities of the layée result is that the system cannot
exploit the full abilities of its components; too high of ataas been paid for the simplicity that

layering brings.

This problem arises prominently today in the storage statkthe bottom of this stack is a
modern disk. Although terrifically complex, disks providetmost bare-boned interface possible:
simple reads and writes to blocks organized in a linear d82%2, 91].

This read/write interface was successful for a time. Byngdiletails of disk geometry en-
abled clientsi(e., file systems) to become simpler and focus solely on the neanagt of higher
level issues€.g, consistency management [26, 32, 33], directory scatghifd®], write perfor-
mance [53]); disks, in turn, improved their raw performacbaracteristics via more intelligent
caching and prefetching [80, 98], rotationally-aware posing algorithms [54, 67], and other
low-level optimizations.

Recent work, however, demonstrates that much has beenuediodhis simplified disk in-
terface [21, 44, 59, 62, 64, 71, 74, 75]. For example, withktaats (track aligned extends) [61],
the data is allocated and accessed at track boundariesapjieach avoids expensive rotational
latency and track switch overheads. Unfortunately, thekttaoundaries are not exported by the
disk, and the only alternative is to go through a lengthy prglphase in order to discover this

information.

1.2 A Strawman Solution: Better Interfaces

A simplistic solution to this problem would be to simply clggninterfaces when needed in
order to better expose the current capabilities of a layéthiWa disk system, this would imply a
new interface that exposes enough information and cordrodli¢nts to enable the full utilization
of their internal caching, prefetching, scheduling, arfteoimachinery.

Unfortunately, changing the interface of a well-estaldisland broadly used layer is no simple
task, for the following reasons. First, an interface chamgendates a change in all clients that
use the interface. Further, wide-scale industry agreemseaejuired. Finally, and perhaps most
importantly, determining the “right” interface is the malfficult challenge of all. It is hard (if not
impossible) to anticipate all future uses of a layer; simyjlahe improper choice of interface will

preclude certain internal implementations.

Many fields have accepted that not changing an interfaceasealine requirement for research
to have practical impact on a field. For example, many in tHd 6Eécomputer architecture focus
on microarchictectural improvements, thus enhancingoperdnce or other characteristics beneath
a fixed instruction set architecture [18, 76, 99]. Work inm@king [11] and virtualization [13, 88]
confirms the same viewpoint.

Thus, in this dissertation, we assume that the layers inttrage stack may have layers that
prevent clients from best utilizing them. We further assutima this interface is not likely to
change, at least in any fundamental way, in the near (orrdjsfature. Thus, we require an

approach that will enable a client to make the most of a lay#rout interface change.

1.3 A Better Solution: Data-Driven Models

The approach we advocate is one we dalla-driven modelingWith data-driven modeling, a
client uses detailed measurement of a disk (or RAID) to bugld working portrait of its behavior.
The client can then use this model to better predict or utatedshow the disk will behave and thus
enable the client to extract its full performance. Thus,@&sssful model is one that can accurately
and with low-overhead predict the behavior of a disk in a giseenario.

We build data-driven models in the following basic mannehe Tequests that are issued to
disk are recorded along with relevant input parameters. réqaests are timed, and their service
time is stored. In the prediction phase, when the model iscsk predict device behavior for a
specific request, it looks up how the device reacted wheraingiquests were issued, and predicts
its response based on the recorded history.

Our approach is an example ofjeay boxtechnique to systems building [8]. When building our
data-driven models, we often exploit our knowledge of hoskdiwork in order to make the model
more accurate or better performing. These “short cuts” atieal; without them, the overhead of
a true black box data-driven approach would be prohibiagaye will demonstrate.

Alternatives are possible. For example, one could exphaittealth of disk simulators [27] or

analytical models [56, 73] in place of our data-driven apgio However, these approaches tend to

be too slow (detailed disk simulation often runs much slativan the disk itself) or too inaccurate
(overly simplified models cannot capture the needed levebaiplexity). Thus, the data-driven
approach finds a sweet-spot between these two, being bdterfasgh and accurate enough to

enable their use in a running system.

1.4 Case Studies

There are many challenges in building data-driven modelsekample, what are the important
request parameters to keep track of? How can one integrege thodels into a running system,
keeping the space and computational overheads low? Whaatbestics of the device need to be
modeled for the policy that uses the model?

To answer these questions, we focus on four case studiedir3tiaree case studies revolve
around data-driven models for disks. They allow us to explow to build these models in col-
laboration with applications with specific needs: I/O sallgd) and layout. The fourth case study
explores data-driven models for a different device (RAID).

The first case study was presented in [49]. The second cadg istpart of [9]. The initial
work for the third case study started in the context of [21].

File System Level I/O Scheduling

We start by presenting a data-driven model of a disk thatesl as$ the operating system level
by the 1/0 scheduler. The scheduler optimizes for througlgnd the model is used to predict the
service time for the requests that are queued.

I/O scheduling at the OS level needs to reach a delicate talaan ideal scheduler being
accurate, simple to implement, and low overhead. Thereassidn between these requirements,
and thus, current 1/0O schedulers tip the balance towarddagtetwo, while glossing over the
accuracy requirement. We show how a data-driven model casinygle to implement and low
overhead, and have increased accuracy.

The model we build is used in an on-line manner by the systernpmfiguration free, and

portable. These requirements are aligned with the reakdifgiirements of using a disk model

in a running system. Using the model to guide the system tcerdakisions needs to minimally
impact the system. Second, deploying the model should be @ithout the need to configure it
manually. Third, since the system could be deployed on t@gmgfarbitrary disk, the model has to
be portable and handle disks with diverse characteristics.

One concern in building models is identifying the importpatameters to track. We could
track all the parameters that might influence the behavitmetisk, but doing so would generate
excessive space overhead. Instead, we focus on identibyilyghe parameters that are needed for
predicting the disk behavior for the specific applicatioatthses the model. We take advantage of
the implicit knowledge we have about how disks work in gehexnad for this case study identify
two types of parameters that are sufficient for modeling tis&: drequest type and inter-request
distance (a parameter that measures the distance in |bpcil number in between two requests).

This case study allows us to give an example of how these madel be deployed online in
a running system, using an arbitrary disk, without havingitoan off-line configuration phase or
manually tune them. To overcome the lack of information, \wwe a hybrid approach, where we
pair a data-driven model of the disk with a traditional ceaillssk model. When the information is
not available we use the traditional disk model, but as thdehsees more requests, it accumulates
more information and is able to make predictions.

With this case study we show that it is possible to improvehlengerformance of the more
traditional disk schedulers already available by usingta-daiven model that is built in an on-line
manner. The model is able to improve on previous ones by laditegto incorporate important disk
characteristics such as rotational latency, that was rmuticed by other more simplistic models.

Application Level Freeblock Scheduling

This case study uses a data-driven model of the disk to pedatifferent type of I/O schedul-
ing: freeblock scheduling. A freeblock scheduler is ablextvact free bandwidth from the disk for
background applications such as disk scrubbing, by minynmapacting foreground applications.

The main idea of a freeblock scheduler is to make use of thestiwhen the disk does not
actually transfer data from the platters. For example, wieguests are serviced by the disk, they

often incur a rotational latency, which is the time the diskds to wait for a target sector to come

under the disk head. A freeblock scheduler sends backgnamuebsts to the disk to be serviced
while a foreground request incurs the rotational laten@in® so allows the foreground request to
be serviced in the same time as before, while also servicagkground requests. Thus, the disk
is better utilized.

This type of scheduler needs to use a model of the disk in dal&e able to assess if a
background request can be issued without affecting a fouegr request. The model in this study
is used at application level as opposed to operating systeeh. | Scheduling at application level
is difficult, as it is pointed out by Lumiet al. [44], who first proposed the freeblock scheduler
algorithm. They state that initially they thought that a#fit freeblock scheduling can be done
only from inside the disk firmware.

We are able to leverage our experience from the previousstadg and use a model built on
the same principles as before. We keep track of the same pataineters, but this time we use
the model predictions to estimate if a background requesiisg to impact the performance of a
foreground request.

This case study highlights the difficulties of using a modakew there are other intervening
layers between the layer that uses the model and the layeisth@odeled. Because the model
is used at application level, its usage is impacted by thetfonality provided by the operating
system.

Log Skipping for Synchronous Disk Writes

The third case study uses a data-driven model of the disktimze workloads that perform
synchronous writes. While previous case studies lookechatthiling issues, this case study shows
how to use the model to guide the layout of data on disk.

Synchronous writes are frequently encountered in appdicatfor which data reliability is
paramount. These applications want to be sure that the lueyantrite is going to make it to disk
in the order it was intended. These precautions are negedsaause the operating system can
perform write caching for performance reasons, and carydsdtual disk writes till a later time
even if it reports to the application that the write openatcmmpleted successfully. It is obvious

that delayed writes combined with a system crash can genéasd loss.

The problem associated with synchronous writes in a loggimgronment comes from the
fact that they can incur extra rotational latencies. Afteyachronous disk write finishes on disk,
the disk continues to move under the disk head, and a sub#agtite to the next sector on disk
needs to wait almost a full rotation in order to complete. sT$ituation transforms a workload
that is seemingly sequential in one that has performanciesita a random workload, which can
decrease performance by an order of magnitude.

This case study provides the opportunity to explore in matitdhow to tailor a model for
a specific application need. For example, in this case th&load is write intensive and touches
only a small part of the disk. Thus, the model focuses on wetpiests, and it has smaller space
requirements because it tracks only the part of the diskgisttouched by the application.

For this case study we need to augment the previous disk mottebdditional parameters.
Since the application can have think time, the model neetisk®into consideration the time that
passes between requests.

Stripe Aligned Writes in RAID-5

The fourth case study builds a data-driven model of a RAID<iesn. RAID systems are used
to increase the performance and reliability of a storageesysThey are composed of two or more
disks, and can be configured with different schemes, aaugitdithe needs of the application.

We focus on RAID-5, a commonly encountered setup for RAIOEs Bcheme uses a rotating
parity that enables recovery of data if one of the disk fdilse parity blocks are associated with a
stripe, which along with the parity constitutes a contimeisagment of data that is laid on all the
disks part of the RAID. This layout is periodically repeatedthe whole RAID.

We particularly target the performance regime during updatjuests. This workload can
yield expectantly low performance because the RAID needsstee additional requests in order to
recompute the parity associated with a stripe and thus gowiti the reliability contract presented
by this RAID scheme.

This performance degradation can be alleviated if the I/@dualer issues requests that update

a whole stripe of the RAID instead of just part of it. Unforaialy, at operating system level the

scheduler does not have information about the size of tigestvhich is one of the information
that is needed in order to perform this optimization.

We propose to overcome this problem by using a partial RAIRIehoThe data-driven model
determines the stripe size used in the RAID, and this infétionas incorporated by the I/O sched-
uler at the operating system level or virtual machine leVéle scheduler decides whether to split
or merge incoming requests before issuing them to the RANDbdng stripe size aware, the 1/0
scheduler issues writes for the whole stripe, thus gettiograd the update parity problem.

This case study shows the usage of data-driven models forieed@hose characteristics vary
vastly from a hard disk device. Despite these differentesgtare common lessons that we learned
from the previous studies, that are applicable to this caglysSimilar to the previous ones, we use
timing of 1/0 requests, and we identify the important inpatgmeters keep track. As previously,
we do not build a full RAID model, but we carve out only the pontthat is required by the

application on hand.

1.5 Summary of Contributions

In this dissertation we propose the use of data-driven nsadehe storage system stack. We
study in more detail how to build models for modern disk dsibecause of their importance and
complexity.

Through examination of case studies, we find desirable cterstics of data-driven models.
Some of the characteristics are drawn from the way we use tlieismas an active component of

a running system. The models we propose are:

e Portable: The models we develop should be able to work on top of any diisle that is
part of a system. This requirement is important, as we wahéetable to deploy the models

on any system configuration.

¢ Automatically configured at run-time: Building the model automatically facilitates the use

of these models without the help of an administrator.

e Low overhead Having the models be an integral part of the system meangheg have
to integrate seamlessly in the existing systems, and to imavenum interference on them.

This should translate both in low overheads of space and atatipn.

One advantage of data-driven models is that they can beddilimr a specific application.
For example, we do not model all the characteristics of a,dsk only those ones needed for
the application that uses the model. This reduces the complaf the model, and allows for
optimizations in terms of space and computational overfiead

We identify the important parameters the models need td trdeen used for different appli-
cations like 1/0 scheduling or disk layout. Recording ab farameters that could influence the
behavior of the disk results in a prohibitive large amourdatt to store and large prediction times.

We study the use of these models at several layers in thegstatack. As the layer that is
modeled is further away from the layer that builds the maoitlbecomes more difficult to build an
accurate model. The problem comes from the fact that eaen iayhe storage stack is complex
and can potentially influence the behavior of the requeststtaverse it.

Through implementation in a real system and simulationsheg/ghat data-driven models can
be used in practice and that they increase the performaribe sf/stems where they are deployed.
Some previous publications cover some of the work presenttids dissertation [49], or present

the incipient ideas for some of the chapters [9], [21], [75].

1.6 Overview of the Dissertation

In the next chapter we present the definition of a data-dnwedel and underline the charac-
teristics that are desirable for these models. We discus®ie detail the parameters that could be
considered for building a model of a disk drive.

In Chapter 3 we build a model of a disk drive that is used by aratng system 1/O sched-
uler. The scheduler uses the model to predict the serviefimhe requests that are queued. We

present the input parameters that are used by the model,canthkey capture the disk behavior.

10

Additionally, we show how we decrease the space requiresrfenthe model by using interpola-
tion. The disk model can be built online or offline, and we prgsa hybrid scheduling algorithm
that helps deploy a model in a system, even if the model dide®enough requests to build a full
disk model.

Chapter 4 presents an application level scheduler thataudesk model to decide if requests
from the application are going to influence other requestiseérsystem or not. With this case study
we explore the use of the previous disk model at a differgrerlan the storage system.

Chapter 5 uses a disk model to guide the layout of data on dis&.disk model differs from
the previous ones in the parameters that it considers.

Chapter 6 builds a data-driven model of a different devid®AtD system. This model is used
by an 1/0 scheduler to decide whether to split or merge raquésthis chapter we apply lessons
learned from building the data-driven disk models to builod®ls for another device, and it helps
generalize our experience.

We conclude with Chapter 7 where we present related work,vatidChapter 8 where we

summarize our findings and talk about future work.

11

Chapter 2

Application Specific Data-Driven Models

In this chapter we introduce data-driven models. We starhbtivating the use of data-driven
models, then define them. Specifically, we discuss how tallauidlata-driven model for disks.
In particular, we talk about the choice of input parameterd laow they are incorporated by the

model.

2.1 Motivation and Definition

A data-driven model is an empirical model that captures thlealsior of the device that it
models by observing the inputs that are fed to the devicelzemireproducing the output that was
recorded. We intend to use data-driven models in collalmyratith a decision making entity in the
system. With the help of the model the policy can make betteisibns, because of the increased
information available to it.

The need for these models becomes obvious when we obsereerimaon setup of a data
intensive storage system. Consider as an example a welr ested in a data center, depicted
in Figure 2.1. We can distinguish several layers, stackewpf each other: 1) application layer
- the web server that receives requests for pages from rechietds; 2) operating system layer
that performs traditional functions, such as 1/0 schedpuéind caching; 3) virtual machine layer,
present since it allows for ease of maintenance, betterisgatilization, and portability; 4) RAID
storage, for good performance and reliability; 5) hard sliske final stage of data.

All these layers are connected to their adjacent neighlbmsally two, one above and one be-

low in the stack) through a narrow interface that does notafbr significant information transfer

12

Application
l

Operating System
' J
Virtual Machine

1
RAID

Hard Disk

Figure 2.1 Common Setup of the Storage SystemThis figure shows an example of a possible
setup for a data intensive storage system. The layers thied oqathe system are connected through
narrow interfaces, that expose little information abou thyers.

from one layer to another. This setup is beneficial becaugmitides ease of development and
deployment of additional layers, but it also impacts thelityuaf decisions that can be made. It is
difficult to make a decision that involves information abanobther layer, because that information
is usually not easily accessible.

For example, let us examine a disk scheduler within an oipgratystem. One basic piece
of knowledge such a scheduler requires is how long a givenestqwill take to be serviced by
the disk. This information allows the scheduler to reordmuests to minimize overall service
times. Unfortunately, this information is not availableth@ scheduler, which thus typically use
approximate heuristics to make scheduling decisions, (east distance first). We propose instead
to use a data-driven model of the disk to provide this infdrameto the scheduler.

The data-driven models we propose will be deployed in arirrhanner, as part of a running
system. In many respects, the requirements of an on-lineehayd more stringent than those
of an off-line model. First, the on-line model shoulda partable that is, the model should

be able to capture the behavior of any disk drive that couldid®d in practice. Second, the

13

on-line model should havautomatic run-time configuratigrsince one cannot know the precise
characteristics of the underlying device when constrgctire model; it is highly undesirable if
a human administrator must interact with the model. Finalig on-line model should havew
overheaclthe computation and memory overheads of an on-line moaelldhibe minimized such
that the model does not adversely impact system performance

The use of a data-driven model provides ample opporturidgresmplification. The model can
be specialized for the problem domain in question. For exenipthe model is used by an I/O
scheduler, it need not predict the individual seek timesktiswitch time, or cylinder switch time.
The scheduler needs to know only the service time of the stque reorder them appropriately,
and that is the only characteristic of the system that theahekeds to predict.

A data-driven model does not attempt to simulate the meshanor components internal to a
layer. Thus, there is no need for in-depth knowledge of homoitks. This is especially relevant
as layers become more complex, and as they incrementallyesveer short periods of time.

Another advantage of data-driven models is the availgtafithe data used to build the models.
This data is readily available: I/O requests flow throughsygtem and they are trivially accessible
at the layer they traverse.

Data-driven models have been used in the context of artifitielligence, data mining, ma-
chine learning, with applications in fields such as hydminfatics. We propose their use in the
context of operating systems, with specific applicationsmtwleling components of the storage
stack.

The data-driven models we propose can be built in an on-linéfdine manner. In the off-line
case, the model is fully built before the system is deployacontrast, building a model on-line
requires a start-up phase: the model is built as the systamand as it sees more requests. In
Chapter 3 we present a disk model that is built either of-tin on-line.

There are trade-offs for both of these options. Building aeio@n-line might require time for
the model to converge to the final version of the model, as thdaingets built. In this start-up
phase the model might not be as exact as when it is fully bumilcontrast, an off-line model can

be used and can give accurate predictions from the momesythem starts. Building the model

14

off-line requires an initial configuration phase, while threline version can be used immediately.
Another possible advantage of the on-line approach is treatrtodel will capture the character-
istics of the current workload and the portion of the devltat is exercised by the workload that
currently runs, thus minimizing the space taken up by theehauld the configuration time. Build-
ing the model off-line needs to take a more conservativeaggtr and cover all possible cases and
combination of parameters, which might result in wasteds@ad more time spent to configure
it.

We build data-driven models using a simple table-basedoggpr; in which input parameters
to the simulated device are used to index into a table; theegponding entry in the table gives
the predicted output for the device. A table-based appr@abpropriate for on-line simulation
because it can portably capture the behavior of a varietyewices, requires no manual configu-
ration, and can be performed with little computational tiead. However, there is a significant
challenge as well: to keep the size of the table small, ond idastify the input parameters that
significantly impact the desired outputs. The method fouoauy this input space depends largely
upon the domain in which the on-line simulator is deployed WMl address this problem in the

upcoming chapters.

2.2 Disk Background

Disk drives are complex systems, and modeling them is ahgilhg: they have mechanical
parts that move, and electronic systems for control. Thuescensider them a good target in
studying data-driven models. In this section we presentoat shtroduction on how disk drives
function and in the later sections we focus on describingta-deven model for disks.

A disk drive contains one or momgatters where each plattegurfacehas an associated disk
head for reading and writing. Each surface has data storedseries of concentric circles, or
tracks A single stack of tracks at a common distance from the spiisdtalled acylinder. Modern
disks also contain RAM to perform caching; the caching atgor is one of the most difficult

aspects of the disk to capture and model [73, 98].

15

Accessing a block of data requires moving the disk head dvedésired block. The time for
this has two dominant components. The first componeseék timgmoving the disk head over
the desired track. The second componentiation latency waiting for the desired block to rotate
under the disk head. The time for the platter to rotate is hbugonstant, but it may vary around
0.5 to 1% of the nominal rate; as a result, it is difficult togiot the location of the disk head after
the disk has been idle for many revolutions. Besides thesemortant positioning components
there are other mechanical movements that need to be aedofant head and track switch time.
A head switch is the time it takes for the mechanisms in thle Wisactivate a different disk head
to access a different platter surface. A track switch is ime it takes to move a disk head from
the last track of a cylinder to the first one of the next. Th& dippears to its client as a linear
array of logical blocks; these logical blocks are then mapjephysical sectors on the platters.
This indirection has the advantage that the disk can reargdrocks to avoid bad sectors and to
improve performance, but it has the disadvantage that teetaoes not know where a particular
logical block is located. If a client wants to derive this may, there are multiple sources of
complexity. First, different tracks have different numbef sectors; specifically, due to zoning,
tracks near the outside of a platter have more sectors (dsgquently deliver higher bandwidth)
than tracks near the spindle. Second, consecutive sectmssarack and cylinder boundaries are
skewed to adjust for head and track switch times; the sketeicigr differs across zones as well.
Third, flawed sectors are remapped through sparing; spamsgbe done by remapping a bad
sector (or track) to a fixed alternate location or by slipptimg sector (or track) and all subsequent

ones to the next sector (or track).

2.3 Input Parameters for a Data-Driven Model of a Disk

In this section we describe a data-driven model for hardsdigkiven that the model uses a
table-driven approach to predict the time for a request ametibn of the observable inputs, the
fundamental issue is reducing the number of inputs to the tala tractable number. Each request

is defined by several parameters: whether it is a read or aMstblock number, its size, the time

16

of the request. At one extreme, the model can keep track gfaasiible combinations of input
parameter values, but this leads to a prohibitively largalmer of input parameters as indices to
the table. Additionally, each request could possibly beugriced by the history of requests that
were previously issued to the disk. Considering this extreedsion increases the input parameter
space even more. For example, for a disk of size 250 GB it daldkelaround 3 TB of space to store
information if the model considers request type, block nemsize of the request, and interarrival
time.

We do not want to keep track of all possible combinations pfitrparameters, and their history,
and therefore, we make assumptions about the behavior ¢fQhdevice for the problem domain
of interest. Given that our goal is for the model to be posdadatross the realistic range of disk
drives, and not to necessarily work on any hypotheticalagferdevice, we can use high-level
assumptions of how disks behave to eliminate a significamttyas of input parameters. However,
the model will make as few assumptions as possible. In tHewiolg chapters we present how
to use a data-driven model for disks to solve several problemd we will specialize the model
according to the specific problem at hand.

The general approach for building the model is to time theiestp that are issued to the disk
and thenfill in the appropriate place in the table associatétthe corresponding input parameters
that characterize the request. Later on, when requestgshetbame characteristics are seen by the
model, it can predict their behavior based on what it obskepreviously.

In the opinion of Ruemmler and Wilkes [56], the following asgs of the disk should be mod-
eled for the best accuracy: seek time (calculated with tvpausge functions depending upon the
seek distance from the current and final cylinder positiothefdisk head and different for reads
and writes), head and track switches, rotation latencg, ldgout (including reserved sparing areas,
zoning, and track and cylinder skew), and data caching (leatti-ahead and write-behind).

In the following sections we describe how different inputgmaeters can affect the behavior
of the disk. More specifically we are going to present thectfdd inter-request distance, request

size, think time, and type of request (read or write) on tlygiest service time. These parameters

17

correspond roughly to the parameters that define a requesthas can give us a good insight

about the expected disk behavior under varied inputs.

2.3.1 History of Requests

There are several approaches for incorporating the historgquests, with the two extremes
being the following. At one end, the model could keep tracklbfequests that were issued to the
device from the moment the system started. At the other émdmiodel could look only at the
current request issued.

The trade-offs for these approaches are the following. dfftll history of requests is main-
tained, the space to hold it will grow prohibitively large. itWa full history, the model could
capture the behavior of the device better. At the other eétéf no history is maintained, then the
space overhead is reduced, but maybe the accuracy of thd imadpacted.

We choose a solution in between the two extremes, takingciomieideration that we want our
models to have a low space overhead and also capture thetanpoharacteristics of the device.
We base our decision on knowledge about how a disk drive works

As an example, let us assume the disk head has to service twests, with no think time
in between them. From a mechanical movement point of vievgrder to service the second
request, the disk head has to move from where the first refjuedied to the beginning of the
second request. Thus, intuitively, keeping track of th¢éatise between the two requests is a good
indicator of the activity that the disk has to do in order tosgee the second one. We will look into
more detail in the next sections and chapters on how to défandistance and how it captures the
disk behavior.

Other disk characteristics to consider are think time, yipe of request, or how caching and
prefetching effects are captured. We discuss think timetgpel of request in more detail in the
next sections. The aspect which we model the least dirextlyat of general caching. However,
the model will capture the effects of simple prefetching,aihis the most important aspect of
caching for scheduling [97]. For example, if a read of ond@ecauses the entire track to be

cached, then the model will observe the faster performaheeaesses with distances less than

18

that of a track. In this respect, configuring the model oe-loy observing the actual workload

could be more accurate than configuring off-line, since dleality of the workload is captured.

2.3.2 Inter-request Distance

We define the inter-request distance as the logical distanoethe first block of the current
request to the last block of the previous request. This defimis similar to the one proposed
previously by other researchers [98]. We present some afifikecharacteristics that are captured
by keeping track of this input parameter.

Our approach accounts for the combined costs of seek tineg] aed track switches, and
rotation layout, in a probabilistic manner. That is, for aegi inter-request distance, there is some
probability that a request crosses track or even cylindentaries. Requests of a given distance
that cross the same number of boundaries have the samedsitibping time: the same number
of track seeks, the same number of head and/or track swjtehdgshe same amount of rotation.

We note that the table-based method for tracking positgptime can bemoreaccurate than
that advocated by Ruemmler and Wilkes; instead of exprggsisitioning time as a value com-
puted as a sum of functions (seek time, rotation time, caglatc.), the model records the precise
positioning time for each distance.

The cost incurred by the rotation of the disk has two comptméhe rotational distance be-
tween the previous and current request, and the elapsedémeen the two requests (and thus,
the amount of rotation that has already occurred). Usingriregquest distance probabilistically
captures the rotational distance. We refer to the effectiseopdmount of time elapsed from the last
request (think time) in one of the next subsections.

Data layout is incorporated fairly well by the model as wd&lhe number of sectors per track
and number of cylinders impact our measured values in tlesetizes determine the probability
that a request of a given inter-request distance crossesiredhoy; thus, these sizes impact the
probability of each observed time in the distribution. Orighe applications we are targeting
is 1/0 scheduling (Chapter 3). Although zoning behavior dad sectors are not tracked by our

model, previous research has shown that this level of dddai$ not help with scheduling [97].

19

2.3.3 Request Size

Applications can write data in different sizes. Thus, thedelanust be able to capture the disk
behavior when request size varies. The model exploresceetimes for a range of request sizes.
One might expect, for a given inter-request distance, thatice time will increase linearly with
request size, under the assumption that the positioningisrimdependent of request size and that
the transfer time is a linear function of the request size. saw in the next chapters that this
expectation holds true for most inter-request distancesave sampled.

We propose to deploy the disk model in tandem with a specifitieation. There are applica-
tions where modeling the request size is important, sucimapplication that writes transactions
to alog. In this situation, incorporating the request sizihne model is required. Other applications
might only issue requests of a given size: for example a diskdber that reads 4 KB blocks from
the disk. In this situation, the associated model does nedl ne@ incorporate the request size as

part of the input parameters.

2.3.4 Think Time

Applications often have think time.€., computation time) between requests. Thus, the model
will see idle time between arriving requests and must acctamthe fact that the disk platters
continue to rotate between these requests. When in ofislioge, the model configures the think
time parameter by issuing requests to the disk as it vareglth time between those requests. In
an on-line configuration mode, the model times the think t&mé records the service time in the
corresponding entrance in the table.

In Chapter 3 we present how to use a data-driven model of tble tdi help a throughput
optimizing 1/0 scheduler make decisions. More specificallg target data-intensive servers. In
this environment the 1/0O requests have no think time, and,ttihe model does not need to track it.
Of course, there are other instances when the think timemeas to be incorporated, as we show

in Chapter 5.

20

2.3.5 Operation Type

The seek time for reads is likely to be less than that for \wriggnce reads can be performed
more aggressively. A read can be performed when a block igetajuite available because the
read can be repeated if it was performed from the wrong sdubavever, a write must first verify
that it is at the right sector to avoid overwriting other data

In addition, the type of the last operation issued also imites service time [56]. To account
for these factors in our table-based model, the request (iga&l or write) of the current and
previous requests is one of the input parameters we kedpdfac

Caching can also affect the service time of read or writeestfu A read cache can store data
that was previously accessed from the disk, thus resultiagshorter service time if the same data
is accessed again. A write back cache can delay writing datsk, resulting in faster disk writes,
at the expense of risking loosing data. As mentioned prelypwe can capture simple caching
and prefetching effects, though we do not specifically mdukelcaching or prefetching policies.

Some of the applications we target in the next chapters doegpiire the model to keep track
of operation type as a parameter. For example, in Chapter &wady how to optimize the small
write problem, and since the workload is write-only, the rlatbes not need to consider operation

type as an input parameter.

2.4 Summary

In this chapter we introduced data-driven models and weudsed a concrete case of a model
for a disk drive. In particular we looked at the choice of inparameters. In the following chapters

we will present a more in-depth discussion of applicatioec#iz data-driven models.

21

Chapter 3

File System Level I/O Scheduling

I/O scheduling is an important optimization in the storagels, but implementing an efficient
I/O scheduler is challenging. In this chapter we addressthamplement an I/O scheduler that is
aware of the underlying disk technology in a simple, pogabhd robust manner. To achieve this
goal, we introduce the Disk Mimic, which meets the requirate@f a data-driven on-line model
for disk scheduling.

The Disk Mimic is able to capture the behavior of a disk driva portable, robust, and efficient
manner. To predict the performance of a disk, the Disk Minsiesua simple table, indexed by the
relevant input parameters to the disk, in this case the typegoiest and the inter-request distance.
The Disk Mimic does not attempt to simulate the mechanisnt®orponents internal to the disk;
instead, it simply reproduces the output as a function ofrtpats it has observed.

We start by giving a short background introduction to I/Oesiling. We then present our
approach and the new scheduler we are proposing. We corijna@ in depth description of
the model that is used in correlation with the scheduler &ed e evaluate it in an off-line and

on-line setting.

3.1 1/O Scheduling Background

An 1/0O scheduler takes as input a set of 1/0 requests and itees them to accomplish a
target optimization: better throughput, quality of seevifairness, etc. We focus on schedulers
that optimize for throughput, which means they try to mazenthe number of requests that are

serviced by the storage system.

22

There are two main axis along which the scheduler can be wmegccOne of them focuses on
the algorithm used to pick the requests to be issued. Thgseithins are complex, and they are
recognized in the literature as being NP complete. Theiclastution is to use a greedy algorithm,
that always picks the next 'best’ request out of the onesateaturrently waiting to be scheduled.
While this might not be globally optimal, it is preferabledagise of the lower computational costs.
There has been recent research in optimizations alongxisis a

We are instead targeting improving the information thasisdiby the scheduler to decide what
is the ’best’ request to be picked next. Ideally, the schexdkihows for each request exactly how
long it will take to be serviced. Unfortunately this infortran is not readily available. To service
a request the disk has to perform mechanical positioningedectronic adjustments, and thus,
predicting the service time from a layer above the disk is-tniwal. The interface to the disk is a
simple block based interface, that does not transfer inétion about the current state of the disk,
or service times.

In overcoming this information challenge, I/O schedulexsktdifferent approaches over time.
The underlying theme for all of them is that they obtain tHfeiimation they need by using a static
model of the disk. The model used varied according to chaimggisks characteristics.

Disk schedulers in the 1970s and 1980s focused on minimgaeg time, given that seek time
was often an order of magnitude greater than the expectataioal delay [34, 81, 94]. In the
early 1990s, the focus of disk schedulers shifted to takaioytal delay into account, as rotational
delays and seek costs became more balanced [37, 67, 97].

At the next level of sophistication, a disk scheduler takésigpects of the underlying disk
into account: track and cylinder switch costs, cache reprant policies, mappings from logical
block number to physical block number, and zero-latencyesriFor example, Worthingtaet al.
demonstrate that algorithms that effectively utilize afgiehing disk cache perform better than
those that do not [97].

Many modern disks implement scheduling in the device itsélhile this might suggest that
file system I/O scheduling is obsolete, there are seversbreawhy the file system should perform

scheduling. First, disks are usually able to schedule olilgited number of simultaneous requests

23

since they have more restrictive space and computationvabipoonstraints. Second, there are
instances when increased functionality requires the adhmegdto be done at file system level.
For example, lyer and Druschel introduce short waiting sinrethe scheduler to preserve the
continuity of a stream of requests from a single processerathan interleaving streams from
different processes [36]. Further, Shenoy and Vin implendéiferent service requirements for

applications by implementing a scheduling framework inftleesystem [72].

3.2 A Different Approach

As an alternative to the previous approaches, we proposetwgorate the Disk Mimic into
the I/O scheduler. By usingdata-driven modedf the disk the scheduler can predict which request
in its queue will have the shortest positioning time. Altgbwa variety of disk simulators exist [27,
41, 95], most are targeted for performing traditional, lofe simulations, and unfortunately, the
infrastructure for performing on-line simulation is fumdantally different.

We show that for disk scheduling, two input parameters affec@nt for predicting the posi-
tioning time: the logical distance between two requeststhadequest type. However, when using
inter-request distance for prediction, two issues musielelved. First, inter-request distance is
a fairly coarse predictor of positioning time; as a resuigere is high variability in the times for
different requests with the same distance. The implicasahat the Disk Mimic must observe
many instances for a given distance and use an appropriateary metric for the distribution;
experimentally, we have found that summarizing a small remolbsamples with the mean works
well. Second, given the large number of possible inter-estidistances on a modern disk drive,
the Disk Mimic cannot record all distances in a table of aweable size. We show that simple
linear interpolation can be used to represent ranges ofimgislistances, as long as some number
of the interpolations within each range are checked agaiesisured values.

We propose a new disk scheduling algorithm, shortest-nkiedig¢ime-first (SMTF), which
picks the request that is predicted by the Disk Mimic to hdwe ghortest positioning time. We

24

demonstrate that the SMTF scheduler can utilize the DiskibMimtwo different ways; specif-
ically, the Disk Mimic can either be configured off-line or-tine, and both approaches can be
performed automatically. When the Disk Mimic is configurdttime, it performs a series of
probes to the disk with different inter-request distangesracords the resulting times; in this sce-
nario, the Disk Mimic has complete control over which intequest distances are observed and
which are interpolated. When the Disk Mimic is configuredlioi; it records the requests sent by
the running workload and their resulting times. Note thgardless of whether the Disk Mimic is
configured off-line or on-line, the simulation itself is aws performed on-line, within an active
system.

We show that the Disk Mimic can be used to significantly imrdiwve throughput of disks
with high utilization. Specifically, for a variety of simukd and real disks, C-LOOK and SSTF
perform between 10% and 50% slower than SMTF. Further, weodstrate that the Disk Mimic
can be successfully configured on-line; we show that whadtsk Mimic learns about the storage
device, SMTF performs no worse than a base scheduling #igofe.g, C-LOOK or SSTF) and

quickly performs close to the off-line configuratiare(, after approximately 750,000 requests).

3.3 The SMTF Scheduler

We now describe the approach of a new file system I/O schethatleverages the Disk Mimic.
We refer to the algorithm implemented by this scheduler agtebt-mimicked-time-first, or SMTF.
The basic function that SMTF performs is to order the queuegidiests such that the request with
the shortest positioning time, as determined by the Disk ilila scheduled next. However, given
this basic role, there are different optimizations thatlsamade. The assumptions that we use for
this chapter are as follows.

First, we assume that the goal of the 1/0O scheduler is to opéitlhethroughputof the storage
system. We do not consider the fairness of the scheduler. alievb that the known techniques
for achieving fairnesse(g, weighting each request by its age [37, 66]) can be added {OFSA%

well.

25

Second, we assume that the I/O scheduler is operating invameement with heavy disk traffic.
Given that the queues at the disk may contain hundreds orteeeisands of requests [37, 66],
the computational complexity of the scheduling algoritlnan important issue [5]. Given these
large queue lengths, it is not feasible to perform an optsohkeduling decision that considers all
possible combinations of requests. Therefore, we considgeedy approach, in which only the
time for the next request is minimized [37].

To evaluate the performance of SMTF, we compare to the d@lgns most often used in prac-
tice: first-come-first-served (FCFS), shortest-seekiins¢ (SSTF), and C-LOOK. FCFS simply
schedules requests in the order they were issued. SSTHRss#lleaequest that has the smallest
difference from the last logical block number (LBN) accekea disk. C-LOOK is a variation of
SSTF where requests are still serviced according to theM pBoximity to the last request ser-
viced, but the scheduler picks requests only in ascending aler. When there are no more such
requests to be serviced, the algorithm picks the requebkeiqueue with the lowest LBN and then
continues to service requests in ascending order.

To compare our performance to the best possible case, wealsvanplemented a best-case-
greedy scheduler for our simulated disks; this best-casedsder knows exactly how long each
request will take on the simulated disk and greedily piclesréquest with the shortest positioning

time next. We refer to this scheduler as the greedy-optictaduler.

3.4 Reducing Input Parameters for The Disk Mimic

Given that the Disk Mimic uses a table-driven approach tdligtehe time for a request as a
function of the observable inputs, the fundamental issuedsicing the number of inputs to the
table to a tractable number. If the I/O device is treated asealilack box, in which one knows
nothing about the internal behavior of the device, then tis& Dlimic must assume that the service
time for each request is a function of all previous requeSisen that each request is defined by

many parameters.€., whether it is a read or a write, its block number, its size, tilme of the

26

request, and even its data value), this leads to a prolehjtlarge number of input parameters as
indices to the table.

Therefore, the only tractable approach is to make assung#bout the behavior of the I/O
device for the problem domain of interest. Given that oul ggfar the 1/0 scheduler to be portable
across the realistic range of disk drives, and not to neagssark on any hypothetical storage
device, we can use high-level assumptions of how disks leetwagliminate a significant number
of input parameters; however, the Disk Mimic will make as fsgumptions as possible.

Our current implementation of the Disk Mimic predicts thaeéi for a request from two input
parameters: theequest typand thenter-request distancéMe define inter-request distance as the
logical distance from the first block of the current requedhe last block of the previous request.
The conclusion that request type and inter-request distareekey parameters agrees with that of

previous researchers [56, 83].

3.4.1 Input Parameters

As previously explained, read and write operations takkeiint times to execute. Besides
this, as noted in [56, 27] the type of the last operation idsud also influence the service time.
In order to account for this in our table-based model we iktioe request type (read or write) of
the current and previous request as one of the input paresnete

The other input parameter we track is the inter-requestuicst between logical block ad-
dresses. We note that ordering requests based on the tingedgwen distance is significantly
different than using the distance itself. Due to the comipfeof disk geometry, some requests that
are separated by a larger logical distance can be positimoee rapidly; the relationship between
the logical block address distance and positioning timeotdinear. Capturing this characteristic
is essential in providing a better 1/0O scheduler.

We mentioned in Chapter 2 how the inter-request distanceigzgpseek and rotation charac-
teristics, as well as the layout characteristics of the.diskbabilistically, requests with the same
inter-request distance will cross the same number of trammkisicur the same number of cylinder

switches. Also, the layout of sectors on disk will be reflddatethe time associated

27

132 KB

8 T
w
E
[}
E
=

l |

0 1 1 1 1 1

0 200 400 600 800 1000
Number of requests
224 KB

8

7 | .|
—~ 5 '—afr 1
(%]
E
o 4
E
Fal

2 .

l |

0 1 1 1 1 1

0 200 400 600 800 1000

Number of requests

300 KB

Time (ms)
S

.
0 200 400 600 800 1000
Number of requests

Figure 3.1 Distribution of Off-Line Probe Times for Three Inter-Reque st Distances. Each
graph shows a different inter-request distance: 132 KB, RB4and 300 KB. Along the-axis, we
show each of the 1000 probes performed (sorted by time) anmhahey-axis we show the time
taken by that probe. These times are for an IBM 9LZX disk.

28

The applications that we are targeting, high load storageesg handle 1/O intensive work-
loads. In these environments the scheduling queues ayafallthere is no think time between the
I/O requests. If that were not the case, then the performairite 1/0 scheduler would not impact
the overall performance of the system. Thus, we considethleahink time is constant and equal
to zero, and we do not need to incorporate think time as art pgmameter.

The size of the request is another possible candidate agpahparameter. For the workloads
we considered, we did not have to incorporate the requestasizan input parameter, since the
request sizes did not vary a lot and did not show an impact vdoemparing service times. It
is possible that for other workloads the request size woalteho be sampled and possibly be
introduced as an input parameter as well.

Given the complexity associated with the inter-requegbdise, we concentrate on the issues
related to this input parameter. For different values of rdguest type, the output of the Disk
Mimic has the same characteristics, and thus we do not neexptore all the possible combina-
tions of the two input parameters in our further discussidience when we refer to inter-request

distance we assume the request type is fixed.

3.4.2 Measured Service Times

To illustrate some of the complexity of using inter-requaistance as predictor of request time,
we show the distribution of times observed. For these erpants, we configure the Disk Mimic
off-line as follows.

The Disk Mimic configures itself by probing the I/O device ngifixed-size requeste g, 1
KB). For each of the possible inter-request distances aoyéhne disk (both negative and positive),
the Disk Mimic samples a number of points of the same distaheecesses a block the specified
distance from the previous block. To avoid any caching ofgbching performed by the disk,
the Disk Mimic accesses a random location before each nelbepbthe required distance. The
observed times are recorded in a table, indexed by thelatgrest distance and the corresponding

operation type.

29

In Figure 3.1 we show a small subset of the data collected dBBIOLZX disk. The figure
shows the distribution of 1000 samples for three inter-estidistances of 132 KB, 224 KB, and
300 KB. In each case, thg-axis shows the request time of a sample and the points aleng t
x-axis represent each sample, sorted by increasing regonest t

We make two important observations from the sampled timest, For a given inter-request
distance, the observed request time is not constant; fangbea at a distance of 132 KB, about
10% of requests require 1:8s, about 90% require 6.8:.s, and a few require almost/8s. Given
this multi-modal behavior, the time for a single requestnedrbe reliably predicted from only the
inter-request distance; thus, one cannot usually prediether a request of one distance will be
faster or slower than a request of a different distance. Neekess, it is often possible to make
reasonable predictions based upon the probabilities x@mele, from this data, one can conclude
that a request of distance 132 KB is likely to take longer thia@ of 224 KB.

Second, from examining distributions for different integuest distances, one can observe that
the number of transitions and the percentage of sampleseaith time value varies across inter-
request distances. The number of transitions in each grapasponds roughly to the number of
track (or cylinder) boundaries that can be crossed for therirequest distance.

This data shows that a number of important issues remaindieggthe configuration of the
Disk Mimic. First, since there may be significant variationrequest times for a single inter-
request distance, what summary metric should be used to atmarthe distribution? Second,
how many samples are required to adequately capture theribelwd this distribution? Third,
must each inter-request distance be sampled, or is it jegeimterpolate intermediate distances?

We investigate these issues in Section 3.6.

3.5 Methodology

To evaluate the performance of SMTF scheduling, we considange of disk drive technol-
ogy, presented in Table 3.1. We have implemented a disk atonuthat accurately models seek

time, fixed rotation latency, track and cylinder skewingd ansimple segmented cache. The first

30

Configuration rotation seek cyl |track cyl sectors num

time lcyl 400 3000] switch | skew skew| pertrack heads
1 Base 6 08 6.0 8| 1.78 36 84 272 10
2 Fast seek 6 0.16 132 1.6 1.00 36 46 272 10
3 Slow seek 6 20 33.0 40.0 2.80 36 127 272 10
4 Fast rotate 2 08 6.0 8| 1.78 108 243 272 10
5 Slow rotate 12 0.8 6.0 8| 1.78 18 41 272 10
6 Fast seek+rot 2 0.160 1.32 1. 1.00 108 136 272 10
7 More capacity 6 0.8 6.0 8 1.78 36 84 544 20
8 Less capacity 6 0.8 6.0 8 1.78 36 84 136 5

Table 3.1 Disk Characteristics. Configurations of eight simulated disks. Times for rotatsmek,
and head and cylinder switch are in milliseconds, the cyimand track skews are expressed in
sectors. The head switch time is 0.79 ms. In most experintbatbase disk is used.

disk, also named thbase disk simulates a disk with performance characteristics sintdaan
IBM 9LZX disk. The seek times, cache size and number of setgnbiead and cylinder switch
times, track and cylinder skewing and rotation times areeeitneasured by issuing SCSI com-
mands and measuring the elapsed time, or directly querkimgisk, similar to the approach used
by Schindler and Ganger [60], or by using the values proviofethe manufacturer. The curve
corresponding to the seek time is modeled by probing an IBM>isk for a range of seek
distances (measured as the distance in cylinders from #wegois cylinder position to the current
one) and then curve fitting the values to use the two-funapration proposed by Ruemmler and
Wilkes [56]. For short seek distances the seek time is ptapw to the square root of the cylin-
der distance, and for longer distances the seek time is pgfopal to the cylinder distance. The
middle value in the seek column represents the cylindeanicst where the switch between the two
functions occurs. For example, for the base disk, if the siéstnce is smaller than 400 cylinders,
we use the square root function.

For the other disk configurations we simulate, we start frobmldase disk and vary different
parameters that influence the positioning time. For exangtk configuration number ZFést
seelrepresents a disk that has a fast seek time and the numleersousompute the seek curve are
adjusted accordingly, as well as the number of sectors tradtitute the cylinder skew. Similarly

for disk configuration number 4Fést rotatg the time to execute a rotation is decreased by a

31

9e+06

LB b8 60 ECES g

' o SSTF -
8.5e+06 C_LOOK - P
SMTF min --
SMTF probabilistic -
8e+06 SMTF max
SMTF median -
SMTF mean --
greedy-optimal —+—

Bboe b O

7.5e+06

7e+06

==X

Time (ms)

6.5e+06 - o

6e+06

5.5e+06 |

5e+06 ‘
1 10 100

Scaling factor

Figure 3.2 Sensitivity to Summary Metrics. This graph compares the performance of a variety
of scheduling algorithms on the base simulated disk and #ekvong HP trace. For the SMTF
schedulers, no interpolation is performed and 100 sample®htained for each data point. The
x-axis shows the compression factor applied to the worklddwy-axis reports the time spent at
the disk.

factor of three and the number of track and cylinder skewossdre increased. The other disk
configurations account for disks that have a slower seek, tgiosver rotation time, faster seek
time, faster rotation time and more or less capacity tharbdse disk. In addition to using the
described simulated disks we also run our experiments oBMIMLZX disk.

To evaluate scheduling performance, we show results fromt afstraces collected at HP
Labs [55]; in most cases, we focus on the trace for the budisktfrom the week of 5/30/92 to
6/5/92. For our performance metric, we report the time thekiead spent at the disk. To consider
the impact of heavier workloads and longer queue lengthscampress the inter-arrival time
between requests. When scaling time, we attempt to presieevdependencies across requests
in the workload by observing the blocks being requested; sgaime that if a request is repeated
to a block that has not yet been serviced, that this requatpgendent on the previous request
first completing. Thus, we hold repeated requests, and bfiesquent requests, until the previous

identical request completes.

32
3.6 Off-Line Configuration

The SMTF scheduler can be configured both on-line and o#-lwe now explore the case
when the Disk Mimic has been configured off-line; again, @liggh the Disk Mimic is configured
off-line, the simulation and predictions required by theestuler are still performed on-line within
the system. As described previously, configuring the Diskniioff-line involves probing the
underlying disk with requests that have a range of intearestdistances. We note that even when
the model is configured off-line, the process of configurifiTE remains entirely automatic and
portable across a range of disk drives. The main drawbactrtbguring the Disk Mimic off-line
is a longer installation time when a new device is added tesistem: the disk must be probed

before it can be used for workload traffic.

3.6.1 Summary Data

To enable the SMTF scheduler to easily compare the expeichedaf all of the requests in
the queue, the Disk Mimic must supply a summary value for estinibution as a function of the
inter-request distance. Given the multi-modal charasties of these distributions, the choice of
a summary metric is not obvious. Therefore, we evaluate fifferdnt summary metricshean,
median, maximum, minimum, andprobabilistic, which randomly picks a value from the sam-
pled distribution according to its probability.

The results for each of these summary metrics on the basdasedulisk are shown in Fig-
ure 3.2. For the workload, we consider the week-long HP {reca&led by the compression factor
noted on ther-axis. The graph shows that FCFS, SSTF, and C-LOOK all parfeorse than each
of the SMTF schedulers; as expected, the SMTF scheduldmpearorse than the greedy-optimal
scheduler, but the best approach is always within 7% forwlidload. These results show that
using inter-request distance to predict positioning tinezita further attention.

Comparing performance across the different SMTF appraaetesee that each summary met-
ric performs quite differently. The ordering of performarfcom best to worse istean, median,

maximum, probabilistic, andminimum. It is interesting to note that the scheduling performance

33

Summary metric: Probability Percentage error: 5.4 %
14 T T T T

10 b J

o]
T
!

(2]
T

Time (ms)

| | | | |
0 10000 20000 30000 40000 50000 60000
Ordered requests

Summary metric: Mean Percentage error: 5.8 %
14 T T T T T

Time (ms)

| | | | |
0 10000 20000 30000 40000 50000 60000
Ordered requests

Summary metric: Maximum Percentage error 21.7 %
14 T T T T

T
max ——
disk -

Time (ms)

0 10600 20600 30600 40600 50600 60000

Ordered requests
Figure 3.3 Demerit Figures for SMTF with Probability, Mean, and Maximu m Summary
Metrics. Each graph shows the demerit figure for a different summaityiend hese distributions
correspond to the one day from the experiments shown in &g with a compression factor of
20.

34

9e+06 r : . r
i3] ,
8.5e+06 |
FCFS &
8e+06 I -
C_LOOK - x-
SMTF -——=—-
° ey greedy-optimal ——
E
) 7e+06 |
£
|_
B 50406 - |
6e+06 -] |
55e406 F 000 /= ey
5e+06 : .
1 10 100 1000

Samples

Figure 3.4 Sensitivity to Number of Samples.The graph shows that the performance of SMTF
improves with more samples. The results are on the simutliséddand the week-long HP trace
with a compression factor of 20. Theaxis indicates the number of samples used for SMTF. The
y-axis shows the time spent at the disk.

of each summary metric is not correlated with its accuradye dccuracy of disk models is often
evaluated according to itkemerit figurg56], which is defined as the root mean square of the hori-
zontal distance between the time distributions for the rhade the real disk. This point is briefly
illustrated in Figure 3.3, which shows the distribution ofwal times versus the predicted times
for three different metricsprobabilistic, mean, andmaximum.

As expected, therobabilistic model has the best demerit figure; with many requests, the
distribution it predicts is expected to match that of thd dewice. However, thgerobabilistic
model performs relatively poorly within SMTF because thediit predicts for any one request
may differ significantly from the actual time for that reque€onversely, although theaximum
value results in a poor demerit figure, it performs adequdtel scheduling; in fact, SMTF with
maximum performs significantly better than withinimum, even though both have similar demerit
figures. Finally, using theean as a summary of the distribution achieves the best perfarean

even though it does not result in the best demerit figure; we faund thatnean performs best

35

Full Range
14 T T T T T
12 + .
m
E ot 1
17
s
g 8 1
©
o 6 1
£
& 4t -
3]
=
2 - -
0 1 1 1 1
-1500 -1000 -500 0 500 1000 1500
Inter-request distance (MB)
Close-up
9 T T T T
8 - -
m
E
77t W -
(3]
>
o
o
« 6 .
o
3]
E M w
c 9]
@
3]
=
4 1 1
3 1 1 1 1
-109.4 -109.2 -109 -108.8 -108.6 -108.4

Inter-request distance (MB)

Figure 3.5Mean Values for Samples as a Function of Inter-request Distace. The graph on top
shows the mean time for the entire set of inter-requestmiistaon our simulated disk. The graph
on the bottom shows a close-up for inter-request distanodiser distances have qualitatively
similar saw-tooth behavior.

for all other days from the HP traces we have examined as wWallis, for the remainder of our
experiments, we use the mean of the observed samples asitheasy data for each inter-request

distance.

36

3.6.2 Number of Samples

Given the large variation in times for a single inter-requsistance, the Disk Mimic must
perform a large number of probe samples to find the true medheodlistribution. However,
to reduce the time required to configure the Disk Mimic affeli we would like to perform as
few samples as possible. Thus, we now evaluate the impahbeafumber of samples on SMTF
performance.

Figure 3.4 compares the performance of SMTF as a functioheohtimber of samples to the
performance of FCFS, C-LOOK, SSTF, and optimal. As expedteel performance of SMTF
increases with more samples; on this workload and disk, énpnance of SMTF continues to
improve up to approximately 10 samples. However, mostastargly, even with a single sample
for each inter-request distance, the Disk Mimic perfornisdsehan FCFS, C-LOOK, and SSTF.

3.6.3 Interpolation

Although the number of samples performed for each intenestidistance impacts the running
time of the off-line probe process, an even greater issuaéther each distance must be explicitly
probed or if some can be interpolated from other distances tD the large number of potential
inter-request distances on a modern storage deveget(vo times the number of sectors for both
negative and positive distances), not only does performaih@f the probes take a significant
amount of time, but storing each of the mean values is provebas well. For example, given a
disk of size 10 GB, the amount of memory required for the table exceed 800 MB. The size of
the table grows liniar with the size of the disk, thus espbciar large disks we want to investigate
methods to reduce the size of the table.

From the point of view of data-driven models, there is no sleequirement to use a table
based approach for storing the data. An alternative soluam be to curve fit a function accross
some of the points sampled by the model, and then use thdtdario make the predictions. Since
our main goal is not to have the best compact representatithre enodel, we do not focus more

on this problem.

37

7e+06 T T T T T
B.80+06 f T
6.6e+06 I]
T 6.4e+06 | PR -
o 1 check ——
S ; 5 checks —x-
F 6.2e+06 i 10 checks ~a-]|
/ No interpolation ---=--
SSTF -~ o |
6e+06 i C_LOOK -~
5.8e+06 - T
B
% B oo I * i{\ i = o
5.6e+06 i T 1 -] 1 1
0 5 10 15 20 25 30

Percent error %

Figure 3.6 Sensitivity to Interpolation. The graph shows performance with interpolation as a
function of the percent of allowable error. Different linesrrespond to different numbers of check
points, N. Thez-axis is the percent of allowable error and theaxis is the time spent at the disk.
These results use the base simulated disk and the week-Brigaee with a compression factor
of 20.

We also note that it is not necessary that all the entriesantdble end up being used. For
example, there can be workloads that exercise only a linmtedber of inter-requests distances.
This can be especially true for workloads with high localifys an optimization, it is common
for file systems to try to layout data in such a way that files #va accessed together are places
close by on disk also. For example, ext3 allocates files irséimee directory together in the same
cylinder group.

We explore how some distances can be interpolated withokingdetailed assumptions about
the underlying disk. To illustrate the potential for perfong simple interpolations, we show the
mean value as a function of the inter-request distance iar€ig.5. The graph on the left shows
the mean values for all inter-request distances on our sitedldisk. The curve of the two bands
emanating from the middle point corresponds to the seekecoithe disk i.e., for short seeks,
the time is proportional to the square root of the distandesreas for long, the time is linear with

distance); the width of the bands is relatively constant @rdesponds to the rotation latency of

38

Check Points| Acceptable
N Error
1 1%
2 2%
3 5%
4 10 %
5 15 %
10 20 %

Table 3.2 Allowable Error for Interpolation. The table summarizes the percentage within which
an interpolated value must be relative to the probed valumdter to infer that the interpolation is
successful. As more check points are performed betweemtarerequest distances, the allowable
error increases. The numbers were gathered by running a eumibdifferent workloads on the
simulated disks and observing the point at which perforreamith interpolation degrades relative
to that with no interpolation.

the disk. The graph on the right shows a close-up of the neiguest distances. This graph shows
that the times follow a distinct saw-tooth pattern; as alteausimple linear model can likely be
used to interpolate some distances, but care must be tal@rstwe that this model is applied to
only relatively short distances.

Given that the length of the linear regions varies acroderaifit disks (as a function of the track
and cylinder size), our goal is not to determine the pardicdistances that can be interpolated
successfully. Instead, our challenge is to determine wheantarpolated value is “close enough”
to the actual mean such that scheduling performance is i@ganly negligibly.

Our basic off-line interpolation algorithm is as follows.fté&r the Disk Mimic performsS
samples of two inter-request distantefs andright, it chooses a random distanteddlebetween
left andright; it then linearly interpolates the mean value foiddlefrom the means foleft and
right. If the interpolated value fomiddleis within error percent of the probed value famiddle
then the interpolation is considered successful and alldtsences betweeleft and right are
interpolated. If the interpolation is not successful, thekDMimic recursively checks the two
smaller rangesi.g., the distances betwedeft and middle and betweemiddle andright) until
either the intermediate points are successfully intetpdlar until all points are probed.

For additional confidence that linear interpolation is@ah a region, we consider a slight vari-

ation in which NV points betweeteft andright are interpolated and checked. Only if allpoints

39

are predicted with the desired level of accuracy is the paiation considered successful. The
intuition of performing more check points is that a higheoerate can be used and interpolation
can still be successful.

Figure 3.6 shows the performance of SMTF when distances)tggblated; the graph shows
the effect of increasing the number of intermediate pavthat are checked, as well as increasing
the acceptable errogsror, of the interpolation. We make two observations from thisodr.

First, SMTF performance decreases as the allowable errbreatheck points increases. Al-
though this result is to be expected, we note that performdacreases dramatically with the error
not because the error of the checked distances is increasigoecause the interpolated distances
are inaccurate by much more. For example, with a single cphetk (.e., N = 1) and an error
level of 5%, we have found that only 20% of the interpolatellil®a are actually accurate to that
level and the average error of all interpolated values emee to 25% (not shown). In summary,
when error increases significantly, there is not a lineati@hship for the distances betweleft
andright and interpolation should not be performed.

Second, SMTF performance for a fixed error increases witimtimeber of intermediate check
pointsN. The effect of performing more checks is to confirm that lmagerpolation across these
distances is valid. For example, witti = 10 check points anérror = 5%, almost all interpolated
points are accurate to that level and the average erroragias 1% (also not shown).

Table 3.2 summarizes our findings for a wider number of chexhktp. The table shows the
allowable error percentage as a function of the number aflcpeints,V, to achieve scheduling
performance that is very similar to that with all probes. $hilne final probe process can operate
as follows. If the interpolation of one distance betwésfhandright has an error less than 1%, it is
deemed successful. Otherwise, if two distances betveftandright have errors less than 2%, the
interpolation is successful as well. Thus, progressivadyentheck points can be made with higher
error rates to be successful. With this approach, 90% of igtarttes on the disk are interpolated
instead of probed, and yet scheduling performance is Wiytuachanged; thus, interpolation leads

to a 10-fold memory savings.

40

2.0+ = FCFS
= C_LOOK
1.8 B = SSTF
_ = SMTF
S 1.6 M _
(@]
© J
3
o 1.4
" II H
1.0 o = I.ll_l |_| III_I |_| II.D
2 3 4 5 6 7 8

Disk configuration

Figure 3.7 Sensitivity to Disk Characteristics. This figure explores the sensitivity of schedul-
ing performance to the disk characteristics shown in Table Ferformance is shown relative
to greedy-optimal. We report values for SMTF using inteagioh. The performance of SMTF
without interpolation (i.e., all probes) is very similar.

3.6.4 Disk Characteristics

To demonstrate the robustness and portability of the Diski®liand SMTF scheduling, we
now consider the full range of simulated disks describedaipld 3.1. The performance of FCFS,
C-LOOK, SSTF, and SMTF relative to greedy-optimal for eatthe seven new disks is summa-
rized in Figure 3.7. We show the performance of SMTF withripdéation. The performance of
SMTF with and without interpolation is nearly identical. Asgpected, FCFS performs the worst
across the entire range of disks, sometimes performing itinare a factor of two slower than
greedy-optimal. C-LOOK and SSTF perform relatively wellemhseek time dominates perfor-
mance €.g, disks 3 and 4); SSTF performs better than C-LOOK in thesescas well. Finally,
SMTF performs very well when rotational latency is a sig@ifitccomponent of request position-
ing (e.g, disks 2 and 5). In summary, across this range of disks, SMWkya performs better
than both C-LOOK and SSTF scheduling and within 8% of the dyesptimal algorithm.

To show that SMTF can handle the performance variation dfdisls, we compare the per-

formance of our implementation of SMTF to that of C-LOOK when on the IBM 9LZX disk.

41

Real disk: comparison SMTF off-line and C_LOOK
1.35 T T T T T T

13 r .

125 ¢ .

1.2 r .

1.15 - 4

Slowdown C_LOOK

1.1+ -

1.05 | .

l 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Maximum inter-request distance (MB)

Figure 3.8 Real Disk Performance.This graph shows the slowdown of C-LOOK when compared
to the SMTF configured off-line. The workload is a synthdfiggenerated trace and the numbers
are averages over 20 runs. The standard deviation is alsorted. Thez-axis shows the maximum
inter-request distance existent in the trace andgkexis reports the percentage slowdown of the
C-LOOK algorithm.

On the one week HP trace, we achieve a performance improverh&® for SMTF compared
C-LOOK and an improvement of 12% if idle time is removed frdme trace. This performance
improvement is not as significant as it could be for two reasdiirst, the IBM 9LZX disk has a
relatively high ratio of seek to rotation time; the performa improvement of SMTF relative to
C-LOOK is greater when rotation time is a more significant poment of positioning. Second,
the HP trace exercises a large amount of data on the disk; thledacality of the workload is low
as in this trace, seek time further dominates positionimgti

To explore the effect of workload locality we create a sytitheorkload of random 1 KB
reads and writes with no idle time; the maximum inter-re¢jdéstance is varied, as specified on
the x-axis of Figure 3.8. This graph shows that the performangeaarement of SMTF relative to
C-LOOK varies between 32% and 8% as the inter-request distearies from 25 MB to 1.3 GB.

Given that most file systeme.@, Linux ext2) try to optimize locality by placing related filen

42

the same cylinder group, SMTF can optimize accesses be#erG-LOOK in practice. Thus, we

believe that SMTF is a viable option for scheduling on reaksli

1.249
— Base-line
% == Pri no Interp
-c . .
g 117 == Prj with Interp
@ &3 Set no Interp
=m Set with Interp
1.0 ||
SSTF C_LOOK
Performance of various hybrid versions
140 : . | |
SSTF ———
C_LOOK --o--
al Set SSTF ——x— |
Set SSTF interp - R
X 130 Set C_LOOK &
= Set C_LOOK interp ---#--
S 125 |
=
o
n 120
(]
& S .
£ 115§ R .- R
(O] . -
o : S 7
& 110 L‘\\~-\\\\\\‘ S I S oy .) 4
105 o ,,r T e M o]
o B o Jo et s B
100 . , . .
1 2 3 4 s .
Day

Figure 3.9Performance of On-Line SMTF. The first graph compares the performance of different
variations of on-line SMTF; the performance of the last dayhe week-long HP trace is shown
relative to off-line SMTF. The second graph shows that théopmance of Online-Set improves
over time as more inter-request distances are observed.

43
3.7 On-Line Configuration

We now explore the SMTF scheduler when all configuration régoeed on-line. With this
approach, there is no overhead at installation time to ptiedeisk drive; instead, the Disk Mimic
observes the behavior of the disk as the workload runs. Asamff-line version, the Disk Mimic
records the observed disk times as a function of its intguest distance, but in this case it has no

control over the inter-request distances it observes.

3.7.1 General Approach

For the on-line version, we assume that many of the lessansdd from off-line configuration
hold. First, we continue to use the mean to represent thaldison of times for a given inter-
request distance. Second, we continue to rely upon intatipal note that when the Disk Mimic
is configured on-line, interpolation is useful not only fawsg space, but also for providing new
information about distances that have not been observed.

The primary challenge that SMTF must address in this siinas how to schedule requests
when some of the inter-request distances have unknown (ireeghis inter-request distance has
not yet been observed by the Disk Mimic and the Disk Mimic iahie to confirm that it can be
interpolated successfully). We consider two algorithmscfamparison. Both algorithms assume
that there is a base scheduler (either C-LOOK or SSTF) wiiciseéd when the Disk Mimic does
not have sufficient information.

The first algorithmOnline-Priority, schedules only those requests for which the Disk Mimic
has information. Specifically®nline-Priority gives strict priority to those requests in the queue
that have an inter-request distance with a known time; antboge requests with known times,
the request with the minimum mean time is picked. Wahline-Priority, the base scheduler
(e.g, C-LOOK or SSTF) is only used when no inter-request distarioethe current queue are
known. There are two problems with this approach. Firstegiits preference for scheduling

already known inter-request distanc@sline-Priority may perform worse than its base scheduler.

44

Second, schedules with a diversity of distances may neverdmuced and thus the Disk Mimic
may never observe some of the most efficient distances.

The second algorithn®nline-Setimproves on both of these limitations by using the decision
of the base scheduler as its starting point, and schedulthfjesent request only when the Disk
Mimic has knowledge that performance can be improved. #palty, Online-Seffirst considers
the request that the base scheduler would pick. If the timé¢hi® corresponding distance is not
known by the Disk Mimic, then this request is scheduled. Hmwgf the time is known, then all
of the requests with known inter-request distances ardaeresi and the one with the fastest mean
is chosen. Thunline-Seshould only improve on the performance of the base schedukbit

is likely to schedule a variety of inter-request distanceemit is still learning.

3.7.2 Experimental Results

To evaluate the performance of the on-line algorithms, \itgneo the base simulated disk. The
left-most graph of Figure 3.9 compares the performand@rdine-Priority andOnline-Setwhen
either C-LOOK or SSTF is used as the baseline algorithm atiuwibh and without interpolation.
Performance is expressed in terms of slowdown relativedotfiline version of SMTF. We make
three observations from this graph.

First, and somewhat surprising, although C-LOOK performtds than SSTF for this work-
load and disk, SMTF performs noticeably better with SSThthvith C-LOOK as a base; with
C-LOOK, the Disk Mimic is not able to observe inter-requesstahces that are negativiee(,
backward) and thus does not discover distances that are tgsther. Secon@nline-Setper-
forms better that©nline-Priority with SSTF as the base scheduler. Third, although interipolat
does significantly improve the performanceQiline-Priorityand ofOnline-Setvith C-LOOK, it
leads to only a small improvement wilnline-Seaand SSTF. Thus, as with off-line configuration,
the primary benefit of interpolation is to reduce the memexuirements of the Disk Mimic, as

opposed to improving performance.

45

The right-most graph of Figure 3.9 illustrates how the penfance ofOnline-Setimproves
over time as more inter-request distances are observede&\tbat the performance of tmline-
Setalgorithms (with and without interpolation) is better thidme base-line schedulers of SSTF
and C-LOOK even after one day of the original trace.(approximately 150,000 requests). The
performance ofOnline-Setwith SSTF converges to within 3% of the off-line version afteur

days, or only about 750,000 requests.

3.8 Summary

In this chapter, we have explored some of the issues of usinglation within the system
to make run-time scheduling decisions; in particular, weehimcused on how a disk simulator
can automatically model a range of disks without human vatetion. We have shown that the
Disk Mimic can model the time of a request by simply obsentimgrequest type and the logical
distance from the previous request and predicting thatliti@have similarly to past requests with
the same parameters. The inter-request distance caph@&re®mbined cost of seek time, head
and track switches, as well as rotational latency; the lagbthe sectors on disk is incorporated
probabilistically as well.

Under the workloads we explored, the size of the request didlifferentiate as a parameter
that needed to be incorporated in the model. Another catelidaut parameter for the model,
time passed between requests, did not need to be considgved, that the model is used in
collaboration with an 1/0 scheduler. The performance of lfRescheduler is of interest when
there is a data intensive workload, without think times leswthe requests issued.

The Disk Mimic can configure itself for a given disk by eitheoping the disk off-line or, at a
slight performance cost, by observing requests sent toiseot-line.

We have demonstrated that a shortest-mimicked-time-8$fT(F) disk scheduler can signifi-
cantly improve disk performance relative to FCFS, SSTF,@idDOK for a range of disk char-

acteristics.

46

Chapter 4

Application Level Freeblock Scheduling

In this chapter we present how the Disk Mimic can be used tdempnt a specialized sched-
uler at application level. We start by giving a descriptidthe problem and the scheduler that we
are implementing. 1/0 scheduling at the application lesadhallenging because acquiring the in-
formation needed to decide what request to schedule nextiis difficult to obtain. As presented
in the previous chapter, 1/0 scheduling at the OS layer igcdif. By moving the scheduler (at
least) one layer further away from the disk, the difficultydofing scheduling increases even more,
since there is another layer (OS) that is traversed by theestg before they reach the disk.

We use a data-driven model of the disk that provides the mm&dion needed by the scheduler.
We present the model that we use and the challenges posedplnyidg an application level

scheduler. We conclude with results and a summary.

4.1 Freeblock Scheduling Background

In this section we present the scheduler that we implemenitbdhe help of the Disk Mimic.
This scheduler was proposed previously by other resea¢h@y 44].

A freeblock scheduler is an I/O scheduler that is able toagextiree bandwidth from a disk.
The scheduler handles traffic coming from two classes ofiegpbns: foreground and background
applications. The goal is to service the requests made bgfound applications while interleaving
requests coming from the background applications. Moremantly, this is done while minimally

impacting the performance seen by the foreground appbicsti

a7

The idea used by a freeblock scheduler is to take advantate obtational latency incurred
while servicing foreground requests. In Chapter 2 we presem detail the main components
that contribute to the service time:seek time, rotatiomaktand transfer time. There are other
components that are part of the service time (head switclstirmack switch times), and there
are disk functionalities that can impact the service timecking, prefetching). For clarity we
will concentrate on the simpler case when a service time nispased of only the primary three
components enumerated above.

During rotational time the disk system is idle and just wéotsthe target sector to come under
the disk head. Ideally, this time would be zero, but oncemgaeertain workload this is difficult
to achieve. With freeblock scheduling, background requast serviced in the time taken by the
rotational latency of foreground requests, thus beingisedvfor free’.

We now explain in more detail how freeblock scheduling worker example, let us assume
that the last foreground request, FRvas serviced at disk location {(H,,S;], and that the next
one, FR, is located at [G,H;,S;]. In order to service the second request, the disk head needs
move from cylinder €to C,, and then it needs to wait a half rotation (on average), ieiciaread
the data from sector,S A background request BR located on the same cylinder ac# téth
FRy, at [C,,H;,S; + 1], could be serviced immediately after it. After servigiBR, the disk head is
positioned at [G,H;,S; + 1 + sector length of BR]. In order to service Ffhe head needs to move
to the target cylinder ¢ and then again wait for the disk to rotate to read the targebs needed
for FR,. This time, the amount of rotational latency incurred by, BRI be smaller, because some
of it was used to make a useful data transfer for BR. The setiice of FR is not affected, and
the storage system was able to service three requests, gathe amount of time that it would
have served only the two foreground ones.

There are other scenarios for servicing a background régqu#sut interfering with the ser-
vice time of FR. Similar to the previous example, the background requesbessituated on the
same track with FR In this situation, the disk head seeks to the target cylindg services BR,

and then services ER Another scenario is to seek to another cylinder/track deoservice BR,

48

and then seek again tg @ service FR. In this last situation, while still extracting free bandith,
the disk does extra seeks, and thus, does not make use ofsibfgavailable free bandwidth.

The amount of free bandwidth that can be extracted from &sydepends on several factors.
First, the workload dictates the percentage of rotaticaiglricy that is available. At one extreme,
if the workload is completely composed of sequential retpjespportunities for inserting back-
ground requests without affecting the service time of thedoound requests are non-existent. At
the other extreme, a random workload of small requests,at@tss blocks in close proximity
(e.g.on the same cylinder block) will incur a lot of rotationaldaty €.g, to 60% of the total
service time [44]). Second, the scheduling algorithm usesthedule the foreground requests can
influence the rotational latency incurred by the foregroteglests. Requests scheduled with al-
gorithms similar to C-LOOK, that try to reduce seek timed| inave more rotational latency than
those scheduled with SATF (Shortest Access Time First)rdThihe geometry and generation of
the disk will also dictate the amount of the rotational latethat is available. For example, disks
optimized for random access have a smaller rotational ¢gten

It is useful to discuss the class of workloads that make upg&yackground applications.
As described in [44], representative applications are digkibbing, virus detection and backup
applications. A scrubbing application reads blocks frosk@ind checks that the data stored is still
valid. This helps detect disk sectors that go bad and allbestorage system to take proactive
action. Virus detection applications do static detectibriuses in files on disk, thus offloading
checks that otherwise might have to be done at runtime. Baekplications periodically save
data from disk to a different location, protecting agairstithg data when a disk fails. These
applications have in common the facts that they usually hauw@intime restrictions, access a large

section of the disk, and do not have any preference for therafdaccess.

49

4.2 Application Level I/O Scheduling

I/O scheduling is traditionally performed at the file systemat lower levels, but there are
situations when it is valuable to consider deploying I/Oestilling at the application level. We
give three reasons why this is worth exploring.

First, application level scheduling allows for finely taial scheduling policies. Mainstream
kernel distributions usually incorporate scheduling tegbes that optimize for parameters that
are likely to be of interest to a majority of workloads. Thathe case, for example, in throughput
scheduling, where the goal is to maximize the rate with whiehsystem services requests. There
are applications that have special requirements and thatarserviced well by these techniques
alone. For example, a video player needs a scheduler thajpioiates QoS guarantees, and that
can insure that frames are retrieved at a certain rate. Anettample is given by the applications
we just mentioned at the end of the last section. These bagkdrapplications could benefit from
a freeblock scheduler that is able to better utilize theesystesources.

Second, the information required to perform a specialigpéd bf scheduling is available most
often at application level, and it is lost or difficult to asseat lower levels. For example, for free-
block scheduling, the file system would have to be able tondjstsh between requests coming
from foreground or background requests. Unfortunately,rdverse could also be true. Imple-
menting scheduling at a higher level may require informafrom scheduling levels underneath
(e.qg, file system level). We will address these challenges in #x¢ sections.

The third reason relates to the actual process of devel@midgleploying the scheduling tech-
nique. Itis less error prone to develop at user level ratian &t kernel level. This approach will
require less familiarity with the kernel code, and lessriiet@nce with code that could potentially
affect the stability of the system.

Related to the previous point, once an I/O scheduler impheeakat application level proves
to be successful it is easier to make the argument to movenigibnality to a lower level, for

example, at the file system level.

50

4.3 Using the Disk Mimic for Freeblock Scheduling at Applicdion Level

There are two main challenges to overcome when implemeatiingeblock scheduler at ap-
plication level. As we described in Section 4.1, decidingwio schedule a background request
requires detailed information about the disk: the schedhdeds to predict the rotation time asso-
ciated with a request. This information is not availableagelrs outside the disk firmware. The
initial proposal for the scheduler had it located in the diskware and even the authors mention
that they believed it could only be done at that level [44fgtathey do proceed to implement it at
application level).

We address the first challenge by making use of the Disk Midscdescribed in the previous
sections, the Disk Mimic can predict average service tirne§¥© requests. A freeblock scheduler
can make use of these predictions.

Given a list of background requests, the freeblock schedsles its knowledge of the schedul-
ing algorithm {.e,, C-LOOK) to predict where a background requési, will be inserted into the
scheduling queue. After the scheduler has determined hatetjuest will be inserted between
two requestsF'R; and F'R;, it calculates if the background request will hafi®?;. This harm
is determined by indexing into the disk timing talilewith the linear block distance between the
requests; ifD(FR, — FR;) > D(FR;,— BR)+ D(BR — FR;), then the background request does
not impact the time for the second foreground request/aRds allowed to proceed.

The freeblock scheduler schedules the one background setha has the least impact on
the foreground traffic (if any). Then, the scheduler bloakaiting to be notified by the kernel
that the state of the disk queue has changed. When the sehedakes, it rechecks whether any
background requests can be serviced.

The model used for the disk is identical to the one describhechapter 3. The model is built
by timing requests, and the input parameters that it keepk of are the inter-request distance and
the type of request (read or write).

The second challenge occurs because the scheduler is atatippl level. It needs to find out

the LBA (logical block address) associated with the bloajuests issued by the applications, and

51

the state of the 1/0 scheduling queue at file system levels Tformation is needed in order
to find out what foreground requests are currently constdlrescheduling and what sectors on
disks need to be accessed. We deal with this challenge byfyiraglthe Linux kernel to expose

information about the scheduling queue and about the fikeebdtb LBA translation.

At the application level we cannot control the schedulingisiens taken at the operating sys-
tem level. When a request is issued by the application, @éasdered at the operating system level
according to the scheduling policy in use. Thus the actidriseaoperating system level need to
be factored in, such that they do not affect the decisionsenadhpplication level. We export
information about the scheduling algorithm at operatingtemy level and we use this algorithmic
information to issue requests only when the decisions atvardevel would not interfere with
those at the application level.

For the background applications considered, the worklsadad-only, which results in a sim-
plified model. For example, the model does not need to keef thadditional service times for

write operations.

4.4 Experimental Results

We implemented an application level freeblock schedulat tises the Disk Mimic and eval-
uated it in a Linux 2.4 environment. The machine used for erpents is a 550 MHz Pentium 3
processor with 1 GB of main memory and four 9 GB 10000 RPM IBMBLSCSI hard drives.

To evaluate the freeblock scheduler we use a random-1/Oleadkin which the disk is never
idle: the foreground traffic consists of 10 processes canotisly reading small (4 KB) files chosen
uniformly at random. The single background process reams fandom blocks on disk, keeping
1000 requests outstanding.

As seen in Figure 4.1, the random foreground traffic in isote&chieves 0.67 MB/s. If back-
ground requests are added without support from the frekldobeduler, foreground traffic is

harmed proportionately, achieving only 0.61 MB/s, and lgacknd traffic achieves 0.06 MB/s.

52

0.9 T T T
Background [
0.8 | Foreground] |

A

06 r 8

05 -
04t -

Bandwidth (MB/s)

03 r 8
0.2 | §

0.1 §

FG +BG +BG
only +FreeSched

Figure 4.1 Workload Benefits with Freeblock Scheduling. The leftmost bar shows the fore-
ground traffic with no competing background traffic, the nhedalar with competing traffic and no
freeblock scheduler, and the rightmost bar with the freebkcheduler.

However, if background requests use the freeblock schedhkeforeground traffic still receives
0.66 MB/s, while background traffic obtains 0.1 MB/s of frentdwidth.

4.5 Summary

In this chapter we showed that the Disk Mimic can be used toessfully implement freeblock
scheduling at application level. The model required no rincations from its deployment at file
system level. However, the freeblock scheduler needediaddi information from the file system:

scheduling queue state and LBA translation for a file systiermkb

53

Chapter 5

Log Skipping for Synchronous Disk Writes

In this chapter we introduce miniMimic, a specialized moofehe disk, that is used to solve
the synchronous disk writes problem. We start by presertaaikground information about syn-
chronous writes and performance issues that can occur ia sytem that performs logging. We
show how the file system can predict the position of the disidi®y using a data-driven model of
the disk, and how this is used to solve the synchronous wrdblpm. The model is application
specific and, thus, we do not require that the model accyrptedicts all aspects of the disk, but
only that it can estimate the disk head position when it ifiwithe log.

As enumerated in the previous chapters, we have a numbequfeenents for the log model.
First, the model should be accurate for the particular deskdpused in the system, but the model
does not need to be configurable for an arbitrary, hypotltksic. We use a data-driven model
whose parameters are automatically configured by meastiminggme of requests on a particular
disk. Furthermore, since the log model will be used on-liidiv the file system, we would like
the model to have low computational costs. This requirenmehtates that table-based models is
an appropriate choice as well. We describe the model usedept results and conclude with a

summary.

5.1 Background

We first describe the small synchronous write problem, aed the give a brief tutorial about

how traditional journaling file systems, such as Linux eX3][update a log on disk.

54

5.1.1 Synchronous Disk Writes

Over the years, researchers have introduced a wealth afrpehce optimizations into file
systems, contributing greatly to the current state of th¢2é&; 32, 33, 45, 53, 69, 79]. For exam-
ple, the original Berkeley Fast File System (FFS) [45] oodiies files within the same directory,
greatly reducing read times under access patterns witlhaspatality. The Log-structured File
System (LFS) [53] organizes all file system data and metadaadog, hence improving perfor-
mance by asynchronously writing data to disk in long seqaksegments. Finally, SGI's XFS file
system [79] uses B-trees to store file system metadata suliteasories; by doing so, performance
of workloads that access large directories is greatly ecédn

However, despite these many advances in performance, gutant workload remains par-
ticularly onerous for current file systemsmall, synchronous disk writed'hese workloads are
often generated by applicatiorss g, a database management system) that force data to disk so as
to guarantee (a) on-disk persistence or (b) a proper seogeotwrites to enable crash recovery.
Unfortunately, synchronous writes perform quite poongrefor file systems designed to improve
write performance [68]; when the application issuesaync, the file system has no choice but to
force data to disk immediately, and thus incurs the cost otk skek, rotation, and transfer time
that such writing demands.

Higher-end systems attempt to overcome the synchronots pnoblem by employing addi-
tional (and potentially costly) hardware; for example, tetwork Appliance WAFL filer [33]
incorporates non-volatile memory (NVRAM) to buffer manynsiironous writes, and then issues
batches of such writes to disk asynchronously, greatly avipg performance. Unfortunately,
commodity PC file systems typically do not have access to kactiware. Commodity systems
are important to consider, since they are employed in a biarage of performance-sensitive sce-
narios, from the desktop where they manage personal eataf&mily photos, movies, and music)
to the server room where they form the back-end of importatetrhet services like Google [1].

Most modern file systems, including Linux ext3 [86] and Re#&[51], Microsofts NTFS [77],
and Apple’s HFS [6] all argournalingfile systems, which write file system changes to an on-disk

log before updating permanent on-disk structures [32].

55

5.1.2 Logging

File systems and database management systems that regagadtional semantics often rely
uponwrite-ahead loggingor journaling [19, 31, 32]. A variety of journaling file systems exist
today, such as ext3 [85], ReiserFS [51], JFS [10], and NTF3. [Th our descriptions we will
explain how Linux ext3 performs journaling, although alltbése file systems are similar in these
respects.

The basic idea in all journaling file systems is that inforim@about pending updates is written
to thelog, orjournal, on disk. The log can either be stored in a known portion oflikk, or it may
be stored within a known file. The file system meta-data anal a&t also written to fixed locations
on the disk; this step is often calletieckpointing Forcing journal updates to disleforeupdating
the fixed locations of the data enables efficient crash regowesimple scan of the journal and
a redo of any incomplete committed operations bring theesydb a consistent state. During
normal operation, the journal is treated as a circular lbutiace the necessary information has
been propagated to its fixed location on disk, journal spacebe reclaimed.

Many journaling systems have a range of journaling modésf avhich impact performance
and consistency semantics.data journaling the logging system writes both meta-data and data
to the log and thus delivers the strongest consistency gtess. Inordered modethe logging
system writes only meta-data to the log; ordered mode esghed the data blocks are written
to their fixed locations before the meta-data is loggedngigensible consistency semantics. Fi-
nally, writeback modenakes no guarantees about the ordering of data and metaaddtthus has
the weakest consistency guarantees. Due to its strongstensy guarantees, we focus on data
journaling in this chapter.

The relative performance of the journaling modes deperndsliaon the workload. Data jour-
naling can perform relatively poorly when large amountsathdare written, since the data blocks
must be written twice: once to the log and again to their fixadtions. However, data journaling
performs relatively well when small, random writes are parfed. In this case, data journaling

transforms the small random writes to sequential write®@nlog; the random writes to the fixed

56

data locations can be performed in the background and, thayg not impact application perfor-

mance.

5.2 Performance Issues with Synchronous Disk Writes

We now describe the sequence of operations that occur whag ia Updated. A journaling
system writes a number of blocks to the log; these writesroabenever an application explicitly
sync’s the data or after certain timing intervals. Firsg sigstem writes descriptor blockcontain-
ing information about the log entry, and the actual data ¢dadly. After this write, the file system
waits for the descriptor blocks and data to reach the diskthed issues a synchronoasmmit
blockto the log; the file system must wait until the first write coetpk before issuing the commit
block in case a crash occurs.

In an ideal world, since all of the writes to the log are sedagrthe writes would achieve se-
guential bandwidths. Unfortunately, in a traditional joaling system, the writes do not. Because
there is a non-zero time elapsed since the previous blockwigen, and because the disk keeps
rotating at a constant speed, the commit block cannot béenrimmediately. The sectors that
need to be written have already passed under the disk heati@ddk has to perform an almost
full rotation to be able to write the commit block.

We improve journaling performance witbg skipping log skipping attempts to write the next
log entry to the current disk head position, thus minimiziotational delay. We present this

technique in the following section.

5.3 Log Skipping

In this section we presetbdg skipping a novel technique for log optimization. We refer to
the file system component that performs the optimizatiorhasog skipper With log skipping
the log records are not allocated sequentially to the dissternd, the log skipper writes the log
record where the disk head is currently positioned (or ctosg. Log skipping greatly improves

performance because the log write will not need to wait ferdsk to rotate.

57

However, log skipping raises three new questions. First, dmes the log skipper know where
the disk head is currently positioned? Second, how doesotheKipper allocate space in the
log? Third, how does the new structure of the log impact crashvery? We address these three

guestions in turn.

5.3.1 Disk Head Position

Log skipping needs information about where to write the @nirtog blocks so that they incur
the smallest service time. This information can come frorsk chodel or it could be provided by
the disk, if the proper interface exists. Since currentslggiknot export such low-level information,
we explore how a disk model can be used. Given that this is anisgue to address, we describe

our disk model, miniMimic, in detail in Section 5.4.

5.3.2 Space Allocation

The log skipper needs to track the current free space in theAdter a write request arrives
and the log skipper determines the position of the disk heedlog skipper checks to see if the
corresponding disk blocks are free. If the blocks are filee)ag skipper issues the request to that
location and marks the blocks as utilized.

If the blocks are not free, the log skipper looks for the negation in the log that could hold the
blocks. This location might not have an optimized serviogeti especially when the log is nearly
full. Similar to the ext3 file system, when the free space alty is below a certain threshold, or
after a given time interval, the log is cleaned. We note thatpace overhead for tracking the free
space in the log is not high; given that most logs are in thgeasf tens of megabytes, the space
for a suitable bitmap is only on the order of kilobytes.

Another potential concern is that the space utilizatiorheflog with log skipping is no longer
likely to be optimal: the log may now have ’'holes’ of free spdlcat are too small for new requests

to fit. However, we feel that space utilization of the log ig moconcern: disk capacities are

58

increasing at a much higher rate than disk performance., Weibelieve that a small loss in disk

capacity is worth the large improvement in performance lthgskipping can bring.

5.3.3 Crash Recovery

During crash recovery, a normal log is read sequentiallypnftbe head of the log to the last
committed transaction, and then it is replayed, assuriagthie disk operations that safely made it
to the log are reflected in the disk state after the crash. Mfitskipping, the log data is interleaved
with free blocks, which means that the log skipper needs yospacial attention in reconstituting
the log before replaying it.

The descriptor and commit blocks in the normal log alreadyt@io magic numbers that dis-
tinguish them from other blocks on disk. The descriptor klatso contains a sequence number
and the final disk location of the data blocks included in lamgaction. Similarly, the commit
block contains a sequence number. Thus, log skipping daeseead to change the format of the
descriptor and commit blocks.

After a crash, with log skipping, the log recovery processitmaad the entire log and reorder
the records according to their sequence numbers, starbng the sequence number of the head
of the log. Since log recovery is not frequent, we believe #dded step in the recovery process

has a minimal impact.

5.4 Building the Disk Model

We now describe the model we use to predict where to synchenavrite the data blocks
in the log. As in previous applications, the model we use isimended to accurately predict all
aspects of the disk, but only certain characteristics ofithace, more specifically to estimate the
disk head position within the log.

MiniMimic predicts the skip distance between synchronousewequests within the log that
will lead to the minimum average service time; miniMimic &gply accounts for the size of

requests and the think time between requests. We have cediguniMimic on the logs for three

59

Service Time (Ms)
N w E>N 6]

o 1 1 1 1 1
0 100 200 300 400 500

Sorted Requests

Figure 5.1 Individual Service Times for 4 KB Requests. This graphs plots sorted individual
service times for requests of size 4 KB. The requests aredsseguentially, with no think time,
and the skip distance is 0. The disk used for experiments hasxanum rotation latency of 6 ms.
Most of the requests have a high service time, larger thal aofiation. The average service time
for these requests is 6.13 ms.

different disks, two SCSI disks (both IBM 9LZX, differentwisions and with different physical
characteristics) and an IDE WDC WD1200BB disk.

In the previous models we found that the two most importanapaters to consider were
operation typdi.e., a read or a write) anthter-request distancéhrought this chapter we refer to
inter-request distance as skip distance).

For log skipping, operation type is not relevant, since thiy disk operations are writes. For
miniMimic, we also find that skip distance is a fundamentaiapzeter. MiniMimic must also
incorporate two request parameters that previous on+ieasurement-drive disk models did not:
request size and think time.

We now describe how miniMimic incorporates these threerpatars. We begin by consid-
ering skip distance in isolation, and then add in request, sind then think time. For clarity, we

mainly present data from a SCSI 9LZX disk.

60

Average Service Time (ms)

O P N W M 01 O N 00 ©
T

Skip (MB)

Average Service Time (ms)

O 1 1 1 1 1 1 1
-200 -150 -100 -50 0 50 100 150 200

Skip (KB)

Figure 5.2 Average Service Times for 4 KB RequestsThese graphs plot the average service
times for requests with a size of 4 KB, when the skip distaaes: The graph on the top explores
skip distances between -5 MB and 5 MB. We observe the 'sawiwofile of the graph, explained
by the varying amounts of rotational latency incurred by tbguests. The graph on the bottom is
a zoom in for skip distances between -200 KB and 200 KB. Weentttat the minimum average
service time occurs for a skip distance of 28 KB.

61

5.4.1 Skip Distance

We already showed that the skip distance between two rexjisestfundamental parameter in
predicting the positioning time of a request. As describegrevious sections, positioning time
includes seek, rotation, and head switch times. Due to tbemggy of disks, and the mapping of
logical block numbers to tracks and platters on the diskgjests with the same skip distance will
have a distribution of positioning costs, where many of #giests have identical costs.

Figure 5.1 presents an example distribution of servicedifoedifferent 4 KB write requests
with a skip distance of 0. The observations we made in previbapters hold for this usage of the
model as well. MiniMimic summarizes this distribution ofngpled service times with the mean
service time. Using the mean and using skip distance as anp&eg instead of using a functional
disk model with intimate knowledge of the mapping of logibédcks to a particular sector and
platter on the physical disk, greatly simplifies our modeithwonly a small loss in predictive
power.

The average service time as a function of skip distance ®6@SI disk is shown in the first
graph of Figure 5.2. Thg-axis represents the average service time for 4 KB requestate issued
with the skip distance specified on the x axis. A close-up kgu distances between -200 KB and
200 KB is shown in the second graph of Figure 5.2. The grapbw shat the minimum average
service time of 1.57 ms is obtained with a skip distance of B8 Khus, for a 4 KB request with
zero think time, miniMimic will recommend to the log skipptrat it write the next request at a

distance of 28 KB from the previous request.

5.4.2 Request Size

Applications write data in different sizes; the log skippeust be able to determine the best
skip distance for a given write request as a function of #s.si

Thus, miniMimic explores the service times for a range ofuesy sizes and skip distances
within the log. One might expect, for a given skip distanbat service time will increase linearly

with request size, under the assumption that the positiptime is independent of request size

62

and that the transfer time is a linear function of the reqese®. This expectation holds true for
most skip distances we have sampled, as exemplified by tipd gvith a skip distance of zero in
Figure 5.3.

However, for the skip distances that correspond to miniraalise timesi(e., those that incur
minimal rotation delay), the service time is not linear witlguest size. An example of one such
skip distance, 28 KB, is shown in the second graph of Figug 3n this case, service time
generally increases with the request size, but with a nurobeutliers. With a skip distance of
28 KB, the disk is right on the edge of writing the first sectathout waiting for a rotation; small
differences in the workload cause the disk to incur an extiaion.

Figure 5.4 plots a 3-d graph of the average service time wh#nthe request size and the skip
distance vary. We observe three plateaus in the service timth two discontinuity points around
skip distances of 28 KB and 144 KB. It is important to note ttheg transition points between
the plateaus are not smooth; different request sizes haueldlv service times at different skip
distances.

This result is summarized in Figure 5.5, which shows thatesoeguest sizes have recom-
mended skip distances of 28 KB while others of 144 KB. As iatkd in Figure 5.4, the difference

in service times between those two skip distances can be ljigib for some request sizes.

5.4.3 Think Time

Applications writing data often have think timeg., computation time) between requests.
Thus, the log skipper will see idle time between arrivingtesiand must account for the fact
that the disk platters continue to rotate between theseestgu

MiniMimic configures the think time parameter by issuingteniequests to the log as it varies
the idle time between those requests. Although the fulligarsf miniMimic must simultane-
ously account for skip distance, request size, and thingtine begin by examining think time in
isolation.

Figure 5.6 plots the average service time for 4 KB requediisaaskip distance of O preceded

with a think time between 0 ms and 12 ms. The graph shows thetasing think time results in

63

16
m
£ 14
o 12
E
|_
5 10
8
2 8
b}
n
o 6
(o))
@©
s 4 '
>
<
2 - .
O Il Il Il Il Il Il Il Il Il
0O 20 40 60 80 100 120 140 160 180 200
Request Size (KB)
16 .
m L 4
£ 14
o 12]
E
|_
5 10
8
2 8
b}
n
o 6
(o))
@®
o 4
>
<
2
O 1 1 1 1 1 1 1 1 1

0O 20 40 60 80 100 120 140 160 180 200
Request Size (KB)

Figure 5.3 Average Service Time for Requests when the Request Size Ves. We plot the
average service time for different request sizes, for tvijp distances. The graph on the top plots
the service time for a 0 KB skip distance and the graph on th®boplots the service time for
a 28 KB skip distance. We observe a smooth ascending curgerfaice times associated with a
0 KB skip distance, while the graph on the bottom shows a m@gular pattern.

smaller service times, up to think times a little larger tlhams. This is explained by the fact that

the requests issued with no think time incur a large rotalitetency, and increased think times

64

Average Service Time (ms)

i

200
100 150

5
Request Size (KB)

Figure 5.4 Average Service Time for Requests when the Request Size andifs Distance
Varies. The graph shows larger service times as the request sizeases. There are three
plateaus with transition points around 28 KB and 144 KB. Tiamgsition between the plateaus
happens at different values for the skip distance.

allow time for the disk to rotate and bring the sectors thathte be written closer to the disk head.
As the think time increases past 6 ms, the sectors that nelee Wwritten have passed under the
disk head already, and thus these requests again incurt@egmnal latencies to complete.
Figure 5.7 is a 3-d plot of average service times when botikttime and skip distance are
varied. The plot shows that the relationship between sldgtadce and think time is a bit complex

and that interpolating values would be difficult.

5.4.4 Model Predictions

In this section, we have seen how miniMimic predicts the agerservice time of write requests
as a function of pairwise combinations of the three pararsetkip distance, request size, and
think time. To be used for log skipping, we would like miniMicrto recommend a skip distance

to minimize service time, as a function of request size amkttime.

65

160 T T T T T T T T T

140 r _
120 r .

100 ¢ T

Skip Distance (KB)
(0]
o

40 | :

20 .

O 1 1 1 1 1 1 1 1 1
0O 20 40 60 80 100 120 140 160 180 200

Request Size (KB)

Figure 5.5 Choices for Skip Distance when the Request Size VarieZhis graph shows which
skip distance will be recommended by miniMimic when theestjgize varies. We notice that
miniMimic will choose different skip distances for diffiereequest sizes. Figure 5.3 and 5.4 show
that the difference in the service time for different skigt@nces is noticeable.

To build the miniMimic, we sample the log off-line and measall combinations of values for
skip distance (between 0 and 300 KB in 4 KB increments), reggiee (between 0 and 200 KB in
4 KB increments), and think time (between 0 and 7 ms ini&2dAcrements); for each combination,
we take 50 different samples. We note that our measurementzierently more exhaustive than
needed; given some knowledge of the workload, one could kafewer values for the request
size and think times; given more assumptions about the destomance characteristics, one
could sample fewer skip distances.

After miniMimic samples the disk log, it searches the set ebsured values to find the skip
distance that generates the minimum average service tiradwagction of the request sizeand
think timet. This skip distance is the recommendation that miniMimid wiake when when

called by the log skipper to synchronously write a requett gizer and think timet.

66

7 T T T T T
m
E
o
£
|_
)
2
2
Q
n
Q
(o))
©
Qo
>
<
o 1 1 1 1 1
0 2 4 6 8 10 12

Think Time (ms)

Figure 5.6 Average Service Time for 4 KB Requests when the Think Time Vaes. The graph
plots average service times when the think time varies aadkip distance is 0 KB. The graph
shows a periodic pattern, as the amount of rotational layevaries between minimum and maxi-
mum values. With no think time the requests incur large rotat latencies, but as the think time
increases the service time decreases because the targetssace closer to the disk head. The
disk has a rotational latency of 6 ms, which is reflected ingligodic pattern.

These recommendations are graphically summarized in €ga8, 5.9, and 5.10 for the two
SCSI IBM 9LZX disks and the IDE Western Digital WDC WD1200Biski We make the ob-
servation that the recommended skip distance curves fdahtke logs are complex and irregular;
it would be difficult to interpolate the desired skip distarfor sizes or think times that were not
measured directly.

In summary, we note that miniMimic is simple, portable, anduaate. Because miniMimic
only models the log portion of the disk, it contains relalyvkttle data and can be configured
relatively quickly, especially compared to similar me&snent-based approaches that model the
entire disk [49]. We have also found miniMimic to be portabie initially developed miniMimic
for one of the SCSI disk and found that no changes were needednfigure it for the second

SCSI disk and the IDE disk. Finally, miniMimic is accurats;\@e will show in the next sections,

67

Average Service Time (ms)

4
5 Think Time (ms)

Figure 5.7 Average Service Time for 4 KB Requests when the Think time an&kip Distance
Varies. The average service times associated with different tiangg varies with a more complex
pattern compared to the one observed when varying the régizes

miniMimic does a very good job in predicting the best skigaliee for write requests of different

sizes and with different think times.

5.5 Experimental Setup

We now briefly describe our implementation of log skipping évaluation, the transactional

workload that we use to drive our experiments, and our erpartal environment.

5.5.1 Implementation

We have implemented log skipping in an emulated environmEné emulator is a user-level
program that mimics the logging component of a file systemriles log data to disk, it allocates
space to the log, and it cleans the log. The log skipper used/hmic to pick the location in the
log to write the next transaction to. The log skipper theméssthe write requests to a real disk

through the raw interface.

68

Skip (KB)

Size (KB) 150

200 Think Time (ms)

Figure 5.8 MiniMimic Skip Distance Recommendations for SCSI Disk 1.MiniMimic predic-
tions for the skip distance to be used when a request has a ggeiest size and is preceded by a
given think time, for the SCSI IBM 9LZX disk. The shape of taplgis highly irregular.

The emulator is trace-driven. The traces are collecteddibribe file system and isolate the
disk traffic directed to the file system log. The traces haf@mation about the type of log block
(i.e., descriptor block, data block, or commit block), the typepération (.e., read or write), the

logical block number for the request, and the time of issue.

5.5.2 Workload

To evaluate log skipping, we are most interested in tranwaait workloads. Therefore, we
collected traces from a modified version of the TPC-B benchkma@he TPC-B benchmark [84]
simulates the behavior of database applications that genkarge amounts of disk traffic and that
need transactional processing. The benchmark issuesea sétransactions. Each transaction is
made up of a group of small updates to records in three dadbbkes: account, teller and branch,

and an update to a history file.

69

Skip (KB)

200
150
100

50

Size (kB) 100 155

Figure 5.9 MiniMimic Skip Distance Recommendations for SCSI Disk 2.MiniMimic predic-
tions for the skip distance to be used when a request has a ggeiest size and is preceded by a
given think time, for the second SCSI IBM 9LZX disk.

We have modified the TPC-B benchmark so that we can vary th& time in the application
and the size of each transaction; we also ensure that theattons are written synchronously to
the disk. Exploring these new parameters permits us to exjplehavior characteristic of a larger
number of transactional applications.

From a logging point of view, the traffic issued by our modifilgéC-B benchmark translates
to a series of random synchronous write requests. When fiieation issues a synchronous 4 KB
write, the traffic generated to the log is a synchronous retjofkesize 8 KB {.e., descriptor and
data block) followed by another synchronous 4 KB requiest €commit block).

We have collected traces from our modified TPC-B benchmar& f@riety of think times and
request sizes. The benchmark was run on a Linux 2.6 systerfigaced to use the ext3 file system

in data journaling mode.

70

Skip (KB)

=ENNWOW
J1I0U1I0U10U1
OCOOOOOOO

Figure 5.10 MiniMimic Skip Distance Recommendations for IDE Disk. The graph plots the
MiniMimic predictions for the skip distance to be used wheaduest is characterized by a given
request size and preceded by a given think time, for the ID&efe Digital WDC WD1200BB
drive. Similar to the SCSI disk the shape of the graph is ut@gthough the curve is less complex.

5.5.3 Environment

Our experiments are run on three different systems, twaagang SCSI disks (IBM Ultrastar
9LZX) and the other an IDE disk (WDC WD21200BB). These are thmea disks for which we
presented the profile data in Section 5.4. The experimeataue the SCSI disks were run on a
system with dual 550 MHz processors and 1 GB of memory. Theraxgents that use the IDE
disk were run on a system with a 2.4 GHz processor and 1GB ofanerRor all experiments the
size of the log is set to 40 MB. When we do not specify otherwiise data reported is from the

system that uses the first SCSI disk.

5.6 Log Skipping Results

We now explore the performance benefits of log skipping. Wrbby validating the disk

model produced by miniMimic. We then measure performangaavements with log skipping

71

10 T T T T T

’g actual ——
= actual avg ——
GE) 61 predicted avg —— |
= predicted min —=—
o predicted max —=—
! 4 1
> |
Q)
n
2 : “ e -
0 1 1 1 1 1
0 100 200 300 400 500

Requests (sorted)

Figure 5.11 Predicted Versus Actual Service Times.This graph plots the actual service times
versus predicted service times for a request size of 8 KBlif&aéabeled "actual’ plots the sorted
values of the service times for the individual requests. dd¢teal and predicted averages are
within 1% of each other.

and a complementary technique called transactional cheuksng [50]. This technique elimi-
nates the need for a second synchronous write, and thucittypéivoids the extra disk rotation.
Thus, only a single write operation is needed, instead ofisgwiously with normal log operations.
Additionally, a checksum is written to the log along with thescriptor block and data block. The
checksum allows the system to detect a partial write whefothes read after a system crash.
We note that transactional checksumming is an orthogomatliso to log skipping. The two
techniques can be implemented separately or togetherisisehtion we show the benefits of log

skipping both with and without transactional checksumming

5.6.1 Validating the Disk Model

We start by exploring the accuracy of the disk model produmechiniMimic. In this experi-
ment, the log skipper replays a TPC-B trace in which the appbn issues 4 KB requests; thus,

for this workload, the log skipper will see two synchronoustes: one for 8 KB i.e., the 4 KB

72

16 T T T
—1 no chksm/no skip
14 + @ no chksm/skip .
mmmm chksm/no skip
12 - = chksm/skip T

10 .

FREEL

BW (MB/sec)

o N B~ OO ©

16 32

Number of Application Blocks/Xact

Figure 5.12 Performance Improvements when the Size of the Requests Vas - SCSI Disk

1. The graph shows the bandwidt-#éxis) when the size of the requests variesixis) and there

is no think time. Each bar in the group of bars represents ageolptimization configuration: no
optimization, checksumming, skipping, and checksumnmdgkipping together. Each configura-
tion sees an increase in performance when the request siEases, as the positioning costs are
amortized. In general, log skipping performs better thamsactional checksumming and pairing
both skipping and checksumming yields the best performamm®vement.

descriptor block and the 4 KB of data) and a second for 4 K&, the 4 KB commit block). The
log skipper uses miniMimic to choose the skip distance th#itminimize service time on the
SCSI disk.

To evaluate miniMimic, we compare its predicted serviceesmvith the actual disk service
times measured during the experiment. For simplicity, ve¢ @hly the results for the synchronous
8 KB requests, but the results for the 4 KB requests in the watkare qualitatively similar. The
results are shown in Figure 5.11. The ’actual’ line showsdisk service times measured during
the log skipping experiment for each of the 500 requests envitbrkload; the 'actual avg’ line
shows the average measured service time. The three pikticte show the average, minimum,

and maximum values that miniMimic predicted.

73

25 T T T T T T
—1 no chksm/no skip
E=== no chksm/skip

20 | W chksm/no skip .
mm— chksm/skip

15 ¢ .

BW (MB/sec)

Ladddd

16 32

Number of Application Blocks/Xact

Figure 5.13Performance Improvements when the Size of the Requests Vas - SCSI Disk 2.
The graph shows the bandwidtix&xis) when the size of the requests variesiXis) and there is
no think time and when we use the second SCSI disk. The beisasiimilar to the first SCSI disk.

Our results indicate miniMimic has been configured coryefctt the log skipping experiments
on this disk. Specifically, the measured average and pestissterage are within 1% of each other.
Furthermore, the predicted minimum and maximum servicesifmound more than 99% of the
measured service times; a few measured service times esteeathximum predicted time due to
the smaller sample sizé€., 50) used to configure miniMimic. In general, we can concltics

miniMimic can be used to accurately predict the service tinen-line requests.

5.6.2 Impact of Request Size

In the next set of experiments, we explore the performanpeawements when a log optimizer
implements log skipping and/or log checksumming. As statgtier, transactional checksumming
improves performance by reducing the number of synchromoiies from two to one, while log
skipping improves performance by reducing the positiotimg of the synchronous writes. Thus,

the two log optimizations can be implemented individualiytagether; when the log skipping is

74

16 T T T T T T T T T T T T T
no chksm/no skip —3
14 + no chksm/skip
chksm/no skip
12 - chksm/skip "
g 10 | :
o8
s 8
S 6
o
4 +
2 -
0

1 2 3 4 5 8 12 16 20 24 28 32 36

Number of Application Blocks/Xact

Figure 5.14 Performance Improvements when the Size of the Requests Vas - IDE Disk.
The graph shows bandwidth-éxis) when the request size variesgxis) and when using an IDE
disk. The observations are similar to those for the SCSI. diskontrast to the SCSI disk, we see
a performance drop when the request size is larger than 1&kildout our data shows this is not a
result of miniMimic mispredictions, but rather a charaadsgic of the disk or device driver.

implemented with transactional checksumming, log skigpminimizes the positioning time of
the single synchronous write in each log update.

We begin with the case where the TPC-B application issueshsgnous writes of varying
sizes and there is no think time. We examine first the perfoomaf the SCSI disk and then of the
IDE disk.

Figure 5.12 shows the bandwidth for the writes to the log @SSl disk. Along the-axis
we vary the number of blocks that are synchronously writtgnhe application. Note that this
number does not exactly correspond to the the number of blee&n by the log optimizer, since
the application blocks do not include the descriptor or canaiata and the application data may
not be perfectly aligned with the 4 KB blocks. For each of therklboads we show the perfor-
mance for logging with no optimizations (no chksm/no skipith log skipping (no chksm/skip),

with transactional checksumming (chksm/no skip), and Wwdth log skipping and checksumming

75

14 + == no chksm/no skip i
E=== no chksm/skip

12 | mmmmm chksm/no skip _
mmmmm chksm/skip

10 .

8
6 L
4 L
2L
0 1 2 3 4 5 6

Think Time (ms)

BW during 1/0 (MB/sec)

Figure 5.15 Performance when Application Has Think Time - SCSI Disk 1. The graph plots
the bandwidth seen by the application when doing l&xXis) when the workload has think time
(z-axis). Transactional checksumming benefits from inci@#siek times up to 5 ms, that reduce
the rotational latency incurred by requests. The perforoeaaf log skipping alone is sometimes
less than transactional checksumming. Log skipping paingid transactional checksumming con-
tinues to yield the best performance.

(chksm/skip). We do not measure the time to clean the logrgrad the data points. We make
three observations for the figure.

First, for all logging styles, the delivered disk bandwiditmproves with increasing request
sizes. This improvement occurs because the positioning adthe write are amortized over a
larger data payload. For example, even with no log optinorat the disk bandwidth improves
from about 1 MB/s to about 7 MB/s as the number of written bicicreases from 1 to 32.

Second, for all request sizes, both log skipping and tramssd checksumming significantly
improve the delivered bandwidth. For example, for an apgibn issuing 4 KB updates.€., one
block), transactional checksumming improves bandwidtB1#6, log skipping by 317%, and both
together by 459%.

76

14 . . . :
—1 no chksm/no skip
12 | === no chksm/skip i

B mmmm chksm/no skip

£ g | — chksm/skip i
)

2

o o '
2 6 -
=

S 4t |
=

%) |

0 1 2 3 4 5 6

Think Time (ms)

Figure 5.16Performance when Application Has Think Time - SCSI Disk 2.The graph plots the
bandwidth seen by the application when doing l{akis) when the workload has think time- (
axis) for the second SCSI disk. When log skipping and trdimssd checksumming are deployed
together, they yield the best performance.

Third, for all request sizes, log skipping improves bandtviadthether or not transactional
checksumming is also used; furthermore, log skipping coedwell with transactional check-
summing. Comparing across the optimization techniquesb#st performance occurs when log
skipping and checksumming are combined, followed by logsikig alone, and then transactional
checksumming.

We have performed similar experiments on the second SCisadison the IDE disk, as shown
in Figures 5.13 and 5.14. For the second SCSI disk we seeasimiktive performance of the
optimizations we tested.

We have performed similar experiments on the IDE disk, asvaha Figure 5.14. On the
IDE disk, we see two distinct performance regimes. In the fegime, when there are fewer
than 16 blocks per transaction, the relative performanddetifferent logging styles is similar

to that which we saw on the SCSI disk; however, on the IDE dis&,performance benefits of

77

14 | === no chksm/no skip ' ' T
. mm= no chksm/skip
S 12 | = chksm/no skip
7 mmmmm chksm/skip
D 10+
=
Q 8r
g 6
3

4 +
2

2 -

0

Think Time (ms)

Figure 5.17 Performance when Application Has Think Time - IDE Disk. The graph plots
the bandwidth seen by the application when doing W&xXis) when the workload has think time
(z-axis) and when using an IDE disk. The trends are similar todhes noticed for the SCSI disk.

log skipping are even more pronounced. For example, withldékb per transaction, bandwidth
improves from about 3 MB/s with no optimizations to about 1B/slwith only log skipping.
However, in the second regime when the number of blocks pas#iction increases past 12,
a significant performance drop occurs for all logging styl@khough log skipping continues to
improve performance in this regime, the relative improvetige much less dramatic. We believe
that this drop occurs because the write requests are bebdiveded into smaller chunks before
reaching the IDE disk. Our evaluation shows that miniMimaotnues to make accurate predic-
tions in this regime and to find the best skip distance, butréfetive benefit of improving the

initial positioning time is smaller.

5.6.3 Impact of Think Time

Next we present results for workloads that have think timehis case, the TPC-B application

writes transactions with four blocks and we vary the thinketifrom 0 to 6 ms.

78

Figure 5.15 shows the delivered bandwidth for the first SG§K;dhe delivered bandwidth is
calculated as that seen by the application during 1/@, without including the think time). We
make three observations from this graph.

First, the performance changes in an interesting way wittktime, and the direction of the
performance change depends upon whether or not log skippinged. Without log skipping,
bandwidth increases with larger think times up to 5 ms, aftieich bandwidth decreases again.
This phenomena can be explained by Figure 5.6 which showdatger think times produce
smaller service times; as explained previously, duringhire time, the disk rotates and the target
sectors move closer to the disk head. Since the SCSI disk haatéonal latency near 6 ms, a
think time of 6 ms yields a bandwidth similar to the one acbdwith a think time of 0 ms; thus,
performance decreases again with a think time of 6 ms. Tctiosal checksumming derives a
substantial benefit with a think time of 5 ms because the sisghchronous write occurs near
the disk head. Logging with no optimizations does not exhiiich benefit, since only the first
synchronous write in each transaction is located near tleltdad and the second synchronous
write still incurs the full rotation costs.

Second, there is no longer a strict performance orderingdst log skipping and checksum-
ming: for some think times, log skipping is superior, white bthers, transactional checksumming
is. For the think times between 3 and 5 ms when transactidreglksumming is superior, log skip-
ping alone still benefits from reducing rotational latenayt not as much as log checksumming
alone benefits from performing only one synchronous diskatjoa.

Third, log skipping and transactional checksumming cargito work well together. For some
think times, log skipping dramatically improves the penfi@nce of transactional checksumming
alone g.g, for think times between 0 and 2 ms and for 6 ms); however, tioerathink times, log
skipping does little to improve the performance of transaetl checksumming. In all cases, log
skipping paired with transactional checksumming has ttst performance across different think
times.

Finally, for some values of think time, log skipping does petform as well as we would

expect; the performance loss is due to small mispredictiorbe disk model and thus the log

79

skipper does not choose the best skip distance. For exampés an application contains 3 ms
of think time, log skipping does not further improve upomsactional checksumming. In this
case, miniMimic predicts that the optimal skip distance@¥® and that the average service time
should be 3.35 ms. However, in the experiment, the averag&sdime is significantly higher at
4.28 ms; examining the individual service times in more itletee see that although most requests
finish in close to 3 ms, several requests incur an extra cotafihus, it appears that the log skipper
is slightly too aggressive in its skipping and a smaller skgiance would improve performance;
specifically, for this workload with a 3 ms think time, a skigtdnce smaller than 96 KB would
incur slightly more rotation delay in the best cases, butldowt suffer the worst case times by
missing the rotation.

Figure 5.16 presents results for the second SCSI disk. #ctmfiguration, combining log
skipping and transactional checksumming yields the be$bpeance, and the log skipping alone
has better performance than transactional checksumming.

Figure 5.17 shows the results for the IDE disk. On the IDE dis& qualitative trends are sim-
ilar to those for the SCSI disk. In summary, we again see thasactional checksumming alone
can perform quite well when the think time of the applicatismatched to that of the rotational
latency of the disk. However, log skipping in combinatiorttwiransactional checksumming pro-
vides the best performance; furthermore, this perform@&oaich more stable in the presence of

variations in application think time.

5.7 Summary

In this chapter we presented a specialized disk model, mmi&) which is used to implement
a novel technique for optimizing the log operations for &gilons that perform synchronous disk
writes. Log skipping writes data to the log close to wheredisé& head is situated, thus avoiding

incurring costly rotational latency.

80

MiniMimic is built specifically for the disk on which the log iwritten and is able to predict
minimum service times for write requests. The model takés consideration request size and
think time as parameters when making a prediction.

We showed that it is possible to obtain improvements of mioaa 800% when using the log
skipper. We compared to another option for log optimizatjdransactional checksumming, and

show that performance can improve up to 450% when the teahaigre combined.

81

Chapter 6

Stripe Aligned Writes in RAID-5

In this chapter we present how a data-driven model can be tostdthe a system to better
operate a RAID-5 storage device. More specifically we argetang the small write problem in
RAID-5 [16]. We start by describing when it occurs, and thenpresent a solution for alleviating
it, by incorporating a specialized RAID-5 data-driven middehe 1/O scheduler. The goal of this
chapter is to explore the use of data-driven models beyasiddtives. In particular, we study if
we can apply the same lessons learned from modeling a digk tdrimodeling a different device,

in this situation a RAID-5 system.

6.1 Small Writes in RAID-5

The term RAID (Redundant Array of Inexpensive Disks) [47]swained in the 1980’s to
describe ways of configuring multiple disks while still hagithem appear as one disk to the
system that uses them. Various RAID configurations are desdigo increase the reliability and
performance of the storage system, often by trading off déglacity.

One of the most widely used RAID configurations is RAID-5 [4%] this setup, N disks are
used for storing both data and parity blocks. Data is writtethhe system in units called “stripes”,
with each disk being allocated a “chunk”. Redundancy is Bagby parity blocks. A stripe spans
N-1 disks and the parity is stored on the remaining disk. Tdr@ypblocks are computed as simple
XOR operations on all the data blocks in a stripe and they sed to recover the data in case of
a disk failure. The position of the parity disk changes foerg\successive stripe, as illustrated in

Figure 6.1.

82

~ I~ M~ N~
1 2 3 P1
5 P2 6
7 P3 8 9

™ ™ ™

Figure 6.1 RAID-5 Configuration. This figure shows an example of the block layout in a RAID-5
left asymmetric configuration. The stripe spans 3 data deskd there is one parity disk per stripe.

Write operations require updates to the parity blocks aleitig updates to the data blocks. We
give an example of the sequence of operations required tatemohe data block. Let us assume
that block 5 shown in the example in Figure 6.1 is modified. RAdD-5 system has to 1) read
the parity block corresponding to the modified block (P2;@npute a new parity that reflects the
new value for block 5, and then 3) write the new values for bldand parity P2’.

In this process, we notice that one logical update operdtsresulted in two additional oper-
ations: read and write of the parity block associated wighdtnipe that is modified. This situation
is known as the small write problem in RAID-5, as the perfong®of the storage system can
degrade significantly under write workloads because of ttraeead-modify-write operations.

This performance degradation can occur for large writeselk Wthe OS does not correctly
align or merge requests. The 1/O scheduler is in charge vétidihg the size and alignment of
requests issued to the disk, we are going to discuss thesatiops in more detail in Section 6.2.
Let us assume the system needs to update blocks 4, 5, and 6/O’'keheduler decides how
the requests are merged or split, but since it has no knowlefithe actual storage system that
'hides’ behind the simple logical block interface, it couddue requests for the storage system in
the following sequence: update block 4, then update blocksdb6. In this scenario, the storage
system performs two read-modify-write operations for Pe(éor block 4 and one for blocks 5
and 6), although a better approach would have been to upguatgttole stripe in one operation.
Updating the stripe in one operation results in only oneaewtrite operation, for the parity block

associated with the stripe.

83

6.2 Stripe Aligned Writes

Commodity operating systems typically view the underlystgrage device in a very simple
manner: as a linear array of blocks addressed using a logicek number (LBN). Regardless
of the actual complexity of the storage devieeg, whether it is a single disk, a RAID, or even
a MEMS device), the file system uses essentially the sameittienvcontract [63], namely that
sequential accesses are faster than random, that accatisepatial locality in the LBN space
are faster, and that ranges of the LBN space are interchalege#owever, this unwritten contract
belies the fact that how blocks are mapped to the underlyisksdn a RAID or a MEMS device
changes its performance and reliability [17, 47, 58, 96, 63]

As demonstrated by the small writes problem, the lack ofrmfttion about the underlying
storage system that services the 1/O requests can adveifssty the performance of the system.
Thus, we propose to enhance the I/O scheduler, by makingahiato it the information required
to split and merge requests in a more efficient way.

The questions that we need to answer are the following: 1} wfiamation is needed by the
scheduler; 2) what is the best place to perform this optitiina3) how can this information be
obtained.

In order to better understand the information needed by/es¢heduler we briefly describe
the choices that it has regarding splitting and mergingestgu The I/O scheduler sees requests for
logical block numbers, in the following format: RequéstgicalBlockNumberSize DeviceNum-
ber, OperationTypg TheLogicalBlockNumberepresents the start of the sequence of blocks that
is requestedsizeis the number of blocks affected by the requé&styiceNumbers the device
where the data is located, a@gherationTypas the type of operation (read or write).

As requests are issued by user applications, the schediilds la queue of requests, which it
orders according to the scheduling algorithm that is culyeselected (FIFO, C-LOOK, anticipa-
tory scheduling, etc.). When a new 1/O request arrives, theduler has a choice to merge the

request with a request that is already queued, or to queuediest individually.

84

Application | Application

Guest OS Guest OS

VMM

Figure 6.2 Layered Environment. This figure shows an example of a common encountered
environment, where applications are ran on guest operasiygjems that operate in a virtualized
environment. At the lower level of the storage system we&&AD system, present for reliability
and performance reasons.

A request can be merged with another that is already queugdf time new request has blocks
that follow or precede it in sequential order and withoutgyapdditionally, the operation type of
the requests have to be the same (either read or write), anatdd length of the newly merged
request cannot exceed a maximum size, whose value is depgendte system.

We ask the question about the best place to perform the gatiion especially in the context
of current systems, where a guest operating system wilhdféehosted on top of a virtual machine
monitor (VMM) that in turn accesses the bare hardwarg,(the RAID system), as shown in
Figure 6.2. There are many benefits to using virtualizatiocluding server consolidation [92],
support for multiple operating systems and legacy syst&8k pandboxing and other security
improvements [28, 40], fault tolerance [12], and even livgnation [20]. Most commodity servers
currently include or will soon include virtualization feaés [7, 46, 78].

In a virtualized environment, the VMM is a natural locatiorimplement I/0O scheduling. First,

commodity file systems can continue using their unwrittami@ct with the storage system and do

85

Performance as Stripe Size Varies

[N
N

Aligne‘d -
Not Aligned -

I =
o <) () N

Bandwidth (MB/s)

i

N
T
1

O | | | | |
0 50 100 150 200 250 300

Stripe size (KB)

Figure 6.3 Determining Stripe Size. This figure shows the write bandwidth obtained when re-
guests from the guest OS are grouped into stripes of diffeires. The experiments were run on a
RAID-5 system with three data disks, a chunk size of 16 KBaatdpe size of 48 KB. As desired,
RAID-Mimic finds that the best bandwidth occurs when theestgiare aligned and grouped into
requests of size 48 KB.

not need to be modified to handle future devices with new pedoce characteristics. Second, in
a virtualized environment the guest OS sees a virtualizedjeof the device so it may not be able
to correctly determine the stripe boundaries within the R&ystem. Third, the guest OS does not
have a a global view of the stream of requests; thus, it iscdiffto infer if perturbations are from
partial stripe writes or from other guest OSes. Finally,gbest OS is oblivious to changes in its
environment; for example, if the VMM migrates the guest,@®will not be aware of the change.
If the VMM layer is not present, the best place to put thismiation is at the next adjacent layer
to the RAID (.gthe OS).

The answer to the third question, how to obtain the inforaratibout the stripe boundaries,
is needed for the I/0O scheduler to perform RAID-aware spttand merging. As mentioned,
this information is not available from the RAID system, srtbe interface to it is identical to the
interface of a regular disk. We propose the use of a simpke-diaten model in order to feed the

needed information to the scheduler. We describe the modkéifollowing section.

86
6.3 RAID-5 Data-Driven Model

We call the data-driven model of the RAID RAID-Mimic. Withethelp of RAID-Mimic, the
VMM 1/O scheduler transforms and adapts the requests anavimehof the OS above to better
match the characteristics of the underlying RAID hardware.

The 1/0 scheduler merges and aligns adjacent write reqéreststhe guest OS such that the
requests are a multiple of the stripe size and are alignedhato and end at a stripe boundary.
Because a whole stripe is written to disk, the RAID can comphe associated parity without
incurring any additional disk activity.

For the 1/0O scheduler to perform the adaptation to the RAIBteay below, by splitting and
merging requests to be stripe-aligned, it needs to knowttipesize used to configure the RAID-5.
RAID systems do not typically export information about thaternal configuration, such as their
RAID level, number of disks, block size, or stripe size. Onald leverage existing techniques for
automatically deriving these parameters; however, thegeniques require a synthetic workload
to be run on an otherwise idle system [21].

Rather than require this off-line configuration, RAID-Mitris built online, and it dynamically
models the stripe size of the array. To build the model, wederand then observe the write band-
width of requests from each guest OS. Specifically, the RMiDric instructs the 1/0 scheduler
to split and merge write requests such that it is able to eesttie performance of requests with
different sizes and alignments. The model times each writethen builds a repository of the
corresponding times, grouped by size and alignment. Fresetbbservations the model can infer
the stripe size of an underlying RAID-5 array; stripes thataf the correct size (and alignment)
will have better bandwidth since they do not require extedreequests to recompute the parity
block.

To verify this configuration process, we run RAID-Mimic on artiware RAID-5 with three
data disks and a chunk size of 16 KB. Thus, the configuratioegss should discover that the
stripe size is 48 KB. Figure 6.3 shows our results. Thaxis shows the stripe size being tried;

the y-axis reports the bandwidth achieved using that stripe sie display two lines: one for

87

which the requests are aligned correctly (on a multiple efstnipe size) and one in which they are
not. The figure shows that there is a substantial differem¢c@ndwidth when the model finds the
correct stripe size. For example, when RAID-Mimic assum&sipe size of 48 blocks, bandwidth
is nearly 14 MB/s, compared to an average of about 9 MB/s wiker Thus, by searching for the

stripe size that gives the best bandwidth, RAID-Mimic isealdl determine this parameter on-line.

6.4 Experimental Setup

We now describe the setup used to show the benefits of inaiipg@rRAID-Mimic in the
VMM I/O scheduler. The environment is presented in Figuiz 8/\e use Xen [23], an open
source virtual machine monitor. For our experiments we ffydtlie disk scheduler and the disk
backend driver.

The host operating system is Linux 2.4.29 and the experisnarég run on a Pentium Il
550 MHz processor. The RAID used in experiments is an Adap280S RAID controller, con-
figured as RAID-5 left asymmetric, with three data disks rgstsize of 48 KB, and a chunk size
of 16 KB. The disks used are SCSI Ultrastar IBMILZX disks.

The benefits of stripe-aligned writes are most apparent irkiwvads containing large write
requests. To illustrate this benefit, we consider a syrgivedirkload in which sequential writes
are performed to 500 files of differing sizes. Across experita, we consider file sizes between
4 KB and 256 MB; within each experiment, we vary the size ofhefile uniformly within 0.5
and 1.5 times the average. The workload is generated by #wt Q5 and there is no other guest
competing for the 10 bandwidth at that time. The hardwareR8ystem is again configured as a

RAID-5, with three data disks, a chunk size of 16 KB, and gstsize of 48 KB.

6.4.1 Evaluation

Our measurements here assume that the I/O scheduler akeads the correct stripe size,

that it can obtain using the techniques described in Seéti®dnIn our experiments, we consider

88

The Effect of VMM-based Stripe Alignment

20 : . | |
VMM (NA) / Host (A) —+—]
VMM (A) / Host (A) - =
VMM (NA) / Host (NA) - e
VMM (A) / Host (NA) -8 = P
o e VMM Aligned 4
@ e
o .
=3
£ 10 g o _
E Not VMM Aligned
©
C
©
m
5 -
0 L) | |
4K 64K M 16M 256M

Average File Size

Figure 6.4 Specialization for RAID-5. This experiment shows the benefit of using RAID-Mimic
to specialize the 1/0 of the guest OS to RAID-5. The four loeesespond to the four combinations
of whether or not the OS or VMM attempts to align writes to ttiges size of the RAID-5. The
guest OS runs a synthetic workload in which it performs setialevrites to 500 files; the average
file size within the experiment is varied along thaxis. Smaller file sizes do not see performance
improvements from the technique because the workload diegnerate whole stripes.

the four different combinations of whether the guest OS antlle VMM attempts to perform
stripe-aligned writes.

Figure 6.4 shows our results. Each point represents thewddtidobtained if the files have
the average size specified on thexis. We make three observations from these results. First
and foremost, there is a significant benefit to performinigestaligned writes for large files in the
VMM. For example, for 5 MB files, alignment within VMM improgeperformance from about
8 MB/s to over 15 MB/s. Second, this adaptation must be pexddrin the VMM, and not in the
OS. As shown by the lowest two lines, if the OS attempts tanadigipes without cooperation from
VMM, it achieves no better performance than if it made noreffim fact, as shown by the top two
lines, VMM achieves better performance when the OS simpbg@salong its requests rather than

when the OS attempts to align stripes as well.

89

6.5 Summary

In this chapter we presented a specialized model of RAIDREL predicts only the required
RAID characteristicsd.g, stripe size) for improving storage system performanceviote work-
loads. The model is built online and it is used by an 1/0 scheedo make decisions for splitting
or merging requests. We compare system performance wheptimeization is performed at an
OS guest, as opposed to VMM layer. We conclude the VMM is tst place to perform this op-
timization in a virtualized environment, and we show perfance improvement of almost 100%

in this situation.

90

Chapter 7

Related Work

In this chapter we present related work. We structure thptelnan several sections, in which

we talk about disk modeling in general and then disk modeajmgjications to disk scheduling and

logging.

7.1 Disk Modeling

The classic paper describing models of disk drives is thd&bgmmler and Wilkes [56]. The
main focus of this work is to enable an informed trade-offAmtn simulation effort and the re-
sulting accuracy of the model. Ruemmler and Wilkes evaltieeaspects of a disk that should be
modeled for a high level of accuracy, using themerit figure Other researchers have noted that
additional non-trivial assumptions must be made to mods{giio the desired accuracy level [41];
modeling cache behavior is a particularly challenging espe].

Given that the detailed knowledge for modeling disks, sdtemd switch time, cylinder switch
time, data transfer overhead, is not available from docuatem, researchers have developed in-
novative methods to acquire the information. For examplaitiiihgtonet al. describe techniques
for SCSI drives that extract time parameters such as theaeek, rotation speed, and command
overheads as well as information about the data layout dnatid the caching and prefetching
characteristics [98]. Many of these techniques are autesnatlater work [60].

Modeling storage devices using tables of past performaasealso been explored in previous
work; in most previous cases [4, 30], high-level system matars €.g, load, number of disks,

and operation type) are used as indices into the table. Andd#] also uses the results on-line,

91

to assist in the reconfiguration of disk arrays. An approactiar to ours is that of Thornockt
al. [83]. In this work, the authors use stochastic methods tllumodel of the underlying drive.
However, the application of this model is to standard, wi&lsimulation; specifically, the authors
study block reorganization, similar to earlier work by Ruelar and Wilkes [54].

At a higher level, Seltzer and Small suggessitu simulation as a method for building more
adaptive operating systems [70]. In this work, the authaggest that operating systems can
utilize in-kernel monitoring and adaptation to make mor@imed policy decisions. By tracing
application activity, the VINO system can determine whetie current policy is behaving as
expected or if another policy should be switched into pldt®wvever, actual simulations of system
behavior are performed off-line, as a “last resort” whenrgmerformance is detected.

Another approach to simulation can be to use artificial ligfehce techniques such as CART
(Classification and Regression Trees) models [89] a tedlertigat is similar to non-linear regres-
sion. In this situation, the models treat disks as a “black’pwith no assumptions about the
devices. Doing so requires considering all possible par@m¢hat can impact performance. The
models need to be trained, and then the models can predicge/service times per request.
While this approach has similarities with ours, the authtbhdsnot explore requirements to deploy
the model in an on-line manner or how to adapt it to applicesipecific requirements.

The same problem of synchronous writes to a log is tackled?i. [The authors notice the
same effect of skipping blocks, as the one we present angtiogpse a linear model to keep track
and adjust the skipping distance in order to minimize theisettime for synchronous writes. Our
model also incorporates think time to deal with applicagitmat interleave computations with 1/0
operations. It is not clear how the think time would need tadtesidered in their model.

Chiueh and Huang [87] also consider optimizing synchrortisis writes. In order to predict
the disk head position they choose to use information abislit geometry, such as number of
heads, track size, platter rotation speed . This approadiffisult to implement in practice, since
this information is not readily available, and thus makes d@pproach less portable. Even with
automated tools for extracting it, the complexity of diskguires the technique to be recalibrated

periodically.

92

In distributed systems there has been work [2, 15] that Iaikserformance debugging of
systems with multiple communicating components. Theiraggh uses timing, which is similar to
the way we build our models, but they focus on performanceigging and problem pinpointing,

and do not use their approach to optimize the system on-line.

7.2 Disk Scheduling

Disk scheduling has long been a topic of study in computeanea [94]. Rotationally-aware
schedulers came into existence in the early 1990'’s, thrthuglwvork of Seltzeet al. [66] and Ja-
cobson and Wilkes [37]. However, perhaps due the difficuliynplementation, those early works
focused solely upon simulation to explore the basic ideasly @cently have implementations
of rotationally-aware schedulers been described with@nlitierature, and those are crafted with
extreme care [35, 100].

More recently, Worthingtomet al.[97] examine the benefits of even more detailed knowledge
of disk drives within OS-level disk schedulers. They findttalgorithms that mesh well with the
modern prefetching caches perform best, but that detailgiddl-to-physical mapping information
is not currently useful.

Anticipatory scheduling is a relatively recent schedulilegelopment that is complementary to
our on-line simulation-based approach [36]. An anticipastheduler makes the assumption that
there is likely to be locality in a stream of requests from\aegiprocess; by waiting for the next
request (instead of servicing a request from a differentgss), performance can be improved.
The authors also note the difficulty of building a rotatidpaware scheduler, and instead use an
empirically-generated curve-fitted estimate of disk asdése costs; the Disk Mimic would yield

a performance benefit over this simplified approach.

7.3 Logging

A hardware solution for improving log performance is to usémAM (non-volatile RAM)

within the disk system. By placing the log in NVRAM, writesttte log are fast and are still robust

93

to crashes and power failure. However, NVRAM is an expenap@oach, not only in financial
terms, but in testing as well: ensuring that the log in NVRA8Mrteracting properly with the rest
of the system and really is robust to crashes can requirdiseymt testing.

We are aware of one other recent software solution for opingilog operationstransactional
checksummingp0]. Transactional checksumming eliminates the need f&cnd synchronous
write, and thus implicitly avoids the extra disk rotatiorhi§ solution performs a single write, but
writes a checksum along with the descriptor block and dathgédog. The checksum allows the
system to detect a partial write when the log is read aftestegy crash. We note that transactional
checksumming is an orthogonal solution to log skipping. W@techniques can be implemented

separately or together.

7.3.1 Write Everywhere File Systems

There is a substantial body of work that has looked at fileesgsiptimizations that write data
close to where the disk head is positioned. The first meniiatwe are aware of dates to 1962 [39]
where the authors propose to write data on the drum thatsercto the disk head.

Eager writing [90] performs writes close to the disk head.ilé/the authors also target small
synchronous writes, there are several differences fromponyposal. First, with eager writing
there is no disk model for predicting positions with smalivege time. Second, deploying the
solution requires either modifying the disk interface oning functionality to be within the disk.
In contrast, the solution we present in Chapter 5 is simptecam be easily implemented without
interface or firmware changes. Third, since eager writingeisormed for the whole file system,
special care must be taken to build and maintain a persistein¢ction map that tracks the current
disk block allocations. Since we target optimizations foe tog, we do not require extensive
modifications to the file system or that additional structlaee maintained.

There are other systems [14, 33] that write near the disk,Hasdtheir solutions cannot be
easily integrated into existing file systems, since thewiregspecial adjustments, for example,

self-identifying blocks. These previous solutions are alere heavyweight since they try to solve

94

a more general problene. g, block allocation for any block in the system, as opposedty the

log).

95

Chapter 8

Conclusions

We started this dissertation with the observation thatetlage storage systems that have re-
quirements for high performance 1/0O and that there are ditaitincreasing performance. One of
the challenges is the lack of information about other layehsch we propose to alleviate by mod-
eling. The intrinsic complexity of layers and also requiests for using them in a running system
make previous modeling solutions not suitable.

As an outcome, there is a need for another approach to mgdekse layers. We propose the
use of data-driven models. Data-driven models are empmoaels that capture the behavior of
the device they model by observing the inputs that are fetléalevice and then reproducing the
output that was recorded.

In this dissertation we present how to use data-driven nsadehe storage system stack. We
focus in particular on data-driven models for disks. We espthrough case studies the particular
parameters that are important to track. In the case studéepresent, we show how we can
improve performance by using the data-driven models. Famgte, in the case of I/O scheduling
we improve performance by over 30% compared to traditiorsld schedulers like C-LOOK, and

over 300% when using the log skipper.

96

8.1 Lessons Learned

In the next subsections we summarize some of the lessonsawete

Timing is a Powerful Operation: Use it for Building the Models

One lesson learned from all of the case studies is that tilhihgequests is a powerful method
for observing the behavior of the other parts of the systé® .réquests traverse the layers of the
storage stack, from the moment they are firstissued at tHeappn layer, to their final destination
(e.g, a hard disk), and then they return to the issuer. Their pattyo through the operating system
layer, and possibly a virtual machine layer and RAID laydoberetrieving the data from a hard
disk. Potentially, all the layers that are traversed by gwgiest will put their fingerprint on it. For
example, the operating system can perform 1/0O scheduling®nequests.

Similarly, the hard disk has to perform certain operationgrder to service a request. For
example, the disk head has to move from the current cylirmléne destination, where the data
is located. Additionally, a new disk head may need to be at#dl, and the disk must wait for
the platters to rotate, until the target sectors come urdedisk head. All of these activities are
accounted for when we record the total time a request takesdoute.

Thus, timing how long a request takes to be serviced by tHegi®s an accurate account of
the actual activities that happen when a request is servithdre are, however, challenges with
this approach, that we discuss next. For example, the mtae/aning layers between the one that
times the requests and the layer that is modeled, the mdieuttiit can be to build an accurate
model.

Avoid Intervening Layers: Put the Model Closer to the Target

The challenge of intervening layers can be overcome by mdettie model as close as possible
to the layer thatis modeled. This situation was illustratettie two case studies where we modeled
a disk drive and then used the model to perform 1/0 scheduliegher the operating system layer
or the application layer. In the second case study, wherest¢heduling was performed by the
application layer, we had to pay an extra effort to be surettiaintervening layer (the operating

system layer) does not interfere with the measurements erididns of the model. Our solution

97

was to export the scheduling queue from the operating sylstgen to the application layer, so the
application was aware of the scheduling effects at the dipgraystem.

Modifying the operating system to export information is altays possible because the source
code might not be available. Also, simply because every fioadiion in the kernel can possibly
introduce bugs, or interact with previously present fumadility, operating system modifications
are generally avoided.

Even with the information about the scheduling queue, fonetlity available at the applica-
tion level is still limited. For example, scheduling of waitequests is not possible in the setup
presented in Chapter 4 because the application does not &nthe moment when an allocating
write is issued where it is going to be allocated on disk. Asgas solution will require more
help from the operating system, in the form of additionabmiation to be exposed from that level
(in this situation, the location of the blocks on disk). Taéehallenges underline the difficulties
to modeling and using a device when there are other intaffdaiyers between the model and the
device modeled.

In a similar manner, in the RAID case study, we saw that impleting an I/O scheduling
optimization by issuing stripe sized and aligned writes ggerefficient when placed at the virtual
machine monitor layer. The alternative was to place opttons within the 1/0 scheduler of each
of the guest operating systems that run on top of the virtwadhime monitor.

In our situation, the virtual machine monitor layer is a betthoice for several reasons. First,
instead of modifying all the possible instances of the ojiegasystem in order to implement this
functionality, we can implement it only once at the VMM layeBecond, the guest operating
systems operate on an virtualized storage layer, which st they might not even be aware
there is a RAID that services their requests. Even with thatltedge, the layout of data on disk
can be arbitrarily modified by the VMM, thus making the modglmore difficult.

This challenge is a variation on the older conundrum of whergace functionality in a sys-
tem [57]. Some optimizations often require informatiomfrgeveral layers in the storage stack.
For example, the anticipatory scheduling I/O schedule} f{8quires knowledge about the initia-

tor of a request and about the disk model. This informatidowed the scheduler to preserve the

98

spatial locality already existent in a stream of requestisad by an application. The anticipatory
scheduler is implemented at the operating system, thougthanalternative is to implement it at
the disk level. In this later case, the disk needs additioriafmation for each 1/0 request, namely
the process that issued the request.

In the case studies we presented we need to deploy modelssgeatthe lack of information
about other layers. We conclude that if there is a choice @revko place a functionality, it is more
beneficial to place the model closer to the device or entay ithactually modeled. This solution
avoids interferences to the model from other layers thadrsee it from the target that is modeled.

Portability is Important: Disks are Rarely the Same

Most of the systems that we are targeting have high data d#gnand often they are deployed
on clusters of machines. The older concept that clusterdi@mogeneous is no longer valid.
Disks fail [65, 82] and are replaced with newer revisionsistérs are continually upgraded or
expanded [48]. Newer disks, even from the same company,randthe same line of products,
can vary in their characteristics even from one revisionnotlaer. This means that portability is
paramount when implementing any optimization or policy naplg, and this is one of the reasons
why we emphasized portability as an important characterdthe models we proposed.

In Chapter 4 we showed through experiments that the SMTFdsiéewe propose, a through-
put optimizing I/O scheduler, has better performance thanraditional schedulers, even when the
characteristics of the disk vary widely. In a simulationiemement we configured the disks with
different parameters for the number of platters, rotatioref cylinder switch, track skew, cylinder
skew etc. We did not have to modify the model to accommodatsetiifferent parameters.

MiniMimic was used for modeling the part of the disk that rel write ahead log and for
guiding layout of synchronous writes. We deployed the maeSCSI and IDE disks with no
modifications. This was a nice validation of the requirenterthave the model portable across
disks with several characteristics [3, 93].

Minimal Assumptions Keep the Model Simple: Graybox Techniques

In dealing with systems as complex as hard disks, we leahmadraking some minimal as-

sumptions about how the system behaves is beneficial. Forgaa totally black box approach

99

to modeling would have been to consider all possible parars¢hat can influence the outcome of
the disk, and keep them as input parameters. For exampleeabdreme, we could have tracked
all previous requests issued to the disk, with the assum it the behavior of the current request
is influenced by all the other requests serviced by the disk.

This conservative approach would have rendered the degolaf these models in a running
system almost impossible. Due to space and computatiomaheads, we choose to leverage
knowledge about how the devices work and about how they arggdo be used. For example,
in Chapter 3 we make use of the knowledge that the 1/0 schetu@ping to be used in a data
intensive system, and thus, the think time of the I/O requissgoing to be zero, and think time
does not have to be incorporated in the model.

Additionally, using widely known information about how &gsservice requests helps to reason
about the input parameters that best capture the behawioe device. Intuitively, the inter-request
distance is good predictor of the disk response: the disk heads to move from the previous
location of the disk to the new one, traversing a number ekBaTiming a request and associating
it with the inter-request distance captures aspects retatthe disk geometry and data layout.

Low Overhead is a Requirement: Runtime Usage

Related to the previous point, the deployment of these nsaaebn integral part of a system,
at runtime, makes low overhead an important characterigtie models are used on the critical
path of 1/O requests, thus, it is essential that they haveranmail impact on the system. This is
a departure from the previous approach to modeling, wherenmphasis is mainly placed on the
accuracy of the model.

The low overhead requirement comes along two axes: time pacesoverhead. By using a
table based approach, finding a model prediction for a setmitiparameters is reduced to simply
indexing in a table. On a current computer this operatiohtaile microseconds.

The potential for space inflation required special care sigteng the model used by the I/O
scheduler at the operating system. We used interpolatibrchwallowed us to reduce the total

space required by the model by 90%. With interpolation theleh@an make predictions for

100

sets of input parameters for which it does not have assaciakies, by using predictions for
'neighboring’ sets of parameters.

Even with interpolation, special care needs to be paid teplaee taken by the model, as it can
still grow large, especially when considering the incregsiapacities of current hard disks. Thus,
we believe that a valid alternative is to use the model folliegfions similar to the synchronous
writes problem, where only a portion of the disk needs to Inepdad by the model.

Alternatively, for the case study in Chapter 3, the I/0 schexdcould make use of a hybrid
model. This model could employ a more traditional coarse ehagimilar to the one used by
C-LOOK, for large inter-request distances, where the seBk& ts the major component of the
service time. For the smaller inter-request distancesptbeel would be the Disk Mimic, since
it is successful in modeling the rotational latency, whiglailarger component of the service time
for this type of workload.

Unknowns are a Given: Learn as You Go

Deployment in a real system also requires a way of dealinly thi¢ unknown. For example,
we want to be able to deploy these models in a system, and hawe run when the system is
taken out of the box. Unfortunately, we are faced with a peoblthe model is asked to predict the
behavior of a device (a hard disk) that it did not have the chda observe.

The on-line hybrid approach used with the SMTF schedulenésswlution to such a problem.
For the times where the data-driven model has no informadlmout the disk, we make use of
a simpler disk model that does not require sampling the digkis disk model is the one used
by traditional schedulers (like C-LOOK): it assumes that $kervice time is proportional with the
inter-request distance. Predictions of this model yieloddyenough performance till the data-driven
model takes over. The data-driven model continually mositioe requests issued and the behavior
of the disk, populating its table, and learning more aboatdisk as it sees more requests.

Model only what is Needed: Partial Models

The last observation we make is that we explored the posgitnldevelop partial models, as
opposed to full system models. For disk drives, we use mddegigedict service times since this

parameter is needed by the policies that use the modelsr pdin@meters, such as rotations per

101

minute, or track-to-track switch times were not required are not predicted by the model. This
allows us to keep the models simple, and again facilitateis tieployment.

The schedulers we studied in the first two case studies neéedeww which request is going
to be serviced faster, and respectively if servicing a regjisegoing to influence the service time
of another one. The log skipper had to know where to write arémgrd on disk, such that the
service time is minimal. All of these case studies made uggedictions of service time from
the data-driven model. The last case study used a datandrieeel to find out the stripe size of a

RAID-5.

8.2 Future Work

We see three main threads of future work that can be followeadt we can refine the process
we use to build the models. Second, we can explore in morel éeiéding models for other
devices. Third, we can look past performance oriented opditions and use data-driven models
to also improve reliability. We discuss in more detail eatthese.

Refine the Process of Building the Model

The on-line models we have presented time the requestslibsien application. In the initial
phase, the model has not seen too many requests, so we neakldase of a simpler model. We
use a model that assumes that service time is proportioriaktbnear distance in logical block
numbers between requests.

We can refine the process of building these interim models.ctd make use of explicit
probes to test how the hard disk behaves for a combinatiomminpeters that was not exercised
by requests coming from the application. This allows us the periods the disk is not utilized,
for example, to increase the number of inputs for which thelehcan make a prediction, or to
increase the accuracy for some combinations of input paem&r which the model did not

gather enough data.

102

The disadvantage of this approach is the pollution of the ehwdth data that will never be
exercised by an actual workload. For example, if a workloest@ses only the first half of the
disk, there is no point in gathering data for inter-requéstiaahces larger than that.

Each of these approaches is suitable for different typedthvads. If a workload is localized,
which means it accesses mostly data in within a certainristaf the current request, then using a
reactive approach would work best. In this case, the moded dot need to sample all the possible
inter-request distances. Building the model benefits nrost flearning about the disk guided by
the workload.

In the alternative situation when the workload is highlydam in the number of inter-requests
distances it exercised, it could be beneficial to be moregbiraain learning about the disks during
idle periods. This will cut from the learning time and helplduhe model faster than waiting for
the requests to be issued by the application.

Model Other Devices

The second line of future work involves building data-dnveodels for different devices, and
modeling different aspects of the existing ones. As we meetl, RAIDs are complex systems,
and doing scheduling for them is challenging also. The dpwyaystem 1/O scheduler could use
a data-driven model of the RAID to better schedule requests.

One alternative would be to move towards a black box appr{#gjhwhere we do not try to
find out details about the RAID device setup, but use the samieg techniques as for building the
models for the hard disk. This exploration path might regjuiore space and time to build up the
model because RAID systems have capacities larger thag, diskl also they are more complex.
RAIDs can routinely have tens of GB or RAM, and can employedtéht caching, prefetching and
scheduling techniques. Care must be taken to incorporase ttharacteristics in the model.

To simplify the approach to modeling, we could make use ofiptes research [21] that looked
at finding out the characteristics of a RAID device: redurmyascheme, stripe and chunk size,
number of disks. With this information, we would know whiciskdin the RAID will service each
request, and could then use this information to performdalieg on each disk in the RAID, using
an SMTF scheduler.

103

Look Beyond Performance

The third line of future work involves using data-driven netslto predict reliability problems
or to help indicate the existence of a problem in an existygjesn. By their nature, data-driven
models observe systems and gather information about themaolong period of time. This
information can be used to build self monitoring systemsakext the administrator. For example,
when the system behaves in a manner that is inconsistenfpngthous behavior, a data-driven
model can detect it since it has historical data. For exantbéemodel can detect when requests
that used to have a service time of 5 ms have a service time wfsl1n this situation, the model
can trigger an alarm and inform that there is a change in thetineasystem behaves.

Since the model observes what zones on the disk generatg li@hlavior, the storage system
can take proactive action and reorganize the data in thess aor start replicate it to prevent actual
data loss.

Another benefit from observing the disk accesses is that taehihas information about what
data is frequently accessed, and thus, what data is impoottre user. For example, the model can

detect ’hot’ data and proactively replicate it, such thaisk thilure does not affect data availability.

8.3 Summary

In this dissertation we target a common problem encounieredmplex, data driven systems:
the need for information about the components of the systdnis. situation occurs because of the
way systems are built today, from layers interconnectet natrrow interfaces, that do not expose
much about their internals.

While it seems natural for a system to have knowledge abaurything that is going on within
it, this is often not the case. Typically, when a decisiondse® be made, a layer has to make
assumptions about the behavior of other layers. Often desmanptions oversimplify the behavior
of the other layers, causing the system as a whole to undérper For example, the model
associated with the C-LOOK scheduler assumes that thendesta sectors varies linearly with the

service time. This approximation ignores the rotationaktithat can be a large component of the

104

service time, and thus, the 1/0 scheduling decisions coelidiproved with a model that does take
rotation into consideration.

We propose to improve the decisions that need to be made by data-driven models. These
models are built empirically, by observing data that is igaavailable, namely the timing of
I/O requests that flow through the system. The big challendriilding these models is how to
integrate them seamlessly into a running system, whileysélding good predictions and high
performance.

Building models that run in an active system, on-line, wasthe main focus of other ap-
proaches that use modeling or simulations [27, 56]. We hdegatified characteristics of data-
driven models that are desirable: portability, low oveheatomatic configuration.

We have focused our attention on disks and built models famtkince extracting good perfor-
mance from disks can improve the performance of a storagdemyand the system as a whole by
orders of magnitude. Also, because of their complexitykslasre notoriously difficult to model,
thus building a model and incorporating it in a running systarings additional challenges that
had not yet been addressed.

We have used data-driven models for different tasks andautedchange the models according
to the requirements of the application that uses them. Fameie, for a throughput-optimizing
I/O scheduler we included inter-request distance and stdype as part of the model, while for
optimizing synchronous writes we needed to add think tirse.al

We have explored data-driven models for different devides,anore specifically RAID. We
were able to leverage lessons learned from data-driven Istaldisks, which makes us optimistic
about further using these types of models elsewhere in thage stack.

One of the main challenges in building the data-driven n®demes from the requirement to
embed them in a running system. Especially the requirenoekeeep the space overhead low can
prove difficult to satisfy, considering the size of curreatdhdisks with capacities of 500 TB. One
solution is to use techniques such as interpolation, toaedlne number of input parameters to

store. A second alternative is to use hybrid techniquessplaieed earlier in this chapter. Finally,

105

the third alternative is to focus on applications that byirtimature require sampling only of a
portion of the disk, such as the log skipper.

Thus, the best applications to use with data-driven modelghase that require modeling of a
characteristic or portion of a device, rather than the whelgce. This allows to keep the footprint
of the model small, and best integrate it in a system.

We conclude that data-driven models are a viable method pfawing performance in a sys-
tem. They prove to be one solution to overcoming the lackfofmation present in many instances

of complex storage systems.

106

LIST OF REFERENCES

[1] Anurag Acharya. Reliability on the Cheap: How | LearnedStop Worrying and Love
Cheap PCs. EASY Workshop '02, October 2002.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener,tiRgk Reynolds, and Athicha
Muthitacharoen. Performance debugging for distributeddesys of black boxes. IBOSP
'03: Proceedings of the nineteenth ACM symposium on Opegalystems principlepages
74-89, New York, NY, USA, 2003. ACM Press.

[3] Dave Anderson, Jim Dykes, and Erik Riedel. More Than aerface: SCSI vs. ATA. In
Proceedings of the 2nd USENIX Symposium on File and Stoededlogies (FAST '03)
San Francisco, California, April 2003.

[4] Eric Anderson. Simple table-based modeling of storag@aks. Technical Report HPL-
SSP-2001-04, HP Laboratories, July 2001.

[5] M. Andrews, M. Bender, and L. Zhang. New Algorithms foetBisk Scheduling Problem.
In IEEE Symposium on Foundations of Computer Science (FOOS pa@§es 550-559,
1996.

[6] Apple. Technical Note TN1150. http://developer.appben/technotes/tn/tn1150.html,
March 2004.

[7] R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. Autke, N. Nayar, , and R. C.
Swanberg. Advanced virtualization capabilities of powsyStems. IBM Journal of Re-
search and Developmemt9(4):523-532, sept 2005.

[8] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseanforination and Control in
Gray-Box Systems. IfProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)ages 43-56, Banff, Canada, October 2001.

107

[9] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,hbiatC. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James Nugenf;larentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. Aroceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSR fag)es 90-105, Bolton Landing
(Lake George), New York, October 2003.

[10] Steve Best. JFS Overview. www.ibm.com/developerwfirary/I-jfs.html, 2000.

[11] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Pgber. Tcp vegas: new techniques
for congestion detection and avoidance SIECOMM '94: Proceedings of the Conference
on Communications Architectures, Protocols and Applaadi pages 24—-35, New York,
NY, USA, 1994. ACM Press.

[12] Thomas C. Bressoud and Fred B. Schneider. Hyperviasedbfault tolerancéACM Trans.
Comput. Syst14(1):80-107, 1996.

[13] Edouard Bugnion, Scott Devine, and Mendel Rosenblumsc®@ Running commodity
operating systems on scalable multiprocessorfraceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ;9gges 143-156, Saint-Malo, France, October
1997.

[14] Chia Chao, Robert English, David Jacobson, Alexandep&ov, and John Wilkes. Mime:
a high performance parallel storage device with stronguegoguarantees. Technical Re-
port HPL-CSP-92-9revl, HP Laboratories, November 1992.

[15] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewernpoint: Problem determination
in large, dynamic, internet services, 2002.

[16] Peter Chen and Edward K. Lee. Striping in a RAID Level SiDArray. InProceedings
of the 1995 ACM SIGMETRICS Conference on Measurement aneéliMgadf Computer
Systems (SIGMETRICS '9®ages 136-145, Ottawa, Canada, May 1995.

[17] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy HtzKand David A. Patter-
son. RAID: High-performance, Reliable Secondary Storag€M Computing Surveys
26(2):145-185, June 1994.

[18] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. €f&-conscious structure layout.
SIGPLAN Not.34(5):1-12, 1999.

[19] Sailesh Chutani, Owen T. Anderson, Michael L. Kazayd&W. Leverett, W. Anthony Ma-
son, and Robert N. Sidebotham. The Episode File SysterRrdeeedings of the USENIX
Winter Technical Conference (USENIX Winter '923ges 43—60, San Francisco, California,
January 1992.

108

[20] Christopher Clark, Keir Fraser, Steven Hand, JacobnGblansen, Eric Jul, Christian
Limpach, lan Pratt, and Andrew Warfield. Live migration oftual machines. IrPro-
ceedings of the 2nd Symposium on Networked Systems Desigmplementation (NSDI
'05), Boston, Massachusetts, May 2005.

[21] Timothy E. Denehy, John Bent, Florentina |. Popovichdkea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Deconstructing Storage ArraysPrbceedings of the 11th
International Conference on Architectural Support for ramming Languages and Oper-
ating Systems (ASPLOS Xbages 59-71, Boston, Massachusetts, October 2004,

[22] E. W. Dijkstra. The Structure of the THE Multiprogrammgi System.Communications of
the ACM 11(5):341-346, May 1968.

[23] Boris Dragovic, Keir Fraser, Steve Hand, Tim HarriseAHo, lan Pratt, Andrew Warfield,
Paul Barham, and Rolf Neugebauer. Xen and the Art of Viraadion. InProceedings of
the 19th ACM Symposium on Operating Systems PrinciplesRSUB3, Bolton Landing
(Lake George), New York, October 2003.

[24] Bill Gallagher, Dean Jacobs, and Anno Langen. A highHgrenance, transactional filestore
for application servers. ISIGMOD ’05: Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of dgiages 868—-872, New York, NY, USA, 2005.
ACM Press.

[25] Gregory R. Ganger. Blurring the Line Between Oses anddge Devices. Technical Report
CMU-CS-01-166, Carnegie Mellon University, December 2001

[26] Gregory R. Ganger and Yale N. Patt. Metadata UpdateoRudnce in File Systems. In
Proceedings of the 1st Symposium on Operating SystemsTasigmplementation (OSDI
'94), pages 49-60, Monterey, California, November 1994.

[27] Gregory R. Ganger, Bruce L. Worthington, and Yale N. tPat The
DiskSim Simulation Environment - Version 2.0 Reference Man
http://citeseer.nj.nec.com/article/ganger99diskisiml.

[28] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblumg &an Boneh. Terra: A Virtual
Machine-Based Platform for Trusted Computing. Aroceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP, 'B8)ton Landing (Lake George), New
York, October 2003.

[29] R.P. Goldberg. Survey of Virtual Machine ResearlffEE Computer7(6):34—45, 1974.

[30] C. Gotlieb and G. MacEwen. Performance of movable-ltiskl storage deviceslournal
of the Association for Computing MachineB®0(4):604—623, 1973.

[31] Jim Gray and Andreas Reutditansaction Processing: Concepts and Technigisrgan
Kaufmann, 1993.

109

[32] Robert Hagmann. Reimplementing the Cedar File SystemdJlogging and Group Com-
mit. In Proceedings of the 11th ACM Symposium on Operating Systangghes (SOSP
'87), Austin, Texas, November 1987.

[33] Dave Hitz, James Lau, and Michael Malcolm. File Systeasipn for an NFS File Server
Appliance. InProceedings of the USENIX Winter Technical Conference (URBNinter
'94), San Francisco, California, January 1994.

[34] Micha Hofri. Disk scheduling: FCFS vs.SSTF revisite@ommunications of the ACM
23(11):645-653, 1980.

[35] L. Huang and T. Chiueh. Implementation of a rotatiorefaty sensitive disk scheduler.
Technical Report ECSL-TR81, SUNY, Stony Brook, March 2000.

[36] Sitaram lyer and Peter Druschel. Anticipatory scheuulA disk scheduling framework to
overcome deceptive idleness in synchronous I/OProceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP,'papes 117-130, Banff, Canada, October
2001.

[37] D. M. Jacobson and J. Wilkes. Disk Scheduling AlgorithBased on Rotational Position.
Technical Report HPL-CSP-91-7, Hewlett Packard Laboresod 991.

[38] Terence Kelly, Ira Cohen, Moises Goldszmidt, and Kimp&eeton. Inducing models of
black-box storage arrays. Technical Report HPL-2004-HB8|_aboratories, 2004.

[39] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. SuemOne-level Storage System.
IRE Transactions on Electronic ComputeEsC-11:223-235, April 1962.

[40] Samuel T. King and Peter M. Chen. Backtracking Intrasioln Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSPR Bajff, Canada, October
2001.

[41] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. #itkdl simulation model of the
HP 97560 disk drive. Technical Report TR94-220, Dartmouthege, 1994.

[42] Butler W. Lampson. Hints for Computer System Design.Phoceedings of the 9th ACM
Symposium on Operating System Principles (SOSR fa8)es 33—48, Bretton Woods, New
Hampshire, October 1983.

[43] C.Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and EdRBI. Towards Higher Disk Head
Utilization: Extracting “Free” Bandwidth From Busy Disk Des. InProceedings of the 4th
Symposium on Operating Systems Design and Implement&@®DI(’'00), pages 87-102,
San Diego, California, October 2000.

[44] Christopher R. Lumb, Jiri Schindler, and Gregory R. Gam Freeblock Scheduling Outside
of Disk Firmware. InProceedings of the 1st USENIX Symposium on File and Storage
Technologies (FAST '02pages 10-22, Monterey, California, January 2002.

110

[45] Marshall K. McKusick, William N. Joy, Sam J. Leffler, alRbbert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Syste2(8):181-197, August 1984.

[46] Microsoft. Microsoft virtual server. http://www.miosoft.com/windowsserversystem /vir-
tualserver/default.mspx.

[47] David Patterson, Garth Gibson, and Randy Katz. A CaseREdundant Arrays of In-
expensive Disks (RAID). IrProceedings of the 1988 ACM SIGMOD Conference on the
Management of Data (SIGMOD '88)ages 109-116, Chicago, lllinois, June 1988.

[48] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AndamBoso. Failure trends in a large
disk drive population. IFAST’07: Proceedings of the 5th USENIX Conference on Fite an
Storage Technologies, 13-16 February 2007, San Jose, CA, piges 17-28, 2007.

[49] Florentina I. Popovici, Andrea C. Arpaci-Dusseau, &ainzi H. Arpaci-Dusseau. Robust,
Portable I/O Scheduling with the Disk Mimic. Proceedings of the USENIX Annual Tech-
nical Conference (USENIX '03pages 297-310, San Antonio, Texas, June 2003.

[50] Vijayan Prabhakaran, Lakshmi N. BairavasundaraminNdgrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.NIR@e Systems. IrPro-
ceedings of the 20th ACM Symposium on Operating Systemsieis (SOSP '05)pages
206—220, Brighton, United Kingdom, October 2005.

[51] Hans Reiser. ReiserFS. www.namesys.com, 2004.
[52] Peter M. Ridge and Gary Fieldhe Book of SCSI 2/BNo Starch, June 2000.

[53] Mendel Rosenblum and John Ousterhout. The Design arpdementation of a Log-
Structured File SystemACM Transactions on Computer Systerh8(1):26-52, February
1992.

[54] Chris Ruemmler and John Wilkes. Disk Shuffling. Teclahigeport HPL-91-156, Hewlett
Packard Laboratories, 1991.

[55] Chris Ruemmler and John Wilkes. Unix disk access pasteinProceedings of the USENIX
Winter 1993 Technical Conferengqeages 405-420, 1993.

[56] Chris Ruemmler and John Wilkes. An Introduction to DiBkve Modeling. IEEE Com-
puter, 27(3):17-28, March 1994.

[57] Jerome H. Saltzer, David P. Reed, and David D. Clark. -terend arguments in system
design.ACM Transactions on Computer Syste(#):277-288, November 1984.

[58] Stefan Savage and John Wilkes. AFRAID — A Frequently iretant Array of Independent
Disks. InProceedings of the USENIX Annual Technical Conference (lU%E96), pages
27-39, San Diego, California, January 1996.

111

[59] J. Schindler, A. Ailamaki, and G. Ganger. Lachesis:usiltlatabase storage management
based on device-specific performance characteristicg.200

[60] J. Schindler and G. Ganger. Automated disk drive ctiaremation. Technical Report CMU-
CS-99-176, Carnegie Mellon University, November 1999.

[61] Jiri Schindler, John Linwood Griffin, Christopher R. o, and Gregory R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Driver&ttaristics. InProceedings
of the 1st USENIX Symposium on File and Storage Technol@gfST '02) Monterey,
California, January 2002.

[62] Jiri Schindler, Steven W. Schlosser, Minglong Shaoagtassia Ailamaki, and Gregory R.
Ganger. Atropos: A Disk Array Volume Manager for OrchesicaUse of Disks. IrPro-
ceedings of the 3rd USENIX Symposium on File and Storagen®tatfies (FAST '04)San
Francisco, California, April 2004.

[63] Steven W. Schlosser and Gregory R. Ganger. MEMS-basedge devices and standard
disk interfaces: A square peg in a round hole?Ptaceedings of the 3rd USENIX Sympo-
sium on File and Storage Technologies (FAST,@éges 87-100, San Francisco, California,
April 2004.

[64] Steven W. Schlosser, Jiri Schindler, Stratos Papadoiakis, Minglong Shao, Anastassia
Ailamaki, Christos Faloutsos, and Gregory R. Ganger. Onidialensional data and mod-
ern disks. InProceedings of the 4th USENIX Symposium on File and Storgjendlogies
(FAST '05) San Francisco, California, December 2005.

[65] Bianca Schroeder and Garth Gibson. Disk failures inrds world: What does an MTTF
of 1,000,000 hours mean to you? Rroceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST 'O@ages 1-16, San Jose, California, February 2007.

[66] M. Seltzer, P. Chen, and J. Ousterhout. Disk schedukwesited. InProceedings of the
USENIX Winter 1990 Technical Conferenpages 313-324, Berkeley, CA, 1990.

[67] Margo Seltzer, Peter Chen, and John Ousterhout. Dikkedding Revisited. IiProceed-
ings of the USENIX Winter Technical Conference (USENIX &¥i®0), pages 313-324,
Washington, D.C, January 1990.

[68] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jaetine Chang, Sara McMains, and
Venkata Padmanabhan. File System Logging versus ClugtefirPerformance Compar-
ison. InProceedings of the USENIX Annual Technical Conference [U%SED5), pages
249-264, New Orleans, Louisiana, January 1995.

[69] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusickegkh A. Smith, Craig A. N.
Soules, and Christopher A. Stein. Journaling Versus Safidtls: Asynchronous Meta-data
Protection in File Systems. IRroceedings of the USENIX Annual Technical Conference
(USENIX '00) pages 71-84, San Diego, California, June 2000.

112

[70] Margo |. Seltzer and Christopher Small. Self-Monitayiand Self-Adapting Systems. In
Proceedings of the 1997 Workshop on Hot Topics on OperatysteBis Chatham, MA,
May 1997.

[71] M. Shao, J. Schindler, S. Schlosser, A. Ailamaki, ands@nger. Clotho: decoupling mem-
ory page layout from storage organization, 2004.

[72] P. Shenoy and H.M. Vin. Cello: A Disk Scheduling Framekvior Next-generation Oper-
ating Systems. IiProceedings of the 1998 Joint International Conference @aslirement
and Modeling of Computer Systems (SIGMETRICS/PERFORMABR)Epages 44-55,
Madison, Wisconsin, June 1998.

[73] Elizabeth A. M. Shriver, Arif Merchant, and John Wilke&n analytic behavior model for
disk drives with readahead caches and request reorderiiRyoteedings of 1998 SIGMET-
RICS Conference on Measurement and Modeling of ComputéerSypages 182-191,
1998.

[74] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Aadi@. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Database-Aware SemanticallgrE8torage. IrProceedings
of the 4th USENIX Symposium on File and Storage Technol¢BfeST '05) pages 239—
252, San Francisco, California, December 2005.

[75] Muthian Sivathanu, Vijayan Prabhakaran, FlorentinBdpovici, Timothy E. Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SaatyrSmart Disk Systems.
In Proceedings of the 2nd USENIX Symposium on File and Storagendlogies (FAST
'03), pages 73-88, San Francisco, California, April 2003.

[76] Avinash Sodani and Gurindar S. Sohi. Dynamic instuttieuse. INSCA '97: Proceed-
ings of the 24th annual international symposium on Companghritecture pages 194-205,
New York, NY, USA, 1997. ACM Press.

[77] David A. Solomon.Inside Windows NTMicrosoft Programming Series. Microsoft Press,
2nd edition, May 1998.

[78] Sun Microsystems. Sun consolidation and virtualati
http://www.sun.com/virtualization, 2007.

[79] Adan Sweeney, Doug Doucette, Wei Hu, Curtis AndersoiikeMNishimoto, and Geoff
Peck. Scalability in the XFS File System. Pmoceedings of the USENIX Annual Technical
Conference (USENIX '965an Diego, California, January 1996.

[80] Nisha Talagala, Remzi H. Arpaci-Dusseau, and DaveePaih. Microbenchmark-based
Extraction of Local and Global Disk Characteristics. TacahReport CSD-99-1063, Uni-
versity of California, Berkeley, 1999.

113

[81] Toby J. Teorey and Tad B. Pinkerton. A comparative asialpf disk scheduling policies.
Communications of the ACM5(3):177-184, 1972.

[82] The Data Clinic. Hard Disk Failure. http://www.datait.co.uk/hard-disk-failures.htm,
2004.

[83] Niki C. Thornock, Xiao-Hong Tu, and J. Kelly Flanagan.Stochastic Disk I/O Simulation
Technique. InProceedings of the 1997 Winter Simulation Conferepages 1079-1086,
1997.

[84] Transaction Processing Council. TPC Benchmark B Stech&pecification, Revision 3.2.
Technical Report, 1990.

[85] Theodore Ts'o and Stephen Tweedie. Future Directionghfe Ext2/3 Filesystem. IRro-
ceedings of the USENIX Annual Technical Conference (FREHENdcK) Monterey, Cali-
fornia, June 2002.

[86] Stephen C. Tweedie. Journaling the Linux ext2fs Filst8yn. InThe Fourth Annual Linux
Expq Durham, North Carolina, May 1998.

[87] Tzi-cker Chiueh and Lan Huang. Track-based disk loggin Proceedings of International
Conference on Dependable Systems and Networks (DSN 26629, ine 2002, Bethesda,
MD, USA pages 429-438, 2002.

[88] Carl A. Waldspurger. Memory Resource Management in \&ve\ESX Server. IRroceed-
ings of the 5th Symposium on Operating Systems Design arldnmaptation (OSDI '02)
Boston, Massachusetts, December 2002.

[89] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthdrnpckwell, Christos Faloutsos,
and Gregory R. Ganger. Storage device performance prediatith cart models.MAS-
COTS 00:588-595, 2004.

[90] Randy Wang, Thomas E. Anderson, and David A. PatterSnual Log-Based File Sys-
tems for a Programmable Disk. Rroceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI '9®ew Orleans, Louisiana, February 1999.

[91] John Wehman and Peter den Haan. The Enhanced IDE/FAstAQ. http://thef-
nym.sci.kun.nl/cgi-pieterh/atazip/atafg.html, 1998.

[92] Andrew Whitaker, Marianne Shaw, and Steven D. Gribl#eale and Performance in the
Denali Isolation Kernel. IfProceedings of the 5th Symposium on Operating SystemsrDesig
and Implementation (OSDI '02Boston, Massachusetts, December 2002.

[93] B. White, W. Ng, and B. Hillyer. Performance ComparisaefiDE and SCSI Disks. Bell
Labs Technical Report, 2001.

114

[94] Neil C. Wilhelm. An anomaly in disk scheduling: a comisan of FCFS and SSTF seek
scheduling using an empirical model for disk access€mmunications of the ACM
19(1):13-17, 1976.

[95] J. Wilkes. The pantheon storage-system simulator5199

[96] John Wilkes, Richard Golding, Carl Staelin, and Timlsah. The HP AutoRAID Hierar-
chical Storage SystenACM Transactions on Computer Systed®(1):108—-136, February
1996.

[97] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Schedlylalgorithms for modern disk
drives. InProceedings of the 1994 ACM SIGMETRICS Conference on Memasmt and
Modeling of Computer Systepmages 241-251, Nashville, TN, USA, 16—-20 1994.

[98] Bruce L. Worthington, Greg R. Ganger, Yale N. Patt, aokdnJWilkes. On-Line Extraction
of SCSI Disk Drive Parameters. Rroceedings of the 1995 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRE), pages 146-156,
Ottawa, Canada, May 1995.

[99] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive tragnioranch prediction. IMICRO
24: Proceedings of the 24th annual international symposwmMicroarchitecture pages
51-61, New York, NY, USA, 1991. ACM Press.

[100] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y. Wangi Ki, Arvind Krishnamurthy,
and Thomas E. Anderson. Trading capacity for performanedlisk array. IrProceedings
of the 2000 Symposium on Operating Systems Design and lemiiaton pages 243-258,
San Diego, 2000. USENIX Association.

