
Making Serverless Pay-For-Use
a Reality with Leopard

Tingjia Cao,
Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and
Tyler Caraza-Harter

1

Making Serverless Pay-For-Use
a Reality with Leopard

Tingjia Cao,
Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and
Tyler Caraza-Harter

2

! Serverless is popular, AWS Lambda is used in 65% architectures1

" Relieve cloud users from managing servers

Fine-grained, pay-as-you-go billing

1. Cloudscape: A Study of Storage Services in Modern Cloud Architectures, Fast 25, Sambhav Satija et.al, University of Wisconsin Madison

Serverless Computing (FaaS): Popularity and Benefits

3

Pay-for-use Billing Model

Providers advertise “pay-for-use” model

• Azure: “Pay-per-use”

• GCP, AWS Lambda: “Pay only for what you use”

What does pay-for-use actually mean❓

4

% Intuitive definition

• You pay proportionally to area under the curves

What Does “Pay-for-Use” Actually Mean?

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y
5

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

6

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

All invocation
share same limit

7

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

mem limit linear
to CPU limit

8

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

9

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

10

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

Static

10

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

Static

Linear

10

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

Static

Linear
Interactive-only

10

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time
M

em
or

y

What Does “Pay-for-Use” Actually Mean?

Static Linear Interactive-only Model (SLIM)

10

& In practice: you choose a memory limit

• Pay for execution time × memory limit (hopefully set to max usage)

• All invocations share same limit

• Memory limit is linear with CPU reservation

• No discount for usage during low-demand time

' Customer side:

• ✅ Simple ❌ Not true pay-for-use
* Provider side:

• ✅ Profitable
Time

M
em

or
y

Invocation 1: Small Input Invocation 2: Large Input

Time

M
em

or
y

What Does “Pay-for-Use” Actually Mean?

11

New model: Nearly-PFU

• Benefits both providers and customers

New system: Leopard

• Linux techs: new cgroup APIs, modified CFS scheduler, customizable OOM killer

• FaaS techs: improved admission controller, load balancer and sandbox evictor

Evaluation highlights

• + Provider throughput ↑ 2.3×

• # Customer cost ↓ 34% (interactive), ↓ 59% (batch)

Contribution: Better Billing Model and FaaS System to Support it

12

Introduction

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights

Outline

13

⚙ Appropriate number of knobs

Billing function

• Closely approximates ideal pay-for-use

• Maintains provider profitability

Goals to Build Better Serverless Billing Model

14

% Break the limitations of static, linear interactive model (SLIM)

• Not linear
⇒ Decouple CPU and memory knobs

• Not interactive-only
⇒ Allow users to set urgency levels per resource subset

• Not static
⇒ Allow users to lend idle-but-reserved resources to others for non-urgent needs

Intuitions to Build Better Serverless Billing Model

15

CPU-cap:
• Maximum number of CPUs a function is allowed to use

Spot-CPU:
• Subset of CPU-cap that a function does not need immediately

CPU-cap spot-CPU = reserved-CPUs:
• CPUs that a function need full, immediate access to when needed

−

CPU Knobs in Nearly-PFU

16

CPU-cap:
• Maximum number of CPUs a function is allowed to use

Spot-CPU:
• Subset of CPU-cap that a function does not need immediately

CPU-cap spot-CPU = reserved-CPUs:
• CPUs that a function need full, immediate access to when needed

−

 t 2t 3t 4t 5t 6t Time

CPU Knobs in Nearly-PFU

16

CPU-cap:
• Maximum number of CPUs a function is allowed to use

Spot-CPU:
• Subset of CPU-cap that a function does not need immediately

CPU-cap spot-CPU = reserved-CPUs:
• CPUs that a function need full, immediate access to when needed

−

 t 2t 3t 4t 5t 6t Time

0

1

 2

 3
CPU Knobs in Nearly-PFU

16

CPU-cap:
• Maximum number of CPUs a function is allowed to use

Spot-CPU:
• Subset of CPU-cap that a function does not need immediately

CPU-cap spot-CPU = reserved-CPUs:
• CPUs that a function need full, immediate access to when needed

−

 t 2t 3t 4t 5t 6t Time

F1 CPU-cap

F1 spot-CPU

F2

V V

F1

Full access

Best-effort

0

1

 2

 3
CPU Knobs in Nearly-PFU

16

Memory Knobs in Nearly-PFU

CPU-cap:
• Maximum number of CPUs a function is allowed to use

Spot-CPU:
• Subset of CPU-cap that a function does not need immediately

Mem-cap:
• Maximum memory size a function is allowed to use

Preemptible-mem:
• Whether an instance can be preempted during execution

17

Cost = Reserved-CPUtime × Cr

+ Borrowed-CPUtime × Cs

– Lent-CPUtime × Cs

Give discounts when sharing
your “allocated-but-idle” CPUs

Lower price for using spot-CPUs
than reserved-CPUs

CPU Billing in Nearly-PFU

Base cost

18

Benefits of Nearly-PFU

✅ Closely approximate ideal pay-for-use

• No more static, linear interactive-only constraints

✅ Maintain provider profitability

• Lent resource discounts are paid by the borrower

19

Introduction

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights

Outline

20

- “A leopard can’t change its spots”,

but our Leopard can!

 FaaS platform implementation:

• Load balancer
Routes invocations to physical nodes

• Admission controller
Decides when to admit queued
invocations

Find or create a sandbox1

• Sandbox evictor
Decides when to evict cached sandboxes

Sandboxes to execute functions can be Docker, Firecracker, Kubernetes pods, OpenLambda’s SOCK, etc.

 Linux kernel Implementation:

• cgroup APIs
Enforces CPU and memory limits for
function instances

• CFS scheduler
Handles CPU time allocation and
balances tasks across cores

• OOM Killer
Terminates overcommitted processes
when memory exceeds limits

Typical FaaS Implementation

21

 Requirements for the Linux:

• CPU reservation: full access on reserved-CPU and best-effort sharing on spot-CPUs

• Linux OOM killer: give control to the user-space sandbox evictor when OOM

 Requirements for FaaS platform:

• Load balancer and admission controller: schedule non-linear, QoS aware instances

• Sandbox evictor: firstly kill preemptible instances during heavy memory

Key Requirements to Support Nearly-PFU

22

 Requirements for the Linux:

• CPU reservation: full access on reserved-CPU and best-effort sharing on spot-CPUs

• Linux OOM killer: give control to the user-space sandbox evictor when OOM

See Leopard’s solution for other requirements in the paper!

 Requirements for FaaS platform:

• Load balancer and admission controller: schedule non-linear, QoS aware instances

• Sandbox evictor: firstly kill preemptible instances during heavy memory

Key Requirements to Support Nearly-PFU

22

CPU pinning

Weighted sharing

Example: F1 and F2 runs on a 32-CPU worker
• F1: 32 long-running threads, “paid” to reserve 16 CPUs
• F2: 1 thread, fans out to 16 threads, “paid” to reserve 16 CPUs

Why Linux Cannot Support Efficient CPU Reservation?

Time

C
P

U
 ID

Time
C

P
U

 ID

✅ Provides exclusive CPU access

✅ Sharing-friendly

❌ Disallows sharing

❌ Incorrect reservation

Weighted sharing: Give F1 and F2 equal shareCPU pinning: Pin functions to their reserved CPUs

23

Leopard’s Solution

New cgroup interface

• cpu.resv_cpuset specifies reserved CPUs for a cgroup

Requirements for the Linux CPU scheduler

• Highest priority access to CPUs in a cgroup’s cpu.resv_cpuset

• Non-exclusive on CPUs outside the resv_cpuset

Modified CFS scheduler

• No longer relies on fairness to achieve isolation

• Allows flexible policies on different cores

✅ Full access on reserved-CPUs and best-effort sharing on spot-CPUs

24

Introduction

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights

Outline

25

Experiment Setup

Workloads

• Invocations with CPU/memory usage changes overtime

Billing Models:

• Static Linear Interactive-only Model(SLIM): cost = duration × (C memory limit⚙)

• Static Interactive-only Model(SIM): cost = duration × (C1 memory limit⚙ + C2 CPU limit⚙)

• Strict-PFU(SPFU): cost = duration × (C1 avg memory + C2 avg CPU)

• Nearly-PFU(NPFU): 4 knobs, used/lent billing function

Cluster set:

• 1 client node and 9 Leopard nodes

26

The throughput for SLIM, SIM, and Nearly-PFU billing models

• Going from SLIM to SIM leads to a 1.3x increase in throughput

• Switching to Nearly-PFU provides an additional 1.6x improvement

‣ One function’s idle resources can be used to satisfy another’s non-urgent demand
⇒ higher overall utilization

NPFU

SIM

How Does Leopard (w Nearly-PFU) Perform on Provider Side?

27

Fix provider revenue and only compare customer cost

The CDF of invocation cost relative to those running with SLIM

• With SIM, approximately 50% of invocations save money

• For SPFU, some functions cost more than 50%

• Nearly-PFU reduces the cost of nearly every invocation

‣ Give discount on idle or non-urgent resources without effecting the provider revenue

More detailed experiments in the paper!

Cheaper

Can Leopard (w Nearly-PFU) Save Customer Cost?

28

Conclusion

. We found

• Current serverless billing models are not real pay-for-use

/ We designed Nearly Pay-for-use

• For customers: approximate ideal PFU closer
• For providers: as profitable as today’s models

- We built Leopard

• Support Nearly-PFU billing model
• Kernel-level changes and platform-level changes on OpenLambda

⇒ Billing models should be considered not as an afterthought,

but as a central part of system design
29

