
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Making Serverless Pay-For-Use a Reality
with Leopard

Tingjia Cao, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Tyler Caraza-Harter, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi25/presentation/cao

Making Serverless Pay-For-Use a Reality with Leopard
Tingjia Cao Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau Tyler Caraza-Harter

University of Wisconsin–Madison

Abstract
Serverless computing has gained traction due to its event-
driven architecture and “pay for use” (PFU) billing model.
However, our analysis reveals that current billing practices
do not align with true resource consumption. This paper chal-
lenges the prevailing SLIM (static, linear, interactive-only
model) assumptions that underpin existing billing models,
demonstrating that current billing does not realize PFU for
realistic workloads. We introduce the Nearly Pay-for-Use
(NPFU) billing model, which accommodates varying CPU
and memory demands, spot cores, and preemptible memory.
We also introduce Leopard, an NPFU-based serverless plat-
form that integrates billing awareness into several major sub-
systems: CPU scheduler, OOM killer, admission controller,
and cluster scheduler. Experimental results indicate that Leop-
ard benefits both providers and users, increasing throughput
by more than 2x and enabling cost reductions.

1 Introduction
Serverless computing, also known as Function-as-a-Service,
is increasingly popular in cloud computing environments [43,
51, 64]. This paradigm enables users to build event-driven
applications through a collection of short-lived functions [6,
15, 18, 22, 39, 62]. It lets users define the events that trigger
these functions; the platform provisions resources for function
execution when said events occur [55,64,66]. Serverless com-
puting is economically appealing as it has “pay-as-you-go”
billing: developers are only charged when their function invo-
cations are active [5, 13, 28]. Therefore, most cloud providers
have a serverless offering, including AWS [13], Azure [5], and
Google Cloud [28], and a majority of organizations running
cloud workloads utilize serverless in some capacity [54, 63].

However, our examination of the details of serverless
billing models (i.e., how much a user is charged for an in-
vocation, based on function configuration and resource us-
age), reveals more nuance to what providers mean when they
advertise a “pay-per-use model” (Azure [5]) or claim that
you only pay “for what you use” (GCP [28] and AWS [13]).
To providers, these terms apparently mean something akin
to “fine-grained billing” with respect to wall-clock time. An
ideal pay-for-use platform for customers, in contrast, would
charge based on actual resource consumption.

Characterizing these platforms as pay-for-use is justifiable
if one makes four strong assumptions about function resource
usage. The assumptions are: (1) resource usage is constant
across time; (2) resource usage is similar across invocations;
(3) CPU/memory usage is proportional; (4) all invocations
are interactive. When these hold for a workload, most popular
serverless platforms charge in proportion to resource usage;
otherwise, invocations are charged for unused resources. We

define a billing model, called SLIM (static, linear, interactive-
only model) that captures these common billing practices.

Our first contribution is a detailed empirical evaluation of
a suite of serverless functions that we have assembled (§2).
The suite consists of a wide range of functions from different
domains (developer, machine learning, and database work-
loads) and runs on varied input payloads. Our analysis shows
that serverless workloads do not match SLIM assumptions.
CPU and memory usage often fluctuate during a single invo-
cation (it is not constant); resource consumption depends on
input size, which varies across invocations; memory usage is
rarely proportional to CPU usage; and most functions have
non-interactive use cases. Put simply, “pay-for-use” models
often charge for both used and unused resources.

Our second contribution is a new billing model, Nearly
Pay-for-Use (NPFU) (§3), that can approximate pay-for-use
efficiently. NPFU enables users to better express actual re-
source demands and eliminate SLIM assumptions. Specifi-
cally, NPFU separates memory and CPU demands and adds
spot cores and preemptible memory for less urgent (non-
interactive) work. Note that this approach does not depend on
provider subsidization to reduce customer cost; NPFU is more
flexible than current serverless approaches and can generate a
win-win scenario for both providers and users. Users (nearly)
pay for what they use and can better reach their objectives
while providers can allocate their resources more effectively.

Our third contribution is an exploration of how billing
models affect system design. We introduce Leopard (§4),
a serverless system based on OpenLambda [34] that supports
NPFU. Leopard builds billing awareness into several major
subsystems. At the kernel level, we add support to the isola-
tion API (cgroups), CPU scheduler (CFS), and preemption
mechanism (OOM killer). These improvements enable effi-
cient co-location of interactive and batch functions, which use
reservation and spot billing, respectively. The new admission
control logic leverages this support to aggressively run more
functions concurrently, without sacrificing QoS. Finally, the
load balancer creates more opportunities to resell unused re-
source reservations as spot cores and preemptible memory.
Leopard demonstrates that billing must be considered as part
of the system design process, rather than a late-stage addition.

Finally, we demonstrate the benefits of NPFU through rig-
orous experimentation (§5). We first illustrate a new method-
ology for comparing billing models. We show that Leopard’s
billing awareness improves worker throughput by 2.3x (on
average). This efficiency may be delivered to customers in
the form of price reductions (while keeping provider revenue
per machine constant): 34% for interactive functions and 59%
for batch functions for the average invocation.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 189

2 Pay-for-Use Serverless Billing Models
When customers pay cloud providers for services, the billing
model describes the cost of those services. Most services are
highly configurable with various knobs (e.g., the number of
threads to use, or amount of memory), and those knobs may
impact cost. Thus, a billing model consists of those knobs
as well as a billing function that computes the cost based on
those knobs and the actual usage of the service.

There are two families of billing models: pay-for-use
(PFU), designed to charge based on actual resource consump-
tion, and provisioned. Increasingly, modern services offer
dual billing options: AWS EC2 allows customers to pay for
instances on-demand (PFU), or commit to long-term reserva-
tions (provisioned); GCP BigQuery offers on-demand pricing
(PFU) and capacity pricing (provisioned); AWS Lambda of-
fers its original model, which charges for memory time used
by invocations (PFU), as well as a newer provisioned concur-
rency option. Our focus is on PFU billing models for FaaS.

Pay-for-use vocabulary is frequently used to market popular
serverless platforms, yet this term is subject to interpretation.
We formalize a strict interpretation of PFU that we call strict
PFU (SPFU) (§2.1). Real serverless billing models are usually
an approximation of SPFU where the quality depends on the
workload. We define another billing model in the PFU family
called SLIM: a static, linear, interactive-only model (§2.2).
SLIM resembles many billing models in use today, but it
poorly approximates SPFU for realistic workloads (§2.3).

2.1 Idealized Billing: SPFU
We formalize a strict pay-for-use model (SPFU). In SPFU, the
cost for each function invocation is computed as a constant
factor multiplied by the used resources (e.g., CPU time and
bytes of memory) measured at arbitrarily fine granularity. The
values for those constants are determined by pricing, a con-
cept related to, but distinct from, billing. If the usage of each
resource was plotted over time, the cost would be proportional
to the area under each curve, where each resource is billed
independently. For simplicity, we focus on CPU and memory
as the billable resources, but the model is extensible to others
(e.g., network throughput, disk utilization). Given that a “CPU
minute now” can be argued to be more valuable than “a CPU
minute whenever it becomes available”, SPFU may charge
more for functions marked interactive (i.e., urgent).

SPFU avoids billing for anything that is not a computing
resource, such as function invocations, wall-clock time, or re-
source limits. Not charging for invocations implies that SPFU
cannot have minimum charges per invocation. CPU time is
a billed resource, but wall-clock time is not; a function that
blocks mid-invocation can only be billed for memory during
this idle time. A service offering SPFU can allow customers
to configure resource limits, but these limits must be excluded
from the billing function; customers might find resource caps
useful to bound costs, but SPFU does not allow providers to
charge more if resource caps exceed actual consumption.

SPFU billing has advantages for customers: not paying
for unused resources can reduce costs, and decoupling billing
from resource limits simplifies configuration. However, imple-
menting SPFU presents challenges for providers; in particular,
SPFU complicates admission control, as customers have less
incentive to specify accurate resource limits. Lacking accurate
limits, providers may concurrently execute too many func-
tions, forcing functions to be terminated if a memory spike
occurs; alternatively, providers may concurrently execute too
few functions, leading to low utilization. A billing model that
is bad for providers is usually bad for customers: providers
are likely to compensate for inefficiencies with higher pricing.

2.2 Practical Billing: SLIM
We now define SLIM billing (static, linear, interactive-only
model), another billing model in the pay-for-use family. SLIM
is a generic billing model resembling real billing models used
by popular platforms and can be viewed as an approximation
of SPFU. With SLIM, users can specify a memory limit for
each function, where the limit applies to all its invocations;
a CPU size is calculated that is proportional to this memory
limit (i.e., the memory and CPU caps cannot be adjusted
independently). The memory and CPU sizes are guaranteed
to be available during execution. The cost of an invocation is
proportional to the execution time multiplied by the memory
limit, regardless of how much memory is actually used.

SLIM may still be considered a pay-for-use billing model
given a weak definition of “use”, i.e., execution time of a func-
tion multiplied by an upper bound on resource consumption.
SLIM’s main advantage is that it may be better for admission
control than SPFU, as customers have a strong incentive to
set resource limits as low as possible. We suspect SLIM is
common because it lends itself to FaaS implementations with
greater profit potential than SPFU.

2.3 Does SLIM Approximate SPFU?
We now consider to what extent SLIM approximates SPFU.
For realistic workloads, are “pay-for-use” serverless plat-
forms strictly pay-for-use? For some workloads, SLIM and
SPFU may indeed produce similar billing outcomes. We enu-
merate four workload characteristics that must apply for SLIM
and SPFU to produce similar bills (§2.3.1), collect a suite of
realistic serverless functions (§2.3.2), and evaluate whether
the SLIM assumptions hold for our workload (§2.3.3).

2.3.1 Workload Assumptions
Given the following four assumptions about the workload, we
can expect SLIM to approximate SPFU:

Assumption SI (Static Internal): Resource usage is constant
throughout the invocation of a function. SLIM invocation cost
is proportional to a resource cap for an entire invocation. If
usage is close to the cap, the cap properly approximates usage;
however, if resource limits are selected to provision for short
bursts of peak usage, tenants will pay for unused resources.

190 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: The diversity of parallelism behavior and memory usage over time within an invocation with medium payload.

Assumption SE (Static External): Resource usage is similar
across invocations. SLIM uses same-size instances for all in-
vocations of a given function. Resource limits are presumably
chosen to be sufficient for the largest expected invocations so
that those invocations will not fail. If many invocations have
computational needs significantly lower than the large invo-
cations, they will incur excess charges for unused resources.

Assumption L (Linearity): CPU and memory usage are
linearly proportional. SLIM services offer instances with
fixed compute-to-memory ratios (e.g., 1 vCPUs to 1,769 MB
of memory in AWS Lambda). As a result, CPU-dominant
functions pay for unused memory resources (and vice versa).
In contrast, functions that are relatively balanced across CPU
and memory pay approximately for what they use.

Assumption I (Interactive): The QoS for all invocations are
interactive. When invocations are triggered, SLIM-based plat-
forms immediately provision resources. Although some trig-
gers enable batching (e.g., event hubs in Azure), when a batch
arrives, the platform still immediately provisions instances
for the batch. To support interactivity, providers maintain idle
instances [51], although they could save memory by shutting
down non-interactive instances. Under SLIM, all functions
pay for low latency, even when it is not needed.

2.3.2 A Serverless Function Suite

Based on realistic workloads from a range of serverless re-
search papers [21,23,27,39,42,47,48,70,72], we collected 22
serverless functions in 7 domains, representing applications
in scientific, multimedia, engineering, and database usage sce-
narios, as listed in Table 1. For each function, we provide
small, medium, and large input sizes. When possible, we try
to anchor the sizes to actual inputs to make the workload
more realistic (e.g., the large input of the Compile function
compiles the largest C file in the Linux kernel).

The function suite enables an analysis of SLIM assump-
tions across a variety of resource usage patterns. The average
CPU and memory usage for each invocation varies signifi-
cantly, from 0.04 CPU to 35 CPUs and from 28 MB memory
to 28 GB memory, respectively. Additionally, the functions
stress possible QoS: those that must complete urgently (“inter-
active”) or those that prioritize cost and throughput (“batch”).
Both types are desirable for the elasticity and pay-for-use
characteristics of serverless computing [40–42, 62, 70, 73].

Application Function Possible QoS
Interactive Batch

Software Compilation [21]
Compile ✓
Archive ✓
Testing ✓

Video Analysis [23]
xc_dump ✓ ✓
xc_enc ✓ ✓

png2y4m ✓ ✓

Batch Analysis [62]
Sample ✓
Partition ✓

Mergesort ✓

DB Client [39]
Upload ✓

DynamicHtml ✓
Get ✓

DB server operations [62, 74]
Groupby ✓ ✓

Join ✓ ✓
query ✓ ✓

ML Inference [21, 36] ImageLabel ✓
Q and A ✓

ML Training [40]

Kmeans ✓
KNN ✓

LinearReg ✓
LogisticReg ✓

SVC ✓

Table 1: A serverless function suite.

2.3.3 Workload Analysis
We now revisit those assumptions and evaluate how well they
hold for realistic workloads.

Assumption SI: To evaluate whether resource usage is
constant throughout a single invocation, we measure the par-
allelism of each function and resident memory size over time;
for parallelism we trace the number of runnable tasks through-
out an invocation by recording when tasks join a CPU’s run-
queue within Linux. As shown in Figure 1 for medium-sized
functions, CPU and memory consumption varies dramatically
during the execution of a single invocation.

Assumption SE: Figure 2 plots the memory and paral-
lelism under different payloads for three representative func-
tions. We observe that resource usage can be quite different
across invocations: larger input usually corresponds to greater
resource consumption. On average, CPU usage for large sizes
is 1.5x higher than medium and 3x higher than small sizes,
while memory usage is 8x and 16x greater, respectively.

Assumption L: Figure 3 plots the memory-to-CPU ratio
for average and max usage for all functions; the line shows
the memory-to-CPU ratio of AWS Lambda and extrapolated
past the max support size (Google Cloud Functions and Azure
Functions use similar ratios). We observe a departure from
the fixed AWS Lambda ratio for most functions; 91% could
use more CPU than memory relative to the AWS Lambda
ratio, suggesting that CPU may be more scarce than memory.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 191

Resource
Limitation

Bill per Execution T: Execution time
CP: CPU unit price 𝑀𝑃: memory unit price

Concurrent Invocations
per instance

Instance Size
r: memory to cpu ratio

KnobsPlatform

10GB Mem, 6vcpuM *	T	*	MP	+	M ∗ r	 ∗ T ∗ CP1Memory:	M,											CPU:	M*rMemory (M)AWS Lambda
32GB Mem, 8vcpuM *	T	*	MP	+	M ∗ r	 ∗ T ∗ CP1Memory:	M,											CPU:	M*rMemory (M)GCP
14GB Mem, 4vcpuM *	T	*	MP	+	M ∗ r	 ∗ T ∗ CP<	targetMemory:	M,											CPU:	M*rMemory (M), TargetAzure (premium)
1.5GB Mem, 1vcpuAvgMemory ∗ T ∗ MP<	targetMemory:	1.5GB,			CPU:	1vcpuTargetAzure (consumption)

128MB Mem, 10ms cputimeAvgCPU ∗ T ∗ MP1Memory:	128MB	CPU:	No	dedicate	CPUMemory (M)CloudFlare

Table 2: The resource allocation policy and billing model of mainstream commercial serverless platforms.

large
medium
small

Figure 2: The resource demands with different payloads.

parallelism

M
em

or
y

(M
B)

Diversity of Memory CPU relationship

Figure 3: The ratio of cpu/memory demands.

Assumption I: In Table 1 the “possible QoS” column in-
dicates whether a function must be urgently completed upon
invocation, i.e., is it latency critical (interactive) or not (batch).
For example, model training is typically done offline; video
analytics are used in both real-time stream processing sys-
tems and as background jobs. Thus, not all functions require
interactivity all of the time.

Conclusion: Our analysis shows that serverless workloads
challenge all four SLIM assumptions. CPU and memory us-
age fluctuate during a single invocation (assumption SI);
resource consumption depends on input size, which varies
across invocations (SE); memory usage is rarely propor-
tional to CPU usage (L), and most functions have some non-
interactive use cases (assumption I). Therefore, SLIM is a
poor approximation of SPFU.

2.4 Serverless Billing in Practice
We now summarize the billing models in practice, as shown in
Table 2. AWS Lambda, GCP, and Azure Functions (Premium
Plan) closely resemble SLIM, the weakest interpretation of
PFU billing. While Azure Functions (Consumption Plan) and
Cloudflare align with SPFU, they enforce small, untunable
resource limits (e.g., Azure allocates 1.5 GB of memory and
1 vCPU and Cloudflare Workers are limited to 128 MB of
memory and 10 ms of CPU time); these limits prevent cus-
tomers from over-provisioning resources, but restrict the plat-
forms’ generality, prohibiting functions with larger resource
requirements. Existing billing models either resemble SLIM,
or SPFU with restrictive resource limit options.

3 NPFU: Nearly Pay-for-Use Billing
SPFU billing offers the most natural interpretation of “pay-
for-use”, but is rarely used in practice because providers must
provision for resources that are unused (and unbilled). Instead,
most providers adopt a billing model that resembles SLIM.
We propose an alternative billing model that more closely
approximates SPFU while exceeding SLIM’s support for effi-
cient and profitable FaaS implementations. We call this new
model NPFU, Nearly Pay-for-Use. NPFU has two goals:

Profitable: The billing model should lend itself to efficient
FaaS implementations. The drawback of SPFU is that it gener-
ally requires implementations to provision resources that may
go unbilled. An ideal billing model will support greater uti-
lization, leading to greater profits for providers (and perhaps
lower costs for consumers).

Closely Approximates SPFU: SPFU offers the strongest
interpretation of “pay-for-use” terminology, while SLIM only
approximates SPFU for unrealistic workload assumptions. A
good PFU billing model should better approximate SPFU for a
wide range of workloads. Therefore, it requires adding proper
knobs that enable users to describe resource requirements
more accurately for workloads that breaks SLIM assumptions.

We introduce NPFU, defining the knobs for billing (§3.1)
and the billing function that calculates cost per invocation
(§3.2); we then compare NPFU to other billing models (§3.3).

3.1 NPFU Knobs
NPFU provides four knobs for customers to describe
their resource demands: cpu-cap, spot-cores, mem-cap, and
preemptible-mem. These options allow users to independently
specify their CPU and memory demands instead of using the
strict memory-to-CPU ratio of SLIM.

CPU: Cap and Spot. NPFU requires serverless users to
specify cpu-cap, which is the maximum number of CPUs it
can use; this bounds their cost. Given that many serverless
functions are not interactive, NPFU introduces spot-cores: a
subset of cpu-cap that a function does not need immediately,
but could use if available. NPFU guarantees that cpu-cap
minus spot-cores is available; this number of reserved-cores
number is crucial for ensuring the function meets its QoS.
Spot cores improve CPU usage: if instances underutilize their
reserved cores, other instances can use them as spot cores.

Figure 4 shows an example of a server with 4 physical
CPUs, where at t0, the server hosts function invocations F1
and F2. F1 sets cpu-cap to 4 and spot-cores to 1 (reserved-
cores is 3); F2 sets its cpu-cap as 3 and spot-cores as 2

192 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

F1 F2

F1

F1 F2

Core 0

F2

F1

t0

t1

t2

t3

Ti
m
e

Core 0 Core 1 Core 2 Core 3Reservation

Figure 4: NPFU stresses allocated but unused cputime.

(reserved-cores is 1). The system ensures that each invocation
can expand to its full set of reserved cores. At t1, F2 forks two
children; since there are idle CPUs from F1’s reserved cores,
F2 expands to use 3 CPUs. However, at t2 when F1 forks 3
children and needs more cores, F2 immediately shrink to its
reserved allocation. By t3, F2 terminates, at which point F1,
which has pending tasks, expands to all cores.

Decoupling cpu-cap and spot-cores helps batch functions
describe low CPU urgency. It also benefits some interactive
functions: although these functions have strict deadlines, their
reserved-cores do not need to match maximum parallelism
if deadlines can be met with fewer cores. Adding spot-cores
creates opportunities to further reduce latency and costs.

Memory: Cap and Preemptible. Like the CPU knob,
NPFU requires users to specify mem-cap, which is its maxi-
mum amount of memory; however, NPFU does not expose
knobs for spot memory because reclaiming memory that
has been borrowed by other functions can impose unaccept-
able overhead for interactive functions. Instead, NPFU al-
lows users to simply specify if instances can be preempted
(preemptible-mem as true). Preemptible instances can use the
allocated-but-idle memory of non-preemptible instances; if
memory usage exceeds physical memory, the preemptible
instances are killed, allowing non-preemptible instances to
access the reserved memory with minimal overhead. NPFU
ensures that the total mem-cap of non-preemptible invocations
does not exceed the available memory.

3.2 NPFU Billing Function
NPFU provides a flexible billing model that generates a
win-win scenario for providers and users. NPFU leverages
a used/lent model that enables users to buy/sell CPU and
memory capacity from/to each other.

To calculate CPU cost, we define three kinds of cputime:
reserved-cputime, the total reserved cputime (execution_time
×reserved-cores); lent-cputime, the idle reserved cputime
used by other functions; borrowed-cputime, the used cputime
of spot CPUs. The CPU cost, where Cr is the unit price for
reserved-cores, and Cs for spot-cores, with Cr >Cs, is:

Cr × reserved-cputime
+ Cs ×borrowed-cputime
− Cs × lent-cputime

(1)

To calculate memory cost, non-preemptible memory acts
as the lender, while preemptible instances are borrowers. For
non-preemptible instances, the memory cost is:

Mr ×mem-cap× execution_time
− Mp ×avg-lentMem× execution_time

(2)

Mr > Mp since reserved memory is more valuable than
preemptible memory. The cost for preemptible instances is:

Mp ×avg-memory× execution_time (3)

If a preemptible instance is preempted mid-invocation, the
customer is not charged, and its invocation is simply requeued.

3.3 Comparison with existing PFU family

NPFU can reproduce many of the advantages of SLIM. Specif-
ically, NPFU offers both bounded performance and bounded
cost by allowing users to specify minimal resources (with
reserved-cores and non-preemptible mem-cap); and maximal
resource boundaries (using cpu-cap and preemptible option).
Although the cost can be less predictable when functions lend
or borrow CPU, it ensures a clear upper bound: for functions
with reserved-cores, the upper bound occurs when there are
no available spot-cores and no CPU time is lent to other in-
vocations; for functions without reserved-cores, the cost is
determined by the used CPU time. Furthermore, the used/lent
billing function ensures that providers can maintain the same
revenue as SLIM.

In terms of simplicity, NPFU introduces three more knobs
than SLIM, which is acceptable as simplicity is not merely
a knob count; a single knob that must be tuned with high
precision is arguably more complex to tune than a handful
of less sensitive knobs. SLIM offers a single “size” knob
that controls CPU and memory for all function invocations,
making four unrealistic assumptions and requiring precise
tuning to estimate the worst-case scenario: overestimating
results in an overpayment, while underestimating causes the
largest invocations to fail. NPFU can be configured to behave
identically to SLIM by setting cpu-cap to be linear with mem-
cap, spot-cores to 0, and preemptible to false; customers who
prioritize simplicity could use these default values.

NPFU takes significant steps toward approximating SPFU.
NPFU addresses SLIM’s workload assumptions: it enables
functions to sell their “allocated but unused” CPU time and
memory (removing Assumption-SI and SE); decouples CPU
and memory (resolving Assumption-L); and enables users
to specify their urgency on requested resource by setting re-
served (or spot) CPUs and non-preemptible (or preemptible)
memory (removing Assumption I). NPFU allows batch func-
tion to set reserved-cores to zero and use preemptible mem-
ory, aligning their billing with SPFU; for interactive functions,
NPFU offers a discount on wasted resources, making it more
cost-effective than SLIM.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 193

Figure 5: Overview of popular serverless platforms.

4 Billing-Aware Serverless
FaaS platforms are a composition of many subsystems, includ-
ing load balancers, admission controllers, and kernel-level
schedulers and resource controllers; efficiently supporting
new billing models, such as NPFU, requires support from
each of these subsystems. We give background for each sub-
system (§4.1), describe the limitations of each for billing
(§4.2), and propose Leapord (§4.3), a new FaaS platform with
billing support built into every layer of the stack.

4.1 Background: Serverless Subsystems
Figure 5 illustrates the key components in a serverless plat-
form. 1⃝ Load Balancer: dispatches incoming invocations to
workers using a load-balancing strategy. 2⃝ Admission Con-
trol: selects the next request for execution and creates, or
activates, a sandbox when sufficient resources are available.
3⃝ Sandbox Evictor: removes cached sandboxes when too
many are in memory 4⃝ Resource Isolation: manages CPU
and memory allocations across sandboxes. We now describe
the typical implementations for each.

Load Balancing: In mainstream serverless platforms, after
reaching the global controller, invocations are immediately
dispatched to workers, eliminating memory usage for argu-
ments and enabling scalability [4,34,45]. To avoid cold starts,
the load balancer aims to minimize the number of workers
handling invocations from the same function. For example,
OpenWhisk [4] uses consistent hashing by mapping invoca-
tions to “home” workers; if a home worker is overloaded, the
function is forwarded along the ring until a non-overloaded
worker is found. Systems [9] built on Kubernetes [1] use
greedy load balancing, sending requests to the first worker
until it reaches capacity. Hermod [45] uses a greedy algorithm
under low load and a least-loaded algorithm during high load.

Admission Control: The selected worker determines when
to execute the incoming invocations, deciding how many in-
vocations can run concurrently while ensuring that reserved
resources are maintained for each invocation. For example, in
OpenLambda [34], the provider manages the number of active
sandboxes to ensure that total CPU/memory allocation across
all active sandboxes does not exceed the physical resources
available on each worker. Platforms typically use a priority
queue; to improve average slowdown, many use Shortest Job
First [16], estimating runtime based on historical data [45].

Sandbox Evictor: When a function completes, its sand-
box is kept alive for future use. Cached sandboxes reduce
latency but consume memory, so deciding when to evict
cached sandboxes is critical. For instance, OpenLambda evicts
the LRU sandbox when memory usage exceeds a threshold.
Some approaches retain idle sandboxes for a specified dura-
tion [5, 13, 64]. FaasCache [26] evicts sandboxes only when
memory is insufficient, evicting sandboxes with lower usage
frequency, longer runtime, and larger memory footprints.

Resource Isolation: Resource isolation is crucial for main-
taining performance in multi-tenant environments. To isolate
requested CPU and memory resources, most serverless plat-
forms use containers [4, 9, 34] and microVMs [13], such as
Docker [3], Kubernetes pods [10], OpenLambda’s SOCK [59],
and AWS Lambda’s Firecracker [11]. These solutions all rely
on Linux cgroups. For memory management, cgroups provide
the memory.max option, which enforces a memory limit for
all tasks in the group; if a task exceeds this limit, the Out-
of-Memory (OOM) killer is triggered and terminates one or
more tasks based on metrics like memory consumption and
age. Linux cgroups offer two mechanisms to manage the CPU:
CPU pinning restricts tasks to specific CPUs, supporting both
minimum and maximum CPU limits; weighted sharing re-
lies on Linux’s Completely Fair Scheduler (CFS) to allocate
CPU time based on proportional shares. CFS divides available
CPU cycles among threads in proportion to their weights. In
multicore systems, each physical CPU has its own runqueue;
load balancing periodically adjusts task distribution, moving
tasks from burdened CPUs to lightly-loaded CPUs. With these
mechanisms, containers can implement their own resource
models. For instance, Kubernetes’s “request” interface uses
CPU sharing to reserve at least the requested amount of CPUs
for a specific container [2]. The correctness and efficiency of
its reservation depend on the implementation of cgroup.

4.2 Subsystem Support for NPFU: Challenges
Given that these subsystems were built without considering
billing, each has limitations that make a correct and efficient
implementation of NPFU difficult.

Challenge 1: cgroup API does not support efficient CPU
reservations. NPFU uses reserved-cores to maintain perfor-
mance and spot-cores to allow CPU sharing. The CPU sched-
uler should support two requirements. First, cgroups must be
assured immediate access to their reserved-cores when needed
(correctness); second, cgroups should be allowed to use idle
reserved-cores of other co-located cgroups (efficiency).

The cgroup API and underlying CFS scheduler support
both CPU pinning (via CPU sets) and weighted sharing (via
CPU shares), but neither meets our requirements. To demon-
strate the issue, we perform an experiment: two functions run
concurrently, each of which has “paid” to reserve 16 of the
machine’s 32 cores. Function F1 runs 32 tasks continuously,
and is willing to pay for additional spot cores. F2 starts with
one task, fans out to 16 tasks, and does not use spot cores.

194 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Wasted cputime:
~15×0.27s Wasted cputime: ~0s

F1 F2 NoneWhich Function is running on the cpu

Wasted cputime: ~0s

(a) CPU pinning (b) Weighted sharing

800ms 800 ms 800msF2 Completion Time: 555msF2 Completion Time: 665msF2 Completion Time: 554ms

28
 2

4
 2

0
16

 1
2

 8

 4

0
C

PU
 Id

(c) Reserved cpuset
Figure 6: Colocation of Function 1 (32 processes) and Function 2 (1 process forks 15 processes at 270ms).

First, we evaluate CPU pinning via CPU sets in Figure 6(a).
Reservations are implemented by applying a CPU set to all
functions: the CPU set for F1 is cores 0-15, and for F2, it is
cores 16-31. The figure shows that each function has sole use
of its reserved cores, but the strictness of CPU sets wastes
∼4 seconds of CPU time on cores 16-31 that F1 would have
been willing to purchase (at a reduced rate). Thus, CPU pin-
ning only support inefficient reservations.

We evaluate weighted sharing with cpu.share in Figure 6(b);
cpu.share the task to run on any core. We give both functions
an equal share and expect each to be allocated approximately
its reservation of 16 cores. The results show that no CPU is
wasted because F1 uses whatever is available, but F2 is denied
full access to its reserved CPUs and runs 20% slower. We
conclude that cpu.share cannot correctly provide reservations.

CFS load balancing is resource-intensive, involving com-
putational costs and cache misses, so CFS uses many heuris-
tics to reduce overhead. For example, when CFS finds no
imbalance, it doubles the interval before its next load bal-
ancing attempt and keeps the interval until the next success-
ful migration. These heuristics undermine CFS’s ability to
promptly split CPU time among cgroups according to their
cpu.shares. Figure 6(b) illustrates when CFS load balancing
occurs: empty circles represent load balancing without mi-
gration, black circles represent migration, and white triangles
show the source CPU of the migration. The figure shows
that the interval between load balancing is around 100 ms.
The infrequent rebalancing of cpu.shares is not sufficient for
serverless workloads, where billing occurs at 1 ms granularity.

An alternative approach is to adjust the CPU set or the
share weight of serverless functions over time dynamically,
pushing their actual CPU usage closer to their proportional
shares. However, it introduces overhead (e.g. adding a core to
a VM takes approximately 0.1 milliseconds [14]), impacting
millisecond-scale serverless invocations. The high overhead
also limits the frequency of adjustments [32, 35, 46].

Challenge 2: sandbox evictor does not support pre-
emptible memory. NPFU introduces a preemptible memory
knob to allow efficient memory usage, and, to utilize idle
reserved memory, NPFU allows preemptible sandboxes to
be admitted even when all of memory is allocated. How-
ever, if memory is exhausted, the Linux OOM handler takes
over before the sandbox evictor can react. The Linux OOM
killer lacks access to sandbox-specific properties and may kill
non-preemptible instances, violating the guarantees of NPFU.

It also prevents the implementation of more sophisticated
eviction strategies; for example, FaasCache [26] needs statis-
tics for each sandbox such as execution recency, invocation
frequency, and termination costs. Thus, NPFU requires im-
provements to the sandbox evictor and Linux OOM handler.

Challenge 3: NPFU complicates load balancing and ad-
mission control. By decoupling CPU and memory, NPFU
introduces complexity for load balancing, leading to a multidi-
mensional bin-packing problem and increasing the likelihood
of stranded resources. This issue is worsened by locality-
aware load balancing, which may assign memory- or CPU-
heavy functions to the same “home” worker. Additionally,
current loaded balancers rely on simple metrics like the num-
ber of invocations; consequently, interactive tasks may ex-
perience degraded performance even when another worker
has sufficient unreserved resources but appears loaded due to
batch tasks. Similarly, admission control that does not distin-
guish between spot CPUs and reserved CPUs will not know
when it is safe to admit a given function invocation.

4.3 Leopard: Billing-Aware FaaS
As existing subsystems cannot handle novel billing models,
we introduce a new billing-aware FaaS platform, Leopard,
based on OpenLambda. Leopard implements spot CPUs and
other NPFU features with several new subsystems. It intro-
duces a new resource isolation mechanism for task groups,
including CPU scheduler support for reservations (§4.3.1)
and a billing-aware out-of-memory (OOM) killer (§4.3.2). It
also presents a serverless-specific admission control policy at
the worker level that accounts for spot CPUs (§4.3.3). Addi-
tionally, it introduces a serverless-specific cluster-level load
balancer that considers both alignment and locality (§4.3.4).

4.3.1 Efficient CPU Reservations
Linux cgroups and CFS cannot support CPU reservations, so
Leopard provides a new cgroup interface, cpu.resv_cpuset.
Tasks in this new type of cgroup are guaranteed reserved
CPUs on demand, but other cgroups may use the reserved
CPUs if the reserver does not need them. To borrow a legal
term, a cgroup reserving some cores has the right of first
refusal for using them. Unlike the prior CPU-set interface,
cpu.resv_cpuset does not prevent a cgroup from running on
CPUs outside of the set; non-reserved CPUs may be used
if computational needs exceed the reservation and there is a
willingness to pay for additional spare compute.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 195

Leopard modifies the CFS scheduler to support the new
cgroup reservation API. The new CFS mode has two goals:

(1) Do not rely on fairness to achieve isolation. The previ-
ous approach of weighted sharing in cgroups relies on fairness,
which current CFS implementations do not enforce effectively
due to the high overhead of monitoring other cores for load-
imbalance. In contrast, a new approach that ensures isolation
for reserved cores is simpler and less resource-demanding, as
it can be achieved locally without inter-core checks.

(2) Allow tasks to use flexible policies on different
cores. CPU pinning allowed different policies for different
cores (e.g., a sandbox was permitted or forbidden on each
core), but this policy was too blunt. We propose an enhanced
model, where the scheduler differentiates more refined poli-
cies. Specifically, on reserved cores, a task can have the high-
est priority allowing immediate preemption; conversely, on
other cores, the same task can have a lower priority, following
spot tasks rules. This approach ensures that the new scheduler
achieves both reservations and flexible sharing.

Based on these goals, Leopard adds reservation support in
CFS as follows. When CPUs are added to cpu.resv_cpuset,
the core marks the tasks as reserving tasks; other tasks are
treated as spot tasks. When a core scheduler picks a task, it
always picks a reserving task if any are runnable; otherwise,
it pulls a runnable reserving task from the busiest runqueue
in its cgroup; if that fails, the scheduler picks a spot task on
the core’s runqueue or makes an idle-balance CFS call to
find a spot task elsewhere. When a reserving task wakes up
(e.g., after an I/O completion) and a spot task is running, the
reserving task preempts the core immediately.

To maintain fairness within a cgroup, Leopard keeps the
CFS design for managing tasks inside cgroups, but divides the
load metric of a runqueue to track classes of tasks. When one
CPU triggers load balancing, if the current task is a reserving
task, the scheduler only balances the reserving cgroup load;
if the current task is a spot task, the scheduler balances the
load of all spot groups.

Figure 6(c) shows that Leopard’s new reservation API be-
haves as desired: there are no wasted cores, and each task
receives its reserved allocations. Specifically, F1 expands to
more cores when they are available, and F2’s performance is
not harmed because it has top priority on cores 0-15.

In addition, to compute CPU billing in Equation 1, Leopard
tracks reserved CPUtime, spot CPUtime, and lent CPUtime
of the invocations by modifying the cgroup CPU Account-
ing (cpuacct) subsystem, which reports the used CPUtime
of a cgroup. Linux updates the used CPUtime of a cgroup
incrementally by calling cgroup_account_cputime(Task p, int
delta_exec) when a task’s state changes.

We add three interfaces in cpuacct: resv_usage, spot_usage,
and lent_usage. Each time cgroup_account_cputime is called
for a task p, (1) if the current CPU is p’s reserved CPUs,
add delta_exec to resv_usage of p’s cgroup; (2) otherwise,
add delta_exec to the spot_usage of p’s cgroup, and to the

lent_usage of current CPU’s reserving cgroup. The overhead
is negligible, as it involves simple arithmetic operations within
cgroup_account_cputime when the task state changes. Once
the invocation finishes, the CPU billing can be computed by
reading these metrics from the cpuacct interface, with less
than 1 ms per invocation.
4.3.2 Sandbox Evictor
NPFU allows preemptible sandboxes to be admitted even
when all memory is allocated to non-preemptible sandboxes,
so memory exhaustion may occur under heavy load. However,
Linux’s original OOM handler sometimes takes over sandbox
eviction before the userspace sandbox evictor can react. To
support NPFU, Leopard contains a mechanism that gives
control to the sandbox evictor during OOM events.

Leopard enables customizable OOM victim selection for
different cgroups, allowing evictors to use rich user-space
information. Specifically, Leopard contains two new Linux
cgroup APIs for handling out-of-memory scenarios: mem-
ory.oom.listener specifies a user-space process to perform vic-
tim selection; memory.oom.victim sends the selected victim’s
PID to the kernel. For example, in user-space, Leopard can
estimate the revenue lost for preempting different sandboxes
(since preempted sandboxes are not charged) and preempt
the sandbox that loses the least revenue; this information is
unknown in the kernel. Specifically, when receiving an OOM
signal, the evictor first selects cached sandboxes (i.e., the same
policy as FaasCache [26]), but if none are available, chooses
the active preemptible sandbox with the shortest runtime and
using the fewest resources, in order to lose the least revenue.

With this mechanism, Leopard can easily support sophisti-
cated preemption policies. The communication overhead of
victim selection in userspace is minimal (∼0.4 ms), and is
mitigated by proactive eviction and admission control of pre-
emptible sandboxes. In summary, these enhancements allow
Leopard’s evictor to make informed decisions during OOM
events caused by including preemptible sandboxes.
4.3.3 Admission Control
Leopard uses the following criteria to determine whether to ad-
mit an invocation into a sandbox: interactive invocations with
resv-cores or non-preemptible memory are admitted if suffi-
cient unreserved resources are available; batch invocations
with preemptible memory and no resv-cores are admitted if
currently idle memory and CPU resources are sufficient.

To determine whether or not preemption is likely, Leopard
collects historical CPU and memory usage from past invoca-
tions and monitors the total of these averages for current active
invocations. If the sum of historical memory usage exceeds
the total memory, there is a high likelihood of preemption. In
such cases, to avoid the risk of OOM events and unnecessary
preemptions, Leopard does not admit the next batch function.
Overcommitting CPU is less harmful, as it does not trigger
preemption; therefore, Leopard admits new batch functions
as long as the total historical CPU usage remains less than
twice the total CPU resources.

196 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When reserved resources are released, Leopard admits
queued interactive invocations using the Shortest Job First.
When the utilization of a worker falls below a threshold, Leop-
ard admits the batch request with the shortest runtime that
does not request reserved capacity. Thus, Leopard ensures
high utilization for each worker while ensuring that reserved
resources for active sandboxes are available when needed.

4.3.4 Load Balancer
Leopard provides a new load balancer for invocations. At low
load, function placement does not significantly impact per-
formance, so Leopard prioritizes alignment (to strand fewer
resources) and locality (to improve warm-up). For align-
ment, we follow Grandl et al. [29] and define the alignment
score of a task relative to a worker, score-align, as the dot
product between the vector of task’s reserved resources and
the worker’s available resources; a higher score indicates a
better fit. To preserve locality, Leopard calculates a score-
locality for each worker based on its priority scheduling with
the traditional hashing sequence [4]. At low load, Leopard
places tasks based on a combined score for each worker as
score-align+α score-locality.

At high load, the queueing delay is the most critical factor.
Leopard balances the load while accounting for the QoS re-
quirements of each function. Specifically, for interactive invo-
cations, Leopard chooses the worker with the lowest reserved-
load, which is the amount of reserved resources needed to
complete all queued interactive jobs; resv-load= ∑r r.avgRT×
(r.resv-cores+mem-cap×!preemptible-mem), where r is the
queued request in this worker. In contrast, for batch invoca-
tions, Leopard chooses the worker with the lowest usage-load,
which is the actual resources used to complete all queued jobs;
usage-load = ∑r r.avgRT× (r.avg-CPU+ r.avg-Mem), where
avg-CPU and avg-Mem are the historical CPU and memory
utilization for the function. Thus, the load balancer ranks
workers differently for interactive versus batch tasks.

4.3.5 Limitations
Further improvements on Leopard are worth considering.
First, resv_cpuset does not consider placement: whether the
reserved CPUs should reside on the same NUMA node and
hyperthreads from the same core. Second, resv_cpuset cannot
support the reservation of a fraction of a core, which may
be desirable for some applications [25, 37]. Finally, conflict
between alignment and locality goals can make the combined
load balancer score ineffective [52]; deployment in a disag-
gregated cluster could be a potential solution [30].

5 Evaluation
We describe a new methodology for evaluating billing (§5.1).
Then, we explore four questions: How does Leopard with
NPFU perform relative to other models (§5.2)? Can Leopard
adapt to workload changes (§5.3)? Does Leopard scale effec-
tively (§5.4)? How does building a serverless platform from
billing-aware components improve efficiency (§5.5)?

5.1 Methodology for Billing Model Evaluation
We discuss the limitations of existing methods when applied
to billing and present a billing-oriented benchmark.
5.1.1 Existing Workloads
The Microsoft Azure dataset [64] provides the most complete
details on invocations in a major serverless platform, includ-
ing 52,000 functions invoked 8.8 billion times over 14 days.
The dataset is divided into three major components: Invoca-
tions, the number of function invocations per minute; Execu-
tion Time, average and percentile execution-times per func-
tion; Memory Usage, average and percentile memory usage
per application. However, the Azure dataset does not contain
CPU usage data or details on resource fluctuations over time.
Thus, researchers often use synthetic workloads and make
some assumptions about unknown information [26, 45, 65]
(e.g., Hermod [45] and Orcbench [31] simulate spin loops for
each execution, which assumes that the CPU utilization for
each invocation is 100%).

Existing serverless benchmarks measure aspects of perfor-
mance and cost [20,31,68,71], but rarely focus on billing, and
their function suites exhibit simplistic resource usage patterns.
For example, SeBS [20] contains functions with a maximum
CPU usage of one. Moreover, prior work [20, 71] considering
customer cost does so only for SLIM-like billing.
5.1.2 BilliBench
We introduce a new billing-oriented benchmark, BilliBench
(BB). We describe BB’s essential components and how it can
be used to evaluate billing models.

BB Functions: We utilize the function suites collected
earlier (§2.3.3) as BB Functions. Unlike previous serverless
benchmarks, our function suite exhibits varied resource usage
behaviors (as shown in Figures 1, 2, and 3).

BB Trace: To realistically compare different billing mod-
els, invocation traces must contain detailed resource usage
fluctuations. Our key insight is that, given summarized coarse-
grained trace data from major cloud providers (such as Azure),
we can supplement incomplete information with detailed fine-
grained data from real-world serverless functions (e.g., BB
functions). By combining these two sources of information,
we can generate realistic traces of function invocations.

The BB Trace includes three components: functions, in-
vocations, and resource-usage phases. A function contains
a list of invocations, and each invocation contains a list of
resource-usage phases; each phase specifies a duration and the
resource utilization in that interval (i.e., active thread number
and memory size). Each function in the Azure dataset, FAzure,
is represented as a function in the BB Trace; for each FAzure,
we randomly select a function FBB from the BB function suite
(shown in Table 1) to provide detailed data on resource usage.

We then translate the Azure dataset into a list of function
invocations, following previous work [26, 45, 64]. After that,
BB represents each invocation as a sequence of resource-
usage phases: for each phase, we randomly choose the number

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 197

of active threads below FBB’s maximum parallelism, ensuring
the invocation’s average parallelism across all phases matches
that of FBB; next, we randomly sample the memory size from
the distribution of FAzure in the Azure dataset; finally, we
randomly select the runtime of the entire invocation from
FAzure’s runtime percentile in the Azure dataset. The number
of resource-usage phases is based on FBB, and the duration
of each phase is the total runtime divided equally among the
phases. The QoS of each invocation is based on whether the
corresponding FBB is interactive or batch.

Given the constructed dataset, we synthesize a function
FS with Python code for the function FAzure that imitates its
specific resource usage phases during invocation.

The above default BB Trace leverages CPU usage behavior
and QoS of BB functions. To mitigate bias from the limited
function suite, BB allows users to configure the trace param-
eters. Users can generate a trace with a configured average
CPU utilization across all functions; BB randomly selects the
active thread number for each phase to maintain the overall av-
erage. Users can also configure batch task proportions. These
configurable synthetic traces offer a method for evaluating
billing models across diverse workloads. In our experiments,
we evaluated NPFU with the default BB Trace (§5.2) and BB
Traces with varying average CPU utilization (ranging from
10% to 90%) and batch task proportions (ranging from 10%
to 60%) (§5.3). Each combination of these two parameters
generates a unique trace.

Knob Tuning: To compare billing models with different
configuration options, we configure the functions in the BB
Trace with four base limits to imitate real users. We set cpu-
cap to the function’s maximum parallelism and mem-cap to
its maximum memory usage; preemptible-memory is set to
false for interactive functions and true for batch functions;
for interactive functions (e.g., ML inference and database
clients), spot-cores is set to zero, while for other interac-
tive functions, spot-cores is set to large_parallelism minus
medium_parallelism for performance variability.

BB can run with simple and complex models. Models
that enforce strict memory-to-CPU ratios can round-up ei-
ther mem-cap or cpu-cap. Platforms that do not differentiate
between interactive and batch jobs can ignore spot-cores and
preemptible-memory, assuming that all cores are reserved.

BB Metrics: We compare billing models using five met-
rics across providers and customers. For performance issues,
we measure resource utilization and throughput for providers
and job completion time for customers. Customer cost (per
invocation) and provider revenue (per machine) are two other
interrelated metrics. We explicitly separate billing from pric-
ing, since pricing merely shifts value between producers and
consumers (e.g., reducing prices by 10% lowers revenue by
10%), while better billing models can create additional value.
To compare billing models, we fix provider revenue per ma-
chine per time unit by adjusting the pricing constants (e.g.,
M and C in Table 3); keeping provider revenue constant lets

Base-
lines

Tunable Knobs Billing Function
cpu
cap

spot
core

mem
cap

preem-
ptible

CPU Bill
(per time unit)

Memory Bill
(per time unit)

SLIM ✓ mem-cap / r×C mem-cap×M

SIM ✓ ✓ cpu-cap×C mem-cap×M

SPFU ✓ ✓ avg-cpu×C avg-mem×M

NPFU ✓ ✓ ✓ ✓
resv-cores×Cr

+avg-spot-cpu×Cs
−avg-lent-cpu×Cs

mem-cap×Mr×¬P
+avg-mem×Mp×P
−avg-lent-mem×Mp

Table 3: The tunnable knobs and billing functions of baselines.
Billing functions contain the price constants that providers can ad-
just: C for per cpu-second, M for per GB-second. NPFU includes
two CPU prices for reserved CPU (Cr) and spot CPU (Cs) (Similarly
for Mr and Mp) and resv-cores = cpu-cap− spot-cores. r indicates
the fixed memory-to-CPU ratio in SLIM. P indicates whether the
user set preemptible-memory or not.

us compare models using a single metric: user cost. When
models allow tenants to tune both memory and CPU, we fix
the C/M ratio at 9.6 to match Google Cloud Functions [8].

Billing Models: We have implemented the following main-
stream billing models in Leopard, as summarized in Table 3.
SLIM: AWS Lambda, GCP, and Azure’s premium plan use
SLIM-like billing models, where users specify a memory limit
for each function, and CPU is proportionally allocated; these
limits serve as both minimal and maximal thresholds. SIM:
SLIM without Assumption L provides independent knobs for
memory and CPU limits. SPFU1: Strict PFU has no knobs,
since cost is a function of usage and not knob settings; how-
ever, a platform using SPFU may still expose resource limit
settings (e.g., Azure’s consumption plan and Cloudflare use
mostly fixed resource limits), and so we optimistically assume
customers set these limits as restrictively as possible, despite
having little billing incentive to do so. NPFU: NPFU contains
four knobs (cpu-cap, spot-cores, mem-cap, and preemptible-
mem) and supports paying more or less when resources are
borrowed or lent, respectively. NPFU aims to closely approxi-
mate SPFU while remaining profitable in practice.

5.1.3 Experiment Setup
We conduct experiments on machines with two Intel Xeon Sil-
vers, each with 10 physical cores. We disable hyperthreading
to eliminate hardware-level interference, allowing us to focus
on CPU isolation mechanisms in the kernel. We use Ubuntu
22.04 with the latest Linux kernel v6.7-rc2 using cgroups V1.

We build support for each of the above billing models in
Leopard. We use BB Traces based on a random sample of
1,000 functions in the BB dataset. The client initiates a task
to send the invocation at the designated timestamp and wait
for the response. We use one load-balancing node to route
invocations to one of eight worker nodes. For each worker
node, we assigned 16 CPUs and 8 GB of DRAM to serve
invocations and 1 CPU to handle worker logic, including
admission control and communication with the controller.

1In §2, we claim that SPFU is an idealized billing model, but it’s not very
profitable in practice as it usually provisions resources that may go unbilled.

198 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

In
vo

ca
tio

ns

pe
r s

ec
on

ds SLIM											SIM	 or	SPFU . 								NPFU
5000

0

Figure 7: The throughput vary based on different billing knobs.

b 	SIM		
							(or	SPFU)

(c)	NPFU

(a)	SLIM

Figure 8: The utilization vary based on different billing knobs.

5.2 Evaluation of NPFU
We show that NPFU benefits both providers and users:
providers obtain greater efficiency while users pay lower costs
and still meet their QoS needs.

5.2.1 Provider Side
Figure 7 shows the benefits of NPFU for providers: the
throughput for SLIM, SIM, and NPFU billing models in the
first hour of invocations from the BB Trace. We observe that
decoupling the linear memory-CPU relationship (i.e., going
from SLIM to SIM) leads to a 1.3x increase in throughput.
Switching from SIM to NPFU provides an additional 1.6x
improvement because Leopard NPFU can admit invocations
when all resources are reserved but happen to be idle.

Figure 8 shows the average and minimum resource utiliza-
tion in the cluster, explaining the higher throughput of NPFU.
With SLIM, over 50% of CPU and 75% of memory are wasted,
while SIM improves resource utilization by decoupling CPU
and memory, and NPFU further increases memory utilization
to 90% and CPU utilization to 80%, thanks to spot cores and
preemptible memory. We observe that all billing models main-
tain high reservation rates: SLIM achieves near-100% CPU
and memory reservation, while SIM and NPFU have lower
CPU reservations due to CPU-memory decoupling. In sum-
mary, Leopard’s load balancer and admission control ensure
full resource rental under high load. These benefits come from
the more expressive knobs of NPFU, allowing users to specify
which portions of allocated resources can be borrowed with-
out compromising their objectives. In contrast, SLIM lacks
such knobs, as it makes four assumptions about resource allo-
cation, preventing resource schedulers from sharing unused
resources across invocations and leading to low utilization.

Cost	Relative	
to	SLIM

Cost	Relative	
to	SLIM

Cost	Relative	
to	SLIM

SIM																											SPFU																								NPFU

Pe
rc

en
t o

f
In

vo
ca

tio
ns

! Interactive! Batch

Figure 9: User cost relative to SLIM with different billing models.

Cost	Relative	
to	SLIM

Cost	Relative	
to	SLIM

Cost	Relative	
to	SLIM

Pe
rc

en
t o

f
In

vo
ca

tio
ns

Pay– for– limits Pay– for– usage Used– lent

! Interactive! Batch! Interactive! Batch! Interactive! Batch

Figure 10: User cost of NPFU with different billing functions.

JCT	Relative	to	SLIM

Pe
rc

en
t o

f
In

vo
ca

tio
ns

JCT	Relative	to	SLIM

Figure 11: CDF of Job Completion Time (JCT) of invocations when
running with NPFU (relative to that when running with SLIM).

5.2.2 User Side
For users, we examine both cost and performance.

User cost: To perform a fair comparison for each billing
model, we adjust the unit prices of CPU and memory to en-
sure that the provider revenue remains the same as the SLIM.
Figure 9 shows the CDF of invocation cost relative to the cost
of running with SLIM. With SIM, approximately 50% of invo-
cations save money since they no longer over-allocate CPU to
meet the memory requirements of the linear model; however,
other functions become slightly more expensive. For SPFU,
maintaining provider revenue necessitates increasing SPFU’s
C and M price parameters by 1.6x; as a result, some functions
cost more than 50% because SPFU distributes the cost of
resource wastage across all users. Most importantly, NPFU
reduces the cost of nearly every invocation, often significantly:
about 40% of functions cut costs by at least half. Batch tasks
save more than interactive tasks, as they pay lower rates for
spare resources that interactive instances reserved. In total,
the costs for NPFU clients are 66% (for interactive functions)
and 41% (for batch functions) of those under SLIM.

In Figure 10, we examine the benefits of used-lent billing
by comparing NPFU with pay-for-limits (like SLIM) and pay-
for-usage (like SPFU). Pay-for-limits lets batch tasks run at
no cost, as they did not require any reserved resources, mak-
ing interactive tasks more expensive. Pay-for-usage charges
interactive and batch jobs similarly and lacks incentives for
users to relax their QoS requirements; it also does not charge
for limits, giving users no incentive to set realistic restrictions.

Job Completion Time: We now examine whether inter-
active functions meet their QoS. To simulate different load
levels, we repeat each invocation a multiplier number of times.
Figure 11(a) compares job completion time (JCT), including
queuing and execution time, with NPFU versus SLIM. Under

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 199

In
vo
ca
tio
ns

pe
rs
ec
on
d SLIM											SIM	 or	SPFU 							NPFU

a 	Avg	CPU	Utilization			(b)	Batch	Job	Proportion

Figure 12: The throughput as the workload characteristics change.

Co
st
	R
el
at
iv
e	

to
	S
LI
M

a 	Avg	CPU	Utilization	 % 		 b Batch	Job	Proportion	(%)

Figure 13: The cost of NPFU as the workload characteristics change.

high system load, when most invocations experience queuing,
NPFU significantly reduces JCT for nearly all interactive func-
tions. As the load decreases, the JCT for NPFU and SLIM
becomes similar. A comparison with SIM (or SPFU) pro-
duced similar results. Batch tasks do not have strict latency
requirements. As shown in Figure 11(b), batch tasks may
take up to three times longer with NPFU compared to SLIM;
however, some batch tasks can achieve shorter JCT as NPFU
allows them to run when resources are not fully available.

5.3 Robustness to Different Workloads
We now analyze billing models for a range of BB Traces; we
adjust CPU utilization and the proportion of batch tasks.

CPU Distributions: In a BB Trace, each invocation de-
rives its parallelism from BB functions. In Figure 12(a), we
vary the CPU utilization for each function following a nor-
malized distribution with a given average. As CPU utilization
increases for each invocation, NPFU delivers reduced through-
put for the provider and smaller savings for customers, as
Leopard admits extra batch tasks only when CPU utilization
is below a threshold. Other billing models have unchanged
throughput, as they admit tasks based on reserved resources,
not usage. Still, the throughput of NPFU always remains
higher than that of the other models. Figure 13(a) shows the
user cost with varying CPU utilization; when CPU utilization
exceeds 70%, a small number of batch invocations become
slightly more expensive for customers with NPFU.

Batch Task Proportions: Previously, we assigned func-
tions as interactive or batch based on BB functions. In Fig-
ure 12(b) we analyze how Leopard’s performance changes
with different batch task proportions. NPFU achieves higher
throughput for the provider as the batch task proportion in-
creases; for other models, the throughput stays constant. Fig-
ure 13(b) shows that NPFU offers greater financial benefits
for users when there are more batch tasks; with more batch
tasks, they can better use idle but reserved resources and boost
throughput. Compared to SLIM, NPFU may not reduce the
costs for a small portion of interactive tasks, as idle resources
remain underutilized without sufficient batch tasks.

SLIM	
SIM	(or	SPFU)
NPFU	In

vo
ca
tio
ns
	

m
ill
io
n	
	/
	se
c	

time	(minute)	

Figure 14: The provider throughput running large-scale BB Trace
on different billing knobs.

Pe
rc
en
t	o
f	

In
vo
ca
tio
ns

Cost	Relative	to	SLIM

(a)	User	Cost (b)	Interactive	task	slowdown

Av
g	
Sl
ow
do
w
n

Worker	Number

Figure 15: The NPFU’s (a) user cost (b) JCT of interactive jobs
running large-scale BB Trace.

In conclusion, NPFU outperforms SLIM for every point we
explored in the space of CPU utilization and batch-job propor-
tion. The benefits are greatest when interactive jobs have low
CPU utilization relative to resource caps and there are many
batch jobs to take advantage of those leftover resources.

5.4 Large-Cluster Simulations
To study a larger cluster, we build a simulator to evaluate
different billing models on a cluster of 160 workers and use
the entire first hour of the complete BB Trace (instead of
only a random sample of 1,000 functions). Figure 14 shows
that the simulated results on a 160 workers obtain the same
benefits as a real 8-worker cluster (Figure 7).

Figure 15(a) shows that improvements in user cost with
NPFU relative to SLIM are similar to that shown for small-
scale experiments (Figure 9); however, about 5% of interac-
tive functions are now up to 15% more expensive than with
SLIM. Given that NPFU differentiates between interactive
and batch functions, it is natural that some revenue collec-
tion shifts from batch to interactive. Figure 15(b) shows that
the QoS of interactive functions is still satisfied under NPFU
as the number of workers changes, with consistently lower
slowdown than in other billing models.

5.5 Evaluation of Leopard Components
CPU Reservations: We evaluate whether the cgroup inter-
face cpu.resv_cpuset and modifications to CFS of Leopard
efficiently support CPU reservations. We examine three set-
tings: (1) SLIM with CPU pinning: each sandbox is assigned
a fixed CPU set and exclusively uses its allocated CPUs. (2)
NPFU with weighted sharing: all CPUs are shared among
active sandboxes, where interactive sandboxes with reserved
CPUs have a weight of 1024× resv_cpu and non-interactive
sandboxes have a weight of 1. (3) NPFU with reserved CPU
set: sandboxes with reserved CPUs are assigned to a reserved
CPU set; sandboxes can access their reserved CPUs when
needed but still lend idled CPUs.

200 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Pe
rc
en
t	o
f	

In
vo
ca
tio
ns

Slowdown	for	Execution	Time
Figure 16: The CDF for the invocation execution time slowdown
relative to running without contention, excluding queuing delay.

Av
g	
Sl
ow
do
w
n	
			9
9%

	S
lo
w
do
w
n

Co
ld
	S
ta
rt
	R
at
e	
%
			9
5%

	S
lo
w
do
w
n

Hash
LeastLoad
Hermod
Leopard

Figure 17: The slowdown and cold start rate when implementing
different load balancers on Leopard.

Figure 16 shows the CDF of execution time slowdowns for
interactive invocations in the BB Trace. Execution time ex-
cludes queue delay, so the slowdown is primarily due to CPU
contention among co-located invocations. We observe that
CPU pinning cannot support spot-cores; fair-share scheduling
cannot correctly provide performance isolation for interactive
jobs; and Leopard’s reserved cpuset enables the spot-core
while maintaining performance isolation for interactive jobs.

Load Balancer: With NPFU, we implement the following
load balancers on Leopard: (i) Consistent Hashing sched-
uler from OpenWhisk [4], (ii) Least-Loaded Scheduler as in
Kogias et al. [49], and (iii) Hermod [45] scheduler, which
uses a greedy approach under low load and the least-loaded
scheduler during high load. In Figure 17, we present the slow-
down in job completion time (including queue delay) for all
interactive functions in Leopard (with NPFU enabled) under
different load balancers. A few key observations: First, under
low load, the 99% slowdown of Least-Loaded balancer is
higher compared to other load balancers since it does not ac-
count for locality (the cold start rate is depicted in Figure 17).
Second, the performance of the Consistent Hashing deterio-
rates significantly as the load increases, as it is load-unaware.
Finally, Leopard performs as well as, or better than, these
common serverless schedulers across all load conditions.

6 Related Work
Improving Serverless Utilization: Existing research has ex-
plored ways to increase the resource utilization of server-
less platforms. Owl [67], Golgi [50], and Jiagu [53] stress
overcommitment of function instances. However, these ap-
proaches still use SLIM billing models. Overcommitment
breaks the promise made by the SLIM. They rely on pre-
dicting user performance to avoid breaking the QoS of user
requests, which is difficult for real workloads [17]. Other
works [58,75] search for a near-optimal configuration for func-
tions under SLIM or SIM. However, our evaluation shows
that even if users choose precise resource limits, the clus-

ter still suffers from low resource utilization. This problem
arises because actual usage fluctuates both within individual
invocations and across different invocations. We introduce a
new perspective by formalizing existing billing models and
proposing a novel model aimed at improving utilization.

Resource Harvesting: Cloud services (e.g., EC2 [12]) of-
fer on-demand and spot instances, while Harvest VMs [14] im-
prove cost-efficiency by adjusting VM cores over its lifetime.
Harvest VMs adjust CPU affinity with interprocessor inter-
rupts, introducing high overhead (~0.1 milliseconds). These
approaches are cost-effective, but VM size changes are in-
frequent compared to serverless workloads; supporting QoS-
aware sandboxes on serverless platforms presents additional
challenges. As shown in Figure 1, CPU demand fluctuates fre-
quently, and adjusting CPU affinity with every change would
incur unacceptable overhead. BigQuery [7] offers capacity
and on-demand pricing, but the resources are static in a sand-
box in both pricing models. Running interactive tasks along-
side batch tasks with efficient resource schedulers [19,61] has
been explored in multi-tenant datacenters. However, server-
less platforms do not effectively support co-location, as their
billing models assume that all functions are interactive.

CPU Reservation: The user-space schedulers [24, 38, 44,
57, 60] support CPU reservation by adjusting CPU affinity
over time, using a centralized CPU for allocation and en-
suring sub-microsecond tail latency. However, they are not
well-suited for serverless environments. Their simple load
balancing methods inside a task group (e.g., work stealing)
are difficult to maintain fairness within a group. Additionally,
some require users to modify their code for process creation.

Serverless Trace Analysis: Many studies have offered
comprehensive overviews of the serverless computing [33,
43, 51, 56, 69]. For example, Microsoft researchers [64] char-
acterize serverless workloads in their production platform,
revealing a clear gap between maximum and average memory
usage, indicating dynamic memory usage. Similarly, Fire-
Place [17] shows the fluctuating CPU and memory usage of
200K micro VMs on AWS Lambda.

7 Conclusion
We introduced the NPFU billing model and built Leopard
to support NPFU with kernel-level and cluster-level changes.
NPFU improves throughput by more than 2x, and reduces
customer costs while maintaining provider profitability. Our
work demonstrates that billing models should be considered
not as an afterthought, but as a central part of system design.

8 Acknowledgment
We thank Dong Du, the anonymous reviewers, and students
in ADSL for their feedback. This work was supported by
the NSF under the award number CNS-2402859 and the tax-
payers of Wisconsin and the USA. Opinions, findings, and
conclusions, or recommendations expressed in this material
are those of the authors and may not reflect the views of these
institutions.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 201

9 References
[1] Kubernetes. http://kubernetes.io, August 2014.

[2] Resource Management for Pods and Containers. https:
//kubernetes.io/docs/concepts/configuration/
manage-resources-containers/, August 2014.

[3] Docker Project. https://www.docker.io/, 2015.

[4] IBM OpenWhisk. https://developer.ibm.com/openwhisk/, May
2016.

[5] Microsoft Azure Functions. https://azure.microsoft.com/
en-us/services/functions/, May 2016.

[6] Common Serverless Applications Scenarios. https:
//docs.aws.amazon.com/wellarchitected/latest/
serverless-applications-lens/scenarios.html, May 2023.

[7] Google BigQuery. https://cloud.google.com/bigquery/docs/
introduction, May 2023.

[8] Google Cloud Functions pricing. https://cloud.google.com/
functions/pricing, May 2023.

[9] KNIX Serverless. https://github.com/knix-microfunctions/
knix/, May 2023.

[10] Resource Management for Pods and Containers. https:
//kubernetes.io/docs/concepts/configuration/
manage-resources-containers/, May 2023.

[11] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 419–434, Santa Clara, CA, February
2020. USENIX Association.

[12] Amazon. Amazon EC2 Spot Instances Pricing. https://aws.amazon.
com/ec2/spot/pricing/, November 2023.

[13] Amazon. AWS Lambda. https://aws.amazon.com/lambda/,
November 2023.

[14] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian
Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, Marcus Fontoura, and Ricardo Bianchini. Providing SLOs
for Resource-Harvesting VMs in Cloud Platforms. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 735–751. USENIX Association, November 2020.

[15] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
Sprocket: A Serverless Video Processing Framework. In Proceedings
of the ACM Symposium on Cloud Computing, page 263–274, 2018.

[16] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 1.10
edition, November 2023.

[17] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan (Murali)
Narayanaswamy. FirePlace: Placing FireCracker virtual machines
with hindsight imitation. In MLSys 2021, NeurIPS 2020 Workshop on
Machine Learning for Systems, 2020.

[18] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu,
and Yue Cheng. Wukong: A Scalable and Locality-Enhanced Frame-
work for Serverless Parallel Computing. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page 1–15, 2020.

[19] Shuang Chen, Christina Delimitrou, and José F. Martínez. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, page 107–120, New York, NY, USA, 2019.
Association for Computing Machinery.

[20] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. SeBS: A Serverless Benchmark Suite
for Function-as-a-Service Computing. In Proceedings of the 22nd
International Middleware Conference, page 64–78, 2021.

[21] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From Laptop to
Lambda: Outsourcing Everyday Jobs to Thousands of Transient Func-
tional Containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 475–488, Renton, WA, July 2019. USENIX
Association.

[22] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Va-
suki Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads.
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363–376, Boston, MA, March 2017.
USENIX Association.

[23] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Va-
suki Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads.
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 363–376, Boston, MA, March 2017.
USENIX Association.

[24] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Be-
lay. Caladan: Mitigating Interference at Microsecond Timescales.
In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 281–297. USENIX Association,
November 2020.

[25] Yuqi Fu, Li Liu, Haoliang Wang, Yue Cheng, and Songqing Chen.
SFS: Smart OS Scheduling for Serverless Functions. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’22. IEEE Press, 2022.

[26] Alexander Fuerst and Prateek Sharma. FaasCache: keeping server-
less computing alive with greedy-dual caching. In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’21, page
386–400, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[27] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Sys-
tems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, page 3–18, 2019.

[28] Google. Google Cloud Functions. https://cloud.google.com/
functions, November 2023.

[29] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. Multi-resource packing for cluster schedulers.
SIGCOMM Comput. Commun. Rev., 44(4):455–466, aug 2014.

[30] Zhiyuan Guo, Zachary Blanco, Junda Chen, Jinmou Li, Zerui Wei, Bili
Dong, Ishaan Pota, Mohammad Shahrad, Harry Xu, and Yiying Zhang.
Zenix: Efficient Execution of Bulky Serverless Applications, 2024.

[31] Ryan Hancock, Sreeharsha Udayashankar, Ali José Mashtizadeh,
and Samer Al-Kiswany. OrcBench: A Representative Serverless
Benchmark. In 2022 IEEE 15th International Conference on Cloud
Computing (CLOUD), pages 103–108, 2022.

[32] J.L. Hellerstein. Achieving service rate objectives with decay usage
scheduling. IEEE Transactions on Software Engineering, 19(8):813–
825, 1993.

202 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://kubernetes.io
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://www.docker.io/
https://developer.ibm.com/openwhisk/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/scenarios.html
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://github.com/knix-microfunctions/knix/
https://github.com/knix-microfunctions/knix/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://cloud.google.com/functions

[33] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless Computing: One Step Forward, Two Steps Back, 2018.

[34] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Serverless computation with openLambda. In Proceedings
of the 8th USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’16, page 33–39, USA, 2016. USENIX Association.

[35] G. J. Henry. The UNIX system: The fair share scheduler. ATT Bell
Laboratories Technical Journal, 63(8):1845–1857, 1984.

[36] Zicong Hong, Jian Lin, Song Guo, Sifu Luo, Wuhui Chen, Roger
Wattenhofer, and Yue Yu. Optimus: Warming Serverless ML Infer-
ence via Inter-Function Model Transformation. In Proceedings of the
Nineteenth European Conference on Computer Systems, EuroSys ’24,
page 1039–1053, New York, NY, USA, 2024. Association for Comput-
ing Machinery.

[37] Al Amjad Tawfiq Isstaif and Richard Mortier. Towards Latency-Aware
Linux Scheduling for Serverless Workloads. In Proceedings of the 1st
Workshop on SErverless Systems, Applications and MEthodologies,
SESAME ’23, page 19–26, New York, NY, USA, 2023. Association
for Computing Machinery.

[38] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. Achiev-
ing Microsecond-Scale Tail Latency Efficiently with Approximate Opti-
mal Scheduling. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 466–481, 2023.

[39] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and Scal-
able Serverless Computing for Latency-Sensitive, Interactive Microser-
vices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, page 152–166, 2021.

[40] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, Wentao Wu, and Ce Zhang. Towards
Demystifying Serverless Machine Learning Training. In Proceedings
of the 2021 International Conference on Management of Data, SIG-
MOD ’21, page 857–871, New York, NY, USA, 2021. Association for
Computing Machinery.

[41] Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou, Gang Huang, Xu-
anzhe Liu, and Xin Jin. Ditto: Efficient Serverless Analytics with
Elastic Parallelism. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 406–419, New York, NY,
USA, 2023. Association for Computing Machinery.

[42] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the Cloud: Distributed Computing for the 99%. In
Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17,
page 445–451, New York, NY, USA, 2017. Association for Computing
Machinery.

[43] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa,
Ion Stoica, and David A. Patterson. Cloud Programming Simplified: A
Berkeley View on Serverless Computing, 2019.

[44] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Be-
lay, David Mazières, and Christos Kozyrakis. Shinjuku: Preemp-
tive Scheduling for second-scale Tail Latency. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 345–360, Boston, MA, February 2019. USENIX
Association.

[45] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. Her-
mod: principled and practical scheduling for serverless functions. In
Proceedings of the 13th Symposium on Cloud Computing, SoCC ’22,
page 289–305, New York, NY, USA, 2022. Association for Computing
Machinery.

[46] J. Kay and P. Lauder. A fair share scheduler. Commun. ACM,
31(1):44–55, January 1988.

[47] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella,
and Ion Stoica. Jiffy: Elastic Far-Memory for Stateful Serverless
Analytics. In Proceedings of the Seventeenth European Conference
on Computer Systems, EuroSys ’22, page 697–713, New York, NY,
USA, 2022. Association for Computing Machinery.

[48] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic Ephemeral Storage
for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 427–444, Carls-
bad, CA, October 2018. USENIX Association.

[49] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making RPCs first-class datacenter citizens. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages
863–880, Renton, WA, July 2019. USENIX Association.

[50] Suyi Li, Wei Wang, Jun Yang, Guangzhen Chen, and Daohe Lu.
Golgi: Performance-Aware, Resource-Efficient Function Scheduling
for Serverless Computing. page 32–47, 2023.

[51] Liang Wang and Mengyuan Li and Yinqian Zhang and Thomas Ris-
tenpart and Michael Swift. Peeking Behind the Curtains of Serverless
Platforms. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 133–146, 2018.

[52] Qingyuan Liu, Dong Du, Yubin Xia, Ping Zhang, and Haibo Chen.
The Gap Between Serverless Research and Real-world Systems. In
Proceedings of the 2023 ACM Symposium on Cloud Computing,
SoCC ’23, page 475–485, New York, NY, USA, 2023. Association
for Computing Machinery.

[53] Qingyuan Liu, Yanning Yang, Dong Du, Yubin Xia, Ping Zhang, Jia
Feng, James R. Larus, and Haibo Chen. Harmonizing Efficiency and
Practicability: Optimizing Resource Utilization in Serverless Com-
puting with Jiagu. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 1–17, Santa Clara, CA, July 2024. USENIX
Association.

[54] Renato Losio. State of Serverless 2023 Report Suggests Increas-
ing Serverless Adoption. https://www.infoq.com/news/2023/09/state-
serverless-report/, September 2023.

[55] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh
Elnikety, Somali Chaterji, and Saurabh Bagchi. ORION and the
three rights: Sizing, bundling, and prewarming for serverless DAGs.
In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 303–320, 2022.

[56] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya.
A Holistic View on Resource Management in Serverless Computing
Environments: Taxonomy and Future Directions. ACM Comput. Surv.,
54(11s), sep 2022.

[57] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Rat-
nasamy. Efficient Scheduling Policies for Microsecond-Scale Tasks.
In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1–18, Renton, WA, April 2022.
USENIX Association.

[58] Arshia Moghimi, Joe Hattori, Alexander Li, Mehdi Ben Chikha, and
Mohammad Shahrad. Parrotfish: Parametric Regression for Optimizing
Serverless Functions. In Proceedings of the 2023 ACM Symposium
on Cloud Computing, SoCC ’23, page 177–192, New York, NY, USA,
2023. Association for Computing Machinery.

[59] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid
task provisioning with serverless-optimized containers. In USENIX
Annual Technical Conference (USENIX ATC ’18), Boston, MA, 2018.

[60] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Association.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 203

[61] Tirthak Patel and Devesh Tiwari. CLITE: Efficient and QoS-Aware Co-
Location of Multiple Latency-Critical Jobs for Warehouse Scale Com-
puters. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 193–206, 2020.

[62] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, Fast and
Slow: Scalable Analytics on Serverless Infrastructure. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 193–206, Boston, MA, February 2019. USENIX
Association.

[63] Sambhav Satija, Chenhao Ye, Ranjitha Kosgi, Aditya Jain, Romit
Kankaria, Yiwei Chen, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Kiran Srinivasan. Cloudscape: A Study of Storage Ser-
vices in Modern Cloud Architectures. In 23rd USENIX Conference
on File and Storage Technologies (FAST 25), pages 103–121, Santa
Clara, CA, February 2025. USENIX Association.

[64] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Char-
acterizing and Optimizing the Serverless Workload at a Large Cloud
Provider. In Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference, 2020.

[65] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. Atoll: A Scalable Low-Latency Serverless Platform. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC
’21, page 138–152, New York, NY, USA, 2021. Association for
Computing Machinery.

[66] Prasoon Sinha, Kostis Kaffes, and Neeraja J. Yadwadkar. Online Learn-
ing for Right-Sizing Serverless Functions. In Architecture and System
Support for Transformer Models (ASSYST @ISCA 2023), 2023.

[67] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, Tianlong Wu, and Hao-
ran Yang. Owl: Performance-Aware Scheduling for Resource-Efficient
Function-as-a-Service Cloud. In Proceedings of the 13th Symposium
on Cloud Computing, page 78–93. Association for Computing Machin-
ery, 2022.

[68] Erwin van Eyk, Joel Scheuner, Simon Eismann, Cristina L. Abad, and
Alexandru Iosup. Beyond Microbenchmarks: The SPEC-RG Vision
for a Comprehensive Serverless Benchmark. In Companion of the
ACM/SPEC International Conference on Performance Engineering,
page 26–31, 2020.

[69] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. FaaSNet: Scalable and Fast Provi-
sioning of Custom Serverless Container Runtimes at Alibaba Cloud
Function Compute. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 443–457, 2021.

[70] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Follow-
ing the Data, Not the Function: Rethinking Function Orchestration in
Serverless Computing. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 1489–1504,
Boston, MA, April 2023. USENIX Association.

[71] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian
Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing
Serverless Platforms with ServerlessBench. In Proceedings of the
ACM Symposium on Cloud Computing, 2020.

[72] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. Fault-tolerant and transactional stateful serverless work-
flows. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1187–1204. USENIX Association,
November 2020.

[73] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. Caerus: NIMBLE Task Scheduling for Serverless Ana-
lytics. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 653–669. USENIX Association,
April 2021.

[74] Zili Zhang, Chao Jin, and Xin Jin. Jolteon: Unleashing the Promise
of Serverless for Serverless Workflows. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24), pages
167–183, Santa Clara, CA, April 2024. USENIX Association.

[75] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.
AQUATOPE: QoS-and-Uncertainty-Aware Resource Management for
Multi-stage Serverless Workflows. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, ASPLOS 2023, page
1–14, New York, NY, USA, 2022. Association for Computing Machin-
ery.

204 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Pay-for-Use Serverless Billing Models
	Idealized Billing: SPFU
	Practical Billing: SLIM
	Does SLIM Approximate SPFU?
	Workload Assumptions
	A Serverless Function Suite
	Workload Analysis

	Serverless Billing in Practice

	NPFU: Nearly Pay-for-Use Billing
	NPFU Knobs
	NPFU Billing Function
	Comparison with existing PFU family

	Billing-Aware Serverless
	Background: Serverless Subsystems
	Subsystem Support for NPFU: Challenges
	Leopard: Billing-Aware FaaS
	Efficient CPU Reservations
	Sandbox Evictor
	Admission Control
	Load Balancer
	Limitations

	Evaluation
	Methodology for Billing Model Evaluation
	Existing Workloads
	BilliBench
	Experiment Setup

	Evaluation of NPFU
	Provider Side
	User Side

	Robustness to Different Workloads
	Large-Cluster Simulations
	Evaluation of Leopard Components

	Related Work
	Conclusion
	Acknowledgment
	References

