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ABSTRACT

By implementing file system caching within the operatingtsygs applications are required to
cede to the OS a degree of control over memory utilizationléngdcheduling. This dissertation
explores ways in which applications can rediscandormationhidden by the file system buffer
cache and reclaim some of tleentrol ceded to it. We find that this can be achieved without a

wholesale redesign of either the operating systems oragijuins concerned.

We presenDusta tool to automatically determine the buffer cache replaggmolicy of an oper-
ating system. We describe a cache-aware web server. Usngftirmation gained througbust,
our cache-aware web server is able to infer the content®dfufier cache. It uses this information

to schedule web connections on an in-cache-first basispwimg throughput and response time.

Implicitinformation can be imprecise. To address this tation, we modify Linux and NetBSD to
expose a list of pages which are about to be evicted. &tpéicit informationis always accurate.
We present InfoReplace, a user library which observes tbtatihd touches pages that should
remain cached, allowing applications to transform the &epolicy into one of the application’s

choice.

Some applications, such as those that use write-aheadchpggiquire control over the order in
which data is written to disk. We propose two new interfacgsvhich applications can express
write ordering constraints to the operating systéiite system barriersntroduce thebarrier ()
system call. The operating system guarantees that no wréetons will be reordered across a
barrier. Asynchronous graphallows applications to specify ordering constraints on avpete-

operation basis. Both would be difficult to implement witHyomformation.



Chapter 1
Introduction

1.1 Cache Management

On a typical system access time for data cached in main meisiseyeral orders of magnitude
lower than for data that is not cached, requiring a disk IOdmeas. Memory access times range
from 1 to 20 clock cycles depending whether the access hitednCPU caches, whereas the
latency of a disk access ranges in the tens to hundreds aecitinds [26]. Access to storage over
a network is even slower. It is thus worthwhile to dedicat®gipn of a system’s main memory to
caching file system data.

Since memory is a finite, and often constraining, resouratishbshared among all applications
running on a system, file system caching is normally implelegemvithin the operating system.
In this way, applications are provided with the benefits ahtag transparently and the operating
system serves as an arbitrator to determine how much of mamary will be used for caching
and which data will be cached.

Implementing file system caching within the operating systequires applications to cede to
the OS a degree of control over memory utilization and IO daheg. The operating system, not
the application, determines how much memory is devotedecsfistem caching. The operating
system, not the application, determines what data is cachieel operating system, not the appli-
cation, determines when updates to data are flushed to disknkfully, most applications only
suffer minimally from this loss of control.

Applications that are file system intensive, however, cdfesgreatly due this lack of con-

trol [2, 63, 79]. Web servers, file servers and data base neamaigt systems are a few examples.



They each have knowledge about their workloads that theatipgrsystem lacks that can help op-
timize 1/0. Web servers and file servers know the granulatityhich requests can be rescheduled.
Database management systems know what data they are likatgess in the near future. If this
knowledge can be combined with the control that the opegatystem has over buffer manage-
ment, there is an opportunity for better cooperation betvike application and the OS.

The situation is especially notable for servers, since #reyoften the only large application
running on a machine. If there is only one application rugrmn a machine, it makes sense to give
it the maximum amount of control over memory usage. At theesime, to enable application
portability, and simplify application development, it iegirable to leverage the existing, stan-
dardized interfaces that modern operating systems pranddo continue to use those operating
system facilities that adequately suit the applicationguastion.

For decades, operating systems have been designed to eosivicthg abstractions, such as
network sockets and the open/close/read/write interfacieé storage subsystem, to user-level
applications. Abstractions provide a common frameworkaipplication development, enabling
portability between platforms. They hide operating systiata structures and prevent applications
from seeing each other’s data, providing security throwgiation. They also hide the details of
the underlying hardware, greatly simplifying applicataevelopment.

These abstractions though, also hide a great deal of uséduinationfrom applications. First,
user-level applications do not know what data of theirs imdpeached, or even how much of it
is being cached. Second, they have no way of knowing whicheif tlata is likely to be evicted
from the cache soon, and which can be expected to remainadcha while. For applications
whose performance is bounded by the speed at which they cassadata from the file system,
both pieces of information can be quite valuable.

In addition to hiding information, operating system abdtins also reduce the level obntrol
available to applications. The file system cache not onlgestdata that has been read, it buffers
updates to data. When an application updates data storeelfiltet Ssystem, that update is applied to
a cached copy of the data. At some later point determinedebgpkrating system, the on-disk copy

of the data will be updated. Most applications don’t care nties happens, as long as it happens



eventually. Some, however, care a great deal for data ityegasons. User-level applications
normally have no control over, nor knowledge of when theitad#pdates reach the disk. For
applications with strong data-integrity requirements;hsas database management systems and
user-level file systems [37], this ordering is of criticalgartance.

One of the primary challenges in designing a caching systéheimanagement of the available
space. The cache has some finite amount of memory to managesttdetermine which data to
keep in memory, and which to evict and when to evict it. Theoaiinterface that exists between
the operating system and applications often makes it diffioudetermine what choices will yield
the greatest benefit to applications, both individually aaltectively. Information available to the
operating system to make cache management decisionstiediniim general, the operating system
knows when data is accessed, at the time it is accessed, #nidgumore. In a perfect world, the
operating system would like to know the future access patiapplications. Unfortunately, even
when this knowledge exists within the application, it iidiflt to get that information into the OS
so it can be used. Some interfaces exist, suctaagise () on some systems, but these tend to be
limited in that they are coarse grained and inconsistentfylémented. For exampleadvise (),
lets an application give the CGlvicesuch as whether to expect random or sequential accesses to a
file (to assist in prefetching) and allows the applicatiosady if a particular page will or will not be
needed in the future. It does not, however, allow the apjtindo assign relative priority to data
pages. The difficulty in making good cache management dedss evidenced by the enormous
body of work on how to make such decisions effectively [13,15 18, 21, 27, 29, 34, 41, 42, 44,
45, 49, 53, 60, 75, 78, 79].

1.2 Information and Control

This dissertation explores ways in which applications cadiscoverinformationhidden by
the file system buffer cache and reclaim some ofdbwetrol ceded to it. We find that this can be
achieved without a wholesale redesign of either the opegaystems or applications concerned.

Since one of our goals is to avoid large-scale changes topleatng system, we explore options



for exposing information and gaining control in order of thegree of alterations to the operating
system they require.

Some information, such as the contents of the buffer cache be discovered without any
modifications to the operating system at all by leveragmglicit information By its nature,
implicit information is sometimes inaccurate. Despitestimherent inaccuracy, we will show that
this information can still be leveraged for significant pemiance improvements.

In some situations, timely, accurate information is neagsslif by acting on incorrect infor-
mation, the application might significantly degrade its quemformance, then implicit information
may be inadequate. In cases where implicit informationtisnbugh, operating systems can be
modified to provide interfaces to exposeplicit information These modifications are surprisingly
simple and unintrusive to the overall structure of the OS.

Implicit and explicit information both allow applications exercisamplicit control over file
system caching. By knowing the policies the OS is using toagarthe cache and the current state
of the cache, an application can both alter its behavior teebsuit the policies of the OS and
game the operating system into changing its behavior tebitthe needs of the application.

Finally, sometimes it isn’t the application that needs mofermation about the operating sys-
tem, but the OS that needs more information about the neetle application. When implicit
control proves insufficient, it is possible to alter the OSllow the application to applgxplicit
control over the operating systems behavior. Explicit control caisden as the reverse of explicit
information. Instead of moving information from the opéngtsystem into the application, we
provide an interface to move information from the applicatinto the operating system. Mov-
ing information into the operating system is necessary vithermechanisms that can act on that

information exist only within the OS.

1.2.1 Implicit Information

Operating systems are large, complex pieces of softwateriad) them is difficult, time con-
suming and error prone. Further, the operating systems widdwoost like to improve are those

that are the most widely deployed. These systems have langgdaper communities and larger



numbers of users. Adding new functionality to popular opegasystems is difficult precisely
because they are popular; a new feature must be acceptedregtartany people before it will be
integrated into the codebase. So it is desirable to avoidfying the operating system.

By not modifying the operating system, we limit ourselveswtguiring information about the
OSimplicitly. Thatis, we obtain information by probing and observing@&through the existing
interface. For example, an application might issuead () call to a particular piece of data. If the
application measures the execution time of that systemitadn implicitly determine whether or
not that data was cached at the time of the read. Chapter BlEsioust a tool which uses this
idea to determine the replacement policy that the buffeheag using.

Once an application knows the replacement policy that tHeboache is using, it can use
that knowledge to predict the behavior of the cache. Chdp#dso describes @ache-aware web
serverthat using knowledge of cache behavior to predict which datacurrently cached. Our
cache-aware web server then uses those predictions foectiom scheduling [17]. By servicing
those requests asking for cached data first, the web serypeowes its utilization of the buffer

cache and in turn, improves its own performance.

1.2.2 Explicit Information

Using only implicit techniques limits the accuracy of théoimmation the application can ob-
tain. For some optimizations, such as scheduling HTTP iguéaving somewhat inaccurate
information is acceptable. If the web server’s cache ptaxdids occasionally wrong, it simply
means that the scheduling decision will be slightly subirogt. On the whole the performance
will still be better than cache-oblivious scheduling. Aytemmount of performance improvement is
sacrificed to gain the portability benefits of using only impkechniques.

If an application is using information for more aggressipéimizations, the consequences of
inaccurate information could be severe. Chapter 3 presentsthod by which applications can
alter the buffer cache replacement policy. Since this tieglminvolves issuing additionakad ()
calls, it is critical that the application know which datanghe buffer cache and only issue extra

reads to cached data. Some applications can predict theil©vpatterns to a sufficient degree



as to be able to determine a good caching strategy in advHratas, before performing the 10.
Database management systems are one such example [16]ajpéoation is able to alter the
buffer cache’s replacement policy, better performancebeaachieved.

Most common caching policies base their decisions at legstit on how recently each buffer
has been accessed. Accessing a piece of data increasepiity jon the cache and reduces its
chances of being evicted in the near future. Thus if the apftin knows that a particular portion
of its data should remain cached, those data’s priority earalsed by simply reading the data.

If an application uses this technique to manipulate the \nehaf the cache, it could easily
degrade performance rather than improve it if care isn’etato avoid performing extra reads
on data that has already been evicted from the cache. Inguesien a small number of extra
disk 10s could outweigh the benefit of manipulating the cadffee missing component is, again,
information. The application needs to know what data i$ ctithed, so extra reads to uncached
data can be avoided, and it needs to know what data is likehetevicted soon, so it knows
for what data extra read calls will be most productive. If thiermation the application has is
inaccurate, extra disk traffic and bad performance will leerésult.

Chapter 3 introduces interfaces by which applications eaml the current state of the buffer
cache [5]. We provide an interface that exposes to the ajaita list of the nextV file system
pages that will be evicted to the cache, and an efficient meadinow quickly that list is changing.
These new interfaces allow applications to perform cachgeisptimizations without fear that the
knowledge they have of the cache state is inaccurate. Byexggsing information, rather than
providing new mechanisms, we reduce the changes that ndedntade to the operating system.
Most importantly, we avoid perturbing any of the OS’s présérg data structures, and thus reduce

the likelihood of introducing new bugs or performance peol$ into the kernel.

1.2.3 Explicit Control

Applications using explicit interfaces have access toipeainformation through the additional
interfaces provided. However, they still depend on thetegdnterfaces to exercise control over

the operating systems behavior. Utilizing this type of iltiptontrol relies on making assumptions



about the behavior of the operating system and may also mgieit assumptions about the usage
patterns of other applications running in the system. Fstaimce, the example mentioned in the
previous section assumes that issuing a read to a pieceafvilaincrease that data’s priority in
the buffer cache. If the operating system implements Hirgtirst-Out cache replacement, that
assumption doesn’t hold and attempts at manipulating cegglacement will fail. In short, even
with exact information, control is still approximate.

Chapter 4 examines a situation where precise control isnejuFor applications that make
incremental updates to complex on-disk data structuresoiter in which updates are written to
the disk can be important. A common example is write-ahegditg in database management
systems. For each transaction executed, the log entriesiliiag the updates to the data must be
written to the disk strictly before the actual data is update

Traditional means of controlling write-ordering eitheilige synchronous 1O calls such as
fsync () which perform poorly [50], or use direct access to storagelwhas unsatisfactory impli-
cations for system management [28]. Chapter 4 proposesdwartterfaces by which applications
can express write ordering constraints to the operatingsysThe first interfacdile system barri-
ersallows the application to insert barriers into the writeuest stream. The operating system then
guarantees that no write operations will be reordered aadsarrier. The secondsynchronous
graphsallows applications to specify for each write operationalyawhich write operations, if

any, must have their data committed to disorethe current one.

1.3 Contributions

The buffer cache provides a valuable service to applicatiddowever, utilizing the buffer
cache requires applications to cede to the operating sysbeme control over memory usage and
IO management. This dissertation shows that by examiniadltw of information across the
OS/application interface, operating systems and appiicsitcan be made to cooperate more ef-

fectively.



When possible, we usmplicit information information gained through the existing interface,
and avoid modifying the operating system in any way. While ithplicit approach has advan-
tages in that it is easily ported between operating systerdsequires no OS modifications, the
information that can be acquired using implicit technigigekmited. Specifically, it can be im-
precise. While this is sufficient for some optimizationg;lsas request scheduling based on cache
residency, it is ill suited for situations where bad infotioa can lead to performance degradation.

Some of the limitations of implicit information can be ovense usingexplicit information
information gained by an interface provided by the opegatigstem. This technique provides
information that is always accurate and thus can be reliebomore aggressive optimizations,
such as those which use extra 10 calls to manipulate therdfshe. Using implicit information
to manipulate OS behavior, however, requires that actiériseoapplication have a predictable
effect on the OS behavior. Cache replacement policies bttims category since most policies
react to theread () call by increasing the read buffers cache priority.

Information alone isn’t always enough. When the operatygiesn behavior that we need to
modify is completely hidden from the application, such as fllishing of delayed writes, direct
modification of the operating system is our last resort. Tais be viewed either as providing
explicit controlto applications or as a reversal of the previous technigiegher than moving
information from the operating system to the applicatior,move it from the application to the
operating system by providing an interface for the applceto inform the operating system what

orderings are safe orderings in which to flush dirty buffers.

1.4 Organization

Chapter 2 describd3ust, a tool that uses high level assumptions about operatirtgrsysuffer
cache behavior, probes and observation to determine tifer lmaiche replacement algorithm, then
uses that information to predict the state of the buffer eadynamically. Those predictions are
then given to a web server which uses them to schedule regqoesin in-cache-first basis. In
this way, the application moulds its own behavior to bettethi& policies of the operating system.

Chapter 3 presents interfaces by which cache state infamiatexplicitly exposed to applications.



Applications can use that information to not only changartbesn behavior to fit that of the
operating system, but alter the cache replacement polibetier fit their workload. Chapter 4
proposes two new interfaces, file system barriers and asynetis graphs, by which application-

level write-ordering requirements can be explicitly exgsed to the operating system. Chapter 5
reviews previous related work and Chapter 6 concludes.
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Chapter 2
Discovering Buffer Cache State with Implicit Information

2.1 Introduction

Operating systems are large, complex pieces of softwaran@ihg them to suit a particular
application is time consuming and error prone. Furthertirgpiproposed changes adopted and
integrated into an already popular OS isn’'t easy. It regua@nvincing others of the value and
safety of the new code. In the case of an open-source systentertially large number of devel-
opers need to be convinced. In the case of a closed sour@gsysiajor corporation needs to be
convinced that adding the new code is in their best interéststhese reasons, it is advantageous
to find ways to extend the system without actually modifying i

Knowing what is currently in the buffer cache can be usefaldplications that make heavy use
of the file system. We will describe a storage server we hawdifiad to serve requests for cached
data first, thus improving throughput and response time. primeary challenge in using this sort
of performance optimization is determining which data isrently cached. In this chapter we
demonstrate that discovering this information is possMbteout any modification to the operating
system whatsoever.

We observe that an application can model (or simulate) tite sff the buffer cache if it knows
the replacement policy used by the OS and can see most filessascel' he application can then use
such a model to infer the current contents of the buffer cacliemake application-level decisions
based on that information.

Server applications typically dominate the use of the filstayn. Often, they are the only

application running, apart from the various system maistere daemons. Thus, these applications
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already see most of the file accesses on the system. If thekrmdsv the size of the buffer cache
and the policy used to manage it, they would, by inferenceg kamplete knowledge of the buffer
cache contents.

Although the specific algorithms used to manage the buffehe&aan significantly impact
the performance of 1/0O-intensive applications [14, 34, &0 knowledge is usually hidden from
user processes. Currently, to determine the behavior diuffer cache, implementors are forced
to rely on available documentation, access to source cadgerteral knowledge of how buffer
caches behave.

Rather than relying on thessl hocmethods, we propose the useffgerprintingto auto-
matically uncover characteristics of the OS buffer cachkis Thapter describd3ust a simple
fingerprinting tool that is able to identify the buffer-cacheplacement policy; specifically, we
identify whether it uses initial access order, recency akas, frequency of access, or historical
information.

Fingerprinting can be described as the use of microbendtintatechniques to identify the
algorithms and policies used by the system under test. Tdeehbéhind fingerprinting is to insert
probesinto the underlying system and to observe the resulting\neh¢rough visible outputs.
By carefully controlling the probes and matching the resglbutput to the fingerprints of known
algorithms, one can often identify the algorithm of the systunder test. The key challenge is to
inject probes to create distinctive fingerprints such thféient algorithmic characteristics can be
isolated.

There are several significant advantages to using fingésdonautomatically identifying in-
ternal algorithms. First, fingerprinting eliminates thedéor a developer to obtain documentation
or source code to understand the underlying system. Sefingdrprinting enables all program-
mers, not just those with sophisticated experience, to lgesitohmic knowledge and thus improve
performance. Third, fingerprinting can uncover bugs, odaidcomplexities, in systems either
under development or already deployed. Finally, fingetprincan be used at run-time, allowing
an adaptive application to modify its own behavior basedhencharacteristics of the underlying

system.
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We investigate a new use of algorithmic knowledge: its useximosing the current contents
of the OS buffer cache. Recent work has shown that I/O-interapplications can improve their
performance giveninformation about the contents of theéileghe [4, 71]; specifically, applications
that can handle data from disk in a flexible order should feseas those blocks in the buffer cache
and then those on disk. However, current approaches stofardne of two limitations: they either
require changes to the underlying OS to export this infolomadr cannot accurately identify the
presence of small files in the buffer cache.

A dedicated web server can greatly benefit from knowing thtesds of the buffer cache and
servicing first those requests that will hit in the bufferltacWe have implemented a cache-aware
web server based on the NeST storage appliance [9] and slabthit web server improves both
average response time and throughput.

This chapter describes the following contributions:

e We introduceDust, a fingerprinting tool that automatically identifies cacaplacement poli-
cies based upon how they prioritize between initial accedsrorecency of access, frequency

of access, and historical information.

e We demonstrate through simulations tBaistcan distinguish between a variety of replace-
ment policies found in the literature: FIFO, LRU, LFU, RandcClock, Segmented FIFO,
2Q, and LRU-K.

e We use our fingerprinting software to identify the replacetmlicies used in several oper-
ating systems: NetBSD 1.5, Linux 2.2.19 and 2.4.14, andri8d?ar7.

e We show that by knowing the OS replacement policy, a cacle@aweb server can first
service those requests that can be satisfied within the Grlmsche and thereby obtain

substantial performance improvements.
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2.2 Fingerprinting Methodology

We now describ®ust our software for identifying the page replacement policypoyed by
an operating system. By manipulating how blocks are acde$secing evictions, and then ob-
serving which blocks are replacddystcan identify the parameters used by the page replacement
policy and the corresponding algorithm.

Dustrelies upon probes to infer the current state of the buffeheaBy measuring the time to
read a byte within a file block, one can determine whether bthai block was previously in the
buffer cache. Intuitively, if the probe is “slow”, one ingethat the block was previously on disk; if
the probe is “fast”, then one infers that the block was alyeadhe cache.

For Dustto correctly distinguish between different replacemernices, we must first identify
the file block attributes used by existing policies to sekewictim block for replacement. From
a search of the OS and database research literature anddhmelatation of existing operating
systems, we have identified four attributes that are oftex @ replacement: the order of initial
access to the blocke(g, FIFO), the recency of accessesd, LRU), the frequency of accesses
(e.g, LFU) and historical accesses to bloclksg, 2Q [29]). Thus, we can correctly identify the
use of combinations of these four attributes within a regtaent policy.

We note that some operating systems use replacement gdheeconsider attributes beyond
whatDustconsiders. For example, some replacement policies cansigether or not pages are
dirty [39], the size of the file the page is from, or replacetmst [21]. Further, replacement of
pages can be performed on either a global or per process[B&kid-inally, in real systems, not
only are file pages cached, but file meta-data as well, and sgstems prefer to evict pages from
files whose meta-data is no longer cached. It is also pog$iatduture replacement policies may
use new attributes that we do not currently fingerprint. @dthh Dust cannot currently identify
these parameters, we believe that the basic frameworknithstcan be extended to do so.

Given our goal of identifying replacement policies, thenethree primary componentsbust
First, the size of the buffer cache is measured with a simpdeaidenchmark; this value is used as

input to the remaining steps. Second, the short-term replaat algorithm is fingerprinted, based
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upon initial access, recency of access, and frequency ekacd@ hird Dustdetermines whether or

not long-term history is used by the replacement algorithm.

2.2.1 Microbenchmarking Buffer Cache Size

To manipulate the state of the buffer cache and interprepittents Dustmust first know the
sizeof the buffer cache. Since this information is not readilgiable through a common interface
on most systemd$)ustcontains a simple microbenchmark. The algorithm is showFiguare 2.1.
Dustaccesses progressively larger amounts of file data untitites that some blocks no longer
fit the cache. For each increase in the tested size, thereasteps. In the first ste@usttouches
the file blocks up through the newly increased size to fetemtlnto the buffer cache. In the
second steppustprobes each block again, measuring the time per probe tfy vietine block is
still in the cache. This technique is similar to the techeigsed to determine available memory in
NOW-Sort [6].

There are two important features of this approach. Firspriobingeveryfile block in the sec-
ond step, this algorithm is independent of the replacemelitypused to manage the buffer cache.
Second, this algorithm works even when the buffer cachetegmted with the virtual memory
system, assuming thBiustuses little memory and the buffer cache is able to grow to &gsimum
size. Further, as we will show, our fingerprinting algoritismwobust to slight inaccuracies in our

estimation of the buffer cache size.

2.2.2 Fingerprinting Replacement Attributes

Once the buffer cache size is knovibystdetermines the attributes of file blocks that are used
by the OS short-term replacement policy. This fingerproptstage involves three simple steps.
First,Dustreads file blocks into the buffer cache while simultaneoashtrolling the replacement
attributes of each blocle(g, by accessing blocks in different initial access, receany, frequency
orders). Secondustforces some of these blocks to be evicted from the bufferechgtaccessing

additional file data. Finally, the contents of the buffertwaare inferred by probing random sets of
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fd = open("some_huge_file", O_RDONLY, 0);
mean = 0;

for (i = min; i < max; i+=blocksize) {
for (j = 0; j < i; j +=blocksize) {
read(fd, c, blocksize);
}

gettimeofday (&tpl,NULL);
lseek(fd, O, SEEK_SET);
for (j = 0; j < i; j +=blocksize) {
read(fd, c, blocksize);
}
lseek(fd, 0, SEEK_SET);
gettimeofday (&tp2,NULL) ;
elapsed = timedif (&tpl, &tp2);
if( elapsed > meanx*10) {
slowcount++;
}
mean = (mean*samples + elapsed)/(++samples);
if (slowcount > 5) {
fprintf (stderr,"Effective Cache Size is: %1ld\n", i*blocksize);
exit (0);
}
}
close(fd);

Figure 2.1 Psuedocode for cache size algorithmThe algorithm opens a file that is known to be larger
than the buffer cache. On each iteration, a larger sectichefile is read twice. When the measured
bandwidth drops, the cache size has been found.
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stripe_size = cache_size/10;
leftseek = 0;

freqleft = 1;

rightseek = cache_size/2;
freqright = 10;

open(filename, O_RDONLY, O0);

/* an initial scan of the file to set a FIFO distribution
that differs from the LRU distribution */
lseek(fd,0,SEEK_SET);
for (i = 0; i < cache_size; i += READSIZE) {
read(fd, c, READSIZE);
}
lseek(fd, 0, SEEK_SET);

/* set up the frequency/recency distribution */
for (i = 0; i < cache_size/2; i+= stripe_size) {
/* do the left side reads */
for (j = 0; j < freqleft; j++) {
pos = 1lseek(fd, leftseek, SEEK_SET);
for (k = 0; k < stripe_size; k += READSIZE) {
read(fd, c, READSIZE);
}
}
leftseek += stripe_size;
freqleft++;

/* do the right side reads */
for (j = 0; j < freqright; j++) {
pos = lseek(fd, rightseek, SEEK_SET);
for (k = 0; k < stripe_size; k += READSIZE) {
read(fd, c, READSIZE);
}
}
rightseek += stripe_size;
freqright--;

Figure 2.2 Dust short-term attribute setting algorithm. This algorithm performs a series of reads to set
the initial access order, access recency and access fregaksach block in the buffer cache.
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/* fill the cache and cause evictions */
page_size = getpagesize();
scansize = ((cache_size - size) + (cache_size * 0.5));
for (1 = 1; i <= (scansize/page_size); i++) {
pos = lseek(fd, size + (i * page_size), SEEK_SET);
for (j = 0; j < freqleft * 1.5; j++) {
read(fd, c, 1);
lseek(fd, -1, SEEK_CUR);
}
}

/* sample parts of the file to determine the cache state */
newpos = ((double)rand()/RAND_MAX)*(size/20);
pos = lseek(fd, newpos, SEEK_SET);
for (i = 0; i < 20; i++) {
gettimeofday(&tpl, NULL);
read(fd,c,1);

gettimeofday (&tp2, NULL);

etime = timedif (&tpl, &tp2);

printf ("%d %ld\n", pos, etime);

pos = lseek(fd, size/20, SEEK_CUR);
}
exit (0);

Figure 2.3 Dust eviction and cache probing algorithm. This algorithm evicts half of the data in the
buffer cache by reading in the appropriate amount of new. détee new data is read multiple times to
ensure eviction in the case of a frequency based replacgrobey. The algorithm then issues probe reads
to determine which of the original data is still cached.
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Figure 2.4 Short-Term Attributes of Blocks. The three graphs show the priority of each block within
the test region according to the three metrics: order ofalngiccess, recency of access, and frequency of
access. The x-axis indicates the block number within thddilming the test region. The y-axes indicates
the initial accesses order (left), recency of access (Ceatel frequency of access (right).

blocks; the cache state of these file blocks is then plottéitlisirate the replacement policy. We

now describe each of these three steps in detail.

2.2.2.1 Configuring Attributes

The first step moves the buffer cache into a known and weltrobbed state — both the data
blocks that are resident and the initial access, recendyfraquency attributes of each resident
block. This control is imposed by performing a pattern ofdeaver blocks within a single file;
we refer to these blocks as ttesst region To ensure that all of this data is resident, the size of this
test region is set slightly smaller than the estimate of thféeb cache size (precisely, we use only
90% of the estimated cache size and adjust the size suchatttabéten stripes discussed below
are page aligned).

Controlling the initial access parameter of each blockvedDustto identify replacement poli-
cies that are based on the initial access order of blazks FIFO). To exert this control, our access
pattern begins with a sequential scan of the test regionrd$dting initial access queue ordering
is shown in the first graph of Figure 2.4; specifically, thechat the end of the file are those that
are given priority (.e., remain in the buffer cache) given a FIFO-based policy.

Dustis able to identify replacement policies that are based mpteal locality €.9, LRU) by
controlling how recently each block is accessed and ergtinit this ordering does not match the

initial access ordering. To ensure this criteria, a patténreads across testripeswithin the file
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are performed. Specifically, two indices into the file aremtained: a left pointer, which starts

at the beginning of the file, and a right pointer, which stattthe center of the test region. The
workload alternates between reading one stripe as indi¢atehe left pointer and then one stripe
as indicated by the right pointer. The pattern continues th# left pointer reaches the center of
the test region and the right pointer reaches the end. Thisalted pattern of access induces the
recency queue order shown in the middle graph of Figure pektiBcally, the blocks at the end of

the left and right regions are those given priority with anl-Rased policy.

Finally, to identify policies that have a frequency baseshponentDustensures that stripes in
the test region have distinctive frequency counts. Whedinggstripes for recency orderinBust
touches each stripe multiple times for a frequency ordeasgvell. In our pattern, stripes near
the center of the test region are read the most often, ané thear the beginning and end of the
test region are read the least. The number of reads for eaatpéthe test region is shown in the
right-most graph of Figure 2.4, where blocks in the middke given priority with an LFU-based
policy.

The need to impose different frequencies on different partke file is part of the motivation
for dividing the test region into a fixed number of stripes.fdir instance, each block of the test
region were given a different frequency count, the runtii®ostwould be exponential in the
size of the file. In our simulation experiments, we determitem to be a good number. The more
stripes used, the more precise the fingerprint becomes giaceis a greater variety of frequency
and recency regimes. However, a greater number of stripgesmach stripe smaller thus making

the data more susceptible to noise.

2.2.2.2 Forcing Evictions

Once the state of the buffer cache is configudastperforms areviction scann which more

file datais read to cause some portion of the test region teib&ed from the cache. Since the goal
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of evicting pages is to give us the most information and ghit differentiate across replacement
policies,Dusttries to evict approximately half of the cached data.

We note that the eviction scan must read each page multipkestsuch that the frequency
counts of its pages are higher than those of the pages insheetgion. OtherwiseDustwould
not able to identify frequency-based replacement polisiese the eviction region would replace
its own pages. This illustrates one of the limitations of approach: we do not differentiate
between LIFO, MRU, and MFU replacement policies, since glace the eviction region with
itself. However, we feel that this limitation is acceptglgesen that such policies are used when

streaming through large files and all tend to behave singilantler such conditions.

2.2.2.3 Probing File-Buffer Contents

To determine the state of the buffer cache after the evidaam, we perform several probes,
measuring the time to read one byte from selected page® Hé#d call returns quickly, we assume
the block of the file was resident in the cache; if the readrnstglowly, we assume that a disk
access was required. As noted elsewhere [4], it is not plessilperform a probe of every block
to determine its state since this changes the state of tiiertmaiche; specifically, iDustprobes a
block that was on disk, then this block will replace a blocgyously in the buffer cache, changing
its state. Thus, we perform probes selectively.

To obtain an appropriate number of samples, we probe eagke $tvo times, for a total of
twenty probes. The probes are spaced evenly across thedgest rbut the location of the first is
chosen randomly from the first half of the first stripe. By kegghe probes relatively far apart, we
ensure that they do not interfere with a later probe due ttefmi@ing. Choosing a random offset
for the probes allows one to run the benchmark multiple titbegenerate a better picture of the
cache state. By runnifdgustmultiple times on a platform, one is then able to accuratetganine
how the cache replacement policy chooses victim pages lmasiitial access, recency of access,

and frequency of access.

IPrecisely, the size of the eviction scan is set equal to tierdince between the size of the cache and the size of
the test regioni(e., 0.1*cache size) plus one half the size of the cache.
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Hot Cold Evict 1 Evict 2

Figure 2.5 Access Pattern to Fingerprint History. Four distinct regions of file blocks.€., hot, cold,
evictl, and evict2) are accessed to set attributes and eairt®ns in order to identify whether or not
history is being used by the replacement algorithm. Eaatwaimdicates a region that is being accessed;
reads later in time move down the page. The width of each aatomg with a number beside it, indicates
the number of times each block is read to set the frequendiuts.

2.2.3 Fingerprinting History

The fingerprinting tool described thus far can identify emgment policies containing a single
gueue ranking blocks based upon the three attributes. Hawée previous step controls only the
short-term attributes of blocks and thus cannot identifpathms that track references to blocks
that are no longer in memoreg.g, 2Q [29]) or that track the recency of references other than t
last reference to each block.§, LRU-K [45]). We describe the LRU-K and 2Q algorithms in
Section 2.3.4 when we present the fingerprints for theserithhges. To determine if long-term
tracking is performedpustobserves if preference is given to pages that have beernefedt and
then evicted before.

We now describe how the use of long-term history is identifissishown in Figure 2.5, there
are four regions of file blocks that are now accessed. Thedggin is divided into two separate
regions that are one half the total cache sizhptand acold portion. The algorithm, shown in
Figure 2.7, begins by touching all of the hot pages and thestieg them by twice touching the
evictlregion; theevictlregion contains sufficient blocks to entirely fill the buféarche. Thus, the
hot pages are no longer in the cache, but historical infaonabout them is trackedustthen
touches thénot andcold regions three times and then toucloesd two more times. At this point,
evictlhas been evicted entirely acdld is preferred whether initial access, recency or frequency
attributes are being used by the replacement policy. Todshis touched twice. This causes the

cold region to be preferred by traditional LRU and LFHot is then retouched, this additional
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Figure 2.6 Fingerprints of Basic Replacement Policies (FIFO, LRU, LFU. The three graphs show the
time required to probe blocks within the test region of a fé@ending upon the buffer cache replacement
policy. The x-axis shows the offset of the probed block. Trexis shows the time required for that probe;
where low times (2s) indicate the block was in cache, whereas high timessjj7indicate the block was
not in cache. From left to right, the graphs simulate FIFOUL.Rnd LFU.



}

}

/* read hot */
1lseek(fd, 0, SEEK_SET);
for (i = 0; i < size/2; i += READSIZE)
read(fd, c, READSIZE);
/* read evictl */
1lseek(fd, cache_size, SEEK_SET);
for (i = 0; i < cache_size; i += page_size) {
for (j = 0; j < 2; j++) {
read(fd, c, 1); lseek(fd, -1, SEEK_CUR);
}
lseek(fd, page_size, SEEK_CUR);

/* hot - cold */
1seek(fd, 0, SEEK_SET);
for (i = 0; i < size; i += READSIZE) {
for (j = 0; j < 3; j++) {
read(fd, c, 1); lseek(fd, -1, SEEK_CUR);
}
1lseek(fd, page_size, SEEK_CUR);
}
/* cold twice */
lseek(fd, size/2, SEEK_SET);
for (i = 0; i < size/2; i += READSIZE) {
for (j = 0; j < 2; j++) {
read(fd, c, 1); lseek(fd , -1, SEEK_CUR);
}
1lseek(fd, page_size, SEEK_CUR);
}
/* hot */
1seek(fd, 0, SEEK_SET);
for (i = 0; i < size/2; i += READSIZE) {
read(fd, c, READSIZE);
}
/* hot - cold */
1seek(fd, 0, SEEK_SET);
for (i = 0; i < size; i += READSIZE) {
read(fd, c, READSIZE);
}
/* evict2 times 7 */
1lseek(fd, cache_size*2, SEEK_SET);
for (i = 0; i < (cache_size/2) + (cache_size * 0.1); i += READSIZE) {
for (j = 0; j <7; j+t) {
read(fd, c, 1); lseek(fd, -1, SEEK_CUR);
}
1lseek(fd, page_size, SEEK_CUR);
}

Figure 2.7 Dust long-term history algorithm.
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Figure 2.8 Fingerprints of Random and Segmented FIFO.The left-most graph shows that a Random
page replacement policy has a distinctive fingerprint; #zetth run of the fingerprint causes different pages
to be evicted from the buffer cache. The middle graph shovggn®ated FIFO with 30% of the buffer
cache devoted to the secondary queue; the resulting firigeigpa cyclic shift of the FIFO fingerprint. The
right-most graph shows Segmented FIFO with at least 50%eobttifer cache devoted to the secondary
gueue; since this queue is managed with LRU, the fingergriidteintical to LRU.

reference gives thlot region preference in policies which use history. The lasp girior to
eviction is to re-reference both tiet andcold regions sequentially. Notice that at this point the
hotregion has been touched the same number of times a®ltieegion but, it has been touched
in such a way that it will have migrated into the long-term ge®f a 2Q or LRU-2 cache, while
thecoldregion will have not.

As in the short-term fingerprint, the next phasdaistis to probe the test region to determine
which blocks have been kept in the file cache. If the hot reggomains in the cache, then we infer
that history is being used. If the cold region remains in thehe, then we infer that history is
not being used. Given that further identification of histatiyibutes is likely to be specific to each

replacement algorithm, we focus on only this simple histdringerprint.

2.3 Simulation Fingerprints

To illustrate the ability oDustto accurately fingerprint a variety of cache replacementiad,
we have implemented a simple buffer cache simulator. Ingésion, we describe our simulation
framework and then present a number of results. Our firstlation results verify the distinc-
tive short-term replacement fingerprints produced for tne peplacement policies of FIFO, LRU,

and LFU [53], as well as for other simple replacement patigach as Random and Segmented
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FIFO [69]. To explore the impact of internal state within tieplacement policy, we investigate
Clock [44] and Two-handed Clock [70]. We then demonstrateatility to identify the use of his-
torical information in the replacement policy, focusing2@ [29] and LRU-K [45]. We conclude

this section by showing th&@ustis robust to some inaccuracy in its estimate of buffer-cathe.

2.3.1 Simulation methodology

Given that our simulator is meant only to illustrate the ifpibf Dustto identify different OS
buffer cache replacement policies, we keep the rest of thegyas simple as possible. Specif-
ically, we assume that the only process running is our fing@rpg software, and thus ignore
irregularities due to scheduling interference. We cutyemodel only a buffer cache of a fixed
size and do not consider any contention with the virtual ngmsgstem. For most of our simula-
tions, we model a buffer cache containing approximately & (sf 20,000 4 KB pages). Finally,
we assume that reads that hit in the file cache require a curistee of 2.5, whereas reads that

must go to disk require .

2.3.2 Basic Replacement Policies

We begin by showing that the simulation results for stridt®) LRU, and LFU replacement
policies precisely matches what one can derive from theroglegraphs shown in Figure 2.4.
The fingerprints from these three simulations are showngnuréi 2.6. We further show th&tust
can identify Random replacement and Segmented FIFO [35ksé fingerprints are shown in
Figure 2.8. Across all the graphs, one can observe the tvatsled probe times, corresponding to
blocks that are in cache and those that are not. Also, onearéfly that approximately half of the
test data remains in cache.

We now examine these basic policies in turn. The FIFO fingatrphows that the second half
of the test region remains in cache; this matches the irataéss ordering shown in Figure 2.4
where blocks at the end of the file have priority. The LRU fimpgiert shows that roughly the
second quarter and the fourth quarter of the test regionirsnia the buffer cache; once again,

this is the expected behavior since those blocks have beessed the most recently. Finally, the
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LFU fingerprint shows that middle half of the file remains desit, as expected, since those blocks
have the highest frequency counts. In the LFU fingerpring can see two small discontinuous
regions that remain in cache to the left and right of the m@ioache area; this behavior is due to
the fact that within each stripe, blocks have the same fregueount and these in-cache regions
are part of a stripe that was beginning to be evicted.

Fingerprinting a Random replacement policy stresses tpelitance of runningpustmultiple
times. With a single fingerprint run of twenty probes, thexists some probability that Random
replacement behaves identically to FIFO, LRU, or LFU. Thaes by fingerprinting the system
many times, we can definitively see that random pages aretséléor replacement. This is il-
lustrated in the first graph of Figure 2.8 with two horizoniaés indicating the “fast” and “slow”
access times.

The original VMS system implemented the Segmented FIFORSkpage replacement pol-
icy [35]. SFIFO divides the buffer cache into two queues. phmary queue is managed by FIFO.
Non-resident pages are faulted into the primary queue. Vdhegage is evicted from the primary
gueue, it is moved to the secondary queue. If a page is actedske in the secondary queue, it
moves back into the primary queue. The key parameter in SEHE@ fraction of the buffer cache
devoted to the secondary queue, denatefthus,1 — P is the fraction devoted to the primary
gueue).

A value of P = 0.3 is the traditional choice and is fingerprinted in the middiapp of Fig-
ure 2.8. The resulting SFIFO fingerprint is a cyclic shiftloé foure FIFO fingerprint. The reason
for this pattern is as follows. The initial read of the testasets the contents of the primary and
secondary queues such that the first pages accassethé left portion of the test area) are shifted
down to the secondary queue and the tail of the primary queeaijght portion is at the head of
the primary queue. When the pages are touched to set theeyesed frequency attributes, the left
portion of the test area is moved back to the head of the pyimaeue while the right portion is
shifted down into the secondary queue and end of the primaaye& Thus, as blocks are evicted,

the right portion is evicted first, followed by the first blackf the left portion. Thus, with these
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Figure 2.9 Fingerprints of the Clock Replacement Policy. To identify Clock, the basic fingerprinting
algorithm is run twice. The first time it is run after the usesliave been all set; in this case, Clock behaves
identically to FIFO as shown in the graph on the left. The seldone it is run after half of the use bits have
been set; in this case, Clock has the same fingerprint as LR&hawn in the graph on the right.

gueue sizes, SFIFO produces a distinctive fingerprint wbarhbe used to uniquely identify this
policy.

As P increases, SFIFO behaves more like LRU. Wikt 0.5 the fingerprint becomes iden-
tical to that of LRU, as shown in Figure 2.8. When the secondaeue is that large, by the time
a page is touched for the second time, it has already pragtess the secondary queue. Thus,
the fingerprint reveals the LRU behavior of the policy andehas the LRU fingerprint. We feel
that since Segmented FIFO is used to approximate LRU (esdpewiith this high value ofP), it
is acceptable, and even appropriate, that its fingerprirmatabe distinguished from that of LRU.

2.3.3 Replacement Policies with Initial State

The Clock replacement algorithm is a popular approach farageng unified file and virtual
memory caches in modern operating systems, given itsyahiliapproximate LRU replacement
with a simpler implementation. The Clock algorithm is areneisting policy to fingerprint because
it has two pieces of internal initial state: the initial pio@n of the clock hand and whether or not
each use bit is set. Thus, we must ensure that Clock can befiel@iy its fingerprint regardless
of its initial state. We now describe small modifications tor smethodology to guarantee this
behavior.

In the basic implementation of Clock, the buffer cache isweié as a circular buffer starting

from the current position of thelock hand a singleuse bitis associated with each page frame.
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Whenever a page is accessed, its use bit is set. When a meygates needed, the clock hand
cycles through page frames, looking for a frame with a cltae bit and also clearing use bits as
it inspects each frame. Thus, Clock approximates LRU bya@pt pages that do not have their
use bit set and have not been accessed for some time.

Since Clock treats the buffer cache as circular, the intaaition of the clock hand does not
affect our current fingerprint. The initial position of théock hand simply determines where
the first block of the test region is placed. Since all subsagactions are relative to this initial
position, this position is transparent Bust Thus, we do not need to modify our fingerprinting
methodology to account for hand position.

However, the state of the use bits does impact our fingergdi@epending upon the fraction of
set use bitsl/, the Clock fingerprint can look like FIFO or LRU. SpecificalyhenU is near the
two extremes of 0 or 1, the fingerprint looks like FIFO; wHéns near 0.5, the fingerprint looks
like LRU. We now describe the intuition behind this behavior

In the simplest case, wheii = 0, each frame starting with the clock hand is allocated to
sequential pages of the test region. As a result, the clookl maaps back to the beginning of
the buffer cache after this allocation andixssttouches each page to set attributes, the use bit of
every page is set. During eviction, the first pages of thereggon are replaced, matching both the
behavior and fingerprint of a FIFO policy. Note thiat= 1 results in identical behavior, except the
clock hand must first sweep through all frames clearing usebgifore it allocates the test region
sequentially.

WhenU = 0.5, the left and right portions of the test region data are ramganterleaved
in memory. This interleaving occurs because pages areasédidan two passes. In the first pass,
those frames with cleared use bits are allocated to théh&aftt portion of the test region; the
use bits of these frames are then set and the use bits of tleniemframes are cleared. In the
second pass, the remaining frames are allocated to thehrggitt portion of the test region. In
the accesses to set the locality and frequency attributdgeqgiages, the use bits of all frames are
again set. Thus, when the eviction phase begins, the firsbhpages from both the left and right

portions of the test region are replaced. If the frames wethuse bits are uniformly distributed,
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this coincidentally matches the evictions of the LRU paliéyhe distribution of use bits were not
uniform, the fingerprint would show those blocks whose fratmad their use bits initially clear as
having been replaced. We consider the case where they doemlyi distributed as this provides
a consistent and recognizable fingerprint.

Thus, to identify Clock,Dust brings the initial state of the use bits into each of these two
configurations and observes the resulting two fingerprifite following steps can be followed to
configure the use bits from outside of the @®istsets all of the use bits.€., U = 1) by allocating
awarm-upregion of pages that fills the entire buffer cache and theadhimg all pages again (with
no intervening allocations) so that their use bits are set.

Setting half of the use bits.é., U = 0.5) is slightly more complex. The first step is to set all
the use bits as in the previous scenario. In the second Biegiallocates a few more pages to
the warm-up region; since all of the reference bits are s#tiafpoint, the clock hand must pass
through the entire buffer cache, clearing all of the refeeehits, to find a page to evict. The final
step is to randomly touch half of the pages, setting theiritse In this way,Dustcan configure
the state of the use bits.

In summary, we modifyDust slightly to account for internal state. Before running amy fi
gerprint, Dust first allocates the warm-up region, which has the effect ttireeuse bits if the
replacement policy implements them. If the resulting fipgiert looks like FIFO, therDustruns
again with half the use bits set. If the fingerprint still Iedke FIFO, then we conclude that there
are no use bits and the underlying policy is FIFO. If the sdcfimgerprint looks like LRU, we
conclude that Clock is the underlying policy. The resultuifming these two steps on the Clock

replacement policy is shown in Figure 2.9.

2.3.4 Replacement Policies with History

We now show thaDustis able to distinguish those replacement policies that asg-term
history from those that do not. We begin by briefly showing tie policies examined above
(FIFO, LRU, LFU, Random, Segmented FIFO, and Clock) do nethistory. We then discuss in
more detail the behavior of those policies (LRU-K and 2Q} ttmuse history.
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Figure 2.10History Fingerprint of Short-term Policies. Probes are performed on only pages in the hot
(i.e. the blocks on the left) and coldé€., the blocks on the right) test regions. The graph on the leftvs

the fingerprint for FIFO, LRU, LFU, and Segmented FIFO. Sitieecold test region remains in the buffer
cache, these policies do not prefer pages with history. Taehgin the middle shows that Random also has
no preference for pages with history and thus does not userhig-inally, the graph on the right shows
that the historical fingerprint of Clock is ambiguous if theelbits are not set; after the use bits have been
properly set, the fingerprint is identical to leftmost graph

Simulated LRU-2 Fingerprint (Correlated Reference Count =0)  Simulated LRU-2 Fingerprint (Correlated Reference Count = 10) Simulated LRU-2 History Fingerprint

10000 10000 10000 g-
%) ) o)
T ° T
= =4 =
8 1000 ¢ 8 1000 8 1000
Q [ Q
1% 0 1%y
=] o =]
S S S
€ 100 £ 100 E 100 ¢
o @ o
E E 15
[ = [
s 10 | = 10 s 10 |
© © ©
Q [ Q
o —— — o o | — —

1 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120 140 160 180
File Position (MB) File Position (MB) File Position (MB)

Figure 2.11Fingerprints of LRU-2. The first graph shows the short-term fingerprint of LRU-2 wte:n
correlated reference count is set to zero; in this case, RRlisplaces those pages with a frequency count
less than 2 and those whose second-to-last reference itdist.oThe second graph shows the short-term
fingerprint of LRU-2 when the correlated reference couni@seased; here, no pages in the eviction with a
frequency count higher than two are evicted. Finally, tis¢ ¢maph shows the history fingerprint of LRU-2,
verifying that it prefers the hot pages.
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Figure 2.10 shows the long-term fingerprints of three repregive policies that do not use
history. The graph on the left is that for LRU; FIFO, LFU, anegented FIFO look identical and
are not shown. The graph shows the results of probing thertbtald regions of the test data.
As expected, the hot data has been entirely evicted, as shpws high probe times; although
the initial portion of the cold data is also evicted due to $iee of the eviction region, the cold
data is clearly preferred by these policies. The middlelysdws that Random has no preference
for either hot or cold data. Finally, the graph on the rightwsh that the historical behavior of
Clock is difficult to determine when the use bits are not exh)i controlled. In this graph, the use
bits are set td/ = 0.5; as a result, the hot and cold regions are interleaved in ld&difer and
then each region is replaced sequentially. To illustraa¢ @lock does not use histofpust must
again ensure that the use bits are all first cleared (or sét);this initialization step, the history
fingerprint of Clock is identical to the first graph in the figuiThus, FIFO, LRU, LFU, Segmented
FIFO, Random, and Clock do not use history in making replarem

The LRU-K replacement policy was introduced by the databasgmunity to address the prob-
lem that LRU is not able to discriminate between frequentl¢ emfrequently accessed pages [45].
The idea behind LRU-K is that it tracks tHhé-th reference to each page in the past, and replaces
the page with the oldegt-th reference (or a page that does not have-th reference); thus, tradi-
tional LRU is equivalent to LRU-1. Given th& = 2 exhibits most of the benefits of the general
case, and is the most commonly used value, we only considgr2 Rirther. LRU-2 is sensitive
to another parameter as well, the correlated referenceéri the intuition is that accesses to a
page within this period should not be counted as distineregfces. Since setting correctly is
a non-trivial task, the default value féf is zero. Given that LRU-2 is complex, we note that our
implementation is derived from the version provided by thginal authors [46].

We begin by briefly exploring the sensitivity of LRU-2 to therrelated reference period; the
short-term fingerprints of LRU-2 are shown in the first twogra of Figure 2.11. Whe@' = 0
(i.e. the default value) the resulting fingerprint is a variatafrpure LRU, as shown in the left-
most graph. Specifically, the last stripe of the test regsoevicted with LRU-2; since this stripe

was accessed only twice, its second-to-last referencaysole (i.e., when the page was initially
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Figure 2.12Fingerprints of 2Q. The first fingerprint of 2Q shows that the short-term replageinpolicy
used is FIFO. The second fingerprint shows that 2Q uses Wigti@ferring pages that have been accessed
and then evicted. The third fingerprint shows that the reptaant policy used for pages in the main queue
is LRU.

referenced). As the correlated reference period is ineceasch that’ > 0, the fingerprint looks
more similar to LFU, as shown in the middle graph. With thigisg, pages in the eviction region
are classified as having only correlated references anddplece mostly themselves; thus, all of
those pages that have a frequency count greater than tw@prénkmemory. Finally, whed' is
very large, all accesses are treated as correlated anddipages have a second-to-last reference;
in this case the behavior degenerates to pure LRU (not shovrgummary, LRU-2 produces a
distinctive fingerprint that uniquely identifies it and alsalicates the approximate setting of the
correlated reference period.

Next, we verify that LRU-2 uses history. The last graph inufeg2.11 shows the historical
fingerprint of LRU-2. As desired, the hot region is given prehce over data in the cold region;
this occurs because the second-to-last reference of padfes hot region is more recent than the
second-to-last reference to those in the cold region. Egrthhen a replacement must be made
within the hot region, those with the oldest second-to+lef#rence are chosen.

The 2Q algorithm was proposed as a simplification to LRU-21Weks run-time overhead yet
similar performance [29]. The basic intuition behind 2QHhattinstead of removing cold pages
from the main buffer, it only admits hot pages to the mainé&ufThus, the buffer cache is divided
into two buffers, a temporary queue for short-term accegdes which is managed with FIFO,
and the main bufferAm, which is managed with LRU. Pages are initially admitteaititeA1in

gueue and only after they have been evicted and reaccesséuegradmitted intdm. Thus, 2Q
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Figure 2.13Sensitivity of LRU Fingerprint to Cache Size Estimate.These graphs show the short-term
fingerprints of LRU as the estimate of the size of the buffehess varied. In the first graph the estimate is
too high by 20%, in the second graph the estimate is perfadtirathe third graph the estimate is too low
by 20%. However, all fingerprints still uniquely identify LR

has another structure to remember the pages that have bmsssad but are no longer in the buffer
cacheAlout. In our experiments, we sétiin to use 25% of the buffer cache (witln using the
other 75%);A10ut is able to remember a number of past references equal to 5@8& olumber
of pages in the cache.

We show the fingerprints for 2Q in Figure 2.12. The first grapbves that the short-term
fingerprint of 2Q is identical to FIFO. Given that théin queue is managed with FIFO and the
short-term fingerprint does not access pages after theydemreevicted, this is the expected result.
However, 2Q can be easily distinguished from pure FIFO frdrseoving the history fingerprint
shown in the second graph. In the historical fingerprint, we see that the hot region remains
entirely in the buffer cache, since these are the only aesetsmt are moved to them buffer.
Finally, we are able to identify the replacement policy eoypld by the long-term buffetim,
by setting the initial access, recency, and frequencybates of the hot region and then forcing
evictions from it. Since this methodology is more specifithi® 2Q replacement policy, we do not
describe it in more detail. This fingerprint is shown as tis¢ ¢gaaph of Figure 2.12 and correctly
identifies the LRU policy of thesm buffer. We note that for LRU-2 or other policies that use
history, a similar technique could be used to determine épé&acement strategy of the long-term
gueue. However, explicitly setting the state of the longrteueue requires knowledge of the

policy of the short-term queue and the policy for moving acklérom one queue to the other.
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Figure 2.14Sensitivity of Clock Fingerprintto Cache Size Estimate.These graphs show the short-term
fingerprints of Clock with half of the use bits set as the eaterof the size of the buffer cache is varied.
With U = 0.5, Clock is expected to look like LRU. In the first graph the estie is too high by 10%, in the
second graph the estimate is perfect, and in the third gregbdtimate is too low by 10%. Thus, the Clock
fingerprint is not as robust to inaccuracies in this estinaatthe other algorithms.
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Hence a fingerprinting technique for the long-term queusy isdiure specific to the policy of the

short-term queue.

2.3.5 Sensitivity to Buffer Size Estimate

In our last set of experiments we verify the robustned3ustto inaccuracies in its estimate of
the size of the buffer cache. If the estimate of the buffeheagize is significantly different than
its actual value, then the resulting fingerprints are nontifiable. If the estimate of the cache is
much too small, theDustdoes not touch enough pages to force evictions to occure ieftimate
is much too large, theBustevicts the entire region.

The short-term fingerprint is more sensitive to this estenthin the historical fingerprint: in
the short-term fingerprint we must observe the presencesanale of stripes that use only 1/10th
of the buffer cache, whereas in the historical fingerprintmest observe a hot or cold region that
uses half of the buffer cache. However, as Figure 2.13 shitesshort-term fingerprint of LRU
is distinguishable even with estimates that are either 268euor over the real sizes. The other
replacement policies, with the exception of Clock, are stho a similar degree.

The Clock replacement algorithm is more sensitive to thisnege due to our need to configure
the state of the use bits. Specifically, the size of the wapmegion used bypustto fill the buffer
cache must be accurate as well. Figure 2.14 show®xhstiis still reasonably tolerant to errors in

cache-size estimate when identifying Clock but not as rosisvhen identifying other algorithms.

2.3.6 Summary

Through our simple simulation, we have shown tBatstis capable of identifying a wide
variety of buffer cache replacement polici€sistdifferentiates policies based on the attributes of
the workload they use to make replacement decisions: liaitizess order, access recency, access
frequency and long-term historyDust also accounts for use bits in Clock-like algorithms. In
the next section, we demonstrddeist identifying cache replacement policies of real operating

systems.
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2.4 Platform Fingerprints

Buffer caching in modern operating systems is often muchenommplex than the simple
replacement policies described in operating systemsdekt Part of this complexity is due to the
fact that the file system buffer cache is integrated with in@a memory system in many current
systems; thus the amount of memory dedicated to the buféérecean change dynamically based
on the current workload. To control this effeBiistminimizes the amount of virtual memory that
it uses, and thus tries to maximize the amount of memory eéeMaithe file buffer cache. Further,
we runDuston an otherwise idle system to minimize disturbances frompeting processes.

In this section, we describe our experience fingerprintimge Unix-based operating systems:
NetBSD 1.5, Linux 2.2.19 and 2.4.14, Solaris 2.7 and HP-UX A% we will see, the fingerprints
of real systems contain much more variation than those ofwoulations. In addition to finger-
printing the replacement policy of the buffer cacbBeistalso reveals the cost of a hit versus a miss
in the buffer cache, the size of the buffer cache, and whetheot the buffer cache is integrated
with the virtual memory system.

Dust takes a considerable amount of time to run on a real systermer@ing a sufficient
number of data points requires running many iterations sif $ean, eviction scan, and probes.
In our experiments we always allowed at least 300 iteratioe found that one iteration can
take anywhere from 30 seconds to three minutes dependinigeosystem under test. Note that
systems with smaller buffer caches can be tested in a shpetexd of time since the test region
becomes smaller. We feel this relatively long running tirmeacceptable since, for any given
system configuratiorustneed only be run once; the results can be stored and madealdedi
applications and programmers.

All of the experiments described in the section were run atesys with dual Pentium I11-Xeon
processors, 1 GB of physical RAM and a SCSI storage subsystgntultra2, 10000 RPM disks.
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Figure 2.15 Fingerprints of NetBSD 1.5. The first graph shows the short-term fingerprint of NetBSD,
indicating the LRU replacement policy. The second graplwshbe long-term fingerprint, indicating that
history is not used.

24.1 NetBSD 1.5

Given that NetBSD 1.5 [39] has the most straight-forwardaegment policy of the systems
we have examined, we begin with its fingerprint, shown in Feg2.15. As in the simulations,
we examine both short-term and long-term fingerprints. Trst §raph in Figure 2.15 shows
the expected pattern for pure LRU replacement; given Ehadt produces this same fingerprint
regardless of whether it attempts to manipulate use bitscameinfer that NetBSD implements
strict LRU, and not Clock. This conclusion is further verifiey the second graph of Figure 2.15
showing that NetBSD does not use history. Documentatioh §B@ inspection of the source
code [43] confirm our finding.

From the fingerprints we can also infer other parameterscifsgadly, we can see that the time
for reading a byte from a page in the buffer cache is on therafi20 s, whereas the time for
going to disk varies between aboutrids and 10ms. Further, even on this machine with 1 GB of
physical memory, NetBSD devotes only about 50 MB to the loudéehe (most easily shown by
the fact that the history fingerprint devotes this much mgntorthe hot and cold regions); this

allows us to infer that the file buffer cache is segregateahfitee VM system.
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Figure 2.16 Fingerprints of Linux 2.2.19. The first graph shows the short-term fingerprint of Linux
2.2.19 when the use bits are all set; the second graph shevisgierprint when the use bits are untouched.

2.4.2 Linux?2.2.19

Linux 2.2.19 is a very popular version of the Linux kernel iroguction environments. In
Section 2.5 we will run the NeST web server on top of this O8stht is important for us to
understand this fingerprint.

The short-term fingerprint of Linux 2.2.19 is shown in Fig@r&6. The graph on the left shows
the results whebustattempts to set all of the use bits. Since this graph looksHilEO, we must
investigate further to determine if Clock is actually beursged. The graph on the right shows the
fingerprint when the use bits are left in a random state. Aigjiathis fingerprint is very noisy, one
can see that priority is given to pages that are most recesfidyencedi(e., pages near the second
and fourth quarters); further, after filtering the data, we @ble to verify that more pages in the
first and third quarters are out of cache than in cache. Thissfibhgerprint is similar to the LRU
fingerprint expected for a Clock-based replacement algorit Examination of the source code
and documentation confirms that the replacement policyasibased [36, 72]. Finally, since the
buffer cache size is very close to the amount of physical RAMhe system, we conclude a buffer

cache that is integrated with the VM.

2.4.3 Linux2.4.14

The memory management system within Linux underwent a legsion between version

2.2 and 2.4, thus we see a very different fingerprint for Li@uk 14, which uses a more complex
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Figure 2.17 Fingerprints of Linux 2.4.14. The first graph shows the short-term fingerprint of Linux
2.4.14, indicating that a combination of LRU and LFU is usddhe second graph shows the long-term
fingerprint, indicating that history is used.

replacement scheme than either Linux 2.2.19 or NetBSD. fbd-$¢erm fingerprint, shown as the
first graph in Figure 2.17, suggests that Linux 2.4 uses bodtency and frequency component,
and does not use Clock. Further, the second grapustshows that Linux 2.4 does use history
in its decision.

Examination of the Linux 2.4.14 source code and existingudwntation confirms these re-
sults [36, 72]. Linux maintains two separate queues: aneatid an inactive list. When memory
becomes scarce, Linux shrinks the size of the buffer cach@oihg this, pages that have not been
recently referenced (as indicated by their reference atjreoved from an active list to an inactive
list. The inactive list is scanned for replacement victisgg a form of page aging, in which an
age counter is kept for each frame, indicating how desirabla itoi keep this page in memory.
When scanning for a page to evict, the page age is decreagied esnsidered for eviction; when
the page age reaches zero, the page is a candidate for Bvi€tieageis incremented whenever

the page is referenced.

2.4.4 Solaris 2.7

Solaris presented us with the greatest challenge of thiopiad we studied. The VM subsys-
tem of Solaris has not been thoroughly studied; it is betieeeuse a two-handed, global Clock
algorithm [11], but some researchers have noted non-veusehavior [4]. In two-handed Clock,

one hand clears reference bits while the second hand folom® fixed distance behind, selecting



40

Solaris 2.7 Dust Fingerprint Solaris 2.7 History Fingerprint

. 100000
.
i+ gt Yy 4
. ]
:;* C »
+ 3
. Y N

100000

10000

10000 | @

1000 1000

100 100 -

Read Time (microseconds)
Read Time (microseconds)

o . o i oy At e
w Ee S —— N
10 10 ¢
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800
File Position (MB) File Position (MB)

Figure 2.18 Fingerprint of Solaris 2.7. The first graph shows the short-term fingerprint of Solatis; t
second graph shows the history fingerprint.

a page for replacement if its reference bit is still cleare Flands are advanced in unison such that
once the reference bit on a page is cleared, it has some apfgrto be re-referenced before it is
a candidate for eviction. When implemented in our simuldta fingerprint of two-handed Clock
looks identical to FIFO (not shown).

The short-term fingerprint of Solaris 2.7 is shown in the fystph of Figure 2.18. The out-of-
cache areas on both the far right and left of the fingerprioingly suggests that Solaris is using
a frequency (or aging) component in its eviction decisioaddition to Clock. The second graph
of Figure 2.18 shows the historical fingerprint for Solafisough the data is again noisy, it shows
a clear preference for the hot region, again suggestinghibtiry or page aging is also used in
Solaris. The fingerprint also shows that the time to servigeffer cache hit is significantly higher
in Solaris than in Linux. The fingerprint shows a hit time oeow0.s, whereas the hit time for

Linux 2.4 on the same platform is under 8.

2.45 HP-UX11i

The last system we fingerprint is HP-UX 11i, running on an llit@nium system. For this
experiment we configured HP-UX to limit the size of the buffache to 40,000 pages. This is
entirely for convenience d3ustcompletes faster on smaller caches.

Figure 2.19 shows the fingerprint for HP-UX 11i. The graphsvsithe fingerprint both at-

tempting to set all of the use bits to be uniform, and leavivent set randomly. Since the graphs
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Figure 2.19 Fingerprints of HP-UX 11i (Itanium). The first graph shows the short-term fingerprint of
HP-UX 11i when the use bits are randomized; the second graphssthe fingerprint when the use bits
are uniform. The fingerprint indicates that a combinatiomeafency and frequency is being used. The

fingerprint doesn't significantly change based on use bitimaation, so use bits are being ignored by the
policy.
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are virtually the same, we conclude that no use bits exisheyr are being ignored by the replace-
ment policy. Similar to the short-term fingerprint of Linuxd214, HP-UX appears to use both
recency and frequency in determining replacement dedsiSource code for HP-UX 11i is not

available to us so we are unable to verify our conclusionimdhse.

2.4.6 Summary

This section describedustfingerprints for several popular operating systems: NetBSH)
Linux 2.2.19 and 2.4.14, Solaris 2.7 and HP-UX 11i. Fingeetprg real systems is more chal-
lenging for a variety of reasons. Real operating systenmenafse replacement policies that are
more sophisticated than simple LRU or LFU, and thus are miffieldt to identify. Fingerprints
from real systems are far noisier than simulated fingerpduoe to variations in access times in the
storage stack and other processes running on the systemitdtbese difficultiesDustis able to
identify the replacement policies of these systems.

In some cases, such as NetBSD it is easy to identify the gregdacement algorithm from the
Dustfingerprint. For systems with more sophisticated replacgipelicies, it may not be possible
to pinpoint the replacement policy, but tBeistfingerprint still reveals what workload attributes
are being used to make replacement decisions. We believevthia this more limited information
is still useful. In the next section, we discuss a cache-awabserver and show that somewhat

inaccurate information is still quite valuable.

2.5 Cache-Aware Web Server

In this section, we describe how knowledge of the buffer ea@placement algorithm can be
exploited to improve the performance of a real applicatdfe do so by modifying a web server
to re-order its accesses to first serve requests that atg tikéit in the file system cache, and
only then serve those that are likely to miss. This idea ofliag requests in a non-FIFO service
order is similar to that introduced in connection schedyliveb servers [17]; however, whereas
that work scheduled requests based upon the size of thestegqueeschedule based upon predicted

cache content. As we will see, re-ordering based on cachermoinoth lowers average response
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time (by emulating a shortest-job first scheduling disag)iand improves throughput (by reducing
total disk traffic).

2.5.1 Approach

The key challenge in implementing the cache-aware serveruse our knowledge of the file
caching algorithm to determine which files are in the cachg.k&ping track of the file access
stream being presented to the kernel, the web server canasaribe operating system’s buffer
cache and thus predict at any given time what data is in cAadéerm thisalgorithmic mirroring,
and believe that it is a general and powerful manner in whaatxploit gray-box knowledge.

One important assumption of algorithmic mirroring is tha aipplication induces most or all
of the traffic to the file system, and thus the mirror cachekslyi to accurately represent the
state of the real OS cache. Although this assumption may aldtih the general case within a
multi-application environment, we believe it is feasiblaem a single application dominates all
file-system activity. Server applications such as a webes@wdatabase management system are
thus a perfect match for such mirroring methods.

The NeST storage appliance [9] supports HTTP as one of ity/raacess protocols. NeST
allows a configurable number of requests to be serviced amebusly. Any requests received
beyond that number are queued until one of the pending resjaempletes. By default, NeST
services queued requests in FIFO order. We term this ddfablvior azache-oblivious NeST

We have modified the NeST request scheduler to keep a mode¢ @utrent state of the OS
buffer cache. The model is updated each time a request idglgte NeST bases its model of the
underlying file cache on the algorithm exposeddist NeST uses this model to reorder requests
such that those requests for files believed to be in cacheearieed first. Note that NeST does not
perform caching of files itself, but relies strictly upon @& buffer cache.

For the cache mirror to accurately reflect the internal sibitlee OS, NeST must have a reason-
able estimate of the cache size. In our current approachl Ne&s the static estimate produced by
Dust the disadvantage of this approach is that this estimateoidyzced without contention with

the virtual memory system, and thus may be larger than theiat@vailable when the web server
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is actually running. To increase the robustness of our eséinit would be possible to modify
NeST to dynamically estimate the size of the buffer cache bgsuring the time for each file ac-
cess. If the timeis “low”, the file must have been in the caelngl, if it is “high”, the file was likely

on disk. By comparing these timings with the prediction pded by the mirror cache, NeST can

adjust the size of the mirror cache.

2.5.2 Performance

To evaluate the performance benefits of cache-aware sc¢hgdwke compare the performance
of cache-aware NeST to cache-oblivious NeST for two difiereorkloads. In all tests, the web
server is run on a dual Pentium IlI-Xeon machine with 128 MBnain memory and Ultra Il disks.
For clients, we use four machines (identical to the serxeget containing 1 GB of main memory)
each running 36 client threads. The clients are connecttégbtserver with Gigabit Ethernet.

The server and clients are running Linux 2.2.19, which wasmshin Section 2.4.2 to use
the Clock replacement algorithm; therefore, cache-awa&®TNs configured to model the Clock
algorithm as well. In our configuration, the server has apipnately 80 MB of memory dedicated
to the buffer cache. In our experiments, we explore the padnce of cache-aware NeST as we
vary its estimate of the size of the buffer cache. As disalipseviously, the Clock algorithm has
initial state in the form of use bits, which effect replacené/Ne ignore this small complication
in cache-aware NeST. This may result in some inaccuracyeimtbdel initially, but since NeST
dominates the systems workload, the previous state is lguiflakhed and the model kept by NeST
becomes accurate.

In our first experiment, we consider a workload in which ed@ntthread repeatedly requests
a uniformly distributed random file from a set of 200 1 MB filé3gures 2.20 and 2.21 show the
average response time and throughput, respectively fee ttifferent web servers: the Apache web
server [1], cache-oblivious NeST, and cache-aware NeSTuascton of its estimate of cache-size.
We begin by comparing the response time and the throughpug8f and Apache; from the two
figures, we see that although NeST incurs some overheadfibexible structured.g, NeST can

handle multiple transfer protocols, such as FTP and NF&ghieves respectable performance as
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a web server and is a reasonable platform for studying caslaee scheduling. Second, and most
importantly, adding cache-aware scheduling significamtiproves both the response time and
the throughput of NeST. By first servicing requests thatrhihie cache, cache-aware scheduling
improves average response time by servicing short regfiettsMore dramatically, cache-aware
scheduling improves throughput by reducing the numbersi tkads (verified through thie@roc
interface): in-cache requests are handled before thaaridatvicted from the cache. Finally, the
performance of cache-aware NeST improves when its estioidtee cache size is closer to the
real value, but is robust to a large range of cache size egtgina

In our second experiment, we consider a workload createché&\StURGE HTTP workload
generator [7]. The SURGE workload uses approximately I2digtinct files with sizes taken from
a Zipf distribution with a mean of approximately 21 KB. SURGEhus a more representative web
workload than is presented above.

With the SURGE workload, we measure qualitatively simisuits to those above, except for
two main differences. First, the performance of cachevallis NeST relative to Apache degrades
slightly more; for example, the average response time foheablivious NeST is 0.80 seconds
and for Apache is 0.65 seconds. This result is expectedngheat NeST is designed for staging
data in the Grid, and is thus optimized for large files and hetdmall files more typical in web
workloads. Second, the performance of cache-aware NeSat iasnsensitive to its estimate of
the cache size; for example, performance improves from MIR/5 to 4.69 MB/s (approximately
10%) as the cache size estimate is improved from 10 MB to 80 Mfache achieves 4.91 MB/s.

2.6 Conclusions

We have shown that various buffer cache replacement adhgasitcan be uniquely identified
with a simple fingerprint. Our fingerprinting todbust, classifies algorithms based upon whether
they consider initial access, locality, frequency, anddistory when choosing a block to replace.
With a simple simulator, we have shown that FIFO, LRU, LFUyeX, Random, Segmented FIFO,
2Q, and LRU-K all produce distinctive fingerprints, allogithem to be uniquely identified. We
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Figure 2.20Response Time as a Function of Cache Size Estimat@esponse time in cache-aware NeST
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have also begun to address the more challenging problemgefrfinnting real systems. By run-
ning Duston NetBSD, Linux, and Solaris, we have shown that we can ohixterwhich attributes
are considered by each page replacement algorithm.

Further, we have shown that the algorithmic knowledge redday Dustis useful for predict-
ing the contents of the file cache. Specifically, we have impleted a cache-aware web server
that services first those requests that are predicted to thieifile cache, improving both response
time and bandwidth. Thus it is possible for applicationsiszadver and utilize knowledge of the
contents of the buffer cache, despite the operating sys¢emg ldesigned to hide such information.
In this way, we regain some of the knowledge lost due to impl&ing caching at the operating
system level, while at the same time retaining the benefitsagntralized caching infrastructure.
We also show that even though this information might be hadegree of inaccuracy, it can still
be used to gain significant performance improvements.

The cache information discovered Bystis obtained and used by cache-aware NeST without
any alterations to the existing operating system. LeaviegQS unmodified yields several advan-
tages. First, porting to a new OS is made simple; it only nexguiunningDustto discover the new
system’s cache management strategy. Second, any risk ofgalddgs to the OS is eliminated;
any new bugs will be confined to the user-level applicatianaliy, techniques based on implicit
information can be used and deployed without requiring tresent of OS developers; techniques
based on implicit information can be used on a per-appbodiasis, rather than on a per-OS basis.

Implicit information is sometimes inaccurate. While theiopzation described here can tol-
erate some inaccuracy, one might imagine more aggressiimingtions that require accurate
information. Here if cache-aware NeST mispredicts the easthte, it merely results in a bad
scheduling decision. As long as its predictions are comrexgt of the time, performance will still
be better than it would be if cache state were ignored. If fh@ieation is attempting an opti-
mization where a misprediction of the cache state couldgtample, result in extra disk accesses,
performance might suffer severely if the information beirsgd is inaccurate. For optimizations

in this class, implicit information may be insufficient.
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Chapter 3
Exposing Buffer Cache State with Explicit Information

3.1 Introduction

Implicit information is, by its nature, imperfect. In thessaof our cache-aware web server,
imperfect information is acceptable. Having an imperfégbathmic mirror is unlikely to lower
performance below the level of being cache-oblivious. Asigeovered, the cache size estimate
can be quite inaccurate before performance drops to bemegasfithe cache-oblivious connection
scheduler. The reason for this is twofold. First, as longhaspredictions are right most of the
time, performance will be better than the cache-oblivioebwerver. Second, since the policy
being used was recency based, for any cache size estimatapit recent items in the cache will
be predicted correctly since these items will be in the ggetion of the sets of contents of both the
cache mirror and the actual cache. That said, we would liketable to perform more aggressive
optimizations where it is possible that inaccurate infaroracould actually degrade performance.

There are other potential sources of inaccuracy as welhéfalgorithmic mirror is simulat-
ing the wrong policy, the resulting cache predictions mayngerrect. The level of error in the
prediction will be a function of the difference between tladiqy being simulated and the actual
policy. For example, if the algorithmic mirror is simulagihRU and the actual policy is Clock, the
degradation s likely to be very small since these policres/ary similar in what they keep cached.
However, if the actual policy is Clock and the algorithmiarar is simulating MRU, depending
on the workload the predictions are likely to be wrong mogheftime.

Another possible source of error is interference from otireccesses. Consider a web site

with a database back-end. At a small site, the web servertmighon the same machine as the
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DBMS. If either of these applications depends on an algarichmirror, that mirror is likely to
be inaccurate. The only way to prevent this inaccuracy isaie@lboth applications aware of each
other and collaborate to keep a common algorithmic mirrotougate.

As we saw in the previous chapter, implicit information césode costly to acquireDustfor
example, requires that the system be quiescent and evemnetake hours to run to completion.
If a production system is being upgraded to a new versionebtlerating system, the amount of
downtime required to ruust may not be acceptable and another system with an identical OS
version may not be available.

To address these limitations, we expleselicit information We modify the operating system
to explicitly expose useful information to applicationshig gives applications timely, accurate
information that is easy to access at the cost of having tafjntite operating system kernel.

Exposing information only, rather than adding new mecharjsnakes our kernel modifica-
tions very simple. This helps to mitigate the usual diffimdtassociated with kernel development.
There is very little risk that our modifications will interfewith the existing mechanisms and poli-
cies of the system, since we only read kernel data structuresiever modify them. Since our
modifications are relatively safe in this respect, we beliewill be easier to have them integrated
into popular systems.

We also believe that information interfaces are often masatile than implementing new
mechanisms directly in the operating system kernel. Fomg@k&, in this chapter we show that by
exposing cache state, it is possibly to transform the kirbeffer cache replacement policy into
nearly any other policy. There are two ways in which this infation-based approach is more ver-
satile than a direct implementation. First, using the apgnahis chapter describes, an application
can implemenanycache policy that is desired. This is much more flexible thariryg the kernel
provide a different cache policy. Even if the kernel proddeselection of policies to choose from,
the application would still have to choose from that finite &y providing information only, we
let the application implement whatever policy suits it. @®t, the interface we describe could
be used for purposes other than policy transformation. kamgle, we could use it to make our

algorithmic mirror from the previous chapter perfectly a@te and eliminate the need foust
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Extensible operating systems have been studied for mamg y£@, 58]. One approach to
extensible systems has been to allow applications to umlodd into the kernel. The problem then
becomes one of protecting the rest of the system from mistialpéernel extensions. Exporting
information provides a way to extend kernel functionalityhout the risks and costs of allowing
application code to be loaded into the kernel.

In this chapter, we show that by exposing two key pieces efiv@l operating system state to
user-level applications, we enable those applicationdficiently transform the kernel provided
buffer cache policy into the replacement policy of the aggiions choice. For applications with
a high degree of knowledge about the 10 workload they pregsbatability to alter the cache
replacement policy can yield substantial benefits. Daabasnagement systems are particularly
well suited to this sort of optimization since, once a qudanps chosen, a DBMS has a great deal
of knowledge about it's near-term future 10 patterns [16].

We now discuss some issues and trade-offs with exposingkeriormation in general. We
then describe and evaluate our new interface for exposmgystem buffer cache state, focusing
on our Linux implementation with a brief discussion of oupexence porting that interface to

NetBSD.

3.2 Information Exposure Issues

In this section, we discuss the general issues of expostegnal kernel state. We begin by
presenting the benefits of exposing more information abloaitpblicies and state of the OS to
higher-level services and applications. We then discusesd the fundamental tensions concern-
ing how much information should be exposed. This discusisi@pplicable not only to exposing

buffer cache information, but to exposing any kernel staté¢ user-level [5].

3.2.1 Tensions in Design

When exposing kernel state, a number of design decisions Ineusiade. We now discuss
some of the issues pertaining to the amount of informatiahighexposed, exposing information

across process boundaries, and exposing informatioraeishstieadding new mechanisms.
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3.2.1.1 Amount of information

One tension when designing an kernel to expose informasido decide what information
should be exported. On the one hand, exporting as much iateymas possible is beneficial since
one cannot always know priori what information is useful to higher-level services. On dliger
hand, exposing information from the OS greatly expands tRé gxesented to applications and
destroys encapsulation.

There are unfortunate implications for both the applicaémd the OS when the API is ex-
panded in this way [19]. For example, consider a new useatksrvice that wants to control the
page replacement algorithm and must know the next page tuittea by the OS. If the service
is developed on a system that uses Clock replacement, tieeapiblication examines the clock
hand position and the reference bits. However, if this seris moved to a system with pure LRU
replacement, the service must instead examine the postfitime page in the LRU list. From
the perspective of the user-level service, a new API imghes either the service no longer op-
erates correctly or that it must be significantly rewritt&mom the perspective of the OS, a fixed
API discourages developers from implementing new algoritin the OS and thus constrains its
evolution.

Therefore, for application portability, information exgng interfaces must keep some infor-
mation hidden and instead provide abstractions. Howewverthie sake of OS innovation, these
abstractions must be at a sufficiently high level that an atpgy system can easily convert new
internal representations to these abstractions.

Exposing too much information might also lead to perforngassues. Ones first instinct might
be to expose the contents of thetire buffer cache to applications. Exposing everything would
ensure that the application had all the of the informatiocoitld possibly need (provided such
information exists), however it would be difficult to design interface to efficiently move that
much data from the kernel into a user-level process. Fuyrtiece the cache state is constantly
changing it would be challenging to keep the informatiomskey the application up to date fast

enough if the entire cache were exposed.
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We believe that precisely determining the correct abstmastfor exposing kernel state in this
way requires experience with a large number of case stud@®perating systems. In this dis-
sertation, we take a first step in defining these abstractiotise case of the file system buffer
cache. More importantly, we demonstrate the ease with whfohmation can be exposed and the
potential application improvements that can be realizetbbgraging such information.

To represent the file cache replacement algorithm, we findahaioritized list of resident
pages allows user-level services to efficiently determihékvpages will be evicted next. Our
implementation illustrates that implementing these aasimns for an existing OS is relatively

simple and involves few lines of code.

3.2.1.2 Process boundaries

Another tension when designing interfaces to expose irdtion information is to determine
the information about competing processes that should pesex to others. On the one hand,
the more information about other processes that is expdednore one process can optimize
its behavior relative to that of the entire system. On thewotiand, more information about other
processes could allow one process to learn secrets or totharperformance of another process.

Clearly, some information about other processes must tokehitbr security and privace(g,
the data read and written and the contents of memory pagibhuyh other information about the
resource usage of other processes may increase the pevalaovert channels, this information
was likely to be already available, but at a higher cost. Eamngle, with a resident page list,
a curious process may infer that another process is acgeasipecific file; however, by timing
the open system call for that file, the curious process caadyr infer from a fast time that the
inode for the file was in the file cache. If exposure of certaforimation proves to be a risk, it can
be hidden by doing more work; with the resident page list eplanthe corresponding file block
number can be removed for those pages that do not belong taliivey process.

This issue also addresses the suitability of competingiepmns performing information
based optimizations. One concern is that services are eaged to “game” the OS to get the

control they want, which may harm others. With more inforimmata greedy process can acquire
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more than its fair share of resources; for example, a greexyce that keeps its pages in memory
by touching them before they are evicted is able to stealdsafrom other processes. However,
given that an we not providing any new mechanisms, this hehawas possible in the original
OS, albeit more costly to achieve. For example, withoutiekpdache state information, a greedy
process can continually touch its pages blindly, imposiujteonal overhead on the entire system.
As was shown in the Chapter 2 even without explicit inforrmatiapplications can already deter-
mine cache state to a fair degree of accuracy. In summarlicappns using explicit information
stresses the role of the OS to arbitrate resources acrogsetioghapplications ., to define limits

in its existing policies), but does not impart any new resoifities.

3.3 Cache Information Interfaces

Different applications benefit from different file cache lesgement algorithms [14, 45, 60],
and modifying the replacement policy of the OS has been use@monstrate the flexibility of
extensible systems [58]. We can emulate similar functipnalith only minimal changes to the
operating system. We implement a user-level library, IfpRce, that demonstrates a variety
of replacement algorithm®(g, FIFO, LRU, MRU, and LFU) can be implemented on top of the
unmodified Linux replacement algorithm.

We begin by describing the intuition for how the file cachdaepment policy can be treated as
a mechanism, giving replacement control to applicatiormdtier the case where an application
wishes to keep a hot list of pages resident in memboey, (he target policy), but the OS supports
only a simple LRU-replacement policy€., the source policy). To ensure that this hot list remains
resident, the user process must know when one of these aglesut to be evicted; then the user
process accesses this page some number of times, accardhmgdource replacement policy, to
increase the priority of that page. More generally, oneaggent policy can be converted to
another by accessing pages that are about to be evictedtheource policy, but should not be

evicted according to the target policy.
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3.3.1 Abstractions

To support the InfoReplace user-level library, the opaatnust export enough information
such that applications can determine the next victim pagddlee operations to move those pages
up in priority.

Linux 2.4.18uses a 2Q-like replacement policy. This potioyides the buffer cache into two
gueues. One list dfiot pages, managed in an LRU fashion and a list of non-hot pagasaged
using FIFO. To provide the general representation of a jpided list of all physical pagegage-
List, the kernel exports the concatenation of these two quewesgh a system call. With this
information, InfoReplace can examine the end of the queunéopages of interest. The drawback
of thepageList abstraction is that its large number of elements imposesisignt overhead when
copying the queue to user space; therefore, the call can de amy infrequently. However, if the
gueue is checked only infrequently, then pages can be eMbetiore the user-level library notices.
Therefore, the kernel providesvactimList abstraction, containing only the |a&t pages of the
full queue, as well as a mechanism to quickly determine wieenpages are added to this list.

The operating system already provides a mechanism foraeurg the priority of a pages in
the buffer cache. For most replacement policiessd () increases the priority of a page as a
side-effect. If the kernel provided policy is FIFO, or anatipolicy that doesn't increase a page’s
priority when they are touched, then we cannot efficientiypsform the replacement policy using
the techniques described here. However, we have not erezedrsiny modern operating systems

that have this problem.

3.3.2 Implementation

The state within Linux can be converted into this form witWloverhead as follows. Linux 2.4.18
has a unified file and page cache with a 2Q-like replacemertyd@9]: when first referenced, a
page is placed on thactive queugmanaged with a two-handed clock; when evicted from there,
the page is placed upon tiractive queugmanaged with FIFO.

Our modified Linux exports an estimate of how rapidly the aqgseare changing by reporting

how many times items are moved out of the inactive queueijghiene efficiently by counting the



Kernel Task C Statements

Memory-map counter setup 64
Track page movement 1
Reset counter 14
ExportvictimList 30
Total for victimList abstraction 109

Table 3.1 Code size for kernel portion of InfoReplace The number of C statements (counted with
the number of semicolons) needed to implement bothvthes imList abstraction and memory-mapped

counter within Linux.

User-Level Task C Statements
Setup 4
Simulation framework 720
Target policies
FIFO 86
LRU 115
MRU 75
LFU 110
CheckvictimList and refresh 251
Total for InfoReplace library 1361

Table 3.2Code size for user level portion of InfoReplac& he number of C statements (counted with the
number of semicolons) needed to implement the InfoReplacary at user-level library.
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number of times key procedures are caftethis counter is activated only when a service registers
interest and is fast to access from user-space becausedpysad into the address space of the user
process. Once this counter is approximately equaV tohe process performs the more expensive
call to get the state of the last pages on the inactive queue. As shown Table 3.1ytheimList
abstraction can be implemented in only 109 C statementsgar more than half of the code is
needed to setup the memory-mapped counter.

With thevictimList abstraction, the user-level InfoReplace library can feetly poll the OS
and when new pages are near eviction, obtain the list of thages; if any of these pages should
not be evicted according to the target policy, InfoReplamzeases them to move them to the active
list. Thus, one of the roles of InfoReplace is to track thegzatihhat would be resident given the
target policy. For simplicity, the InfoReplace library cently exports a set of wrappers, which
applications call instead of thepen(), read(), write(), lseek(), andclose() system calls.
Hence, the library only tracks file pages accessed with teegkcit calls; however, our interface
could be expanded to return access information about egghipghe process address space. Thus,
on each read and write, the InfoReplace library first perfoammimulation of the target replacement
algorithm to determine where the specified page belongsipaige queue; InfoReplace then uses
victimList to see if any of the pages that should have high priority ase eéction and accesses
them accordingly. Since InfoReplace does not know the fipeeplacement policy that the kernel
is using, only that it increases the priority of a page whes @ccessed, InfoReplace rechecks the
victimList after accessing all of the high-priority pages that are egation. If some of these
pages are stillon theictimList InfoReplace accesses them again. It repeats this proceditikre
either all of the pages on theictimList are non-resident in the simulated target policy, or a fixed
maximum number of iterations is exceeded. Thus InfoRepkacapable of running on recency
and frequency based policies. In our implementation, thagzimum is set to 1000, and during
none of our experiments was it exceeded. Finally, the owaapper performs the requested read

or write and returns.

In Linux 2.4.18, these procedures aferink_cache and the macrdel_page_from_inactive_list.
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Following these basic steps, we have implemented FIFO, IN®RLJ, and LFU on top of the
Linux 2Q-based replacement algorithm. The bottom half &ld8.2 shows the amount of C code
needed to implement InfoReplace. Although more than ongsidnad statements are required, most

of the code is straightforward, with the bulk for simulatimidifferent replacement policies.

3.4 Evaluation

We evaluate the usefulness of our approach in two ways., Miesstneasure the overhead in-
curred and accuracy achieved when using InfoReplace tsftian the Linux 2.4.18 2Q-like policy
into a variety of other replacement policies. Second, wduewa the performance improvement

achieved on a synthetic workload devised to simulate loskuaia tree-based on-disk index.

3.4.1 Experimental Configuration

Our experimental platform consists of a 2.4 GHz Pentium £gssor with 512 MB of main
memory and two 120 GB 7200 RPM Western Digital WD1200BB AT@Jlhard drives. One
drive serves as the system disk, we run our experiments ootliee disk. We selV, the size of
thevictimList that InfoReplace requests, to 100. While we did not thorbugtudy the effects

of varying this value, 100 worked well in practice.

3.4.2 Overhead and Accuracy

To evaluate the overhead and accuracy of our approach, whelustworkload described in
Chapter 2. Recall that this workload accesses a largelfildimes the size of memory), touching
blocks such that the initial access order, recency, anduénecy attributes of each block differ;
thus, which blocks are evicted depends upon which attribtite replacement policy considers.
We measure the accuracy of the target policy at the end ofithdy comparing the actual contents
of memory with the expected contents.

Figure 3.1 shows both the accuracy and overhead of implengeihese algorithms in InfoRe-

place. The graph on the left shows the inaccuracy of Info&epldefined as the percentage of
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Figure 3.1Accuracy and overhead of InfoReplaceFIFO, LRU, MRU, and LFU have been implemented
on top of the 2Q-based replacement algorithm in Linux 2.4 Bér graph on the left shows the inaccuracy
of InfoReplace, where inaccuracy is the percentage of pgesre not in memory (but should be) when
the workload ends. The bar graph on the right shows the ageyagrhead incurred on eagbad () or
write(); this time is divided into the time to check thectimlList abstraction, to refresh the pages that
should not be evicted, to simulate the target replacemgnotigim, and to perform miscellaneous setup.
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pages that are not resident in memory but should be, givemtzydar target replacement algo-
rithm. By this metric, if four pagesl, B, C, andD should be in memory for a given target policy,
but instead paged, B, C, and X are resident, inaccuracy is 25%. In general, the inaccusécy
InfoReplace is low. The inaccuracy of MRU is the highestcaighly 12% of resident pages, be-
cause the preferences of MRU highly conflict with those of &@refore, when emulating MRU,
InfoReplace must constantly probe pages to keep them in memo

The graph on the right of Figure 3.1 shows the overhead ofémphting each policy, in terms
of the increase in time petkad () orwrite () operation; this time is broken down into the time to
check thevictimList abstraction, to probe the pages that should not be evicedimulate the
target replacement algorithm, and to perform miscellarsetup. The overhead of InfoReplace is
generally low, usually below #s per read or write call. The exception is pure LFU, which irscur
a high simulation overhead (roughly 106 per call) due to the logarithmic number of operations
required per read or write to order pages by frequency. Hewagsuming that the cost of missing
in the file cache is about @ s, even the relatively high overhead of emulating LFU paysfdffe

miss rate is reduced by just 1%.

3.4.3 Workload Benefits

Database researchers have observed that policies prdvydgeneral-purpose operating sys-
tems deliver suboptimal performance to database managaystems [63]. To demonstrate the
utility of InfoReplace, we provide a file cache replacemanitqy inspired by DBMIN [16] that is
better suited for database index lookups.

Given that indices in DBMS systems are typically organizedraes, the replacement policy
should keep nodes that are near the root of the tree in memurg these pages have a higher
probability of being accessed. For simplicity, our poli&mnRange, assumes that the index is
allocated with the root at the head of a file and the leavestheagnd; therefore, PinRange gives
pages preference based on their file offset. Pages in thé\fimsttes of the file are placed in one
large LRU queue, while the remaining pages are placed irhanotuch smaller queue. PinRange

is also simple to implement, requiring roughly 120 C statetsé the InfoReplace library.
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Figure 3.2 Workload benefits of InfoReplace. The graph on the left depicts the run-time of three syn-
thetic database index lookup workloads on two systems. &g labeled 2Q show run time for 100,000
index lookups on the stock Linux 2.4 kernel, whereas the ladeded PinRange show run time for the spe-
cialized PinRange policy on infoLinux. The x-axis varies thorkload, specifically the depth and fan-out
of the index é.g, Dz:Fy implies an index of deptl and fan-out ofy). The graph on the right shows details
of why PinRange speeds up performance for the D7:F7 worklmashowing the hit rate for different levels

of the 7-level index.
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To demonstrate the benefits of InfoReplace for repeateciloadkups, we compare workload
run-time using PinRange versus the default Linux 2Q repiesce policy. We note that 2Q is
already a fairly sophisticated policy, introduced by theatbase community specifically to handle
these types of access patterns [29]; as a result, 2Q gives gaference to pages at the top of the
tree.

For our experiments, we run synthetic workloads emulati®@,d00 lookups in index trees
with seven or eight levels and a fan-out of seven or eight. @raehine with 128 MB of memory,
PinRange is configured to prefer the first 90 MB of the file, 8if® MB fits well within main
memory. The graph on the left of Figure 3.2 shows that PinRamgroves run-time between 10%
and 22% for three different trees.

To illustrate why PinRange improves performance over 28gtiaph on the right of Figure 3.2
plots hit rate as a function of the index level, for a tree v@élven levels and a fan-out of seven.
The graph shows that PinRange noticeably improves thetbifoathe sixth level of the tree while
only slightly reducing the hit rate in the lowest (seven#hdl of the tree. This improvement in
total hit rate results in a 22% decrease in run-time, whidhughes approximately 3 seconds of

overhead from the InfoReplace library.

3.5 Experience porting to NetBSD

In this section, we describe our initial experience porting cache information interfaces to
NetBSD 1.5. In our discussion, we focus on the main diffeesrmetween the NetBSD and Linux
implementations.

The pageList we use in NetBSD is quite similar to that which we used in Linugince
NetBSD has a fixed-sized file cache, the primary differendesden the two implementations is
that for Linux, pageList contains every page of memory, whereas for NetBSD, it costanly
those pages in the file cache. Given that the NetBSD file cacheanaged with pure LRU re-
placement, the NetBSD implementation simply exports tiRgJList for pageList and the lastV
elements forictimList. To enable processes to quickly determine how the elementaa@ving

in the lists, NetBSD tracks the number of evictions that haseurred from the LRU list. Only
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40 C statements are needed to export these abstractiontB&Ngthe primary savings compared
to the Linux implementation, which requires 109 statemgasthat we have not implemented the
memory-mapped interface to the eviction count.

Through this exercise, we have shown that the abstractiendefined for out Linux imple-
mentation are straight-forward to implement in NetBSD a#i.wihus, we are hopeful that these
list-based abstractions are sufficiently general to ceptue behavior of other UNIX-based oper-
ating systems and that porting this interface to other dpegraystems will not be difficult. We
note that operating systems that export these same intdsrfail be able to directly leverage the

user-level libraries created for other operating systevhi;h is where the majority of code resides.

3.6 Conclusions

This case study shows that new replacement policies can plenmented when information
is exposed from the OS: theictimList abstraction is sufficiently flexible to build a variety of
classic replacement algorithms. We believe this companesdbly to direct in-kernel implemen-
tations; for example, in Caet al's work [14], applications can easily invoke policies that¢ a
some combination of LRU and MRU strategies; however, theitesn has difficulty emulating the
behavior of a wider range of policies.), LFU). This case study also illustrates that care must
be taken to efficiently perform the conversion from interstalte to the generalictimList ab-
straction. Furthermore, InfoReplace demonstrates thgetaeplacement algorithms that are most
similar to the source algorithm can be implemented with tlestraccuracy and least overhead.

Modifying the operating system to exposgplicit informationis one way to overcome the
inherent limitations of implicit techniques. Exposinganfation explicitly gives applications
easy access to information about the operating systengmialt state. The information provided
is always accurate and never out of date. By only exposingnmétion, we avoid many of the
complications usually associated with modifying opemBgstems. Since the interfaces presented
here are purely read-only, there is no risk that OS interatd dtructures will become corrupted,

thus making it far easier to have confidence in the safetyeohéw code. All of the code with any
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significant complexity is kept safely in user-space, wheweili only corrupt a single application
if itis buggy.

We have presented an interface by which applications caesadoformation concerning the
current state of the file system buffer cache. Applicatiarsleverage this information to manip-
ulate the ultimate behavior of the operating system. Thidoise by observing the current state
of the buffer cache and issuing additional reads to bringQBeinto the state desired by the ap-
plication. With these techniques we have demonstratedhieadefault cache replacement policy
used by Linux 2.4 can be transformed into a variety of othplagement policies. We have also
ported our interface to NetBSD. We see no reason why the sacheitjues could not be used on
any operating system that provides file system caching.

Information-based approaches as described in this and¢teging chapter provide applica-
tions with a great deal of power to modifies their behavioratdr fit the policies of the operating
system, and to manipulate the behavior of the OS to bettdrdineeds of the application. Both
the implicit and explicit information techniques we haved#ed leveragamplicit control. That
is, they use the existing interfaces provided by the OS toceseecontrol. This naturally limits the
OS behavior modifications that are possible. For exampleniix used strict a strict FIFO policy
to manage the buffer cache, there would be no way to effigiaftiér the cache policy since FIFO

doesn’t increase the priority of pages when they are acdesse
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Chapter 4

Controlling Write Ordering

The approaches based on implicit information and exphédrimation, discussed in Chapters 2
and 3 have in common that control over the operating systappied using implicit techniques.
Even in the case where information is exposed explicitlyjmerfaces were added for altering
the behavior of the operating system. While this provideargdr degree of control than was
previously available, in some cases implicit techniquesrast powerful enough to exercise the
needed control, or are not suited to exercising that comtrah efficient manner. This chapter
describes one such instance, controlling the order in wiléth is committed to stable storage, and
two interfaces for allowing the application the controléads. We show that the interface exposed

to the application can make a tremendous difference in tHenpeance and usability of a feature.

4.1 Write Ordering

At every level in the storage stack, write requests may bedezed to optimize performance.
In fact, the order in which the application submits writeghe operating system is typically not
even recorded. Many factors determine the order in which dafinally written to the storage
device. When an application sends a write request to theekedire update is applied to a copy
of the data in the file system buffer cache, then the writeredlirns. At this point the operating
system is free to write the data to disk at its own convenieAssuming the system doesn’t crash,
the new data will eventually be written to disk. How and whieaitthappens depends on a number
of factors. If the application callgsync () or sync (), the data will be flushed to disk immediately.

If there is memory pressure, the data may be flushed as a phd oéche replacement algorithm.
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Also, most systems will assure dirty data is written withome defined period of time (30 seconds
in many systems). Once requests are sent to the disk schetielewill be reordered to maximize
the performance of the disk. Depending on the policies impleted in the operating system, data
sent to the kernel to be written to disk can end up being cotachib disk in nearly any conceivable

order.

4.1.1 Motivation

For most applications, this situation is acceptable. Thitopmance benefit gained by allowing
reordering far outweighs any benefits of restricting reorde However, for certain classes of
applications the order in which data is committed to diskritsoal.

Any application that is concerned with the consistency ef data it writes to disk will be
concerned with the order in which data is committed to theiemgdomplex on-disk data is likely
to contain references to other parts of the data set. Ogleyimecessary to ensure that, in the event
of a crash, these references do not point to data that was cenenitted to disk. For example,
FFS-like file systems ensure that data blocks are writtemstoliefore inodes and indirect blocks
that point to them [38]. In the application space, CAD/CAM®mMSs often use large datasets with
ordering requirements similar to database systems [8].

Perhaps the most common example of the need for orderingtis-ahvead logging [24], used
by journalling file systems [12, 51, 64, 68] and database g@mant systems [40]. These systems
maintain the write-ahead invariant: the log entry for a $aation will be written to stable storage
strictly before the data updates for that transaction. §herantees that no there will be no data
updates applied which aren’t described in the write-ahegpdllowing the system to recover to a

consistent state in the event of a crash. This is the exampleeus on here.

4.1.2 Current Ordering Strategies

Currently applications have several choices on how to del gonsistency when running
on a modern OS. Each of these options sacrifices at least gmerfofmance, manageability or

reliability.
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Perhaps the simplest option that maintains ordering is¢d s () to force data to disk when
necessary to preserve ordering. While this does accomhlesigoal of maintaining the correct
order, it also slows down the application since these cedisgnchronous. Itisn’t necessary to use
a synchronous call in this case since we don’t eeinenthe data reaches the disk, only that it gets
there in the correabrder.

The application can access the raw disk device, bypassefjl¢éhsystem entirely. This has
a small performance advantage and allows the applicatiaxplicitly control the ordering in
which blocks are sent to the disk. In exchange for this aold#i performance, the user sacrifices
some convenience in management. By running on top of the rsky the administrator loses
the use of file system and data management utilities whickrepn the file system. Users are
now dependent on the application authors to provide reimefegations of backup utilities, space
management utilities, and so forth. In general, applicatiare easier to set up and administer
when run on top of a file system. At least one commercial DBM$wifecturer recommends
using the file system for smaller databases for this reas® Further, interfaces to access raw
storage devices are not well standardized. The users cbbagerating system is limited to those
the application vendor supports the raw device interface on

The final option is to run on top of the file system and not useadgring control. Without
guaranteed ordering, the users and administrator have avauggee that the application data will
be consistent, or even recoverable, when the system comkstiar a crash. The popular open
source DBMS, PostgreSQL, runs on top of the file system angvalthe administrator to choose
whether to us€sync () or no ordering control [50].

The choice is between manageability, performance, andbigty. The file system provides
certain management conveniences which we would like toepves Raw storage access performs
well but can be difficult to manage. Using no ordering conisolast and easy to manage, but
unreliable in the face of failures. We would like a systent iedast, reliable and allows the file

system to be used for storage management.
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4.1.3 New Ordering Strategies

One solution is to provide a way for applications to exprasienng constraints to the operat-
ing system. To this end we propdle system barriersFile system barriers provide an additional
barrier() system call to applications. Wherarrier () is called, the operating system guar-
antees that all file system writes issued before the calhtaier () will be committed to stable
storage strictly before any writes issued subsequently.dystem barriers have the advantage that
a call tobarrier () is a direct, asynchronous, replacement for a cafiggnc (). Thus it is very
easy to convert an application that usegnc () for ordering to use file system barriers. However,
file system barriers require keeping most logical writesgutglly separate. That is, if the same
piece of data is written to twice, with a barrier between the writes, two physical disk writes
are required to maintain the correct semantics. This regulinore disk traffic when file system
barriers are used when compared to other ordering mechani$maddress this limitation, we
proposeasynchronous graphsAsynchronous graphs is an interface that allows an agit#o
specify ordering constraints among its write requests ierg Yine-grained manner. Ordering is
enforced only where necessary, leaving the operatingrsyfste to combine many logical writes
to a piece of data into one physical write in most cases. Tkeabing system also has a greater de-
gree of freedom to reorder write requests with asynchrogoashs since the ordering constraints
are specified at a very fine granularity.

Since our primary target application is database managesgstems, it is necessary to exam-
ine the effect of using file system barriers or asynchronaaplts on traditional database seman-
tics [8, 25]. By allowing ordering to be controlled despitieadithe 10 being done asynchronously,
we sacrifice one aspect of traditional ACID semantics, diitgbACID semantics guarantee that
each transaction is executed atomically, that is, eith@f &he transactions updates are applied, or
none of them are. An application which provides atomicityewlisingt sync () will still provide
it correctly when using file system barriers or asynchrorgraphs. Whether or not a transaction’s
updates are considered to be effective is determined byr#sepce or absence of that transac-
tion’s commit record in the log. If the commit record is pneseall of the transaction’s updates,

which are also recorded in the log, apply. If the commit rddsrabsent, none of those updates
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apply. Similarly, consistency, the assurance that if thialakse is in a consistent state when a
transaction starts, it will be in a consistent state whertrdr@saction ends, is not effected by using
asynchronous ordering control. Isolation guaranteesnbdtansaction will see another transac-
tion’s updates until that transaction commits. In a DBM$s tluarantee is provided by two-phase
locking internally. The only time using asynchronous ongigicontrol may affect isolation occurs
in the event of a crash. Some transactions that had comrmpitigdto the crash, and whose results
thus became visible to other transactions, may disapptarratovery if their log records hadn’t
been written to disk yet. With true ACID semantics, the agadion is assured that once the DBMS
reports that the transaction has successfully committed,data will not be lost. Since both file
system barriers and asynchronous graphs allow IO callsuorbefore any data is written to disk,
it is possible that data will be lost in the event of a systeashr What these two new interfaces
provide is that, if properly used, the database will be recable to a consistent state in the event
of a crash. Though some transactions might be lost, theybeillost or recovered atomically.
Our results show that by making this sacrifice, it is posdsiblachieve performance very near that
achieved using no ordering control at all. When no orderogiol is use, the ability to recover the
on-disk data to a consistent state is not guaranteed andialility in the face of system failures
is sacrificed.

With the current techniques used to control ordering, userdorced to choose between man-
ageability, performance and reliability. By introducingyachronous mechanisms to control or-
dering, we offer a new point in this space that the user mighbse. Applications can run on the
file system, maintaining ease of administration. As we wilbw in the following sections, the
performance of asynchronous graphs is competitive witlpéreormance when using no ordering
control. As discussed above, some reliability, namely bilitg, is sacrificed, but consistency is
preserved. While it is not possible to implement strict AGi@mantics using the mechanisms de-
scribed in this chapter, it is possible to provide a greal oheae reliability than is possible without
any ordering control. With these mechanisms, asynchrog@phs in particular, it is now possible

to sacrifice a small amount of reliability for a significantgrovement in performance.
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Figure 4.1 A number of writes broken into epochs by callsderier ().
4.2 File System Barriers

Like architectural memory barriers, a file system barriesugas that all writes requested before
the barrier are committed to disk before any of the writesuested subsequent to the barrier.
Unlike architectural barriers, we needn’t worry about reagluests; sinceead () doesn’t return
until the data is read into memory, reads are always ordesedsaed. The buffer cache will
ensure that all processes and threads see the same dataaththgme. File system barriers allow
an application to specify write ordering without using ayynachronous system calls and while
still using the file system. Thus the user can have a fast drable system without sacrificing

manageability.

4.2.1 Semantics of File System Barriers

File system barriers can be thought of as an asynchronos®u@fsync (). All writes issued
by the application before a call tarrier () will be committed to stable storage strictly before
subsequent writes. The interface is simple: a single additisystem callbarrier (). Existing
applications can be converted to use file system barriersrétaring by simply replacing calls to
fsync () with calls tobarrier ().

A typical application will callbarrier() many times as it updates its on-disk data. These
repeated calls tbarrier () group writes inteepochs An epoch is defined as the set of all writes
issued between one call tarrier () and the next call tbarrier(). Writes can be reordered
within their epoch, but cannot be reordemttossepochs. There are two epochs that are of par-
ticular importance. Theafe epochs the earliest epoch for which there are still dirty buffars

the system. Writes in this epoch, and this one only, can keystifished to disk. The collection
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of writes that were issued after the most recent calatorier () constitute theopen epochThe
open epoch is the only epoch to which writes can be added palites that are not the open epoch
are said to belosed Figure 4.1 illustrates a number of write operations, brokeo epochs by
three calls tvarrier (). In the figure, Epoch O is the safe epoch, Epochs 1 and 2 aredcchoxd
Epoch 3 is the open epoch.

Consider an application that performs write-ahead logging use<sync () to maintain or-
dering between the log and the data. An application mightasgke similar to that shown in
Figure 4.2 to implement write-ahead logging. First the lgpdated and that update is forced to
disk, then the data is updated. Note that the updates to thedaapplied in the buffer cache only
at this point, the operating system will commit the new dataisk at its leisure. The log data,
however, is safely on disk when the callftgync () returns.

Figure 4.3 shows the same transaction implemented usingytem barriers. When this code
completes execution, there is no assurance that any of tagatdahe log updates, are on disk. But
it is guaranteed that the write to the log will be flushed disfobe the the writes to the data. Thus,
in the event of a system crash, this transaction may or malgenlaist, but it will be possible to use

whatever portion of the log is on disk to bring the entire dahinto a consistent state.

4.2.2 Implementing File System Barriers

Thebarrier () system call implementation is fairly straightforward. Témirebarrier ()
call takes place under a global lock. It isn’t clear what theper semantics would be for two bar-
riers executing at the same time, so that situation isn'mgtéed. For each call tbarrier(),
the kernel creates aspoch_list structure and assigns it a unique, monotonically increasin
epoch_id. It then traverses the lists of dirty buffers and adds eadfebto the epoch_list
and puts thepoch_id in a special field in the buffer header. If that buffer is lgsten a previous
epoch_list itis skipped. The newpoch_list is then added to a global list of all th@och_1ist
structures currently in the system. By default, each neviebig marked as not being a part of any

barrier epoch.
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/* first transaction */

/* write an entry to the log */
write(log, logbuf, 128);

fsync(log);

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf, datasize);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf2, datasize2);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf3, datasize3);

/* second transaction */

/* write an entry to the log */
write(log, logbuf, 128);

fsync(log);

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf, datasize);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf2, datasize?2);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf3, datasize3);

Figure 4.2 Code to execute two transactions with defaulklwad parameters usirigync ().
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/* first transaction */

/* write an entry to the log */
write(log, logbuf, 128);

barrier();

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf, datasize);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf2, datasize?2);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf3, datasize3);

/* second transaction */

/* write an entry to the log */
write(log, logbuf, 128);

barrier();

/* write some data pages */

lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf, datasize);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf2, datasize?2);
lseek(datafd, random_offset(), SEEK_SET);
write(datafd, databuf3, datasize3);

Figure 4.3 Code to execute two transactions with defaulkisad parameters using file system
barriers.
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To flush a buffer to disk, the OS first must flush all of the bidférat come before it in the
barrier ordering. It is important to observe that in mostesagwhen the operating system needs
to write the contents of a buffer to disk, it doesn’t need tatavany specific buffer. If buffers
are being laundered to relieve memory pressure or keep tinderuof dirty buffers below some
threshold, the OS can choose which buffers to send to the iskese cases, it is wise to choose
buffers from the safe epoch.

A complication arises if there is a write to a buffer, a barrteen another write to the same
buffer, without an intervening flush of the buffer. In the ilmmentation as described so far, the
writes will be combined, either before or after the barripe@tion depending on whether the
buffersepoch_id is updated or not. This is not the correct behavior: writerappens should never
logically move between epochs.

To prevent this situation, separate logical writes to thmeshuffer must remain physically sep-
arate in memory if there is a barrier operation between th&imen the second write is issued, the
kernel notices that that buffer is already behind a barfiermake sure the writes stay separate, a
new buffer is allocated and the old version of the data isembpito it and placed in the appropriate
epoch_list. The write is then allowed to proceed normally. Now two vensi of the data exist in
the buffer cache, each in a different epoch. The normal phaeefor maintaining barrier ordering
will ensure that the old version is written first.

There are three disadvantages to doing this. Firstythee () call will take longer whenever
it has to copy a buffer. Second, memory usage increases qwedntially having many versions
of one disk block in memory. Finally, disk traffic increasesdo the additional writes.

The only alternative to duplicating buffers is to synchrosly flush the old version of the data
as part of therrite () system call. We choose copying the buffer rather than flgsitisince one
of our goals is to remove excess synchrony from the systenceShe old version of the buffer
will never be written to or read from again, an asynchronotitewo disk is initiated on it as soon

as the copy is created.
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The increased memory usage can be mitigated by issuing actasyous write on the buffer
containing the old version of the data at the time the copyaden Flushing the old version imme-
diately both lets the application continue running at mgnsmeed and ensures that the additional
buffer space will only be in use a short time. Once the writeasiplete, the buffer is released.
The evaluation will show that this is an effective way to reglthe impact of copying buffers.

Disk traffic will be increased because the operating systerstieep logical writes separate
where in a conventional system they would be combined intogesphysical write. This problem
is due to the semantics of the barrier operation.

These three issues can be alleviated by using a more fineegraiterface to express ordering,

at the expense of ease of programming.

4.3 Asynchronous Graphs

In order to address some of the limitations of file systemibegywe introduce a new interface
for controlling write orderingasynchronous graphsAsynchronous graphs allow the application
to specify ordering constraints at the level of individualle towrite (). Writes are not grouped
into epochs and the application is able to express ordenieggely where it is needed. This is
similar to the way soft-updates tracks dependencies betwegous types of file system metadata
blocks [22]. Soft-updates, however, exploit semantic kieolge of the data it is managing that is
not available to the operating system in the general caseessketl here. This more fine-grained
interface reduces the number of extra writes necessary totamacorrect ordering (to zero in
some cases) and reduces the need for buffer copying (torzerost cases). Improved performance
comes at the expense of programming ease. Ordering depeeslbrtween writes must be tracked

by the application and passed along to the operating system.

4.3.1 Semantics of Asynchronous Graphs

Asynchronous graphs introduces a modifiedte () call, graphwrite (). This new system
call returns an integer to identify the write operation etiote it is called. These identifiers can

then be passed into subsequent callgtaphwrite() to specify ordering constraints. The C
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typedef int write_id;
write_id graphwrite(int fd, void * buf, ssize_t size,
int ndeps, write_id *dependencies)

Figure 4.4 C language signature forgraphwrite ().

language function signature fgtraphwrite () is shown in Figure 4.4. The first three arguments
are the same as the traditionalite () system call: a file descriptor, a buffer containing the data
to be written, and the size of the data to be written. The twditemhal argumentsndeps and
dependencies, allow the application to specify a set of previous writegttmust be committed

to disk before the current one. Tlkependencies parameter is an integer array which lists the
relevant write identifiers. Thedeps parameter gives the length éépendencies.

Figure 4.5 shows two simple WAL transactions using asynubws graphs. The first call to
graphwrite () updates the write-ahead log and records the identifier &intinite operation. No
write identifiers are passed in since the writes to the logehay ordering dependencies. The
subsequent calls perform the updates to the data itselfselballs each pass in the identifier
for the write to the log. This additional argument specifieat tthe update to the log must be
applied before any of the data updates. Notice that there@dependencies specified between
the data updates, so the operating system is free to redreler amongst themselves. The code
then performs another write to the log for a second transacflhe data updates for the second
transaction are then applied.

Figure 4.6 shows the dependency graph generated by thercéagure 4.5. Arrows show the
“must be written to disk before” relationship. The two traaons are completely independent of
each other. Depending on the policies of the kernel, theewsperations involved may be reordered
in a variety of ways.

The dependency graph as perceived by the user-level apipti@nd the dependency graph as
implemented within the operating system may be differemtr éxample, if the two log updates
from Figure 4.5 happened to be to the same buffer interrthlynodes representing the log updates

will be internally combined. The resulting graph is showrrigure 4.7. Similarly, if some of the
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int logid;

/* first transaction */

/* write an entry to the log */

logid = graphwrite(logfd, logbuf, 128, 0, NULL)

/* update the data */

lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf, datasize, 1, &logid);
lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf2, datasize2, 1, &logid);
lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf3, datasize3, 1, &logid);

/* second transaction */

/* write an entry to the log */

logid = graphwrite(logfd, logbuf, logsize, 0, NULL);
/* update the data */

lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf, datasize, 1, &logid);
lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf2, datasize2, 1, &logid);
lseek(datafd, random_offset(), SEEK_SET);
graphwrite(datafd, databuf3, datasize3, 1, &logid);

Figure 4.5 Two simple transactions using asynchronous graphsEach log write has no ordering de-
pendencies. The data writes are required to be written #ifeclog writes for the transaction that touches
them.

xact 1

xact 2

/ data / data
xact 1 xact 2

data data
xact 1 xact 2

data data

Figure 4.6 The graph generated by two simple transactionsData writes are required to be committed
to disk after writes to the log, other reorderings are pdadit
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xact 2
xact 1 data
/‘\y
. xact 2
data
xact 1
data
xact 2
data
xact 1
data

Figure 4.7 The graph generated by two simple transactions if the log wtes are to a common buffer.
Since there are no writes required to be written to disk inveet the two writes to the log, the log writes
can be safely combined.

Figure 4.8 A graph representation of two transactions with file system larrier ordering semantics.
File system barriers impose numerous unnecessary ordigjgndencies.
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data A

< dataB |~ 2

Figure 4.9 A graph with writes that cannot be combined. The two writes to the log cannot be combined
without incorrectly ordering one of them relative to theterf data B.

data writes are to common file system buffers, those noddseigraph can be combined as well.
Writes are combined in this way in order to reduce the needduplication of buffers.

There are situations where two writes to the same buffer aaoe combined. If there is at
least one write operation required to be performed betwkem} they cannot be combined. If
both writes are part of the same connected subgraph and teeytadjacent, then they cannot
be combined. Figure 4.9 shows a graph for such a situatioms i$lthe same as the example
transactions previous described with the addition of amsg¢dog write orderedafter one of the
data writes. While we don’t expect this situation to occuenfin practice, it serves for illustration.
The two writes to the log cannot be safely combined. If theyeywand the write to disk occurred
before the the write of data B, then the ordering would beriremt since log write 2 would be on
disk before data B. Similarly, if the two log writes were camdxd and the write to disk occurred
after data B, the ordering would also be incorrect since lagevt must be on disk before data B.
Therefore, the two log writes must be executed as separgigalhwrites to disk. In this case, the
same techniques that are used to keep writes separatedsgdikm barriers can be used. Either
the old version can be flushed, or the buffer can be duplicdtethe workloads presented in this

chapter, this situation never occurs.
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Notice that file system barrier semantics are expressibierms of the asynchronous graphs
interface. When issuing the writes for epoghusing graphwrite() every write is specified
as being after every write from epocti — 1. Figure 4.8 shows the dependency graph for two
transactions where the ordering is controlled using fileesysbarrier semantics. This illustrates
the extra dependencies imposed by file system barrier sex®a@ne could imagine other ordering

interfaces being implemented on top of asynchronous gridgpbagh a user-level library.

4.3.2 Implementation of Asynchronous Graphs

4.3.2.1 Data Structures

The data structures necessary to implement asynchronapbsgyare considerably more com-
plex than was necessary to implement file system barrierss additional complexity is due to
the more fine-grained level of control and the additionakdi@m that the operating system has to
combine and reorder write requests. The operating systeshmawme a representation of a node in
the dependency graph. We term this structuke ste_node. Eachwrite_node includes a unique
integer to identify it, a list of the dirty buffers associdteith that node, and a list of write oper-
ations that must be performed beforeiie(outbound edges). There is also a table which maps
write_node identification numbers to pointers to the actuted te_node structures, th@ritemap.

This table becomes important when it comes time to enforoecbordering.

When a new write operation is requested by an application gritphwrite () the operating
system performs a number of steps to correctly add the nete terthe existing dependency graph.
In the simplest case, all of the buffers being written aramleln this case, a newrite_node
is allocated, the buffers being dirtied are added to itsdyuft and the list of outbound edges
is populated from thgraphwrite () arguments. Then the requested updates are applied to the
relevant buffers as in a conventional OS.

If the buffers being updated are already dirty, the opegasiystem needs to determine if any
of the buffers need to be duplicated. Recall that a buffedade be duplicated if it is already
present in the connected subgraph containing the new wpiéeation and is not adjacent to the

new write operation. Thus, the operating system travetsegtaphs rooted at each of the write
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operations the new write depends on. If the buffer that theeatiwrite updates is found in any of
those subgraphs and is not the root, then the buffer is datptic The original buffer remains in
its current position in the graph and the copy is updated by#nding write. The buffers are then
updated angraphwrite () returns to the application. In any of these cases, the valuened to
the application bygraphwrite () is the identifier for theirite_node created or affected by the
call.

Further complications arise if the write affects multiplefers, those buffers are already dirty
and some of them belong to differentite_node structures. Suppose a callgpaphwrite () will
dirty buffersA andB. Suppose that is already part ofrite_node a andB is part ofurite_node
b. If there is no path betweenandb then it is safe to combine them into a singteite_node
since there are no ordering requirements between them.wdiwemap is then updated to map
the identifiers fora andb to the commorwrite_node. This mapping must be maintained since
the application is not aware that the tweite_node structures have been combined and may
still use either identifier to refer to it. Therite node also includes a field that lists all of the
write_node’s aliases. This list is used when all of the buffers in a giveite node are finally

written to disk so the additional mappings in thei temap can be garbage collected.

4.3.2.2 Enforcing Ordering

In most cases, no additional disk traffic is necessary to ta@ia correct write ordering. Since
ordering is only specified where it is absolutely necesstig/pften the case that any given buffer
has very few or no buffers that need to be written prior to iIscAwhen the operating system needs
to launder buffers, it is most often the case that any bufirde, so the OS chooses a buffer that
can be written without any extra work. Lastly, a buffer flughidaemon, whose behavior we
modify slightly, tends to keep dependency graphs frommgitery deep. A typical buffer flushing
daemon traverses the entire buffer cache periodicallyhifigsevery buffer that has been dirty for
more than a fixed period of time (often 30 seconds). We modif/liehavior so the daemon skips

buffers with unsatisfied ordering constraints. That is,nlydlushes buffers that are part of leaf
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nodes in the dependency graph. This simplifies the impleatientof the daemon since the buffers
it skips in one pass will be written during a subsequent pass.

When it is necessary to flush a buffer to disk, the operatistesy examines therite_node
with which the buffer is associated. If the list of dependesi thewrite_node is empty, then the
buffer is safe to launder. If the list is non-empty, then passible that it is not safe to launder the
buffer. If all of the pages in all of therite_node’s listed have been flushed, then the buffer is, in
fact, safe to write. Sincewarite_node is deallocated when all of its pages have been flushed, the
writemap IS used to indicate whether the specifieti te_node still exists. When the last buffer
listed in awrite_node is flushed to disk, therite_node is deallocated, and all mappings to it are
removed from therritemap. This level of indirection allows the memory used tayite_nodes
to be safely deallocated.

If the operating system finds that it is safe to flush the buffedisk, the write is initiated
and proceeds normally. If the OS finds that there are stity diuffers in memory that must be
written before the current one, then there is a choice to b#emidit doesn’t matter which buffer
gets laundered, as is the case when buffers are launderad theamory pressure, the OS simply
selects another, safe, buffer to launder.

If a particular buffer needs to be flushed, as is the case glaricall tofsync () then all of
the buffers ordering dependencies must first be satisfiedhisncase, the OS begins traversing
the dependency graph rooted at the te _node the given buffer is associated with. It will issue
writes on all of the pages in the leaf nodes and as these woteplete, working its way back up
to the requiredirite_node. Having to do this will be relatively rare in practice; muchtioe need
for usingfsync () will be eliminated by the availability of an ordering intade. In the case of a
call tosync (), the operating system makes repeated passes through teedadhe, on each pass
writing whatever buffers have no ordering constraints.eAfY’ passes, wherd’ is the maximum

depth of any connected subgraph, all of the buffers will Hasen written in a safe order.
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4.4 Evaluation

We evaluate file system barriers and asynchronous graphiada-tiriven simulation. This
allows exploration of a broader range of potential systenfigarations than a real implementation
would. It also allows broad parameter studies to be conduehatively quickly. We want to
determine what aspects of the workload effect the perfoomaheach of the ordering mechanisms

we study.

441 Simulator

The simulator uses an event driven architecture. Theredasyént types representing system
calls, memory operations, disk 10, buffer duplication anbudfer flushing daemon. Reads and
writes to memory take a constant$, disk access times increase linearly with block distand, w
a minimum access time ofrls and a maximum of 1@s. This simple disk model is adequate
for our purposes since most of the differences in perforrmare due to the number of writes
performed, not the specific locations on the disk. Simuléteslare laid out back to back starting at
offset zero. Results are presented using FIFO and C-LOOKstiseduling. C-LOOK scheduling
begins at block zero of the disk and sweeps across the digicisgr requests as it goes. When
the end of the disk is reached, the algorithm returns to bisck and begins again. No requests
are serviced when the disk head is moving from the end of thle tiack to block zero. Results
using LOOK and Shortest Seek Time First (SSTF) are subathrgimilar to C-LOOK and aren’t
discussed further.

When controlling ordering asynchronously, the operatipstems policy for flushing dirty
buffers is critical. Current systems usually assume tHddudfers cost roughly the same to flush.
When ordering constraints are present, this is no longecdie. If there are two dirty buffers in
the system and one must be written before the other, the €disisbing one of these is double
the cost of flush the other. So, in our simulator, when it isessary to flush a buffer to disk,

we always choose one with no ordering constraings, there are no buffers that must be flushed
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before it). Note that such a buffer always exists. Our sitnutealso includes a buffer flushing dae-
mon. Every 10 simulated seconds, the buffer flushing daermamssthe buffer cache and flushes
any buffers that have been dirty for at least 30 seconds. Tfierldaemon skips any buffers that
cannot be immediately flushed due to ordering constraines duMthis to keep the buffer daemon
simple, noting that if no additional ordering dependeneiesadded, every buffer will eventually
become free of ordering dependencies.

In the default configuration, we simulate cache of 312 MB,20000 pages of 16 KB each.

Variations of these parameters are noted where appropriate

4.4.2 Controlled Workload

The first set of experiments were conducted using synthigtiganerated traces. Synthetic
traces allow easy modification of various aspects of the lwackand allow the effects of those
changes to be easily observed without being convoluted éydmplexities of a more realistic

workload.

4.4.2.1 Workload

The workload is based loosely on TPC-B [66]. Using the défpatameters each transaction
writes 128 bytes to a write-ahead-log, then reads one bgtae &ach of three randomly selected
offsets, then writes one byte each to each of three randoagted offsets. The random offset
range from zero to 615 MB. A write to an uncached page inclestst of a disk read. To keep
this synthetic workload simple and easy to understandHileory relation normally present in
TPC-B is omitted.

The size of the log write, the number of pages read and the auaflpages written are varied
in the experiments where specified. Table 4.1 shows the llgédues for each workload parameter
and the range over which each parameter is varied.

Depending on the mechanism being testedfaync() or barrier() may be issued after

the write to the log. If asynchronous graphs is being tegtesh each write is specified as being
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/* write an entry to the log */
write(log, logbuf, 128);
fsync(log); /* or barrier() or nothing */
/* read some data pages */
for (1 = 0; 1 <3; i++) {
lseek(data, random_offset(), SEEK_SET);
read(data, buf, 1);
}
/* write some data pages */
for (1 =0; 1< 3; 1 ++) {
lseek(data, random_offset(), SEEK_SET);
write(data, buf, 1);
}

Figure 4.10Code to execute one transaction with default workload pararaters usingfsync () or file
system barriers. The call tobarrier () directly replaces the call tbsync (). When using no ordering
control, bothfsync () andbarrier () are omitted.

dependent on the preceding log write. In these experimir@syorkload always consists of 10000
transactions except where specified and concludes witH tocainc ().

In the case wherésync (), barriers, or no ordering is being used, the workload is ilesd
by the pseudocode in Figure 4.10. The situation is slighttyaxcomplicated in the case of asyn-
chronous graphs. In this case, we use a new systergeegthwrite () described in Section 4.3.
Figure 4.11 shows C-like pseudocode for one transactiomgussynchronous graphs.

We conducted five groups of experiments. In each group, orbeofollowing was varied:
number of pages read in each transaction, number of pagesddim each transaction, the size
of the write to the log, the number of transactions executebthe total size of the buffer cache.
Table 4.1 summarizes the parameters varied and the rangebih they were varied. Parameters

are always varied one at a time, holding the others constdinéia default values.
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write_id log_write;
/* write an entry to the log */
log_write = graphwrite(log, logbuf, 128, 0, NULL);
/* read some data pages */
for (i = 0; i < 3; i ++) {
lseek(data, random_offset(), SEEK_SET);
read(data, buf, 1);
+
/* write some data pages */
for (i = 0; i < 3; i ++) {
lseek(data, random_offset(), SEEK_SET);
graphwrite(data, buf, 1, 1, &log_write);
}

Figure 4.11 Code to execute one transaction with default workload pararaters using asynchronous
graphs. The updates to the data are made dependent on the writedag tfidhe data updates are unordered
among themselves.

Parameter Default Range| Step
Pages Read 3 0-20 1
Pages Written 3 1-20 1

Log Write Size| 128B 64 B -16 KB 64 B
Transactions 10000 5000-100000Q 5,000
Cache Size 312MB| 16 MB-781 MB| 16 MB

Table 4.1 Experimental ParametersParameters of the synthetic workload and the range ovehthéy
are varied.
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Figure 4.13The number of disk reads and writes as a function of the numbenof pages read in each
transaction. In (a) all four lines are collinear. In (b) the line for asymehous graphs is collinear with the
line for no ordering control.
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4.4.2.2 Pages Read

Adjusting the number of pages read essentially adjustsrgspre on the buffer cache. This
group of experiments is presented first since it is the sist@ed illustrates some trends that will
be present in many of the subsequent experiments.

As the number of pages read increases, the execution timeases, as does the total disk 10.
Figure 4.12 shows the simulated execution time as a fundfidime number of pages read during
each transaction. The graph on the left shows the executi@with a FIFO disk scheduler and
the graph on the write shows the execution time with a C-LO®@Keduler. The performance
of all of the ordering mechanisms improves with the bettek dicheduler. The performance of
file system barriers improves less than the other methodks sfstem barriers groups writes into
epochs, and in order to maintain the correct ordering, ong/e&pochs worth of writes can be sent
to the disk scheduler at a time. In this workload, each epacitains only four disk writes. As
a result, there is only a small amount of improvement thatlEgained by rescheduling such a
small number of disk writes.

Naturally, the increase in execution time is mostly a fumttf the number of disk reads, which
increases as the number of pages read per transactionsasreghis is shown in Figure 4.13 in
the left-hand graph. The right graph shows that the numbeis&fwrites incurred is dependent on
the ordering mechanism being used.

The barrier mechanism incurs the most disk writes and istaohs&t 40000. File system
barriers force writes to the same buffer in different trantisas to be executed as separate writes
to the disk. The number 40000 comes from three page writesoaadog write in each of the
10000 transactions. Usintsync () incurs the second greatest number of disk writesync (),
like barriers, keeps writes to the log separate, but allowKipte writes to the same data page to
be combined into one disk write. Thus, the number of writesaases as cache pressure increases
since when a buffer is written twice, it more often happeias the page is evicted between the first
and second writes.

The lowest line shows the number of writes when either norardecontrol is used or asyn-

chronous graphs is used. These incur the same number of disk since they both allow logical
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Figure 4.14 Simulated execution time as the number of pages dirtied peransaction increasesThe
line for asynchronous graphs is collinear with the line forandering control.

writes to both the data and the log pages to be combined indavarfnumber of physical disk
writes. Asynchronous graphs achieves this by carefullyntaming the ordering between logical
writes and allowing the writes from each transaction to renradependent of each other. Asyn-
chronous graphs does not incur a greater number of disksathisa using no ordering control, but

the writes are executed in a different order than when nargbistused.

4.4.2.3 Pages Dirtied

For all of the ordering mechanisms other than file systemidrarrincreasing the number of
pages dirtied has a similar effect to increasing the numbg@ages read. There is more cache
pressure and an increase in the number of disk 10s. For fitersysarriers, the effect is to increase
the number of write operations in each epoch.

Figure 4.14 shows the simulated execution time versus thebeu of pages dirtied in each
transaction with both FIFO and C-LOOK disk scheduling. Inhbeoases, the performance of file
system barriers suffers more than the other mechanismgamithber of dirtied pages increases.
This shows the effect of having to keep logical writes phatycseparate. Whereas the three

non-barrier mechanisms allow multiple writes to the santa gage to be combined into a single
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Figure 4.16 Simulated execution time as the number of bytes written to te log per transaction
increases.

physical write, file system barriers doesn’t allow this. Agre are more and more pages being
dirtied, the situation where a page is dirtied more than dragpens more frequently.

Figure 4.15 shows the number of disk reads on the left andwiligks on the right for each
ordering mechanisms. The number of reads increases as agelhat is dirtied must be read off
of the disk before it can be updated in memory. The number @ésvfor file system barriers in-
creases linearly with the number of pages dirtied sincedpkenearly all of these writes physically
separate. Disk writes for the other three mechanisms isersab-linearly since a cache hit on a
write results in two or more logical writes being combinetbia single physical write.

Comparing the performance of FIFO and C-LOOK illustrates fite system barriers prevents
the operating system from optimizing the performance df diste traffic. While all four mecha-
nisms improve with better disk scheduling, file system leasrimproves less than the other three

mechanisms because writing buffers an epoch at a time keefigk queue very shallow.

4.4.2.4 Size of Log Entries

The most interesting effect of enlarging the amount of pemndaction log data is when file
system barriers are in use, it enlarges the amount of datacim epoch that would otherwise be

subjecttafsync (). Instead of forcing the application to block while this ditevritten, file system
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Figure 4.17 Simulated execution time as a function of the number of tranactions executedThe line
for asynchronous graphs is collinear with the line for noeoiray control.

barriers performs those writes in the background. Also asire of the log entries increases, the
fraction of buffer containing log data that need to be dwgibd decreases. Only a buffer that
contains log data for two or more transactions will ever regduplication. This accounts for the
dips in runtime at 8 KB and 16 KB for file system barriers. Assule we see the first result where
barriers performs significantly better than usifigync () as Figure 4.16 shows. With C-LOOK
scheduling the crossover point between barriersfagdc () is around 6 KB. This is a reasonable
size for a log entry in some cases. PostgreSQL, for exampiggsnan entire data page to the
write-ahead log the first time that page is dirtied [50]. Tiasults in many log entries being at

least as large as the default internal page size, which itgRE&QL is 8 KB.

4.4.25 Number of Transactions

When usingfsync () to control ordering, a DBMS will typically execute orf@ync() call
for each transaction, this flushes the log entries for tlzatstaction to disk. As a result, the more
transactions a workload executes, the greater the benedgyoichronous graphs ovegync().
Figure 4.17 shows the execution time as a function of the murmabtransactions increases. As

expected, the relative benefit increases with the numbeaons$actions.
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Figure 4.18 Simulated execution time as a function of cache siz&he line for asynchronous graphs is
collinear with the line for no ordering control.

4.4.2.6 Cache Size

Figure 4.18 shows the execution time against cache sizeotorfiFO and C-LOOK schedul-
ing as the size of the buffer cache is varied. Performaneelgyamproves until the entire working
set fits in the cache at around 490 MB.

For very small cache sizes with C-LOOK scheduling, file sysbarriers performs better than
usingfsync (). Whenfsync () is being using, a number of pages are left dirty by each tciiosg
only writes to the log are forced to disk. The applicationdi® later while those dirty pages are
written out so they can be replaced according to the replanémpolicy. Whereas file system
barriers issues a write as soon as each log page is duplithiedauses all of the pages in each
preceding epoch to also be written in the background, keethia total number of dirty pages in
the cache to a minimum. Figure 4.19 shows the number of digkswlue to cache eviction. This
effect is seen under C-LOOK scheduling because file systenelmsends whole epochs to the
disk scheduler at once, whereasnc () is sending only a single buffer at a time. This anomalous
behavior for small cache sizes could be alleviated withendttiffer flushing policies. However we

believe caches this small are rare so we don’t explore thesshalities any further.
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Figure 4.19 Number of writes due to cache replacement as a function of cae size.For most cache
sizes the line for asynchronous graphs is collinear witHitteefor no ordering control.
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Figure 4.20 Simulated execution time of TPC-B as a function of cache sizein (b), for most cache
sizes the line for asynchronous graphs is collinear witHitteefor no ordering control.

4.4.3 System Traces
4431 TPC-B

In order to evaluate file system barriers and asynchronayshgrunder more realistic work-
loads, this section presents further evaluation using araB€PC-B system trace. This trace was
collected by modifying PostgreSQL 8.1.3 to log the IO radaggstem calls it issues, whenever it
dirties a page in its buffer pool and the transaction numbsoeiated with each of these opera-
tions. Knowing when a buffer pool page is dirtied and the geantion numbers is necessary for
generating the dependency information for asynchroncagshg. The TPC-B workload is gener-
ated by thepgbench tool, a TPC-B implementation included in the PostgreSQltrithistion. In
these experiments, pgbench is configured to execute 10@@€xirtions.

There are a number of differences between this workloadranslyinthetic workload used in the
previous section. First, PostgreSQL is performing bufigiin userspace. This means that by the
time a data page is sent to the operating system, it may harerhedified by many transactions.
Thus, it may have a “must be written after” relationship wibzens or hundreds of log entries.
This does not have a large impact on the performance sinea,teough all of the dependencies
must be tracked for correctness, the number of actual deperes remaining for a given data

page when it is written is still small since the buffer flughilaemon tends to keep the number
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Figure 4.21 Simulated execution time of TPC-C as a function of cache size

of dirty pages in the system low. The buffering effect reduttee write traffic when file system
barriers are in use, since data pages that are dirtied asfpadltiple transactions are duplicated
less often. The log entries in this workload are larger tian of the synthetic workload, and they
vary in size. The effect of this is to make file system barrgightly more competitive than on a
workload with small log entries for the reasons stated intiBea@.4.2.4. Lastly, the working set
used by pgbench is much smaller than that used by the synthetkload.

Figure 4.20 shows the simulated execution time of the pdb&mrkload as a function of the
simulated cache size. We see results similar to the resarltsur synthetic benchmark. Perfor-
mance levels off at a smaller cache size since the workingizets significantly smaller. For very
small cache sizegsync () performs better since it keeps the number of dirty bufferg&ioing
log data low {.e., there is between one and zero at any time), and with extgesnghll cache sizes,
these buffers make up a significant portion of the contentsetache if they're not flushed. File

system barriers perform poorly for the reasons discussadqursly.

4432 TPC-C

TPC-B is arelatively simple workload, with small, fixed sizeansactions. In order to evaluate
file system barriers and asynchronous graphs on a more catgdiworkload, we collected traces

of a TPC-C [67] workload. This trace was collected in the savag as the TPC-B trace in the
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previous section. The workload was generated by Benchmirls3.2, a Java TPC-C implemen-
tation which runs on PostgreSQL and other DBMSs. Benchn@ikiS configured to run with
one terminal, 10,000 transactions and 10 warehouses. InQ Bf@ number of warehouses is the
parameter used to scale the size of the dataset. 10 wareshyiets a dataset of approximately
1 GB.

The results of our simulation are shown in Figure 4.21. Asaation of the total execution
time, asynchronous graphs provides a smaller performamgeivement for this workload than for
TPC-B. However, the improvementaisolutgperformance is similar. This is to be expected since,
like our TPC-B workload, this workload consisted of 10,0@0hsactions. As we saw in 4.4.2.5, the
benefit of asynchronous graphs o¥egnc () is a function of the number of transactions. When
usingfsync () for ordering, each transaction results in one calidgnc (). Thus both the TPC-B
workload from the previous section and our TPC-C trace hagesame number dfsync () calls,

and so have the same degradation in performance due to thidse ¢

45 Conclusions

Buffer caching at the file system level provides a signifiqgaetformance benefit to applica-
tions. However, in using a cache that is controlled by theratpey system, the application is
forced to cede to the OS control over the order in which itdesrare committed to disk. While
this is acceptable for a large number of applications, tieaesignificant class of applications for
which it impedes having a system that is both fast and cormetite face of failures. Database
management systems, for example, fall into this class, asdaamy application that performs in-
cremental updates to complex on-disk data structures. Wimaming on conventional operating
systems, these applications are forced to either use @iceesss to the storage system to gain the
control they need, which is inconvenient, or use OS fae#isuch assync (), which are slow.

This chapter proposes two new operating system interféxasatiow applications to express
write-ordering constraints to the operating system. The, ffile system barriers, appears at first
to be beneficial, being a direct, asynchronous, replacefoetitync (). However, the semantics

of thebarrier () operation impede efficient execution of IO in many casesnhidiy forcing
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nearly all logical writes to be executed as separate wrddbée disk resulting in increased disk
traffic. In most cases, this makes file system barriers a wadreee thanfsync (). This shows
the importance of specifying ordering at a sufficiently fimargilarity, and more generally, the
importance of carefully defining OS interfaces. The seconerface, asynchronous graphs, pro-
vides a fine-grained level of control to the application.sTd@iows the operating system maximum
freedom to optimize the 10 path while still obeying writedering constraints laid down by the
application. However, using asynchronous graphs requii@® intrusive modifications to exist-
ing applications. Applications are required to carefulhck ordering dependencies between write
operations and pass those along to the operating system.

The simulation study presented shows for a limited set okleads, file system barriers repre-
sent an improvement over usifigync () for ordering. The results show that asynchronous graphs,
however, performs far better than either file system baroefsync (). In fact, in nearly all of the
workload variations studied, asynchronous graphs is ctitiyeewith using no ordering control at

all.
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Chapter 5

Related Work

Storage caches have been in use at least since the earlgngeo$ilNix [52]. As a result, the
body of work concerning storage caching is substantials Thapter first presents a brief overview
of more recent work on buffer cache management, then presark more closely related to the

specific techniques described in this thesis.

5.1 General Caching Management

There is an enormous amount of literature on cache managemM&nsummarize some of it
here. In general, this body of work complements the work we lpgiesented in this thesis. At the
very least, any of these policies could be emulated on topahxasting operating system using
InfoReplace or detected using (a possibly extendadit In fact, we believe the large variety of
policies that have been proposed for various purposesduntbtivates having application-selected
replacement policies.

Cao, et al. proposed application controlled cache replacement galisihere the kernel de-
termined how much of the cache each process was permittezttpy but the application itself
made individual replacement decisions [13, 14]. This isilsinto InfoReplace in its goal of giv-
ing the application control over replacement decisionse phmary difference is that in Cao’s
work, the mechanisms within the kernel are modified to entitigeOS/application collaboration.
Specifically, when the kernel needs to free a page from thiebaéche, it chooses a process to
take the page from, then the process decides which pagartquish, and explicitly tells the ker-

nel this decision. In InfoReplace the kernel's cache mamage mechanisms are unmodified, the
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only modification to the kernel is to expose portions of threadly extant cache management data
structures.

Forney,et al., propose storage-aware caching, which bases the buffee caplacement deci-
sions performance of the underlying storage [21]. Thatisgng into account the cost rereading a
page from disk when making replacement decisions. It woaldrbinteresting challenge to detect
such a policy with the techniques thatist uses. Dust assumes that it can influence all of the
factors that the operating system is using to make replacedeeisions. To detect a storage aware
policy, Dustwould need to be aware of the storage configuration, its pedace characteristics
and be able to control the layout of the test data on thatgor@nly with that knowledge could
Dusttest whether replacement decisions were being made bastdrage performance.

Various policies have been proposed in the context of databenagement systems. LRU-k,
by O’Neil, et al, remembers access information about pages that have yabead evicted from
the cache [45]. Specifically, replacement decisions aredas the k-th most recent access to
each page. Thus, regular LRU is LRU-1. The authors foundrtiuet of the benefit of LRU-k was
realized using LRU-2. That is basing replacement decisa@iron the most recent access to each
page, but on the access previous to that. Johnson and Sastapdel a more efficient algorithm
that has similar benefits to LRU-2, TwoQueue [29].

The Generalized Clock algorithm [44], proposed by Nicelzal., proposes a clock algorithm
where instead of a use bit, each page has a weight associdlteid which is assigned when the
page is read into memory. When the clock hand passes a giggs pmstead of just resetting
the use bit, the weight is decremented. The page becomedaweepent candidate when the
weight value reaches zero. These weights are set using serkaawledge about the database
management system which is using the cache. For examplghisenight be based on data type.

Lee, et aland Smaragdakigt al., propose adaptive algorithms. Lee’s algorithm, LRFU [34]
takes into account both the recency of access to a block anflefuency of accesses, changing
the weight given to recency and frequency according to thévad. LRFU thus subsumes LRU
and LFU. Smaragdakis’ algorithm, Early-Eviction LRU (EBUR[60], uses LRU replacement in

the common case, but when repeated sequential reads laagethie cache are detected, it adapts
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by evicting pages that are part of these runs early. In thistiva worst-case scenario for LRU is
avoided.

R.H. Pattersoret al,, suggest allowing applications to provide hints to the apeg system to
better manage prefetching and caching [49]. The goals ofiméd prefetching and caching are
similar to the goals of InfoReplace. InfoReplace reliestandpplication using implicit techniques
to alter the behavior of the operating system whereas irddrprefetching and caching provides
an explicit interface by which the application can passdiatthe OS.

Several techniques for cooperatively managing server hedtcaches have been proposed.
Some of these are similar in spirit to our own work as they Ive@xamining information flow
between client and server. Wong and Wilkes propose extgrdistributed storage protocols to
allow server and client caches to be made exclusive [75]oitrast Zhou and Philbin, created a
new replacement policy for second-leveldserver) caches that takes into account the expected
behavior of the client caches [79]. In a similar vein, Chenal, place data in a second-level
cache only when it has been evicted from the first level cagkiag implicit techniques to detect

first-level evictions [15].

5.2 Implicit Information and Covert Channels

Fingerprinting system components to determine their behav not new and has been used
successfully in other contexts, notably in networking atwdagge. Specifically, fingerprinting has
been used to uncover key parameters within the TCP protocbtaidentify the likely OS of a
remote host [23, 47]. The primary difference between fingetipg within TCP and in our context
is that we are trying to identify policies that can have adnit behavior, rather than implementa-
tions that are expected to adhere to given specification$5@n76] techniques similar to those
used inDustwere used to determine various characteristics of disks) as size of the prefetch
window, prefetching algorithm and caching policy.

Fingerprinting also shares much in common with microberantking. Specifically, both per-
form requests of the underlying system in order to charexetés behavior. For example, with sim-

ple probes in microbenchmarks, one can determine parasradtiire the memory hierarchy [3, 55],
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processor cycle time [61], and characteristics of disk gatoyr[57, 65]. In our view, the key dif-
ference between fingerprinting and microbenchmarkingasatfingerprint is used to discover the
policy or algorithm employed by the underlying layer, whees@ microbenchmark is typically used
to uncover specific system parameters.

The idea of discovering characteristics of lower layers efstem and using that knowledge
in higher layers to improve performance is not new. In tratgeg57] the file system layer of the
operating system was modified to avoid crossing disk tracktaries so as to minimize the cost
incurred due to head switching and exploit “zero-latenayCess. Yuget al. developed a method
of predicting the position of the disk head without hardwsupport and used that information to
determine which of several rotational replicas to use twisera given request [77], thus giving
software expanded knowledge of hardware state.

Our approach involves informing the application of the buffache replacement policy in use
by the operating system. SLEDs [71] and dynamic sets [6H te@crease the knowledge that
the application and operating system have of each otheh &t the approach of embellishing
the interface between the OS and the application to allovexipécit exchange of certain types of
information. In the case of dynamic sets, the applicatiantha ability to provide more knowledge
about its future access patterns. This allows the OS to eedle fetching of data to improve
cache performance. SLEDs allows the OS to export performdata to the application, enabling
the application to modify its workload based on the perfarogacharacteristics of the underlying
system.

The idea of servicing requests within a web server in a padicorder was explored in
connection-scheduling web servers [17]. The main thesihaif research is that better perfor-
mance can be obtained by controlling the scheduling of reigweithin the web server, rather than
with the OS. While their approach used static file size to daleerequests, cache-aware NeST
uses a dynamic estimate of the contents of the buffer cache.

Our cache-aware web server has similarities to localitgrawequest distribution (LARD)

cluster-based web servers [48]. In LARD, the front-end ndidects page requests to a specific
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back-end node based upon which back-end has most receniydsthis page (modulo load-
balancing constraints); thus, the front-end has a simpldetaf the cache contents of each back-
end and tries to improve their cache hit rates. Our appr@&eaehe complementary, as LARD
partitions requests across different nodes, whereas weace content to service requests in a

different order on a single node.

5.3 Explicit Information and Information Interfaces

The work on explicit information discussed in Chapter 3 wag pf a larger project known as
infoKernel [5] wherein the general issues in exposing djiggasystem information to applications
were explored. We now discuss some of the work related toahyisoach as it applies both to
information exposure in general and to exposing cachenmdtion specifically.

An infoKernel, like other extensible systems, has the gdahiboring an operating system
to new workloads and services with user-specified policiEse primary difference is that an
infoKernel strives to bevolutionaryin its design. We believe that it is not realistic to discdrd t
great body of code contained in current operating systemanfaKernel instead transforms an
existing operating system into a more suitable buildingklo

The infoKernel approach has the further difference fromeptlxtensible systems in that
application-specific code is not run in the protected emrirent of the OS, which has both disad-
vantages and advantages. The disadvantages are thatldarmébwill probably not be as flexible
in the range of policies that it can provide, there may be adngverhead to indirectly control-
ling policies, and the new user-level policies must be usgdntarily by processes. However,
there is an advantage to this approach as well: an infoKeloed not require advanced techniques
for dealing with the safety of downloaded code, such as swévault isolation [73], type-safe
languages [10], or in-kernel transactions [58]. The opesstjan that we address is whether the
simple control provided by an infoKernel is sufficient to ilmment a range of useful new policies.

The idea of exposing more information has been exploreddeciic components of the OS.
For instance, the benefits of knowing the cost of accessifereint pages [71] and the state of net-

work connections [54] has been demonstrated. An infoKdtrdier generalizes these concepts.
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We now compare the infoKernel philosophy to three relatetbpbphies in more detail: ex-
okernel, Open Implementation, and gray-box systems. Théafexposing OS information has
been stated for exokernels [20, 30]. An exokernel takes titoeg position that all fixed, high-
level abstractions should be avoided and that all inforomage.g, page numbers, free lists, and
cached TLB entries) should be exposed directly. An exokdmes sacrifices the portability of
applications across different exokernels for more infdiromg however, standard interfaces can be
supplied with library operating systems. Alternately, afoKernel emphasizes the importance of
allowing operating systems to evolve while maintaininglejapion portability, and thus exposes
internal state with abstractions to which many systems cap timeir data structures.

The philosophy behind the Open Implementation (Ol) projdtt 32] is also similar to that
of an infoKernel. The OI philosophy states, in part, that albimplementation details can be
hidden behind an interface because not all are mere desaitse details bias the performance
of the resulting implementation. The Ol authors proposesdways for changing the interface
between clients and modules, such as allowing clients toifypanticipated usage, to outline their
requirements, or to download code into the module. Clierdg also choose a particular mod-
ule implementationd.g, BTree, LinkedList, or HashTable); this approach expokesatgorithm
employed, as in an infoKernel, but does not address the itapoe of exposing state.

Finally, there is a relationship between infoKernels andknan gray-box systems [4]. The
philosophy of gray-box systems also acknowledges thatnmétion in the OS is useful to appli-
cations and that existing operating systems should bedgeel; however, the gray-box approach
takes the more extreme position that the OS cannot be modifieédhus applications must either
assume or infer all information. There are a number of litrates when implementing user-level
services with a gray-box system that are removed with arKierfioel. First, with a gray-box sys-
tem, user-level services make key assumptions about the I vnay be incorrect or ignore
important parameters. Second, the operations performégebservice to infer internal state may
impose significant overheaé.g, a web server may need to simulate the file cache replacement
algorithm on-line to infer the current contents of memorwith Dustand cache-aware NeST). Fi-

nally, it may not be possible to make the correct inferencdlinircumstancesg(g, a service may
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not be able to observe all necessary inputs or outputs).efdrer, an infoKernel still retains most
of the advantages of leveraging a commodity operating sydtat user-level services built on an

infoKernel are more robust to OS changes and more powewdnl tifiose on a gray-box system.

5.4 Explicit Control of File Systems and Caching

Explicit control over ordering of operations is not unpr@eeted. Processor architectures that
allow multiple processors also need to allow the programimensure that ordering constraints
among loads and stores are honored. To do this, most modgritegtures include a memory
barrier instruction in some form [59] [74]. This instruati@allows a programmer to place a fence
in the instruction stream; no memory instruction can bedead across such a fence. On the
Alpha, theMB instruction is defined as: “Guarantee that all subsequerdsi@r stores will not
access memory until after all previous loads and stores hewsessed memory, as observed by
other processors.”. It is desirable that the operatingesygirovide an interface to applications for
specifying what orderings for writes are permitted. Thissértation explores two such interfaces,
file system barriers and asynchronous graphs.

The Hewlett-Packard MPE XL operating system [33], providependency queues, which
allow an application to issue any number of writes and beradgiat ordering will be maintained.
The dependency queues, however, impose a strict linearogden writes. This would be similar
to an application which used file system barriers and issuedréer after every write. Both of the
ordering mechanisms described herein allow the operayisigi a greater opportunity to reorder

writes for performance.
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Chapter 6
Conclusions

6.1 Summary

This dissertation has presented three approaches forwngroooperation between operating
system’s caching subsystems and the applications thatmuthem. The key to this new level
of cooperation isnformation The more the operating system and applications know abmit o
another, the more they are able to adapt to each others beb@aenhance the overall performance

of the system.

6.1.1 Discovering Cache Information

Chapter 2 presentdBust a tool for fingerprinting buffer cache replacement pobcidust
first executes a controlled synthetic workload on the filetesypsbuffer cache. This workload
is specifically designed to distinguish cache replacemelitips in that the initial access order,
access recency, access frequency and use bit of each pafferentland known. It then evicts
half of the data from this workload and measures the amoutitn&f required to read a random
selection of the test data. By measuring the time to read @, piag easy to determine whether that
page was cached or not at the time of the read. Knowing whidiops of the test data were still
cached after half of the data has been evicted tells us thes lmaswhich the cache policy makes
replacement decisionBustruns entirely in user space and requires no kernel extension

In many cases, the information revealed Dyst is enough to produce a simulation of the
operating system’s caching policy. Such a model, togetlitérkmowledge of most of the accesses

to the buffer cache, allows an application to predict theeots of the cache. We modified NeST,
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a software storage appliance, to use a cache simulatiorhemsle web requests on an in-cache-
first basis. This resulted in a significant improvement imtiyhput. Further, we found that even

imprecise cache predictions still enable a performanceargment.

6.1.2 Exposing Cache Information

InfoReplace depends on having accurate information albeustate of the buffer cache. Un-
like cache-aware NeST, if InfoReplace acts on inaccuratbeamformation, completely useless
disk 10 is the result (with cache-aware NeST, the data isamtlstill used to service a request).
Because of this need for precise knowledge, implicit infation is inadequate. To address this,
we extended Linux to provide two key pieces of informatiopleitly. First, a new system call
allows applications to obtain a list of the neXtbuffer cache pages that will be evicted, the victim
list. Second, an eviction counter, residing in kernel mgnut mapped into the user process, lets
the application efficiently check how much the victim lisshehanged since the last time it was
retrieved from the kernel. Since these interfaces simpposg information, that is, they do not
provide any new mechanisms, they are very simple to implémiglost importantly, they only
read, they never modify any already existing kernel datactires. We believe this minimality of
intrusiveness is an advantage if these kinds of interfaceabtain widespread adoption.

In Chapter 3 we show that these additional interfaces erthblapplication to transform the
kernel-provided buffer cache replacement policy into tbkcy of the application’s choice. The
application observes the victim list and when a page thaapipdication wants to remain cached is
in danger of being evicted, the application issues a reathatnpage. The only caveat being that
the kernel must implement a policy that increases a pag@styrwhen that page is read. Every

modern operating system we have encountered has this proper

6.1.3 Controlling the Cache

When leveraging information, be it explicit or implicit, welied entirely on implicit tech-
niques to exercise control over the operating system. Bhate only used the existing interfaces

to control the OS. This poses a limitation on the sorts of rsitens that can be implemented.
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For example, it is impossible to implement zero-copy nekiviy on a kernel that doesn’t other-
wise support it using implicit techniques. No amount of co@n from user-space will reduce the
number of data copies it takes to move data from a user-ledfdiito the network adapter.
Chapter 4 presents two new interfaces which applicationsusa to express write ordering
constraints to the operating system. Applications with plax on-disk data structures, such as
those that employ write-ahead-logging, depend on haviisgcthntrol to ensure recoverability in
the event of a crash. File system barriers introduceddleier () system call. If an application
issues some writes, cabarrier (), then issues additional writes, the writes will not be reved
across the barrier. Asynchronous graphs provides a morgifaeed interface whereby applica-
tions can specify a “must be written to disk after” relatibipsbetween individual write operations.
We found that for two transactional workloads, asynchrengnaphs has the best performance in
more circumstances, though it is more difficult for an aggilmn programmer to use. In fact, in
most cases, the performance of asynchronous graphs wascarigto the performance of using
no ordering control at all. Surprisingly, file system basiperformed consistently poorly. This is
due in large part to file system barriers not allowing two @sito the same page to be combined
into a single physical write. As a result, using file systenribes results in a significantly higher

number of disk writes than any of the other ordering methedsnéned.

6.2 Discussion

Since it is relatively easy to implement and deploy, we sedmeaware task scheduling as
being a simple way to increase the performance of existirsesys, such as web and storage
servers. Though we didn’t examine issues such as staryati@mombining predicted cache-state
with other factors that might be a basis for a schedulingsieej gaining cache knowledge by
algorithmic mirroring is an easy way to gain more performendtical knowledge. We also point
out thatDustonly needs to be run once per version of an operating systemre e replacement
policy of a given version of a given OS is known, it could bepded as part of a cache-awareness
library that applications could then use to determine ceathée. This would make it easy to

deploy such server applications. Most importantly, we ts@vn that useful internal information
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can be extracted from the operating system through thamxisiterface, and that that information
doesn't have to be perfect to be useful.

Information exposing interfaces provide a safe, flexiblg ¥ea application developers to ex-
tend operating systems to better suit application worldo&de have shown here that in the case of
the buffer cache, exposing relatively simple informatioovyides the application with a great deal
of power. We believe the simplicity of the kernel modificatsanvolved will enable them to gain
adoption more readily than proposals to introduce new, ¢exmechanisms into the operating
system. The kernel modifications involved are simple endbhgheven if they were not adopted
into mainline OS releases, it would not be unreasonable fataia such interfaces as separate
patchsets.

Write ordering in commodity operating systems is a probleat tve believe has not heretofore
been adequately addressed. Itis not reasonable to asksstestio run applications on the raw disk
partition. Not only do the open-source applications thées sise not support direct access to stor-
age, but operating in this mode increases management exkrihéewise, these sites shouldn’t
have to choose between performance and consistency. Wedvenan this dissertation that is it
possible for them to have both. We hope to see write-ordenitegfaces in commaodity operating
systems in the future. While adding ordering interfacesasgnts a substantial modification to
the internals of the operating system, it represents onipalsbackward compatible change to
the operating system interface. The ability to control ardgmight also encourage application

developers to design on-disk data structures that are eegole after a crash.

6.3 Future Directions

It is an open question as to how bad the information can be @htlesuseful. For instance,
what if the application is modeling the wrong policy? Reasgrabout the difference between
a model of a buffer cache and the cache itself would be begeddry having a formal metric
for the difference between two policies. For instance, LRId &€lock would have a very small
difference, whereas LRU and MRU would have a large diffeeerc starting point point for such

a metric might be the difference in final cache state afteninga canonical workload, such as
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Dust However, a metric based on a canonical workload will betkehiby the decision criteria
(e.g.recency, frequency, initial order) that the workload tésts

Explicit information interfaces are powerful but must beigaed carefully. They must convey
enough information to be useful but not so much that privadegss information is revealed. They
must be efficient to be useful. A great deal more work will bguieed to make extensions like
InfoReplace more common. To facilitate application paiighit will be necessary to standardize
the information-revealing interfaces. Long before anyg#adization occurs, further research is
necessary to determine what information is useful and hoexpose it efficiently and safely.
Further, rather than extend POSIX to provide informatiderifaces, we feel it would be better to
design an operating system from the beginning to exposenation. Such a system would have
process-private information clearly separated from imfation that is safe to expose. Designing
a system this way answers the question of what to expose:sexperything that is part of the
“safe” data. Since the OS would have been designed from tiemiag with information exposure
in mind, will be easier to avoid opening security holes witformation exposing interfaces. We
believe that exposing information has some advantagesioy@ementing new mechanisms in
the OS kernel. It is impossible for OS developers to antieihe needs of future applications.
Exposing information provides a way to allow applicationssafely extend the system on their
own, relieving OS developers of some of the burden of beihthalgs to all applications. The
work presented here and as part of infoKernel is only thegtegh down this road.

We have shown that introducing write ordering control irte kernel is useful when fine
grained control is required. It remains to be seen how largekass of workloads that can benefit
from such interfaces is. Also in need of further study is thterface itself. File system barriers
has a simple interface that is easy to use, but performsydsi/nchronous graphs performs well
but requires more work on the part of the application prognem Further study will be required
to find out if there is a middle ground. Can there be an writkedng interface that is fine-grained

enough to perform well, but simple enough that applicatievetbpers won't be hesitant to use it?
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6.4 Broad Conclusions

The boundary between user-level applications and the tipgraystem kernel traditionally
allows only limited information to move across it. The oparg system has knowledge of the
global state of the system, and a number of abilities thalicgipns do not possess. The OS
does not have detailed knowledge of the needs of individoli@ations, has limited knowledge
that it can use to predict their future needs and doesn’'t kwtven the application can change
its workload (as it can in scheduling web connections) ormwitieannot (as when performing
IO to maintain transactional semantics). The result of tingsion of knowledge and division
of responsibility is that in some instances, interestirfgrnmation and the ability to act on that
information are on opposite sides of the OS/applicatioréiv

We have argued in this dissertation that it is useful to iaseethe amount of information
moving across this interface, at least in the realm of cacaeagement. The goal in moving in-
formation across the OS/application interface is to brimginformation needed for making good
decisions together with the mechanisms necessary to adtemn. t In Chapter 2Dust brought
approximate cache state knowledge into the applicatiorrethe ability to schedule web connec-
tions resides. In Chapter 3 we brought precise knowledgbeotache state into the application,
the application then took that knowledge, along with knalgke of its own workload, to coerce
the buffer cache policy into behaving in a more advantage@ys In this case, the application
used knowledge of data semantieggthe level of a page in an on-disk index), knowledge the OS
does not possess, to improve cache management. Finallgyfitem barriers and asynchronous
graphs in Chapter 4 moves knowledge about write orderingmidgncies from the application into
the operating system, where it can be acted on. The applicktiows what the safe orders of its
writes are, but the operating system is actually respoasaolperforming the physical disk writes.
We brought the knowledge needed to make smart decisionshergeith the the mechanisms
necessary to act on those decisions.

Technologies such as virtual machine monitors, largeeschisters and distributed storage

add more and more layers to already complex systems. Eadtesé layers, like the operating
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systems and applications discussed herein, has certawléahge of their part of the system, and
certain decision making ability. The more layers a systes) tiee more likely it will become that
the ability to act on a decision and the knowledge necessanyake a good decision will be in
different parts of the system. Thus, we believe that infdromabased techniques such that those
we described here will become more important in the future.

The decision on how to implement a new feature is based laagethow difficult it is to change
the interface in question and how difficult it is to change ¢bede on either side of that interface.
When the interface between layers is entrenched, as POSbtXiidirst attempt should be to use
implicit techniques to move information across the systBmmany cases, this will allow system
designers to bring together the information needed for giemision making, and the mechanisms
that can act on that information, without the upheaval negiito change a popular, standardized
interface. When an interface can be changed, but perhapsdieson the other side of that interface
can't be radically altered, exposing explicit informatigiies an evolutionary path to extending the
system. In some cases, information based techniques wepbwerful enough to implement the
needed functionality. If this is the case and the interfacé system behind it can be changed
easily, or the new functionality is compelling enough tdifyshe pain, implementing an explicit

mechanism may be the right answer.



112

LIST OF REFERENCES

[1] Apache Foundation. Apache web server. http://www.apaarg.

[2] Martin F. Arlitt and Carey L. Williamson. Internet webrsers: workload characterization
and performance implicationdEEEE/ACM Transactions on Networking(5):631-645, 1997.

[3] Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthgteve Steinberg, and Kathy Yelick.
Empirical Evaluation of the CRAY-T3D: A Compiler Perspeeti In Proceedings of the
22nd Annual International Symposium on Computer Architec{ISCA '95) pages 320—
331, Santa Margherita Ligure, Italy, June 1995.

[4] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseaforination and Control in Gray-
Box Systems. IrProceedings of the 18th ACM Symposium on Operating Systentsdhes
(SOSP '01)pages 43-56, Banff, Canada, October 2001.

[5] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,hbiatC. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James Nugetti-lanentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. Rroceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSE {@8)es 90-105, Bolton Landing
(Lake George), New York, October 2003.

[6] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,i& Culler, Joseph M. Heller-
stein, and Dave Patterson. High-Performance Sorting owdi&s of Workstations. IfPro-
ceedings of the 1997 ACM SIGMOD International Conferenciklanagement of Data (SIG-
MOD '97), Tucson, Arizona, May 1997.

[7] Paul Barford and Mark Crovella. Generating Repres@rgatveb Workloads for Network
and Server Performance Evaluation. Rroceedings of the SIGMETRICS '98 Conference
June 1998.

[8] Naser S. Barghouti and Gail E. Kaiser. Concurrency Gunitr Advanced Database Appli-
cations.ACM Computing Survey23(3):269-317, 1991.

[9] John Bent, Venkateshwaran Venkataramani, Nick LeRdgimrARoy, Joseph Stanley, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Minamy. Flexibility, Manage-
ability, and Performance in a Grid Storage ApplianceTorappear in HPDC-1,12002.



113

[10] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyakj Eun Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers. ExtahgiBihfety and Performance in
the SPIN Operating System. Rroceedings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP '95)ages 267-284, Copper Mountain Resort, Colorado, Deaembe
1995.

[11] Jonathan L. Bertoni. Understanding solaris filesystemd paging. Technical Report TR-
98-55, Sun Microsystems, 1998.

[12] Steve Best. JFS Overview. www.ibm.com/developerwfirary/I-jfs.html, 2000.

[13] Pei Cao, Edward W. Felten, and Kai Li. Application-Catied File Caching Policies. In
Proceedings of the USENIX Summer Technical ConferenceNUS&ummer '94)Boston,
Massachusetts, June 1994.

[14] Pei Cao, Edward W. Felten, and Kai Li. Implementation &erformance of Application-
Controlled File Caching. IProceedings of the 1st Symposium on Operating SystemsrDesig
and Implementation (OSDI '94pages 165177, Monterey, California, November 1994.

[15] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-bd$8lacement for Storage Caches.
In Proceedings of the USENIX Annual Technical Conference (USE3), pages 269-282,
San Antonio, Texas, June 2003.

[16] Hong-Tai Chou and David J. DeWitt. An Evaluation of BarffManagement Strategies for
Relational Database Systems. Rroceedings of the 11th International Conference on Very
Large Data Bases (VLDB 1]1pages 127-41, Stockholm, Sweden, August 1985.

[17] Mark Crovella, Robert Frangioso, and Mor Harchol-BaltConnection Scheduling in Web
Servers. INUSENIX Symposium on Internet Technologies and Sysi€99.

[18] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Andersamd David A. Patterson. Co-
operative Caching: Using Remote Client Memory to Improve Biystem Performance. In
Proceedings of the 1st Symposium on Operating Systemsresigmplementation (OSDI
'94), Monterey, California, November 1994.

[19] Peter Druschel, Vivek Pai, and Willy Zwaenepoel. Esibie Kernels are Leading OS
Research Astray. IProceedings of the 6th Workshop on Workstation Operatirgie®ys
(WWOS-VI)pages 38-42, Cape Codd, Massachusetts, May 1997.

[20] Dawson R. Engler, M. Frans Kaashoek, and James W. CéToBkokernel: An Operating
System Architecture for Application-Level Resource Magragnt. InProceedings of the
15th ACM Symposium on Operating Systems Principles (SC8Rp&ges 251-266, Copper
Mountain Resort, Colorado, December 1995.



114

[21] Brian Forney, Andrea C. Arpaci-Dusseau, and Remzi Hha&r-Dusseau. Storage-Aware
Caching: Revisiting Caching For Heterogeneous Storage8ys InProceedings of the 1st
USENIX Symposium on File and Storage Technologies (FASTp@ges 61-74, Monterey,
California, January 2002.

[22] Gregory R. Ganger and Yale N. Patt. Metadata UpdateoRaence in File Systems. In
Proceedings of the 1st Symposium on Operating Systemsresigmplementation (OSDI
'94), pages 49-60, Monterey, California, November 1994.

[23] Thomas Glaser. TCP/IP Stack Fingerprinting Prinaple
http://www.sans.org/newlook/resources/IDFAQ/ T@Ryerprinting.htm, October 2000.

[24] Jim Gray and Andreas Reutéefransaction Processing: Concepts and Techniqudergan
Kaufmann, 1993.

[25] Theo Haerder and Andreas Reuter. Principles of traimsaoriented database recovery.
ACM Computing Survey45(4):287-317, 1983.

[26] John L. Hennessy and David A. Patterson, edit@smputer Architecture: A Quantitative
Approach, 3rd editionMorgan-Kaufmann, 2002.

[27] Yiming Hu, Qing Yang, and Tycho Nightingale. RAPID-Cec— A Reliable and Inexpensive
Write Cache for Disk I/O Systems. Rroceedings of the 5th International Symposium on
High Performance Computer Architecture (HPCA-Bylando, Florida, January 1999.

[28] IBM DB2 Universal Database Administration Guide: Plannikgrsion 8.2 IBM Corp.,
2004.

[29] Theodore Johnson and Dennis Shasha. 2Q: A Low-OvetHiggdPerformance Buffer Man-
agement Replacement Algorithm. Rroceedings of the 20th International Conference on
Very Large Databases (VLDB 2@)ages 439-450, Santiago, Chile, September 1994.

[30] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Garigector Bricefio, Russell Hunt,
David Mazieres, Thomas Pinckney, Robert Grimm, John Jénaad Kenneth Mackenzie.
Application Performance and Flexibility on Exokernel Syss. InProceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP paiges 52—65, Saint-Malo,
France, October 1997.

[31] Gregor Kiczales, John Lamping, Cristina Videira Lop€sris Maeda, Anurag Mendhekar,
and Gail C. Murphy. Open Implementation Design Guidelinadnternational Conference
on Software Engineering (ICSE '9Qf)ages 481-490, Boston, Massachusetts, May 1997.

[32] Gregor Kiczales, John Lamping, Chris Maeda, David Keppnd Dylan McNamee. The
Need for Customizable Operating SystemsPaceedings of the 4th Workshop on Worksta-
tion Operating Systems (WWOS-I@ages 165-169, Napa, California, October 1993.



115

[33] Alan J. Kondoff. The MPE XL Data Management System Expig the HP Precision Ar-
chitectures for HP’s Next Generation Commercial Computet&ns. InNEEE Compcon
ProceedingsSan Francisco, CA, 1988.

[34] Donghee Lee, Jongmoo Choi, Jun-Hum Kim, Sam H. Noh, $gabMin, Yookum Cho, and
Chong Sang Kim. On The Existence Of A Spectrum Of Policies Budbbsumes The Least
Recently Used (LRU) And Least Frequently Used (LFU) Poficidn Proceedings of the
1999 ACM SIGMETRICS Conference on Measurement and Mod#li@gmputer Systems
(SIGMETRICS "99)Atlanta, Georgia, May 1999.

[35] H. Levy and P. Lipman. Virtual Memory Management in th&¥/VMS Operating System.
IEEE Computer15(3):35-41, March 1982.

[36] Linux Kernel Archives. Linux source code. http://wwernel.org/.

[37] David Mazieres. A toolkit for user-level file systemsn WSENIX Technical Conference
Boston, MA, June 2001.

[38] Marshall K. McKusick, William N. Joy, Sam J. Leffler, alRbbert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Syste@(8):181-197, August 1984.

[39] Marshall Kirk McKusick, Keith Bostic, Michael J. Kargl and John S. Quartermafi.he
Design and Implementation of the 4.4BSD Operating Syséafdison Wesley, 1996.

[40] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesitgy Reter Schwarz. Aries: a
transaction recovery method supporting fine-granuladtking and partial rollbacks using
write-ahead loggingACM Transactions of Database Systefig1):94—162, 1992.

[41] D. Muntz and P. Honeyman. Multi-level Caching in Dibuted File systems — or — Your
cache ain’t nuthin’ but trash. IRroceedings of the USENIX Winter Technical Conference
(USENIX Winter '92)pages 305-314, San Francisco, California, January 1992.

[42] Michael N. Nelson, Brent B. Welch, and John K. Ousteth@aching in the Sprite Network
File System ACM Transactions of Computer Syste®d.), February 1988.

[43] NetBSD Kernel Archives. NetBSD 1.5 Source Code. hitpwiv.netbsd.org/.

[44] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the geakzed clock buffer replacement
scheme for database transaction processingIGMETRICS and PERFORMANCE92.

[45] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard \Wiein. The LRU-K Page Replacement
Algorithm For Database Disk Buffering. IRroceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ,@8)ges 297-306, Washington,
DC, May 1993.

[46] Patrick O’Neil. Lru-2 source code. ftp://ftp.cs.urabu/pub/Iru-k/lru-k.tar.Z.



116

[47] Jitendra Padhye and Sally Floyd. Identifying the TCHh&aor of Web Servers. [I81G-
COMM, June 2001.

[48] Vivek Pai, Mohit Aron, Gaurav Banga, Michael SvendsePeter Druschel, Willy
Zwaenepoel, and Erich Nahum. Locality-Aware Request bistion in Cluster-based Net-
work Servers . IrEighth International Conference on Architectural Suppirt Program-
ming Languages and Operating Syste®&n Jose, California, 1998.

[49] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daildolsky, and Jim Zelenka. In-
formed Prefetching and Caching. Rioceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP '9ppges 79-95, Copper Mountain Resort, Colorado, December
1995.

[50] PostreSQL 8.0 DocumentatioRostgreSQL Global Development Group, 2005.
[51] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[52] Dennis M. Ritchie and Ken Thompson. Theix Time-Sharing SystemCommunications
of the ACM 17(7):365-375, July 1974.

[53] John T. Robinson and Murthy V. Devarakonda. Data Cacheadement Using Frequency-
Based Replacement. Froceedings of the 1990 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systgpagies 134—142, 1990.

[54] Marcel-Catalin Rosu and Daniela Rosu. Kernel SuppaortHaster Web Proxies. IRro-
ceedings of the USENIX Annual Technical Conference (USEDRX pages 225-238, San
Antonio, Texas, June 2003.

[55] Rafael H. Saavedra and Alan Jay Smith. Measuring Cactéel&B Performance and Their
Effect on Benchmark Runtime$EEE Transactions on Compute##(10):1223-1235, 1995.

[56] Jiri Schindler and Gregory R. Ganger. Automated diskedcharacterization. Technical
Report CMU-CS-99-176, Carnegie Mellon University, 1999.

[57] Jiri Schindler, John L. Griffin, Christopher R. Lumb,cda@regory R. Ganger. Track-aligned
Extents: Matching Access Patterns to Disk Drive Charasties. InProceedings of the First
USENIX Conference on File and Storage Technologies (FA8adnterey, CA, 2002.

[58] Margo I. Seltzer, Yasuhiro Endo, Christoper Small, &=ith A. Smith. Dealing With Dis-
aster: Surviving Misbehaved Kernel Extensions.Phoceedings of the 2nd Symposium on
Operating Systems Design and Implementation (OSDI, &yes 213-228, Seattle, Wash-
ington, October 1996.

[59] Richard L. Sites, editorAlpha Architecture Reference Manudigital Press, 1992.



117

[60] Yannis Smaragdakis, Scott F. Kaplan, and Paul R. WilsBBLRU: Simple and Effective
Adaptive Page Replacement. Rroceedings of the 1999 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRK), pages 122-133,
Atlanta, Georgia, May 1999.

[61] Carl Staelin and Larry McVoy. mhz: Anatomy of a microAsbmark. InProceedings of
the USENIX Annual Technical Conference (USENIX ,/98)ges 155-166, New Orleans,
Louisiana, June 1998.

[62] David C. Steere. Exploiting the non-determinism anghablrony of set iterators to reduce
aggregate file 1/0 latency. IRroceedings of the the 15th ACM Symposium on Operating
Systems Principles (SOSRplume 27;5, pages 252—-263, 1997.

[63] Michael Stonebraker. Operating System Support foabase ManagemenCommunica-
tions of the ACM24(7):412-418, July 1981.

[64] Adan Sweeney, Doug Doucette, Wei Hu, Curtis AndersoikeNNishimoto, and Geoff Peck.
Scalability in the XFS File System. IRroceedings of the USENIX Annual Technical Con-
ference (USENIX '96)San Diego, California, January 1996.

[65] Nisha Talagala, Remzi H. Arpaci-Dusseau, and DaveePaih. Microbenchmark-based Ex-
traction of Local and Global Disk Characteristics. Techhigeport CSD-99-1063, Univer-
sity of California, Berkeley, 1999.

[66] Transaction Processing Council. TPC Benchmark B Stah&pecification, Revision 3.2.
Technical Report, 1990.

[67] Transaction Processing Council. TPC Benchmark C Stah&pecification, Revision 5.2.
Technical Report, 1992.

[68] Theodore Ts’o and Stephen Tweedie. Future Directionshfe Ext2/3 Filesystem. IRro-
ceedings of the USENIX Annual Technical Conference (FREHKIck) Monterey, Califor-
nia, June 2002.

[69] R. Turner and H. Levy. Segmented FIFO Page Replacenerit981 ACM SIGMETRICS
International Conference on Measurement and Modeling ohQuter System4981.

[70] Uresh VahaliaUNIX Internals: The New FrontierdPrentice Hall, 1996.

[71] Rodney Van Meter and Minxi Gao. Latency Management or&je Systems. IRroceed-
ings of the 4th Symposium on Operating Systems Design aridnraptation (OSDI '0Q)
pages 103-117, San Diego, California, October 2000.

[72] Rik van Riel. Page replacement in linux 2.4 memory mamagnt.
http://www.surriel.com/lectures/linux24-vm.html, 18001.



118

[73] Robert Wahbe, Steven Lucco, Thomas Anderson, and Sasamam. Efficient Software-
Based Fault Isolation. IRroceedings of the 14th ACM Symposium on Operating Systems
Principles (SOSP '93)ages 203-216, Asheville, North Carolina, December 1993.

[74] David L. Weaver and Tom Germond, editoiithe SPARC Architecture Manud@TR Prentice
Hall, 1994.

[75] Theodore M. Wong and John Wilkes. My Cache or Yours? Mgl&torage More Exclusive.
In Proceedings of the USENIX Annual Technical Conference WW&EO0), San Diego, Cal-
ifornia, June 2000.

[76] Bruce L. Worthington, Greg R. Ganger, Yale N. Patt, aodnJWilkes. On-Line Extraction
of SCSI Disk Drive Parameters. Proceedings of the 1995 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRE), pages 146—156,
Ottawa, Canada, May 1995.

[77] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthgnd T. E. Anderson. Trad-
ing Capacity for Performance in a Disk Array. Rroceedings of the 4th Symposium on
Operating Systems Design and Implementation (OSDI, '8@h Diego, California, October
2000.

[78] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, AnagltliRaman, Yuanyuan Zhou, and
Sanjeev Kumar. Dynamically Tracking Miss-Ratio-Curve Memory Management. In
Proceedings of the 11th International Conference on Aedtitral Support for Programming
Languages and Operating Systems (ASPLOSB(I3ton, Massachusetts, October 2004.

[79] Yuanyuan Zhou, James F. Philbin, and Kai Li. The Multi€de Replacement Algorithm for
Second Level Buffer Caches. Rroceedings of the USENIX Annual Technical Conference
(USENIX'01) pages 91-104, Boston, Massachusetts, June 2001.



