
Evolving System Stack for Persistent Memory: Device Characterization,
Caching, and Sharing Perspectives

By

Kan Wu

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2022

Date of final oral examination: August 17, 2022

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Michael M. Swift, Professor, Computer Sciences
Shivaram Venkataraman, Professor, Computer Sciences
Kassem M. Fawaz, Professor, Electrical and Computer Engineering

© Copyright by Kan Wu 2022

All Rights Reserved

i

To my father.

ii

Acknowledgments

This thesis would not have been possible without the help and guidance
of many people, for whom I am grateful.

First and foremost, I would like to express my heartfelt gratitude to
Andrea and Remzi, my advisors. I liked their research styles and how
they gave me advice. I like Remzi and Andrea’s system research princi-
ple of "Measure, then Build." This is exactly how I completed my Ph.D..
It was the deep measurements that my advisors encouraged me to take
during my early Ph.D. years so that I could gain a lot of insights into vari-
ous systems and generate various ideas based on the knowledge. Andrea
is very thoughtful about all aspects of my projects, including measure-
ment, design, and writing. I appreciate Andrea’s advice to always bring
a measurement figure to our meetings to discuss. Working with Andrea
aided me greatly as a researcher. I admire Remzi’s ability to generalize
concepts and ideas. As a researcher, he has always served as a role model
for me. Also, from the perspective of a Ph.D., his ability to generalize
things means that there are always things worth exploring, even if we
failed on some ideas, which has made my Ph.D. life a lot easier. Andrea
and Remzi put in a lot of effort on my research. They care about students
and have always encouraged me throughout my Ph.D. journey, as well as
given me freedom in research topics and time management. I honestly
could not have asked for better advisors. Thank you so much, Andrea

iii

and Remzi!
I’d also like to thank my committee members: Michael Swift, Shiv-

aram Venkataraman, and Kassem Fawaz. Michael and Shivaram were
also members of my preliminary exam committee. They posed questions
that prompted me to think deeply about my work on sharing and schedul-
ing for persistent memory. I have always enjoyed my conversations with
Michael and Shivaram. I would also like to thank Kassem for his willing-
ness to serve on my committee and for his constructive feedback on my
dissertation. Thank you, Michael, Shivaram, and Kassem.

Apart from the above, I had the privilege of working with outstanding
researchers at UW-Madison and the Microsoft Jim Gray Systems Lab, in-
cluding Mark Hill, Jignesh Patel, Xiangyao Yu, Kwanghyun Park, Rathijit
Sen, and Brian Kroth. I took Mark Hill’s architecture class. And many of
his research tips, such as always attempting to do a taxonomy, inspired
me greatly. That will be a life-long lesson for my future research. Jignesh
is an energetic and inspiring professor. I took his advanced databases
class, and after that I decided to do a lot of inter-discipline research across
systems and databases. I worked on several projects with Xiangyao Yu.
He is extremely smart, and always can come up with many neat designs.
It has been a pleasure to work with him. Finally, Kwanghyun, Rathijit,
and Brian from Gray Systems Lab have been very supportive to my Ph.D.
research. I have learned a lot from working with them on a variety of
projects. Working with many of these outstanding researchers was ex-
tremely beneficial to me during my Ph.D. studies.

I am grateful for having worked with a group of smart colleagues at
school, including Vinay Banakar, Youmin Chen, Yifan Dai, Guanzhou Hu,
Surabhi Gupta, Jing Liu, Anthony Rebello, Kaiwei Tu, Chenhao Ye, Su-
darsun Kannan, Yuvraj Patel, Aishwarya Ganesan, Ram Alagappan, Jun
He, Zev Weiss, Tyler Harter, Lanyue Lu, Yupu Zhang and more. I’d like
to thank Lanyue Lu and Yupu Zhang for directing me to Remzi and An-

iv

drea’s group while I was still applying to graduate schools. I am grateful
to Jun He, with whom I worked during my first two years of graduate
school. We work together to build a search engine from the ground up.
Working with Jun has been extremely beneficial to my future endeavors.
I’d like to thank Guanzhou Hu for his assistance with the Orthus project.
I’d like to thank Kaiwei Tu for his help with the NyxCache project. I re-
call one week when we spent almost all of our time together in the com-
puter science building’s seventh floor conference room finishing a large
amount of implementation and experiments. I’d like to thank Vinay Ba-
nakar for many discussions on PM-related topics, and our discussions
have inspired many new ideas that we plan to pursue in the future. I’d
also like to thank Ram Alagappan and Yuvraj Patel for their collabora-
tions. Ram’s logical thinking and writing abilities impress me when we
work on the Orthus project. It was very inspiring to discuss with Yuvraj
when we were working on the NyxCache project. Finally, I thank Jing Liu
for many enjoyable and rewarding discussions. She is extremely intelli-
gent and enthusiastic about a wide range of research topics.

I’d also like to thank my friends in Madison: Zhenmei Shi, Zifan Liu,
Yuqun Zhou, Haoru Song, Wanting Wei, and many others. The many
basketball games we played together and the gatherings we had helped
me get through the difficult COVID time.

This Ph.D. would not have been possible without the support of my
parents and family. My parents are very concerned about their only son’s
education. They did everything they could to help me get better edu-
cation and living conditions. Unfortunately, my father passed away two
months before my Ph.D. oral defense. But I believe he will be proud of
his son’s achievement. This Ph.D. is dedicated to him. I am also grateful
to my family for their support while I was in graduate school. The last
six years have been difficult for me due to health issues, COVID, and the
inability to return to China for an extended period of time. I especially

v

appreciate their assistance to my mother and father when I am unable to
return home.

Finally, I cannot express how grateful I am to Zhihan, my wife. I
am lucky to have a single person who is my true love, a wonderful life
partner, and an inspiring colleague. I consider myself extremely fortu-
nate to have met Zhihan in graduate school and fallen in love with her.
Zhihan has been a tremendous emotional support throughout my Ph.D.
journey. And we raise three adorable pets: Dongpo the rabiit and two
Yorkies: Nori and Solo. Zhihan is also an excellent researcher who works
on databases. We talk about a variety of projects all the time, and she is
a co-author on my most proud Orthus paper. Zhihan is a wonderful life
partner from whom I have learned a lot. She has cooked me countless
delicious meals and taught me how to identify my life goal and stay calm
in the face of chaos. I’m looking forward to working and living with her
for many years to come. I love you, Zhihan.

vi

Contents

Acknowledgments ii

Contents vi

Abstract x

1 Introduction 1
1.1 Understanding Persistent Memory (PM) Devices Charac-

teristics . 4
1.2 Evolving Caching for PM Hierarchies 6
1.3 Evolving Sharing Mechanisms for PM 9
1.4 Contributions and Highlights 12
1.5 Overview . 13

2 Persistent Memory Background 15

3 Understanding PM Devices Characteristics 20
3.1 The Unwritten Contract of Optane SSD 21

3.1.1 Access with Low Request Scale 22
3.1.2 Random Access is OK 27
3.1.3 Avoid Crowded Accesses 30
3.1.4 Control Overall Load 31

vii

3.1.5 Avoid Tiny Accesses 32
3.1.6 Issue 4KB Aligned Requests 33
3.1.7 Forget Garbage Collection 34

3.2 Discussion and Implications From the Contract 37
3.2.1 Flash vs. Optane SSD 37
3.2.2 Implications From the Contract 38

3.3 Conclusions . 41

4 Evolving Caching for PM Hierarchies 42
4.1 Background and Motivation 43

4.1.1 Managing the Storage Hierarchy 44
4.1.2 Hardware Storage Trends 45

4.2 Characterizing Caching in Traditional and Modern Storage
Hierarchies . 47
4.2.1 Modeling Caching Performance 48
4.2.2 Evaluation with Optane DC PM and Optane SSD . . 52

4.3 Non-Hierarchical Caching 55
4.3.1 Formal Definitions 57
4.3.2 Architecture . 58
4.3.3 Cache Scheduler Algorithm 60

4.4 Implementation . 63
4.5 Evaluation . 64

4.5.1 Orthus-CAS . 65
4.5.2 Orthus-KV: Static Workloads 69
4.5.3 Orthus-KV: Dynamic Workloads 72
4.5.4 Comparisons with Prior Approaches 76

4.6 Conclusions . 78

5 Evolving Sharing Mechanisms for PM 79
5.1 Background and Motivation 80

5.1.1 Sharing Policies for Multi-Tenant Caches 80

viii

5.1.2 Challenges of PM Cache Sharing 84
5.2 NyxCache Design . 89

5.2.1 Architecture . 89
5.2.2 Design goals . 91
5.2.3 Nyx Mechanisms . 91
5.2.4 Nyx Sharing Policies 95
5.2.5 Cache Instances: PM-Optimized Pelikan 101
5.2.6 Nyx Parameter Values 102

5.3 Evaluation . 103
5.3.1 Mechanisms Overhead 104
5.3.2 Resource Limiting . 105
5.3.3 QoS-Aware . 107
5.3.4 Fair Slowdown . 110
5.3.5 Proportional Resource Allocation 111
5.3.6 Realistic Traces . 115
5.3.7 Parameters Sensitivity Analysis 116

5.4 Discussion . 118
5.5 Conclusions . 119

6 Related Work 120
6.1 Characterizing Modern PM Devices 120
6.2 Evolving Caching for PM Hierarchies 122
6.3 Evolving Sharing Mechanisms for PM 126

7 Conclusions 128
7.1 Summary . 128

7.1.1 Characterizing Modern PM Devices 129
7.1.2 Evolving Caching for PM Hierarchies 130
7.1.3 Evolving Sharing Mechanisms for PM 130

7.2 Lessons Learned . 131

ix

7.2.1 Understanding Device Characteristics is Critical for
Storage Research . 131

7.2.2 It is Helpful to Think Like a Novice at Some Point . 133
7.2.3 It is Important to Separate Mechanisms and Policies

in System Research 134
7.3 Future Work . 135

7.3.1 Energy Efficiency Characterization of PM Devices . 135
7.3.2 Non-hierarchical Caching in the world of Memo-

ry/Storage Disaggregation 136
7.3.3 Sharing with Better Hardware/Software Co-design 137
7.3.4 Sharing of PM and DRAM pool in Disaggregated

Memory Setup . 137
7.4 Discussion: Demise of Intel Optane Memory Business . . . 138

7.4.1 Implications for This Thesis 138
7.4.2 Implications of Our Thesis for Future PM Device

Development . 139
7.5 Closing Words . 140

Bibliography 142

x

Abstract

Data has been critical to human society, and data storage systems that
hold the data of every human being are playing an important role in peo-
ple’s modern lives. These storage systems serve people’s information in
a variety of places, from mobile devices and laptops to large-scale data
centers and the cloud. People rely on these storage systems for critical
applications such as e-commerce, social media, health care, and artificial
intelligence. In the modern world, people interact with data storage sys-
tems almost every moment. As a result, there is a high demand for data
storage systems that are reliable, large, performant, and cost-effective.

To meet these demands, the system community has been working on
high-performance, low-cost storage devices as well as software system
stacks to manage them. For decades, numerous storage devices such as
tape, DRAM, HDD, and SSD have been invented. Meanwhile, system
stacks to manage these devices have evolved, ranging from primitive data
structures (e.g., B-tree) to complex file systems and distributed storage
systems. This dissertation focuses on Persistent Memory (PM), a new de-
velopment in the storage device landscape. We investigate how to evolve
the system stack for new PM devices.

In the first part of this thesis, we characterize a popular PM-based de-
vice – the Intel Optane SSD. We investigate the performance of Optane
SSDs in response to a variety of micro-experiments. We formalize an “un-

xi

written contract”, which includes rules that are essential for Optane SSD
users to achieve optimal performance. We also use carefully designed
experiments to reveal the internals of Optane SSDs. We reveal Optane
SSD’s internal parallelism, read-write scheduling mechanisms, and so on.
These internals provide insights about the unwritten contract. Finally, we
discuss implications of our device characterization.

In the second part, we investigate how classic caching performs on
modern storage hierarchies, with new PM devices filling the gap between
DRAM and SSD. We compare DRAM/PM/Low-latency SSDs/Flash SSDs
quantitatively. Our analysis shows that modern hierarchies have a much
smaller performance difference between neighboring layers than tradi-
tional hierarchies. We then examine caching on modern hierarchies.
Caching manages data across two layers: a cache layer (faster but smaller)
and a capacity layer (slower but larger). We find that classic caching,
which directs as many accesses to the cache layer as possible (referred as
the principle of maximizing hit rates), cannot effectively utilize the sig-
nificant available performance in today’s capacity layer (e.g., PM). Thus,
we introduce three improvements (read around, admission rejection, and
feedback-based offloading) that evolve classic caching for PM hierarchies.

In the final part of this thesis, we study how unique characteristics
of PM influence the effectiveness of existing sharing mechanisms. We
focus on a detailed setup of multi-tenant in-memory key-value caches.
We first summarize the basic mechanisms (for example, resource usage
accounting, interference analysis, etc.) used to achieve diverse sharing
goals. We then investigate these mechanisms on PM. Our analysis shows
that existing sharing mechanisms designed for DRAM/block devices do
not readily translate to PM due to PM’s unique characteristics such as
256B access granularity and severe and unfair interference between reads
and writes. To address this issue, we present Nyx, a PM access regulation
framework that is optimized for today’s PM without special hardware

xii

support. Nyx introduces new software sharing mechanisms for PM that
can be be used to easily and efficiently support sharing policies such as
resource limiting, QoS, fair slowdown, and proportional sharing.

1

1
Introduction

Data storage systems have become indispensable in modern society.
File systems [24], which manage data on mobile devices [44], comput-
ers [225], and data centers [19], enable us to store and retrieve infor-
mation daily. Every second, databases [201], such as those used in e-
commerce [4, 119] and social media [68, 91, 239], process billions of
queries to critical data in the lives of individuals. Meanwhile, data-
intensive artificial intelligence applications [9, 156] will continue to ne-
cessitate large-scale distributed storage systems [8, 49, 74]. In the era
of cloud computing, the demand for large, reliable, efficient, and cost-
effective data storage systems continues to grow [5, 20, 26].

To meet these demands, the system community has been devel-
oping high-performance, low-cost storage devices, as well as the soft-
ware system stack to manage them [21]. For primary storage/mem-
ory, we’ve seen various versions (DDR1-5) of Dynamic Random Access
Memory (DRAM) [23] and High Bandwidth Memory [29] over the last
decade. For secondary storage, magnetic tapes [50] were used for the
very first computers [75], while Hard Disk Drives (HDD) [28], and
Solid-State Drives (SSD) [73] are excellent examples of more recent de-
vices. To exploit each type of device, a large number of systems/tech-
niques have been developed: from the design of primitive data structures
(e.g., B+ tree [11], Log-structured Merge-tree [48]) to complicated data
management systems in a single machine (e.g., file system [170, 180],

2

databases [125, 201]), and distributed systems (e.g., RamCloud [193],
Google File System [136]). The system stack has evolved in response to
different characteristics of the storage devices.

Persistent Memory (PM) [63] is one of the most recent develop-
ments in the storage device landscape. PM provides memory-like byte-
addressable accesses while ensuring data persistence in the event of a fail-
ure. PM is expected to achieve DRAM-like speed, while having a larger
capacity and less cost compared to DRAM [1, 63, 77, 169]. There has been
a lot of interest in using PM for databases [129], big data processing [137],
cloud computing [106], and artificial intelligence applications [130].

However, due to the unique characteristics of PM, existing systems
must be rethought or redesigned for PM. PM is different to DRAM. First,
PM has persistence, so systems that require persistence from PM must
manage crash consistency. Second, unlike DRAM, PM exhibits highly
asymmetric read vs. write performance, and is especially efficient for
multiples of 256B accesses [238]. Previous DRAM-based systems must
be reevaluated in light of these significant DRAM and PM differences.
PM also differs from SSD. It is byte-addressable and has unprecedented
sub-microsecond access latency. Traditional SSD/HDD block interfaces
are hence inefficient, and expensive software stacks (e.g., the OS block
layer) are no longer appropriate for PM [90]. To fully realize the perfor-
mance potential of the new PM devices, a fundamental question arises:
how should the system stack evolve for PM devices?

In this dissertation, we attempt to address this question from three
perspectives: i) understand the performance characteristics of PM de-
vices, ii) rethink caching on PM hierarchies, and iii) rethink sharing
mechanisms for PM.

We begin by characterizing and revealing the internals of recently
commercialized PM devices. We characterize the performance of the In-
tel Optane SSD [40], by examining its response to various access patterns.

3

Based on our performance studies, we summarize rules that Optane SSD
users must follow in order to achieve optimal performance; we refer to
these rules as the “unwritten contract” of Optane SSD. The device char-
acterization serves as a foundation for evolving the system stack for PM.

Next, we analyze classic caching [14] on modern storage hierar-
chies [103], with new PM layers [37] filling the performance gap be-
tween DRAM and SSD. Consider a system with two storage layers: a (fast,
expensive, small) performance layer like DRAM and a (relatively slow,
cheap, large) capacity layer like PM. Caching manages data placements
between these two layers. We find that: classic caching strives to direct
as many accesses as possible to the cache layer (known as the maximiz-
ing cache hit rates principle); as a result, caching does not use capacity
layer performance even when the cache device is fully saturated. And
today, capacity layer performance, such as PM performance, can account
for a significant portion of total performance out of the hierarchy. After
understanding why the principle does not work well, we introduce three
ways for evolving classic caching on PM hierarchies: i) read around, ii)
admission rejection, and iii) feedback-based offloading.

Finally, we study how the unique characteristics of PM influence the
effectiveness of existing sharing mechanisms. We aim to enable PM shar-
ing across multiple tenants while achieving performance isolation, fair-
ness, or other goals. We find that both DRAM and SSD/HDD shar-
ing mechanisms [35, 43] do not translate into effective PM sharing ap-
proaches. We perform a detailed analysis of each mechanism’s problems
and propose new mechanisms that better enforce sharing goals on PM.

We believe that our studies will prompt and stimulate the system com-
munity to consider how to evolve other aspects of the system stack for
PM, and thus significantly reshape future PM systems used in databases,
cloud computing or data processing systems that support our daily lives.

4

1.1 Understanding Persistent Memory (PM)
Devices Characteristics

We first seek to understand the performance characteristics of PM de-
vices. Researchers have been developing various types of PM technolo-
gies for decades. Only recently, with the 3D XPoint Memory technique
from Micron and Intel [1, 141], has the system community gained ac-
cess to widely-available PM devices. Intel made storage devices based on
3D XPoint Memory available in various form factors, including Optane
SSD [39] (a block device), and Optane DC PM [37] (byte-addressable
memory DIMMs). The first part of the dissertation focuses on the Intel
Optane SSD, which is the most cost-effective of the PM devices and the
only widely available option at the time of our study.

Optane SSD offers numerous opportunities for applications. For ex-
ample, Intel’s Memory Direct Technology (IMDT) [36] enables the use
of Optane SSD as a DRAM alternative. Use cases of IMDT/Optane SSD
include Memcached [31], Redis [32], and Spark [33]. Evaluations of
those scenarios demonstrate the potential role of Optane SSD as a cost-
effective alternative of DRAM. Optane SSDs are also deployed to support
key workloads in Facebook [129, 130], both as a caching layer between
DRAM and Flash SSD for RocksDB and for crucial workloads such as
machine learning. According to Eisenman et al. [130], Facebook stores
embedding of trained neural networks on Optane SSDs.

Using new technology effectively requires understanding its perfor-
mance and reliability characteristics. For traditional devices, such as
HDDs and Flash-based SSDs, their characteristics are well known [101,
102, 123, 124, 143, 208, 237]. However, for new devices like the Optane
SSD, much remains unclear, and is thus the focus of our work. We con-
duct fine-grained experiments to characterize the Optane SSDs and sum-
marize the “unwritten contract” that Optane users must adhere to for op-

5

timal performance.
In terms of immediate performance, we summarize six rules that are

critical for Optane SSD users. First, to obtain low latency, users should
issue small requests (> 4 KB) and keep a small number of outstanding
IOs (Access with Low Request Scale rule). Second, different from HD-
D/Flash SSDs, Optane SSD clients should not consider sequential work-
loads special (Random Access is OK rule). Third, to avoid contention
among requests, clients should not issue parallel accesses to a single
chunk (4KB) (Avoid Crowded Accesses rule). Fourth, to achieve optimal
latency, the user needs to control the overall load of both reads and writes
(Control Overall Load rule). Fifth, to exploit the bandwidth of Optane
SSD, clients should never issue requests less than 4KB (Avoid Tiny Ac-
cesses rule). Sixth, to get the best latency, requests issued to Optane SSD
should align to eight sectors (Issue 4KB Aligned Requests rule). Finally,
when serving sustained workloads, there is no cost of garbage collection
in Optane SSD (Forget Garbage Collection rule).

In order to present insights regarding these rules, we use carefully
crafted micro-experiments to reveal the internal of Optane SSDs. We
experimentally reveal the amount of internal parallelism, read-write
scheduling mechanisms, block alignment granularity, and mapping poli-
cies from logical-block address (LBA) to physical-block address (PBA)
in the Optane SSD. Overall, we show that the Optane SSD unwritten con-
tract is relevant to features of 3D XPoint memory and Intel Optane SSD’s
controller/interconnect design.

The unwritten contract provides numerous implications for systems
and applications. For example, according to the Access with Low Request
Scale rule and the Control Overall Load rule, the design of heterogeneous
storage systems including Optane SSD and Flash SSD must be carefully
considered. Moreover, many rules (e.g., Random Access is OK) present
opportunities and new challenges to external data structure design for

6

Optane SSD. Finally, the Random Access is OK rule may enable new ap-
plications on Optane SSD that don’t work well on existing technologies. In
general, our device characterization study provides a foundation for our
subsequent system stack evolution for PM, such as the following caching
work.

1.2 Evolving Caching for PM Hierarchies
Our performance studies show that the modern storage landscape is com-
plicated by new PM devices, and we believe that existing systems need to
be reevaluated/rethought. The second part of the dissertation focuses on
the change in storage hierarchy and the associated caching approaches.
We demonstrate the limitations of classic caching approaches on modern
storage hierarchies with PM and evolve caching for these hierarchies.

The notion of a hierarchy (i.e., a memory hierarchy or storage hierarchy)
has long been central to computer system design. Indeed, assumptions
about the hierarchy and its fundamental nature are found throughout
widely used textbooks [103, 144, 212]: “Since fast memory is expensive,
a memory hierarchy is organized into several levels – each smaller, faster,
and more expensive per byte than the next lower level, which is farther
from the processor.[144]”

To cope with the nature of the hierarchy, systems usually employ two
strategies: caching[14, 191] and tiering[16, 138, 232]. Consider a system
with two storage layers: a (fast, expensive, small) performance layer and
a (slow, cheap, large) capacity layer. With caching, all data resides in the
capacity layer, and copies of hot data items are placed, via cache replace-
ment algorithms, in the performance layer. Tiering also places hot items
in the performance layer; however, unlike caching, tiering migrates data
(instead of copying) on longer time scales. With a high-enough fraction
of requests going to the fast layer, the overall performance approaches

7

the peak performance of the fast layer. Consequently, classic caching and
tiering strive to ensure that most accesses hit the performance layer.

While this conventional wisdom of maximizing hit rates may remain
true for traditional hierarchies (e.g., CPU caches and DRAM, or DRAM
and HDDs), rapid changes in storage devices have complicated this nar-
rative within the modern storage hierarchy. Specifically, the advent of
PM DIMMs [81, 158, 202] and low-latency SSDs [40, 56, 71] bridges the
performance gap between DRAM and SSD; they introduce neighboring
layers with much closer and (sometimes) overlapping performance in to-
day’s hierarchies. Thus, it is essential to rethink how such devices must
be managed in the storage hierarchy.

To understand this issue better, consider a two-level hierarchy with
PM devices (50GB/s total bandwidth) as the capacity layer, and tradi-
tional DRAM (100GB/s total bandwidth) as the performance layer. As
we will show (§4.5), when the workload is light, DRAM latency is an or-
der of magnitude lower than PM, and thus the traditional caching/tiering
arrangement works well. However, in other situations (namely, when the
workload has a high concurrency), even assuming a perfect 100% hit rate,
classic caching and tiering can only utilize DRAM bandwidth while leav-
ing a significant mount of PM bandwidth idle. To maximize performance
in modern PM hierarchies, a different approach is needed.

To address this problem, we introduce non-hierarchical caching (NHC),
a new approach to caching for modern storage hierarchies. NHC delivers
maximal performance from modern devices despite complex device char-
acteristics and changing workloads. The key insight of NHC is that when
classic caching would send more requests to the cache/performance de-
vice than is useful, some of that excess load can be dynamically moved to
the capacity device. NHC improves upon classic caching in three ways:
i) read around, ii) admission rejection, and iii) feedback-based offload-
ing. First, NHC enables offloading of read hits to capacity devices. NHC

8

monitors cache performance and adapts the requests sent to each de-
vice, thereby delivering additional useful performance from the capac-
ity device. Second, NHC turns off the data admission to cache devices
when this movement does not improve overall cache performance. Fi-
nally, NHC determines the amount of offloading at runtime by checking
cache performance feedback when NHC fine-tunes the offloading ratios.
While the idea of redirecting excess load to devices lower in the hierarchy
applies to both caching and tiering, we focus on caching.

Previous work has addressed some of the limitations of caching [80,
160], offloading excess writes from SSDs to underlying hard drives. How-
ever, as we show (§4.5.4), they have two critical limits: they do not redi-
rect accesses to items present in the cache (hits), and they do not adapt to
changing workloads and concurrency levels (which is critical for modern
devices).

We implement NHC in two systems: Orthus-CAS, a generic block-
layer caching kernel module [108], and Orthus-KV, a user-level caching
layer for an LSM-tree key-value store [168]. Under light load, Orthus im-
plementations behave like classic caching; in other situations, they offload
excess load at the caching layer to the capacity layer, improving perfor-
mance. Through rigorous evaluations, we show that Orthus implemen-
tations greatly improve performance (up to 2×) on various real devices
(such as Optane DC PM, Optane SSD, Flash SSD) and other simulated
ones for a range of workloads (YCSB [117] and ZippyDB [107]). We show
NHC is robust to dynamic workloads, quickly adapting to load and lo-
cality changes. Finally, we compare NHC against prior caching strategies
and demonstrate its advantages. Overall, the non-hierarchical approach
extracts high performance from modern storage hierarchies.

9

1.3 Evolving Sharing Mechanisms for PM
So far, we primarily focused on a single application or tenant’s point of
view of using PM. Because PM is large and cheap, there is a great deal
of interest in using it in a shared environment. As a result, a question
arises: how can we share PM across multiple tenants? In the final part
of the thesis, we address this question. We examine prior sharing mech-
anisms, designed for DRAM/block devices, on PM, expose their funda-
mental limitations, and then propose new mechanisms to address PM
sharing challenges. We concentrate on a detailed setup of multi-tenant
in-memory key-value caches.

Memory-based look-aside key-value caches (e.g., memcached [52])
are a critical component of many systems and applications [10, 17, 88,
239]. To improve utilization and simplify management, multiple cache
instances are often consolidated onto a single multi-tenant server. For
example, Facebook [187] and Twitter [239] each maintain hundreds of
dedicated cache servers that host thousands of cache instances. However,
multi-tenant servers have the added challenge of ensuring that each client
cache meets its performance goals; a range of production and research
in-memory multi-tenant caches currently provide different sharing poli-
cies, such as enforcing a limit on the used memory capacity and band-
width [27], guaranteeing a level of quality-of-service (QoS) [62], and al-
locating resources proportionately [199].

PM, such as that provided by Intel’s Optane DC PM [37], is emerging
as an appealing building block for these caches, due to PM’s large ca-
pacity, low cost per byte, and comparable performance to DRAM. How-
ever, PM performance differs from DRAM and Flash in a number of
ways that reduce the effectiveness of current multi-tenant caches for other
devices [116, 214]. In particular, unlike DRAM, Optane DC PM ex-
hibits highly asymmetric read vs. write performance (for a single DC
PM, max read bandwidth is 6.6GB/s whereas max write bandwidth is

10

2.3GB/s) [151], severe and unfair interference between reads and writes
(writing at 1GB/s can cause the same throughput and P99 latency slow-
down to a co-running read workload as reading at 8GB/s) [189], and es-
pecially efficient access for multiples of 256B [238].

Unfortunately, existing multi-tenant DRAM and storage caching tech-
niques do not readily translate to PM. Some approaches focus exclusively
on capacity allocation across clients [116, 199, 214]; capacity allocation is
necessary but not sufficient for PM sharing because the rate of requests
to PM must also be regulated. Host-level request regulation has been
explored extensively for Flash devices using block-layer I/O schedul-
ing [197, 210], but these software overheads are prohibitive given 100ns
PM accesses [90]. Device-level request scheduling assumes special hard-
ware that PM lacks [186, 217, 245, 247]. Finally, coarse-grain request throt-
tling underpins the vast majority of DRAM bandwidth allocation tech-
niques; however, these approaches assume both hardware counters and
performance characteristics that do not hold for PM (e.g., bandwidth is
an accurate estimate of utilization).

In the last part of the thesis, we introduce NyxCache (Nyx), a stan-
dalone lightweight and flexible PM access regulation framework for
multi-tenant key-value caches that is optimized for today’s PM without
special hardware support. Given a PM server and a sharing policy (e.g.,
QoS), cache instances are admitted and assigned space using existing
load admission [120, 121, 179] and capacity allocation [116, 199, 214] tech-
niques. At runtime, Nyx monitors information (e.g., PM resource utiliza-
tion) of caches, regulates the rate at which each cache is allowed to access
PM, and thus enforces the sharing policy’s performance goals. Nyx works
with any in-memory key-value store that adheres to the memcached inter-
face [52]; the current implementation includes a PM-optimized version of
Twitter’s Pelikan [61] that can improve single-cache performance by more
than 50% for get-heavy workloads and 3× for write-heavy workloads.

11

Nyx’s central contribution is a set of software mechanisms designed for
PM to extract the information required to flexibly enforce popular sharing
policies.

Nyx provides new mechanisms to efficiently i) regulate PM accesses,
ii) obtain a client’s PM resource usage, iii) analyze inter-client interfer-
ences, and has two particularly useful and novel mechanisms for PM.
First, Nyx efficiently estimates not only the total PM DIMM utilization
(building on pioneering work in this space [189]), but also the PM uti-
lization caused by each cache instance, as is needed for sharing policies;
estimating PM utilization is challenging because the number of trans-
ferred bytes is not an accurate proxy of PM utilization, unlike on DRAM.
Second, Nyx can determine which cache instance most interferes with
another cache instance; in PM-based systems, these interactions are diffi-
cult to identify because a harmed client may be impacted more by a low-
bandwidth client than a high-bandwidth client, unlike DRAM. Both of
these mechanisms accurately account for the CPU cache prefetching that
is essential for high performance on PM. These new mechanisms enable
Nyx to easily and efficiently support sharing policies such as resource
limiting, QoS, fair slowdown, and proportional sharing.

The sharing policies provided by Nyx are powerful. Nyx can accu-
rately limit the PM utilization of each cache (similar to Google Cloud’s
memcache [27]), whereas an approach that measures only bandwidth
cannot. Nyx can provide QoS guarantees to latency-critical caches while
providing higher throughput (up to 6×) to best-effort caches that are not
interfering. Nyx can provide proportional resource allocation while re-
distributing idle PM utilization to clients that will not inadvertently slow-
down others. Finally, as shown for real large-scale cache traces from Twit-
ter, Nyx can isolate clients from write spikes and ensure that important
caches are not slowed down by increased best-effort traffic.

12

1.4 Contributions and Highlights
We list the main contributions of this dissertation.

Understanding PM Devices Performance Characteristics.

• We provide the first comprehensive performance analysis of a pop-
ular PM-based device: the Intel Optane SSD.

• We formalize the “unwritten contract” that Optane SSD users must
follow in order to achieve the best performance out of Intel Optane
SSDs. We also present the impact when violating each rule.

• We design carefully-crafted experiments to reveal the internals of
Optane SSD. Our study provides insights into each contract rule and
serves as a knowledge base for future research.

• We provide implications from the unwritten contract for i) devel-
oping applications on Optane SSD, and ii) managing storage hier-
archies with Optane SSD.

Evolving Caching on PM Hierarchies.

• We present the first quantitative comparison of device pairs in
modern storage hierarchies, such as DRAM/PM/Low-latency SS-
D/Flash. Our analysis reveals a significant change in modern hier-
archies: the performance difference between neighboring layers is
now much smaller than in traditional hierarchies.

• We investigate caching on modern hierarchies using both perfor-
mance modeling and measurements. The investigation shows that
the decades-old caching principle of maximizing hit rates is no
longer sufficient.

13

• We design and build Non-Hierarchical Caching (NHC), which
evolves caching for modern hierarchies. Non-hierarchical caching
is a generic approach; any classic caching implementation can be
augmented by incorporating the read around and admission rejec-
tion mechanisms in NHC.

Evolving Sharing Mechanisms for PM.

• We provide a summary of basic mechanisms that are commonly
used to achieve diverse sharing goals. This summary can help fu-
ture studies on PM and other device sharing.

• We demonstrate that prior DRAM or storage device-intended ap-
proaches for access regulation, resource-usage estimation, and in-
terference analysis fail to work on PM due to PM’s unique perfor-
mance characteristics.

• We introduce Nyx, a sharing framework which enables these shar-
ing mechanisms on PM. We devise software mechanisms that can
be immediately applied to today’s PM devices without special hard-
ware assumptions.

• We revise popular sharing policies (i.e., QoS aware, Resource Limit-
ing, Proportional Sharing, Fair Slowdown) upon PM based on Nyx
mechanisms.

1.5 Overview
We briefly describe the contents of the chapters of this dissertation.

• Persistent Memory Background. In Chapter 2, we provide rele-
vant PM background. We provide high-level overview of PM tech-
niques and compare PM to DRAM and Flash. Then, we introduce

14

two commercially available PM devices today: the Intel Optane SSD
and Intel Optane DC PM.

• Understanding PM Devices Characteristics. In Chapter 3, we first
present our experimental analysis of the Intel Optane SSD. We then
summarize the unwritten contract of the Optane SSD. We also dis-
cuss implications from the contract.

• Evolving Caching for PM Hierarchies. Chapter 4 first describes
how PM devices have strong implications on caching in modern
storage hierarchies. Then, in the second part, we present non-
hierarchical caching, a method to augment classic caching imple-
mentations for PM hierarchies. We describe the design, implemen-
tation, and our evaluation.

• Evolving Sharing Mechanisms for PM. In Chapter 5, we explore
how to share PM across multiple tenants. We investigate existing
DRAM/block devices sharing approaches’ problems on PM. We
then describe how Nyx supports PM access regulation, resource us-
age accounting, and cross-tenant interference analysis on PM.

• Related Work. In Chapter 6, we first describe previous work on
block device characterization, which is relevant to our investigation
of Optane SSDs. We then discuss prior techniques that have been
developed to effectively manage classic or modern storage hierar-
chies. Finally, we discuss work related to multi-tenant PM sharing.

• Conclusions and Future Work. In Chapter 7, we summarize the
dissertation and the lessons we learned while working on it. Finally,
we discuss how the work presented in this dissertation can be ex-
panded upon, as well as the future directions our work suggests.

15

2
Persistent Memory Background

In this chapter, we provide necessary background on PM techniques. In
addition, we highlight key differences between PM and existing popular
DRAM and Flash Devices [25]. Finally, we introduce two types of
commercially available PM devices, which we will use throughout the
remainder of the dissertation.

Persistent Memory. Persistent memory refers to a class of technolo-
gies which provide “byte addressable” storage that survives power out-
ages [63]. PM distinguishes itself through two defining characteristics:
memory-like access and persistence. It should be compatible with mi-
croprocessor memory instructions (such as load and store). It can also
perform remote direct memory access (RDMA) [67] actions like RDMA
read and RDMA write. In addition, PM should be able to retain program
data or state that exists outside of the fault zone of the process that gener-
ated it (i.e., persistence). The capabilities of persistent memory typically
go beyond the non-volatility of stored data. For example, the loss of meta-
data such as page table entries that translate virtual addresses to physical
addresses may result in non-persistent but durable content. Hence, most
PM technologies include some basic file systems (similar to typical stor-
age devices) for associating names or identifiers with stored data.

In the past decade, numerous PM prototypes have been developed,
including spin-transfer torque, phase change, and resistive memo-

16

Device Type Latency Typical Single-Device Capacity Cost ($/GB)
DRAM 80ns 16, 32, 64 GB ~7

Optane DC PM 300ns 128, 256, 512 GB ~5
Optane SSD 10us 400, 800, 1600 GB 1
Flash SSD 80us 1-10s TB 0.3

Table 2.1: Comparing PM Devices to DRAM and Flash. This table compares
PM-based SSD (Intel Optane SSD [39]), and PM DIMMs (Intel Optane DC PM [37]) to
DRAM and Flash.

ries [81, 105, 158, 202]. For example, phase change memory [202] is
based on a Chalcogenide glass that can be programmed by varying
electrical inputs to the cell. Resistive memory [233] is based on metal
oxide, and spin-transfer torque memory [105] stores data using electron
spin. Many of these PM techniques have features in common, such
as relatively slower accesses than DRAM and asymmetric read-write
latencies. Meanwhile, PM’s write endurance will be limited. With the
recent introduction of Micron and Intel’s commercially available 3D
XPoint Memory technique [1, 141], the system community can now
evaluate PM’s true capabilities, design systems for real devices, and
deploy them in a variety of scenarios.

PM vs. DRAM and Flash. PM is different from DRAM [23] or Flash
SSDs [25]. DRAM is a type of random-access semiconductor memory
that stores bits in memory cells composed of capacitors and transistors.
DRAM is commonly constructed using metal-oxide-semiconductor tech-
nology. DRAM is typically packaged in the form of memory DIMMs that
connect to memory buses that are linked to CPUs. Flash memory (or,
more precisely, NAND-based flash memory) is a type of floating-gate
memory invented in the 1980s by Toshiba [25]. Flash memory can be
erased and reprogrammed electrically. To write to a flash page, for exam-
ple, we must first erase a larger chunk of the flash block. Flash memory
is usually found in solid-state drives (SSD). SSDs are connected to either

17

the SATA [72] or PCIe [60] bus.
PM is persistent, larger and less expensive than DRAM (as shown in

Table 2.1). For example, a single server can be outfitted with up to 12TB of
Intel Optane DC PM [37] (one version of PM device), making PM appeal-
ing for developing memory-intensive applications. Meanwhile, because
PM is less expensive than DRAM (Table 2.1), large memory can now be
cost-effective. In terms of performance, current PM devices are three to
six times slower than DRAM [238]. Meanwhile, PM has asymmetric read
and write performance, as opposed to DRAM. As we will see more in our
following studies, PM has unique performance characteristics compared
to DRAM; in other words, PM is more than just a slower DRAM.

Compared to Flash SSDs, PM is byte-addressable, can be directly
connected to the memory bus, and supports hardware load/store
accesses. These features are extremely beneficial to application devel-
opers. PM byte-addressability, for example, avoids the serialization and
deserialization overheads required by SSDs and other block devices.
In terms of performance, when compared to Flash SSDs, PM delivers
unrivaled performance (as we will show, for example, sub-microsecond
access latency, supreme random access performance, and high maximum
bandwidth). Because of these distinguishing characteristics, existing
applications designed for SSDs must be thoroughly rethought for PM.

Commercially-available PM Devices. Based on 3D XPoint Memory [1],
Intel made available storage devices in a variety of form factors. Cur-
rently, the most popular options are Intel Optane SSD [39] and Intel Op-
tane DC PM [37].

The Intel Optane SSD is the first widely available PM-based hardware,
and it is a low-latency block device built on 3D XPoint Memory. It con-
nects to the PCIe 3.0 bus, just like a Flash-based SSD, and Optane SSD
users access it through the traditional block interface. Its first-generation

18

DRAM

PM DIMM

Low-latency SSD

SATA/NVMe Flash SSD
Hard Disk Drive (HDD)

New Layers

Figure 2.1: Modern Storage Hierarchies. This figure contrasts modern and tradi-
tional storage hierarchies. We have new PM DIMM (Optane DC PM or other future PM devices
connected to memory buses) and low-latency SSDs (typically based on some form of PM tech-
niques) layers in modern storage hierarchies that bridge the performance gap between DRAM
and SATA/NVMe Flash SSD.

bandwidth is limited by PCIe 3.0 channel bandwidth limits; however, In-
tel claims that its bandwidth potential will increase with future fast PCIe
versions. Because of the low latency of 3D XPoint Memory [1], Optane
SSDs provide an order of magnitude lower access latency than Flash SSDs
(Table 2.1). Due to the block interface of Optane SSDs, previous stor-
age applications (built for SSDs/HDDs) can benefit from PM’s high per-
formance without requiring any changes to the implementation. On the
other hand, Optane SSD device cannot benefit from direct load/store op-
erations, all accesses to Optane SSD still require software OS or block layer
interception overhead.

In contrast to Optane SSDs, Intel Optane DC PM DIMMs sit directly on
the memory bus. Intel Optane DC PM can also be accessed via RDMA ac-
tions. The Optane DC PM supports Memory and App Direct modes [37].
The Memory mode uses DRAM as a transparent cache in front of PM
without persistence, exposing DRAM and PM as a whole large memory

19

to end users. The App Direct mode allows software to access PM and
DRAM via normal load and store instructions with persistence. On Op-
tane DC PM, data allocation, naming, and access are usually handled by
a file system [234] or another management layer. Optane DC PM is ac-
cessible via fast network connect such as RDMA.

Optane SSD and Optane DC PM have piqued the interest of many peo-
ple who seek to build large, performant, and cost-effective data storage
systems. Optane SSD is not the typical PM by definition. However, due
to its lower price compared to Optane DC PM (Table 2.1), no require-
ment for specific CPU versions, and ease of porting from existing sys-
tems, they remain popular today. Optane DC PM and Optane SSDs have
evolved into two new layers in modern storage hierarchies. Optane DC
PM devices, as shown in Figure 2.1, bridge the gap between DRAM and
SATA/NVMe Flash SSDs.

20

3
Understanding PM Devices

Characteristics

In this chapter, we characterize the performance of the new type of PM
devices. At the time of the study, Intel Optane SSD was the only widely
accessible PM option, and thus become the focus of our investigation.

In the first part of this chapter, we examine the performance of Optane
SSDs in response to numerous fine-grained experiments. Based on our
performance studies, we formalize an “unwritten contract” for the Op-
tane SSD. The contract includes six rules that are critical for users of Op-
tane SSD to achieve optimal immediate performance, as well as one rule
for sustained workloads relating to garbage collection in Optane SSDs.
Our analyses show that violating this contract can result in 11 times worse
read latency and limited throughput (only 20% of peak bandwidth) re-
gardless of parallelism. It is hence essential to follow the contract when
using Optane SSDs.

Then, we use carefully crafted micro-experiments to reveal the inter-
nal of Optane SSDs in order to present insights regarding these rules.
We experimentally reveal the internal parallelism, read-write schedul-
ing mechanisms, block alignment granularity, and mapping policies from
logical-block address (LBA) to physical-block address (PBA) in the Op-
tane SSD. Overall, we demonstrate that the Optane SSD unwritten con-
tract is relevant to features of 3D XPoint memory and Intel Optane SSD’s

21

Rule Impact Metric Cause
Access with Low Request Scale 11x Latency SSD Controller/Interconnect
Random Access is OK 7x (vs. Flash) Latency & Throughput 3D XPoint & Controller
Avoid Crowded Accesses 4.6x Latency & Throughput SSD Controller/Interconnect
Control Overall Load 5x (vs. Flash) Latency 3D XPoint Memory
Avoid Tiny Accesses 5x Throughput SSD Controller/Interconnect
Issue 4KB Aligned Requests 1.2x Latency SSD Controller/Interconnect
Forget Garbage Collection 15x (vs. Flash) Sustained Throughput 3D XPoint & Controller

Table 3.1: Performance Impact of Rule Violations. This table summarizes i)
seven rules of the Optane SSD Unwritten Contract, ii) the maximum impact in terms of metric
when violating each rule, and iii) Cause of the rules.

controller/interconnect design.
Finally, we discuss the unwritten contract’s implications and potential

future works. We consider two types of audiences: first, system devel-
opers for Optane SSD; second, those who manage Optane SSD in storage
hierarchies. This chapter is based on the paper Towards an Unwritten Con-
tract of Intel Optane SSD, published in HotStorage 2019 [228].

In the following, we first present our Optane SSD characterization and
related experiments to reveal Optane SSD internals in Section 3.1. Then,
we discuss implications of the unwritten contract in Section 3.2. Finally,
we summarize and conclude (Section 3.3).

3.1 The Unwritten Contract of Optane SSD
In this section, we define the rules of the unwritten contract. We offer ex-
periments (available at https://github.com/sherlockwu/OptaneBench)
to infer the rules. In Table 3.1, we summarize the impact and cause of
each rule. We begin with six rules related to immediate performance,
like latency and throughput, out of Optane SSDs. We then present rules
for sustainable performance.

22

3.1.1 Access with Low Request Scale

The Optane SSD is based on 3D XPoint memory which is said to provide
up to 1,000 times lower latency than NAND Flash [2]. Does 3D XPoint
memory always lead to better performance for Optane SSD compared to
Flash SSD? We answer this question with our first rule: to obtain low
latency, Optane SSD users should issue small requests and maintain a
small number of outstanding IOs. This rule is needed not only to extract
low latency but also enough to exploit the full bandwidth of the Optane
SSD.

We uncovered this rule when quantitatively comparing Intel Optane
SSD 905P (960GB) with a “high-end” Flash SSD: Samsung 970 Pro (1TB)
[69]. From our experiments, we found that Optane SSD does not show
improvement for workloads with many outstanding requests.

We compare Optane and Flash SSDs with random read-only and
write-only workloads. Each workload has two variables: request size and
queue depth (QD) (or number of in-flight I/Os). Figure 3.1 compares the
two devices in terms of average access latency. The temperature T in each
rectangle shows the scaled difference between the latencies of the two sys-
tems; T > 0 indicates Optane has smaller latency, while T < 0 indicates
Flash SSD has smaller latency. Specifically, T =

Lhigher−Llower

Llower
. As shown,

Optane SSD and Flash SSD outperform each other in different cases.
For read-only workloads, Optane SSD has lower latency than Flash

SSD when request size and queue depth are small. Specifically, when the
request size 6 16KB, Optane SSD is better than Flash SSD. Thanks to 3D
XPoint memory’s low access latency, the read latency from Optane SSD
can be 8.4x faster than Flash SSD. However, when QD> 8 and request
size> 16KB, Flash SSD achieves lower latency, by as much as 40%. This
difference occurs because the latency of Optane SSD increases linearly
with higher queue depths (e.g., the latency of a 4KB random read with
QD= 64 is 8x slower than QD= 8 and is 11x slower than QD= 1).

23

1 2 4 8 16 32 64

Queue Depth

2
5

6
1

2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)
1.7 1.0 -0.1 -0.2 -0.2 -0.3 -0.3

1.7 1.8 0.6 -0.3 -0.3 -0.3 -0.4

2.2 2.3 0.9 0.1 -0.3 -0.4 -0.3

3.2 3.6 1.4 0.4 -0.1 -0.2 -0.2

3.9 4.3 2.4 1.1 0.4 0.2 0.3

5.2 4.9 4.7 2.0 0.7 0.2 0.0

6.2 5.7 5.9 4.3 1.9 0.7 0.2

7.4 6.7 6.9 4.5 1.9 0.7 0.2

optane better

flash better

−5.0

−2.5

0.0

2.5

5.0

(a) Read

1 2 4 8 16 32 64

Queue Depth

2
5

6
1

2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)

-0.2 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2

-0.2 -0.1 -0.3 -0.2 -0.2 -0.2 -0.2

0.0 -0.2 -0.3 -0.2 -0.2 -0.2 -0.2

0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2

0.3 0.0 -0.1 -0.1 -0.2 -0.1 -0.2

0.5 0.3 -0.0 -0.5 -0.4 -0.4 -0.4

0.7 0.3 0.2 0.2 -0.0 -0.1 -0.1

0.2 0.1 0.0 0.2 0.1 0.1 0.1

optane better

flash better

−5.0

−2.5

0.0

2.5

5.0

(b) Write

Figure 3.1: Average Latency of Random Workloads, Optane vs. Flash.
This figure compares average latency of random reads (a) and writes (b) between Optane SSD
and Flash SSD. We show results for workloads with varying queue depths (x axis) and request
sizes (y axis). The temperature T in each rectangle represents the scaled difference between Flash
and Optane’ latencies; T > 0 indicates Optane has lower latency (optane better), while T < 0
indicates Flash has lower latency (flash better). In particular, T =

Lhigher−Llower

Llower
.

24

Channel #2Channel #7 Channel #1

Controller

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

3D XPoint
Memory Die

… … …

…

Figure 3.2: Optane SSD RAID-like Architecture. This figure shows the Optane
SSD’s conceptual RAID-like internal architecture. Optane SSDs contain 3D XPoint Memory
dies that are linked to a number of channels.

Similarly, for write-only workloads, Optane SSD has lower latency for
small requests and low QD, while Flash SSD is again better in the opposite
cases; however, the difference for writes is not as high as for reads (Op-
tane is up to 1.7x faster than Flash). This result is due to Flash SSDs log-
structured layout and buffering optimizations. Flash SSD outperforms
Optane SSD when request size> 4KB and QD> 2, which includes most
of our tested workloads.

The device’s internal parallelism dictates its behavior when serving
workloads with high request scale. We are thus motivated to uncover the
internals of the Optane SSD. Like Flash SSD, Optane SSD utilizes a RAID-
like organization of memory dies (Figure 3.2). Through a fine-grained
experiment [110, 122] we examine a critical parameter for internal par-
allelism: the interleaving degree, or number of channels. We maintain a
read stream with stride S from the devices, where S is the distance be-
tween two consecutive chunks (a chunk is 4KB or 8 sectors as shown in
Section 3.1.6). Figure 3.3 presents the throughput of workloads with var-
ious strides. An individual line represents workloads with the same QD.

25

QD=1
QD=2

QD=4

QD=8

QD=16

Th
ro

ug
hp

ut
 (M

B/
s)

0

200

400

600

800

1000

Stride (chunk=8sectors)
0 64 128 192 256

(a) Flash SSD

QD=1
QD=2

QD=4

QD=8

QD=16

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

3000

Stride (chunk=8sectors)
0 64 128 192 256

(b) Optane 905P SSD

Figure 3.3: Detecting Flash and Optane SSD Device Internal Interleav-
ing Degree. This figure shows the interleaving degree detecting results for Flash (a) and
Optane (b) SSDs. We keep a read stream from the devices with stride S; S is the distance between
two consecutive chunk reads (4KB). We plot read stream throughputs (y axis) with various
strides (x axis).

26

Optane SSD has a significantly smaller interleaving degree (7) than
Flash SSD (128). In Figure 3.3, the distance between the lowest dips in
each line indirectly indicates the interleaving degree of the device. For
Optane SSD, we observe the pattern is 7, though the difference between
dips is not visible until QD= 8. Our finding agrees with the hardware
description of Optane SSD [22]: it has a controller connected to seven
channels, each of which is connected to memory dies.

The tested Flash SSD reaches its lowest throughput every 128 chunks.
For high queue depths (e.g., 16), it presents a richer pattern with dips at
different levels, indicating copious levels of parallelism (channel, package
and die).

Overall, Optane SSD has limited internal parallelism, compared to
Flash SSD. This characteristic explains the high latency of Optane SSD
for workloads with a large request scale, and supports the need to access
the Optane SSD with a low request scale.

The limited internal parallelism of the Optane SSD impacts its
throughput in two ways. First, the tested Flash SSD achieves larger max-
imum read (3500MB/s) and write (2700MB/s) bandwidth than the Op-
tane SSD (2500MB/s); it outperforms Optane SSD serving workloads
with large request scale. Flash SSD’s richer internal parallelism enables
it to serve more parallel requests. Second, Optane SSD can achieve peak
throughput when serving small requests with low queue depth. This is
due to Optane SSD’s limited internal parallelism which requires only a
small number of requests to utilize all of its resources. Hence, the rule to
access the device at a low scale not only guides users to obtain low access
latency but also is enough to achieve full bandwidth.

The influence of contention in Optane SSD is modest compared
to that in Flash SSD. The dips in Figure 3.3 are due to concurrent re-
quests contending for shared resources (e.g., channels). In Flash SSD,
contention significantly restricts overall throughput; for example, with

27

QD = 16, S = 127 chunks, read throughput is 88 MB/s, which is only
6% of the maximum throughput with the same queue depth. Although
parallel requests to Optane SSD can also introduce contention (limiting
throughput to within 86% of maximum), this influence is much less than
that in Flash SSD.

3.1.2 Random Access is OK

With hard drives or SSDs, clients often expect better performance from
sequential than random accesses. With Optane SSD, this is no longer true.
Optane SSD is a random access block device, where clients can observe
the same performance for random and sequential workloads.

We study Optane SSD’s average latency when serving random and
sequential workloads; throughput and tail latency yield similar results.
Each workload maintains four worker threads, while each thread issues
IOs randomly or in a sequential stream. As shown in Figures 3.4 and 3.5,
on Optane SSD, for requests > 1KB, random and sequential workloads
achieve comparable performance. The difference between sequential and
random latency is within 17% for reads and within 5% for writes.

In contrast, Flash SSD prefers sequential over random reads, espe-
cially at a low request scale; sequential reads can be 7x faster. Flash SSD
achieves much better sequential performance due to prefetching and sim-
plified address translation. For writes, Flash SSD presents similar random
and sequential latency due to log-structuring. However, as we will show
in Section 3.1.7, log-structuring introduces significant overhead when the
device fills; Optane does not have such concerns.

The Random Access is OK rule in Optane SSDs occurs due to the abil-
ity to perform in-place updates in 3D XPoint memory. In Optane SSD,
there is no difference in address translation costs for random versus se-
quential workloads; in Section 3.1.7, we will show that the mapping pol-
icy in Optane SSD is based on logical addresses. In addition, as indicated

28

1 2 4 8 16 32 64

Queue Depth

2
5
6

1
2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)
1.7 1.6 0.2 0.0 0.1 0.0 -0.0

1.4 2.6 1.2 0.0 0.0 0.0 0.0

1.4 3.2 1.6 0.5 0.0 0.0 0.1

1.4 2.4 2.1 0.8 0.2 0.2 0.2

1.5 1.9 3.3 1.6 0.8 0.6 0.6

2.7 3.0 3.4 2.6 1.1 0.5 0.4

3.7 3.5 3.6 2.6 1.3 0.5 -0.0

5.3 6.0 5.6 3.7 1.3 0.4 0.0

seqread better

randread better

−5.0

−2.5

0.0

2.5

5.0

(a) Flash-based SSD

1 2 4 8 16 32 64

Queue Depth

2
5
6

1
2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)

0.01 0.03 0.04 0.02 0.03 0.02 0.02

0.02 0.03 0.04 0.03 0.03 0.03 0.03

0.00 0.05 0.04 0.05 0.04 0.04 0.04

0.12 0.05 0.09 0.08 0.08 0.07 0.07

0.02 0.03 0.13 0.08 0.12 0.16 0.13

0.01 0.02 0.04 0.17 0.12 0.15 0.15

0.02 0.02 0.00 0.02 0.04 0.05 0.04

0.02 0.02 -0.02 -0.40 -0.63 -0.61 0.02

seqread better

randread better

−5.0

−2.5

0.0

2.5

5.0

(b) Optane 905P SSD

Figure 3.4: The Difference Between Random and Sequential Read La-
tency in Flash and Optane SSDs. This figure shows the performance difference
between random and sequential reads in Flash (a) and Optane (b) SSDs. We use read work-
loads with varying request sizes (y axis) and queue depths (x axis). Similar to Figure 3.1, the
temperature T in each rectangle represents the scaled difference between random and sequential
reads’ latencies; T > 0 indicates sequential read has lower latency (seqread better), while T < 0
indicates random reads has lower latency (randread better). T =

Lhigher−Llower

Llower
.

29

1 2 4 8 16 32 64

Queue Depth

2
5

6
1

2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)
-0.00 0.01 0.01 -0.00 0.02 0.00 0.01

0.01 -0.01 0.02 0.01 0.01 0.01 0.00

0.00 0.01 0.00 0.01 0.01 0.01 0.01

-0.02 0.00 0.01 0.01 0.01 0.00 0.00

-0.05 -0.01 0.01 0.02 0.02 0.02 0.02

-0.09 -0.02 0.00 0.01 0.02 0.02 0.02

-0.05 -0.02 0.00 0.06 0.14 0.00 0.02

0.79 0.47 0.63 2.11 2.77 2.66 2.56

seqwrite better

randwrite better

−5.0

−2.5

0.0

2.5

5.0

(a) Flash-based SSD

1 2 4 8 16 32 64

Queue Depth

2
5

6
1

2
8

6
4

3
2

1
6

8
4

1

R
e
q
u
e
s
t

S
iz

e
 (

K
B

)

0.01 0.00 0.01 0.01 0.01 0.01 0.01

0.02 0.03 0.02 0.02 0.02 0.01 0.01

0.00 0.03 0.02 0.02 0.01 0.02 0.02

0.02 0.03 0.02 0.02 0.02 0.01 0.01

0.02 0.02 0.02 0.01 0.01 0.01 0.00

0.02 0.02 0.05 0.02 0.00 0.04 0.00

0.01 -0.03 0.01 0.04 0.04 0.04 0.08

-0.86 -2.31 -0.99 -2.95 -2.44 -2.64 -3.61

seqwrite better

randwrite better

−5.0

−2.5

0.0

2.5

5.0

(b) Optane 905P SSD

Figure 3.5: The Difference Between Random and Sequential Write La-
tency in Flash and Optane SSDs. This figure shows the performance difference
between random and sequential writes in Flash (a) and Optane (b) SSDs. We use the same
setup as Figure 3.4, but the workloads are writes instead of reads.

30

QD1
QD2
QD4
QD6
QD8

La
te

nc
y

(μ
s)

0

20

40

60

80

Ratio
0 0.25 0.50 0.75 1.00

Figure 3.6: Latency Distribution of Parallel Sector Reads to a Chunk
(4KB) in the Optane SSD. In this experiment, we randomly select chunks (4KB) from
the Optane SSD, then perform P parallel reads to different sectors (512B) within one chunk. We
plot the latency distribution for different values of P.

by our read latency study, there is no prefetching for sequential reads
within Optane SSD.

Workloads with 1KB requests are special on Optane SSD compared
both to other request sizes and to Flash SSD. We investigate this in the
next rule.

3.1.3 Avoid Crowded Accesses

The Optane SSD contains shared resources (e.g., channels). To avoid con-
tention, the Avoid Crowded Accesses rule dictates that clients of Optane
SSD should never issue parallel accesses to a single chunk (4KB). We un-
cover this rule by investigating the 1KB workload performance shown in
Figure 3.4 and 3.5. In Optane SSD, sequential 1KB accesses can increase
latency by 63% for reads and by 3.6x for writes, compared to random 1KB
accesses.

31

We study the difference between random and sequential accesses for
small requests by performing parallel accesses to a single 4KB chunk. In
this experiment, we randomly choose chunks from the device, then issue
P parallel reads to different sectors within one chunk. Figure 3.6 presents
the distribution of latencies for different values of P. We observe a “stair”
pattern for QD> 1. For each line, the number of levels equals the queue
depth and the steps occur at evenly-spaced intervals.

This pattern indicates queuing and/or contention across the issued
parallel requests. Parallel small requests to a single chunk introduce
contention. This experiment illustrates why sequential 1KB workloads
have worse performance than random 1KB workloads: although random
1KB accesses may introduce contention, sequential 1KB accesses must in-
troduce contention.

3.1.4 Control Overall Load

To achieve optimal latency from Optane SSD, the client must control the
overall load of both reads and writes. This rule indicates distinct perfor-
mance characteristics between Optane SSD and Flash SSD.

We discover this rule by looking into the performance of Optane SSD
serving mixed reads and writes. In the experiment, we issue random 4KB
requests, varying the percentage of writes from 0% to 100%, with QD= 64
(large enough to achieve full throughput for both Optane SSD and Flash
SSD). Figure 3.7 shows the access latency of Optane SSD and Flash SSD.
Within Optane SSD, reads and writes are treated equally. Specifically,
on Optane SSD, each type of request is served with the same latency and
the latency is related to the overall load, not to the percentage of writes.

Flash SSD exhibits distinct characteristics for read- versus write-
dominated workloads. On the left side of Figure 3.7, for Flash SSD, the
read latency is similar to that in read-only workloads with the same queue
depth (38% slower than Optane SSD). However, the write latency is simi-

32

Optane Read Latency
Optane Write Latency
970 Read Latency
970 Write Latency

Two Lines for Optane Overlap

La
te

nc
y

(μ
s)

102

103

Write Ratio (%)
0 20 40 60 80 100

Figure 3.7: Latency of Mixed Reads and Writes in the Flash and Optane
SSD. This figure presents the request latency of mixed 4KB read and write workloads in Flash
and Optane SSD. We show the average latency (x axis) of reads and writes as the ratio of writes
changes (x axis).

lar to that of a pure-write workload with very low queue depth (and only
19% of that on Optane SSD). With an increasing number of writes, reads
to Flash SSD achieve poor latency due to the influence of writes; when the
workload is write-dominated, read latency can be as high as 1.1ms (10x
Optane access latency).

3.1.5 Avoid Tiny Accesses

Does the byte-addressability of 3D XPoint memory enable efficient tiny
accesses to Optane SSD? We answer this question with our rule to Avoid
Tiny Accesses: to exploit bandwidth of the SSD, the client must not issue
requests less than 4KB.

Figure 3.8 shows the latency and throughput of random reads less
than 4KB, with separate lines for two sectors and eight sectors requests.
As shown, the latency of two sector requests is the same as eight sector
(4KB) requests. However, the throughput of tiny requests is limited by

33

Optane 2 sectors
Optane 8 sectors

Av
er

ag
e

La
te

nc
y

(μ
s)

0

20

40

60

80

100

120

Queue Depth
0 8 16 24 32 40 48 56 64

(a) Latency

Optane 2 sectors
Optane 8 sectors

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

Queue Depth
0 8 16 24 32 40 48 56 64

(b) Throughput

Figure 3.8: Optane SSD Performance of Tiny Accesses. This figure shows
the latency (a) and throughput (b) of random 1KB (2 sectors) reads. For comparison, we also
show random 4KB (8 sectors) read performance.

the maximum IOPS supported by Optane SSD (575K); for 1KB requests,
throughput is only 20% of the full bandwidth of the device. Given these
two results, there is no benefit in issuing requests smaller than 4KB to
Optane SSD.

3.1.6 Issue 4KB Aligned Requests

To achieve the best latency, requests issued to Optane SSD should always
align to eight sectors. We present the difference between aligned and mis-
aligned requests. In the experiment, we measure the latency of individual
read requests (QD= 1); each read is issued to a positionA+offset, whereA
is a random position aligned to 32KB and offset is a 512-byte sector within
that 32KB.

Figure 3.9 shows the read latency of requests issued to different off-
sets, averaged over a half million requests to the same offset. Each line
represents a workload with a different request size. In contrast to what
one might expect given 3D XPoint’s byte-addressability, Optane SSD fa-

34

Optane 1 sector
Optane 2 sectors
Optane 4 sectors
Optane 8 sectors

Av
er

ag
e

La
te

nc
y

(μ
s)

0

2

4

6

8

10

Offset (sector)
0 8 16 24 32 40 48 56 64

Figure 3.9: Identifying Influence of Misalignment in Optane SSD. This
figure shows the latency (y axis) of reads to varying offsets (x axis) to 32KB large chunks. Each
read is sent to a position A+offset; A is a random position aligned to 32KB and offset is a 512B
sector within that 32KB.

vors aligned requests. Requests of one sector have the same latency no
matter the offset, and larger requests aligned to eight sectors always get
the lowest latency. For a request crossing the boundary of 4KB, its la-
tency is linearly correlated to the part it issues to the second chunk after
the boundary. The difference between the high and low latencies of 4KB
requests is 21%. Note that the eight-sector chunk here is not related to a
concept like a page or block in Flash SSD.

3.1.7 Forget Garbage Collection

We now study the long-term performance of Optane SSD. First, we ex-
plore its performance when the device gets full. According to our experi-
ments, there is no need to worry about garbage collection in Optane SSD.

We examine sustained 4KB random and sequential writes on Optane
SSD and Flash SSD over three hours. The device is completely unmapped
using the trim command before each experiment; the two devices tested

35

Flash SSD Sequential Writes
Flash SSD Random Writes

Optane SSD Sequential Writes
Optane SSD Random Writes

Two Lines for Optane Overlap

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

3000

Time (s)
0 3,600 7,200 10,800

Figure 3.10: Sustained Write Throughput, Flash vs. Optane. This figure
shows the sustained 4KB random and sequential write throughput on Optane and Flash SSD.

share a similar capacity (960GB vs. 1TB). We maintain QD= 32 for each
workload.

Figure 3.10 presents sustained write performance. For Flash SSD, af-
ter the device becomes full, write throughput drops significantly because
subsequent writes constantly trigger garbage collection. After about 6000
seconds, write throughput stabilizes: sequential throughput is around
350MB/s and random throughput is 170MB/s (only 7% of the maximum
throughput). The throughput of sequential writes is better than random
because of lower garbage collection cost. Different from Flash SSD, Op-
tane SSD maintains maximum throughput for sustained writes. The
flat throughput for Optane SSD indicates no cost for garbage collection.

Finally, we study the mapping policy (LBA→PBA) in Optane SSD by
comparing three workload variations. The first is the same workload
as for the interleaving experiments in Figure 3.3: blocks are first writ-
ten in logical address order and then read back in that same LBA order
(LBA-order write:LBA-order read). The second workload preconditions

36

LBA-order write - LBA-order read
randomly write - LBA-order read
randomly write - written-order read

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

stride (32 sectors)
0 8 16 24 32 40 48 56 64

(a) Flash-based SSD

LBA-order write - LBA-order read
randomly write - LBA-order read
randomly write - written-order read

Th
ro

ug
hp

ut
 (M

B/
s)

0

500

1000

1500

2000

2500

3000

stride (16 sectors)
0 8 16 24 32 40 48 56 64

(b) Optane 905P SSD

Figure 3.11: Detecting Flash and Optane SSD Internal Address Map-
ping Policy. This figure shows Flash (a) and Optane (b) SSD read throughput with three
different precondition and read orders. LBA-order write - LBA-order read: the same as Fig-
ure 3.3: blocks are first written in logical address order and then read back in that same LBA order.
Randomly write - LBA-order read: we precondition the working zone with random writes.
Randomly write - written-order read: we precondition with random writes and then reads
in the order in which the chunks were written.

37

the working zone with random writes (random write:LBA-order read).
The third workload preconditions with random writes, but then reads in
the order in which the chunks were written (random write:written-order
read). Figure 3.11 shows the throughput of the three workloads.

For Flash SSD, when the read order does not match the write order,
the throughput pattern disappears; therefore, its mapping policy is not
based on LBA. Flash SSD uses a mapping policy based on written-order
(log-structured) and therefore the throughput pattern only occurs when
we read according to the written order; this is why Flash SSD requires
garbage collection. Optane SSD behaves quite differently; no matter how
we precondition the device, the pattern occurs when reading according
to LBA. Hence, Optane SSD likely adopts LBA-based mapping. This
design is enabled by 3D XPoint memory’s capability to perform in-place
updates. As a result, Optane SSD doesn’t require garbage collection and
can deliver sustainable performance over time.

3.2 Discussion and Implications From the
Contract

3.2.1 Flash vs. Optane SSD

According to our Optane SSD characterization, Flash and Optane SSD
have some similarities but differ significantly in others.

Optane SSD, like Flash SSD, cannot support efficient small accesses
(4KB). Developers should keep this in mind when distinguishing Optane
SSD from PM DIMMs. Internal data chunk alignments are also present
in both Optane SSD and Flash SSD (4KB). Finally, both the Optane SSD
and the Flash SSD employ a RAID-like architecture of internal channels
linked to the device controller.

However, Optane SSD and Flash SSD differ in four important ways:

38

I Internal Parallelisms: When compared to Flash, Optane SSD has
much lower access latency but much less internal parallelism. Op-
tane SSD 4KB accesses can be orders of magnitude faster than Flash
SSD. However, as we revealed, current Optane SSD devices opt for
much less parallelism. We believe that this design decision has com-
plicated implications for Optane SSD users.

II Random vs. Sequential: Optane SSD is a true random access block
device, with identical random and sequential read and write perfor-
mance. This is a significant distinction between Optane and Flash.

III Read-Write Interferences: Another significant difference revealed
by our experiments is the difference in read-write interference pat-
terns between Optane and Flash. We discovered that Optane treats
read and write equally, whereas Flash SSD frequently prioritizes
writes over reads, potentially resulting in significant write to read
interferences in Flash.

IV LBA to PBA mapping: Finally, our sustained workloads and experi-
ments revealing Optane’s internal LBA to PBA mapping experiments
show that: Optane SSD no longer performs log-structured writes,
and garbage collection is no longer an issue.

Overall, Optane SSD differs significantly from Flash SSD; Optane SSD
is more than just faster Flash devices. Following that, we will discuss the
exciting opportunities that these devices bring, as well as the implications
for evolving systems for this type of new device.

3.2.2 Implications From the Contract

The following implications can be drawn from our unwritten contract. We
have two audiences in mind; first, those who design systems for Optane
SSD; second, those who combine Flash and Optane in a hybrid setting.

39

The Random Access is OK rule suggests possible restructuring of ex-
ternal data structures on Optane SSD. Previous designs try hard to con-
vert unstructured accesses into sequential ones, which is now less neces-
sary on Optane SSDs. Applications which behave poorly on Flash thus
become potential consumers of Optane. The No Crowded Accesses rule,
No Tiny Access rule, and Alignment rule suggest pitfalls that fine-grained
data structures must be aware on Optane SSDs.

Storage hierarchy management also needs careful design. This impli-
cation mainly comes from from the Low Request Scale rule: Flash SSD
outperforms Optane SSD in some cases. Optane SSD provides low ac-
cess latency for workloads with low request scale, while workloads with
high request scale might prefer Flash SSD. In other words, the storage hi-
erarchy, that many assumed when comparing Optane and Flash SSD, is
not a hierarchy for all time. Management of such hierarchies necessitate
careful rethinking. For workloads with mixed reads and writes, the Con-
trol Overall Load rule suggests that read-dominated workloads should
be deployed on Flash SSD to achieve low write latency. However, write-
intensive workloads prefer the Optane SSD, thus avoiding excessive read
latency (influenced by writes in classic Flash SSD). Finally, our results
for sustainable performance suggest that when devices become full (and
thus would cause garbage collection on an SSD), Optane may be a better
choice.

Finally, the unwritten contract introduces some open questions requir-
ing discussion and future research:

I Applicability of This Contract: This contract targets the Intel Op-
tane SSD 905P. It is not clear of the applicability of this contract; will
this contract stay accurate for all PM-based SSDs? On the one hand,
this contract needs to be verified once new devices are available. Bet-
ter specifications (instead of simple best-case latency or throughput
numbers) of the unwritten contracts of new types of devices, on the

40

Device Internal Aspects Findings
Internal Parallelism Seven channels
Potential Concurrent Access Contention Minimal (vs. Flash SSD)
Internal Prefetching No
(for sequential access)
Read-Write Scheduling Treating read/write equally
Efficient Access Granularity 4KB
Internal Layout Alignment 4KB
LBA -> PBA mapping LBA-based mapping

(no garbage collection)

Table 3.2: Summary of Findings of Intel Optane SSD Internals. This
table summarizes the device internal aspects that we investigated via micro-experiments, and our
findings. LBA: logical block address. PBA: physical block address.

other hand, should be provided to ease the development of new sys-
tem stacks for these new devices.

II Move to Optane SSD: According to the contract, Optane SSD does
not promise benefits for all applications. Which applications suit the
move to Optane SSD naturally? What may need modification to ex-
ploit the benefits of Optane SSD? An analysis of applications on Op-
tane SSD is required.

III Rethink External Data Structure Design: Do previous external
data structures/algorithms get the optimal performance from Optane
SSD? To answer this question, we think it is worth to first review “Is
there any tradeoff we made to transform unstructured accesses into
sequential ones?” This tradeoff likely exists in single machine graph
processing systems. There is already recent work[132] following this
path (but for NVMe SSD). On the contrary, can we move in-memory
data structures to Optane SSD directly? A study is required. Previ-
ous work on PM [99, 178, 251] can be inspiring.

IV Split Accesses: Led by the unwritten contract, we think the guide to

41

take advantage of both Flash SSD and Optane SSD is to split accesses
to the device which best suit them. Some directions are interesting to
look into. 1) At what granularity should we implement this splitting?
Split workloads to devices? Or make the external data structure span
devices? 2) How to support the splitting automatically? There can
be challenges like dynamic workloads and access dependencies. Can
machine learning play a role here? Related work includes [100, 177]

V Wearing out: There is limited open knowledge about the wearing
out of 3D XPoint memory. How severe is it? How is wear-leveling
performed in Optane SSD? How is it done in Optane DC PM? Those
questions also require detailed future analysis of PM devices.

3.3 Conclusions
In this chapter, we analyzed a popular PM-based block device: the In-
tel Optane SSD. We formalize the rules (as summarized in Table 3.1) that
Optane SSD users need to follow. We also provide experiments to present
the impact when violating each rule, and examine the internals of Optane
SSD to provide insights for each rule. As summarized in Table 3.2, we re-
vealed key aspects of Intel Optane SSD such as internal parallelism, effi-
cient access granularity, LBA->PBA address mapping policy etc. The un-
written contract provides implications and points to directions for poten-
tial research on PM-based devices. We believe that this study will serve
as a foundation for evolving the system stack for Optane SSD devices.

42

4
Evolving Caching for PM Hierarchies

The modern storage hierarchies have been reshaped by PM-based de-
vices. Following an understanding of PM device performance charac-
teristics, in this chapter, we analyze classic caching on modern hierar-
chies with PM devices. We introduce Non-Hierarchical Caching (NHC),
an evolved caching approach to manage modern hierarchies. This chap-
ter is based on the paper, The Storage Hierarchy is Not a Hierarchy: Opti-
mizing Caching on Modern Storage Devices with Orthus, published in FAST
2021 [230].

In the first part of this chapter, we show that the decades-old caching
principle of maximizing hit rates is insufficient in modern storage hier-
archies. We quantitatively compare various device pairs in modern hi-
erarchies, such as DRAM/PM/Low-latency SSD/Flash SSDs. Our anal-
ysis reveals a significant change in modern hierarchies: the performance
difference between neighboring layers is now much smaller than in tra-
ditional hierarchies. We then investigate caching on such hierarchies us-
ing both performance modeling and measurements. We find that classic
caching, which aims to direct as many accesses to the cache device as
possible (commonly referred as the principle of maximizing the hit rate),
is unable to fully utilize the significant available performance in capacity
devices (e.g., PM) today. To manage PM hierarchies, a different approach
is required.

43

Thus, in the second part of this chapter, we propose Non-hierarchical
Caching (NHC), an enhanced caching approach. NHC augments clas-
sic caching by adding two new mechanisms: read around and admis-
sion rejection. Its central idea is to enable access offloading from cache
to capacity devices when the cache device is saturated, allowing NHC to
utilize both cache and capacity device performance. We also introduce
a feedback-based offloading policy in NHC to determine the amount of
offloading based on the workloads and devices in the hierarchies. We im-
plement NHC in two systems: Orthus-CAS, a generic block-layer caching
kernel module [108], and Orthus-KV, a user-level caching layer for an
LSM-tree key-value store [168]. Through a variety of experimental stud-
ies, we demonstrate that NHC significantly improves caching perfor-
mance in modern hierarchies with heavy workloads. We also show that
NHC is robust to dynamic workloads.

In the following, we first present necessary background and motiva-
tion related to modern PM hierarchies in Section 4.1. We then charac-
terize caching in traditional and modern hierarchies and describe the is-
sue of classic caching in modern hierarchies (Section 4.2). Next, we de-
scribe the design of Non-hierarchical Caching (Section 4.3). Then, we de-
scribe NHC’s implementation (Section 4.4) and present our evaluation
(Section 4.5). Finally, we summarize and conclude (Section 4.6).

4.1 Background and Motivation
In this section, we discuss classic solutions to storage hierarchy manage-
ment. We then review current and near-future PM devices and discuss
how they alter the storage hierarchy.

44

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Non-Hierarchical Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

b d

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

A

background
migration

split
access

Tiering

Figure 4.1: Caching, Tiering, and Non-Hierarchical Caching. The figure
shows the different approaches to managing a storage hierarchy. Caching copies data items to
the performance layer upon a miss. Tiering splits access to each layer and migrates items in the
background (on longer time scales). Non-hierarchical caching (§4.3), our new approach, offloads
excess load at the performance layer to the capacity layer.

4.1.1 Managing the Storage Hierarchy

A storage hierarchy is composed of multiple heterogeneous storage de-
vices and policies for transferring data between those devices. For sim-
plicity, we assume a two-device hierarchy, consisting of a performance de-
vice, Dhi, and a capacity device, Dlo; commonly, Dhi is more expensive,
smaller, and faster, whereas Dlo is cheaper, larger, and slower.

Traditionally, two approaches have been used for managing such a hi-
erarchy: caching and tiering (Figure 4.1). With caching, popular (hot) data
is copied from Dlo into Dhi (e.g., on each miss); to make room for these
hot data items, the cache evicts less popular (cold) data, as determined
by algorithms such as ARC, LRU, or LFU [15, 171, 181, 192, 222, 250]. The
granularity of data movement is usually small, e.g., 4-KB blocks.

Tiering [138, 161, 206], similar to caching, usually maintains hot data
in the performance device. However, unlike caching, when data onDlo is
accessed, it is not necessarily promoted toDhi; data can be directly served

45

Example Latency Read (GB/s) Write (GB/s) Cost ($/GB)
DRAM 80ns 15 15 ~7

PM DIMM 300ns 6.8 2.3 ~5
Low-latency SSD 10us 2.5 2.3 1
NVMe Flash SSD 80us ~3.0 ~2.0 0.3
SATA Flash SSD 180us 0.5 0.5 0.15

Table 4.1: Diversified Storage Devices. This figure compares diversified storage
devices today. Data taken from SK Hynix DRAM(DDR4, 16GB), Intel Optane DC PM [37,
38], low-latency SSDs (Optane SSD 905P [40], Micron X100 SSD [56]), NVMe Flash SSD
(Samsung 970 Pro [69, 70]) and SATA Flash SSD (Intel 520 SSD [41]). Low-latency and
NVMe Flash SSD assume PCIe 3.0.

from Dlo. Data is only periodically migrated between devices on longer
time scales (over hours or days) and longer-term optimizations deter-
mine data placement. Tiering typically does such migration at a coarser
granularity (an entire volume or a large extent[138]). While caching can
quickly react to workload changes, tiering cannot do so given its periodic,
coarser-granularity migration.

Both classic caching and tiering, to maximize performance, strive to
ensure that most accesses are served from the performance device. Most
caching and tiering policies are thus designed to maximize hits to the
fast device. In traditional hierarchies where the performance of Dhi is
significantly higher thanDlo, such approaches deliver high performance.
However, with the storage landscape rapidly changing, modern devices
have overlapping performance characteristics and thus it is essential to
rethink how such devices must be managed.

4.1.2 Hardware Storage Trends

As shown in Table 4.1, storage systems are undergoing a rapid trans-
formation with a proliferation of high-performance technologies, includ-
ing persistent memory (e.g., 3D XPoint memory [1, 141]), low-latency
SSDs (e.g., Intel Optane SSD [40], Samsung Z-SSD [71], and Micron X100

46

1 2 4 8 16 32

-2
+2
+4
+6
+8

+10
+12
+14
+16

Reads

Threads

P
er

fo
rm

an
ce

 R
at

io DRAM/PM
PM/Optane
Optane/Flash

1 2 4 8 16 32

-2
+2
+4
+6
+8

+10
+12
+14
+16

Writes

Threads

Figure 4.2: Performance Ratios Across Modern Devices. This figure
shows the ratio of throughput (y axis), for varying concurrency (x axis), across device pair-
ings (DRAM/PM, PM/Optane, and Optane/Flash). We disable the cache prefetcher and use
non-temporal stores for DRAM and PM. PM is used as App-Direct mode. Note there is no value
between -1 and +1.

SSD [56]), NVMe Flash SSDs ([69, 70]), and SATA Flash SSDs ([41]).
Although a seeming ordering exists in terms of latency, bandwidth dif-
ferences are less clear, and a total ordering is hard to establish.

To better understand the performance overlap of these devices, Fig-
ure 4.2 shows the throughput of a variety of real devices for both 4KB
read/load and write/store while varying the level of concurrency. The
figure plots the performance ratio between pairs of devices: DRAM/PM
plots the bandwidth of memory (SK Hynix 16GB DDR4) vs. a single In-
tel Optane DC PM (128GB); NVM/Optane uses the DC PM vs. the Intel
905P Optane SSD; finally, Optane/Flash uses the same Optane SSD and
the Samsung 970 Pro Flash SSD. For any pair X/Y, a positive ratio (XY) is
plotted if the performance of X is greater than Y; otherwise, a negative
ratio (−Y

X) is plotted (in the gray region).
For reads with low concurrency, one can see significant differences be-

tween device pairs. Thus, one might conclude that a total ordering exists.
However, for reads under high concurrency, the ratios change dramat-

47

ically. In the most extreme case, the Optane SSD and Flash SSD have
nearly identical performance. For writes, the results are even more in-
triguing; because of the low performance of PM concurrent writes, in one
case (PM/Optane), the ratio changes from much better under low load
to much worse under high load.

To summarize, the following are the key trends in the storage hierar-
chy. Unlike the traditional hierarchy (e.g., DRAM vs. HDD), the new
storage hierarchy may not be a hierarchy; the performance of two neigh-
boring layers (e.g., NVM vs. Optane SSD) can be similar. Second, the
performance of new devices vary depending upon many factors includ-
ing different workloads (reads vs. writes) and level of concurrency. Man-
aging these devices with traditional caching and tiering is no longer effec-
tive. Given our focus on improving caching approaches in this chapter,
we next demonstrate the limitations of caching in modern hierarchies.

4.2 Characterizing Caching in Traditional and
Modern Storage Hierarchies

We now explore caching in different storage hierarchies. Our goal is sim-
ple: to understand how caching performs in both traditional and mod-
ern hierarchies. In doing so, we hope to build towards a technique that
addresses the limitation of caching when running on modern, complex
devices and underneath a range of dynamic workloads.

For a deeper intuition, we first model caching performance. We then
conduct an empirical analysis on real devices, filling in important details
not captured by the model. We also model an approach that we call split-
ting to highlight the drawbacks of classic caching. In splitting, data is
simply split across devices, and no migration is performed at run time.
Splitting outperforms caching when accesses are optimally split between
the performance and capacity devices. In contrast to caching and tiering,

48

splitting is impractical: it is not suitable for workloads where popular
items change over time; we use it only as a baseline to build up to our
solution.

4.2.1 Modeling Caching Performance

We assume there are two devices, Dhi and Dlo, where each performs at
a fixed rate, Rhi and Rlo ops/s; of course, real devices are more complex,
with internal concurrency and performance that depends on the work-
load, but this simplification is sufficient for our purposes. Meanwhile,
we assume that simultaneous access to these two devices does not cause
contention (e.g., due to sharing interconnects).

We also assume that the workload has either little concurrency (i.e.,
one request at a time) or copious concurrency (i.e., many requests at a
time). This allows us to bound the caching performance between these
extremes. We assume that the workload is read only; this simplifies our
analysis in that we do not account for dirty writebacks upon a cache re-
placement.

4.2.1.1 Model

We develop a model of caching performance based on hit rate, H ∈ [0, 1].
As stated above, we model two extremes: low and high concurrency. For
one request at a time, the average time per request is:

Tcache,1 = H · Thit + (1 −H) · Tmiss (4.1)

Thit is simply the inverse of the rate of the fast device, i.e., Thit = 1
Rhi

;
Tmiss is the cost of fetching the data from the slow device and also in-
stalling it in the faster device, i.e., Tmiss = 1

Rhi
+ 1
Rlo

, or Rhi+Rlo
Rhi·Rlo .

The resulting bandwidth is the inverse of Tcache,1:

49

Bcache,1 =
Rhi · Rlo

H · Rlo + (1 −H) · (Rhi + Rlo)
(4.2)

We now model concurrent workloads. Assume N requests. H ·N are
hits, (1 − H) ·N are misses. Note that only misses are serviced by the
slow device, whereas all requests must be serviced by the fast one (data
admissions). The time to processN requests on the slow or fast device is:

Tslow(N) = N · (1 −H) · 1
Rlo

(4.3)

Tfast(N) = N · (1 −H) · 1
Rhi

+N ·H · 1
Rhi

= N · 1
Rhi

(4.4)

Total time is the maximum of these two, i.e., whichever device finishes
last determines the workload time.

Tcache,many(N) = max(Tslow(N), Tfast(N)) (4.5)

= max(N · 1−H
Rlo

,N · 1
Rhi

) (4.6)

Dividing by N (not shown) yields the average time per request. Fi-
nally, the bandwidth can be computed, as it is the inverse of the average
time per request:

Bcache,many =
1

max(1−H
Rlo

, 1
Rhi

)
(4.7)

We model splitting performance based on the split rate, S ∈ [0, 1],
which determines the fraction S of requests serviced atDhi; the remaining
requests (1− S) are served at the tierDlo. Compared to caching, splitting
eliminates the cost of installing misses on the faster device. Its throughput
can be computed as follows (in a similar way as caching, note the different
formula for Dhi):

50

Bsplit,1 =
1

1−S
Rlo

+ S
Rhi

(4.8)

Bsplit,many =
1

max(1−S
Rlo

, S
Rhi

)
(4.9)

4.2.1.2 Model Exploration

We explore different parameter settings with our model. Figure 4.3 shows
the results for four settings, starting with a large difference in perfor-
mance betweenDhi andDlo, and then slowly increasing the performance
of Dlo.

The first graph shows a traditional hierarchy where the performance
of Dhi is much (100×) higher than the performance of Dlo. This graph
shows that both caching and splitting can deliver high performance on
traditional hierarchies. The key is to direct as many requests as possible
toDhi. Caching and splitting perform well if nearly all requests hit inDhi.
Even with 80% hit/split rate, overall performance is quite low, as the slow
device dominates.

The next graph (upper right) examines a case where the performance
ratio between the devices is still high (10×). Optimizing for a high hit/s-
plit rate still works well. Note the slight difference between the low and
high concurrency cases; with higher concurrency, these approaches can
achieve peak performance even with slightly less than a perfect hit rate,
as outstanding requests hide the cost of misses.

The next two graphs represent modern hierarchies where the perfor-
mance of Dhi is closer to that of Dlo (Dhi delivers bandwidth either 2×
Dlo or equal to it). We make two important observations from these
graphs.

First, classic caching is limited by the performance of Dhi and can-
not realize the combined performance of both devices. Even with a 100%

51

0.0 .25 .50 .75 1.0
0

50

100

150

200

H (cache) or S (split)

B
an

dw
id

th
 (

O
ps

/S
ec

)

Cache (many)
Cache (1)
Split (many)
Split (1)

(a) Device Ratio 100 : 1

0.0 .25 .50 .75 1.0
0

50

100

150

200

H (cache) or S (split)

B
an

dw
id

th
 (

O
ps

/S
ec

)

(b) Device Ratio 100 : 10

0.0 .25 .50 .75 1.0
0

50

100

150

200

H (cache) or S (split)

B
an

dw
id

th
 (

O
ps

/S
ec

)

(c) Device Ratio 100 : 50

0.0 .25 .50 .75 1.0
0

50

100

150

200

H (cache) or S (split)

B
an

dw
id

th
 (

O
ps

/S
ec

)

(d) Device Ratio 100 : 100

Figure 4.3: Exploring Modeled Cache Performance. This figure shows model-
predicted throughput (y axis) for caching and splitting at various hit/split ratios (H or S, x
axis). We investigate a range of different device performance levels (subfigure a,b,c,d). We show
performance for workloads with high (“many”) and low (“1”) concurrency. The faster device
performs at a fixed rate of 100 ops/sec.

52

hit ratio, caching can only deliver 100 ops/sec as it does not utilize the
bandwidth ofDlo. Splitting (with an optimal split rate) significantly out-
performs caching, exposing critical limitations of caching in modern hi-
erarchies.

Second, in modern hierarchies, maximizing the number of requests
served by Dhi does not always yield the best performance. Consider the
case where Dhi is 2× faster than Dlo. With copious concurrency, when
about two-thirds of the requests are directed toDhi, splitting realizes the
aggregate bandwidth ofDhi andDlo. Increasing the split rate further only
degrades performance. Thus, in modern hierarchies, instead of maximiz-
ing the hit or split rate, the key is to find the right proportion of requests
that must be sent to each device.

4.2.2 Evaluation with Optane DC PM and Optane SSD

Next, we demonstrate that the observations from our model hold for real
storage stacks. We use one traditional hierarchy consisting of DRAM and
a Flash SSD [69]. We also use two modern stacks: first, PM (Optane DC
PM 128GB) and an Optane 905P SSD; second, an Optane SSD and a Flash
SSD. We use these hierarchies to cover a wide range of performance dif-
ferences; meantime, Optane DC PM and Optane SSD are the most popu-
lar emerging devices nowadays. While there could be many hierarchies
(e.g., with different versions of these devices), we believe our hierarchies
are adequate to validate our modeling and draw meaningful implications
for our designs.

For these experiments, we have implemented a new benchmarking
tool, called the Hierarchical Flexible I/O Benchmark Suite (HFIO). HFIO
contains a configurable hierarchy controller that implements caching and
splitting. HFIO uses the LRU-replacement policy for caching. HFIO gen-
erates synthetic workloads with a variety of parameters (e.g., mix of reads
and writes, locality, and the number of concurrent accesses). HFIO pre-

53

Th
ro

ug
hp

ut
 (k

op
s/

s)
Concurrency 1 4

DRAM/
Flash

8 16

PM/
Optane

Optane/
Flash

Caching Splitting

0

100

0

200

0

500

0 1
 Hit/Split Rate

0 1 0 1 0 1

Figure 4.4: Measured Performance of Caching and Splitting. This figure shows
the caching and splitting throughput of read-only workloads. We plot results for three hierarchies
(DRAM/Flash, PM/Optane, Optane/Flash) and four workloads with different concurrency lev-
els (1, 4, 8, 16). Horizontal dotted lines represent the combined bandwidth of both devices (the
maximum possible throughput).

cisely controls the caching layer size and access locality to obtain a desired
hit rate. We fix the block size to 32 KB and consider only random accesses.
We run our experiments on an Intel Xeon Gold 5218 CPU at 2.3GHz (16
cores), running Ubuntu 18.04. All experiments ran long enough to fill the
cache and deliver steady-state performance.

We begin by replicating the results from our model by running read-
only workloads and measuring the throughput. Figure 4.4 shows the
results on three hierarchies and workloads with different levels of con-
currency. First, in the traditional hierarchy (DRAM+Flash SSD, the first
row of Figure 4.4), as expected, both caching and splitting can achieve
high performance. Caching and splitting perform similarly, exactly as
our model predicted (Figure 4.3, 100:1 and 100:10 cases).

The second two rows of Figure 4.4 show that caching in new stor-

54

age hierarchies (e.g., PM+Optane, Optane+Flash) behaves much differ-
ently than in the traditional hierarchy. With low concurrency (1 or 4),
the caching device (i.e., Optane DC PM or Optane SSD) is not fully uti-
lized and thus optimizing the hit/split rate still improves performance.
However, for workloads with more concurrency, maximizing the hit/s-
plit rates does not lead to peak performance in either of the PM+Optane
or Optane+Flash hierarchies. In these situations, capacity devices such as
Optane SSD provide substantial performance compared to their caching
layers (e.g., DC PM). Splitting (with an optimal split rate) can thus de-
liver significantly greater performance than caching.

Our experiments with real devices reveal several complexities that the
models do not: the optimal split rate depends upon several factors. From
Figure 4.4, we can see that the optimal split rate varies significantly from
one device to another and with the level of parallelism of the workload.
Write ratios also influence the optimal split rate. As shown in Figure 4.5,
for Optane+Flash, the optimal split rate for a read-heavy workload is 90%,
while it is about 60% when the workload is write-heavy. This change
occurs because the difference between the write performances of Optane
and Flash is smaller than the difference between their read performances.
We observe similar results for the PM+Optane hierarchy.

Summary and Implications: Our performance characterization
(modeling and evaluation) of caching provides important lessons for our
design. Classic caching is no longer effective in modern hierarchies: it
does not exploit the considerable performance that can be delivered by
the capacity layer. With high hit rates and when the cache layer is un-
der heavy load, some of the requests can be offloaded to the capacity de-
vice. Such high hit rates and heavy load are quite common in production
caching systems. For instance, a recent study at Twitter showed that eight
out of the ten Twemcache clusters have a miss ratio lower than 5% [239].
Studies have also shown that cache layers often experience heavy load

55

(i.e., they are bandwidth saturated) [78, 160].
In the modern hierarchy, the capacity layer can offer substantial per-

formance and should thus be exploited in such situations. An alternative
solution is to increase the number of cache devices in the hierarchy; how-
ever, this approach can be prohibitively expensive as performance devices
are more costly. In contrast, offloading requests to the capacity layer of-
fers a more economic way to realize significant improvements. Such an
offloading approach can deliver the aggregate performance of all devices
by optimally splitting the requests to each device. For the offloading ap-
proach to work well, it is essential to dynamically adjust the split rate
because the optimal rate varies widely in modern hierarchies depending
upon factors such as write ratios and level of concurrency.

We note that classic tiering (which also aims to direct most requests
to the performance layer) suffers from similar shortcomings as caching
in modern hierarchies. In this work, we focus on improving caching for
two main reasons. First, getting tiering to optimally split accesses is fun-
damentally hard. Migration or replication to match the current optimal
split in tiering may hurt performance. In contrast, caching can readily
bypass cache hits to capacity devices; copies of hot data are always avail-
able on both devices. Second, we believe there are many scenarios where
caching may be the only suitable solution and tiering may not be appro-
priate. For instance, applications can only use DRAM as a cache when
persistence is required and cannot tier in the DRAM+PM hierarchy. We
believe many systems use caching for such reasons and an approach that
improves upon classic caching can be beneficial for many such systems.

4.3 Non-Hierarchical Caching
We present non-hierarchical caching (NHC), a caching framework that uti-
lizes the performance of devices that would have been treated as only a

56

Th
ro

ug
hp

ut

(k
op

s/
s)

Optane/Flash (PAR 4)

0.1
0.5
0.9

Read Ratio

0

50

100

Split Ratio
0 1

(a) Optane SSD + Flash

PM/Optane (PAR 8)

0

100

200

Split Ratio
0 1

(b) PM + Optane SSD

Figure 4.5: Splitting Performance with Mixed Reads and Writes Work-
loads. The figure shows the performance of splitting with mixed read and write workloads;
PAR: workload parallelism/concurrency. We show results for Optane SSD + Flash hierarchy
(a) and PM + Optane SSD hierarchy (b).

capacity layer with classic caching. NHC has the following goals:
(i) Perform as well or better than classic caching. Classic caching op-
timizes the performance of a storage hierarchy by optimizing the perfor-
mance from the higher-level device, Dhi; this performance is optimized
by finding the working set that maximizes the hit rate. NHC should de-
generate in the worst-case to classic caching and should be able to leverage
any classic caching policy (e.g., eviction and write-allocation).
(ii) Require no special knowledge or configuration. NHC should not
make more assumptions than classic caching. NHC should not require
prior knowledge of the workload or detailed performance characteristics
of the devices. NHC should be able to manage any storage hierarchy.
(iii) Be robust to dynamic workloads: Workloads change over time, in
their amount of load and working set. NHC should adjust to dynamic
changes.

The main idea of NHC (Figure 4.1) is to offload excess load to capacity
devices when doing so improves the overall caching performance. NHC

57

can be described in three steps. First, when warming up the system (or af-
ter a significant workload change), NHC leverages classic caching to iden-
tify the current working set and load that data into the Dhi; this ensures
that NHC performs at least as well as classic caching. Second, after the hit
rate has stabilized, NHC improves upon classic caching by sending excess
load to the capacity device, Dlo. This excess load has two components:
read hits that are not delivering additional performance on Dhi because
Dhi is already at its maximum performance, and read misses that cause
unnecessary data movement between the two devices. Classic caching
moves data from Dlo to Dhi when a miss occurs to improve the hit rate.
However, improving hit rate is not beneficial when Dhi is already deliv-
ering its maximum performance. Therefore, NHC decreases the amount
of data admissions into Dhi . Using a feedback-based approach, NHC
determines the excess load; it requires no knowledge of the device or the
workload. Finally, if a workload change is observed, NHC returns to clas-
sic caching; if the workload never stabilizes, the algorithm degenerates to
classic caching. NHC can leverage the same write-allocation policies as a
classic cache (e.g., write-around or write-back).

4.3.1 Formal Definitions

To describe NHC, we introduce a few terms. We assume that the stor-
age hierarchy is still composed of two devices, Dhi and Dlo. Caching
performance is determined by how the workload is distributed across
those two devices. We denote the total workload over a time period δt
as a constant W, a finite set of accesses to data items. We use w to re-
fer to the subset of W served by Dhi, and use its complement set W −w

for that served by Dlo. We model performance in the time period δt as
P(W,w) = phi(w) + plo(W −w). We make the following assumptions
about the devices:

Assumption 1: Performance of a device has an upper bound. The

58

performance of a device cannot increase after it is fully utilized. Lhi and
Llo represent the maximum possible performance that can be delivered
by each device for the current workload, W. We note w0 as the smallest
subset of w such that phi(w0) = Lhi.

Assumption 2: Increasing the workload on a device does not de-
crease performance. This implies phi(x) and plo(x) are monotonically in-
creasing functions. Note that HDD performance can decrease with more
random requests due to more seeks, but the assumption generally holds
for high-performing devices such as DRAM, NVM, and SSDs.

Assumption 3: Before reaching upper limits, phi(x) has a larger gra-
dient than plo(x). Based on our observations from real devices, the po-
tential performance gain of using Dhi is greater than that of using Dlo.

We define classic caching as an approach that optimizes P(W,w) by
maximizing only phi(w). Classic caching attempts to maximize P(W,w)
by finding some working set wmax that maximizes the hit rate of Dhi.

The key insight of NHC is that, when w0 < wmax, an opportunity
exists to move some portion of the workload wmax −w0 away from Dhi

to Dlo. Since phi(w0) = phi(wmax) = Lhi, removing wmax −w0 from
Dhi does not decrease the performance of Dhi below Lhi and now Dlo

can deliver some amount of performance forwmax−w0. Thus, NHC can
always perform as well or better than classic caching.

4.3.2 Architecture

As shown in Figure 4.6, classic caching can be upgraded to NHC by
adding decision points to its cache controller and a non-hierarchical cache
scheduler. The classic cache controller serves reads and writes from a
user/application to the storage devices (i.e.,Dhi andDlo) and controls the
contents ofDhi based on its replacement policy (e.g., LRU). A new cache
scheduler monitors performance and controls whether classic caching is
performed and where cache read hits are served. The scheduler opti-

59

Non-Hierarchical
Cache Scheduler

Optimizer
X = argmax f(X) Load

Admission
Switch

Hit?

Capacity
Layer (Dlo)

Performant
Layer (Dhi)

User/Application

Monitor f(X)

Tune

Insert(item) Get/Lookup(item)

NO

YES

Classic Cache Controller

data_admit

TRUE

clean ^
(p > load admit)

<latexit sha1_base64="y92lmO0Py2E93QUQhz0DZ5YNjm8=">AAACHnicbVBNSxxBEK1RE83mw4055tK4CIbAMiOInsKilxwVXBV2lqWmp2Zt7OkZumvUZdhf4sW/4sWDIQRy0n9j764Hvx40/Xiviqp6SamV4zC8D+bmF969X1z60Pj46fOX5ebXlUNXVFZSVxa6sMcJOtLKUJcVazouLWGeaDpKTncn/tEZWacKc8Cjkvo5Do3KlET20qC5GTNdcJLV05+5lprQjMciPqd0SCKOG+ul+CWELjCNB5jmin80Bs1W2A6nEK9J9EhandX45xUA7A2a/+O0kFVOhqVG53pRWHK/RsvKDxw34spRifIUh9Tz1GBOrl9PzxuLNa+kIiusf4bFVH3aUWPu3ChPfGWOfOJeehPxLa9Xcbbdr5UpKyYjZ4OySgsuxCQrkSpLkvXIE5RW+V2FPEGLkn2ikxCilye/Jocb7ShsR/tRq7MDMyzBd1iFdYhgCzrwG/agCxIu4Rpu4U9wFdwEf4N/s9K54LHnGzxDcPcAYjijZQ==</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="0Oj6zeKq0otzbbMGO9kjtiu9Lh0=">AAACHnicbVBNS8NAEN34bf2qevSyWAS9lEQQPUnRi0cFq0JTymQzqYubTdidqCX0l3jxr3jxoIjgSf+N29qDXw+Wfbw3w8y8KFfSku9/eGPjE5NT0zOzlbn5hcWl6vLKmc0KI7ApMpWZiwgsKqmxSZIUXuQGIY0UnkdXhwP//BqNlZk+pV6O7RS6WiZSADmpU90JCW8pSsrhT1QKhaD7fR7eYNxFHoaVzZzvc64yiMMOxKmkrUqnWvPr/hD8LwlGpMZGOO5U38I4E0WKmoQCa1uBn1O7BEPSDexXwsJiDuIKuthyVEOKtl0Oz+vzDafEPMmMe5r4UP3eUUJqbS+NXGUKdGl/ewPxP69VULLXLqXOC0ItvgYlheKU8UFWPJYGBameIyCMdLtycQkGBLlEByEEv0/+S86264FfD06CWuNgFMcMW2PrbJMFbJc12BE7Zk0m2B17YE/s2bv3Hr0X7/WrdMwb9ayyH/DePwFPuaHc</latexit>

dirty _
p load admit

<latexit sha1_base64="TPbXGj6XiLHOq3vqXY4hu/gLLF8=">AAACHXicbVC7TsNAEFzzDOYVoKQ5ESFRoMhGSFBG0FCCREikOLLO5zWcOD/wrRGRlR+h4VdoKECIggbR8SlcHgUEprnRzI5ud4JMSU2O82lNTc/Mzs1XFuzFpeWV1era+oVOi1xgU6QqzdsB16hkgk2SpLCd5cjjQGEruD4e+K1bzLVMk3PqZdiN+WUiIyk4Gcmv7nuEdxRE5fAlKkOZU6/fZ55JMs+zM8PwhjGV8tDzeRhLsv1qzak7Q7C/xB2TWoN5u18AcOpX370wFUWMCQnFte64TkbdkuckhcK+7RUaMy6u+SV2DE14jLpbDq/rs22jhCwy60RpQmyo/kyUPNa6FwdmMuZ0pSe9gfif1ykoOuyWMskKwkSMPooKxShlg6qYqQIFqZ4hXOTS7MrEFc+5IFPooAR38uS/5GKv7jp198ytNY5ghApswhbsgAsH0IATOIUmCLiHR3iGF+vBerJerbfR6JQ1zmzAL1gf30CGpBM=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="rzsCFgyraUrGySQ4B6aESV5gca8=">AAACHXicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CHFVnQ+r5NTzg98a0Rk+Udo+BUaChCioEH8DRcnBSRMc6OZHd3ueIkUCi3r21haXlldW69sVDe3tnd2zb39toqzlEOLxzJOux5TIEUELRQooZukwEJPQscbXU38zj2kSsTRLY4TcEM2iEQgOEMt9c0zB+EBvSAvX8TcFymOi4I6Okkdp5poBneUypj5Tp/5ocBq36xZdasEXST2jNTIDM2++en4Mc9CiJBLplTPthJ0c5ai4BKKqpMpSBgfsQH0NI1YCMrNy+sKeqwVnwZ6nSCOkJbq70TOQqXGoacnQ4ZDNe9NxP+8XobBhZuLKMkQIj79KMgkxZhOqqK6CuAox5owngq9K+VDljKOutBJCfb8yYukfVq3rbp9Y9cal7M6KuSQHJETYpNz0iDXpElahJNH8kxeyZvxZLwY78bHdHTJmGUOyB8YXz/ZVaJL</latexit>

Figure 4.6: Non-Hierarchical Caching Architecture. This figure shows the
architecture of NHC. NHC adds decision points and a scheduler to classic caching. As before,
NHC is transparent to users. Any classic caching implementation can be upgraded to be a NHC
one. Note that decision points only tune cache read hits/misses.

mizes a target performance metric that can be supplied by the end-user
(e.g., ops/sec) or use device-level measurements (e.g., request latency).

The NHC scheduler performs this control with a boolean data_admit
(da) and a variable load_admit (la). The da flag controls behavior when
a read miss occurs onDhi: when da is set, missed data items are allocated
inDhi, according to the cache replacement policy; when da is not set, the
miss is handled by Dlo and not allocated in Dhi. Classic caching corre-
sponds to the case where the da flag is true.

The la variable controls how read hits are handled and designates
the percentage of read hits that should be sent to Dhi; when la is 0, all
read hits are sent toDlo. Specifically, for each read hit, a random number
R ∈ [0, 1.0] is generated; if R <= la, the request is sent to Dhi; else, it is
sent to Dlo. In classic caching, la is always 1.

The NHC framework works with any classic caching write-allocation
policy (specified by users), which handles write hits/misses. NHC ad-

60

mits write misses into Dhi according to the policy; da, la do not control
write hits/misses. With write-back, cache writes introduce dirty data in
Dhi and data on Dlo can be out-of-date; in this case, NHC does not send
dirty reads to Dlo.

4.3.3 Cache Scheduler Algorithm

The NHC scheduler adjusts the behavior of the controller to optimize a
target performance metric. As shown in Algorithm 1, the scheduler has
two states: increasing the amount of data cached on Dhi to maximize hit
rate, or keeping the data cached constant, while adjusting the load sent
to each device.

State 1: Improve hit rate. The NHC scheduler begins by letting the
cache controller perform classic caching with its default replacement pol-
icy (da is true and la is 1); during this process, the cache is warmed up
and the hit rate improves as the working set is cached in Dhi. The NHC
scheduler monitors the hit rate of Dhi and ends this phase when the hit
rate is relatively stable; at this point, the performance delivered byDhi for
the workload wmax is near its peak.

State 2: Adjust load between devices. After Dhi contains the work-
ing set leading to a high hit rate and performance, the NHC scheduler ex-
plores if sending some requests to Dlo increases the performance of Dlo,
while not decreasing the performance of Dhi, i.e., the algorithm moves
from wmax toward w0. In this state, da is set to false and feedback is
used to tune la to maximize the target performance metric. Specifically,
the scheduler (Lines 6–18) modifies la; in each iteration, performance is
measured with la +/- step over a time interval (e.g., 5ms see §4.4). The
value of la is adjusted in the direction indicated by the three data points.
When the current value of la leads to the best performance, the scheduler
sticks with the current value. The value of la is kept in the acceptable do-
main of [0, 1.0] with a negative penalty function. If the scheduler finds

61

Algorithm 1: Non-hierarchical caching scheduler
cache: classic cache controller
step: the adjustment step size for load_admit
f(x): function that measures target performance metric when load_admit

= x, the value is measured by setting load_admit = x for a time interval
1 while true do

State 1: Improve hit rate
2 data_admit = true, load_admit = 1.0
3 while cache.hit_rate is not stable do
4 sleep_a_while()
5 data_admit = false, start_hit_rate = cache.hit_rate

State 2: Adjust load_admit
6 while true do
7 ratio = load_admit

Measure f(ratio-step) and f(ratio+step)
8 max_f = Max(f(ratio-step), f(ratio), f(ratio+step))

Modify load_admit based on the slope
9 if f(ratio-step) == max_f then

10 load_admit = ratio - step
11 else if f(ratio+step) == max_f then
12 load_admit = ratio + step
13 else if f(ratio) == max_f then
14 load_admit = ratio
15 if load_admit == 1.0 then
16 goto line 2 # Quit tuning if w < w0

Check whether workload locality changes
17 if cache.hit_rate < (1-α)start_hit_rate then
18 goto line 2

the optimal la is 1, it quits tuning and moves back to State 1; intuitively,
this means NHC has moved the current workloadw beloww0 and hence
requires classic caching to improve the hit rate to further improve perfor-
mance.

Since NHC relies on classic caching to achieve an acceptable hit rate,

62

it restarts the optimization process when workload locality changes. The
NHC scheduler monitors the cache hit rate at runtime; if the current hit
rate drops, the scheduler re-enters State 1 to reconfigure the cache with
the current working set. If the workload never stabilizes, NHC behaves
like classic caching.

Target Performance Metrics: NHC can improve different aspects
of performance. NHC can be configured to optimize metrics such as
throughput, latency, tail latency, or any combination. The target metrics
can also capture performance at various levels of the system (e.g., hard-
ware, OS, or application). f is a function that measures the target metric.

Write Operations: NHC handle writes with the write-allocation pol-
icy (specified by users) in the classic cache controller. NHC does not ad-
just the write-allocation policy because it may be chosen for factors other
than performance: endurance[128, 213], persistence, or consistency[163].

Adapting to Dynamic Workloads: NHC periodically measures the
target metric (e.g., throughput) using f and optimizes it by adjusting
load-admission ratios (in a way similar to gradient-descent). NHC only
needs ∆f to determine the optimal split of accesses. Since tuning involves
only one parameter (load-admission ratio), it is cheap and converges fast.
NHC can thus handle frequently-changing workloads with continual tun-
ing.

Summary: Non-hierarchical caching optimizes classic caching to ef-
fectively use the performance of capacity devices. NHC improves on clas-
sic caching in two ways. First, NHC does not admit read misses into Dhi
when the performance of Dhi is fully utilized. Second, when the perfor-
mance of Dhi is at its peak, NHC delivers useful performance from the
Dlo device by sending some of the requests that would have hit in Dhi
to Dlo instead. By determining at run-time the appropriate load, NHC
obtains useful performance from Dlo instead of using Dlo only to serve
misses into Dhi.

63

4.4 Implementation
We implement non-hierarchical caching in two places: Orthus-CAS, a
generic block-layer caching kernel module, and Orthus-KV, a user-level
caching layer for a key-value store.

Open CAS [108] is caching software built by Intel that accelerates ac-
cesses to a slow backend block device by using a faster device as a cache.
It supports different write-allocation policies such as write-around, write-
through, and write-back, and uses an approximate LRU policy for evic-
tion. Open CAS is a kernel module that we modify to leverage NHC.
Orthus-CAS works with all policies supported in Open CAS.

We also implement NHC within a persistent block cache for Wis-
ckey [168], an LSM-tree key-value store. LSM trees are a good match for
Optane SSD, and have garnered significant industry interest [3, 55, 129].
Wisckey is derived from LevelDB; the primary difference is that Wisckey
separates keys from values to reduce amplification. While keys remain
in the LSM-tree, values are stored in a log and each key points to its cor-
responding value in the log. Separating keys and values also improves
caching because it avoids invalidating values when compacting levels;
this is similar to the approach in memcached [51] for spilling data to SSD.
We integrate NHC with Wisckey’s persistent block cache layer. The cache
keeps hot blocks (both LSM-tree key and value blocks, 4KB in size) on the
cache device using sharded-LRU. Eviction occurs in units of 64 blocks. We
call this implementation Orthus-KV.
Detecting Hit-rate Stability: NHC considers the hit-rate to be stable
(Algorithm 1, Lines 3-4) when it changes within 0.1% in the last 100-
milliseconds. This simple heuristic works well as NHC does not require
perfect hit-rate-stability detection. With intensive workloads, a higher
hit-rate will only let NHC bypass more hits; with light workloads, NHC
switches to classic caching quickly.
Target Performance Metrics: Our implementations support three tar-

64

get metrics: throughput, average latency, and tail (P99) latency, with
throughput being the default. When optimizing throughput, we use the
Linux block-layer statistics [46] to track device throughputs. When opti-
mizing for latency, we track the end-to-end request latency of the caching
system.
Tuning Parameters: NHC implementations must measure the target met-
rics and tune parameters periodically. The speed at which NHC adapts
to workload changes depends on both the interval between target perfor-
mance measurements and the step size. With a smaller interval, tuning
converges faster. Though frequent tuning means more CPU overheads,
our CPU overheads are negligible. We found the Linux block layer coun-
ters [46] are not accurate when the interval is smaller than 5 ms, so we use
the smallest yet accurate interval of 5 ms. A large step size leads to faster
convergence but may get sub-optimal results. NHC adjusts the load ratio
by 2% in each step; we have found this gives a reasonable converging time
with end results similar to smaller step sizes. We leave an adaptive step
size for future work.
Implementation Overhead: We find that implementing NHC into exist-
ing caching layers is fairly straightforward and requires nominal devel-
oper effort. We added only 460 (not including cache mode registration
code) and 228 LOC into Open CAS and Wisckey, respectively.

4.5 Evaluation
Our evaluation aims to answer the following questions:

• How does NHC in Orthus-CAS perform across hierarchies, write-
allocation policies, and target metrics? (§4.5.1)

• How does NHC as implemented in Orthus-KV perform on static
workloads? (§4.5.2)

65

• How does Orthus-KV handle dynamic workloads? How does it
adapt to changes in load and data locality? (§4.5.3)

• How does NHC compare to previous work? (§4.5.4)

Setup. We use the following real devices: a SK Hynix DDR4 module (de-
noted as DRAM), an Intel Optane 128GB DC PM (PM), an Intel Optane
SSD 905P (Optane), and a Samsung 970 Flash SSD (Flash). We also use
FlashSim [162] to simulate flash devices with different performance char-
acteristics.

4.5.1 Orthus-CAS

We begin by evaluating NHC as implemented in Orthus-CAS running
on microbenchmarks where the workloads do not change over time. The
accesses are uniformly random and 64KB (the suggested page size for
Open CAS). We use 1GB of the cache device and generate workloads with
different hit ratios. We report the stable performance of classic caching;
for NHC, we report when its tuning stabilizes. Unless otherwise noted,
we use throughput as the target function.

4.5.1.1 Storage Hierarchies

We show the normalized throughput of Open CAS and Orthus-CAS for
read-only workloads with different hierarchies, amounts of load, and hit
ratios in Figure 4.7. We define Load-1.0 as the minimum read load to
achieve the maximum read bandwidth of the cache device; we generate
Load-0.5, 1.5, and 2.0 by scaling load-1.0. We investigate hierarchies that
include DRAM, PM, Optane SSD, and Flash. We also mimic hierarchies
with two performance differences (50:10 and 50:25) using FlashSim; we
configure FlashSim to simulate devices with maximum speeds of 50MB/s,
25MB/s, and 10MB/s. We make the following observations from the fig-
ure:

66

FlashSim
50:10

DRAM + PM PM +
Optane SSD

Optane SSD
+ Flash

FlashSim
50:25

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

23

45

4724

44

48

31 77 8631

63 79

45 11
4

14
339 89 10

2

61 15
3

17
250 11

6 11
2Load-0.5 1.0 1.5 2.0

Classic Orthus-CAS

(a) 95% Hit Rate

FlashSim
50:10

DRAM + PM PM +
Optane SSD

Optane SSD
+ Flash

FlashSim
50:25

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

29 69

62

29 66

62

39

10
9 8936 88 77

56

15
8 14

251 13
0

95

70

20
9 17

069 17
7

10
4

Load-0.5 1.0 1.5 2.0
Classic Orthus-CAS

(b) 80% Hit Rate

Figure 4.7: Orthus-CAS on Various Hierarchies. This figure compares the
performance of Orthus-CAS and Classic caching on various hierarchies (x axis). We use read-
only workloads of varying intensity: we define Load-1.0 as the minimum read load to achieve the
maximum read bandwidth of the cache device; we generate Load-0.5, 1.5, and 2.0 by scaling load-
1.0. (a) and (b) show different cache hit rates. All throughputs are normalized to the maximum
read bandwidth of the caching device. We show latency (µs) on top of each bar (not comparable
across hierarchies).

67

First, when load is light (e.g., Load-0.5), cache devices always outper-
form capacity devices. In this case, NHC does not bypass any load and
behaves the same as classic caching.

Second, when the workload can fully utilize the cache device, Orthus-
CAS improves performance. Intuitively, a higher hit ratio and load gives
NHC more opportunities bypass requests and improve performance. Fig-
ure 7 confirms the intuition: with 95% hit ratio and Load-2.0, NHC ob-
tains improvements of 21%, 32%, 54% for DRAM+PM, PM+Optane, and
Optane+Flash, respectively. Such improvements are marginally reduced
with an 80% hit ratio.

Third, among these hierarchies, Optane+Flash improves the most
with Orthus-CAS since the performance difference between Optane and
Flash is the smallest, followed by PM+Optane and PM+PM. Our results
with FlashSim show how practitioners can predict the improvement of
using NHC on their target hierarchies.

Finally, our measurements indicate that Orthus-CAS adapts to com-
plex device characteristics. With an 80% hit ratio, classic caching does not
achieve 1.0 normalized throughput on any real hierarchy because cache
misses introduce additional writes to the cache device. NHC handles
such complexities.

Latency Improvement. As shown in Figure 4.7, Orthus-CAS also
improves average latency on all hierarchies. For instance, with Load-
2.0, NHC reduces average latency by 19%, 25%, 39%, for DRAM+PM,
PM+Optane, and Optane+Flash hierarchies, respectively.

4.5.1.2 Write-Allocation Policies

Open CAS can use a variety of write-allocation policies (write-around,
write-back, and write-through) and Figure 4.8 shows that NHC improves
performance relative to classic caching with each policy. The experiments
vary the storage hierarchy, the write ratio, and the dirty-read ratio. We

68

MFWA : WA
MFWB: WB
MFWT: WT

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

(a) Optane + Flash, 20% Dirty Reads (b) Optane + Flash, 80% Dirty Reads

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

(c) PM + Optane, 20% Dirty Reads (d) PM + Optane, 80% Dirty Reads

Figure 4.8: Orthus-CAS with Different Write-allocation Policies. The
figure shows Orthus-CAS overall throughput speedup (against Open CAS) with different write-
allocation policies: WA, WB, and WT are write-around, write-back, and write-through. Work-
loads have a concurrency level of 16 and 95% hit rates.

control the dirty-read ratio by limiting the percentage of the working set
that writes can touch (e.g., if writes go to 80% of the working set, then
80% of the reads will be dirty).

NHC improves reads irrespective of write ratios. When reads or
writes overload the cache device, NHC bypasses read hits, improving
performance (e.g., significantly so on PM+OptaneSSD where PM writes
interfere with reads dramatically). As shown in Figure 4.8, the overall
improvements are dependent upon a combination of the workload write
and dirty-read ratios and the write-allocation policy. NHC offers more
benefits when there are fewer writes. With write-back, NHC cannot of-

69

Target
Metric

PM + Optane Optane + Flash
Throughput

GB/s
Avg. lat.
µs

P99 lat.
µs

Throughput
GB/s

Avg. lat.
µs

P99 lat.
µs

Open CAS 6.7 77 115 2.3 227 269
Throughput 8.0 64 147 3.9 132 289

Avg. lat. 8.0 64 143 3.9 132 285
P99 lat. 6.9 75 106 3.3 155 245

Table 4.2: Different Target Metrics. The table shows Orthus-CAS performance
using different target performance metrics. We use read-only workloads (concurrency level of 8,
95% hit ratio). The best result for each metric is in bold.

fload reads of dirty items to the capacity device and thus performs much
better with fewer dirty reads. Write-around and write-through maintain
consistent copies and thus Orthus-CAS offers benefits independent of the
dirty-read ratio.

4.5.1.3 Target Performance Metrics

NHC can improve different performance metrics by using different mea-
sure functions f. Table 4.2 shows the performance of Open CAS and
Orthus-CAS when using throughput, average latency, and tail (P99) la-
tency as target metrics. Optimizing throughput or average latency yields
similar improvements to both metrics on both hierarchies, but increases
tail latency. This increase occurs because in each of these storage hierar-
chies, the performance device has much better tail latency than the capac-
ity device; thus classic caching defaults to appropriate behavior. When
NHC is configured with P99 latency as the target metric, Orthus-CAS has
better tail latency than Open CAS and than it does with other targets.

4.5.2 Orthus-KV: Static Workloads

We use Orthus-KV, the NHC implementation in Wisckey, to show the ben-
efits for real applications. Caching in Wisckey uses write-around, due to
the LSM-tree’s log-structured writes. In these experiments we focus on

70

1 8 16 24 32
0

100

200

300

400

Threads

T
hr

ou
gh

pu
t (

K
O

ps
/s

ec
) Classic

Orthus-KV

(a) V:1KB theta:0.6

1 8 16 24 32

Threads

(b) V:1KB theta:0.8

1 8 16 24 32

Threads

(c) V:16KB theta:0.8

Figure 4.9: Orthus-KV, YCSB-C Performance. This figure shows Orthus-KV
performance with YCSB-C benchmark. YCSB-C workload has 100% reads. We use 16B keys and
1KB or 16KB values. Accesses follow a Zipfian distribution (theta).

Optane+Flash since it is often used for key-value stores[55, 129]. We set
the caching layer to 33 GB, 1/3 of the 100 GB dataset. We use cgroup to
limit the OS page cache to 1 GB to focus on caching in the storage system
instead of caching in main memory.

Our initial evaluation uses the YCSB workloads [117]. Most YCSB
workloads are constant: their load does not change and they have a sta-
ble key popularity distribution (i.e., Zipfian). These workloads cover dif-
ferent read/write ratios (e.g., YCSB-C: 100% reads, YCSB-A: 50% reads
and 50% updates), as well as various operations (e.g., YCSB-E involves
95% range queries and 5% inserting new keys, while Workload-F has
50% read-modify-writes). We evaluate YCSB-D as a dynamic workload
(§4.5.3).

Gets: Figure 4.9 compares the throughput of Wisckey and Orthus-
KV for three YCSB-C workloads and different amounts of concurrency.
Orthus-KV achieves equivalent or higher throughput than Wisckey for
all workloads. Orthus-KV significantly improves throughput at high load

71

1KB 1KB 16KB
0

1000

2000

3000

4000
I/O

 T
hr

ou
gh

pu
t (

M
B

/s
)

Value:
Threads: 24 32 32

O
pt

an
e

F
la

sh

Classic

Orthus-KV

Figure 4.10: Orthus-KV Bandwidth Breakdown, YCSB-C. This figure com-
pares Optane/Flash SSD read bandwidth breakdown during YCSB-C workloads for Orthus-KV
(dark grey bars) and Classic Caching (light grey bars).

levels: with 32 threads, 46%, 30%, and 71% higher throughput for the
three workloads. When load is high enough to saturate Optane, the rel-
ative benefits of Orthus-KV depend on how much it can avoid unneces-
sary data movement and perform better load distribution. Figure 4.10
illustrates these two benefits with the read bandwidth delivered by each
device. First, classic caching suffers from unnecessary data admissions
into Optane: its effective Optane read bandwidth never reaches the peak
(2.3GB/s). NHC avoids this wasteful data movement. Second, classic
caching never delivers more than the maximum Optane bandwidth to
the application. In contrast, NHC improves the performance out of the
hierarchy by distributing some cache hits to the Flash SSD.

Updates, Inserts, and Range Queries: Figure 4.11 shows Orthus-KV
handles a range of operations (gets, updates, inserts, and range queries)
and always performs at least as well as Wisckey. NHC improves all YCSB
workloads, with greater benefits with more get operations.

72

A B E F
0

100

200

300

T
hr

ou
gh

pu
t (

K
O

ps
/s

ec
)

Workload

Classic

Orthus-KV

Figure 4.11: Other YCSB Workloads. This figure shows Orthus-KV performance
for YCSB A,B,E,F workloads. We use 16B keys, 1KB values, 32 threads and theta = 0.6.

Latency Improvement: With throughput as its target, Orthus-KV re-
duces YCSB average latency by up to 42%. For YCSB-C (32 threads, 0.8
theta), Orthus-KV provides 30% and 38% lower latency for 1KB and 16KB
values, respectively.

CPU Overhead: Orthus-KV increases CPU utilization slightly (0-2%
for 24 threads) due to a few additional counters that track caching behav-
ior and device performance over time.

4.5.3 Orthus-KV: Dynamic Workloads

We evaluate NHC for dynamic workloads using the same experimental
setting as §4.5.2. We explore how Orthus-KV handles time-varying work-
loads and dynamic working sets.

73

0

100

200
(K

O
ps

/s
)

0 40 80 120 160 200 240
0

50

100

Time (thousands of seconds)

R
at

io
 (

%
)

T
hr

ou
gh

pu
t

night night night

day day day

Load Admit Data Admit (window=5)

Orthus-KV Classic

Figure 4.12: Orthus-KV with Dynamic ZippyDB Workloads. This figure
shows the throughput of Orthus-KV and classic caching (top graphs), as well as load/data admit
ratio over time in Orthus-KV (bottom graphs). Because data admit is 0 or 1, we show a fractional
windowed sum of its value over 5 time steps for readability. We replay the ZippyDB benchmark
on a single machine. The average value size is 16KB; the number of key ranges is 6. We use 32
threads for the maximum load and adjust the number of threads dynamically according to the
diurnal load model. We speed up the two-day workload by 1000×.

4.5.3.1 Dynamic Load

We evaluate how well NHC handles load changes with the Facebook Zip-
pyDB benchmark [107]. ZippyDB is a distributed key-value store built on
RocksDB and used by Facebook. The ZippyDB benchmark generates key-
value operations according to realistic trace statistics: 85% gets, 14% puts,
1% scans following a hot range-based model; the request rate models the
diurnal load sent to ZippyDB servers. We note that the access patterns
(e.g., read sizes) of the ZippyDB benchmark vary significantly as their
value sizes range from bytes to MBs. We speed up the replay of Zippydb
requests by 1000 to stress the storage system and to better evaluate NHC’s
reactions to changes in load.

74

0

100

200
(K

O
ps

/s
)

0 10 20 30 40
0

50

100

Time (Seconds)

R
at

io
 (

%
)

Change

Warm Up with Classic Caching

Tuning Stable
T

hr
ou

gh
pu

t

Figure 4.13: Orthus-KV with a Sudden Working Set Change in Work-
load. This figure shows throughput of Orthus-KV and classic caching (top graphs), and
load/data admit ratio over time in Orthus-KB (bottom graphs). We use the workload similar to
YCSB-C 16KB value, 32 threads, but with two different working sets before and after 10s.

As shown in Figure 4.12 (top), Orthus-KV outperforms Wisckey dur-
ing the day by up to 100%, but performs similarly when the load is lower
at night. Figure 4.12 (bottom) shows how Orthus-KV adjusts data and
load admit ratios. During the night, both are around 100%; Orthus-KV
occasionally adjusts the load admit ratio when the hit rate is stable, but
quickly returns to classic caching after finding no improvements. During
the day, Orthus-KV keeps the data admit ratio at 0 and adjusts the load
admit ratio to adapt to the dynamic load.

4.5.3.2 Dynamic Data Locality

We demonstrate that NHC reacts well to abrupt changes in the working
set in Figure 4.13. The experiments base on YCSB-C, beginning with one
working set (Zipfian theta=0.8, hot spot at beginning of the key space),

75

0

250

500
(K

O
ps

/s
)

0 5 10 15 20
0

50

100

Time (seconds)

R
at

io
 (

%
)

H=85%
H=68%

T
hr

ou
gh

pu
t

Orthus-KV (Data Admit=100)

Figure 4.14: Orthus-KV with a Gradual Working Set Change in Work-
load. This figure shows throughput of Orthus-KV and classic caching (top graphs), and
load/data admit ratio over time in Orthus-KB (bottom graphs). We use YCSB-D with 16B keys,
1KB values, 32 threads. We also show throughput of a modified Orthus-KV that always performs
data admit (dotted line).

and then changing at time 10s (a hot spot at the end of the key space).
The graph shows that when the working set changes (time=10s), Orthus-
KV quickly detects the change in hit rate and switches to classic caching:
the load and data admit ratios increase to 1.0. After the hit rate begins
to stabilize (time=11s), Orthus-KV tunes the load admit ratio. Initially
(11s-28s), because the hit rate is still not high enough,Orthus-KV often
identifies 1.0 as the best load admit and returns to classic caching with
data movement. Approximately 20s after the workload change, the hit
rate stabilizes and Orthus-KV reaches steady-state performance that is
60% higher than classic caching.

Finally, we show that NHC can outperform classic caching even when

76

the working set changes gradually. Figure 4.14 shows Orthus-KV’s per-
formance on YCSB-D (95% reads, 5% inserts), where locality shifts over
time as reads are performed on recently-inserted values. Due to the lo-
cality changes and not admitting new data to the cache, the hit rate in
Orthus-KV decreases over time, until NHC identifies that 1.0 is the best
load admit rate. Then Orthus-KV returns to classic caching and raises the
hit rate. Once the hit rate restabilizes, the cycle resumes with Orthus-KV
adjusting the load admit rate.

We also explore the alternative approach of always performing data
admission while tuning the load admit rate in Figure 4.14. As shown,
this alternative maintains a stable hit rate, avoiding abrupt phases of ad-
mitting new data; this always performs better than classic caching but
its peak performance does not reach that of the default Orthus-KV. Our
results illustrate the interesting tradeoff between avoiding unnecessary
data movement and maintaining a stable hit rate for dynamically chang-
ing workloads.

4.5.4 Comparisons with Prior Approaches

We now show that NHC significantly outperforms two other approaches
that have been suggested for utilizing the performance of a capacity de-
vice: SIB [160] and LBICA [80]. SIB targets HDFS clusters with many
SSDs and HDDs, in which case the aggregate HDD throughput is non-
trivial: SIB uses SSDs as a write buffer (does not admit any read miss),
and proposes using the HDDs for handling extra read traffic. LBICA de-
termines when a performance layer is under “burst load” at which point
it will not allocate new data to the performance layer; unlike NHC, LBICA
does not redirect any read hits.

To compare NHC against SIB and LBICA, we have implemented these
approaches in Open CAS. To make SIB suitable for general-purpose
caching environments, we have improved it in two ways. First, SIB oper-

77

 Static Read Only
0

2000

4000

Th
ro

ug
hp

ut
(M

B/
s)

(a) Static Workload

10.0 5.0 1.0 0.5
Fixed Write Ratio Period (s)

0

2000

4000 NHC SIB++ SIB+ LBICA

(b) Dynamic Workloads

Figure 4.15: NHC vs. SIB and LBICA. This figure compares NHC with two re-
lated works SIB and LBICA. (a) uses a static read-only workload. (b) uses dynamic workloads;
the write-ratio is fixed in each period (e.g., 10s), but changes (randomly between 0% to 50%)
across periods. We use workloads with parallelism/concurrency 16, 95% hits, runtime 100s on
Optane+Flash hierarchy.

ates on a per-process granularity instead of per-request: the traffic from
some processes is not allowed to use the SSD cache; we altered SIB so
that it adjusts load per-request (SIB+). Second, we modified SIB so that
it admits read misses into the cache (SIB++).

Using the experimental setup from §4.5.1 on Optane+Flash, we start
with a read-only workload in Figure 4.15.a. SIB+ does not perform well
because it does not admit read misses into Optane. SIB++ performs bet-
ter, but suffers when the workload changes as in Figure 4.15.b; in these
workloads, the amount of write traffic is changed every period, for peri-
ods between 10 and 0.5 seconds. SIB cannot handle dynamic workloads
because SIB has two phases; in its training phase, SIB learns the maxi-
mum performance of the caching device for the current workload; in the
inference phase, SIB judges whether the caching device is saturated and,
if it is, bypasses some processes (requests). As we have shown, the max-
imum performance of modern devices depends on many workload pa-
rameters: read-write ratios, load, and access patterns. Thus, if the work-
load changes in any way, SIB must either relearn the target maximum

78

performance or use an inaccurate target. In our experiments, as the dura-
tion of each phase decreases, the performance of SIB decreases dramati-
cally. Unlike SIB, NHC uses a simple, continuous feedback-based tuning
approach and thus converges rapidly and adapts to dynamic workloads
well. Finally, LBICA performs poorly because it does not redirect any read
hits to use the capacity device; it simply does not allocate more data to the
performance device when it is overloaded.

4.6 Conclusions
In this chapter, we show how emerging PM devices have strong impli-
cations for caching in modern hierarchies. We show that the decades-
old caching principle of maximizing hit rates ignores capacity layer per-
formance; however, in modern hierarchies, capacity layers (such as PM
DIMM) are performant and can account for a significant portion of over-
all hierarchy performance (cache layer + capacity layer). As a result, in
modern hierarchies, this principle becomes insufficient. We introduced
non-hierarchical caching (NHC), an enhanced caching approach to ex-
tract peak performance from modern hierarchies. Compared to classic
caching, NHC has three new components: i) read around mechanism, ii)
admission rejection mechanism, and iii) a feedback-based offloading pol-
icy. The first two components enable NHC to offload accesses to capacity
layers when the cache device is already saturated, and exploit the capac-
ity layer performance. The third component help determine how much to
offload during runtime in response to various device and workload char-
acteristics in the hierarchy. Through experiments, we demonstrated the
benefits of NHC on a wide range of devices, cache configurations, and
workloads. We believe NHC can serve as a better foundation to manage
storage hierarchies.

79

5
Evolving Sharing Mechanisms for PM

In the last part of the thesis, we address the question of how PM devices
can be shared across multiple tenants. We analyze the problems of ex-
isting sharing mechanisms (designed for DRAM/block devices) on PM,
and then propose new mechanisms to overcome the difficulties of shar-
ing PM. We focus on a detailed setup of multi-tenant memory-based look-
aside key-value caches (such as memcached [52]). This chapter is based
on the paper, NyxCache: Flexible and Efficient Multi-tenant Persistent Mem-
ory Caching, published in FAST 2022 [231].

To analyze existing sharing approaches for PM, we first summarize the
basic mechanisms (e.g., resource usage accounting, interference analysis)
used to achieve diverse sharing objectives (e.g., QoS-aware, proportional
sharing). This is an important first step because, as we have discovered,
there are numerous sharing objectives in various sharing configurations;
studying all of these objectives would be impossible. Then, we examine
each sharing mechanism’s issues on PM. Our analysis shows that existing
sharing mechanisms designed for DRAM/block devices do not readily
translate to PM due to PM’s unique characteristics such as 256B access
granularity, asymmetric read/write performance, and severe and unfair
interference between reads and writes.

To address this issue, we introduce NyxCache (Nyx), a standalone
lightweight and flexible PM access regulation framework for multi-tenant
key-value caches that is optimized for today’s PM without special hard-

80

ware support. Nyx’s central contribution is a set of software mechanisms
designed for PM to extract the information required to flexibly enforce
popular sharing policies. Nyx provides new mechanisms to efficiently
i) regulate PM accesses, ii) obtain a client’s PM resource usage, and iii)
analyze inter-client interferences for PM. We then describe how we use
these new mechanisms to easily and efficiently support sharing policies
such as resource limiting, QoS, fair slowdown, and proportional shar-
ing. Through various experimental studies, we demonstrate the efficacy
of each sharing policy.

In the following, we first evaluate previous multi-tenant caches and
their limits for PM (§5.1); discuss the Nyx design (§5.2); evaluate over-
heads of Nyx’s mechanisms and the effectiveness of its policies (§5.3);
discuss potential extensions (§5.4); and conclude (§5.5).

5.1 Background and Motivation
We provide background on the sharing policies provided by many in-
memory multi-tenant key-value caches and the mechanisms needed to
implement those policies. We explain why previous approach for pro-
viding control and information on DRAM or block devices do not work
well on PM.

5.1.1 Sharing Policies for Multi-Tenant Caches

In-memory key-value caches such as memcached [52], Redis [66], and
Pelikan [61] are an essential part of web infrastructure for many real-
time and batch applications [10, 239]. Before accessing data from
slow backend-storage or compute nodes, applications first check an in-
memory cache server. In production environments, cache servers are
usually multi-tenant: many cache instances are consolidated on a sin-
gle server to improve utilization and simplify management and scal-

81

ing [187]. In a multi-tenant cache, requests are routed to the cache in-
stance of the corresponding tenant. For example, large companies such
as Facebook [187] and Twitter [239] maintain hundreds of large-memory
dedicated servers that host thousands of cache instances. Smaller com-
panies use caching-as-a-service providers such as ElastiCache [7], Re-
dis [65] and Memcachier [54]. In this chapter, we focus on managing
an individual multi-tenant cache server.

Giving competing clients, enforcing performance and sharing goals is
critical in multi-tenant caching. Different industrial and research multi-
tenant systems have provided different objectives; we focus on the follow-
ing four.

Resource Limiting: A common objective when clients pay for re-
sources is to guarantee that each client cannot exceed some amount of
usage such as bandwidth, ops/sec, or number of resources [6, 27]. For
example, Google Cloud memcache limits operations according to a pric-
ing tier, such as “Up to 10k reads or 5k writes (exclusive) per sec per
GB” [27]. Multiple resources can be limited simultaneously, e.g., Ama-
zon ElastiCache [6] charges for both memory and vCPUs.

There are two requirements for a multi-tenant cache to enforce per-
client resource limits. First, the system must accurately determine the
amount of resource each client is using; we refer to this as resource us-
age estimation. Second, the system must reschedule or throttle requests of
each client if they exceed this limit, which we call request regulation. Below
(§5.1.2), we describe how previous multi-tenant caches have provided re-
quest regulation and resource usage estimation, and why these previous
approaches are not sufficient for PM.

Quality-of-Service: A multi-tenant system may ensure that each
client’s performance goals (throughput, latency, or tail latency) are
met regardless of other co-located clients, as in Twitter [62] and Mi-
crosoft [214]. This objective is useful for latency-critical clients that must

82

meet service-level objectives (SLOs). For example, production caches at
Twitter provide a p999 latency of <5 milliseconds [62].

Providing QoS requires knowledge of whether each client is meeting
its goals at run-time. When the system observes that one client is not
meeting its performance guarantee, interfering clients are identified and
limited [111, 135, 176] (e.g., with request regulation). Identifying the client
causing the most harm is usually straightforward and based on simple
bandwidth [135] for DRAM-based caches, but not for PM. A new tech-
nique involving interference estimation is required on PM to determine how
the workloads compose.

In addition to run-time support, guaranteeing QoS requires admis-
sion control and space allocation. Admission control must be per-
formed on newly arriving clients to ensure that the system has suffi-
cient resources and that the new client will not interfere with existing
clients [120, 121, 179]. Space allocation across cache instances must be
performed to provide a specified hit ratio for each client to ensure each can
meet its goals. Previous research has focused on this challenge. For exam-
ple, Microsoft [214] allocates space to meet QoS bandwidth targets, and
Robinhood [96] to minimize tail latency. Admission control and space
allocation are mostly orthogonal to the new challenges introduced by PM
and are not our focus.

Fair Slowdown: Multi-tenant systems in more cooperative environ-
ments may ensure that all clients are slowed down by the same amount.
Formally, these approaches minimize the ratio of the maximum slow-
down to the minimum slowdown [127, 215]. In web cache settings, ap-
plication requests may fan out, in which case the cache access with the
longest latency determines overall latency [96, 187]; thus, balancing slow-
down benefits overall request latency.

Enforcing fair slowdown requires knowledge of each cache’s slow-
down at runtime. The system must monitor each cache’s current perfor-

83

Quality Proportional
Resource of Fair Resource

Limit Service Slowdown Allocation

Request Regulation 3 3 3 3
Resource Usage 3 3

Interference 3 *
Application Slowdown 3 3

Table 5.1: Control and Information Needed. This figure summarizes the control
and information required to implement popular sharing goals (Resource Limit, etc.). 3indicates
control or information is required by the policy. * indicates optional.

mance when sharing the server with others and know its performance if
run alone. A technique for slowdown estimation is required. Furthermore,
to equalize slowdowns of different caches, caches with small slowdown
should be further limited and caches with larger slowdowns should be
less limited (e.g., with request regulation).

Proportional Resource Allocation: Finally, a multi-tenant system
may incent clients to share resources by guaranteeing that each of N
clients performs within 1/N-th of its stand-alone performance. This guar-
antee can be generalized to give each client a different proportional share.
Idle resources may be redistributed across clients, such that some obtain
more than their guarantee. For example, FairRide [199] ensures propor-
tional cache space allocation.

To guarantee proportional allocation, a multi-tenant cache must meet
three requirements. The system must perform request regulation and re-
source usage estimation to guarantee that each client does not consume
more than its allocation. When assigning idle resources to clients, the
system must validate that the additional resource usage does not inter-
fere with others; therefore, the system must track each client’s slowdown
(i.e., with slowdown estimation) and stop idle resource re-allocation before
it severely impacts some clients.

In summary, for a multi-tenant cache to provide the above policies, it

84

Metric Load No-Prefetch NT-Load Store Store+clwb NT-Store

256B GB/s 1.59 1.53 0.29 1.12 0.52 3.73
us 0.49 0.52 0.84 0.38 0.47 0.08

4KB GB/s 4.08 2.92 2.24 1.03 1.50 3.44
us 1.22 1.69 1.84 4.14 2.71 1.22

Table 5.2: PM Load/Store Performance. This table summarizes the throughput
and latency of single thread random 256B and 4KB load/store operations (on 2× Optane DC
PM). No-Prefetch: the CPU’s prefetching is turned off (for DRAM/PM); NT: non-temporal
operations that bypass the CPU cache.

must control resource usage of each cache instance and obtain informa-
tion about resources and application performance. Table 5.1 summarizes
the needed control and information for each policy.

5.1.2 Challenges of PM Cache Sharing

Persistent memory is an appealing building block for key-value caches.
After presenting PM background, we describe the challenges of using PM
for multi-tenant caching.

5.1.2.1 Persistent Memory Characteristics

PM is becoming a reality in products and research prototypes. For exam-
ple, Intel Optane DC PM [37] is a popularly available device; there are
also research prototypes [109, 169, 227]. In this chapter, we use PM to re-
fer to Optane DC PM. PM performance is similar to DRAM but can deliver
extremely large capacity at low cost [37, 38]. PM is significantly faster
than NAND Flash and is byte-addressable. PM is directly connected to
the memory bus and, when configured in App Direct Mode, can be ac-
cessed using loads and stores. Different CPU caching options exist for
PM access: loads and stores with CPU caching and prefetching; loads and
stores with prefetching disabled (for both PM and DRAM); non-temporal
(NT) operations that bypass the CPU cache entirely [238].

85

Table 5.2 summarizes the bandwidth and latency of Optane DC PM
for a workload relevant to key-value caches: random 256B and 4KB loads
and stores. As shown, for loads, regular loads perform best: CPU cache
prefetching is essential for hiding PM latency and increasing throughput.
For stores on a random workload, NT-stores that bypass the CPU cache
have much better performance. Thus, we use in-PM key-value caches op-
timized to use regular loads and NT-stores.

PM has unique characteristics that impact multi-tenant caching. For
instance, as previously identified, PM exhibits asymmetric read vs.
write performance [151], especially efficient access for specific sizes
(e.g., 256B) [238], and severe and unfair interference across reads and
writes [189]. As we will describe, these characteristics deeply impact the
ability to perform request regulation and to estimate resource usage, in-
terference, and application slowdown.

5.1.2.2 Request Regulation

Previous approaches for request regulation have been designed for both
DRAM and for block I/O. However, none of these approaches are suitable
for PM.

Existing techniques for regulating memory requests have adjusted the
number of cores dedicated to an application [135], used clock modulation
(DVFS) [196], and Intel Memory Bandwidth Allocation (MBA) [35]. In
multi-tenant caching, reducing the number of cores is not suitable be-
cause a cache instance is often allotted only a single core [6]. Intel MBA
manages last-level cache (LLC) misses from each core to limit memory
traffic, but does not distinguish between misses to PM and DRAM [34]
and so cannot restrict PM accesses without also slowing down DRAM.
Furthermore, Intel MBA does not have access to accurate information
about resource usage, interference, and application slowdown, as we will
discuss. Likewise, adjusting CPU frequency has an effect on all instruc-

86

tions; Oh et al. [189] demonstrated the ineffectiveness of CPU frequency
scaling on regulating PM traffic.

I/O requests have been regulated via software with block-layer I/O
scheduling [43], which is not suitable for PM for two reasons. First, the
block abstraction would add significant read/write amplification for byte-
addressable PM. Second, scheduling requests with merging, reordering,
and other synchronization would add unacceptable overhead to other-
wise low-latency PM accesses [90].

5.1.2.3 Resource Usage Estimation

Previous techniques for estimating the memory or I/O usage of clients
do not work well for PM. We describe the problems with previous soft-
ware approaches for tracking I/O usage and with hardware approaches
for DRAM.

As discussed above, CPU cache prefetching is required for PM to
deliver high bandwidth and low latency. However, when estimating
block I/O traffic in software [12, 118, 241], extra PM accesses caused by
prefetching are not observed. Running an experiment with 1KB random
loads, we found that software-level tracking accounted for only 60% of
actual memory traffic, leading to inaccurate resource-usage estimation.

Accounting on DRAM uses hardware counters to track L3 cache line
misses to the memory controller per core. While hardware counters ac-
curately measure prefetching, they do not account for the difference be-
tween cache line size and PM access granularity, which is needed for PM
accounting. Because PM has a 256B minimum access granularity, a 64B
load (a single L3 cache line) utilizes the same amount of PM resources
as a 256B load (four L3 cache lines). Thus, four cache line accesses can
result one to four PMEM accesses. Previous systems for resource esti-
mation have often used bandwidth consumption as a proxy for resource
usage [135, 176, 243], but this is not appropriate for PM where operation

87

0 5 10
Interference Throughput (GB/s)

0.0

0.5

1.0

1.5
Vi
ct
im

 T
hr
ou

gh
pu

t (
GB

/s
)

w/ read-interference
w/ write-interference

0 5 10
Interference Throughput (GB/s)

0.5
1.0
1.5
2.0
2.5
3.0

Vi
ct
im

 P
99

 L
at
en

cy
 (u

s)

w/ read-interference
w/ write-interference

(a) Read vs. Write Interferences

64 12
8
19
2
25
6
32
0
38
4
44
8
51
2

Interference Write Sizes (Bytes)

0.0

0.5

1.0

1.5

Vi
ct
im

 T
hr
ou

gh
pu

t (
GB

/s
)

64 12
8
19
2
25
6
32
0
38
4
44
8
51
2

Interference Write Sizes (Bytes)

0

1

2

3

Vi
ct
im

 P
99

 L
at
en

cy
 (u

s)

(b) Interferences Related to Access Sizes

Figure 5.1: PM Load Performance with Various Interferences. This figure
shows the throughput of a victim workload (single thread 256B loads) with various interferences.
(a) shows the victim throughput and tail latency when colocated with varying amounts of read
and write interferences. (b) shows the victim performance when colocated with 1GB/s store
traffic of varying access sizes (range from 64B to 512B with step of 64B).

cost is affected by access size and is different for reads versus writes.
Unfortunately, current hardware counters in PM are also not sufficient;

existing PM counters are at the DIMM media-level and do not track per-
client or per-core usage [45, 189].

88

5.1.2.4 Interference Estimation

In memory-based approaches, interference caused by a particular client
was assumed to be related to memory bandwidth. For example, Cal-
adan [135] identifies the client with the highest number of LLC misses,
which corresponds directly to the client with the highest memory band-
width. This simplification does not work for PM, as PM interference de-
pends on both volume and pattern of traffic.

Specifically, on PM, write-intensive clients generate greater interfer-
ence than read-intensive clients with the same bandwidth, as shown in
Figure 5.1.a. For example, on a read-intensive client, a competing 1GB/s
write causes the same throughput and tail latency interference as a com-
peting 8GB/s read. As shown in Figure 5.1.b, smaller accesses (64B)
can cause more interference than larger accesses (256B). Since PM has
a minimum granularity of 256B, a 64B access is amplified into 256B on
the device; thus, at the same bandwidth, 64B accesses generate signifi-
cantly more interference than 256B accesses. In short, the bandwidth of
a competing client is not a good estimation of interference in PM, unlike
DRAM.

5.1.2.5 Application Slowdown Estimation

Numerous efforts have estimated slowdown for DRAM and Flash-based
systems; however, all require specialized device support. For example,
FST [127] requires in-DRAM bank conflict counters that are updated with
each memory access; MISE [216] and ASM [215] require the DRAM con-
troller to assign priorities to application requests. FLIN [217] changes the
Flash controller to track and rearrange each flash transaction. Although
application slowdown is not inherently different on PM than DRAM or
I/O, previous approaches require special hardware which is not available
on PM.

89

Summary: Multi-tenant PM caching demands new methods for regulat-
ing PM accesses and extracting PM resource usage, interference informa-
tion, and application slowdown.

5.2 NyxCache Design
Given that existing multi-tenant cache servers cannot handle PM, we in-
troduce NyxCache (Nyx). Nyx provides mechanisms for control (e.g., re-
quest throttling) and information estimation on PM (e.g., resource usage,
interference, and application slowdown), and supports a range of shar-
ing policies (e.g., resource limiting, quality-of-service, fair slowdown,
and proportional resource usage). We describe the overall architecture of
Nyx, present our design goals, describe how Nyx provides these mecha-
nisms and policies.

5.2.1 Architecture

As shown in Figure 5.2, Nyx provides a multi-tenant in-PM caching
framework. Each PM server running Nyx may contain any number of
cache instances (e.g., memcached, Pelikan, Redis). Thousands of users
may send requests (e.g., set/get) to their associated cache instance. When
cache space is exhausted, a cache instance can use any eviction strategy
(e.g., FIFO, LRU, and LFU). As in other look-aside caches, users explic-
itly write desired data into the cache; Nyx does not fetch data from remote
storage on a cache miss.

Nyx can be configured with different sharing policies and parameters
(e.g., a resource limit, latency target, or proportional weight). Admin-
istrators can implement new policies using the control and information
mechanisms provided by Nyx. At runtime, Nyx enforces the desired
sharing policy. Based on information Nyx acquires about per-instance

90

Classic Cache Instance

(e.g. Pelikan)

Nyx-Library

Throttling

Resource Usage

Accounting

PMEM Devices

PM Read/Write

Per-Thread

Throttling

Resource Usage

Accounting

Redis

Nyx-Lib

Mem

cached

Nyx-Controller

Per-Thread…
Query Stats or Set

Throttling

Configure

Cache, Nyx-Lib

Monitor
Cache, Nyx-Lib Stats

Adjust Throttling

(or space)

Nyx-Lib

Figure 5.2: NyxCache Architecture. This figure presents Nyx architecture. Nyx im-
plements throttling and resource usage accounting for each cache instance, and enforces sharing
policies across cache instances. Nyx contains two major components: 1) a Nyx Library for each
instance, and 2) a centralized Nyx Controller.

resource usage and performance, the Nyx controller dynamically adjusts
the throttling and space allocated to instances.

Nyx has two requirements for cache instances. First, each cache
instance must report application-level performance metrics such as
throughput and tail latency; most systems have this capability or can be
extended [53]. Second, the instances must be integrated with a trusted
Nyx-library. When a cache instance reads/writes from/to PM, it must use
Nyx library APIs (e.g., read(dest, src), write(dest, src)). For each PM ac-
cess, the Nyx library throttles access, tracks PM usage, and performs the
actual access. The library uses a separate thread to communicate with the
Nyx controller. The controller interacts with the library to query statis-
tics and to set configuration, space, and throttling values. Nyx leverages
techniques from previous multi-tenant in-memory caches for basic shar-
ing functionality such as admission control and space allocation. As of
now, Nyx only manages cache instances on a single NUMA node that

91

share PM (and all PM accesses are local); multiple Nyx can be used to
manage multiple NUMA nodes. We leave NUMA-aware management
for future work.

5.2.2 Design goals

Nyx has the following goals. (i) Lightweight: Performance is critical for
in-PM caching; thus the cost of adding control and acquiring information
must be low relative to the cost of accessing PM. (ii) Flexible Sharing
Policies: Different sharing policies may be required by administrators for
different scenarios. Thus, Nyx can be configured with several policies
based on a common set of simple mechanisms. (iii) No Special Hard-
ware: Previous work has assumed smart resources (e.g. Flash, DRAM)
that provide configurable control and information [186, 217, 245, 247].
Nyx handles current devices with existing hardware interfaces. (iv)
Minimal Assumptions: Storage devices are continuously evolving, with
new generations having new performance characteristics. Therefore, Nyx
does not assume a particular performance model for all PM devices (e.g.,
the interference for different operations).

5.2.3 Nyx Mechanisms

Nyx contains low-level mechanisms that enable higher-level sharing poli-
cies to be implemented easily. Since request regulation, estimation of re-
source usage, interference, and application slowdown are changed sig-
nificantly by PM, we describe these Nyx mechanisms in detail. Access
control and space allocation are largely independent of PM and not the
focus of this chapter; Nyx borrows these techniques from previous sys-
tems [96, 116, 179, 199, 214].

PM Access Regulation: To minimize the overhead of regulating re-
quests to PM, Nyx adheres to the basic principle used by previous tech-

92

niques for DRAM regulation: throttle requests in a coarse-grained man-
ner without reordering or prioritizing. To mimic the behavior of Intel
MBA, Nyx implements simple throttling by delaying PM accesses at user-
level.

Our current implementation adds delays in units of 10ns with a simple
computation-based busy loop. In some cases PM operations may need to
be delayed indefinitely (e.g., when a resource limit is reached); in this
case, PM operations are stalled until the Nyx controller sets the delay to
a finite value.

Resource Usage Estimation: Nyx must determine how much PM re-
source each cache instance is using. As described in Section 5.1, for PM
the number of transferred bytes is not a good estimate of resource usage;
on PM, each operation type (e.g., read or write) and access pattern (e.g.,
request size) consumes a different amount of the resource and has a dif-
ferent maximum operations per second. Therefore, Nyx determines the
utilization of PM as a function of the current IOPS of each operation type
relative to the maximum IOPS for that operation type. For example, if
the maximum IOPS of pattern A isMaxIOPSA, then the cost of each op-
eration of pattern A is 1/MaxIOPSA. If the maximum IOPS of pattern
B is 1/N×MaxIOPSA, then each B operation consumes N times more
PM than an A operation and has N times the cost. The IOPS cost model
accurately captures that writes are more expensive than reads, and the
dependency on request size.

Nyx determines the MaxIOPS of each access pattern through profil-
ing, performed once per PM server. The profiler measures IOPS for ran-
dom read and write operations between 64B and 4KB (in steps of 64B).
Because prefetching occurs during profiling, the measured MaxIOPS ac-
curately represents the cost of both the operation itself and any wasted
prefetching. Profiling concentrates on random accesses as multi-tenant
key-value caches are mostly random: first, because multiple tenants ac-

93

0 10 20 30 40 50 60
Access Size (64B)

0

2

4

6
M
ax

 IO
PS

(1
0
M
illi

on
)

Read
Write

0 4 8 12
0

1

2

Figure 5.3: MaxIOPS Profile. This figure shows example profile of maximum IOPS
for random reads and writes of different sizes on our 2× Intel Optane DC PM system.

cess PM simultaneously (in different address spaces), their requests are
interleaved; second, keys tend to be mapped to arbitrary PM locations
based on their time-to-live and size [52, 240]. The profiler stops at re-
quest sizes of 4KB which obtain the device’s maximum bandwidth.

Figure 5.3 shows the profiled MaxIOPS for reads and writes as a func-
tion of request size. As shown, writes have lower IOPS and thus a higher
cost per operation than reads. While larger requests generally have lower
IOPS, there is a complex relationship with the minimal PM access size:
for example, a 64B random store has a similar maximum IOPS as 256B,
the minimum PM access size; accesses that are not aligned to 256B have
lower MaxIOPS.

At runtime, Nyx tracks the PM usage of each cache instance. When a
cache instance accesses PM, Nyx looks up the MaxIOPS for this operation
and size, and increments a cost counter for this cache instance by 1

MaxIOPS .
To reduce synchronization overhead, these counters are maintained per-
thread and only lazily combined when needed (e.g., for responding to a
resource usage query from Nyx Controller).

While the CPU cache can theoretically introduce errors in PM cost es-

94

timation, these errors are negligible for Nyx. First, since CPU prefetching
waste depends in part on spatial locality, the profiler mimics the random
accesses of cache instances that have little sequentiality. Second, given a
cache instance that uses NT-store (as in Nyx-Pelikan), the CPU cache has
no effect on stores. Finally, although a PM load could be served in the
CPU cache and never access PM, in multi-tenant caches few PM loads hit
in the CPU cache: because each instance’s working set is typically tens of
GBs [95, 239] (and there are many instances), there is little temporal lo-
cality in CPU caches of tens of MBs. More intricate cost models for cache
instances with spatial (e.g., scan) and temporal locality (e.g., bursty re-
tries) are left for future work.

Interference Analysis: When multiple cache instances are co-located,
Nyx determines which instance most impacts another. For example,
when an efficient QoS implementation observes that an affected client W
is not meeting its guarantee, it will iteratively slow down the one com-
peting client that will produce the greatest benefit for W. In PM-based
systems, unlike DRAM, these interactions are difficult to identify because
an affected client may be impacted more by a low-bandwidth client than
a high-bandwidth client. The amount of interference is due to complex
scheduling within the PM device; as future generations of PM devices
become available, which clients interfere with which others may change.
Therefore, Nyx assumes no prior knowledge of these interactions.

Nyx determines which client is interfering the most with the affected
client with a runtime micro-experiment. Given affected client W and sev-
eral competing clients, Nyx iteratively throttles each competing client by
X for some metric of interest while measuring the impact on client W.
The throttled client that helps W attain the greatest performance improve-
ment is identified as the client that interferes with W the most. The value
of X is configurable, as is the metric (e.g., throughput, average latency,
or tail latency). Nyx uses simple pruning techniques to throttle only

95

the clients with the highest resource usage. Optimizations for reducing
micro-experiment times (e.g., focus on different client subsets in different
trials) are left for future work.

SlowDown Estimation: Nyx determines the slowdown that each
client experiences at runtime by calculating Talone

Tshare
; Talone is the client’s

performance (for some metric of interest) when it is running alone, and
Tshare is its current performance in the shared environment. As we as-
sume no special hardware, Nyx uses an approach similar to previous
work [157].

First, to learn Talone, Nyx briefly pauses all other clients; Talone is up-
dated on a regular basis (e.g., 1s) or whenever a workload change is
observed. Second, slowdown is periodically calculated using a runtime
measurement of Tshare. As we will show, at the cost of a small loss of
bandwidth and increase in tail latency, this solution adequately approxi-
mates slowdown without hardware support. The impact of the pause can
be reduced for workloads that do not change frequently.

5.2.4 Nyx Sharing Policies

Nyx implements four popular sharing policies. We describe how these
policies leverage the mechanisms of Nyx for PM.

Resource Limit: Nyx can limit the amount of the PM resource used
by each client in multi-tenant caching, isolating the performance of clients
from one another. Our policy defines resource limits in terms of standard
operations, similar to Google Cloud’s memcache [27] (e.g., 1000 1KB ran-
dom reads per second, or 1MB/s random reads).

As shown in Algorithm 2, Nyx provides resource limits for each client
epoch by epoch, extending existing approaches [243]. Each epoch, Nyx
monitors the resource utilization of each client; if a client reaches its limit
for this epoch, its accesses to PM are delayed until the next epoch. When
the epoch ends, the throttling value for each client is reset to zero. The

96

Algorithm 2: Resource Limit The gray area denotes unique
functionality used to deal with PM issues

EpochLen: ticks in an epoch (e.g. 100), TickLen: (e.g. 10ms)
A.getResCounter(): query A’s Nyx-Lib for resource usage
A.setThrottling(t): add t×10ns delay to each access of A
ResAssigned[1..N]: each cache’s assigned resource per epoch

1 while true do
Step 1: Begin an epoch and set all cache throttling to 0

2 foreach cache A do
3 A.setThrottling(0)

InitResCounter[A] = A.getResCounter()
Step 2: Monitor resource utilization and pause clients who have used up

their allotted resources.
4 while Epoch is not completed do
5 SleepFor(TickLen)
6 foreach cache A do
7 ResUsed = A.getResCounter() - InitResCounter[A]
8 if ResUsed > ResAssigned[A] then
9 A.setThrottling(INFINITE) # Pause

implementation allows the administrator to configure the epoch and tick
length to trade-off the overhead of checking counters with reaction time.

Quality-of-Service: Nyx can ensure that latency-critical (LC) tenants
meet a service-level-objective while maintaining high PM utilization for
best-effort (BE) tenants on the same server. As in earlier work [120, 121],
admission control prevents workloads with unachievable QoS targets and
space-allocation provides the necessary hit ratio.

As shown in Algorithm 3, Nyx employs an approach similar to Par-
ties [111] and Caladan [135]: for each LC client, the difference between
the guaranteed and the current performance is tracked; when the guar-
antee is violated (i.e., negative slack), a competing tenant is throttled.

Nyx differs in how it identifies the client to be throttled. Caladan
always throttles the BE tenant with the maximum bandwidth (LLC

97

Algorithm 3: QoS The gray area denotes functionality for PM.
We omit code to rollback throttling when the action violates any
LC task’s target.

ExperimentStep: a cache’s throughput expense pays for an interference
analysis experiment. (e.g. 500MB/s)

1 while true do
Step 1: Monitor each client’s SLO slack

2 foreach cache A do
3 slack[A] = (A.target - A.latency) / A.target
4 S = cache with the smallest slack

Step 2: Protect clients violating SLO
5 if slack[S] < 0 then
6 if S is throttled then
7 throttle down S
8 else

Step 2.1: Pick candidates to throttle
9 if there are BE caches then

10 candidates = top 3 resource usage BE
11 else
12 candidates = top 3 res usage LC, slack > 0.2
13 if all LCs have little slack then
14 candidates = LC with the most slack

Step 2.2: Find the most interfering client
15 I = getLargestInterference(S, candidates)
16 throttle up I

17 else if slack[S] > 0.2 then
All caches have slack -> relax throttling

18 throttle down every cache

19 Function getLargestInterference(S, Candidates):
Find the tenant who will most improve S at the same expense

(throughput)
20 If there is only one client in Candidates, return the client
21 foreach C in Candidates do
22 throttle up C by ExperimentStep
23 track S latency change after the experiment
24 restore all throttle to previous state
25 return L who helps S get the largest improvement

98

Algorithm 4: Fair Slow Down
A.getSlowDown(): return A’s current performance / Talone

1 while true do
2 if Talone info is older than P sec then
3 foreach cache A do
4 refreshTalone(A)

Adjust throttling to equalize slowdowns
5 foreach cache A do
6 SlowDown[A] = A.getSlowDown()
7 find cache L and S with the largest and smallest slowdowns
8 unfairness = SlowDown[L] / SlowDown[S]
9 if unfairness > UnfairnessThreshold then

10 throttle down L and throttle up S
11 FairIntervals = 0
12 else

With fair slowdown, try to improve utilization
13 FairIntervals ++
14 if FairIntervals > FairIntervalThreshold then
15 throttle down all caches

16 Function refreshTalone(A):
17 A.setThrottling(0), and pause every other cache
18 A.Talone = measure A throughput
19 restore throttle of all caches to previous state

misses), whereas Nyx throttles the BE or LC cache that most improves
the LC cache, for the same expense across competing tenants. The imple-
mentation allows the administrator to configure ExperimentStep, allowing
a balance between aggressive throttling and faster convergence.

Fair Slow Down: Nyx can achieve fairness in terms of equalized slow-
down across caches. As in Algorithm 4 [127, 215], Nyx minimizes (MaxS-
lowDown/MinSlowdown) by gradually increasing the throttling of the
MinSlowDown cache and decreasing the throttling of the MaxSlowDown
cache. The tuning process is terminated when the unfairness metric falls

99

under an UnfairnessThreshold. The implementation periodically (every
P seconds) refreshes the estimate of the stand-alone performance (Talone)
for each client. Administrators can customize P to balance between lower
overhead and faster adjustments for dynamic workloads.

The policy can be generalized to guarantee weighted slowdowns and
a hard limit on some cache’s slowdown. For the hard limit, Nyx tracks
the particular slowdown at runtime and throttles other caches when the
hard limit is exceeded.

Proportional Resource Allocation: Nyx implements proportional
sharing with actual proportional resource allocation (instead of simple
bandwidth allocation) and with interference-aware idle resource redis-
tribution. Nyx ensures that each cache achieves performance equal to
or better than accessing PM alone for a given amount of time (time-
sharing [220]). For example, if a cache has a weight of 2 out of 3, then
it is guaranteed to obtain at least 2/3 of its stand-alone performance.

Nyx first allocates resources (not bandwidth) proportionally to each
cache and enforces the resource limit during an epoch (Algorithm 5).
We assume cache space has been allocated proportionately. Following an
epoch, Nyx forecasts each tenant’s desired amount of resources: a tenant
that did not use all its given resource may donate idle resources, whereas
a tenant that used all assigned resources may consume more (a simple
linear model predicts desired resources [243]).

Nyx provides interference-aware resource donation (Option 2 in the
Alg.). On PM, idle resource redistribution faces the difficulty that the
donated resource may severely interfere with the original donor’s perfor-
mance. For example, as shown in Section 5.3.5, if a get-heavy cache A
donates idle resources to a write-heavy cache, the new write traffic can
dramatically harm A’s performance. To prevent this interference, Nyx
re-allocates resources in increments, stopping when the donating cache’s
slowdown is near its lower bound; if the slowdown exceeds the lower

100

Algorithm 5: Proportional Resource Allocation The slowdown
refreshing code is omitted.

DonateStep: step to donate idle resources (e.g. 10%)
TotalResource = 1

1 while true do
Step 1: Enforce and track resource usage in an epoch

2 Begin a New Epoch
3 foreach cache A do
4 Enforce A uses resource <= ResourceAssigned[A]
5 if A depleted resources, record how long: TimeUseUp[A] (e.g.

half of the epoch)
6 if A left idle resources, record ResourceUsed[A]
7 End of the Epoch

Step 2: Redistribute Idle resources
8 foreach cache A do
9 if A has idle resources then

Option 1: Donate all extra resources
10 DesiredResource[A] = ResourceUsed[A]

Option 2: Interference-aware resource donation
11 if A.getSlowdown() < TotalWeight / A.weight then

Donate a step when within slowdown limit
12 DesiredResource[A] = Max(ResourceAssigned[A] * (1 -

DonateStep), ResourceUsed[A])
13 else

Revoke a step when under slowdown limit
14 DesiredResource[A] = Min(ResourceAssigned[A] * (1

+ DonateStep), TotalResource * A.weight/ TotalWeight)

15 if A depleted resources: DesiredResource[A] =
ResourceAssigned[A] / TimeUseUp[A]

16 ResourceAssigned[1..N] = Allocate resources proportionally based
on weight and desired resource

bound, a portion of the donated resources are returned. Thus, Nyx guar-
antees the “time-sharing” lower bound while maximizing resource uti-
lization. The implementation allows the administrator to set DonateStep,
balancing quick idle resource donation and the proportional guarantee.

101

With Admission Control and Capacity Allocation: In a nutshell,
cache instances are 1) admitted, 2) allocated space, and 3) governed by
Nyx. A PM free-space check, for example, suffices for resource limiting as
admission control for a cache; QoS policy requires logic like [120, 121] to
predict SLA compliance given existing caches. The cache size is then de-
termined. For instance, it can be set based on the instance’s price tier;
to enforce QoS, administrators can profile a client’s hit-rate v.s. cache
space relationship [214] and allocate enough space to meet SLAs. While
running, Nyx assumes the admission logic is correct and is unconcerned
about the space allocated.

5.2.5 Cache Instances: PM-Optimized Pelikan

Nyx has been designed to handle any in-memory key-value store; our
current implementation is built upon Pelikan – Twitter’s in-memory KV
cache [61, 240]. We describe the original Pelikan and optimizations for
higher PM performance.

Pelikan (SegCache [240]) maintains a hash table for indexing and seg-
ments for storing key-value pairs. Each segment includes items, where
each item is a tuple of (key, value, metadata). On a get operation, Pelikan
hashes the key to find items. Because of conflicts, multiple keys are likely
to be read for a single get. Thus, Pelikan must compare each read item
with the key; if the keys match, the value is returned.

When the default version of Pelikan is configured for PM, the hash
index is kept in DRAM and the segments in PM. However, this placement
is inefficient due to the frequent key accesses in PM: the keys in caching
workloads are often much smaller [239] than the granularity of PM access
(256B), and small reads perform relatively poorly on PM [238].

Nyx-Pelikan addresses this by separating keys (and metadata) from
values into different segments; the keys (and metadata) are placed in
DRAM and the values in PM. This design requires DRAM for keys and

102

64 256 1024 4096
Value Size (Bytes)

0

20

40

Pe
rfo

rm
an

ce
 In

cr
ea

se
(%

)

(a) Get

64 256 1024 4096
Value Size (Bytes)

0

100

200

300

(b) Write

Figure 5.4: Optimization: Nyx-Pelikan. This figure shows Nyx-Pelikan perfor-
mance. (a) presents Nyx-Pelikan Get (single-thread) throughput improvement due to key-value
separation. (b) presents Nyx-Pelikan Write (replace, 8 threads) improvement due to changing
stores to NT-stores.

metadata, which works well because they are typically much smaller than
values [238].

As shown previously in Table 5.2, because non-temporal stores to PM
can provide much greater throughput than conventional stores, Nyx-
Pelikan uses NT-store. Although non-temporal stores may not benefit
from temporal locality in the CPU cache, this loss is negligible on large-
scale caching workloads which typically have large working sets. As
shown in Figure 5.4, Nyx-Pelikan improves Pelikan Get performance by
up to 55% and set performance by up to 3×.

5.2.6 Nyx Parameter Values

The values of Nyx’s parameters affect its behavior; as previously stated,
the appropriate settings depend on the tradeoffs made by administrators.
Nyx enables users to configure all of these parameters while also setting
defaults.

103

Nyx follows existing guidelines [127, 215, 243] for policy parameter
values’ selection. For resource limiting, Nyx uses 10 ms tick and 100 ticks
per epoch to limit resource usage offset to 1%. For fair slowdown, Nyx
sets the Talone refresh interval to one second to achieve a relatively quick
response to workload changes and a within 2% overhead (§5.3.1).

Nyx provides defaults for newly introduced parameters via sensitiv-
ity tests (§5.3.7). Nyx QoS uses 500MB/s ExperimentStep because it is the
smallest step that produces good interference analysis. In interference-
aware resource donation, Nyx sets a 10% DonateStep to balance quick
donation and steady donator performance. Nyx sets 10ns throttling de-
lay granularity for fine-grained access rate regulation, which is an order
of magnitude less than 100ns PM latency. We will discuss potential op-
timizations like dynamic/adaptive parameters and automatic parameter
value selection in §5.4.

5.3 Evaluation
We evaluate the overhead of Nyx’s mechanisms and how well Nyx pro-
vides the sharing policies of resource limit, QoS, fair slowdown, and pro-
portional resource allocation.

Setup: We use a 16-core, single-socket Intel Xeon Gold 5128 CPU @
2.3GHz server (Ubuntu 18.04), with a 22 MB L3 Cache, 2x16GB DRAM,
and 2x128GB Intel Optane DC PM in app direct mode. We mount an ext4
file system in DAX mode on the PM.

Synthetic Workloads: We begin with synthetic workloads to illustrate
key features. Unless specified, the workloads have uniform random ac-
cesses to each cache instance, a working set of 10GB per instance, and 4B
keys and variable-sized value. To focus on PM accesses, we use get work-
loads with a high hit ratio (>99 percent). We use in-place replacement
for write-heavy workloads; a cache write implies a replace. The cache is

104

Trace Type Avg.Key/Value Sizes(B) Operations (Get/Write ratio)
S1 Storage 36/799 0.86/0.13
C1 Computation 67/2439 0.93/0.07
C2 Computation 18/67485 0.52/0.48

Table 5.3: Twitter Traces.

64 256 1024 4096
Value Size (Bytes)

0

5

10

Ov
er
he

ad
(%

)

(a) Regulation, Accounting Overhead

2 4 6 8 12
Number of Tenants (#)

0.0

0.5

1.0

1.5

2.0

0.5s
1.0s
10.0s

(b) Slowdown Estimation Overhead

Figure 5.5: Mechanisms Overhead. This figure shows the overhead of Nyx mecha-
nisms. (a) shows Nyx request regulation and resource usage accounting overhead (throughput).
It is measured with 8-threads get-only caches. A similar percentage of latency overhead was ob-
served. (b) shows Nyx slowdown estimation overhead (throughput). It is measured with 1ms
Talone pausing time, different number of clients (x axis) and different frequency (0.5/1/10s)
of updating Talone for all caches.

warmed to begin.
Realistic Workloads: We conclude with three large-scale cache traces

from Twitter [239] (Table 5.3). The traces cover caches with various value
sizes (799B to 67845B) and get-percentages (93% to 52%). We pre-load
one million operations from the traces and loop through them.

5.3.1 Mechanisms Overhead

Request Regulation and Resource Usage Estimation: With Nyx, each
PM access incurs a call into Nyx-lib, throttling logic, and resource ac-

105

counting. Figure 5.5.a shows this can add up to 12% overhead for ex-
tremely small value sizes (e.g., a cache line), but less than 6% for access
sizes above 256B. Given the benefit of request regulation and resource
usage accounting, we believe this overhead is justified.

Interference Analysis: Determining the most interfering client takes
longer than simply selecting the client with the greatest bandwidth due to
the lag necessary to observe tail latency. In Section 5.3.3 we will demon-
strate the benefit of trading increased analysis time for more precise in-
formation.

SlowDown Estimation: The overhead of slowdown estimation is in-
fluenced by the time to measure Talone per instance, the frequency of this
measurement, and the number of cache instances. We determined that
1ms is a sufficient pause time to accurately determine Talone for a client.
Figure 5.5.b shows that calculating Talone for up to 12 instances adds less
than 2.5% overhead, even when performed every 500ms.

5.3.2 Resource Limiting

We demonstrate that Nyx can enforce a true resource limit on PM, in con-
trast to an approach based only on bandwidth. We begin with a workload
containing one unlimited (U) cache and one limited (L) cache. Cache U
is a get-heavy cache instance, while Cache L changes: get-only or write-
only, with varied value sizes. L has a resource limit of 1.25M 4KB random
load OPS, or 42% of the total device resource given that MaxIOPS for 4KB
random loads is 3 Million. Defined in terms of bandwidth, this equates
to 5GB/s for these 4KB random loads; however, this IOPS limit results in
different bandwidths for other workloads.

Figure 5.6.a shows the bandwidth of L; the target IOPS, in which no
more than 42% of the device resource is used, is shown in red. As desired,
Nyx always limits L’s throughput to the target limit, regardless of L’s ac-
cess pattern (determined by value sizes and read/write). In contrast,

106

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

40
96

L Value Size (B)

0

2

4

6
L T
hr
ou
gh
pu
t (
GB
/s) L - Get

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

40
96

L Value Size (B)

0

2

4

6 L - Write
Bandwidth Limit
Resource Limit
Ideal Limit

(a) L Throughput

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

40
96

L Value Size (B)

0

2

4

6

U
Th

ro
ug

hp
ut
 (G

B/
s)

U std dev: 678MB

Bandwidth Limit

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

40
96

L Value Size (B)

U std dev: 130MB

Nyx Resource Limit

w/ L Writing
w/ L Reading

(b) U Throughput

10% 30% 50% 70% 90%
L Get Ratio

0

1

2

U
Th
ro
ug
hp
ut
 (G
B/
s)

U Max BW: 2GB/s

L: 1KB Values

10% 30% 50% 70% 90%
L Get Ratio

L: 4KB Values

Resource Limit
Bandwidth Limit

(c) U Throughput + Broader L Setups

Figure 5.6: Resource Limit: Cache U (unlimited) + Cache L (limited).
This figure compares the Nyx Resource Limit policy behaviors with the classic Bandwidth Limit
policy behaviors. Cache U is get-only. In (a), we show Cache L throughput when its resource
limit is 5GB/s (1.25M 4KB random load OPS, or 42% of the total device resources). The red
dotted line represents L’s performance under the “ideal limit”, which is calculated as 42% of
the current access pattern’s MaxIOPS. L is get-only or write-only, and its value sizes varies (x
axis). In (b), we show cache U’s performance when colocated with the same L in (a), comparing
bandwidth limit and Nyx resource limit. In (c), we investigate additional L setups: 1KB/4KB
value sizes and 10% - 90% gets. U is a lighter cache than (a) and (b). The label indicates U’s
max bandwidth when colocated with a 5GB/s cache instance (4KB-value, get-only).

107

a policy based only on bandwidth mistakenly allows L to significantly
exceed the target limit, up through the maximum bandwidth of 5GB/s.
When L is get-only, this problem is most noticeable when the value size is
around 1KB; as previously noted, 1KB accesses result in significant CPU
prefetching waste not captured by software-level bandwidth accounting.
On the other hand, Nyx’s MaxIOPS cost model accurately captures re-
source usage. Similarly, bandwidth cannot capture PM write cost and
fails to properly limit L’s throughput.

The impact on the unlimited client (U) is shown in Figure 5.6.b for the
same L workloads. With the bandwidth policy, U’s performance depends
on L’s access pattern. Due to asymmetric read/write cost of PM, whether
L performs reads or writes significantly impacts U; similarly, the varied
prefetching waste of each access pattern causes up to 45% impact on U.
In contrast, Nyx provides U with steady and predictable performance,
regardless of L’s access pattern: across all of L’s workloads, the standard
deviation of U’s performance is only 130MB/s (bandwidth limit’s devia-
tion is 678MB/s). Finally, Figure 5.6.c shows that when the percentage
of gets in L is varied, Nyx provides steady performance for U, whereas a
PM-oblivious bandwidth-based approach does not.

Figure 5.7 demonstrates Nyx’s resource limiting behaviors as the
cache hit rate varies. As shown, Nyx restricts PM resource usage from
(get) hits. Misses in look-aside caches (e.g., Pelikan) are simply returned
after checking the index (in DRAM) and do not use PM resources, so they
are not limited.

5.3.3 QoS-Aware

Nyx can provide QoS guarantees for latency-critical (LC) caches while
providing high utilization to best-effort (BE) caches with interference-
aware regulation; in contrast, a PM-oblivious approach such as that in
Caladan may not be able to deliver the same performance to the BE cache.

108

1 0.9 0.8 0.7 0.6
Hit Ratio

0

1

2

3

4
Th

ro
ug

hp
ut
 (M

OP
S)

limit

Hit OPS
Miss OPS

Figure 5.7: Resource Limit: Behaviors with a Varying Hit Rate. This figure
shows Operations Per Second (OPS) for a Cache with 1KB Get-only workloads when resource
limit is 5GB/s. We vary the workloads with different working sets to achieve a different hit rate;
note there is no insertion after each miss.

For comparison, we implemented the Caladan approach in Nyx-Caladan.
Figure 5.8 shows an LC cache (P99 latency target of 1.5µs) colocated

with two BE caches: BE1 is get-heavy, BE2 is write-heavy. Initially, when
BE2 has low throughput and BE1 has moderate throughput of 2.4GB/s,
LC meets its P99 objective; however, at 12s, BE2 performs many bursty
writes, causing LC’s P99 latency to exceed 3µs and violate its target. Both
Nyx-Caladan and Nyx resolve the situation by iteratively throttling a BE
cache. Nyx-Caladan throttles the cache currently consuming the most
bandwidth, shown in the left two subfigures; as a result, Nyx-Caladan
throttles both BE1 and BE2, resulting in×6 less bandwidth for BE1. Nyx,
on the other hand, identifies the cache that most interferes with LC as
BE2, the write-heavy cache. As a result, Nyx stabilizes to throttling only
the correct interference source; after 28 seconds, only BE2 is throttled, and
BE1 returns to its original throughput. To summarize, Nyx provides high
utilization for multiple caches while guaranteeing each target.

Nyx’s convergence time of tens of seconds is similar to prior work such
as Parties [111]: the majority of the converging time is spent monitoring

109

2

3
LC

 P
99

 L
at
 (u

s)

target latency

BE2 Bursty
Access

LC Cache
target latency

BE2 Bursty
Access

0 15 30 45
Time(s)

0
1
2
3

BE
 T
hr
ou

gh
pu

t (
GB

/s
)

BEs are
Throttled

BE Cache 1
BE Cache 2

0 15 30 45
Time(s)

BEs are
Throttled

(a) Nyx-Caladan (b) Nyx

Figure 5.8: QoS: Nyx-Caladan vs. Nyx Tuning. This figure shows how Nyx
(b) and Nyx-Caladan (a) throttle BE caches to ensure LC cache P99 latency. We plot LC P99
latency (top figures) and BE caches throughput (bottom figures) over time (x axis). LC cache
is colocated with two BE caches; BE1 is get-heavy, B2 is write-heavy (i.e., more interference to
LC). BE2 has burst at 12s, breaking LC latency targets. Nyx-Caladan (a) throttles the highest-
bandwidth client, whereas Nyx (b) throttles the client with the most interferences to LC. Nyx-
Caladan incorrectly throttles BE1, resulting in ×6 less bandwidth for BE1.

tail latencies. As in Parties, Nyx measures tail latency for 500ms because
shorter intervals can result in noisy measurements. We leave faster tail
latency measurement at network packet queues (as utilized in the original
Caladan [135]) for future investigation.

Our experiments reveal that Nyx has an intriguing effect on conver-
gence time: as shown in the Figure, Nyx can bring the LC cache to its
target performance in a comparable amount of time to just selecting the
cache with the highest bandwidth (which does not require any micro-
experiment time). The implication of these results is that, rather than
simply acting quickly and throttling any competing instance, Nyx acts
correctly and throttles the source of the interference.

110

0 2.5 5
Time (s)

1.0

1.5

2.0

2.5

3.0
Sl
ow

do
wn

Throttling

Unfairness = 2.2

Unfairness < 1.05

Cache L Slowdown
Cache I Slowdown
Cache L Throttling Value
Cache I Throttling Value

0

20

40

Th
ro
ttl

in
g
Va

lu
e

(a) Tuning Process (Light + Intensive)

1 4 8 12
B #threads

1.0

1.5

2.0

2.5

Un
fa
irn

es
s

B: 90% Get

1 4 8 12
B #threads

B: 50% Get

1 4 8 12
B #threads

B: 10% Get
NyxCache
No Control

(b) L + various B

Figure 5.9: Fair Slowdown. This figure shows behaviors of the Nyx Fair Slowdown
policy. (a) shows how Nyx equalizes slowdown over time for two cache instances (a light one (L)
and an intensive one (I)). Both cache instances are get-heavy. (b) shows the unfairness metric
when colocating L (a light get-heavy cache) with different B instances (get-heavy -> write-heavy,
and light -> intensive). Unfairness = MaxSlowDown / MinSlowDown, the more close to 1, the
more fair.

5.3.4 Fair Slowdown

Nyx implements fair slowdown by iteratively regulating requests accord-
ing to the measured slowdown of each client (i.e., Talone

Tshare
). Figure 5.9.a

111

shows Nyx’s tuning given colocated light and intensive get-heavy caches.
Initially, the slowdown of the light cache is 2.2 times higher than that of
the intensive cache. Over time, Nyx dynamically increases the throttling
of the cache with the minimum slowdown and decreases throttling for
the cache with maximum slowdown. Relatively quickly, both caches con-
verge to a slowdown near 1.5 and the unfairness metric of MaxSlowdownMinSlowdown

settles near 1.05.
Figure 5.9.b shows Nyx’s fair slowdown policy on a range of caches.

Cache L remains a light get-heavy cache; Cache B varies the number of
threads and can be get-heavy, 50% mixed, or write-heavy. Without Nyx,
L can experience dramatically unfair slowdown (due to PM’s complex
performance); for example, colocating A with a multi-threaded get-heavy
cache B gives unfairness near 2.4. In contrast, Nyx achieves fair slowdown
(< 1.05 unfairness) for all 12 cases.

5.3.5 Proportional Resource Allocation

Nyx achieves proportional resource allocation and guarantees a time-
sharing lower bound while performing idle resource re-distribution. We
begin with simple scenarios in which two caches that use all their as-
signed resources are colocated. The scenarios in Figure 5.10 vary the
desired proportional share for A and B along the x-axis; the red line in-
dicates the ideal proportional throughput given their throughput when
run alone. Figure 5.10.a shows that a PM-oblivious bandwidth approach
cannot guarantee a proportional share; in particular, the write-intensive
B cache obtains up to 3× more throughput than desired and the get-
intensive cache A suffers significantly (∼40%). However, by correctly esti-
mating resource usage, Nyx delivers the desired allocation to each cache.
Figure 5.10.b shows a similar effect occurs when efficient-get (value: 4KB)
and inefficient-get (value: 1KB) caches are colocated.

Proportional allocation is more challenging when there are idle re-

112

1:5 2:4 3:3 4:2 5:1
A:B weight

0%

20%

40%

60%

80%

100%

Th
ro
ug

hp
ut
%
 v
s.
Ru

nn
in
g
Al
on

e

B Throughput

Alone: 4GB/s

1:5 2:4 3:3 4:2 5:1
A:B weight

Alone: 12GB/s

A Throughput
NyxCache
Proportional BW
Expected

(a) A: Get-heavy, B: Write-heavy

1:5 2:4 3:3 4:2 5:1
A:B weight

0%

20%

40%

60%

80%

100% B Throughput

Alone: 6.6GB/s

1:5 2:4 3:3 4:2 5:1
A:B weight

Alone: 12GB/s

A Throughput
NyxCache
Proportional BW
Expected

(b) A: Efficient-Get, B: Inefficient-Get

Figure 5.10: Proportional Sharing. This figure shows Nyx Proportional Sharing
policy behaviors. We colocate two caches A and B. (a) shows A (get-heavy cache) and B (write-
heavy cache)’s throughput with different weight configuration. The labels indicate running alone
throughput of A and B. With bandwidth allocation, B surpasses its allotted proportional per-
formance. (b) shows A (efficient get-intensive cache, 4KB value sizes) and B (inefficient get-
intensive cache, 1KB value sizes).

113

0

2

4
Na

iv
e
Re

-a
llo
c

Re-allocation Enabled

Th
ro
ug

hp
ut
 v
s.
we

ig
ht
 x
 R
un

ni
ng

 A
lo
ne

A Throughput
B Throughput
Expected Bound

0

1

0 5 10 15
Time (step)

0

2

4

In
te
rfe

re
nc
e-
aw

ar
e

Re-allocation Enabled

B: Get-heavy

0 5 10 15
Time (step)

0

1

B: Write-heavy

Figure 5.11: Extra Resource Re-distribution in Proportional Share:
Problem of Naive “Donate All” Strategy. This figure compares naive “Donate
All” strategy (top figures) and Nyx interference-aware donation strategy (bottom figures). We
colocate two caches A, B and weight A:B as 2:1. This figure shows cache A (light, get-heavy)
throughput before and after it donates its extra allocated resource at time step 6. A has a 75 percent
idle resource. Y axis represents the normalized difference between A throughput and A’s running
alone throughput. When cache B is get-heavy (the top-left figure), A gets nominal performance
drop due to donation. However, when cache B is write-heavy (top-right figure), donating cause
severe slowdown for A. Unlike naive extra re-distribution, Nyx (two bottom figures) ensures
that tenant A’s performance is always more than two-thirds of its running alone performance.
TimeStep = 2ms.

sources to be redistributed. Figure 5.11 shows two caches A and B, where
A uses only 25% of its share. When B is get-heavy (left-top subfigure),
A can donate all its idle resources to B; A’s performance is slightly de-
graded, but B receives substantially higher throughput. However, when
B is write-heavy (right-top subfigure), if A donates all its idle resources,
the higher throughput of B substantially interfere with A, breaching A’s
time-sharing lower bound (2/3 of A’s stand-alone throughput). There-
fore, Nyx does not perform naive donation; instead, Nyx donates idle
resources in increments while monitoring each cache’s slowdown. As

114

25% 50% 75%
A Unu%ed Re%ource(%)

−0.1

0.0

0.1

0.2

0.3
A

Th
ro

ug
hp

ut
 (

%.
2

/ 3
 Ta

 o
ne

6.3
3.8

2.1

5.2

2.7 1.4

5.6 3.2 1.7

No Re-alloc

25% 50% 75%
A Unused Resource (%)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

B
Th

ro
ug

hp
ut

 (G
B/

s)

Interference-aware
Naive Re-alloc

Figure 5.12: Extra Resource Re-distribution in Proportional Share: Re-
distribution between Get and Write-heavy Caches. This figure compares
behaviors of i) no extra resource re-distribution (No Re-alloc), ii) Nyx interference-aware extra
resource re-distribution (interference-aware), and iii) naive “Donate All” re-distribution (naive
re-alloc). We set cache weight A:B as 2:1. A is get-heavy and B is write-heavy. This figure shows
A’s slowdown (left figure) and B’s throughput (right figure) before and after A donating extra
resource.The label indicates absolute throughput number. Naive extra resource allocation can
easily break isolation guarantee, while Nyx always ensures it.

shown in the bottom two graphs, Nyx guarantees the time-sharing lower
bound for each cache while improving utilization.

We next examine workloads varying the percentage of idle resources
in Cache A. When cache B is get-heavy, all of A’s idle resources can be
safely redistributed to B, and Nyx achieves the same performance for
cache B as simple donation (Figure not shown due to space limit). How-
ever, when cache B is write-heavy, simple donation of A’s idle resources to
B violates A’s time-sharing bound (Figure 5.12); Nyx accurately protects
cache A’s performance while still improving the performance of cache B
relative to no donation.

115

0

1

2
Ba

nd
wi

dt
h
Lim

it Throughput (GB/s)

0 10 20 30 40 50
Time(s)

0

1

2

Ny
xC

ac
he

Cache C2 Write-Spike
Cache S1
Cache C1

Figure 5.13: Realistic Traces: Protecting Caches from Write Spikes. This
figure shows the performance of Cache S1 and C1 when colocated with Cache C2. Cache C2 has
write spikes. Nyx (bottom figure) can isolate write spikes, whereas bandwidth limit approach
cannot (top figure).

5.3.6 Realistic Traces

Nyx provides isolation for realistic workloads. We demonstrate use cases
for resource limiting and slowdown limiting.

In production workloads, write spikes are common; for example,
when a cache is used for ML models, write spikes occur with model pa-
rameters are regularly refreshed [239]. Figure 5.13 shows how Nyx can
isolate caches S1 and C1 from (added) write spikes in cache C2. If re-
source limiting is based only on the bandwidth of C2, S1 and C1 suffer
when C2 experiences write spikes. However, Nyx’s resource-limit policy
can cap C2’s resource usage (at 4GB/s, defined as 1M 4KB random load
OPS) to keep S1 and C1 steady.

Nyx can also protect the performance of critical caches. To encour-
age tenants to use multi-tenant PM environments, some caches must be
guaranteed performance similar to exclusive use of the PM device. In
the experiment shown in Figure 5.14, S1 (the critical cache) is colocated
with C1 and C2 which have diurnal patterns [239]. With no control (gray

116

0 10 20 30 40 50
Time (x1000s)

0.0

0.5

1.0

1.5

2.0
Th
ro
ug

hp
ut
 (G

B/
s)

S1

NyxCache
No Control
Slowdown Limit

0 10 20 30 40 50
Time (x1000s)

0

2

4

6

8

10

Night

Day
Aggregated C1, C2

Figure 5.14: Realistic Traces: Limiting S1 Slowdown During Day and
Night. This figure shows the performance of Cache S1 over time (left figure, we guarantee S1’s
slowdown is always smaller than 1.5×). S1 is colocated with C1 and C2; both C1 and C2 have
a strong diurnal pattern (light during the night, and intensive during the day as shown in the
right figure). Without Nyx, S1 performance plummets during the day (because the impact from
C1 and C2), discouraging sharing. However, Nyx can always offer reasonable performance (e.g.
within 1.5× slowdown vs. running alone). The red line represents S1’s performance guarantee.

lines), the performance of S1 drops below its target during the day due to
the heavy accesses of C1 and C2. However, Nyx can establish a hard limit
of slowdown (e.g., 1.5) for S1. As observed, Nyx keeps S1 performance
loss within a fair range.

5.3.7 Parameters Sensitivity Analysis

Here, we present the sensitivity analysis of Nyx behaviors with different
ExperimentStep and DonateStep values.

The ExperimentStep affects the Nyx interference analysis’s accuracy.
As shown in Figure 5.15.b, using the same configuration as Figure 5.8,
a smaller ExperimentStep is more likely to result in a lower BE 1 final
throughput. When ExperimentStep is small, the tail latency change is
more likely to be due to measurement noise rather than interference, lead-
ing to a less accurate interference analysis. Our experiments suggest an

117

0 20 40 60
Time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

LC
 P
99

 L
at
 (u

s)

target latencytarget latencytarget latency

LC Latency (100 MB/s)
LC Latency (250 MB/s)
LC Latency (500 MB/s)

(a) Convergence Time

100 250 500
ExperimentStep (MB/s)

0

500

1000

1500

2000

2500

BE
 C
ac

he
 1
 T
hr
ou

gh
pu

t (
M
B/
s)

(b) BE 1 Final Throughput

Figure 5.15: QoS: ExperimentStep Sensitivity Analysis. Same as in Fig-
ure 5.8. (a) shows how fast Nyx QoS can ensure LC P99 latency varying ExperimentSteps. (b)
shows BE 1 final throughput (boxplot, five runs) varying ExperimentSteps; BE 2 has near zero
final throughput in all cases.

ExperimentStep of at least 500MB/s. ExperimentStep also influences how
quickly the Nyx QoS can ensure LC tail latency. As shown in Figure 5.15.a,
a larger ExperimentStep indicates faster convergence. However, it in-
creases the risk of over-throttling BE caches and lowering system utiliza-
tion. ExperimentStep in Nyx QoS defaults to 500MB/s for good interfer-
ence analysis and high system utilization while maintaining a reasonable
convergence time.

Figure 5.16 shows how DonateStep affects Nyx proportional resource
allocation. A larger DonateStep causes faster idle resource donation, but
also potentially large performance fluctuations (e.g., 60% DonateStep,
12s and 18s in the figure). At runtime, cache throughput always varies
slightly, causing donation adjustments. These adjustments are subtle
with small DonateSteps but significant with large ones. The fluctuation
harms donors by slowing them down at times (exceeding the limit). Nyx
uses a 10% DonateStep, which balances between quick resource donation
and steady donor performance.

118

0 5 10 15 20 25 30 35 40
Time (s)

−0.1

0.0

0.1

0.2

0.3

Th
 o

ug
hp

ut
 v

s.
we

ig
ht

 x
 R

un
ni

ng
 A

lo
ne

DonateStep 2%
DonateStep 10%
DonateStep 60%
Expected Bound

Figure 5.16: Proportional Share: DonateStep Sensitivity Analysis. We
use the same setup as in Figure ?? when B is write-heavy. This figure shows A, the donator’s
throughput over time with different DonateStep.

5.4 Discussion
Beyond Basic Policies: Nyx can be extended to more sophisticated poli-
cies for more complex setups. For instance, a proportional sharing policy
can be applied across groups of caches. Then, within a group, another
sharing policy (e.g., QoS) can be enforced. We leave a full study as a
future work.
Multi-tenant Caching Alternatives: Nyx manages caches, each with its
own space. There are alternatives to shared caching; for instance, a sin-
gle large instance can be shared by multiple users[199]. This model can
make use of the Nyx resource usage accounting and interference analysis
techniques. However, it may create new problems like: how should users
be charged for PM writes to commonly cached objects? A full exploration
is our future work.
Smarter Parameter Value Selection: i) Adaptive parameters can be ben-
eficial, e.g., the DonateStep can be larger when it is far from the threshold
(for quick donation) and smaller when it is close (to avoid performance
fluctuations). ii) Auto-tuning[153, 221] may ease the load for choosing

119

parameter values. We leave these optimizations as future work.
Security: Nyx policies can be attackable, e.g., in resource limiting, an ad-
versary client may limit its access in the first ticks while putting significant
load in the last. A solution would be to use randomized measuring points
rather than fixed ones. We leave Nyx security studies as future work.

Moreover, Nyx now assumes the PM access library within its trust
boundary; this may not always be feasible. We leave future usage of dy-
namic instrumentation or hardware based solutions (for access regula-
tion and resource usage accounting) as future work.

5.5 Conclusions
In this chapter, we demonstrated that prior DRAM or storage device-
intended approaches for access regulation, resource-usage estimation,
and interference analysis fail to work on PM due to PM’s unique proper-
ties. As we summarized, these mechanisms are fundamental for popular
sharing policies such as resource limiting, QoS-awareness, fair slowdown,
and proportional sharing. Achieving PM sharing across multiple tenants
hence become challenging. To address these challenges, we introduced
Nyx, which enables these mechanisms in a lightweight manner without
hardware support. Using profiled resource consumption knowledge of
various access patterns, Nyx supports PM resource usage accounting.
Nyx also supports cross-tenant interference analysis via runtime micro-
experiments. We used multi-tenant key-value stores as a specific setup.
We showed that Nyx mechanisms can support a variety of multi-tenant
cache sharing policies, meeting performance or sharing goals better than
earlier DRAM or storage approaches.

120

6
Related Work

In this chapter, we discuss how previous works relate to three parts of
this dissertation. First, we discuss related works to our Optane SSD de-
vice characterizations (Section 6.1), such as previous PM studies, classic
device characterization works, and real-world Optane SSD deployment
experience. Next, we discuss how Non-Hierarchical Caching (NHC) dif-
fers from other related caching approaches (Section 6.2). Finally, we de-
scribe existing works on multi-tenant caching, PM caching, and PM in-
terference (Section 6.3); we discuss how these works are insufficient for
multi-tenant PM sharing.

6.1 Characterizing Modern PM Devices
Our Optane SSD device characterization is inspired by many prior device
characterization studies.
Previous PM Studies: Previous PM studies have been available for years.
These studies introduce variable PM materials [81, 158, 202] and PM de-
vice prototypes [1, 141]. These fundamental studies describe the proper-
ties of PM materials such as Phase-Change Memory, as well as the device
engineering concepts needed to incorporate PM modules into real prod-
ucts. While many device internal details for Intel Optane devices (Optane

121

SSD and Optane DC PM) are never revealed, previous PM studies serve
as the foundation for our investigations.

Yang et al. [151, 238] investigated Optane DC PM performance char-
acteristics, a different type of PM device than the Optane SSD we studied.
Our studies reveal both similar and radically different findings for these
two devices. Both Optane SSD and Optane DC PM, for example, have
significantly higher random access throughput and lower latency than
traditional Flash SSDs. However, our study shows that Optane SSD has
a minimum efficient access granularity of 4KB, whereas Optane DC PM
has a granularity of 256B. Furthermore, we present that Optane SSD has
the same read/write performance as well as the same random/sequential
performance, whereas Optane DC PM has read/write asymmetry, and
its random access performance is worse than its sequential access perfor-
mance.

Finally, there are technical blogs [22, 40] that have covered interest-
ing aspects of Optane SSDs. Unlike these blogs, our study was the first
to thoroughly characterize Optane SSD performance and internals. Fur-
thermore, during our investigation, these technical blogs were helpful in
confirming some of our Optane SSD findings. For example, our experi-
ments indicate that Optane SSD has internal parallelism degree of seven;
this agrees with dismantling studies of Optane SSD [22]: the blog shows
that Optane SSD has a controller connected to seven channels.
Classic Devices Characterizations: There have been numerous device
characterizations for traditional devices. Schlosser and Ganger [208] pre-
sented the unique unwritten contract of HDDs. He et al. [143] summa-
rized the unwritten contract of Flash-based SSDs. These previous un-
written contract studies prompted us to investigate how the unwritten
contract for the new Optane SSDs should be structured.

Our fine-grained experiments to expose device internals are inspired
by previous research on RAID-like device architecture analysis. Denehy

122

et al. [122], for example, proposed algorithms for automatically detecting
the number of disks, chunk size, and layout scheme in a RAID system.
Similar detecting algorithms are presented by Chen et al. [110], but in
the context of a NAND Flash SSD setup (which has a RAID-like internal
architecture). In this study, we use and extend (for example, issuing con-
current accesses to 4KB blocks) these prior experimenting methodology,
and present new findings on the Optane SSD device.
Real-World Optane SSD Deployment Experiences: Another body of
work has investigated how to deploy applications on Optane SSDs. For
instance, Optane SSDs are used as a caching layer between DRAM and
Flash SSD in Facebook databases [129]. Facebook also stores embedding
of trained neural networks on Optane SSDs [130]. These papers concen-
trate on part of the Optane SSD unwritten contract rules, such as “tiny
access (less than 4KB) is inefficient." In contrast to them, we provide a
comprehensive characterization of the devices. We also expose the Op-
tane SSD’s internals to provide insight into the contract.

6.2 Evolving Caching for PM Hierarchies
The second part of our dissertation relates to existing works that manage
various storage hierarchies.
Algorithms and Policies in Hybrid Storage Systems: Algorithms and
policies for managing traditional hierarchy have been studied exten-
sively [171, 181, 182, 184, 203, 222, 226, 236, 250]. Techniques have been in-
troduced to optimize data allocation [14, 149, 205, 211, 222, 223], address
translation [89, 207], identify hot data [15, 152, 155, 188, 191, 194, 204, 219,
226, 235] and perform data migration [97, 112, 131, 138, 184, 218, 226, 244].
Most previous work improves performance by focusing on workload ac-
cess locality. In contrast, NHC improves by taking all devices and work-
loads into account.

123

Distributed Load Balancing and Multi-path Routing Techniques: Load
balancing techniques in distributed systems [47, 58, 82] and multi-path
routing [57, 172, 174, 185] have goals similar to our caching configuration.
Multi-path routing [57, 172], for example, manages and utilizes multiple
available paths for data transmission at the same time. Our work and
multi-path routing both aim to maximize overall system bandwidth/per-
formance by utilizing all available resources in network links/storage de-
vices. Works for multi-path routing also considers other benefits such as
fault tolerance and improved security, which we did not take into account
in the caching setup. When compared to multi-path routing, our caching
configuration presents unique challenges in terms of data placement and
consistency. In contrast to network routing, where there is almost no limit
to which path a request can take, Orthus can only do balancing if both de-
vices have data replicas. As a result, Orthus must track cache hit rate and
regularly increase hit rate to enable offloading. Orthus must also monitor
dirty content in cache devices to ensure consistency.
Storage Optimization: A long line of pioneering work in storage man-
agement [83–85, 222, 226] shows how to trace workloads and optimize
storage decisions for improved performance; NHC could fit into such a
system, making short-term decisions to handle more dynamic workload
changes, leaving longer-term optimization to a higher-level system.
Storage Aware Caching/Tiering: Our work shares aspects with storage-
aware caching/tiering [80, 104, 134, 138, 145, 154, 160, 163, 164, 190, 232,
242], which considers more factors than hit rate. For instance, Oh et
al. [190] propose over-provisioning in Flash to avoid the influence of SSD
garbage collection. Modern devices like PM and Optane SSD have dis-
tinctive characteristics compared to Flash. We study the implications of
these important emerging devices to caching/tiering.

BATMAN [113] shares a similar motivation to NHC: classic caching
is not effective when the bandwidth of the capacity layer is a significant

124

fraction of overall bandwidth. However, it investigates a much simpler hi-
erarchy with fixed performance difference (4:1 between high-bandwidth
memory and DRAM). Given the fixed difference, BATMAN splits cache
accesses between HBM and DRAM statically. This approach would not
work effectively on modern hierarchies where performance differences
vary dynamically (e.g., depending upon the amount of writes or the level
of parallelism in the workload).

Wu et al. [232] study tiering on SSDs and HDDs and recognize a sim-
ilar problem: SSDs (or faster devices) can be the throughput bottleneck.
To mitigate the problem, they proposed to periodically migrate data from
SSDs to HDDs when the SSD response time is higher than that of HDDs.
This approach is limited in three aspects. First, due to its tiering na-
ture, it cannot react to workload changes quickly, its migration traffic can
be significant, and it requires extra metadata to track objects across de-
vices. Second, similar to SIB approach, it estimates workload intensity in
a period and then migrates data based on the estimation; it hence strug-
gles with dynamic workloads. Third, it is tuned for a specific hierarchy
(SSDs and hard drives). Unlike this approach, NHC focuses on improv-
ing caching, adapts its behavior during runtime, can react to complex and
dynamic workloads, and works well on a range of modern devices.
Managing PM-based Devices: Other related work incorporates PM-
based devices into the memory-storage hierarchy for a variety of sys-
tems [79, 98, 141, 142, 146, 167, 183, 209].

This work includes extensive measurements for both Optane
SSD [228] and Optane DC PM [151, 238]. New PM-based [200, 234] or
low latency SSD-based [165, 173, 245] file systems and databases were
also proposed. These systems are designed for single storage layer setup,
as opposed to our work, which focuses on managing PM hierarchies.

Many works have evaluated the potential benefits of caching and tier-
ing on PM. Kim et al. [159], for example, provide a simulation-based mea-

125

surement of PM caching and tiering with performance numbers from a
Micron all-PCM SSD prototype. The authors look into caching and tier-
ing on a hierarchy of PM, Flash, HDD devices. The authors investigate not
only absolute performance numbers but also cost-effectiveness (IOPS/$)
when using PM caching and tiering. Their results show that PM devices
show promising performance as a new storage layer in enterprise storage
systems. Moreover, [133] provides a I/O cache simulator that assists the
analysis of caching workloads on new storage hierarchies.

Strata [166] and Ziggurat [248] are file systems that tier data across
a DRAM, PM, and SSD hierarchy. They propose various approaches
for managing data movement between storage layers. Strata employed
a log-structured scheme in which writes are first logged in higher layers
before being batch moved to lower layers. Unlike Strata, Ziggurat uses
an online profile of the application’s access stream to predict the behav-
ior of individual writes and direct them to different layers. In the back-
ground, Ziggurat estimates the “temperature” of files, and migrates the
cold file data from PM to disks. Our NHC is compatible with these data
movement schemes; in the meantime, NHC can improve the performance
of these systems by enabling read-around, admission rejection, and dy-
namic feedback-based offloading.

Dulloor et al. [126], Arulraj et al.[87] and Zhang et al. [246] proposed
PM-aware data placement strategies for the new storage hierarchy. Arul-
raj et al., for example, proposed that data movement between DRAM, PM,
and SSD does not have to be strictly across neighboring layers, but can
bypass the layer in the middle. For instance, data evictions from DRAM
can bypass PM and end in SSD, saving PM writes. These strategies opti-
mize data placement for PM hierarchies, which take effective in a longer
period. NHC can work with them to provide further improvement by
handling more dynamic workload changes; our techniques such as read
around and admission rejection can take effect immediately in response

126

to workload changes.
Finally, there have been many companies utilizing PM/ Optane SSD

as a caching layer [106, 129, 130]. Our work is the first to analyze general
caching and tiering on modern hierarchies through modeling and empir-
ical evaluation. We are also the first to propose a generic solution (NHC)
to realize the full performance benefits of such a hierarchy.

6.3 Evolving Sharing Mechanisms for PM
Finally, we discuss how previous works on multi-tenant caching, caching
on PM, and PM interference studies are insufficient for multi-tenant PM
sharing.
Multi-tenant in-mem key-value caching: Our work builds on past re-
search in multi-tenant in-memory key-value cache systems. These efforts
include techniques for allocating space across tenants [96, 114, 116, 199,
214] as well as optimization of individual cache instances [92, 94, 95, 115,
147, 187, 240]. Our work instead focuses on the challenges of access reg-
ulation and information extraction when many caches share PM.
PM Caching: There have been efforts to integrate PM with individual
caching systems. Previous work covers databases [175, 229, 249], file sys-
tems [86, 166, 248], in-memory key-value caches [18, 64, 76], and general
policies [93, 94]. However, to the best of our knowledge, we are the first
to address PM issues in multi-tenant caching settings.
PM Interference: Several efforts have characterized PM devices [151, 224,
228, 238]. However, only a few have investigated the interference effect in
PM. To our knowledge, Dicio [189] is the first work in this space. Both
Dicio and our work observe the different read-write interference effect
in PM.Dicio also provides a comprehensive measurement of PM-DRAM
interference, which our work does not cover. Dicio’s authors observe that
concurrent DRAM and PM accesses can cause performance interferences;

127

it would be interesting to expand our work to include this new type of
interference.

However, the goals of Dicio and Nyx differ. Dicio’s purpose is to iden-
tify when PM DIMM bandwidth is saturated. Dicio approximates this by
using the write pending queue (WPQ) delay as a heuristic. We, on the
other hand, aim to provide mechanisms for per-client (not per-DIMM)
resource usage accounting, slowdown estimation, and cross-client inter-
ference analysis. Dicio protects a single LC task from a single BE task,
while our QoS policy applies to multiple clients. Dicio acknowledges that
deciding which best-effort task to throttle, with PM media-level statis-
tics, was challenging (and hence not done); we address this issue with
a run-time method for interference analysis. Finally, Dicio extends Cal-
adan [135] to use CPU scheduling to regulate PM accesses. This approach
is applicable to all applications, including cache, but requires application
modifications to use Caladan’s unique runtime system (not fully Linux
compatible). We leave CPU scheduling approaches for PM regulation to
future work.
Sharing Other Resources: Efforts have been made to manage and share
other resources such as network, CPU, LLC, storage devices, and locks
[111, 135, 139, 140, 148, 150, 176, 195, 196, 198, 217]. They are essentially
orthogonal to our work; we plan to integrate PM management into these
systems in the future.

128

7
Conclusions

In this chapter, we first summarize each part of this dissertation (Sec-
tion 7.1). Then, in Section 7.2, we discuss several high-level lessons we
learned while working on this dissertation. In Section 7.3, we discuss po-
tential future directions related to this dissertation. Finally, we discuss
implications of Intel’s recent decision to discontinue its Optane Memory
business for our work (Section 7.4), and conclude (Section 7.5).

7.1 Summary
In this dissertation, we contribute to evolving the system stack for PM
devices. This dissertation is comprised of three parts. In the first part,
we characterized a new PM-based block device: the Intel Optane SSD.
We formalize the rules (unwritten contract) that Optane SSD users must
follow for optimal performance. In addition, we devise experiments to
reveal the internals of the Optane SSD in order to provide insights for
the unwritten contract. In the second part, we investigated how clas-
sic caching performs on modern storage hierarchies with PM devices,
and demonstrated that the decades-old caching principle of maximiz-
ing hit rates is no longer sufficient today. We proposed Non-Hierarchical
Caching, an enhanced caching approach for effectively utilizing capacity
layer performance in modern storage hierarchies. Finally, we studied how

129

PM influence the effectiveness of existing sharing mechanisms designed
for DRAM or block devices. We showed that existing mechanisms are in-
sufficient for PM due to PM’s unique characteristics. We also proposed
the design of Nyx, which enables new sharing mechanisms to address
PM sharing challenges. We now summarize each of these parts.

7.1.1 Characterizing Modern PM Devices

In the first part of this thesis, we characterized the performance of the new
type of PM devices. We concentrated on the Intel Optane SSD, a popular
PM-based block devices, because, at the time of our study, it was the only
widely available PM option. We investigated Optane SSD performance in
response to a variety of fine-grained access patterns (e.g., read vs. write,
random vs. sequential, low vs. high parallelism, etc.).

Using our characterizations, we formalized a "unwritten contract" for
Optane SSD users. The contract includes six critical rules for Optane
SSD users to achieve optimal immediate performance, as well as one rule
for sustained workloads relating to garbage collection in Optane SSDs.
We also provided analyses to show how severe the impact can be when
each contract rule is broken; we demonstrated that violating this con-
tract can result in 11x worse read latency and limited throughput (only
20% of peak bandwidth), regardless of parallelism. We also designed
micro-experiments to reveal the internals of Optane SSDs to better under-
stand the insights of each unwritten rule. Internal parallelism, read-write
scheduling mechanisms, block alignment granularity, and mapping poli-
cies from logical-block address (LBA) to physical-block address (PBA) in
the Optane SSD are all experimentally revealed. We believe that our char-
acterization of Optane SSD devices can serve as a foundation for future
Optane SSD research.

130

7.1.2 Evolving Caching for PM Hierarchies

In the second part of the thesis, we analyzed classic caching on mod-
ern hierarchies, with PM devices filling the performance gap between
DRAM and SSDs. We discovered that in modern storage hierarchies, the
decades-old caching principle of maximizing hit rates is insufficient. In
modern hierarchies, we observed a significant change: the performance
difference between neighboring layers (e.g., DRAM/PM/Low-latency SS-
D/Flash SSD) is now much smaller than in traditional hierarchies (e.g.
DRAM/HDD). Classic caching, which directs as many accesses as pos-
sible to the cache device, can leave significant available performance in
capacity devices (e.g., PM) in such hierarchies unutilized.

To address this issue, we introduced Non-hierarchical Caching
(NHC), an enhanced caching approach for maximizing aggregated cache
and capacity layer performance out of modern hierarchies. NHC aug-
ments classic caching by adding three components: read around and ad-
mission rejection mechanisms, as well as a runtime feedback-based of-
floading policy. NHC’s central idea is to enable access offloading from
cache to capacity devices when the cache device is saturated, allowing
NHC to utilize both cache and capacity device performance. We imple-
mented NHC in both Orthus-CAS, a generic block-layer caching kernel
module [108], and Orthus-KV, a user-level caching layer for an LSM-tree
key-value store [168]. We demonstrated that NHC outperforms classic
caching on various modern hierarchies (by up to 2x) under a variety of
realistic workloads.

7.1.3 Evolving Sharing Mechanisms for PM

In the last part of the thesis, we addressed the question of how PM de-
vices can be shared across multiple tenants. We focused on the specific
configuration of multi-tenant memory-based look-aside key-value caches.

131

We began by summarizing the basic mechanisms (e.g., resource usage
accounting, interference analysis) used to achieve various sharing goals
(e.g., QoS-aware, proportional sharing). Then, we examined each shar-
ing mechanism’s issues on PM. We demonstrated that existing sharing
mechanisms designed for DRAM/block devices do not readily translate
to PM due to PM’s unique characteristics such as 256B access granularity,
asymmetric read/write performance, and severe and unfair interference
between reads and writes.

To address this issue, we introduced NyxCache (Nyx), a standalone
lightweight and flexible PM access regulation framework for multi-tenant
key-value caches that is optimized for today’s PM without special hard-
ware support. Nyx’s central contribution is a set of software mechanisms
designed for PM to extract the information required to flexibly enforce
popular sharing policies. We designed new mechanisms to efficiently i)
regulate PM accesses, ii) obtain a client’s PM resource usage, and iii) an-
alyze inter-client interferences for PM. We then used these new mecha-
nisms to revise key sharing policies on PM, including resource limiting,
QoS, fair slowdown, and proportional sharing. We demonstrated the ef-
fectiveness of each sharing policy through various experimental studies.

7.2 Lessons Learned
In this section, we discuss a list of high-level lessons we learned while
working on this dissertation.

7.2.1 Understanding Device Characteristics is Critical for
Storage Research

Device characterization was important in all three parts of this disserta-
tion (for example, characterizing Optane SSD in the first part, comparing

132

DRAM vs. PM vs. Low latency SSD vs. Flash in the second part, and char-
acterizing Optane DC PM in the third part). We then evolved the system
stack for PM based on our understanding of these devices. We learned
that devices characterization is a necessary step in storage research.

According to our experience, there are three reasons why detailed de-
vice characterizations are important. First, characterization experiments
allow us to have an accurate understanding of devices. In PM research,
for example, PM materials have been described in classic papers; PM sim-
ulators/emulators have been built for years. However, as our Optane SSD
unwritten contract study demonstrated, real devices can exhibit different
characteristics than theoretical assumptions. When designing systems for
real-world devices, these distinctions must be carefully considered. We
can only gain an accurate understanding of real-world devices through
characterization experiments.

Second, device specifications from manufacturers are frequently in-
sufficient for device users. A device spec only includes performance num-
bers under limited cases (e.g., best cases). It cannot answer questions
such as, “How will the device perform when applications require special
access patterns?” (For example, in our Optane SSD study, access latency
and throughput under high concurrency), “How will the device behave
when multiple applications are running on the device at the same time?”
(For example, read vs. write interference, as shown in our PM sharing
study). To answer these questions, we need extensive micro-experiments.

Finally, characterizing devices forces us to model the internals of new
devices qualitatively or quantitatively, as we did in the unwritten contract
study. One significant benefit we discovered as a result of doing so is that
it allows us to make reliable assumptions about which device features
will be retained in the future and which may be completely changed. We
believe that this knowledge is critical for new device research (e.g., PM);
devices are still in development and can change at any time.

133

There are also lessons we learned about how to better characterize de-
vices, which we will summarize here. First, comparison experiments, as
we did in all of our studies, are usually very useful. By comparing one
type of device (e.g., PM) to another (e.g., DRAM or Flash), we were able
to learn a lot about the important differences between new and existing
devices. Second, extreme or long-term characterizations can be useful
and interesting at times. For instance, we used sustained write experi-
ments in our Optane SSD characterization, and we studied PM perfor-
mance under high concurrency in our PM characterization. They all pro-
duced surprising observations.

Overall, we believe that device characterization is an important step
in the research of storage systems.

7.2.2 It is Helpful to Think Like a Novice at Some Point

One thing we’ve learned about research is that thinking like a novice can
be useful at times. That is, at some point during our research, we must
jump out all of the abstractions from previous works or summarized prin-
ciples from previous studies/textbooks, think like a novice, and truly de-
fine what we want and expect from end users’ perspectives.

Our PM caching study demonstrates the advantages of doing so. Max-
imizing hit rates is a decades-old well-known caching principle. It ab-
stracts the desired end-to-end goal of maximizing performance from a
storage hierarchy into maximizing the hit rate in the fast layer of the hi-
erarchy. This abstraction has guided system designs for decades, but it
also causes people to forget its underlying assumption: performance de-
vices must be much much faster than capacity devices. Only by thinking
like a novice, by recognizing what has been abstracted/ignored away, can
we comprehend why the principle becomes insufficient in modern hier-
archies with PM.

We believe that at some point during our system research, we should

134

think like a novice and define: what does an end user expect from the sys-
tem? how will you achieve the goal? and what is the relationship between
your approach and well-known existing approaches? This procedure can
be beneficial.

7.2.3 It is Important to Separate Mechanisms and
Policies in System Research

We had a difficult time defining the problem of sharing on PM in the third
part of this thesis. The difficulty stems from the fact that there are so many
different sharing objectives in various configurations. In the Cloud, for
example, the most popular sharing goal is to limit resource usage as the
tenant paid. In a datacenter, proportional and quality-of-service-aware
sharing are common goals. Diverged versions of these goals (for exam-
ple, weighted proportional sharing) and the use of multiple policies are
also common (e.g., proportional sharing across tenant groups and then
resource limiting within each tenant group). With so many options, de-
termining the problem with existing sharing techniques on PM devices
was difficult.

It was the separation of fundamental mechanisms from the end-to-end
goals (or policies) that solved our problems. We begin by studying popu-
lar sharing policies and defining the basic mechanisms required by them.
And we discovered that, while there are numerous policies, only four
common mechanisms are required (namely, request regulation, resource
usage accounting, per-client slowdown estimation, and cross-client inter-
ference analysis). We were then able to define the problem with existing
approaches on PM and improve them by focusing on the basic mecha-
nisms.

We believe that distinguishing between mechanisms and policies is a
useful skill for helping to define and solve system research problems.

135

7.3 Future Work
In this section, we discuss directions in which work done in this disserta-
tion can be extended and directions that our research point to.

7.3.1 Energy Efficiency Characterization of PM Devices

In this thesis, we characterized performance aspects of new PM devices.
With recent interest in datacenter energy consumption [30, 59], we believe
a characterization of these devices in terms of energy efficiency (com-
pared to DRAM and Flash) is an important future work.

There have been intriguing cases [13] demonstrating the potential
of using PM to build energy-efficient memory systems (comparing to
DRAM based). A thorough energy efficiency study that extends these
works will be useful for future research.

Furthermore, we believe that a study of the implications of PM for
large-scale distributed system energy efficiency is needed. If PM enables
large memory capacity per server, network communication traffic may
change; fewer network communications may be required because each
server can now hold a larger portion of the overall dataset. Furthermore,
PM-powered systems may necessitate fewer calls to remote services (e.g.,
Amazon S3). Reducing network traffic can result in significant savings in
overall system power consumption. What implications do new PM de-
vices have for distributed system overall energy efficiency? How can we
use PM devices to increase the system energy efficiency? We believe there
are promising energy-efficiency studies that can be investigated with PM
devices.

136

7.3.2 Non-hierarchical Caching in the world of
Memory/Storage Disaggregation

In Chapter 4, we designed and implemented non-hierarchical caching for
single-node caching systems. Memory and storage disaggregation has
recently been a radical development in memory/storage architecture. In
such a configuration, applications can use not only local storage layers,
but also remote layers (e.g., remote DRAM/PM, remote storage). We
believe that a rethinking of caching is required in such a architecture,
and that the non-hierarchical caching principle can also benefit caching
in memory/storage disaggregation setups.

However, memory/storage disaggregation requires considerations
that will necessitate further research. First, remote storage layers can have
very different characteristics than raw storage devices (e.g., RDMA to ac-
cess remote DRAM vs. access local DRAM). We need detailed character-
ization of these remote layers. Second, when comparing remote and local
layers, we believe remote layers have greater diversity and complexity.
Remote layers, for example, are distributed across the network. Conges-
tion in networks, as well as different network speeds within and across
data centers, can all change during runtime. More efforts are needed to
manage hierarchies with remote layers. Third, computation offloading is
a common feature of disaggregated memory or storage. Such hierarchies
must be managed by taking into account not only storage accesses but
also the computation associated with these accesses. Finally, today’s stor-
age hierarchies are becoming increasingly complex. How can such multi-
layer hierarchies be effectively managed? Future research is required.

Overall, we believe that caching in the world of memory/storage dis-
aggregation will necessitate significant future work for the system com-
munity.

137

7.3.3 Sharing with Better Hardware/Software Co-design

In Chapter 5, we examined the limitations of existing sharing mechanisms
on PM and proposed software approaches to improve them. While this
is an important first step, we believe it would be worthwhile to investi-
gate how the PM hardware interfaces should be redesigned to enable PM
sharing, what hardware functionalities should be added to PM, and how
software and hardware should be codesigned to better realize sharing.

For example, while our cross-tenant interference analysis based on
runtime micro-experiments works well for relatively stable workloads,
this idea will be difficult to work if tenants change rapidly in millisec-
onds. Additionally, our software approaches assume a trusted software
runtime across tenants, which is not always possible. It may be desirable
to account for interference effects within the PM device. Important ques-
tions, we believe, include how future PM devices can expose an interface
for querying the effect of interference across tenants, how to quantify in-
terference in PM devices, and so on.

We believe that previous work on SSD [217, 245] or DRAM [186, 215]
hardware-based sharing techniques can be inspiring for future work in
this area.

7.3.4 Sharing of PM and DRAM pool in Disaggregated
Memory Setup

In this thesis, we investigated the sharing of PM attached to a single node.
Because PM and DRAM are promising building blocks for future disag-
gregated memory setups, the natural question is: how can we share the
PM and DRAM pool among multiple tenants? In this configuration, a
memory pool is made up of multiple memory nodes, each of which can
contain DRAM or PM; clients access the memory pool via fast networks
such as RDMA.

138

We believe there are some high-level questions that should be consid-
ered: i) How to allocate diverse memory pool resources (DRAM vs. PM)
to tenants? ii) How to enforce tenant isolation across multiple memory
nodes? We believe it is worthwhile to look into network switches and
network interface cards (NIC) with extensive computing power today to
enable DRAM/PM pool sharing.

7.4 Discussion: Demise of Intel Optane
Memory Business

According to the Intel 2022 Q2 earning release [42], Intel starts to wind
down its Optane Memory business. This announcement is a significant
setback for the persistent memory community, as Intel Optane DC PM is
the first and only commercially available PM device (as of today).

7.4.1 Implications for This Thesis

This news has a number of implications for our dissertation work. First,
for our unwritten contract work on Optane SSDs (Chapter 3), our char-
acterization of these specific devices may directly benefit fewer applica-
tions because they may need to migrate to other devices in the future.
However, the experiments we designed to examine various aspects of the
PM-based block devices, as well as the micro-experiments we designed
to reveal the device’s internals, will be useful for future PM-based block
devices or low-latency SSDs. One general observation we made during
our Optane SSD study is that better device specifications are required for
applications to adapt to new devices. We believe that this lesson applies
to future devices and may assist manufacturers in making devices that
are easier to use in the future.

139

Second, we believe that our non-hierarchical caching work will con-
tinue to be useful for future PM devices or future storage hierarchies.
We observe that the performance difference between neighboring lay-
ers in modern hierarchies is shrinking. This observation, we believe,
will hold true for future high-performance new devices that bridge the
gap between DRAM and Flash SSDs. Furthermore, we proposed gen-
eral techniques for evolving classic caching. We make no assumptions
about which devices are in the storage hierarchy. As a result, the non-
hierarchical caching approach will continue to be useful for future storage
hierarchies.

Finally, the mechanisms we proposed in the Nyx project, like non-
hierarchical caching, will most likely be beneficial for future device shar-
ing. For example, the idea of cross-client interference analysis based on
runtime micro-experiments is applicable to all device types. And, we be-
lieve that when future memory devices become available, we will need
to conduct a similar study of the fundamental sharing mechanisms as we
have done in the Nyx project.

7.4.2 Implications of Our Thesis for Future PM Device
Development

We believe that our thesis has implications for future PM device design.
First, as demonstrated in Chapter 3, Flash-based SSDs now have signif-
icant maximum bandwidth (though the random access latency still suf-
fer). And the price of Flash SSDs is very low and continues to fall today.
So, in order to create a widely desired PM device, we believe that the PM
device should still have copious internal parallelism (for high maximum
bandwidth) and, most importantly, the price should be as low as possible.

Second, our caching study in Chapter 4 reveals that building effi-
cient caching systems has become difficult in modern hierarchies (with
so many different layers and the simple maximizing hit rate principle is

140

not sufficient). Because caching is a critical use scenario for future PM de-
vices. We believe that PM manufacturers should focus not only on device
development but also on associated tiering or caching solutions.

Finally, our Optane DC PM sharing study in Chapter 5 shows that fu-
ture PM devices should have more features in common with DRAM, so
that existing DRAM sharing mechanisms can be used for PM. Alterna-
tively, associated hardware sharing mechanisms must be developed as
new devices are introduced.

Overall, we believe Optane DC PM (while winding down) continues
to provide a wealth of experience for the system community in terms of
future PM techniques. Furthermore, the work in this thesis will benefit
future studies for future devices.

7.5 Closing Words
Data storage systems built from various storage devices have become
indispensable in modern life. As the system community has done for
decades, we must evolve the software system stack for each device type
(tape, DRAM, HDD, Flash SSD, etc.). Although many efforts have been
made for older devices, there have been few for PM-based ones. This dis-
sertation contributes to evolving the system stack for PM. We came at it
from three different perspectives: i) enhance understanding of PM de-
vice characteristics; ii) evolve caching for PM hierarchies; and iii) evolve
sharing mechanisms for PM.

Through our studies, we presented i) how new real PM devices can
have unexpected characteristics, ii) how decades-old principles (e.g.,
maximizing cache hit rates) may need to be rethought for PM, and iii)
how existing systems (e.g., sharing mechanisms) must be reevaluated
due to PM’s unique characteristics. The findings we present suggest that
the system community should reconsider how system stacks should be

141

built around new PM devices. Our studies show that understanding how
devices work, thinking like a novice at some point, and distinguishing
mechanisms from policies are all critical for storage system research. Us-
ing the findings of our work, we demonstrated how new systems for PM
(e.g., caching, sharing) can be proposed. We hope that our thesis will
prompt other researchers to evolve other aspects of system stack for PM.

Our dissertation is a significant step towards better system stacks for
PM, but it is only the beginning. We haven’t looked into the energy effi-
ciency of new PM devices. We haven’t considered how to manage remote
PM/DRAM layers in storage hierarchies, which may be common in future
disaggregated memory architecture. We have also not looked into how
to improve PM hardware interface designs for better PM sharing. We be-
lieve that the studies and ideas presented in this thesis will aid in future
research to address some of these issues.

142

Bibliography

[1] 3D XPoint. https://en.wikipedia.org/wiki/3D_XPoint.

[2] 3D XPoint Technology. https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology.

[3] Accelerate Ceph Clusters with Intel Optane DC SSDs.
https://www.intel.com/content/dam/www/public/us/en/
documents/solution-briefs/accelerate-ceph-clusters-with-
optane-dc\-ssds-brief.pdf.

[4] Alibaba polardb. https://www.alibabacloud.com/product/
polardb.

[5] Amazon cloud databases. https://aws.amazon.com/free/
database/.

[6] Amazon elasticache pricing. https://aws.amazon.com/
elasticache/pricing/.

[7] Amazon elasticache. https://aws.amazon.com/elasticache/.

[8] Apache spark. https://spark.apache.org/.

[9] Applications of artificial intelligence. https://en.wikipedia.org/
wiki/Applications_of_artificial_intelligence.

https://en.wikipedia.org/wiki/3D_XPoint
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerate-ceph-clusters-with-optane-dc\-ssds-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerate-ceph-clusters-with-optane-dc\-ssds-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerate-ceph-clusters-with-optane-dc\-ssds-brief.pdf
https://www.alibabacloud.com/product/polardb.
https://www.alibabacloud.com/product/polardb.
https://aws.amazon.com/free/database/.
https://aws.amazon.com/free/database/.
https://aws.amazon.com/elasticache/pricing/.
https://aws.amazon.com/elasticache/pricing/.
https://aws.amazon.com/elasticache/.
https://en.wikipedia.org/wiki/Applications_of_artificial_intelligence.
https://en.wikipedia.org/wiki/Applications_of_artificial_intelligence.

143

[10] Aws elasticache. https://aws.amazon.com/elasticache/redis/customers/.

[11] B+ tree. https://en.wikipedia.org/wiki/B%2B_tree.

[12] Budget fair queueing i/o scheduler. http://algo.ing.unimo.it/
people/paolo/disk_sched/.

[13] Building An Ecosystem For Heterogenous Memory Supercomput-
ing. https://www.nextplatform.com/2020/07/27/building-an-
ecosystem-for-heterogeneous-memory-supercomputing/.

[14] Cache (computing). https://en.wikipedia.org/wiki/Cache_
(computing).

[15] Cache replacement policies. https://en.wikipedia.org/wiki/
Cache_replacement_policies.

[16] Caching and Tiering. https://storageswiss.com/2014/01/15/
whats-the-difference-between\-tiering-and-caching/.

[17] Caching at reddit. https://redditblog.com/2017/1/17/
caching-at-reddit/.

[18] Caching on pmem: an iterative approach. yue yao.
https://www.snia.org/educational-library/caching-pmem-
iterative-approach-2020.

[19] Ceph file system. https://docs.ceph.com/en/quincy/cephfs/.

[20] Cloud databases. https://en.wikipedia.org/wiki/Cloud_
database.

[21] Computer data storage. https://en.wikipedia.org/wiki/
Computer_data_storage.

[22] Decompsition of Intel Optane SSD 900P. https://www.anandtech.
com/show/12136/the-intel-optane-ssd-900p-480gb-review.

https://en.wikipedia.org/wiki/B%2B_tree.
http://algo.ing.unimo.it/people/paolo/disk_sched/.
http://algo.ing.unimo.it/people/paolo/disk_sched/.
https://www.nextplatform.com/2020/07/27/building-an-ecosystem-for-heterogeneous-memory-supercomputing/
https://www.nextplatform.com/2020/07/27/building-an-ecosystem-for-heterogeneous-memory-supercomputing/
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://storageswiss.com/2014/01/15/whats-the-difference-between\-tiering-and-caching/
https://storageswiss.com/2014/01/15/whats-the-difference-between\-tiering-and-caching/
https://redditblog.com/2017/1/17/caching-at-reddit/.
https://redditblog.com/2017/1/17/caching-at-reddit/.
https://www.snia.org/educational-library/caching-pmem-iterative-approach-2020.
https://www.snia.org/educational-library/caching-pmem-iterative-approach-2020.
https://docs.ceph.com/en/quincy/cephfs/.
https://en.wikipedia.org/wiki/Cloud_database.
https://en.wikipedia.org/wiki/Cloud_database.
https://en.wikipedia.org/wiki/Computer_data_storage.
https://en.wikipedia.org/wiki/Computer_data_storage.
https://www.anandtech.com/show/12136/the-intel-optane-ssd-900p-480gb-review
https://www.anandtech.com/show/12136/the-intel-optane-ssd-900p-480gb-review

144

[23] Dynamic random-access memory (dram). https://en.
wikipedia.org/wiki/Dynamic_random-access_memory.

[24] File systems. https://en.wikipedia.org/wiki/File_system.

[25] Flash memory. https://en.wikipedia.org/wiki/Flash_memory.

[26] Google cloud databases. https://cloud.google.com/products/
databases.

[27] Google memcache resource limit. https://cloud.google.com/
appengine/docs/standard/python/memcache.

[28] Hard disk drive. https://en.wikipedia.org/wiki/Hard_disk_
drive.

[29] High bandwidth memory. https://en.wikipedia.org/wiki/
High_Bandwidth_Memory.

[30] HotCarbon: Workshop on Sustainable Computer Systems Design
and Implementation. https://hotcarbon.org/.

[31] IMDT Use Case, Memcached. https://www.intel.com/
content/www/us/en/support/articles/000026359/memory-
and-storage/data-center-ssds.html.

[32] IMDT Use Case, Redis. https://www.intel.com/content/
dam/www/public/us/en/documents/solution-briefs/imdt-
solution-brief-in-memory-data-store.pdf.

[33] IMDT Use Case, Spark. https://www.intel.com/content/www/
us/en/software/apache-spark-optimization-technology-
brief.html.

[34] Intel mba issue with pm. https://github.com/intel/intel-cmt-
cat/issues/170.

https://en.wikipedia.org/wiki/Dynamic_random-access_memory.
https://en.wikipedia.org/wiki/Dynamic_random-access_memory.
https://en.wikipedia.org/wiki/File_system.
https://en.wikipedia.org/wiki/Flash_memory.
https://cloud.google.com/products/databases.
https://cloud.google.com/products/databases.
https://cloud.google.com/appengine/docs/standard/python/memcache.
https://cloud.google.com/appengine/docs/standard/python/memcache.
https://en.wikipedia.org/wiki/Hard_disk_drive.
https://en.wikipedia.org/wiki/Hard_disk_drive.
https://en.wikipedia.org/wiki/High_Bandwidth_Memory.
https://en.wikipedia.org/wiki/High_Bandwidth_Memory.
https://hotcarbon.org/
https://www.intel.com/content/www/us/en/support/articles/000026359/memory-and-storage/data-center-ssds.html
https://www.intel.com/content/www/us/en/support/articles/000026359/memory-and-storage/data-center-ssds.html
https://www.intel.com/content/www/us/en/support/articles/000026359/memory-and-storage/data-center-ssds.html
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/imdt-solution-brief-in-memory-data-store.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/imdt-solution-brief-in-memory-data-store.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/imdt-solution-brief-in-memory-data-store.pdf
https://www.intel.com/content/www/us/en/software/apache-spark-optimization-technology-brief.html
https://www.intel.com/content/www/us/en/software/apache-spark-optimization-technology-brief.html
https://www.intel.com/content/www/us/en/software/apache-spark-optimization-technology-brief.html
https://github.com/intel/intel-cmt-cat/issues/170.
https://github.com/intel/intel-cmt-cat/issues/170.

145

[35] Intel memory bandwidth allocation (mba). https://
software.intel.com/content/www/cn/zh/develop/articles/
introduction-to-memory-bandwidth-allocation.html.

[36] Intel Memory Drive Technology. https://www.intel.
com/content/www/us/en/software/intel-memory-drive-
technology.html.

[37] Intel Optane DC Persistent Memory. https://www.intel.com/
content/www/us/en/architecture-and-technology/optane-dc-
persistent-memory.html.

[38] Intel Optane DIMM Pricing. https://www.tomshardware.com/
news/intel-optane-dimm-pricing-performance,39007.html.

[39] Intel Optane SSD. https://www.intel.com/content/www/us/en/
products/memory-storage/solid-state-drives/data-center-
ssds/optane-dc-p4800x-series.html.

[40] Intel Optane SSD 905P. https://www.tomshardware.com/
reviews/intel-optane-ssd-905p,5600-2.html.

[41] Intel SSD 520 Series. https://ark.intel.com/content/www/us/
en/ark/products/series/66202/intel-ssd-520-series.html.

[42] Intel winding down its optane memory business. https://www.
forbes.com/sites/tomcoughlin/2022/07/28/intel-winding-
down-its-optane-memory-business/?sh=5226545745b8.

[43] I/o scheduling. https://en.wikipedia.org/wiki/i/o_scheduling.

[44] ios file systems. https://developer.apple.com/library/
archive/documentation/FileManagement/Conceptual/
FileSystemProgrammingGuide/FileSystemOverview/
FileSystemOverview.html.

https://software.intel.com/content/www/cn/zh/develop/articles/introduction-to-memory-bandwidth-allocation.html.
https://software.intel.com/content/www/cn/zh/develop/articles/introduction-to-memory-bandwidth-allocation.html.
https://software.intel.com/content/www/cn/zh/develop/articles/introduction-to-memory-bandwidth-allocation.html.
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://www.intel.com/content/www/us/en/software/intel-memory-drive-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series.html
https://www.tomshardware.com/reviews/intel-optane-ssd-905p,5600-2.html
https://www.tomshardware.com/reviews/intel-optane-ssd-905p,5600-2.html
https://ark.intel.com/content/www/us/en/ark/products/series/66202/intel-ssd-520-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/66202/intel-ssd-520-series.html
https://www.forbes.com/sites/tomcoughlin/2022/07/28/intel-winding-down-its-optane-memory-business/?sh=5226545745b8.
https://www.forbes.com/sites/tomcoughlin/2022/07/28/intel-winding-down-its-optane-memory-business/?sh=5226545745b8.
https://www.forbes.com/sites/tomcoughlin/2022/07/28/intel-winding-down-its-optane-memory-business/?sh=5226545745b8.
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html.
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html.
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html.
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html.

146

[45] ipmctl mediareads, mediawrites. https://docs.pmem.io/ipmctl-
user-guide/instrumentation/show-device-performance.

[46] Linux block layer statistics. https://www.kernel.org/doc/
Documentation/block/stat.txt.

[47] Load balancing (computing). https://en.wikipedia.org/wiki/
Load_balancing_(computing).

[48] Log-structured merge-tree. https://en.wikipedia.org/wiki/
Log-structured_merge-tree.

[49] Machine learning pipeline deployment and architecture. https://
www.xenonstack.com/blog/machine-learning-pipeline.

[50] Magnetic tape. https://en.wikipedia.org/wiki/Magnetic_
tape.

[51] Memcached Exstore. https://memcached.org/blog/nvm-
caching/.

[52] Memcached. https://memcached.org/.

[53] Memcached stats. https://docs.oracle.com/cd/E17952_01/
mysql-5.6-en/ha-memcached-stats.html.

[54] Memcachier. https://www.memcachier.com/.

[55] Micron Heterogeneous-Memory Storage Engine. https://www.
micron.com/products/advanced-solutions/heterogeneous-
memory-storage-engine.

[56] Micron X100 NVMe SSD. https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology/x100.

[57] Multipath routing. https://en.wikipedia.org/wiki/Multipath_
routing.

https://docs.pmem.io/ipmctl-user-guide/instrumentation/show-device-performance.
https://docs.pmem.io/ipmctl-user-guide/instrumentation/show-device-performance.
https://www.kernel.org/doc/Documentation/block/stat.txt
https://www.kernel.org/doc/Documentation/block/stat.txt
https://en.wikipedia.org/wiki/Load_balancing_(computing).
https://en.wikipedia.org/wiki/Load_balancing_(computing).
https://en.wikipedia.org/wiki/Log-structured_merge-tree.
https://en.wikipedia.org/wiki/Log-structured_merge-tree.
https://www.xenonstack.com/blog/machine-learning-pipeline.
https://www.xenonstack.com/blog/machine-learning-pipeline.
https://en.wikipedia.org/wiki/Magnetic_tape.
https://en.wikipedia.org/wiki/Magnetic_tape.
https://memcached.org/blog/nvm-caching/
https://memcached.org/blog/nvm-caching/
https://docs.oracle.com/cd/E17952_01/mysql-5.6-en/ha-memcached-stats.html.
https://docs.oracle.com/cd/E17952_01/mysql-5.6-en/ha-memcached-stats.html.
https://www.memcachier.com/.
https://www.micron.com/products/advanced-solutions/heterogeneous-memory-storage-engine
https://www.micron.com/products/advanced-solutions/heterogeneous-memory-storage-engine
https://www.micron.com/products/advanced-solutions/heterogeneous-memory-storage-engine
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology/x100
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology/x100
https://en.wikipedia.org/wiki/Multipath_routing.
https://en.wikipedia.org/wiki/Multipath_routing.

147

[58] Nginx and the power of two choices load-balancing algo-
rithm. https://web.archive.org/web/20191212194243/https:
//www.nginx.com/blog/nginx-power-of-two-choices-load-
balancing-algorithm/.

[59] NSF Call For Proposals: Design for Sustainability in Computing.
https://www.nsf.gov/pubs/2022/nsf22060/nsf22060.jsp.

[60] Pci express. https://en.wikipedia.org/wiki/PCI_Express.

[61] Pelikan - twitter. https://twitter.github.io/pelikan/.

[62] Pelikan cache - taming tail latency and achieving predictabil-
ity. https://twitter.github.io/pelikan/2020/benchmark-adq.
html.

[63] Persistent memory. https://en.wikipedia.org/wiki/
Persistent_memory.

[64] Pmem redis. https://github.com/pmem/pmem-redis.

[65] Redis enterprise cloud. https://redis.com/redis-enterprise-
cloud/overview/.

[66] Redis. https://redis.io/.

[67] Remote direct memory access . https://en.wikipedia.org/wiki/
Remote_direct_memory_access.

[68] RocksDB. https://rocksdb.org.

[69] Samsung 970 Pro. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/970pro/.

[70] Samsung 980 Pro Flash SSD. https://www.anandtech.com/show/
15352/ces-2020\-samsung-980-pro-pcie-40-ssd-makes\-an-
appearance.

https://web.archive.org/web/20191212194243/https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/.
https://web.archive.org/web/20191212194243/https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/.
https://web.archive.org/web/20191212194243/https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/.
https://www.nsf.gov/pubs/2022/nsf22060/nsf22060.jsp
https://en.wikipedia.org/wiki/PCI_Express.
https://twitter.github.io/pelikan/2020/benchmark-adq.html.
https://twitter.github.io/pelikan/2020/benchmark-adq.html.
https://en.wikipedia.org/wiki/Persistent_memory.
https://en.wikipedia.org/wiki/Persistent_memory.
https://github.com/pmem/pmem-redis.
https://redis.com/redis-enterprise-cloud/overview/.
https://redis.com/redis-enterprise-cloud/overview/.
https://en.wikipedia.org/wiki/Remote_direct_memory_access.
https://en.wikipedia.org/wiki/Remote_direct_memory_access.
https://rocksdb.org
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.anandtech.com/show/15352/ces-2020\-samsung-980-pro-pcie-40-ssd-makes\-an-appearance
https://www.anandtech.com/show/15352/ces-2020\-samsung-980-pro-pcie-40-ssd-makes\-an-appearance
https://www.anandtech.com/show/15352/ces-2020\-samsung-980-pro-pcie-40-ssd-makes\-an-appearance

148

[71] Samsung Z-NAND SSD. https://www.samsung.com/
semiconductor/ssd/z-ssd/.

[72] Serial ata bus. https://en.wikipedia.org/wiki/Serial_ATA.

[73] Solid-state drive. https://en.wikipedia.org/wiki/Solid-
state_drive.

[74] Top databases used in machine learning projects. https:
//analyticsindiamag.com/top-databases-used-in-machine-
learning-projects/.

[75] Univac i. https://en.wikipedia.org/wiki/UNIVAC_I.

[76] The volatile benefit of persistent memory - memcached. https://
memcached.org/blog/persistent-memory/.

[77] What is persistent memory. https://www.netapp.com/data-
storage/what-is-persistent-memory/.

[78] SDC2020: Caching on PMEM: an Iterative Approach.
https://www.youtube.com/watch?v=lTiw4ehHAP4, 2020.

[79] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian
Huang, Nam Sung Kim, Jinjun Xiong, and Wen-Mei Hwu. Flat-
flash: Exploiting the byte-accessibility of ssds within a unified
memory-storage hierarchy. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 971–985. ACM, 2019.

[80] Saba Ahmadian, Reza Salkhordeh, and Hossein Asadi. Lbica: A
load balancer for i/o cache architectures. In 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 1196–
1201. IEEE, 2019.

https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://en.wikipedia.org/wiki/Serial_ATA.
https://en.wikipedia.org/wiki/Solid-state_drive.
https://en.wikipedia.org/wiki/Solid-state_drive.
https://analyticsindiamag.com/top-databases-used-in-machine-learning-projects/.
https://analyticsindiamag.com/top-databases-used-in-machine-learning-projects/.
https://analyticsindiamag.com/top-databases-used-in-machine-learning-projects/.
https://en.wikipedia.org/wiki/UNIVAC_I.
https://memcached.org/blog/persistent-memory/.
https://memcached.org/blog/persistent-memory/.
https://www.netapp.com/data-storage/what-is-persistent-memory/.
https://www.netapp.com/data-storage/what-is-persistent-memory/.

149

[81] Ameen Akel, Adrian M Caulfield, Todor I Mollov, Rajesh K Gupta,
and Steven Swanson. Onyx: A prototype phase change memory
storage array. HotStorage, 1:1, 2011.

[82] Ali M Alakeel et al. A guide to dynamic load balancing in dis-
tributed computer systems. International Journal of Computer Science
and Information Security, 10(6):153–160, 2010.

[83] Guillermo A Alvarez, Elizabeth Borowsky, Susie Go, Theodore H
Romer, Ralph Becker-Szendy, Richard Golding, Arif Merchant,
Mirjana Spasojevic, Alistair Veitch, and John Wilkes. Minerva: An
automated resource provisioning tool for large-scale storage sys-
tems. ACM Transactions on Computer Systems (TOCS), 19(4):483–
518, 2001.

[84] Eric Anderson, Michael Hobbs, Kim Keeton, Susan Spence,
Mustafa Uysal, and Alistair Veitch. Hippodrome: running circles
around storage administration. In FAST ’02, Monterey, CA, January
2002.

[85] Eric Anderson, Susan Spence, Ram Swaminathan, Mahesh Kalla-
halla, and Qian Wang. Quickly finding near-optimal storage de-
signs. ACM Transactions on Computer Systems (TOCS), 23(4):337–
374, 2005.

[86] Thomas E Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N Schuh, and
Emmett Witchel. Assise: Performance and Availability via Client-
local NVM in a Distributed File System. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages
1011–1027, 2020.

150

[87] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. Multi-tier
buffer management and storage system design for non-volatile
memory. arXiv preprint arXiv:1901.10938, 2019.

[88] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and
Mike Paleczny. Workload analysis of a large-scale key-value store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems, pages 53–64, 2012.

[89] Shi Bai, Jie Yin, Gang Tan, Yu-Ping Wang, and Shi-Min Hu. Fdtl: a
unified flash memory and hard disk translation layer. IEEE Trans-
actions on Consumer Electronics, 57(4):1719–1727, 2011.

[90] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. Attack of the Killer Microseconds. Communications
of the ACM, 60(4):48–54, 2017.

[91] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter
Vajgel. Finding a needle in Haystack: Facebook’s photo storage. In
OSDI ’10, Vancouver, BC, December 2010.

[92] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improv-
ing cache hit rate by maximizing hit density. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18),
pages 389–403, 2018.

[93] Nathan Beckmann, Phillip B Gibbons, Bernhard Haeupler, and
Charles McGuffey. Writeback-aware caching. In Symposium on Al-
gorithmic Principles of Computer Systems, pages 1–15. SIAM, 2020.

[94] Nathan Beckmann, Phillip B Gibbons, and Charles McGuffey.
Block-granularity-aware caching. In Proceedings of the 33rd ACM

151

Symposium on Parallelism in Algorithms and Architectures, pages 414–
416, 2021.

[95] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof,
Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan
Beckmann, Mor Harchol-Balter, et al. The cachelib caching engine:
Design and experiences at scale. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 753–
768, 2020.

[96] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen,
and Mor Harchol-Balter. Robinhood: Tail latency aware caching–
dynamic reallocation from cache-rich to cache-poor. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 195–212, 2018.

[97] Swapnil Bhatia, Elizabeth Varki, and Arif Merchant. Sequential
prefetch cache sizing for maximal hit rate. In 2010 IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 89–98. IEEE, 2010.

[98] Timothy Bisson and Scott A Brandt. Flushing policies for nvcache
enabled hard disks. In 24th IEEE Conference on Mass Storage Systems
and Technologies (MSST 2007), pages 299–304. IEEE, 2007.

[99] Daniel Bittman, Darrell DE Long, Peter Alvaro, and Ethan L Miller.
Optimizing Systems for Byte-Addressable NVM by Reducing Bit
Flipping. In 17th USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[100] Christian Black, IT Michael Mesnier, and Terry Yoshii. Solid-State
Drive Caching with Differentiated Storage Services. Intel White Pa-
per, 2012.

152

[101] Simona Boboila and Peter Desnoyers. Performance Models of
Flash-based Solid-State Drives for Real Workloads. In 2011 IEEE
27th Symposium on Mass Storage Systems and Technologies (MSST).
IEEE, 2011.

[102] Luc Bouganim, Björn Thór Jónsson, Philippe Bonnet, et al. uFLIP:
Understanding Flash IO Patterns.

[103] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron
David Richard. Computer systems: a programmer’s perspective, vol-
ume 281. Prentice Hall Upper Saddle River, 2003.

[104] Nathan C Burnett, John Bent, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Exploiting gray-box knowledge of
buffer-cache management. In USENIX Annual Technical Conference,
General Track, pages 29–44, 2002.

[105] Geoffrey W Burr, Bülent N Kurdi, J Campbell Scott, Chung Hon
Lam, Kailash Gopalakrishnan, and Rohit S Shenoy. Overview of
candidate device technologies for storage-class memory. IBM Jour-
nal of Research and Development, 52(4.5):449–464, 2008.

[106] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song
Zheng, Yuhui Wang, and Guoqing Ma. Polarfs: an ultra-low la-
tency and failure resilient distributed file system for shared storage
cloud database. Proceedings of the VLDB Endowment, 11(12):1849–
1862, 2018.

[107] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Char-
acterizing, modeling, and benchmarking rocksdb key-value work-
loads at facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 209–223, 2020.

153

[108] Open CAS. Open Cache Acceleration Software. https://open-
cas.github.io/.

[109] E Chen, D Apalkov, Z Diao, A Driskill-Smith, D Druist, D Lottis,
V Nikitin, X Tang, S Watts, S Wang, et al. Advances and future
prospects of spin-transfer torque random access memory. IEEE
Transactions on Magnetics, 46(6):1873–1878, 2010.

[110] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential Roles of
Exploiting Internal Parallelism of Flash Memory Based Solid State
Drives in High-speed Data Processing. pages 266–277.

[111] Shuang Chen, Christina Delimitrou, and José F Martínez. Parties:
Qos-aware resource partitioning for multiple interactive services.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 107–120, 2019.

[112] Yue Cheng, Fred Douglis, Philip Shilane, Grant Wallace, Peter
Desnoyers, and Kai Li. Erasing belady’s limitations: In search of
flash cache offline optimality. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 379–392, 2016.

[113] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. Batman:
Techniques for maximizing system bandwidth of memory systems
with stacked-dram. In Proceedings of the International Symposium on
Memory Systems, pages 268–280, 2017.

[114] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin
Katti. Dynacache: Dynamic cloud caching. In 7th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 15), 2015.

[115] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin
Katti. Cliffhanger: Scaling performance cliffs in web memory

https://open-cas.github.io/
https://open-cas.github.io/

154

caches. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 379–392, 2016.

[116] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and Ryan
Stutsman. Memshare: a dynamic multi-tenant key-value cache. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), pages
321–334, 2017.

[117] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking Cloud Serving Systems with
YCSB. pages 143–154.

[118] Craciunas, Silviu S and Kirsch, Christoph M and Röck, Harald.
I/o resource management through system call scheduling. ACM
SIGOPS Operating Systems Review, 42(5):44–54, 2008.

[119] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s highly available key-value store. ACM SIGOPS operat-
ing systems review, 41(6):205–220, 2007.

[120] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. Qos-
aware admission control in heterogeneous datacenters. In 10th
International Conference on Autonomic Computing (ICAC 13), pages
291–296, 2013.

[121] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. ACM SIGPLAN Notices,
48(4):77–88, 2013.

[122] Timothy E Denehy, John Bent, Florentina I Popovici, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Deconstructing

155

Storage Arrays. In ACM SIGARCH Computer Architecture News, vol-
ume 32. ACM, 2004.

[123] Peter Desnoyers. Empirical Evaluation of NAND Flash Memory
Performance. ACM SIGOPS Operating Systems Review, 44(1), 2010.

[124] Peter Desnoyers. What Systems Researchers Need to Know about
NAND Flash. In Presented as part of the 5th USENIX Workshop on Hot
Topics in Storage and File Systems, 2013.

[125] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,
Michael R. Stonebraker, and David Wood. Implementation tech-
niques for main memory database systems. pages 1–8.

[126] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao,
Narayanan Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff
Jackson, and Karsten Schwan. Data tiering in heterogeneous
memory systems. In Proceedings of the Eleventh European Conference
on Computer Systems, page 15. ACM, 2016.

[127] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. Fair-
ness via source throttling: a configurable and high-performance
fairness substrate for multi-core memory systems. ACM Sigplan
Notices, 45(3):335–346, 2010.

[128] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich,
Ryan Stutsman, Mohammad Alizadeh, and Sachin Katti. Flashield:
a hybrid key-value cache that controls flash write amplification. In
16th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 19), pages 65–78, 2019.

[129] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens
Axboe, Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon,

156

and Sachin Katti. Reducing DRAM Footprint with NVM in Face-
book. In Proceedings of the Thirteenth EuroSys Conference. ACM, 2018.

[130] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyan-
skiy, Sergey Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin
Katti. Bandana: Using Non-volatile Memory for Storing Deep
Learning Models. arXiv preprint arXiv:1811.05922, 2018.

[131] Ahmed Elnably, Hui Wang, Ajay Gulati, and Peter J Varman. Effi-
cient qos for multi-tiered storage systems. In HotStorage, 2012.

[132] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. Large-
Scale Graph Processing on Emerging Storage Devices. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), 2019.

[133] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. Des-
perately seeking... optimal multi-tier cache configurations. In 12th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 20), 2020.

[134] Brian Forney, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Storage-aware caching: Revisiting caching for heteroge-
neous storage systems. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2002.

[135] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Be-
lay. Caladan: Mitigating interference at microsecond timescales.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 281–297, 2020.

[136] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 29–43, 2003.

157

[137] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and
Keshav Pingali. Single machine graph analytics on massive
datasets using intel optane dc persistent memory. arXiv preprint
arXiv:1904.07162, 2019.

[138] Jorge Guerra, Himabindu Pucha, Joseph S Glider, Wendy Belluo-
mini, and Raju Rangaswami. Cost effective storage using extent
based dynamic tiering. In FAST, volume 11, pages 20–20, 2011.

[139] Ajay Gulati, Irfan Ahmad, Carl A Waldspurger, et al. Parda: Pro-
portional allocation of resources for distributed storage access. In
FAST, volume 9, pages 85–98, 2009.

[140] Ajay Gulati, Arif Merchant, and Peter J Varman. mclock: Handling
throughput variability for hypervisor io scheduling. In OSDI, vol-
ume 10, pages 437–450, 2010.

[141] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Plat-
form Storage Performance With 3D XPoint Technology. Proceedings
of the IEEE, 105(9), 2017.

[142] Theodore R Haining and Darrell DE Long. Management policies
for non-volatile write caches. In 1999 IEEE International Performance,
Computing and Communications Conference (Cat. No. 99CH36305),
pages 321–328. IEEE, 1999.

[143] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. The Unwritten Contract of Solid State
Drives. In Proceedings of the Twelfth European Conference on Computer
Systems. ACM, 2017.

[144] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

158

[145] David A Holland, Elaine Angelino, Gideon Wald, and Margo I
Seltzer. Flash caching on the storage client. In Presented as part
of the 2013 USENIX Annual Technical Conference (USENIX ATC 13),
pages 127–138, 2013.

[146] Morteza Hoseinzadeh. A survey on tiering and caching in high-
performance storage systems. arXiv preprint arXiv:1904.11560, 2019.

[147] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo,
Chen Ding, Song Jiang, and Zhenlin Wang. Lama: Optimized
locality-aware memory allocation for key-value cache. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 57–
69, 2015.

[148] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,
Sudipta Sengupta, Bikash Sharma, and Moinuddin K Qureshi.
Flashblox: Achieving both performance isolation and uniform life-
time for virtualized ssds. In 15th USENIX Conference on File and
Storage Technologies (FAST 17), pages 375–390, 2017.

[149] Ilias Iliadis, Jens Jelitto, Yusik Kim, Slavisa Sarafijanovic, and Vin-
odh Venkatesan. Exaplan: queueing-based data placement and
provisioning for large tiered storage systems. In 2015 IEEE 23rd In-
ternational Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, pages 218–227. IEEE, 2015.

[150] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety,
Manoj Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo
Tomita, Alex Chen, Jack Zhang, et al. Perfiso: Performance isola-
tion for commercial latency-sensitive services. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages 519–532, 2018.

[151] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Sub-

159

ramanya R Dulloor, et al. Basic performance measurements of
the intel optane dc persistent memory module. arXiv preprint
arXiv:1903.05714, 2019.

[152] Jaeheon Jeong and Michel Dubois. Cost-sensitive cache replace-
ment algorithms. In The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.,
pages 327–337. IEEE, 2003.

[153] Yichen Jia and Feng Chen. Kill two birds with one stone: Auto-
tuning rocksdb for high bandwidth and low latency. In 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS), pages 652–664. IEEE, 2020.

[154] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong
Zhang. Dulo: an effective buffer cache management scheme to ex-
ploit both temporal and spatial locality. In Proceedings of the 4th
conference on USENIX Conference on File and Storage Technologies, vol-
ume 4, pages 8–8, 2005.

[155] Shudong Jin and Azer Bestavros. Popularity-aware greedy dual-
size web proxy caching algorithms. In Proceedings 20th IEEE Inter-
national Conference on Distributed Computing Systems, pages 254–261.
IEEE, 2000.

[156] Michael I Jordan and Tom M Mitchell. Machine learning: Trends,
perspectives, and prospects. Science, 349(6245):255–260, 2015.

[157] Ram Srivatsa Kannan, Michael Laurenzano, Jeongseob Ahn, Jason
Mars, and Lingjia Tang. Caliper: Interference estimator for multi-
tenant environments sharing architectural resources. ACM Trans-
actions on Architecture and Code Optimization (TACO), 16(3):1–25,
2019.

160

[158] Takayuki Kawahara. Scalable Spin-transfer Torque RAM Technol-
ogy for Normally-off Computing. IEEE Design & Test of Computers,
28(1):52–63, 2010.

[159] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey, and Lawrence
Chiu. Evaluating phase change memory for enterprise storage sys-
tems: A study of caching and tiering approaches. In Proceedings
of the 12th USENIX Conference on File and Storage Technologies (FAST
14), pages 33–45, 2014.

[160] Jaehyung Kim, Hongchan Roh, and Sanghyun Park. Selective i/o
bypass and load balancing method for write-through ssd caching
in big data analytics. IEEE Transactions on Computers, 67(4):589–
595, 2017.

[161] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman,
and Anand Sivasubramaniam. HybridStore: A Cost-Efficient,
High-Performance Storage System Combining SSDs and HDDs.
MASCOTS ’11, 2011.

[162] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Ur-
gaonkar. Flashsim: A Simulator for Nand Flash-based Solid-State
Drives.

[163] Ricardo Koller, Leonardo Marmol, Raju Rangaswami, Swami-
nathan Sundararaman, Nisha Talagala, and Ming Zhao. Write poli-
cies for host-side flash caches. In Presented as part of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), pages 45–58,
2013.

[164] Ricardo Koller, Ali José Mashtizadeh, and Raju Rangaswami. Cen-
taur: Host-side ssd caching for storage performance control. In
2015 IEEE International Conference on Autonomic Computing, pages
51–60. IEEE, 2015.

161

[165] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reap-
ing the performance of fast {NVM} storage with udepot. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), pages
1–15, 2019.

[166] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Em-
mett Witchel, and Thomas Anderson. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017.

[167] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. Leave the cache
hierarchy operation as it is: A new persistent memory accelerat-
ing approach. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2017.

[168] Lanyue Lu and Thanumalayan Sankaranarayana Pillai and Andrea
C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. WiscKey: Sep-
arating Keys from Values in SSD-conscious Storage. pages 133–148.

[169] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Ar-
chitecting phase change memory as a scalable dram alternative. In
Proceedings of the 36th annual international symposium on Computer
architecture, pages 2–13, 2009.

[170] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun
Cho. F2FS: A New File System for Flash Storage.

[171] Donghee Lee, Jongmoo Choi, Jun-Hum Kim, Sam H. Noh,
Sang Lyul Min, Yookum Cho, and Chong Sang Kim. On The Ex-
istence Of A Spectrum Of Policies That Subsumes The Least Re-
cently Used (LRU) And Least Frequently Used (LFU) Policies. In
SIGMETRICS ’99, Atlanta, GA, May 1999.

162

[172] S-J Lee and Mario Gerla. Split multipath routing with maxi-
mally disjoint paths in ad hoc networks. In ICC 2001. IEEE in-
ternational conference on communications. Conference record (Cat. No.
01CH37240), volume 10, pages 3201–3205. IEEE, 2001.

[173] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of a fast
persistent key-value store. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, pages 447–461, 2019.

[174] Haejung Lim, Kaixin Xu, and Mario Gerla. Tcp performance over
multipath routing in mobile ad hoc networks. In IEEE International
Conference on Communications, 2003. ICC’03., volume 2, pages 1064–
1068. IEEE, 2003.

[175] Gang Liu, Leying Chen, and Shimin Chen. Zen: a high-throughput
log-free oltp engine for non-volatile main memory. Proceedings of
the VLDB Endowment, 14(5):835–848, 2021.

[176] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 450–462, 2015.

[177] Tian Luo, Rubao Lee, Michael Mesnier, Feng Chen, and Xiaodong
Zhang. hStorage-DB: Heterogeneity-aware Data Management to
Exploit the Full Capability of Hybrid Storage Systems. Proceedings
of the VLDB Endowment, 5(10), 2012.

[178] Virendra J Marathe, Margo Seltzer, Steve Byan, and Tim Harris.
Persistent Memcached: Bringing Legacy Code to Byte-Addressable
Persistent Memory. In 9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 17), 2017.

163

[179] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-up: Increasing utilization in modern ware-
house scale computers via sensible co-locations. In Proceedings of
the 44th annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 248–259, 2011.

[180] Marshall K. McKusick, William N. Joy, Sam J. Leffler, and Robert S.
Fabry. A Fast File System for UNIX. ACM Transactions on Computer
Systems, 2(3):181–197, August 1984.

[181] Nimrod Megiddo and Dharmendra S Modha. Arc: A self-tuning,
low overhead replacement cache. In FAST ’03, San Francisco, CA,
April 2003.

[182] Michael Mesnier, Feng Chen, Tian Luo, and Jason B Akers. Dif-
ferentiated storage services. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 57–70. ACM, 2011.

[183] Sparsh Mittal and Jeffrey S Vetter. A survey of software tech-
niques for using non-volatile memories for storage and main mem-
ory systems. IEEE Transactions on Parallel and Distributed Systems,
27(5):1537–1550, 2015.

[184] David Montgomery. Extent migration scheduling for multi-tier
storage architectures, November 5 2013. US Patent 8,578,107.

[185] Asis Nasipuri, Robert Castaneda, and Samir R Das. Performance of
multipath routing for on-demand protocols in mobile ad hoc net-
works. Mobile Networks and applications, 6(4):339–349, 2001.

[186] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith.
Fair queuing memory systems. In 2006 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’06), pages 208–
222. IEEE, 2006.

164

[187] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,
Herman Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, Paul Saab, et al. Scaling memcache at facebook. In NSDI
’13, pages 385–398, Lombard, IL, April 2013.

[188] Junpeng Niu, Jun Xu, and Lihua Xie. Hybrid storage systems: a sur-
vey of architectures and algorithms. IEEE Access, 6:13385–13406,
2018.

[189] Jinyoung Oh and Youngjin Kwon. Persistent Memory Aware Per-
formance Isolation with Dicio. In Proceedings of the 12th ACM
SIGOPS Asia-Pacific Workshop on Systems, pages 97–105, 2021.

[190] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh.
Caching less for better performance: balancing cache size and up-
date cost of flash memory cache in hybrid storage systems. In FAST,
volume 12, 2012.

[191] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. The lru-
k page replacement algorithm for database disk buffering. Acm
Sigmod Record, 22(2):297–306, 1993.

[192] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The
LRU-K Page Replacement Algorithm For Database Disk Buffering.
In SIGMOD ’93, pages 297–306, Washington, DC, May 1993.

[193] John Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra, Ar-
avind Narayanan, Guru Parulkar, Mendel Rosenblum, et al. The
case for ramclouds: scalable high-performance storage entirely in
dram. ACM SIGOPS Operating Systems Review, 43(4):92–105, 2010.

[194] Dongchul Park and David HC Du. Hot Data Identification for
Flash-Based Storage Systems Using Multiple Bloom Filters.

165

[195] Jinsu Park, Seongbeom Park, and Woongki Baek. Copart: Coordi-
nated partitioning of last-level cache and memory bandwidth for
fairness-aware workload consolidation on commodity servers. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–16,
2019.

[196] Jinsu Park, Seongbeom Park, Myeonggyun Han, Jihoon Hyun, and
Woongki Baek. Hypart: a hybrid technique for practical memory
bandwidth partitioning on commodity servers. In Proceedings of the
27th International Conference on Parallel Architectures and Compilation
Techniques, pages 1–14, 2018.

[197] Stan Park and Kai Shen. Fios: a fair, efficient flash i/o scheduler. In
FAST, volume 12, pages 13–13, 2012.

[198] Yuvraj Patel, Leon Yang, Leo Arulraj, Andrea C Arpaci-Dusseau,
Remzi H Arpaci-Dusseau, and Michael M Swift. Avoiding sched-
uler subversion using scheduler-cooperative locks. In Proceedings
of the Fifteenth European Conference on Computer Systems, pages 1–17,
2020.

[199] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica.
Fairride: Near-optimal, fair cache sharing. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16),
pages 393–406, 2016.

[200] Sheng Qiu and AL Narasimha Reddy. Nvmfs: A hybrid file system
for improving random write in nand-flash ssd. In 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies (MSST), pages
1–5. IEEE, 2013.

[201] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems (Third Edition). McGraw-Hill, 2004.

166

[202] Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch, Charles T
Rettner, Y-C Chen, Robert M Shelby, Martin Salinga, Daniel Krebs,
S-H Chen, H-L Lung, et al. Phase-change random access mem-
ory: A scalable technology. IBM Journal of Research and Development,
52(4.5):465–479, 2008.

[203] Benjamin Reed and Darrell DE Long. Analysis of caching algo-
rithms for distributed file systems. ACM SIGOPS Operating Systems
Review, 30(3):12–21, 1996.

[204] John T. Robinson and Murthy V. Devarakonda. Data cache man-
agement using frequency-based replacement.

[205] Reza Salkhordeh, Hossein Asadi, and Shahriar Ebrahimi. Operat-
ing system level data tiering using online workload characteriza-
tion. The Journal of Supercomputing, 71(4):1534–1562, 2015.

[206] Mohit Saxena, Michael M Swift, and Yiying Zhang. Flashtier: a
lightweight, consistent and durable storage cache. In Proceedings of
the 7th ACM european conference on Computer Systems, pages 267–280.
ACM, 2012.

[207] Andre Schaefer and Matthias Gries. Adaptive address mapping
with dynamic runtime memory mapping selection, 2012. US Patent
8,135,936.

[208] Steven W. Schlosser and Gregory R. Ganger. MEMS-based Storage
Devices and Standard Disk Interfaces: A Square Peg in a Round
Hole? In FAST ’04, San Francisco, CA, April 2004.

[209] Priya Sehgal, Sourav Basu, Kiran Srinivasan, and Kaladhar Voru-
ganti. An empirical study of file systems on nvm. In 2015 31st
Symposium on Mass Storage Systems and Technologies (MSST), pages
1–14. IEEE, 2015.

167

[210] Kai Shen and Stan Park. Flashfq: A fair queueing i/o scheduler
for flash-based ssds. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 67–78, 2013.

[211] Haixiang Shi, Rajesh Vellore Arumugam, Chuan Heng Foh, and
Kyawt Kyawt Khaing. Optimal disk storage allocation for multitier
storage system. IEEE Transactions on magnetics, 49(6):2603–2609,
2013.

[212] Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating
system concepts. Wiley, 2018.

[213] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan,
and Ted Wobber. Extending ssd lifetimes with disk-based write
caches. In FAST, volume 10, pages 101–114, 2010.

[214] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder,
Hitesh Ballani, Thomas Karagiannis, Antony Rowstron, and Tom
Talpey. Software-defined caching: Managing caches in multi-
tenant data centers. In Proceedings of the Sixth ACM Symposium on
Cloud Computing, pages 174–181. ACM, 2015.

[215] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira
Khan, and Onur Mutlu. The application slowdown model: Quanti-
fying and controlling the impact of inter-application interference at
shared caches and main memory. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 62–75.
IEEE, 2015.

[216] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu. Mise: Providing performance predictability and
improving fairness in shared main memory systems. In 2013 IEEE
19th International Symposium on High Performance Computer Architec-
ture (HPCA), pages 639–650. IEEE, 2013.

168

[217] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa,
Juan Gómez-Luna, and Onur Mutlu. Flin: Enabling fairness and
enhancing performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 397–410. IEEE, 2018.

[218] Elizabeth Varki, Allen Hubbe, and Arif Merchant. Improve
prefetch performance by splitting the cache replacement queue.
In IEEE International Conference on Advanced Infocomm Technology,
pages 98–108. Springer, 2012.

[219] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri
Narasimhan. Driving cache replacement with ml-based lecar. In
10th USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 18), 2018.

[220] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gre-
gory R Ganger. Argon: Performance Insulation for Shared Storage
Servers. In FAST, volume 7, pages 5–5, 2007.

[221] Benjamin Wagner, André Kohn, and Thomas Neumann. Self-
tuning query scheduling for analytical workloads. In Proceedings of
the 2021 International Conference on Management of Data, pages 1879–
1891, 2021.

[222] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and No-
hhyun Park. Cache modeling and optimization using miniature
simulations. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 487–498, 2017.

[223] Hui Wang and Peter Varman. Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation. In Proceed-

169

ings of the 12th USENIX Conference on File and Storage Technologies
(FAST 14), pages 229–242, 2014.

[224] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven
Swanson, and Jishen Zhao. Characterizing and modeling non-
volatile memory systems. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 496–508.
IEEE, 2020.

[225] Wikipedia. ext4. en.wikipedia.org/wiki/Ext4, 2008.

[226] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The
HP AutoRAID Hierarchical Storage System. ACM Transactions on
Computer Systems, 14(1):108–136, February 1996.

[227] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen,
Yi Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T Chen, and
Ming-Jinn Tsai. Metal–oxide rram. Proceedings of the IEEE,
100(6):1951–1970, 2012.

[228] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. To-
wards an unwritten contract of intel optane ssd. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 19).
USENIX Association, Renton, WA, 2019.

[229] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Ala-
gappan, Rathijit Sen, Kwanghyun Park, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The storage hierarchy is not a hier-
archy: Optimizing caching on modern storage devices with orthus.
In 19th USENIX Conference on File and Storage Technologies (FAST
21), pages 307–323, 2021.

[230] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan
Alagappan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-

170

Dusseau, and Remzi H. Arpaci-Dusseau. The Storage Hierarchy
is Not a Hierarchy: Optimizing Caching on Modern Storage De-
vices with Orthus. In 19th USENIX Conference on File and Storage
Technologies (FAST 21), pages 307–323, 2021.

[231] Kan Wu, Kaiwei Tu, Yuvraj Patel, Rathijit Sen, Kwanghyun Park,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. {NyxCache}:
Flexible and efficient multi-tenant persistent memory caching. In
20th USENIX Conference on File and Storage Technologies (FAST 22),
pages 1–16, 2022.

[232] Xiaojian Wu and AL Narasimha Reddy. A novel approach to man-
age a hybrid storage system. JCM, 7(7):473–483, 2012.

[233] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubra-
monian, Tao Zhang, Shimeng Yu, and Yuan Xie. Overcoming the
challenges of crossbar resistive memory architectures. In 2015 IEEE
21st international symposium on high performance computer architecture
(HPCA), pages 476–488. IEEE, 2015.

[234] Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323–338,
2016.

[235] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: Know-
it-all replacement for a multilevel cache. In Fast, volume 7, pages
25–25, 2007.

[236] Gala Yadgar, Michael Factor, and Assaf Schuster. Cooperative
Caching with Return on Investment. In 2013 IEEE 29th Symposium
on Mass Storage Systems and Technologies (MSST). IEEE, 2013.

171

[237] Gala Yadgar and Moshe Gabel. Avoiding the Streetlight Effect: I/O
Workload Analysis with SSDs in Mind.

[238] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz,
and Steven Swanson. An empirical guide to the behavior and use of
scalable persistent memory. arXiv preprint arXiv:1908.03583, 2019.

[239] Juncheng Yang, Yao Yue, and KV Rashmi. A large scale analysis of
hundreds of in-memory cache clusters at twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 191–208, 2020.

[240] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a
memory-efficient and scalable in-memory key-value cache for
small objects. In NSDI, pages 503–518, 2021.

[241] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T Kaushik, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Split-level
i/o scheduling. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 474–489, 2015.

[242] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay May-
ers, David Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ning-
fang Mi, and Steven Swanson. Autotiering: automatic data place-
ment manager in multi-tier all-flash datacenter. In 2017 IEEE 36th
International Performance Computing and Communications Conference
(IPCCC), pages 1–8. IEEE, 2017.

[243] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms. In 2013
IEEE 19th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pages 55–64. IEEE, 2013.

172

[244] Gong Zhang, Lawrence Chiu, and Ling Liu. Adaptive data mi-
gration in multi-tiered storage based cloud environment. In 2010
IEEE 3rd International Conference on Cloud Computing, pages 148–
155. IEEE, 2010.

[245] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh,
Changlim Lee, Mohammad Alian, Myoungjun Chun, Mah-
mut Taylan Kandemir, Nam Sung Kim, Jihong Kim, et al.
Flashshare: punching through server storage stack from kernel to
firmware for ultra-low latency ssds. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
477–492, 2018.

[246] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Op-
timal data placement for heterogeneous cache, memory, and stor-
age systems. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, pages 1–27, 2020.

[247] Jishen Zhao, Onur Mutlu, and Yuan Xie. Firm: Fair and high-
performance memory control for persistent memory systems. In
2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 153–165. IEEE, 2014.

[248] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. Zig-
gurat: a tiered file system for non-volatile main memories and
disks. In 17th USENIX Conference on File and Storage Technologies
(FAST 19), pages 207–219, 2019.

[249] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. Spit-
fire: A three-tier buffer manager for volatile and non-volatile mem-
ory. In Proceedings of the 2021 International Conference on Management
of Data, pages 2195–2207, 2021.

173

[250] Yuanyuan Zhou, James F. Philbin, and Kai Li. The Multi-Queue Re-
placement Algorithm for Second Level Buffer Caches. In USENIX
’01, pages 91–104, Boston, MA, June 2001.

[251] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018.

	Acknowledgments
	Contents
	Abstract
	Introduction
	Understanding Persistent Memory (PM) Devices Characteristics
	Evolving Caching for PM Hierarchies
	Evolving Sharing Mechanisms for PM
	Contributions and Highlights
	Overview

	Persistent Memory Background
	Understanding PM Devices Characteristics
	The Unwritten Contract of Optane SSD
	Access with Low Request Scale
	Random Access is OK
	Avoid Crowded Accesses
	Control Overall Load
	Avoid Tiny Accesses
	Issue 4KB Aligned Requests
	Forget Garbage Collection

	Discussion and Implications From the Contract
	Flash vs. Optane SSD
	Implications From the Contract

	Conclusions

	Evolving Caching for PM Hierarchies
	Background and Motivation
	Managing the Storage Hierarchy
	Hardware Storage Trends

	Characterizing Caching in Traditional and Modern Storage Hierarchies
	Modeling Caching Performance
	Evaluation with Optane DC PM and Optane SSD

	Non-Hierarchical Caching
	Formal Definitions
	Architecture
	Cache Scheduler Algorithm

	Implementation
	Evaluation
	Orthus-CAS
	Orthus-KV: Static Workloads
	Orthus-KV: Dynamic Workloads
	Comparisons with Prior Approaches

	Conclusions

	Evolving Sharing Mechanisms for PM
	Background and Motivation
	Sharing Policies for Multi-Tenant Caches
	Challenges of PM Cache Sharing

	NyxCache Design
	Architecture
	Design goals
	Nyx Mechanisms
	Nyx Sharing Policies
	Cache Instances: PM-Optimized Pelikan
	Nyx Parameter Values

	Evaluation
	Mechanisms Overhead
	Resource Limiting
	QoS-Aware
	Fair Slowdown
	Proportional Resource Allocation
	Realistic Traces
	Parameters Sensitivity Analysis

	Discussion
	Conclusions

	Related Work
	Characterizing Modern PM Devices
	Evolving Caching for PM Hierarchies
	Evolving Sharing Mechanisms for PM

	Conclusions
	Summary
	Characterizing Modern PM Devices
	Evolving Caching for PM Hierarchies
	Evolving Sharing Mechanisms for PM

	Lessons Learned
	Understanding Device Characteristics is Critical for Storage Research
	It is Helpful to Think Like a Novice at Some Point
	It is Important to Separate Mechanisms and Policies in System Research

	Future Work
	Energy Efficiency Characterization of PM Devices
	Non-hierarchical Caching in the world of Memory/Storage Disaggregation
	Sharing with Better Hardware/Software Co-design
	Sharing of PM and DRAM pool in Disaggregated Memory Setup

	Discussion: Demise of Intel Optane Memory Business
	Implications for This Thesis
	Implications of Our Thesis for Future PM Device Development

	Closing Words

	Bibliography

