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Abstract

The landscape of computing is evolving rapidly, with storage devices of-
fering microsecond-level latency and substantial bandwidth. However,
monolithic OS kernels like Linux struggle to keep up. These kernels in-
cur significant overheads, particularly in the filesystem stack, and face
scalability challenges on multi-core CPUs. Developing kernel code is dif-
ficult and slow, and upstreaming a kernel feature can take months or even
years. Moreover, the increasing complexity of hardware and software
heightens the risk of failures, as a single fault can crash the entire system.

To address these issues, this work explores a semi-microkernel archi-
tecture, where the I/O subsystem operates as a standalone user-space
service, while the rest of the OS remains in the monolithic kernel. We
focus on one critical I/O subsystem: filesystems. Several filesystem semi-
microkernels, including uFS, Nebula, and uFS-Shadow, were built to in-
vestigate this approach, emphasizing performance, resource elasticity, and
fault tolerance. uFS is a fully functional, high-performance, and crash-
consistent user-space filesystem following the semi-microkernel approach.
Nebula, based on uFS, provides fast, robust, and seamless recovery upon
unexpected faults, as if no failure ever occurs. uFS-Shadow, when incor-
porated into Nebula, improves the reliability of uFS by recovering from
both transient and deterministic errors.

In the first part of this dissertation, we focus on the architecture of uFS,
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emphasizing its high performance. uFS leverages polling-based I/O and
high-performance inter-process communication (IPC) for low latency. uFS
achieves multi-core scalability through a “shared-nothing” design, where
files are partitioned among threads, allowing each server thread to oper-
ate independently.

In the second part, we address resource elasticity in uFS by incor-
porating load management. In the semi-microkernel architecture, the
filesystem server can scale CPU resources independently of applications
because the application and server threads are decoupled. This feature
allows uFS to balance performance and CPU efficiency while adapting to
dynamic workloads.

In the third part, we examine the issue where filesystem applications
cannot continue after a server crash, even though the entire system re-
mains unaffected. The server buffers updates in memory, creating a state
gap between what the application perceives and what is on disk. Simply
restarting the server risks losing these updates, leading to potential data
loss or silent errors. To address this, we introduce exit activation, a pro-
cess recovery mechanism, which is code that runs after a server crash and
uses the failed process’s memory to safely recover the state gap before it
is reclaimed by the OS.

In the final part, we introduce robust alternative execution (RAE), an ap-
proach to enhance the reliability of an existing high-performance filesys-
tem via a shadow filesystem. This shadow system, which prioritizes cor-
rectness, takes over when the base filesystem encounters errors. By sim-
plifying its design and omitting performance optimizations, the shadow
filesystem is less prone to bugs, thereby improving overall reliability.

Overall, this approach is best suited for scenarios where the local filesys-
tem needs to be specialized for hardware or where preventing filesystem
faults from crashing the entire system is critical, with a sufficient user base
to drive further customizations and filesystem innovation.
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1
Introduction

Commonly used operating systems – monolithic OS kernels – are slow
in performance when confronting modern hardware. For instance, the
performance of storage devices evolves rapidly; emergent ultra-fast block
devices achieve ultra-low latency and high bandwidth (i.e., several mi-
croseconds and over GB/sec). Unfortunately, monolithic operating sys-
tems like Linux fall short in delivering their full speed to applications. The
kernel software stack, such as filesystems, becomes the bottleneck [19].

The monolithic OS kernel approach is also slow in terms of velocity
and customization during development and deployment [9, 32, 134, 142,
143]. For instance, upstreaming a new feature to the Linux kernel can take
months or years, and rolling out a new kernel version requires a machine
reboot. However, today’s extremely large scale of computing, the diverse
types of applications and workloads, and the heterogeneous hardware
pose pressing needs for rapid development and customization of system
services [161].

The monolithic OS kernels suffer from numerous reliability issues due
to poor fault isolation between subsystems – a fault in one subsystem can
crash the entire machine, leading to service downtime and data loss [34,
81, 130]. Beneath the system call interface that applications interact with,
tens of millions of lines of code run in the kernel space, comprising com-
plex pieces of software like filesystems, network stacks, drivers, schedul-
ing, and more, all interacting without isolation. Among them, filesystems
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contribute a significant portion of the kernel codebase, complexity, and a
notably large number of bugs [34, 130].

Drawing inspiration from the microkernel-based approach, building
system services as user-space processes naturally alleviates two of these
issues – velocity and reliability. Additionally, new performance oppor-
tunities arise from modern hardware (e.g., multi-core CPUs and IO de-
vices) [86, 90, 172, 180], host-device data transfer protocols [62], and spe-
cialized performance development kits facilitating user-space direct ac-
cess to devices without kernel involvement [58, 181].

As such, a practical approach to evolving OS architectures comes into
play – an approach that combines the best of both kernel worlds: the
compatibility and rich ecosystems of mature monolithic kernels, and the
velocity and reliability of microkernels. Made possible by rising perfor-
mance opportunities, new OS subsystems deliver high performance to
end applications via a user-space multi-threaded service, hoisting an en-
tire subsystem (e.g., a TCP stack or a filesystem) out of the kernel while
leaving other OS functionality in the main monolithic OS (e.g., Linux).
We call this kernel architecture a semi-microkernel.

The thesis of this dissertation is to fulfill the promises of the semi-
microkernel approach for filesystems – achieving high performance, scaling
resources up and down, and improving fault tolerance. Such an architec-
ture provides both opportunities and challenges in three aspects, and we
explore these aspects by building a vector of filesystem semi-microkernels
– uFS, Nebula, and uFS-Shadow.

We address three main challenges. First, how can such a filesystem
achieve high performance? Specifically, how can it deliver low latency
and multi-core scalability? We investigate the performance extremes of
such a filesystem by building uFS. Second, how can such a filesystem
achieve resource elasticity by scaling the number of CPU cores accord-
ing to dynamic application demands? uFS also strikes a balance between
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absolute performance and CPU efficiency. Finally, how can such a filesys-
tem achieve fault tolerance beyond fault isolation and the guarantees pro-
vided by existing disk-based full system crash recovery? We build Nebula
and uFS-Shadow to improve application availability under this new pro-
cess crash model concerning two fault models.

Our investigation is inspired by several semi-microkernels in the net-
working domain, such as IsoStack, Snap, TAS, and Shenango [99, 134, 155,
178]. Compared to kernel-bypass data-path library OSes [20, 92, 163, 171,
215], semi-microkernels, including ours, retain centralized control, policy
management, and security enforcement for sharing hardware resources
among multiple applications.

1.1 Functionality and High Performance
The first architectural opportunity and challenge we explore is high per-
formance: a clean-slate design to achieve low latency and multi-core scal-
ability. Our goals are:

G1. Make the most of ultra-fast devices and powerful CPUs.

G2. Achieve high performance across broader workloads [193, 196].

G3. Achieve strong single-threaded performance before scaling [140].

G4. Balance maximum scalability with system complexity [174].

We begin our exploration by building uFS, a fully functional and crash-
consistent user-level filesystem. uFS supports commonly used filesystem
calls.

The system consists of two main components: a uFS server and a uFS
library. The uFS server is implemented as a multi-threaded process built
atop the Storage Performance Development Kit (SPDK) [181]. Appli-
cations link with the uFS library to communicate with the server and
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request file services via high-performance interprocess communication
channels. The rest of the operating system remains as is, acting as an in-
termediary only in rare events (e.g., process startup) to provide authen-
tication, but (importantly) does not participate in filesystem requests.

uFS relies on three base mechanisms as the foundation for low latency.
Together, they overcome overheads throughout the Linux kernel stack,
including system call, ring switch, interrupt handling, and deep stack
overheads. The first and foremost mechanism is the non-blocking filesys-
tem thread (worker), which adopts an event-driven programming model
to process filesystem requests in a non-blocking manner, overlapping IO
(submission to the device and polling for completion) with other com-
putations (e.g., application interaction). Second, we design a fast App-
filesystem IPC, incorporating a lock-free message ring buffer that lever-
ages cache-to-cache transfer between cores and tailors the message for-
mat. Finally, we ensure that kernel interaction is kept off the common
path, used only for initialization and security enforcement, and, impor-
tantly, not for filesystem requests.

The uFS library is also carefully designed for performance, includ-
ing lease-based [72] caching of data and file descriptors to reduce client-
server communication. The library also includes various other optimiza-
tions, mostly designed to reduce copying while maintaining security.

The multi-threaded uFS server contains a single primary and a vari-
able number of worker threads, much like the original Google File Sys-
tem [67]. For simplicity, the primary handles the workloads that involve
directory modifications (e.g., file creations and deletions), whereas work-
ers handle the mainline data path (e.g., stats, reads, and writes to files).

uFS’s design for multi-core scalability follows two key principles: avoid
blocking-induced synchronization and separate designs for in-memory
and on-disk data structures. uFS adopts a “shared-nothing” data-parallel
architecture [184] across workers to avoid blocking; important data struc-
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tures are designed to eliminate the need for synchronization across work-
ers. The key unit of assignment across workers is the inode; at any given
moment, a file inode is owned by a single worker, which handles all reads
and writes to that file.

To provide scalable crash consistency, uFS employs a global journal
that allows for a large number of concurrent sync transactions, requiring
only a small critical section to synchronize the allocation of journal space
(no blocking needed).

We evaluate the high-performance aspect of uFS with a series of mi-
crobenchmarks and macrobenchmarks. To isolate and understand differ-
ent facets of filesystem performance, we create 32 single-operation mi-
crobenchmarks, covering factors like sharing, caching, and access pat-
terns (e.g., random vs. sequential). We compare uFS to Linux ext4 [136],
a traditional, time-tested, and optimized kernel-based filesystem.

Through microbenchmarks, we establish the baseline performance of
uFS, showing that when utilizing only a single thread, it performs simi-
larly to ext4 (sometimes better, sometimes slightly worse). We also show
that uFS achieves excellent multi-core scalability, outperforming ext4 in
half of the 32 microbenchmarks (by up to 3x) and performing similarly in
most of the remaining workloads. In the cases where uFS performs bet-
ter, when the workload is disk-bound, uFS performance scales well and
quickly reaches its peak; and when the workload is memory-bound, uFS
achieves higher throughput with multiple cores. Through macrobench-
marks of a web server and a file server [23, 196], we demonstrate the ef-
fectiveness of uFS’s designs, such as caching and journaling.

1.2 Resource Elasticity
The second architectural opportunity and challenge we explore is resource
elasticity: decoupled threads of application and the filesystem. Our goals
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are:

G5. Improve CPU efficiency without sacrificing performance.

G6. Adapt dynamically to workload changes without overreacting.

In monolithic kernels such as Linux, an application launches its own
threads. These threads serve as vessels to execute the storage stack code
(e.g., filesystem, block scheduling, etc.) to interact with IO devices in
privileged mode after trapping through system calls. In uFS, the uServer
has the freedom to launch its own threads, independent of the number of
application threads and their filesystem usage intensity.

As such, a semi-microkernel filesystem presents both the opportunity
and the challenge of independently determining the amount of CPU re-
sources dedicated to the server. This raises the questions: How many
filesystem cores are needed for different application workloads to balance
performance and CPU resource efficiency? And how should the number
of cores be adjusted properly given that the workload changes over time?

We begin by augmenting uFS with mechanisms to monitor runtime
CPU usage statistics, estimate resource demand across the spectrum of
performance and CPU efficiency, and dynamically adjust the number of
cores. We introduce a separate load management thread to make central-
ized observations and decisions by periodically gathering runtime statis-
tics from each uFS server worker. The thread also controls the number of
cores to use and directs workers to reassign inodes to balance the load.

One essential challenge for the load management mechanism is to
identify performance metrics that can convey the load status (i.e., captur-
ing both under-utilized and overloaded conditions) and are easy to ob-
tain with negligible overhead. The non-blocking nature of the uFS server
workers complicates this because each worker appears as 100% fully uti-
lized to the host OS. We find that the combination of per-core effective
CPU cycles (i.e., cycles spent on useful work rather than idly looping for
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events) and the congestion (i.e., request queueing delay) is a good indi-
cator of the load status.

We then design an algorithm to use the collected statistics and esti-
mations to detect workload changes and determine the number of cores
according to the configured policy for desired performance and CPU ef-
ficiency. We decompose the problem into two subproblems: (1) load bal-
ancing: how to balance the load with a fixed number of cores, and (2)
core allocation: how many cores are needed given a relatively balanced
load. Our algorithm thus predicts the load status after hypothetically per-
forming load balance with the current number of cores or by increasing
or decreasing only one core.

We evaluate the resource elasticity aspect of uFS with a series of mi-
crobenchmarks. We create 9 load-balancing microbenchmarks and 8 core
allocation microbenchmarks, which carefully control the varying factors
within each workload over time and cover the combination of various
workloads.

We show that the adaptive load management works well, achieving
nearly peak performance while minimizing the number of cores used by
uFS. Finally, through a series of real application workloads, we demon-
strate the overall performance benefits. Specifically, uFS improves the per-
formance of LevelDB across eight different workloads (two writes and six
YCSB [44]) from 1.3x to 4.6x.

1.3 Beyond Full System Crash Recovery:
Process Crash Recovery

The third architectural opportunity we explore is fault tolerance, where
the challenge is that restarting the filesystem is insufficient. Our goals are:

G7. Enable seamless recovery without losing performance benefits.
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G8. Improve fault tolerance without altering the original filesystem be-
havior.

Semi-microkernels have significant benefits in fault isolation – a filesys-
tem crash does not bring down the entire machine, so the host OS and un-
related applications remain unaffected. However, the applications using
the filesystem cannot readily continue, and simply restarting the filesys-
tem server is insufficient.

The reason why restarting the filesystem is insufficient is intuitive: at
any given time, the filesystem buffers a large amount of updates in mem-
ory, creating a state gap between what has been perceived by the applica-
tions and what has been persisted to the disk.

Restarting the filesystem server while losing such a state gap is prob-
lematic for relevant applications. For instance, an application may find
that data written just a minute ago has disappeared when it continues
with a new filesystem server. As shown in our analysis of application
reactions to a restarted filesystem server, the consequences can be se-
vere and unpredictable; even durability-aware applications like databases
(e.g., SQLite and LevelDB) can lose data. This occurs because the server
may fail at any time under arbitrary combinations of operation sequences,
leading to a wide range of state gaps being lost. However, this state gap
problem has not been well understood in previous works [185].

We thus begin by formulating the crash model of monolithic (full sys-
tem crash, s-crash) and microkernel filesystems (process crash, p-crash).
Doing so allows us to rethink the opportunities and challenges that p-
crashes bring – what are readily available (e.g., from the OS, from volatile
memory, from devices, etc.)? Virtually all filesystems (including uFS)
are designed with handling full system crashes in mind, employing tech-
niques to ensure that on-disk states are consistent (e.g., journaling), but
such full system crash recovery (s-crash recovery) falls short in address-
ing the state gap issue and does not guarantee no data loss.
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We advocate for dedicated p-crash recovery mechanisms that handle
any process crash except for power failures, which must be handled by
s-crash recovery. With fast enough p-crash recovery, availability of the
applications and the entire system that avoids more failover is increased.

Our key observation is that the failed filesystem server’s memory state
(including the state gap) is still present in volatile memory upon exit, be-
fore being reclaimed by the OS. This enables a new mechanism for recov-
ering the state gap in a newly started process. We refer to this mechanism
as exit activation – code that runs when a process crashes and is coordi-
nated by the OS – to access the memory state before it is reclaimed. Exit
activation tackles the state gap problem by allowing the failed server’s
memory state to also contribute to recovery.

We design and implement Nebula to realize exit activation, augment-
ing uFS with the machinery for fast and seamless recovery from unex-
pected faults, while maintaining high performance in the common case.
Our key principles include: clean restart to discard problematic states and
benefit from a clean address space; limited trust of memory to ensure that
exit activation accesses only trusted memory; and no force flush to avoid
extra overhead in the common path.

Central to recovery is an in-memory process log (p-log). During nor-
mal operation, Nebula records information about ongoing system calls
into the p-log. After a p-crash, before the server process dies, the exit acti-
vation saves the p-log to a known location; then, when the restarted server
begins execution, it can access the p-log (as well as traditional s-crash re-
covery logs) to restore filesystem state precisely. Applications continue
running undisturbed, incurring only a momentary drop in performance.

The main issue with the p-log is that when a system call’s effect is
made durable, it should be removed from the state gap. However, the
effects of system calls are often made durable in a non-sequential order.
Our finding is that replaying the p-log requires ignoring some system
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calls and, at times, modifying one call to another existing system call API
(e.g., changing a write to an lseek) so that the original codebase can be
used.

Nebula includes a range of techniques to achieve its goals. Fast, cache-
aware per-core logging ensures that recording information to the p-log is
fast and correct. An algorithm, called AIM for act/ignore/modify, trans-
forms the p-log into the actions the server must take to recover the state
gap. P-log and AIM capture the state gap such that no extra flush is
needed in the common path. Checksums, and replication of the p-log,
protect critical data structures; a careful protocol ensures they are main-
tained correctly. Finally, kernel-coordinated speculative restart that or-
chestrates control transitions efficiently and avoids the high overhead of
device connection establishment, reducing restart time by seconds.

We create a new benchmark suite to evaluate the fault tolerance as-
pect of Nebula. The benchmark includes a large number of system call
sequences, each exhibiting diverse combinations of system calls and vary-
ing over time. We include 24 synthetic system call sequences and 10 se-
quences from real-world applications (ranging in length from 77 to over
5,000 calls). We exhaustively injected p-crashes after each system call in
the sequences, covering a wide range of diverse state gaps to recover from.
This benchmark also allows us to understand the application’s reaction to
a restarted filesystem server, highlighting the importance of seamless re-
covery and addressing the state gap.

We perform a thorough empirical evaluation of Nebula, focusing on
fault handling and performance. We show that Nebula achieves seamless
recovery for applications, including utilities (sort, cp, zip) and durability-
aware libraries (SQLite, LevelDB), with negligible impact on performance
compared to uFS. Specifically, Nebula achieves transparent recovery over
a large number (30,000+) of controlled and random fault-injection exper-
iments, that emulate both fail-stop p-crashes and data corruption. Fur-
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ther, Nebula incurs negligible performance (less than 2% in most cases)
and memory overhead (8 MB per-core for a replicated p-log and less than
0.01% of workload memory for CRCs). Finally, Nebula recovers in an ac-
ceptable amount of time (⩽500ms).

1.4 When Slow is Good
In the last part of this thesis, we explore fault tolerance further. Our goal
is:

G9. Recover from both transient and deterministic errors.

Nebula cannot recover from deterministic bugs because its p-log re-
play leverages the original source code of uFS, which would fail again in
the case of a deterministic bug. This motivates us to take a step back and
ask why things go wrong (i.e., the bugs) in the first place, and how we
can recover from almost all bugs so that the reliability of the system is
fundamentally improved as if the bugs never existed.

Our key observation is that many bugs in filesystems stem from per-
formance optimizations. While developing uFS and realizing performance
benefits, numerous performance components such as caches are intro-
duced. Worse, these components interact with each other in a multi-
threaded setting, significantly increasing complexity, which is the main
culprit for more bugs.

The same observation holds true for kernel filesystems. We studied
the bug reports of the Linux kernel filesystem stack and found that both
transient and deterministic bugs are prevalent. Similar to uFS, the imple-
mentation of core filesystem functionality (e.g., ext4, btrfs, and zfs) inter-
acts and evolves with performance-oriented components throughout the
entire IO stack, such as the inode cache, dentry cache, and block layer. Nu-
merous performance enhancements have been introduced to these com-
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ponents in recent years, including block-mq, page folios, iomap, io_uring,
and polling-mode IO [47, 48, 60, 181].

We propose Robust Alternative Execution (RAE), a practical approach
to improving the reliability of existing complex and performance-oriented
filesystems via shadow filesystems. Most of the time, the shadow filesystem
lies dormant, and the base filesystem runs and handles requests. How-
ever, when an error is detected in the base, the shadow is invoked. The
shadow then performs recovery by (re)executing the problem-inducing
operations, generating the necessary state updates, and returning control
to the base filesystem.

A shadow filesystem, when paired with a base filesystem, represents
a form of N-version programming [13]. However, its goals are different
from the base. The shadow prioritizes correctness over performance to
realize the simplest possible sequential implementation. Concurrency,
caches, asynchronous execution, and other performance optimizations
are omitted, as they are not essential.

We design and implement uFS-Shadow, a shadow filesystem for uFS.
When incorporated into Nebula, uFS-Shadow enables Nebula to recover
from both transient and deterministic bugs, thereby improving the relia-
bility of the entire system. Together, the pair of Nebula and uFS-Shadow
achieves high performance through uFS in the common path and robust-
ness through uFS-Shadow in the alternative path.

We show that uFS-Shadow functions properly, as it can recover from
over 30,000 transient p-crash fault injections. We demonstrate that uFS-
Shadow can recover from deterministic bugs under 25 emulated deter-
ministic errors via fault injection. The recovery time of uFS-Shadow is
1.6x slower than using uFS for replay, but the codebase of uFS-Shadow
is only about 7% of uFS, representing a significant simplification while
remaining fully functional in replaying the p-log.
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Overall, our hypothesis for building filesystems in a semi-microkernel
style is that high performance is possible (as opposed to both microker-
nels and monolithic kernels) and that better fault tolerance guarantees
are feasible and beneficial (as opposed to monolithic kernels), which we
have demonstrated.

However, a filesystem is a complex piece of software [34, 130, 195], re-
quiring considerable effort to build, test, and maintain [9]. Compared to
networking semi-microkernels, filesystems are more deeply coupled with
the host monolithic kernel, particularly in process management (e.g., for
permissions and fork), memory management (e.g., mmap), and the rich
set of APIs they support. As a result, compatibility issues and general
coordination with the host OS are more challenging. Resource elasticity
is one example where the filesystem service inherently needs to take re-
sponsibility for CPU scheduling. Additional effort is needed to support a
wide range of applications.

This approach would be beneficial in situations where storage access
needs to be specialized (e.g., for specific hardware, energy consumption,
heterogeneity, etc.) or where the consequences of a filesystem crash (i.e.,
a full system crash) are severe. Importantly, the cost of developing and
maintaining the filesystem is better justified by a sufficient number of
users. For instance, a filesystem not crashing the entire machine can be
life-saving in vehicles [32]. Other scenarios include cloud VMs used by
a large number of small or medium-scale applications that utilize local
filesystems or a local filesystem serving as a backend for a distributed
filesystem [9].

1.5 Contributions
We list the main contributions of this dissertation.

• Semi-microkernel Approach in Filesystems. We thoroughly ex-
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plore the semi-microkernel approach in filesystems by building uFS,
Nebula, and uFS-Shadow. We demonstrate that this approach can
achieve high performance, benefit from resource elasticity, and im-
prove fault tolerance. These semi-microkernels are implemented in
over 41K lines of C++ code from scratch.

• uFS. We build uFS, a fully functional and crash-consistent user-space
filesystem that supports commonly used filesystem calls. We show
that uFS offers competitive single-threaded performance and achieves
excellent multi-core scalability. uFS also dynamically adjusts the
number of CPU cores according to workloads, balancing perfor-
mance and CPU efficiency.

• Exit Activation. We propose exit activation, a new approach for
process crash recovery. Exit activation is code that runs when a pro-
cess crashes, accessing memory before it is reclaimed, and allowing
the failed server’s memory state to contribute to recovery.

• State Gap Problem of Filesystem Process Crash. We formulate and
systematically analyze the crash model of microkernel filesystems,
where buffered updates are lost due to a process crash. We identify
the key problem – the state gap – which is the difference between
the application’s perceived state and the on-disk state. This state
gap represents the effects of system call sequences executed in the
past, which may not be in the sequential order perceived by the ap-
plication. We also empirically analyze the application’s reactions
to such a crash model, covering five applications (cp, sort, unzip,
SQLite, and LevelDB), ten operation sequences (ranging from 77 to
over 5,000 system calls), and 30,000+ different state gaps. Our anal-
ysis shows that the consequences of the state gap are severe and
unpredictable.
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• Nebula. We build Nebula, augmenting uFS with the machinery for
fast and seamless recovery from unexpected faults, with negligible
common-path overhead. Nebula includes an in-memory process
log (p-log), an exit activation data structure that is well-specified,
well-protected, and the only memory region that needs to be ac-
cessed by exit activation code. The p-log accurately captures the
source of the state gap (i.e., system calls). With the p-log and our
novel algorithm, AIM (Act/Ignore/Modify), the state gap problem
can be resolved by replaying the logged system calls (in the p-log)
using the original uFS code, yet in a form varied from the original
execution.

• Robust Alternative Execution (RAE). We propose Robust Alter-
native Execution (RAE), a practical approach to improve the relia-
bility of existing complex and performance-oriented filesystems via
shadow filesystems.

• uFS-Shadow. We build uFS-Shadow, a shadow filesystem for uFS,
integrated into Nebula to realize RAE. Compared to Nebula, uFS-
Shadow can recover from both transient and deterministic bugs.
Through uFS-Shadow, we demonstrate how filesystem core func-
tionality can be realized in a much simpler manner (7% of uFS code-
base) that is less prone to bugs by eliminating performance opti-
mizations as much as possible.

• Benchmarks. We create a series of benchmarks to evaluate multiple
aspects of the semi-microkernels, including:

1. 32 single-op microbenchmarks to understand performance, stress-
ing various factors affecting filesystem performance.

2. 9 load-balancing microbenchmarks and 8 core allocation mi-
crobenchmarks to evaluate resource elasticity, covering chang-
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ing factors within each workload over time and the combina-
tion of various workloads.

3. A new methodology and benchmark to evaluate recoverabil-
ity from the state gap, including 24 synthetic system call se-
quences and 10 sequences from real-world applications, cover-
ing a multitude of diverse state gaps (over 30,000).

4. A benchmark to emulate deterministic bugs.

1.6 Overview
We briefly describe the contents of the chapters of this dissertation.

• Background. In Chapter 2, we review the historically thriving mi-
crokernel operating systems, discussing their advantages, primary
concerns, and modern relevance. We then discuss recent trends in
hardware and applications and explain why, in light of these trends,
mainstream monolithic kernels are problematic. We also cover the
kernel-bypass approach for direct access to devices and the Storage
Performance Development Kit upon which our work is based.

• Semi-microkernel Approach. In Chapter 3, we introduce and ex-
plain the semi-microkernel approach, comparing it with monolithic
kernels and microkernels. We discuss the benefits of this approach.

• Functionality and High Performance. In Chapter 4, we present the
design and implementation of uFS, focusing on functionality and
high performance. We describe the single-threaded basic architec-
ture, the designs for multi-core scalability, and the scalable crash
consistency design. Finally, we evaluate uFS with a series of mi-
crobenchmarks and macrobenchmarks.
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• Resource Elasticity. In Chapter 5, we present the load management
features of uFS, including the mechanisms, policies, and algorithms
to dynamically adjust the number of cores. We evaluate the resource
elasticity of uFS with a series of microbenchmarks and real applica-
tion workloads.

• Beyond Full System Crash Recovery: Process Crash Recovery. In
Chapter 6, we improve fault tolerance by performing process crash
recovery via exit activation. We design and implement Nebula, and
evaluate its fault handling and performance.

• When Slow is Good. In Chapter 7, we introduce Robust Alternative
Execution (RAE) and build uFS-Shadow to realize RAE in Nebula.
We demonstrate that Nebula recovers from transient and determin-
istic errors. We evaluate the goodness (robustness and simplicity)
and the slowness (recovery time) of uFS-Shadow.

• Related Work. In Chapter 8, we discuss related work, including
modern explorations of OS architectures, filesystems, and multi-
core systems. We present the literature on fault tolerance, covering
the sources of faults, filesystem fault tolerance and reliability, and
general fault tolerance techniques.

• Conclusions and Future Work. In Chapter 9, we summarize the
dissertation and present a few high-level lessons learned. We also
outline future work that can build upon this dissertation.
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2
Background

In this chapter, we provide the background related to our work, present-
ing our motivations to revisit OS architectures and the foundations built
from decades of research and practice. We start with the rise and fall of
microkernels (§2.1). Then, we discuss the challenges faced by today’s
mainstream monolithic kernels due to the evolving landscape of hard-
ware and applications (§2.2). Finally, we discuss recent efforts in rearchi-
tecting OS architectures for I/O, including kernel-bypass approaches and
the Storage Performance Development Kit (SPDK) (§2.3).

2.1 Rise and Fall of Microkernels
The mainstream, widely used operating systems today, such as Linux and
Windows, are monolithic kernels. Monolithic kernels run the entire op-
erating system in kernel space. In contrast, microkernels only include the
most essential components in privileged mode, and the rest of the system
services, such as device drivers, file systems, and network stacks, are run
in user space.

Microkernels have long played a part in the discussion of how to best
structure operating system service. One of the earliest microkernels, de-
veloped in the late 1960’s, was Brinch Hansen’s Nucleus [74], argued for
a microkernel approach based on modularity.



19

A next generation of microkernels used similar arguments. For exam-
ple, in the mid-1980s Mach [166, 213] stated: “[Mach] provides a small
set of primitive functions designed to allow more complex services and
resources to be represented as references to objects.”

Microkernels were a hot topic in the 1980s [7, 166, 167, 213]. At that
time, multiple operating systems were developed in response to multi-
processors and network-connected systems. Meanwhile, Unix had been
integrated with new facilities such as System V streams, BSD sockets, var-
ious forms of semaphores, special files, making the software difficult to
maintain.

However, performance was a major concern for the first generations
of microkernels, perhaps reducing interest in microkernels for general-
purpose usage. For example, performance studies revealed high caching
costs [36] and overhead due to address space changes [59]. In later years,
microkernels have seen a resurgence, both in research and in practice,
across various domains [61, 76, 77, 191, 219]. For example, some variants
of the L3 microkernel provide high performance [115]. Furthermore, the
more compact nature of these systems has led to pioneering efforts in OS
verification [101].

Nevertheless, microkernels did not become the mainstream architec-
ture for general-purpose operating systems. By 2000, large-scale Mach
kernel efforts had largely ended. Most microkernels primarily target spe-
cific domains, such as embedded systems, like L4 embedded in Qual-
comm cellular modem chips [61], QNX in embedded systems [78], and
Zircon (i.e., Fuchsia) in smartphones [70]. Linux, a monolithic kernel
started in the 1990s, has become much more widely used and deployed
on an extremely large scale in today’s data centers and cloud.

Nowadays, monolithic kernels face similar challenges as Unix did in
the 1980s to extend the kernel with much flexibility and velocity for a
new purpose – performance. Hardware and applications have changed
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significantly in the last decade, and monolithic kernels have become the
performance bottleneck [19].

2.2 Monolithic Kernels Meet Modern
Applications and Hardwares

Two trends motivate our work. The first is in hardware, including the
emergence of low-latency and high-throughput block devices, and the
need to leverage modern CPUs with multiple cores, especially in the wake
of Moore’s Law coming to an end [141, 194]. The second is in applica-
tions, which are rapidly increasing in volume and diversity, exhibiting
dynamic workloads. We now describe these trends in more detail.

2.2.1 Hardware Trends

Hardware used by storage stacks has evolved, notably with the emergence
of low-latency and high-bandwidth devices and multi-core CPUs.

2.2.1.1 Low-latency and High-bandwidth Block Devices

The evolution of storage devices continues apace. The most relevant to
this thesis are the ultra-fast NVMe SSDs [104], which use high-speed
PCIe buses for data transfer and the NVMe (Non-Volatile Memory Ex-
press) protocol to communicate with the host. NVMe is an open, logical-
device interface specification designed to leverage the low latency and
internal parallelism of solid-state storage drives [62]. Ultra-fast NVMe
SSDs often come with some form of non-volatile memory, such as NAND
flash or Optane memory.

Compared with traditional SATA SSDs, NVMe SSDs have much lower
latency and higher bandwidth. For example, the Intel Optane SSD [90]
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offers a read latency of around 6 microseconds, with maximal through-
put (random read) up to 575K IOPS and bandwidth (sequential read)
up to 2.6GB/s. Despite Intel’s business decision to discontinue the Op-
tane product, efforts to develop low-latency and high-throughput stor-
age devices continue, such as Z-SSD [86]. The market for low-latency
and high-bandwidth block devices continues to grow to support modern
applications with high-performance requirements. Moreover, the devel-
opment of the PCIe protocol also continues, targeting up to 16GT/s per
lane, leading to 64GT/s for modern M.2 SSDs that use 4 lanes [85].

Persistent memory products, such as Intel Optane DC Persistent Mem-
ory, have encouraged the re-architecture of storage system design [211].
One main difference between the ultra-fast NVMe SSDs and persistent
memory is that SSDs use the PCIe bus and appear as block devices in
the system, whereas persistent memory is directly connected to the mem-
ory bus and is byte-addressable. Besides, persistent memory has one or-
der of magnitude lower latency than NVMe SSDs (i.e., around hundred
nanoseconds), but is not superior in bandwidth. Even though the com-
mercial product of Intel Optane Persistent Memory has been put on hold,
many persistent memory file systems [56, 207, 208] provide insights for
designing high-performance file systems.

2.2.1.2 Multi-core CPUs

The ending of Moore’s Law [141, 194] has emphasized the importance
of leveraging multi-core CPUs and developing efficient concurrent soft-
ware [53]. Compared to the limited number of cores in the early 2000s,
modern CPUs can have up to 256 cores [159].

However, extracting performance benefits from modern CPUs is chal-
lenging, even for simple software, requiring a deep understanding of un-
derlying hardware details. The CPU employs a range of powerful features
to provide better performance, such as multiple levels of cache, out-of-
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order execution, and speculative execution. The NUMA (Non-Uniform
Memory Access) architecture, TLB shootdown [10], and CPU core fre-
quency scaling [71] also affect software performance.

Software that makes poor use of these features can run significantly
slower. For example, the Xeon Gold 6138 processor used in our evalua-
tion has megabytes of L1 cache, 40MB L2 cache, and 50MB L3 cache, with
the last level cache shared among all cores. The latency of accessing each
level of cache varies significantly, from subnanosecond for L1 references
to tens of nanoseconds for main memory references. On the upside, sys-
tem software with careful design can gain large performance benefits and
provide better primitives for applications.

However, powerful CPUs with a large number of cores and sophisti-
cated features are less reliable when pushed to the limits of hardware and
physical laws. Silent core corruption (i.e., mercurial cores [79]), where
one core of a CPU produces incorrect results for certain computations,
has caused silent data corruption and system crashes in data centers [17,
55, 204].

Furthermore, performance techniques such as out-of-order execution
lead to vulnerabilities that, when exploited by attacks such as Meltdown
and Spectre, can leak data, breaking assumptions of hardware isolation [103,
120]. To mitigate these vulnerabilities, monolithic kernels (e.g., Linux)
enforce address space isolation, leading to large performance overheads [120].

2.2.2 Application Trends

Numerous new types of applications have been developed, which exhibit
different access patterns and performance requirements. One interesting
trend is the wide adoption of storage engines that can be embedded into
applications, such as SQLite [182], LevelDB [68], and WiredTiger [150].
These storage engines interact with filesystems through the POSIX APIs,
managing data structures like B-trees, Log-Structured Merge Trees, and
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many others. Higher-level applications, such as web applications, stream
processing, and databases, commonly use these storage engines and lever-
age the key-value interface to store and access data [28, 149].

Compared to the early days of microkernels, the ever-increasing num-
ber of modern applications, driven by the rapid development of the Inter-
net, cloud computing, smartphones, and IoT devices, relies on a standard
interface to interact with the OS – the Portable Operating System Interface
(POSIX). Therefore, there is a clear need to bring hardware advances to
existing applications with POSIX compatibility [197].

Moreover, applications are running in cloud environments, and many
applications can run on one physical machine. These diverse applica-
tions exhibit dynamic and possibly bursty workloads [28, 177, 205], pos-
ing challenges to underlying systems.

2.2.3 Monolithic Kernels are Problematic

In the face of the hardware and application trends described above, mono-
lithic kernels such as Linux fall short for three reasons: performance, ve-
locity, and fault tolerance.

2.2.3.1 Performance

Monolithic kernels (e.g., Linux) have become performance bottlenecks
due to overhead in the I/O stack and limitations in multi-core scalability.

The deep kernel I/O stack introduces significant overhead. For exam-
ple, reading a 4KB block from ultra-fast NVMe SSDs through a widely-
used kernel filesystem, Linux ext4, introduces several microseconds of
overhead, doubling the latency (i.e., 14us vs. 6us) for applications. While
such overhead was acceptable for previous storage devices with millisec-
ond latencies, it becomes a bottleneck for ultra-fast NVMe SSDs with mi-
crosecond latencies.
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The reasons for this overhead are manifold. First, a significant con-
tributor to overhead is the interrupt-handling mechanism that supports
blocked I/O. In contrast, polling offers better latency for high-performance
devices [69, 190]. Second, the overhead for system calls and context switches
is non-negligible. Indirect costs like cache pollution can also have a large
impact [180]. Third, the Linux kernel is designed for generality, leading
to multiple layers. For example, the block layer, the file system layer, and
the VFS layer are all involved in the I/O path.

The scalability bottleneck of Linux impedes applications from achiev-
ing scalable performance when using multiple cores. Various scalability
issues have been found by previous studies, such as the reference count
in the dentry cache [25] and CPU schedulers [128].

Moreover, the Linux kernel filesystems are found to have several scal-
ability limitations [144]. They introduce multiple locks, leading to high
contention and scalability issues. For example, crash consistency mecha-
nisms like journaling, copy-on-write, and log-structured writing are not
scalable.

One issue of CPU scalability is that the Linux kernel, when designed,
had little concern for multi-core scalability, leading to several coarse-grained
locks. Therefore, scalability improvement is mostly achieved by break-
ing the bottlenecked locks into fine-grained ones, which may be time-
consuming and introduce bugs [130].

2.2.3.2 Velocity and Customization

Another issue for the monolithic Linux kernel is that the pace of develop-
ing and upstreaming new features is constrained [134, 142, 143]. Linux
needs to adapt to support emerging application workloads, patch security
vulnerabilities, and incorporate new hardware. Extending the Linux ker-
nel by modifying the kernel source code is a time-consuming and error-
prone process.
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One main reason that hinders velocity is the complexity of the Linux
kernel code base. As a monolithic kernel developed over three decades,
it now contains tens of millions of lines of code. Therefore, rigorous re-
viewing, testing, and validation are required to ensure the correctness of
new features. In addition, kernel development itself is a challenging task,
requiring a deep understanding of the kernel code base and experience.

For example, in the kernel source code of version 5.4 used in our eval-
uation, the total lines of code are around 16 million, with 12 million in the
drivers directory, and 1.5 million in the arch directory. The rest of the
codebase is also substantial, mainly in the fs directory (0.9 million), net
directory (0.7 million), and kernel directory (0.2 million).

Consider the scale of computing today. Data centers and cloud providers
are running over millions of machines, with an extremely large number
of application workloads running at any time. A fast pace of deployment,
with updates rolled out on a weekly cycle, is desired [134]. However, it
takes months or years to upstream a new feature to the Linux kernel, and
upgrading the machines with the new feature causes downtime, which is
undesirable.

2.2.3.3 Fault Tolerance

Finally, the monolithic kernel is problematic for fault tolerance. One ma-
jor drawback of running the entire system in kernel space is poor fault
isolation – a fault in one subsystem can crash the entire machine, lead-
ing to service downtime and data loss. As the complexity of the kernel
increases, the challenges in managing the reliability of the system also in-
crease. This problem is exacerbated when discussing filesystems because
they contribute significantly to kernel’s complexity, are difficult to ensure
correctness (thus more prone to bugs), and are a notable source (17%) of
kernel vulnerabilities (e.g., buffer overflow attack) [34].

Such concerns regarding reliability have drawn increasing attention.
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One such effort is the gradual adoption of Rust [137] in kernel develop-
ment, such as drivers and filesystems [45], attempting to increase mem-
ory safety. However, for applications that rely on the OS, the kernel is too
large to be free of bugs, too prone to failure on a large scale, and requires
too much work (and time) to recover.

2.3 Rearchitecting OS Architectures
Given these challenges, researchers and industry practitioners have pro-
posed various solutions, rearchitecting the OS architecture to better sup-
port modern applications and hardwares. We present the approaches of
kernel-bypass and microkernel. We discuss storage performance devel-
opment kit (SPDK), which is the main building block of our work.

2.3.1 Kernel-bypass and Microkernel

One approach to addressing the performance bottleneck of monolithic
kernels in response to hardware trends is kernel-bypass, which involves
building system services as libraries and linking them into applications.
This allows the device’s hardware interface to be directly mapped into the
application address space, leading to superior performance [20, 92, 163,
171, 215].

The performance of kernel-bypass has led to the rise of user-level de-
velopment kits. These libraries allow applications to directly access de-
vices and bypass the kernel entirely. For example, the Data Plane De-
velopment Kit (DPDK) [58] consists of libraries to accelerate packet pro-
cessing on a range of CPU architectures, enabling a variety of network-
oriented applications to be readily implemented.

However, kernel-bypass requires extra consideration to manage the
sharing of hardware resources among multiple applications. The cen-
tralized control of the kernel is lost, including the benefits of better re-
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source management and isolation, scheduling decisions, and policy en-
forcement.

To obtain the benefits of high performance from direct device access
while still retaining the benefits of centralized control, the microkernel
approach seems to be a natural choice. However, realizing a complete
microkernel is less practical, requiring significant effort to solve compat-
ibility issues because modern applications assume POSIX as a default.
The generalized microkernel, under real application workloads, also suf-
fers from performance overhead due to the high frequency of IPCs [32].
These challenges are described in the seven-year effort to build a micro-
kernel, HongMeng [32].

Therefore, in this work, we explore an approach that does not rebuild
the entire OS as microkernels do, but instead hoists a subsystem into user
space, leveraging the benefits of both direct access and centralized con-
trol [99, 134]. We call such an approach a semi-microkernel.

The emergence of storage development kits has now made it possible
to explore the utility of a filesystem semi-microkernel; we discuss these
kits next.

2.3.2 Storage Performance Development Kit

The Storage Performance Development Kit (SPDK) [181] is open-source
software that enables the creation of high performance user-mode storage
applications running on NVMe devices. It enables the construction of
high-performance, user-space storage system services, which is otherwise
difficult to achieve as the driver and device must run in privileged mode.

The SPDK is realized as a user-mode device driver, and, as such, the
kernel is not involved in any interactions with the device (indeed, once
active, the kernel no longer can access the device at all). SPDK provides
an abstraction of a queue pair to submit requests and receive responses;
within an application (in our case, the uFS server), each thread is as-
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signed its own queue pair, and can submit requests to the device without
coordination (i.e., locking).

In this work, we focus on the lowest level SPDK APIs, which enable
direct submission of requests to the device. Specifically, reads and writes
are submitted as NVMe commands to the device’s queue pair via the calls
of spdk_nvme_ns_cmd_read and spdk_nvme_ns_cmd_write, respectively.
Higher level interfaces (such as the block stack) are provided by SPDK
but not utilized herein.

SPDK provides a polling-based interface via a non-blocking call to
spdk_nvme_qpair_process_completions. This approach works well for
high-performance devices [146] and is more natural at user-level (where
event handling can be clumsy or inefficient) but requires care, as exces-
sive polling will waste CPU resources.

Memory management is also important when using the SPDK, as mem-
ory must be pinned to enable DMA to and from the NVMe device. To
facilitate this, two calls (spdk_dma_malloc and spdk_dma_free) are pro-
vided. The current SPDK implementation uses Linux huge pages, and
thus the calls to allocate memory must be used judiciously.

In general, the growing popularity of these types of toolkits gives rise
to the question: can SPDK (or similar libraries) enable the construction of
not only a specific high-performance application (which was perhaps the
intended use-case), but a high-performance user-space filesystem? We
believe the answer is yes, and develop an architecture to investigate this
question more deeply.

2.4 Summary
In this chapter, we present the background, briefly reviewing the history
of relevant OS architectures’ exploration and evolution. We discuss the
modern trends in hardware and applications that pose challenges to to-
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day’s monolithic OS kernels. Finally, we cover the basic building blocks
of our work: a user-space NVMe device driver that enables direct access,
allowing the filesystem subsystem of the OS to be hoisted into user space
– an approach we take in this dissertation.
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3
Semi-microkernel Approach

In this chapter, we present the core theme of this thesis: the semi-microkernel
approach. We discuss the semi-microkernel architecture, comparing it
with the traditional monolithic and microkernel architectures (§3.1). We
then discuss the benefits (§3.2) and challenges (§3.3).

3.1 Semi-microkernels for IO Subsystems
In this work, we explore the semi-microkernel approach to building IO
subsystems, specifically in the context of filesystems. A semi-microkernel
works in tandem with the main (monolithic) operating system, but re-
alizes a partial or even entire OS subsystem (e.g., the networking stack
or filesystems) inside a user-level process. Applications wishing to use
its services communicate with the semi-microkernel process via high-
performance IPC channels. Most relevant to our work, recent efforts in-
cluding IsoStack, Snap, TAS, and Shenango [99, 134, 155, 178] demon-
strate the benefits in the networking domain.

Figure 3.1 illustrates the semi-microkernel architecture and how it com-
pares to the traditional monolithic and microkernel architectures. The
monolithic kernel, such as Linux, implements all OS services in the ker-
nel, leading to a large and complex codebase and lacking isolation be-
tween the subsystems at runtime. In contrast, the microkernel architec-
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Figure 3.1: Comparison of OS Architectures. Monolithic kernels (e.g.,
Linux) run all OS services in kernel space. Microkernels move as many
services as possible to user space, with strong isolation enforced by pro-
cess boundaries. Semi-microkernels realize an OS subsystem in user
space (e.g., a filesystem), working in tandem with the monolithic ker-
nel.
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ture favors modularity and extensibility, with the principle of minimal-
ity [61] guiding the division of kernel space and user space OS services.
As many services as possible are moved to user space, with strong isola-
tion enforced by process boundaries.

The semi-microkernels, sharing the same inspiration for modularity
as microkernels, rely on the monolithic kernel for other services, such as
scheduling and memory management. For the IO path, where hardware
has made tremendous advances and where much performance potential
can be fulfilled via direct access, the subsystems are built as user-space
processes. The semi-microkernels thus co-exist with the host monolithic
kernel.

In this thesis, we demonstrate the benefits and address challenges of
such an architecture by building filesystem semi-microkernels, uFS, Neb-
ula, and uFS-Shadow. We achieve high performance, resource elasticity,
and realize the potential of fault tolerance.

3.2 Benefits
The semi-microkernel architecture has many benefits, including perfor-
mance, velocity and customization, and fault tolerance, as we discuss be-
low. We mainly focus on filesystems, though the benefits are general to
other IO subsystems.

3.2.1 Performance

The semi-microkernel approach has the opportunity to achieve high per-
formance. First, compared to the restrictions of in-kernel development,
the user-space filesystem can get the full benefit of direct access and ad-
vanced hardware performance with a clean-slate and well-designed IO
stack.
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Second, the semi-microkernel can overcome the IPC overhead by de-
signing the IPCs to be tailored for the filesystem’s needs. The IPC fre-
quency is also largely reduced in the semi-microkernel approach, as shown
in Figure 3.1. The IPC is a form of indirect system call and the overhead
concern is much more reduced in this age, because today’s computers
have a large number of CPU cores, allowing for the fast inter-core commu-
nication based on cache-to-cache transfer [172]. Further, the CPU cache
locality of the filesystem process can be preserved, whereas today’s sys-
tem calls lose performance due to the cache pollution and ring switches.

3.2.2 Velocity and Customization

One critical advantage of the semi-microkernel approach is that it acceler-
ates velocity and customization, i.e., the ability to quickly develop, mod-
ify, and deploy system software. Instead of the slow pace common in
kernel development, the hoisted subsystem can be developed in a man-
ner more similar to application code. Application-level tools and testing
frameworks can also be utilized, further improving developer productiv-
ity.

Such an advantage is naturally inherited from microkernels. Many
more policies can be implemented and experimented with in user space
to specialize for hardware, filesystems, and application workloads, facil-
itating rapid innovation.

3.2.3 Fault Tolerance

When the IO subsystem is built as a user-space process, the fault isola-
tion is greatly improved, a filesystem failure does not crash the kernel.
As a result, the host OS kernel, and the irrelevant applications naturally
continue to run.
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3.2.4 Additional Benefits

By retaining the monolithic kernel for other services, the semi-microkernel
avoids the need to rebuild the entire OS and the resulting compatibility
issues, which take many years of effort to resolve [32]. The underlying
host OS can always offer fallback support instead of a full substitution
that is less reliable. Applications can also continue to leverage the rich
Linux ecosystem.

Furthermore, the filesystem process provides centralized control for
multiplexing to multiple applications. Hardware access is restricted to
one system service, instead of delegating it to the application address
space. This centralization simplifies resource management in terms of
concurrency control, allocation, and security.

3.3 Challenges
Realizing the architectural benefits of the semi-microkernel approach is
not without challenges. We describe three challenges that are unique
to semi-microkernels. Other challenges for building high-performance
filesystems are also important but are not the focus here.

3.3.1 High Performance: Low Latency and Multi-core
Scalability

The filesystem process we built involves more functionality than a tradi-
tional kernel filesystem, such as Linux ext4, which primarily concerns the
on-disk data structures and how to read/write them. We refer to these as
the core functionality. Providing the core functionality correctly and effi-
ciently is challenging, but it is not sufficient in a semi-microkernel filesys-
tem process.
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In the kernel filesystem stack, other layers are involved in processing
filesystem requests, such as the interface layer that handles application
interaction (e.g., system call mechanism, and VFS) and dispatches to a
specific filesystem implementation. The page cache is integrated into the
memory management subsystems [48, 119], and the block IO layer iso-
lates the complexity of interacting with block devices [47] and relies on
the interrupt handling mechanisms [118].

The unique challenge a semi-microkernel filesystem faces is that, with-
out the historical burden and the convenience (and perhaps mature opti-
mization) provided by these many other layers, we need to achieve com-
petitive performance. Specifically, can the pieces of software achieve the
low latency enabled by ultra-fast devices and the multi-core scalability
enabled by modern CPUs? We answer these questions through uFS.

3.3.2 Resource Elasticity: Decoupled Threads of
Applications and the Filesystem

Another main challenge unique to the architecture is resource elasticity,
which is also an opportunity. The filesystem threads and application
threads are decoupled (i.e., they run in different processes), allowing the
filesystem to scale CPU resources independently of the number of appli-
cation threads [134].

This raises questions: How can we achieve both high performance and
CPU efficiency? In response to modern application trends where work-
loads are dynamic, how can the filesystem scale up and down to meet
varying demands? We answer these questions through uFS.
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3.3.3 Fault Tolerance: Restarting the Filesystem is
Insufficient

The main challenge for fault tolerance is that applications using the filesys-
tem do not naturally benefit from fault isolation, as simply restarting the
filesystem is insufficient.

Therefore, what guarantees are required for applications to continue
running after a filesystem crash? How can we improve the system’s fault
tolerance accordingly? Can fault tolerance mechanisms be incorporated
without negating performance benefits? Finally, is it possible to recover
from virtually any crash, as if the filesystem never fails? We address these
questions through uFS and uFS-Shadow.

3.4 Summary
In this chapter, we introduce the semi-microkernel approach, which builds
only the IO subsystems as user-space processes. We discuss the benefits
of this approach. In the next four chapters of this thesis, we address the
essential challenges to realize the benefits through the development of
uFS, Nebula, and uFS-Shadow.
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4
Functionality and High Performance

We start our exploration from building uFS. uFS is a multi-threaded POSIX-
compatible user-space filesystem that directly access the storage devices.
To explore the performance promise of the semi-microkernel approach
for filesystems, uFS needs to address the architectural challenges of build-
ing such a filesystem that is free from the performance issues suffered
by previous monolithic kernels and microkernels. To do so, uFS first es-
tablishes strong single-thread performance as the foundation. Addition-
ally, uFS exploits the opportunity to design for multi-core scalability from
scratch, scaling with the best single-threaded performance in mind.

The first performance axis is the latency of each supported filesystem
system call. The performance of a filesystem is multifaceted, consider-
ing the rich set of interfaces (e.g., over tens of system calls), hierarchical
abstractions to manage data (e.g., directories, names, and inodes), and
diverse access patterns (e.g., cached or disk-bounded). As a fully func-
tional filesystem, uFS supports commonly-used filesystem calls, aiming
to be POSIX-compatible, such that modern applications can run atop it
without modification.

We first describe the issues necessary for correctness and base-line ef-
ficiency given a single-threaded uFS server: managing interactions be-
tween the application, uFS server, and I/O device; scheduling requests;
and library-side caching to avoid unnecessary interactions. Specifically,
we describe how uFS overcomes the inter-process communication (IPC)
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overhead between the user application and the filesystem server, how uFS
reduces the I/O stack overhead by polling the device and processing re-
quests in a non-blocking manner, and how uFS interacts with the host ker-
nel off the common path for security, ensuring high performance without
compromising correctness.

The second performance axis is the multi-core scalability of a multi-
threaded uFS server. The question is, how can we achieve scalability with
competent per-thread performance? The issues is known as the COST of
scalability [140], meaning that achieving better scalability with multiple
threads is easier with a relatively poor single-threaded base performance.
Further, how can we strike the balance between maximal scalability and
system complexity? Overall, our design is guided by the rule to allow
each core to operate independently as much as possible, inspired by pio-
neering works like disjoint-access parallelism [91] and conflict-free opera-
tions [11]. Specifically, we follow two principles for multi-core scalability.

Our first principle for scalability is to avoid blocking-induced syn-
chronization, achieved by partitioning on-disk and in-memory structures
across threads, which is in synergy with the uFS server’s non-blocking
thread design. To constrain complexity, we partition the structures so that
each inode is owned by a specific thread (i.e., worker) and directory op-
erations are handled by a primary worker.

Another principle for scalability is to separate designs for in-memory
and on-disk structures [23]. Specifically, the crash consistency design
is critical for the on-disk write path. The scalability of in-memory data
structures is achieved by avoiding sharing among workers, whereas all
the workers share a single on-disk global journal to allow for a large num-
ber of concurrent sync transactions. The synchronization (only needed
for allocating a journal transaction’s disk space) is made non-blocking
with a small critical section, such that the synchronization overhead when
starting multiple journal transactions (e.g., tens of nanoseconds) is or-



39

ders of magnitude less than the disk latency (e.g., several microseconds).
Therefore, we show that crash consistency can be added to uFS without
harming performance, as each thread independently writes to a globally-
ordered logical journal. The single global journal also reduces the com-
plexity of the commit and crash recovery protocol, which is well-recognized
as difficult to design, implement, and test for correctness [148, 158].

The chapter is organized as follows. We begin with the design of the
single-threaded uFS server, describing the basic architecture for function-
ality, data structures, and techniques to achieve low latency for system
calls (§4.1). Next, we present the design of the multi-threaded uFS server
(§4.2) and crash consistency (§4.3). We then systematically evaluate uFS,
comparing the single-thread and multi-thread performance with Linux
ext4 (§4.4) under microbenchmarks and macrobenchmarks, covering a
multitude of workloads, system calls, and performance aspects. Our eval-
uation demonstrates that uFS achieves strong single-thread performance,
scales well with multi-cores, and that our design choices are effective.

4.1 Single-Threaded uServer
We introduce a single-threaded version of uFS to discuss the fundamental
issues for a filesystem semi-microkernel: request scheduling, data struc-
tures, and caching.

Basic Architecture: As shown in Figure 4.1, uFS is composed of a
filesystem process (uServer) and a library (uLib) linked with each appli-
cation. The uServer is a user-level process within its own address space;
we begin by assuming uServer is composed of a single thread, but this
limitation is removed in the next section. We generally assume that each
thread of uServer is pinned to a dedicated core. uServer interacts with the
storage device with a hardware submission/completion queue pair con-
taining NVMe commands; pinned memory is used to transfer data. uLib,
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Figure 4.1: Architecture of uFS, a Filesystem Semi-Microkernel. Multi-
ple applications can share a single uFS. App-1 has a separate ring-buffer to com-
municate with each uServer worker; to minimize data transfer, App-1 contains
fd and data caches and shares memory with uServer. uServer contains multiple
workers pinned to cores, of which one acts as a primary; the load manager thread
is not pinned. Only initialization must pass through the OS kernel.

which is dynamically linked into each application, offers POSIX compati-
bility and coordinates the connection to uServer. Control and data trans-
fers between uLib and uServer are separated. For control, uFS uses a
per-application thread-safe lockless ring buffer. For data, each applica-
tion I/O thread performs allocations from thread-private memory that is
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shared with uServer.
The only time in which uFS interacts with the OS kernel is for initial

authentication: when an application begins, uLib transparently invokes
a new system call uFS_init. This system call assigns a key to each appli-
cation and retrieves the application’s credentials (i.e., pid, uid, and gid),
which are then stored in uServer. This key is returned to the application
and passed to uServer as part of any operation that requires permission
checks.

uFS is POSIX-compliant with the exception of support for extended at-
tributes, links, mmap, and chmod/chown. Many applications run seam-
lessly with uFS because of such compatibility [95, 197]. Supporting mmap
could further improve the usability of uFS. One could leverage userfaultfd
to dispatch an application’s uFS-related page faults for mmap’d files to the
uServer; we leave this to future work. uFS is still an initial implementa-
tion and is missing some optimizations found in mature filesystems such
as read-ahead and delayed allocation.

Scheduling: To provide low latency and high throughput across clients,
uFS balances attending to client requests with keeping the device utilized.
The single-threaded server iterates through five tasks: receiving requests
from clients in the message rings and placing them in a single internal
ready queue; processing requests in the ready queue (currently in FIFO
order); attending to background activity (e.g., flushing dirty blocks to
the device and freeing blocks from deleted inodes); initiating device re-
quests; polling the device for request completion; and notifying the client
of results. Processing a client request may generate intermediate opera-
tions that are also placed in the ready queue (e.g., pathname lookup cre-
ates intermediate operations for reading and checking the permissions of
each intermediate inode and directory). The server continues polling and
serving requests while other I/O operations are underway.

Data Structures: uFS uses on-disk data structures similar to other
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Unix-based filesystems: superblocks, inodes, bitmaps, and directory en-
tries. On-disk inodes are 512 bytes with standard information; in-memory
inodes track related FDs and states (dirty, deleted, checkpointed). Bitmaps
track blocks of different extent sizes.

Directory entries are simple mappings of name to inode number. The
dentry cache is combined with a recursive permission map. For example,
for the directory /a/b, the root map stores the pair <a, perms+map for
/a>; the map of /a, stores <b, perms+map of /a/b>. As path are visited,
they are cached in this permission map, with information obtained from
inodes as needed.

Caching and Copy Elimination: uFS reduces data movement across
the application, uServer, and device with three techniques: caching, leases,
and shared memory. First, to avoid unnecessary I/O between the server
and device, uServer contains a pinned user-level block buffer cache for
inodes and data blocks. This simple LRU cache is accessed by physical
block number; therefore, in-memory data structures contain pointers to
the original on-disk representations.

Second, to avoid IPC round trips between the client and server, file
descriptors and data are cached on clients with leases. Client caching of
file descriptors (FDs) enables a subsequent open, close, or lseek (if it does
not depend on current file size) to be handled locally by the client. The FD
lease is invalidated if another client renames or unlinks this file, at which
point the local objects are flushed to the server. FD caching improves the
latency of an open from 5.5us down to 1.5us. The client cache of read data
blocks is private to each process (but shared by threads). Multiple client
processes can simultaneously hold a read lease; if a write request arrives
at the server, the read lease will not be renewed and the writer must wait
for two lease terms to expire. When there are no read leases, all reads
are sent to the server. Read caching improves the latency of 16KB reads
from 10us on the server down to 4.3-8us. We have also implemented a
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prototype write cache, which is only enabled for the ScaleFS-Bench and
LevelDB experiments. When cached, writes to newly created, private files
are kept local until fsync is called on that file, at which point the dirty data
is flushed to uServer.

Third, to avoid copying data between the application itself and uLib,
applications can directly access a memory region shared between uLib
and uServer. uFS introduces uFS_malloc to allocate from this shared
space; the shared buffer can be exposed to the end application for max-
imum performance, or hidden within uLib for portability. For exam-
ple, an application can use a buffer from uFS_malloc and then pass it to
uFS_allocated_write to avoid any copies between the application, uLib,
and uServer. Alternatively, if an application calls uFS_write(buf), uLib
calls uFS_malloc, copies the contents of buf to shared memory, and then
calls uFS_allocated_write. Avoiding this extra copy significantly im-
proves latency; for a 16KB append, copying data to the server requires
8.5us, sharing an allocated buffer requires 6.5us, and local caching re-
quires only 2.3us.

4.2 Multi-Threaded uServer
A single-threaded semi-microkernel may not be able to deliver the full
bandwidth of current I/O devices to applications. Monolithic kernel filesystems
scale with additional cores with task parallelism: application threads run-
ning in privileged mode can concurrently access the same data on differ-
ent cores. However, kernel filesystems have scalability bottlenecks from
data dependencies and synchronization [43, 144].

In contrast, uFS adopts data parallelism for scalability, dividing filesys-
tem data structures across different cores in a shared-nothing architec-
ture [184]. Thus, the server process can be composed of multiple threads.
A multi-threaded server must chose the granularity at which to divide
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inodes owned by each worker other than the primary; there is no relationship
between the directory namespace and ownership. All inodes begin on the primary,
but may be reassigned based on load. The primary owns all directory inodes.

filesystem data across threads: the more fine-grained, the more paral-
lelism, but also the higher the complexity and synchronization. In uFS,
each server thread holds exclusive ownership of an individual file and
each file can be mapped to any thread. Unlike other approaches that have
statically partitioned files or data across nodes [84, 96], in uFS the map-
ping of inodes to threads is dynamic and independent of the directory
hierarchy. The drawback of per-inode partitioning is that traffic to a sin-
gle (or busy) large file cannot be split across server threads.

Basic Architecture: uServer is divided into multiple threads, with
each thread pinned to a dedicated core. Each thread accesses the shared
storage device directly with its own qpair; qpairs are not shared across
threads, so no locking is needed. Similarly, each server thread has its own
ring buffer to communicate with uLib in each application.

uServer is composed of one or more worker threads; one of the worker
threads also acts as a primary. A ring buffer is added between the primary
and other workers for communication within uServer. Each worker owns
different file inodes and thus handles corresponding file operations. Be-
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yond regular inode operations, the primary has two additional responsi-
bilities. First, the primary owns all directory inodes; as a result, directory
operations are serialized in the primary. By locating all directories in the
primary, uFS avoids complex coordination for cross-directory operations.
Second, the primary tracks the assignment of file inodes to threads. The
primary possesses global knowledge of current inode assignments and
serves as the central hub for the mechanism of reassigning inodes. All
file inodes are initially assigned to the primary, but will be reassigned
to other workers depending on load. A division of inodes across server
threads is illustrated in Figure 4.2.

For directory operations, uLib contacts the primary thread. For file
operations, uLib can contact any thread; if the contacted thread is not cur-
rently the file owner, uLib is notified and redirects requests accordingly.

Scheduling and Caching: With a multi-threaded server, each thread
has its own ring buffer per-application, its own ready queue, and its own
qpairs with the storage device. In its scheduling loop, each worker now
also handles requests sent by the primary. A multi-threaded server changes
caching only in that the server user-level buffer cache is now per-worker.
In our prototype, each thread is allocated a fixed amount of pinned mem-
ory; dynamically sizing the buffer cache per worker remains future work.

Data Structures: Filesystem data structures are dynamically divided
across server threads, with the inode as the unit of division. The worker
that currently owns an inode is guaranteed to be the sole thread accessing
the corresponding data, both in-memory and on-disk; thus, the owner-
ship of an inode grants access to the data structures for handling opera-
tions involving only this inode (e.g., reading/writing/allocating data and
reading inode metadata). With this separation, there is no lock or data
contention for file operations. To enable independent writing of inodes
across threads uFS ensures an inode fits in the atomic unit of the storage
device (512B).
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To manage the dynamic assignment of inodes to workers, the primary
contains an inode map mapping inodes to workers; each worker tracks a
list of inodes it owns. Given the primary owns all directory inodes, the
primary modifies all dentries and performs all directory operations (e.g.,
creat); as a result, only the primary can allocate and deallocate inodes.
Thus, the primary owns the imap and all dentries.

The on-disk representation of data bitmaps are more complex to han-
dle since workers must allocate data blocks without synchronization; al-
though bitmaps provide efficient allocation, they do entangle operations
across threads given 512B atomic updates. The in-memory bitmap, in
contrast, can be shared by several threads given atomic updates to a sin-
gle cache line. Thus, the primary contains a dbmap block allocation table
that maps data bitmap blocks to workers. Once a data bitmap block is
used by a worker, that assignment is immutable; each worker allocates
many dbmaps at a time to efficiently perform its own block allocations.

uServer also minimizes the sharing of in-memory data structures across
cores. The dentry cache plays a critical role in performance, particularly
for path resolution and permission checking [198]. The scalable lock-
free concurrent dentry cache in uFS is based on an industry-quality hash
map [3]. As described previously, each level of a pathname is a key in the
map to retrieve the inode and the next level’s map; the inode’s permission
bits are compared with the application’s uid and gid. The dentry cache is
single-writer (primary) and multi-reader (other workers). For most calls
to open or stat, the paths are present in the dentry cache and readable by
any worker. When an entry is not present, the primary finishes the lookup
and inserts the items into the dentry cache. To guarantee atomicity, the
primary handles some operations. For example, for atomic renames, no
clients should see both filenames; thus, the primary deletes the relevant
items from the dentry cache, forcing workers to redirect lookups to the
primary.
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Figure 4.3: Inode Reassignment. The left side shows initial state and 5 steps
for inode 2 to be reassigned from w1 to w2. The right shows final state: the
InodeMap on the primary is updated and w2 can use data associated with inode
2 in the buffer cache.

Inode assignment mechanism: Figure 4.3 shows the mechanisms for
reassigning a file inode to a worker; the policies for load balancing and
determining the number of cores are described in Section 5.1. The as-
signment steps are as follows. 1) The owning thread, w1, initiates the
migration of inode I2 by removing I2 from its inode list and completing
any related requests. The owner notifies the primary of all state associated
with I2 (e.g., opened FDs and entries in the buffer cache). 2) The primary
marks the owner of I2 in its inode map as unknown and forwards this re-
quest to the new owner, w2. 3) The new owner sets up I2’s context by
linking I2 into its own inode list and extracting the buffer cache entries
it can use (no copying is performed); it sends an ack to the primary. 4)
The primary changes I2’s owner to w2 in the inode map 5) The primary
notifies w1 that the reassignment is complete. Any requests that arrive at
a non-owner are returned to the client to retry at the primary. Once the
primary knows the owner, it informs the client to redirect requests to the
new owner.
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4.3 Crash Consistency
uFS is a crash-consistent filesystem based on ordered metadata journal-
ing [162]. Like other ordered metadata journaling filesystems, uFS first
writes user data blocks to their in-place locations on disk; then, within
a transaction in the on-disk journal, it logs a description of the metadata
changes; after the transaction is marked committed, the in-place metadata
can be checkpointed and the transaction marked free. If a crash occurs
after the transaction is committed but before it is freed, recovery replays
the changes from the transaction. Without journaling, while running, uFS
only flushes dirty data blocks for files and directories and on a graceful
shutdown writes bitmaps and inodes.

Basic Architecture: uFS achieves highly-scalable performance with
crash consistency by allowing each thread to write to a shared journal
with minimum coordination. uFS achieves this by leveraging the prop-
erty that each inode has one owner and, therefore, the owner can per-
form the transactions involving that inode. However, this ownership is
complicated by the fact a migrated inode may contain blocks that were
allocated on different workers. Physical journaling at the per-block level,
as in ext4, would require writing block bitmaps that are not owned by the
inode owner, requiring coordination.

uFS avoids coordination with logical journaling. Each in-memory in-
ode tracks the associated updates to other metadata structures (e.g., the
data bitmap) in its ilog, an in-memory per-inode logical log that moves
with its inode if reassigned. Thus, when a worker writes a transaction
with an inode, it owns everything needed to apply the logical changes.
When an inode is reassigned, it leaves no residual state with the previous
thread [57]; as a result, an fsync on a reassigned inode requires no co-
ordination with other threads. The primary performs similar operations
for all directories with a logical dirlog.

uFS uses a global journal; the global journal simplifies the task of ap-
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plying transactions in order, while still allowing threads to write concur-
rently. Because each thread knows the number of journal blocks for a
transaction, it can atomically reserve a contiguous range of blocks; threads
writing later simply reserve the next range. Journal recovery handles the
case where entries that appear earlier in the journal are not committed.

Commits: In the common case of an fsync of a file, the owning thread
commits the single ilog. For batched transactions, multiple ilog entries
from the same worker can be placed in the same journal entry. For a full
system sync, each worker fsyncs its own inodes. Directory operations
(such as rename) that require atomicity across inodes imply that those
inodes have the same owner; in uFS, all directories are owned by the pri-
mary fulfilling this requirement. Like ext4, fsync on a dirty directory will
fsync all dirty directories; the primary commits the dirlog and ilogs of all
dirty directory inodes. uFS avoids orphaned inodes and correctly handles
directories that may be committed before the new inodes they reference.

While most data structures across threads are independent of one an-
other, some exceptions exist. First, an unlink of an inode owned by a
worker other than the primary (which owns the directory) requires reas-
signing the inode to the primary. Second, dependencies can occur across
file inodes due to re-allocated data blocks. For example, unlinking an
inode X may deallocate a block B which is then allocated to inode Y. To
prevent the incorrect ordering of Y, X in the journal, deallocated blocks
can be reallocated only after they are committed (similar to reuse after
notification [40]).

Checkpoints: A checkpoint, triggered by low free space in the journal,
writes committed metadata (i.e., inodes, bitmaps, and directory data) to
their in-place locations. Since the current in-memory metadata may be
dirty and not yet be committed, uFS maintains a stable in-memory copy
of all committed metadata that is used for checkpoints. uFS uses message
passing to update stable versions of data block bitmaps on other workers.
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Recovery: After a crash, committed transactions are replayed. The
primary challenge in uFS is to replay all committed transactions even if
some appear after uncommitted entries; this can occur since threads write
concurrently to the journal. If recovery were to stop at an incomplete
transaction, committed transactions would be lost.

Incomplete transactions can be skipped for the following reasons. First,
multiple fsyncs to the same inode are handled serially by the owner (or
workers, in the case of inode reassignment); thus, a later fsync to the same
inode will not complete if the previous fsync to that inode did not. Sim-
ilarly, if an incomplete entry contains multiple inodes, it is guaranteed
that none of those inodes are in later transactions. Second, similar to other
filesystems such as ext4, XFS, and Btrfs [168], on an fsync failure, uFS will
accept no more writes; thus, if recovery encounters an incomplete entry,
no subsequent journal entries will involve the same uServer thread.

Recovery finds the end of the journal by reading its superblock. Since
uFS updates this on-disk superblock only periodically, the contents may
be stale by N blocks; thus recovery reads N blocks past the end to find
valid entries.

4.4 Evaluation
uFS is implemented in about 35K lines of C++ code and is publicly avail-
able [6]. We have also developed tools to simplify development and to
check correctness. Our command line tool, cli, supports operations like
listdir, stat, and mkdir; cli also transfers files to and from the host filesys-
tem, explicitly manages inode ownership, and dumps metadata for check-
ing.

We run all of our experiments on an Intel Xeon Scalable Gold 6138
SkyLake 2.9GHZ processor with 20 physical cores. We use one machine
with 60GB (for microbenchmarks) and another with 120GB of RAM (for
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Random Memory Bounded Private
Sequential Disk Bounded Share

read x x x
write x x x

append - x x
stat1 - - x

statAll - - x
listdir - - x
creat - - x

unlink - - x
rename - - x

Table 4.1: 32 Single Op Microbenchmarks. An x indicates the specified
parameter is varied; - indicates it is not. Data operations are 4KB; writes
are non-allocating.

Filebench, and ScaleFS-Bench). Each filesystem runs on an Intel Optane
905P Series (960GB) SSD. The OS is Linux 5.4.0 and uFS uses SPDK 18.04.

We evaluate uFS by answering the following questions:

• How good is the baseline of single-threaded uFS compared to ext4?

• Is uFS scalable with multiple server cores?

• Is client-side caching effective?

• Does crash consistency add significant overhead?

4.4.1 Correctness

We ensure uFS passes the test cases in Linux’s LTP project [129], adding
inode reassignment across workers at controlled points. We use LevelDB
extensively to validate data integrity since it stresses the filesystem and
checksums all operations.
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We have experimentally verified that uFS is crash consistent for a range
of scenarios. Using an approach similar to others [148, 158],1 we emulate
crashes by systematically corrupting blocks in the on-disk journal; we re-
cover with those corrupted images and verify that the recovered filesys-
tem matches expectations. We use workloads with multiple applications
that perform allocations and commit to the journal. After recovery, all
files had the expected size and data, and all bitmaps were consistent. We
also test creat, rename, mkdir, and unlink; all directories and files are as
expected and uFS is consistent after recovery.

4.4.2 Benchmarks and Methodology

We evaluate single-threaded uServer by crafting 32 single op microbench-
marks to understand how well each basic primitive (i.e., filesystem oper-
ation) perform in uFS. We then evaluate the multiple-threaded uServer
with the single op microbenchmarks, comparing its performance to the
single-threaded uServer for each workload. Workloads from Filebench [193]
are also used to evaluate the scaled performance of uServer. Finally, we
evaluate the uServer with ScaleFS-Bench for scalability comparison with
a state-of-the-art scalable filesystem – ScaleFS [23].

We commonly compare with a monolithic kernel filesystem, ext4. We
use ext4 as our standard because it is a widely-used highly-optimized ker-
nel filesystem that scales well under many different workloads[144]; uFS
uses similar mechanisms and data structures to those in ext4 (as opposed
to the B-Trees in XFS [187] and Btrfs [135]).

To evaluate base performance and scalability, we have created 32 sin-
gle op microbenchmarks for data and metadata primitives, as described
in Table 4.1. The benchmark contains data operations (read, write, and
append) and metadata operations (stat1, statAll, listdir, creat, unlink, and

1We cannot use CrashMonkey because the tool replays bio_requests not present in
SPDK.
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Figure 4.4: Data Operation Performance (a): Single-Threaded. The x-
axis shows the number of clients (up to 10), and the y-axis shows the throughput.
The number of uServer cores is fixed at 1. In “*-Mem-*” workloads, client read-
caches and the server cache are warmed for uFS; the buffer cache is warmed for
ext4; writing cache in uFS is not enabled and we ensure no disk access happen in
“*Write-Mem-*” cases. Results with ext4 no-readahead (i.e., nora) are shown
for sequential reads from disk. “nj” indicates the journaling is disabled.
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Figure 4.5: Data Operation Performance (b): Multi-Threaded. The x-
axis shows the number of clients (up to 10), and the y-axis shows the throughput.
The number of uServer cores is scaled to match the number of clients (up to 10).
In “*-Mem-*” workloads, client read-caches and the server cache are warmed for
uFS; the buffer cache is warmed for ext4; writing cache in uFS is not enabled and
we ensure no disk access happen in “*Write-Mem-*” cases. Results with ext4
no-readahead (i.e., nora) are shown for sequential reads from disk. Both ext4 and
uFS use journaling.
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Figure 4.6: Metadata Operation Performance: Single-Threaded vs.
Multi-Threaded. The x-axis shows the number of clients (up to 10), and the
y-axis shows the throughput. In (a), the number of uServer cores is fixed at 1;
in (b), the number of uServer cores is scaled to match the number of clients (up
to 10). In all the experiments, the benchmark suite performs warmup round for
both systems. “nj” indicates the journaling is disabled and both ext4 and uFS
use journaling in (b).
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rename). The combination of each operation and its parameters generates
32 workloads, stressing uFS in different aspects.

For data operations, the access pattern could be either sequential or
random, and the target data could be completely in-memory (i.e., after
warmup) or on-disk (i.e., accessed once with a cold cache). Metadata
operations are always memory-bound as the amount of metadata is rela-
tively small. For all operations, our microbenchmarks cover cases where
the accessed metadata/data is shared by multiple clients and where the
accessed metadata/data is private to each client.

We present the base performance of single-threaded uFS and ext4 in
Figure 4.4 (data operations) and Figure 4.6 (metadata operations), both
in (a) for later comparison with the scaled uServer in (b) (§4.4.4). We
describe the details of the workloads in below sections.

4.4.3 Single-Threaded uFS

We have two goals in evaluating single-threaded uFS. First, we demon-
strate that with a single client, uFS delivers reasonable performance rela-
tive to that of a monolithic kernel filesystem, ext4. Second, we show that
as the number of clients increases, a single uServer core is a bottleneck for
I/O-intensive workloads.

For base performance, we examine only the left-most point in each
graph (1 client). For many in-memory data operations, specifically read
(sequential and random) and append, ext4 and uFS perform similarly.
The exceptions are that ext4 performs better on in-memory overwrites
(sequential and random, shared and private files); one client performs
particularly well on ext4 because data is not shared (nor invalidated)
across CPU caches.

For on-disk workloads, uFS performs better for append and random
reads; with a single client, uFS outperforms ext4 by 1.5x for random reads
due to the efficiency of its device-access path. Ext4 performs better for
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sequential reads because read-ahead is not yet implemented in uFS; dis-
abling read-ahead in ext4 removes this advantage. For on-disk overwrite
workloads, we lower the kernel’s dirty_flush_ratio to ensure that ext4 writes
a similar amount of data to disk as uFS; however, overwrites still per-
form worse on uFS because it does not yet perform sophisticated batch-
ing for background flushes. Finally, uFS performs notably better for syn-
chronous journal-intensive workloads (e.g., sequential appends to disk)
due to its fast device access.

For metadata operations from a single client (Figure 4.6), uFS per-
forms better than ext4 on listdir, create, and rename, and similarly on stat
and unlink; uFS performs especially well on listdir by pre-fetching den-
tries during opendir. Overall, uFS is sufficiently well-optimized relative
to ext4 for uFS to be a reasonable semi-microkernel building block.

As illustrated by the full set of data points in Figure 4.4 and Figure 4.6
(a), the scalability of single-threaded uFS and ext4 with additional clients
is dramatically different. Although many write and append workloads
had comparable performance on a single core, ext4 scales with the num-
ber of clients, whereas single-threaded uFS does not. For many of the
metadata operations, scalability is flat for both systems; one exception is
stat, for which ext4 scales but single-threaded uFS does not. For many
read workloads, while both ext4 and single-threaded uFS scale some-
what, ext4 scales better.

We explore single-threaded uFS for random on-disk reads in more de-
tail. Figure 4.7 shows the CPU utilization of the uServer as a function of
the bandwidth it is able to deliver; although increasing the size of reads
(4KB-64KB, across lines) and the number of clients (within a line) im-
proves bandwidth, the single core is 100% utilized with just 2 or 3 clients
and thus never obtains the peak device bandwidth of 2.5GB/s. These
results show that multiple server cores are required for scalable perfor-
mance.
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Figure 4.7: Single-threaded Server Bottlenecks. CPU utilization as a func-
tion of delivered bandwidth for different random read sizes and numbers of clients
with 1 uServer core.

4.4.4 Multi-Threaded uFS

Given a more intense I/O workload, the multi-threaded uServer can ef-
fectively utilize additional cores. We demonstrate this scalability for the
single op microbenchmarks, for Filebench’s Varmail and Webserver [193],
and for ScaleFS-Bench [23]. We show that journaling does not harm the
scalability of uFS, and uFS benefits significantly from client-side caching.

4.4.4.1 Single Operations

Figure 4.5 and Figure 4.6 (b) show the performance of uFS and ext4, both
with ordered metadata journaling, on the single op microbenchmarks.
The server is allocated as many cores as there are clients; this represents
the best-case performance for uFS when no sharing of workers or load
balancing is needed.

Comparing uFS’s performance to that in Figure 4.4, we see that many
operations benefit significantly from additional server cores. In particu-
lar, the throughput of reads to private on-disk files increases significantly
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Figure 4.8: Multi-threaded Varmail. Different lines represent different num-
bers of uServer threads.

since each worker can perform independent I/O and quickly reach the
device throughput limit; uFS now scales slightly better than ext4 with
read-ahead disabled. Similarly, writes (both random and sequential) and
appends to private files, whether in-memory or on-disk, scale since each
worker can be used effectively. The scalability of writes and appends
to shared files does not improve because the load is directed to a sin-
gle worker. uFS makes this trade-off based on the assumption that even
though file sharing is common, intensive shared-file access within a small
time interval is rare.

The scalability of reads to memory remains similar to that with a sin-
gle core since client caching was effective to begin with. Finally, metadata
operations involving directories are still handled by the primary, and thus
do not scale; stat on private files and statall on private and shared directo-
ries all scale well since groups of files can be handled by different workers.

Comparing ext4 with journaling in Figure 4.5 to ext4 without journal-
ing in Figure 4.4, we see that random writes to private in-memory files
perform much worse with ext4 journaling, because ext4 starts a journal
transaction (and suffers from spinlock contention) even though an over-
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Figure 4.9: Multi-threaded Webserver. Different lines represent different
percentages of the workload fitting in the client cache.
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Figure 4.10: Multi-threaded Webserver (Readonly Workload). Lines
show the impact of leases in uFS for a 50% client cache hit rate.

write operation doesn’t require a new journal transaction [5]. The im-
proved performance of ext4 with journaling on create is a known anomaly [144].

Journaling in uFS does not have as strong of an impact because each
worker thread participates in writing to the journal. With more detailed
experiments of uFS journaling (not shown), we have verified that as the
frequency of fsync increases, performance of journaling decreases, as ex-
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pected, and this decrease is due to writing more data to the device and
not synchronization. Writing to the global journal involves a small crit-
ical section to reserve the contiguous blocks, but eliminating this syn-
chronization does not improve performance (validated by writing to per-
worker journals). We have also verified that journaling in uFS does not
impose overheads on write-intensive in-memory workloads which must
track logical changes to in-memory inodes in ilogs. Journaling and no-
journaling uFS obtain equivalent throughput (graph not shown): about
900kops/s with 64 byte writes and 350kops/s with 4K writes. All of our
subsequent experiments use journaling in both ext4 and uFS.

4.4.4.2 Varmail: Scaling uServer

uFS obtains good base performance and scalability on I/O-intensive work-
loads beyond single operations. The Varmail benchmark in Filebench [193]
performs reads and writes to many 16 KB files; we modify Varmail to per-
form periodic fsyncs so that data is written to disk during the benchmark.
Varmail stresses file allocation and deletion, and is characterized by many
small writes to separate files followed by fsyncs. In uFS, the file creates
are all performed on the primary.

We compare uFS and ext4 scaling the number of clients, closely exam-
ining the benefits of additional workers.2 As shown in the first graph of
Figure 4.8, uFS is much more scalable than ext4 on Varmail. Ext4 does not
scale well with additional clients because the one jbd2 journaling thread
becomes a bottleneck performing the many fsync operations. uFS is well-
suited to the Varmail workload because each client reads and writes in-
dependent files, which can be distributed efficiently across workers.

Even for the base case of a single client and worker, uFS performs bet-
ter than ext4 due largely to the difference in fsync time (30us vs. 100us).

2Since Varmail is relatively static, uFS performs static inode balancing such that the
primary handles no file inodes given many other workers (⩾ 3), and only a percentage
of file inodes with 1 or 2 others.
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When the number of clients is scaled but uFS is limited to a single worker,
uFS performs better than ext4 up through 7 clients. Increasing the num-
ber of uServer workers to 2, 3, and 4 continues to increase throughput
as each worker initiates more I/O requests; increasing beyond 4 work-
ers does not improve performance because the primary is the bottleneck
(CPU > 75%). These results motivate the need to dynamically choose the
number of workers to not waste resources.

4.4.4.3 Webserver: Caching in uLib

We evaluate how well uFS handles read-intensive in-memory workloads
using the Webserver in Filebench [193]. Each client opens, reads, and
closes 10,000 16KB private files; a small write is performed to a log file
after 10 reads. Both ext4 and the uFS server easily cache the working
sets for all clients in main memory and thus neither triggers substantial
I/O read traffic. The Webserver stresses the ability of a single worker to
handle many appends to a single file and for clients to efficiently cache
recently-accessed in-memory data.

We isolate uFS client cache performance by configuring each client’s
read cache to contain from 0 to 100% of the client’s working set; each
client’s FD cache fits all its opened files (requiring only 64B/FD). The
second graph of Figure 4.8 shows uFS outperforms ext4 when the client
cache hit rate is above 25%: handling reads within the uLib client is ex-
tremely efficient. Furthermore, uFS outperforms ext4 with only a few
clients when their append rate to a single file can be handled by a sin-
gle worker.

The third graph of Figure 4.8 shows the effectiveness of FD and read
leases for a 50% read-cache hit rate (patterns for other hit rates, not shown,
are similar). In this workload, read leases without FD leases are not ben-
eficial because every read is preceded by an open. FD leases on their own
are effective since the benefit of an FD lease is much higher than a read
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Figure 4.11: ScaleFS-Bench Performance. The throughput of smallfile and
largefile workloads. ext4-ramdisk indicates ext4 is using ramdisk. In the second
graph, uFS enables the write cache to handle 256K continuous 4KB append before
fsync().

lease (open: 5.5us on server vs. 1.5us local; 16KB read: 10us on server vs.
4.3-8us local). As shown by the final uFS performance, given an FD lease,
a read lease provides additional benefits.

Since the cost of a client opening a file and reading from the buffer
cache in ext4 (2.5us and 6.5us) is less than the cost of a client transfer-
ring data from the server, uFS performs client caching with read and FD
leases. While both leases are needed for uFS to outperform ext4 for read-
intensive in-memory workloads, FD leases are especially valuable given
their low memory overhead.

4.4.4.4 ScaleFS-Bench

We evaluate uFS with two more workloads to better understand how uFS
compares to ScaleFS, a scalable kernel filesystem developed in xv6 [23].
We port their smallfile and largefile benchmarks (with minimal modi-
fications) and follow their methodology of using ext4 on ramdisk as the
baseline. We cannot compare ScaleFS directly to uFS due to a lack of hard-
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ware support for NVMe in xv6.
In the first graph of Figure 4.11, each application creates 10,000 1KB

files, calls sync once, reads each file, and unlinks each file. uFS performs
better than ext4 at each data point in the graph, yet ext4 scales better due
to the burst unlink phase that stresses uFS’s primary worker. If we elim-
inate the unlink phase, uFS has 1.4x performance on the right-most data
point, indicating an optimization for bulk primary-only operations (such
as unlink) would be useful.

In the second graph, each benchmark instance creates one private file,
issues 100MB of writes (4KB at a time), and finally calls fsync. uFS achieves
device bandwidth (2GB/sec) much faster than any others, yet shows some
fluctuation when increasing the number of applications. We believe that
more careful scheduling of device IO is required to regulate bursts from
multiple concurrent uServer threads and provide consistently high per-
formance. Enabling the write cache avoids unnecessary IPC and thus bet-
ter utilizes the device.

One surprising finding is that comparisons should be performed on
actual devices – not ramdisk – even when focusing on CPU scalability.
As seen from the graphs, ext4 on the fast SSD has similar or better per-
formance than ext4 on ramdisk. Upon further investigation (with the
RandRead-Disk-P workload in Figure 4.5), we found that the kernel spends
a large amount of time waiting on ramdisk IO after yielding at io_schedule.
Thus, the performance of a filesystem run on ramdisk may be limited by
the less-optimized block layer.

4.5 Summary and Conclusions
In this chapter, we show that uFS, a filesystem semi-microkernel, achieves
strong single-thread performance and excellent multi-core scalability.

To overcome the performance issues of monolithic kernels (costly sys-
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tem call and I/O stacks) and microkernels (IPC overhead), uFS incorpo-
rates techniques to exploit modern hardware and customize for filesystems
to capitalize on the architectural potential: fast app-filesystem IPC, non-
blocking filesystem threads, and kernel interaction off the common path.

As opposed to the multi-core scalability bottlenecks found in the Linux
kernels [23, 43, 144], uFS allows each core to operate independently as
much as possible, avoiding synchronizations among workers for in-memory
data structures by dynamically partitioning file inodes across threads,
and enabling multiple concurrent sync transactions by a globally-shared
logical journal.

Furthermore, uFS addresses other challenges needed for realizing a
fully functional and high-performance filesystem, such as correctness of
crash consistency, a scalable dentry cache, copy elimination, and client-
side caching. As we have shown in our evaluation, each technique is nec-
essary for the performance of a given operation and the workloads that
stress a particular request handling path of the filesystem.

We use a variety of microbenchmarks and macrobenchmarks to evalu-
ate uFS. Our 32 single-operation microbenchmarks show that uFS achieves
low latency and high throughput, and it scales well, isolating the perfor-
mance of each operation, and the impact of each filesystem component
and design choice. The benchmarks and results are also helpful to make
performance estimations for more complex workloads. uFS, while using
multiple threads, offers high performance under Filebench’s varmail and
webserver benchmarks and demonstrates its scalability under the ScaleFS
benchmark.

So far, we have focused on the absolute best performance uFS can
achieve while retaining reasonable complexity, without much considera-
tion for resource efficiency. However, as an OS system service, uFS needs
to inherit and fulfill an OS-level role for resource management, the topic
of the next chapter. Understanding and improving the upper bound of
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performance is crucial for designing and measuring the costs and bene-
fits of resource efficiency.
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5
Resource Elasticity

One major architectural difference innate to semi-microkernels is the de-
coupled threads of applications and the OS service [99, 134], allowing to
scale the OS service independently from the applications using them [134].

In a monolithic kernel, the CPU resources used by applications and
filesystems are coupled because they use the same threads to execute
code, where the application portion is in user space and the filesystem
portion, written by kernel developers, is in kernel space.

With a filesystem semi-microkernel, the applications and filesystems
no longer share the same thread entity, allowing the filesystem to scale re-
sources independently of the number of application threads. Intuitively,
during peak load, more resources, especially CPU cores, are needed to
handle the application workloads. The filesystem needs to scale up to
meet these demands, and, equally importantly, scale down when the load
decreases to avoid wasting cores.

In this chapter, we discuss the resource elasticity of uFS, focusing on
CPU resources. We present the design of the load management feature
of uFS, starting with the mechanism to effectively collect runtime statis-
tics and enforce load management decisions. uFS incorporates a central-
ized thread that periodically gathers runtime statistics from the worker
threads and makes decisions based on our load management policies.

We extract simple statistics that enable high-quality decision-making.
Our algorithm detects CPU resource mismatches with the current load,
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determines the appropriate number of cores, and ensures proper load dis-
tribution across workers. It addresses core allocation by estimating and
comparing the resulting performance and CPU efficiency across different
configurations: adding a core, removing a core, or retaining the current
number of cores. This comparison is facilitated by the algorithm, which
orthogonally solves the load balancing problem by estimating the ideal
load status for each worker given a particular number of cores.

The chapter is organized as follows. We first present the design of the
load management (§5.1), including the basic architecture, policies, and
algorithms. We then evaluate the CPU resource elasticity of uFS using
microbenchmarks with controlled changes of various parameters such as
data size, intensity, and hotness (§5.2.2 and §5.2.3). Finally, we demon-
strate that uFS with load management meets or exceeds Linux ext4 perfor-
mance, in some cases by a large margin under high application demand
(§5.2.5).

5.1 Load Management
The load management feature of uFS adapts the number of cores dedi-
cated to the server and balances the allocation of inodes across those cores
as a function of the current workload. Determining the number of cores
is both a challenge and an opportunity that does not exist for traditional
kernel filesystems. One option is to statically set the number of uServer
threads equal to the number of I/O-intensive application threads; this
enables each application thread to send most of its work to a dedicated
server thread. However, for many workloads, there is a mismatch be-
tween the ideal number of application and server threads: if a few server
threads saturate the I/O device, there is no benefit to adding more; if a
single client generates significant I/O, additional threads may be useful.
Therefore, the option we explore is to dynamically choose the number of
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server threads to obtain both high I/O throughput and a low core count.
For a given number of cores, uFS determines an assignment of in-

odes to workers that balances the load with a minimum of inode reas-
signments. This inode assignment must take into account a number of
factors. First, the amount of work for each inode is different, depending
on the rate of requests, the types of requests (e.g., reads vs. writes or
size), and current system state (e.g., whether data is cached and opera-
tions will be in-memory). Second, the amount of work associated with an
inode can change substantially over time (e.g., accesses to a particular file
can be bursty or only occur in one phase of an application [75, 179]). Fi-
nally, co-locating inodes from the same client can improve performance,
due to queueing delays.

Basic Architecture: uFS adds a low-overhead load manager thread to
the server (not pinned to a dedicated core); the manager wakes periodi-
cally to gather load statistics from each worker, decide on the number of
cores to use in the next window, and to direct the workers to perform load
balancing. The manager has minimal responsibilities: it tells each over-
loaded worker only the goal it must achieve in terms of how much load to
redistribute; the manager does not tell workers how to achieve this goal
(e.g., which inodes to redistribute). Thus, the overhead of identifying
inodes is distributed across the workers; each worker contains detailed
knowledge of the load caused by each inode and can accurately determine
which inodes should be moved. The primary, handling all directory op-
erations, has extra work compared to other workers; this load is included
naturally in this approach and thus fewer file inodes may be allocated to
the primary.

Goal and Statistics: Though different goals are possible, uFS tries to
minimize both the number of cores and the queuing time of each request,
by keeping each below a configurable threshold. Thus, each worker col-
lects the CPU cycles spent on useful work within its scheduling loop, the
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CPU cycles spent on work for each client, and congestion, the average num-
ber of independent requests in the queue ahead of each request.1 Statis-
tics are smoothed across collection windows; the manager does not need
a globally-consistent view and may read worker statistics at slightly dif-
ferent times.

The manager translates between per-client congestion and per-client
load; both metrics are needed because clients care about their observed
congestion, whereas the system can more easily manage load. The conver-
sion takes into account dependencies across synchronous requests from
the same client and non-linear effects at high loads.

Algorithm: Periodically (every 2ms), the manager determines whether
cores should be added/removed and/or load should be redistributed.
The current N workers are split into source and destination sets based
on whether their congestion falls above or below a threshold. If there are
no workers with high congestion, the manager predicts that the workers
can be reduced to N− 1 if a set of workers can accept all the load from
the least-busy worker while maintaining low congestion. Otherwise, the
manager determines if better load balancing on the current N workers
would reduce congestion below the threshold. Because keeping requests
from one client on the same worker reduces queueing delays for syn-
chronous requests, the manager first attempts to move all load associated
with an entire client; if this is not sufficient, the manager determines per-
centages of client load to move. Finally, if no amount of load can be moved
to meet the congestion goals, these steps are repeated with N+ 1 cores.
To increase stability, the predicted congestion must match measurements
for several windows before the number of cores will be changed or load
shifted.

At the end of each balancing window, the manager has determined the
amount of per-client load to shift from each over-loaded worker to each

1Requests to the same inode are not independent because reassigning that inode will
not reduce the waiting time for related requests.
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under-loaded worker. This goal is shared with each over-loaded worker,
which uses per-inode load statistics to determine a set of inodes with ap-
propriate load. Workers avoid reassigning inodes with low (or unknown)
activity, since moving those inodes incurs overhead without substantially
shifting load. The worker uses the inode reassignment mechanism de-
scribed previously.

5.2 Evaluation
uFS balances load across available workers and adjusts the number of
workers to achieve low client congestion (performance) and a reason-
able core count (CPU efficiency). We evaluate the load balancing and
core allocation strategies using well-controlled, dynamic workloads. We
also evaluate uFS with load management using LevelDB [68]. We use the
same machines with 60GB of RAM for microbenchmarks and 120GB of
RAM for LevelDB, as in §4.4. Each experiment is repeated 5 times.

Our evaluation in this section answers the following questions:

• Can uFS adapt to workload changes?

• How well does load management in uFS improve CPU efficiency?
And how does it affect performance?

• How well does uFS handle an I/O-intensive application such as Lev-
elDB running the YCSB workloads?

5.2.1 Benchmarks and Methodology

We again create two microbenchmark suites: one for load balancing and
another for core allocation evaluation. The workloads are designed to ex-
ercise uFS with load management under various degrees of heterogeneity
and by inducing different types of load changes, respectively.
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We construct 9 load balancing microbenchmarks, each varying one pa-
rameter as shown in Table 5.1. Each base workload (i.e., a, b, c, e, f, or
g) only varies one parameter between half of the clients, including in-
memory vs. on-disk, data size (4KB vs. 16KB), hot vs. cold data, and ac-
cess pattern (overwrite vs. append). Therefore, with each base workload,
we independently stress one type of workload variation. Then, the com-
binations of reading workloads (i.e., abc), writing workloads (i.e., efg),
and all workloads (i.e., all-abcdef) gradually increase the heterogeneity
of workloads.

We also create 8 core allocation microbenchmarks, each of which varies
the load placed on the filesystem in a single dimension, as shown in Ta-
ble 5.2. Core-a changes the percentage of in-memory workload versus on-
disk workload by altering the frequency of fsyncs among writes; core-b
changes the load intensity of the clients by altering the think time between
each application’s requests; core-c changes the number of clients stress-
ing the system, and therefore the volume of data they access changes as
well; core-d changes the size of in-memory writes, altering the amount of
work needed in the in-memory writing path.

We compare uFS with the baseline of uFS_max, where each client is
matched with a dedicated worker; uFS_max favors performance without
constraints on core usage. Finally, we evaluate uFS with a production-
quality data-intensive application, LevelDB [68], using the two load and
six YCSB workloads, comparing with Linux ext4. We also report the num-
ber of cores used by uFS for each workload.

5.2.2 Load Balancing

We first demonstrate that uFS can balance inodes with different costs
across a fixed number of cores. We compare uFS to two alternatives: uFS_RR
(round-robin inode allocation on the same number of cores as uFS) and
uFS_max (each client is matched with a dedicated worker). We stress dif-
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Parameter
read-a in-mem / on-disk (4KB)
read-b 4KB / 16KB (on-disk)
read-c hot / cold (4KB, in-mem)

read-abc 2 read-a, 2 read-b, 2 read-c
write-e 4KB / 16KB (with fsync)
write-f overwrite / append (in-mem)
write-g hot / cold (overwrite, in-mem)

write-efg 2 write-e, 2 write-f, 2 write-g
all-abcefg read-abc, write-efg

Table 5.1: 9 Load-Balancing Microbenchmarks. Each base workload
contains 6 clients generating work that varies per inode. The combination
workloads contain 6 clients from the base workloads. Each client accesses
between 50 and 200 different inodes.

Parameter Workload Range # of Steps
core-a On-disk / N*write(4K) N: 19

in-mem + flush (1, ∞) 7
core-b Think In-mem read T (us): 20

time + think(T) (15, 2) 6
core-c # files In-mem read clients: 12

(1, 6) 4
core-d Write write(N) N (KB): 17

size + flush (64, 4K) 5

Table 5.2: 8 Core Allocation Microbenchmarks. Each workload varies
over time a specific parameter: on-disk vs. in-memory, think time, num-
ber of files, and the size of operations. One version varies the parameter
gradually (e.g., in 19 discrete steps) while a second more abruptly (e.g.,
in 7 steps). Each workload contains up to 6 clients each accessing 40 files.

ferent costs per inode by the load balancing microbenchmarks (Table 5.1).
For six clients, uFS and uFS_RR are allocated only four workers whereas
uFS_max uses six.

Figure 5.1 compares the throughput of uFS and uFS_RR, scaled to
uFS_max. For all workloads, uFS achieves between 88% and 100% of the
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Figure 5.1: Load Balancing Performance with Fewer Cores. The through-
put of uFS and uFS_RR running on only 4 workers are each normalized to the
throughput where each of the 6 clients has its own dedicated worker. Each exper-
iment is repeated 5 times.

uFS_max’s throughput, but on 4 cores as instead of 6; uFS_RR achieves
throughput only between 61% and 84%. Across workloads, the more sig-
nificant the difference across operation costs (e.g., workloads read-abc
and all-abcdef), the more important it is to quickly find a suitable place-
ment of inodes. For all workloads, the median time for uFS to find a stable
placement is low, between 25 and 75ms.

5.2.3 Core Allocation

We show that uFS dynamically adapt to a changing workload and ad-
just the number of cores by the core allocation microbenchmarks (Ta-
ble 5.2). We again consider a maximum of 6 client threads. In these ex-
periments, uFS determines a minimal number of cores that provides suf-
ficiently low congestion and then balances inodes across them. We com-
pare to uFS_max where each client has a dedicated core. Figure 5.2 shows
that uFS delivers between 91% and 98% of the throughput of uFS_max
with only 60% of the cores.
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Figure 5.2: Core Allocation Performance. Each bar shows the performance
of uFS normalized to that of uFS_max, where each of the 6 clients has its own
dedicated worker. The numbers on top of each bar are the average number of cores
used by uFS.

5.2.4 Dynamic Behavior under a Challenging Workload

We illustrate the adjustments of uFS over time with a challenging work-
load: 8 different I/O-intensive clients enter and exit the system and change
their offered load (described in the caption of Figure 5.3). Figure 5.3
shows the CPU utilization on uFS_max given 8 dedicated cores. Even
with 8 I/O-bound clients, 8 server cores leads to many wasted cycles: each
core is below 50% utilization and some are below 20%.2 Due to polling
by the server thread, the OS scheduler believes each thread is using 100%
of the CPU once the worker is active (i.e., has non-zero utilization in the
graph); for utilization, we show the percentage of CPU cycles effectively
performing uFS work. Using an average of 4.73 active (up to 8) cores,
clients on uFS_max achieve 695Kops/s (not shown),

The two graphs in Figure 5.4 and Figure 5.5 show the throughput and
CPU utilization of uFS; uFS is configured to start on 1 core but can grow to
8 cores. The CPU graph shows that one core handles the load of the first

2The periodic CPU spikes are due to long tail latencies when polling the device and
occur on cores with more on-disk work.
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Figure 5.3: Dynamic Behavior under 8 App Workloads (1): CPU Uti-
lization where Core Usage is Not Restricted. The number of uServer cores
are set at 8. Workloads: a-0: large on-disk read, a-1: small on-disk read, b-
0: cold in-memory read, b-1: hot in-memory read, c-0: write+sync large, c-1:
write+sync small, d-0: append, d-1: overwrite. Seconds 0-7: one app joins each
second (b,c,a,d); sec 8: a,d increase thinktime; 9: a,d exit; 10: b,c increase think-
time; 11: b,c exit.

two clients; as more clients join through time 8s, uFS activates new cores
when congestion is high and rebalances inodes. At time 8, uFS observes
that core 0 is congested, so adds another core and shifts work from both
core 0 and 4 to core 5. When the workload decreases after time 9, uFS
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Figure 5.4: Dynamic Behavior under 8 App Workloads (2): CPU Uti-
lization with Load Management. Workloads are the same as in Figure 5.3.

removes cores and rebalances inodes. Due to its rebalancing and core al-
location policies, uFS achieves similar throughput with a smaller number
of cores; uFS delivers 609Kops/sec on an average of 3.4 (up to 6) cores, or
88% of the throughput with 72% of the CPU resources.

5.2.5 LevelDB

We lastly show that uFS performs and scales well for LevelDB [68] with
YCSB workloads. We measure LevelDB with two ways to load the database
and six YCSB workloads [44]. Figure 5.6 shows that on all workloads,
uFS has better base performance than ext4, and much better scalability.
For I/O-intensive workloads, ext4 becomes a bottleneck due to its single-
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Figure 5.5: Dynamic Behavior under 8 App Workloads (3): Applica-
tion Throughput with Load Management. Workloads are the same as in
Figure 5.3.

threaded journaling, and adding more load to the system does not lead
to an increase in ext4 throughput. uFS scales very well with increasing
load. Due to the many private writes performed by LevelDB clients, the
write cache is especially beneficial in uFS. With additional load, the uFS
load manager determines that additional cores are beneficial and thus
allocates an average of 6 server cores for the 10 clients across the eight
workloads. Thus, the throughput of uFS scales well with the number of
clients; for example, on YCSB-F with 10 clients, uFS delivers 1.88x the
throughput of ext4.

In Figure 5.6, the system with uFS (uServer) uses between 4 and 8
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Figure 5.6: Performance of LevelDB on YCSB. The number of clients is
increased along the x-axis. The workloads are: Sequential Load, Random Load,
A (write-heavy, w:50%, r:50%), B (read-heavy, w:5%, r:95%), C (read-only),
D (read latest, w:5%, r:95%), E (range-heavy, w:5%, range:95%), and F (read-
modify-write:50%, r:50%). We use 16B keys and 80B values with 10M entries,
for 1GB per client. YCSB runs 100K operations. Across the 8 workloads uFS
allocates 4, 7, 4, 8, 7, 6, 5, and 5 cores for 10 clients.
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more cores than that with ext4. We conduct another experiment (not
shown) in which the number of LevelDB clients running on ext4 is in-
creased to use the same number of cores as uFS. However, since the ad-
ditional cores cannot be used effectively by ext4, more clients and cores
do not result in any significant performance gain (a maximum of 7% im-
provement on ycsb-e and some performance degradation on other work-
loads).

5.3 Summary and Conclusions
In this chapter, we present the load management feature of uFS, which
adapts the number of cores dedicated to the server and balances the load
across cores. Because semi-microkernels scale independently of applica-
tions, they can benefit from additional cores and provide scalable perfor-
mance. This is demonstrated by our LevelDB experiments, which com-
pare uFS to the monolithic kernel filesystem, Linux ext4.

We have shown that uFS can dynamically control the number of cores
through well-designed microbenchmarks and real application workloads,
achieving CPU resource efficiency while offering high performance. Fur-
thermore, uFS adapts well to workload changes, and such resource elas-
ticity is essential due to the dynamic nature of modern data-intensive ap-
plication workloads [28].
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6
Beyond Full System Crash Recovery:

Process Crash Recovery

We explore another major architectural advantage of semi-microkernel
architecture: fault tolerance [32]. Microkernels have been complimented
for better fault tolerance. However, such benefit is precisely fault contain-
ment [174] – a filesystem crash does not bring down the entire system.

The benefit of fault containment is significant, as other system ser-
vices, the underlying OS, and unrelated applications naturally continue.
The question then is: can applications of the filesystem seamlessly con-
tinue with a restarted filesystem server?

The answer to this question is an unfortunate no, yet not surprising for
stateful filesystems – restarting the filesystem server is insufficient. Be-
cause the filesystem server buffers updates in memory for performance,
there is a state gap between the application’s perceived states and the on-
disk states. However, a simply restarted filesystem server can only rely on
the outcome of full-system crash (i.e., s-crash) recovery, ensuring that the
on-disk states are consistent, but not addressing the state gap. To avoid
confusion and data loss to applications, the state gap must be exactly re-
covered, i.e., seamless recovery is desired.

In this chapter, we realize seamless recovery in Nebula, equipping uFS
with a range of mechanisms to perform filesystem process recovery. Neb-
ula answers essential questions: How do microkernel filesystems allow
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seamless recovery such that applications can continue without noticing
that the server has failed? What additional opportunities does the nat-
urally continued host OS provide? And how can such enhancements be
incorporated into uFS without sacrificing its performance?

We introduce exit activation, a novel mechanism for process crash re-
covery. Exit activation is code that runs when a process crashes, accessing
the memory states before it is reclaimed by the OS. This allows the failed
server’s memory state to contribute to the recovery of state gap. Com-
bined with other mechanisms for a clean restart and lightweight protec-
tion of in-memory states, exit activation enables Nebula to achieve fast
and seamless recovery with negligible overhead in the common path.

The first challenge is a robust and efficient restart mechanism as the
foundation. One principle of Nebula is a clean restart: to discard problem-
atic states from the failed server and start a fresh filesystem process for
future request serving. The restart mechanism first ensures that the exit
of the filesysem server is timely monitored and the restart is performed
as soon as possible. The restart mechanism also re-establishes the con-
nection between the fresh filesystem server and the applications, as well
as the connection between the filesystem server and the devices.

The second challenge is the robustness to memory corruption. How
can we trust the memory of a just crashed process? We follow the princi-
ple of limited trust of memory. The idea is that, exit activation only accesses
a piece of memory that is known to be safe during a p-crash recovery.
Techniques such as checksums and replication are employed to protect
the memory and data structures positioned in the trusted memory.

The final and important challenge is to recover the state gap in the
fresh filesystem. We introduce an exit activation data structure: p-log,
which is the only memory region that is trusted by exit activation, that
captures the state gap by recording the sources (i.e., operations) and rel-
evant information. Our principle is no force flush to avoid the performance
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slowdown in the common-path. The intuition is that the state gap, de-
pending on when and what to flush, should be decided by the original
filesystem, representing the design rationales for durability correctness
and performance optimization policies. The main issue with the p-log is
that when an operation’s effect is made durable, the effect should be re-
moved from the state gap. However, the effects of operations are likely
to be made durable in a non-sequential-order. Our finding is that replay-
ing the p-log requires ignoring some of the operations, and sometimes,
modifying one operation to another existing system call API (e.g., write
to lseek), such that the original code base can be used.

The chapter is organized as follows. We first present the crash model
of monolithic and microkernel filesystems, discussing the implications
and opportunities (§6.1). We also discuss the benefits and necessities of a
separate p-crash recovery machinery (§6.1.3 and §6.1.4). We then present
the design of Nebula (§6.3), including the fault model, the goals, and the
challenges. Next, we present the core data structure for exit activation,
p-log, and how it addresses the state gap problem via AIM algorithm
(§6.3.5). Fianlly, we demonstrate that Nebula meets its goals thorough
a systematic evaluation (§6.6), including extensive fault injection (over
30,000+ cases) under complex application workloads, and performance
analysis of the normal execution and the recovery. We also perform a
comprehensive study of application’s reaction to the state gap problem
(§6.6.2).

6.1 Crash Model
We present the crash models of filesystem failures in monolithic kernels
(full-system crash, s-crash) and microkernels (process crash, p-crash),
discussing the consequences and implications, and noting the opportu-
nities and challenges arising from the p-crash model. We describe the
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traditional s-crash recovery for monolithic kernel filesystems and why it
falls short in fulfilling the opportunities provided by p-crashes. We pro-
pose having a separate p-crash recovery mechanism in addition to s-crash
recovery. We also discuss alternatives for performing transparent p-crash
recovery.

6.1.1 Monolithic Kernel Filesystem Failure ⇒
Full-system Crash

A filesystem may encounter an error that causes it to fail, due to a multi-
tude of reasons like software bugs [31, 81, 100, 130] and hardware errors
(e.g., CPU or memory) [17, 55, 79, 106, 153, 175, 183, 204, 214]. In a mono-
lithic kernel, a filesystem failure typically leads to a full-system crash (or
s-crash for short). In other words, the crash model of a monolithic kernel
filesystem failure is that when the filesystem crashes, the entire system
crashes, including the OS kernel, resulting in lossing all the states in the
volatile memory that has not been persisted to on-disk states.

One implication is that a filesystem failure shares the same crash model
as other environmental (and perhaps more disruptive) causes of a full-
system crash, such as a power failure or a hard machine reset. Therefore,
s-crash recovery that treats a filesystem crash the same as a power failure
is the de facto focus when discussing filesystem crash recovery in mono-
lithic kernels.

All modern monolithic filesystems contain mechanisms to recover from
an s-crash, relying solely on on-disk states. For example, Linux ext3/4
filesystems use journaling (a.k.a. write-ahead logging) to record relevant
information (filesystem metadata and/or user data) about pending up-
dates into what we term an s-log [199, 200]; if a later s-crash occurs, upon
system restart, the filesystem utilizes the s-log to recover the filesystem to
a consistent state. Of course, other techniques exist [125, 139, 173], but all
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share the goal of ensuring on-disk states are consistent, rather than guar-
anteeing no data loss.

Another implication is that when the filesystem fails, all the applica-
tions running on the system also crash. Traditional s-crash recovery only
ensures that the filesystem is returned to a consistent state because it fun-
damentally assumes that applications lose their perceived progress with
the filesystem. Because filesystems buffer updates in memory for perfor-
mance [147], at any given instant in time, many data and metadata up-
dates have not been persisted; as such, most recent updates are lost upon
a s-crash.

Traditional s-crash recovery can also be slow. Approaches based on
full-disk scans (such as fsck [139]) are prohibitively slow [132], as they
must scan all filesystem metadata to find and fix inconsistencies. More
modern approaches, such as journaling [162, 199], are better, with perfor-
mance proportional to the size of the log (rather than the entire filesystem
disk space).

6.1.2 Microkernel Filesystem Failure ⇒ Process Crash

A microkernel filesystem exhibits a different crash model: the process crash
(or p-crash for short). In this case, the filesystem server goes down after
a failure, but the rest of the system remains up and running.

The first implication of such a p-crash model is better fault contain-
ment, a well-recognized reliability benefit of microkernel design [32].
Consider the number of other OS services (e.g., networking, memory
management, scheduling, etc.) and applications that do not interact with
the filesystems; all of these continue naturally.

The second implication is that applications interacting with the filesys-
tem have the opportunity to continue, but not without challenges. The
main challenge in allowing the applications to continue seamlessly is the
state gap between the application’s perceived states (i.e., buffered in the
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crashed server’s memory) and the on-disk states. Such state gap concerns
the semantic states of the filesystem, including on-disk data structures
and file descriptors. Performing s-crash recovery is insufficient because
it ensures that the on-disk states are consistent, but does not address the
state gap.

Consider, for example, an application issues ten writes to an empty file
and close the file descriptor; then the filesystem server crashes. Assume
we restart the filesystem server, and the application opens the file again
and attempts to read it. Because the on-disk state of the file is empty, the
filesystem server reports that the file is empty to the application. How-
ever, the application’s perceived state is that the file contains ten writes
– a confusing outcome and severe data loss. The state gap in this case
contains the filesystem metadata and data changes due to the ten writes.

The state gap can be much more complex than this simple example,
as discussed later (§6.3.5 and §6.6.3.2). The fundamental issue is that the
in-memory states of the filesystem server are updated (and buffered) by
a rich set of filesystem APIs in various ways. The state gap can also be al-
tered by partial flushings of the server’s states to the disk, as a result of the
out-of-order durability commonly employed by modern filesystems [136,
158]. After a p-crash, opened file descriptors are lost, and other data
writes or metadata updates (e.g., creating, unlinking, and renaming files)
will also be unexpectedly lost. As we will show in Section 6.6.3.2, even
durability-aware libraries like SQLite and LevelDB do not always con-
tinue transparently when the fileserver p-crashes and they may lose com-
mitted data.

6.1.3 Separate P-crash Recovery from S-crash Recovery

In this work, we advocate for a separate p-crash recovery mechanism in
addition to traditional s-crash recovery. Such a recovery leverages the op-
portunity provided by p-crashes: if the server can quickly restart, recover,
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and resume serving requests, availability increases. With fast enough p-
crash recovery, applications might hardly notice that the filesystem has
crashed. Moreover, recovering the state gap is essential to avoid confu-
sion for applications.

The benefits of p-crash recovery are manifold. First, applications can
continue running with better correctness guarantees than those provided
by s-crash recovery. The opportunity offered by a microkernel is that
filesystem applications are not forced to lose their progress. For exam-
ple, there is no need for user applications to restart their jobs or perform
manual recoveries. S-crash recovery can add extra complications for ap-
plications because their durability protocols are often error-prone, as de-
scribed by Pillai et al. [158]. Although s-crash recovery ensures the con-
sistency of filesystem data, applications still find it challenging to deter-
mine how much of their work has been completed. A p-crash recovery
mechanism can transparently avoid such complications, as the applica-
tion’s progress can be preserved without excessive cost, again because it
is not a power failure; preservation in volatile memory is sufficient.

Second, filesystem failures and p-crashes occur frequently, whereas
power failures are relatively rare. Modern cloud environments are de-
signed to handle power failures (often with correlated failures [63]), but
with a great deal of complexity. For example, another data center might
be used for failover, with sophisticated protocols [152]. Delegating p-
crash to a global failure scenario is not only unnecessary but also increases
the likelihood of severe issues found in failover invoked by an s-crash, like
metastable failures [82]. Separating p-crash recovery from s-crash recov-
ery thus reduces such complications and potential issues.

Third, p-crash recovery can take advantage of another semi-microkernel
architecture’s benefit: restarting the filesystem server requires less effort,
can be fast, and can rely on all the services coordinated by the host OS
(e.g., fork, tmpfs, pseudo file systems, etc.). In contrast, restarting a ker-
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nel filesystem server is challenging and less robust when reusing the same
kernel [185] or slow if using a new kernel instance [54].

6.1.4 Alternatives for P-Crash Recovery

One concern in designing dedicated p-crash recovery mechanisms is the
complexity of handling the state gap. Can we somehow handle p-crashes
with a simply restarted filesystem server?

One straightforward method to handle a p-crash is to transform it into
an s-crash. Specifically, when the fileserver goes down, either bring down
the entire system or the related applications using the filesystem. How-
ever, such an approach fails to capitalize on the opportunities and benefits
provided by p-crash recovery.

Another alternative, which does not deal with the state gap, is to elim-
inate the state gap by avoiding server-side write buffering. By forcing all
updates to be persistent before replying to applications, the server en-
sures that the on-disk state is always up-to-date. Thus, s-crash recovery
is sufficient to restore the system to its most recent state. Even though
such an approach can provide the failure transparency to applications, it
does not really perform p-crash recovery. Unfortunately, forcing updates
to disk results in poor common-case performance. As we show in Sec-
tion 6.6.5, the impact is dramatic, up to 6x slower than buffering updates
in memory.

Furthermore, one might also consider a client-side recovery mecha-
nism, where the client is in charge of retrying its own job. However, such
an approach requires the application to track the state gap, more com-
plex than done in the server-side because a notification is needed from
the server to the client when the state gap changed by the internal filesys-
tem behaviors (e.g., background sync). And the retry during recovery
is a fundamental difficult problem of distributed coordination [26] in the
presence of multiple applications.
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6.2 Exit Activation
We make further observations on what is available in the presence of p-
crashes and note an opportunity for p-crash recovery mechanisms. In
addition to on-disk states, the in-memory states of the failed filesystem
server remain present in volatile memory upon exit, and such exit events
are readily recognized by the continuing host OS.

As such, one compelling approach is to enable filesystem recovery to
access server memory state before it is reclaimed by the OS. Doing so gives
access to the most recent updates, and thus provides a path to completely
recover the filesystem without losing updates. The intuitions are: (1) the
instantly buffered states represent the application-perceived states and
the effects of the inflight operations; (2) the state gap between application-
perceived states and on-disk states can be derived from the memory of the
filesystem server.

An exit activation is code that runs when a process crashes. At this mo-
ment in time, all (possibly corrupted) memory state is visible and can be
accessed by the exit handler. The exit activation can make persistent any
necessary information about pending updates, perform other relevant ac-
tions, and restart the filesystem process. The restarted process can then
fully recover, re-establish connections with active clients, and transpar-
ently resume serving requests.

Exit activation allows both the memory state (and persisted state) to
contribute to recovery, ensuring that no updates are lost. Exit activation is
the powerful mechanism for p-crash recovery to correctly reconstruct the
state gap in the newly started process. This approach also allows more
recovery work to be done after the crash occurs, thereby incurring far less
overhead in the common path compared to approaches that simplify state
gaps by forcing updates to disk.

Of course, p-crash recovery via exit activations is not without chal-
lenges. How can the recovery process trust memory contents of a recently
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failed server? How to ensure the correctness of reconstructed state gap in
the newly started process via these memory contents? And finally, how
can p-crash recovery be performed quickly, so as to minimize disruption
to running applications?

6.3 Nebula Design
We discuss the design of Nebula, another filesystem semi-microkernel
based on uFS, that provides transparent p-crash recovery via a range of
p-crash recovery mechanisms including exit activations. We discuss the
fault model, goals, and challenges. We then delve into a range of mech-
anisms that Nebula employs to address these challenges, especially the
p-log data structure and how it effectively tackles the state gap via the
core, AIM algorithm. Finally, we present the workflow of exit activation
and p-crash recovery in Nebula.

6.3.1 Fault Model

6.3.1.1 Potential Faults and Errors

Filesystems experience a range of errors caused by hardware and soft-
ware faults. The underlying hardware or software cause of an error is a
fault [16]; a fault is active (e.g., executing buggy code or using a flipped
bit) when it causes an error where the system’s state deviates from the
correct state.

Many examples of faults causing filesystem errors exist. For instance,
DRAM and SRAM transient and permanent faults not caught by hard-
ware (e.g., ECC) lead to data corruptions that are visible at run-time [106,
153, 175, 183, 214]. CPU core faults lead to computational errors and silent
data corruption [17, 55, 79, 204]. Filesystem code contains semantic and
concurrency bugs causing corruptions and crashes [31, 81, 100, 126, 130]
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taking years to fix [42, 93]. Even enterprise systems encounter errors
(scribbles and wild writes) in production [106].

6.3.1.2 Targeted Faults to Tolerate

The design of Nebula aims to recover from transient faults that may in-
clude memory corruption. Nebula focuses on transient faults, so that a
restart/recovery will not re-trigger the same fault repeatedly; additional
techniques will be required to handle permanent faults [18, 98]. Some
faults simply cause a p-crash to occur without any memory corruption;
Nebula should also handle this simpler class of faults.

It is only when a fault manifests as an error (i.e., is detected) that any
recovery can be performed. Our fault model is more realistic than prior
works that assume fail-stop conditions, as adding checks or assertions
immediately after a fault is not practical (e.g., in cases of wild writes,
hardware corruption, and incorrect values due to software bugs). For
example, if a value is silently corrupted in memory, the process may con-
tinue until the value is accessed again, at which point the corruption may
propagate to other data structures.

We believe that corrupted semantic states pose significant problems
for filesystem correctness. Despite the virtual impossibility of achieving
fail-stop behavior for every fault, Nebula strives to fail as early as possible
when essential states (i.e., semantic states) are corrupted, before incorrect
data is returned to a user or persisted to disk [65, 106]. Nebula validates
the integrity of in-memory semantic states with checksums upon every
access.

6.3.2 Goals for P-Crash Recovery

Seamless p-crash recovery: In Nebula, p-crash recovery should be loss-
less; applications should not perceive that Nebula has p-crashed and restarted,
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should not lose updates, and should not receive any confusing or incor-
rect results (e.g., a file should not revert to an older form).
Fast p-crash recovery: In Nebula, p-crash recovery should be fast. Dur-
ing p-crash recovery, running applications are awaiting results; therefore,
the system should p-crash and restart quickly to minimize disruption to
applications.
Fast common-case performance: Providing fast and seamless fault re-
covery is important, but faults are rare; as such, any enhancements to
improve fault recovery should not degrade common-case performance.
The primary implication is that any additional work needed to prepare
for recovery should be minimal.
Few filesystem codebase modifications: Filesystems are complex pieces
of code containing many performance optimizations (e.g., avoiding syn-
chronous operations and processing requests concurrently). Recovery
should not require onerous changes to the original codebase.

6.3.3 Challenges

Realizing exit activation in Nebula and achieving our goals require ad-
dressing the following challenges.

6.3.3.1 Robust and efficient restart mechanism

A robust restart mechanism is the foundation for any kind of p-crash re-
covery. Our principle is clean restart [73] – to ensure that problematic
states in the failed process are discarded. Therefore, a fresh filesystem pro-
cess is utilized to service future application requests. We refer to the failed
process as the main filesystem process.

The first issue for restart is ensuring that the exit of the main filesys-
tem process is timely monitored by the host OS, which also orchestrates
the execution of the exit activation code and coordinates the transition
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Figure 6.1: Illustration of Exit Activation in Nebula. The difference be-
tween in-memory semantic states (highlighted by red bouned boxes) and the on-
disk states after completing a sequence of operations is the state gap. After an
error is detected in main process, exit activation started by the host OS kernel
(left green arrow); exit activation also notifies the failover process (right green
arrow) to start and consume the p-log.

between the two processes. Second, the restart mechanism, including the
initialization of the fresh process, must be fast to accelerate recovery per-
formance. Third, the restart ensures that resources shared between the
main filesystem process and applications (i.e., IPC connections), as well
as those the main filesystem process shares with the host OS (i.e., per-
missions and driver connections), are properly established by the fresh
filesystem process.
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6.3.3.2 Memory corruption in failed process

Inspecting the memory of the failed process is compelling for p-crash re-
covery because the more states extracted after the exit, the less work is
needed to preserve the states in the common no-failure path. For exam-
ple, if we can undo the changes of all the in-flight operations and directly
duplicate all the semantic states to the fresh process, little extra work is
needed in the common path, under the assumption that all faults are fail-
stop. However, the fail-stop assumption is virtually impossible, and Neb-
ula follows the principle of limited trust in memory, favoring robustness.

Therefore, extra care must be taken to avoid reusing any corrupted
semantic states or the failure of exit activation due to corruption (e.g., a
corrupted pointer). The key is to ensure that the trusted memory region
is well-defined and safe to access.

The issue is that the filesystem’s in-memory semantic states (includ-
ing file descriptors, metadata, and data) are scattered across the address
space and mingled with other data structures (e.g., hashmaps, lists, vec-
tors), as shown in Figure 6.1. How can we have strong confidence in the
memory we trust? How can we make the trusted memory robust to mem-
ory corruption? And how can such trust be assured with less overhead in
the common path? Furthermore, can we strives to fail as early as possible
when these more essential states (i.e., semantic states) are corrupted to
get more benefit from exit activation? (§6.3.4)

6.3.3.3 Capture state gap without affecting common-path
performance

As described earlier (§6.1.2), the state gap between the application’s per-
ceived states (i.e., buffered in the crashed server’s memory) and the on-
disk states – arising from the p-crash model – is a main impediment for
applications to continue.
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The main issue is accurately capturing the state gap, which is made
challenging due to the out-of-order durability that flushes part of the
buffered states to disk. These states may not necessarily be flushed in
the order they were updated in memory. Capturing such a state gap is
thus non-trivial and requires interposition in the common path with neg-
ligible overhead. Our principle is no force flush – to avoid forcing buffered
updates to be flushed to disk, which would degrade performance.

As mentioned above, one straightforward approach satisfying the per-
formance requirement is to undo the changes of all the in-flight opera-
tions and directly reuses all the semantic states after a failure [114]. How-
ever, directly reusing the buffered states is vulnerable to corruption and
cannot satisfy limited trust of memory.

6.3.4 P-crash Recovery Mechanisms

We now describe the mechanisms that Nebula uses to address the chal-
lenges: kernel-coordinated speculative restart, lightweight protection of
in-memory semantic states, and exit activation data structure to capture
the state gap. Figure 6.1 illustrates exit activation in Nebula.

6.3.4.1 Kernel-coordinated Speculative Restart

We introduce a technique, kernel-coordinated speculative restart, to enable
efficient and robust restarts. The idea is that, when the main filesystem
process first starts, a fresh process is also started, but put to passive mode,
awaiting for notification from the OS. Upon a failure in the main process,
its exit event is monitored by the OS, which then notifies the fresh process.

The IPC connections between the main process and applications are
authenticated shared memory known by the OS, which is passed into the
fresh process. Importantly, the fresh process performs costly initialization
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of device access (which takes up to seconds) in parallel with the main pro-
cess before blocked on the OS notification, thereby allowing fast recovery.

6.3.4.2 Lightweight protection of in-memory semantic states

To ensure that the filesystem process fail fast when semantic states are
corrupted, Nebula integrates a lightweight mechanisms by adding check-
sums to all in-memory semantic structures. These are highlighted in the
red box in Figure 6.1 and include file descriptors on the heap, as well as
metadata and data in DMA-able memory. Given the large address space,
selectively protecting these components is more cost-effective in prevent-
ing the filesystem from producing incorrect results for applications or
persisting corrupted data to disk.

Our checksum is updated on each write access and verified during
each access (both read and write). As we will show in the evaluation,
this protection is lightweight, adding only 0.2% to memory overhead and
2.85% to performance overhead in the common path. The protection (by
checksums) is used solely to enhance detection and avoid errors propa-
gating to the applications or disk, whose effects are very challenging to
recover from.

Note that these in-memory semantic states are not trusted by the exit
activation, and the only trusted memory region is the P-log, as we de-
scribe next.

6.3.4.3 Exit activation data structure: capture the state gap

Our final and crucial mechanism is the exit activation data structure, the
P-Crash Log (p-log), which captures the state gap and enables lossless re-
covery. Instead of reusing the results of executed operations (i.e., buffered
states) that is vulnerable to corruption , the p-log records the source of the
state gap. P-log enables a clean design that only one well-designed data
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structure is modified in the common-path and accessed after the failure
for recovery.

The p-log resides in a dedicated memory region that is shared between
the main process (with write access) and the failed process (read-only
access). It records the source of the state gap – the system calls and ar-
guments that, when replayed properly, can reconstruct the state gap. To
protect against corruption, the p-log is safeguarded by checksums and
replication. Furthermore, because it is in-memory and does not require
costly flush operations, the p-log does not alter the common path, incur-
ring negligible overhead.

As we will discuss next, capturing the state gap between the in-memory
semantic states and the on-disk states is challenging, given that only some
of the p-log’s effects may have been made durable, and in a non-sequential
order.

6.3.5 Exit Activation Data Structure: P-log

We now delve into the design of the p-log, which is core to Nebula for cap-
turing the state gap. We describe the data structure, including when and
what information is recorded in the p-log. We introduce the AIM (Act-
Ignore-Modify) transformation, the core algorithm designed to address
the challenges posed by the state gap. Naively replaying the operations
is insufficient because the state gap does not directly correspond to a sub-
sequence of operations completed in history.

6.3.5.1 Basic Data Structure

To enable p-crash recovery, Nebula records information about recent file
system activity, representing operations that the server has executed since
the last persisted state. The relevant information is stored in the p-crash
log (p-log), a new in-memory structure. The goal for p-log is to accurately
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capture the source of state gap, which can be replayed by the original
filesystem code to reconstruct the most up-to-date in-memory states in
fresh process.

The p-log is organized as a circular buffer. Each p-log entry contains
an event source (system call, arguments, and return value) and log-entry
descriptor that records essential information such as the process identi-
fier (pid), file descriptor (fd), relevant inode numbers, and a timestamp
based on completion time to form a globally-ordered sequence. Each core
has its private p-log, only written by the given worker thread. To be more
robust to memory corruption, the p-log is designed to be pointer-less,
protected by checksums and can leverage replication.

The log-entry descriptor also tracks the status of the corresponding
changed file descriptor and changed inodes, referred to as updated_targets.
Upon a subsequent close or sync/fsync, the status of each target in this
log-entry descriptor is also updated (i.e., the changes are cleared). For
example, when an inode is made durable (after a sync/fsync), we find all
the log entries related to this inode number and update the status in the
log-entry descriptor, indicating that the change imposed by this log entry
has been made durable and thus does not need to be reconstructed.

6.3.5.2 P-log Transformation

The primary issue with recording operations in the p-log is that naively
replaying all operations can be problematic for two reasons. First, only
operations contributing to changes of in-memory semantic states need to
take actions. For example, consider a sequence of open(f), read(f), and
close(f). If the filesystem crashes after the read(f), the state gap con-
tains a file descriptor, and the open needs to be replayed. However, if
the filesystem crashes after the close, the entire sequence does not con-
tribute to the state gap (i.e., the file descriptor is destroyed), and the three
operations should be ignored. Furthermore, operations that contribute to
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the dirty updates of semantic states like inodes, directories, and bitmaps
should be replayed, unless their effects have been made durable.

Second, subsequent operations may alter the preconditions of previ-
ous operations. For example, consider a sequence of open(D/f), write(D/f),
close(D/f), rename(D/f, D/f1), and sync(D). If the filesystem crashes
after sync(D), the precondition of open(D/f) (i.e., the pathname D/f cor-
responds to the inode) has changed because the effect of the rename is
persisted into s-log; thus, replaying open(D/f) does not work because the
path is invalid. However, if the filesystem crashes before sync(D), replay-
ing open(D/f) is needed.

To address these issues, Nebula employs the Act-Ignore-Modify (AIM)
algorithm. The input to this algorithm is the precise set of system calls
and their arguments executed by the filesystem, as recorded in the p-log.
The output is a new set of system calls that the original filesystem code can
execute directly to reconstruct the most up-to-date in-memory semantic
states (as perceived by the applications) in the fresh process. Act indi-
cates the operation will directly be replayed; Ignore indicates it can be
ignored; and, Modify means some state change must occur but not by
replaying the original operation.

We now describe the AIM algorithm in detail and how it is used for
garbage collection (in the common path) and replay (during recovery).
AIM-based Transformation: Principally, the first question to answer for
each operation in the p-log is whether it can be ignored (i.e., Ignore). Each
operation potentially changes two sets of states: states of file descriptors
and states of inodes. For instance, a read changes a file descriptor’s off-
set, while a write changes both a file descriptor’s offset and an inode’s
size. An operation can change the states of up to three inodes and one file
descriptor at most.

The condition for safely ignoring an operation is that any associated
file descriptor must be closed (if applicable), and all inode-related state
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changes must have been made durable. For example, an append opera-
tion results in state changes to a file inode and to a file descriptor. A create
changes the states of two inodes (i.e., a directory and a file). A rename
can change the states of two or three inodes (i.e., two directories and one
file when the destination is deleted). A close operation can be ignored if
the corresponding file descriptor is no longer needed – the related dirty
inode states have been synced. Moreover, an open operation can only be
ignored if the file descriptor is closed and dirty writes to the inode have
been persisted.

For example, with the sequence of open, read, and close, If the crash
occurs after close, all the operations should be ignored. Otherwise, the
prefix sequence should be replayed. Similarly, with the sequence of open(f),
write(f), close(f), and sync(f), if the crash occurs after sync(f), all the
operations should be ignored.

If the operation cannot be ignored, the next question is whether the
operation needs to be replayed as it is (i.e., Act)? The condition for re-
playing the operation in its original form is that all of the changed inodes’s
states have not been synced, and if an file descriptor was changed, either
the file descriptor is still open or the file descriptor is closed but the in-
ode is not synced. For example, with the sequence of open(f), write(f),
and close(f), if the filesystem crashes after every operation, the prefix
sequence should be acted.

Finally, if neither ignoring nor acting upon the operation is appropri-
ate, such log entry indicates that part of the state changes exerted by the
operation needs to be reconstructed, but the original operation should not
be replayed. We find that the partial effects can be generated by a Modified
operation form (e.g., other operation type or modified argument), such
that the redo of modified operation can be done mostly by the original
code base.

Consider the example sequence mentioned above, open(D/f), write(D/f),
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close(D/f), rename(D/f,D/f1), and sync(D). If the filesystem crash oc-
curs after sync(D), the open(D/f) is modified to open(D/f1), and the
rename is ignored because the changed inode (only D) has been synced.
In this case, the rename only changes the directory, but not changing
states of the file. Another example sequence is open(f), write(f), and
sync(f), if the filesystem crash occurs after sync(f), the open(f) is acted,
and the write(f) is modified to lseek. The modification to lseek is cor-
rect because the inode’s states change have been synched.

Our modifications include: read to lseek, write to lseek, read to
pread, write to pwrite, create to open, and change pathname.
Other Considerations: One might wonder if including file descriptors
and inodes in the updated_targets sufficiently captures changes to se-
mantic states. The main semantic states not directly recorded in the p-
log include the inode bitmap and data bitmap. However, changes to in-
ode bitmaps are logically reflected in the inode states. For example, for a
create operation, the newly created inode’s number is recorded in the p-
log. Data bitmaps, used to track data block allocations, do not need to be
recorded in the p-log because the fresh process can safely make different
decisions regarding data block allocations.

Another concern is the dependencies between operations [64, 147].
However, the p-log does not require extra consideration for such issues
with our method of tracking changes to inodes during a given operation.
Dependencies between operations are tracked and handled by the dura-
bility protocol of the underlying filesystem. For instance, consider the de-
pendencies due to a coupled imap. When create(D0/f0) and create(D1/f1)
depend on the same imap, and sync is called on D0, both the file and di-
rectory inodes for D0 and D1 should be synced by the original filesystem
within one durable transaction to maintain the consistency of the on-disk
states (i.e., in s-log). When sync(D0) is completed, the log entries for the
two create operations are updated to reflect that the changes to all four
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inodes have been synced. With these log-entries and AIM, the replay will
not act the create opearations, and if the file descriptors have been closed,
the replay will ignore the operations.
P-log Garbage Collection: Garbage collection (GC) of p-log entries is im-
portant to Nebula, because without active GC, the log will grow to occupy
too much memory. The GC of p-log is based on AIM, using the Ignore
subset: when operation is safe to ignore, the log-entry can be garbage
collected.
P-log Replay: After the p-log is transformed by AIM, the fresh process
replays the p-log actions to fully restore the filesystem. The replay actions
reuse as much of the existing filesystem machinery as possible.

Nebula includes a few new internal APIs. One issue is that inode num-
ber should be the same when a create/mkdir is replayed, because the in-
ode number can be used by applications, as specified in the POSIX stan-
dard. Similar constraints apply to file descriptors from open. Thus new
internal APIs are added to specify the inode number and file descriptor.

6.3.6 Workflow of Nebula with Exit Activation

A successful exit activation involves the following steps:
(1). During normal execution, the main filesystem process proceeds

and services applications via the IPC connections (i.e., the shared-memory
message ring-buffer). What differs from uFS is that upon completion of
each operation, Nebula records the operation and its relevant informa-
tion (e.g., updated_targets) into the p-log. Upon close, the previous log
entries related to the same file descriptor are updated in their entry de-
scriptor. Upon sync (or an internal background sync), the previous log
entries related to the same inode are updated in their entry descriptor to
indicate durability.

(2). When an error is triggered in the main filesystem process (e.g.,
hardware or software exceptions), the OS obtains the control and invokes
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a procedure that rescue the related data pages (pointed by the p-log) to
the host OS. And then, the main process resource is reclaimed. As a result,
failed process’s private in-memory states are discarded and the pinned
memory region is also reset. The exceptions are the p-log and the shared-
memory message ring-buffer, which are shared memory with the fresh
process and applications.

(3). The OS notifies the fresh filesystem process to complete the exit
activation. The fresh filesystem re-initializes the pinned memory region,
scans the p-log, performs the AIM transformation, replys the resulting
actions, and re-attachs the IPC connections with the application. During
the replay, the on-disk states, the rescued data pages (stored in tmpfs),
and the AIM-transformed operations are used. Next, the p-log memory
region is released.

(4). The fresh filesystem process is now ready to serve the appli-
cations. It becomes a new main filesystem process, and another fresh
filesystem process is also initialized.

6.4 Implementation
We discuss the implementation of Nebula. We begin with the open-source
repository of uFS [122] and add p-crash detection and recovery mecha-
nisms. The uFS code base consisted of roughly 35K lines of code; we add
approximately 4K LoC for Nebula.
Basic Flow of Control: In uFS, each operation comes from an application
via IPC in a shared per-client message ring. The command stays in the
message ring until completed, at which point it is marked; a client can
poll on the completion bit to know the operation is finished and obtain
results.

The p-log is realized as a set of per-core logs. For high performance,
each server thread in Nebula has its own private p-log and thus need not
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Operation Descriptor

syscall_no

args

ret

pid, fd, ino[4], page_idx[],
op_crc, timestamp,

ipc_idx,
reclaim_status, self_crc

1 2 4 ipc_idx = 0

update reclaim_status 

upon close(), sync() 

3
IPC reply

Figure 6.2: A p-log entry. The circled numbers show the order of updates
to the entry. The black arrow indicates the initial logging of one operation.
The green arrow indicates updating the reclaim_status field upon close
and sync. Each box represents one cacheline.

worry about concurrent updates [23]. Figure 6.2 shows the information
in each entry. Entries are added to the p-log after an operation completes,
at which point Nebula allocates an entry and copies the message to the
p-log. If the filesystem fails while an unlogged operation is executing,
the message ring contains the information needed to re-execute the op-
eration. System calls that do not change in-memory state (e.g., stat) are
not logged, as they do not need to be replayed.
Exactly-Once Semantics: To ensure correct recovery, each request must
update system state exactly once [170]. After restart, Nebula will replay
completed (but not persisted) operations from the p-log and the remain-
ing in-flight operations from the message ring.

Nebula updates the p-log before replying to ensure that it does not lose
an operation. If Nebula first marked the reply complete and then logged
the operation, it would risk losing the operation if a p-crash occurred im-
mediately after setting the completion status. However, updating the p-
log first risks double execution, if the filesystem crashes immediately after
logging and but before setting the status bit.

To avoid double execution, Nebula follows a careful update protocol,
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as shown in Figure 6.2. In step 1, the system call information is written
to the p-log; in step 2, other information about the entry is updated, in-
cluding a reference to the message ring entry (i.e., ipc_idx). A (low-cost)
compiler barrier is inserted between these two updates to avoid compiler
reordering [1]; no memory fence is required because each p-log has a sin-
gle writer and possible reading of the p-log during recovery is handled
by a single recovery thread [138]. In step 3, Nebula sets the status bit in
the message ring, and finally, in step 4, Nebula clears the p-log entry’s
ipc_idx (and atomically updates the self_crc to match, as it is within a
cacheline).

During recovery, when Nebula finds a p-log entry containing a valid
logical offset of ipc_idx, it compares it with the corresponding message
(pointed to by ipc_idx); if the message is still marked in progress, the
logged operation is discarded. If the p-crash occurs after the message sta-
tus is marked complete, the logged operation will be used and the on-ring
message will not be re-executed. Compiler barriers are inserted where
needed to avoid write reordering.
Garbage Collection: To safely remove an entry from the log, Nebula must
carefully track the status of each entry. This information is embedded
in the descriptor’s reclaim_status bitmap and inode array. This bitmap
tracks if inodes (and corresponding data/metadata) related to this op-
eration have been persisted; the relevant inode numbers are kept in the
ino array. It also tracks whether the file descriptor (if there is one) is yet
closed. When all inodes are persisted and the file descriptor is closed, the
entry can be reclaimed.

To prevent a scenario where a large number of writes on a file descrip-
tor without closing it consumes too much memory, after an inode sync,
the entries containing both writes and offset changes are compacted into
a single entry to only preserve the offset change. We discuss the memory
limit for the p-log and garbage collection later (§6.6.5.2).
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P-Log Replication: Two copies of the p-log are maintained to enable re-
covery given a single p-log corruption. For each update, Nebula writes
first to the primary, and then to the secondary, with a compiler barrier
between.

When updating the status of a p-log entry, a CRC validation is first
performed for the primary. If it fails, the replica CRC is validated and
copied into the primary. During recovery, if the primary is corrupted, the
replica is used (if its CRC validation succeeds). If both the primary and
the replica are corrupted, recovery aborts.
Checksums: We add checksums (CRC) to each core metadata structure
to help detect corruption. For inodes, the on-disk representation has re-
served space for padding to the disk block size, so we embed a one-byte
checksum into the existing representation. For the datablock bitmaps, in-
ode bitmaps, and dentry blocks, we add a one-byte checksum for every
32 bytes; calculating checksums for this smaller chunk (instead of 4KB)
reduces the amount of memory touched per checksum and can leverage
modern CPU hardware-accelerated instructions [89].
Kernel-Coordinated Speculative Restart: In our current implementa-
tion, the kernel invokes a signal handler of the main process, which saves
the data pages related to p-log entries. This procedure is invoked in the
main process but not on the worker threads’ stacks (by sigaltstack).
The notification to the fresh process is implemented using a mutex shared
between the main and fresh processes with the robustness attribute set to
PTHREAD_MUTEX_ROBUST. This attribute synchronizes the termina-
tion of the mutex holder to the fresh process.
Limitations and Assumptions: We assume the logging code is correct
and the stack is intact while executing exit activation. Another assump-
tion is that saving data pages to a known location in tmpfs can be done
successfully. We assume that data page corruption is handled by appli-
cations; as such, we do not add protection to, or use redundancy for, data
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pages.

6.5 Qualitative Comparison
In this section, we qualitatively compare Nebula with related systems (as
shown in Table 6.1), including: Membrane [185], a restarting framework
for kernel filesystems; Rio [37], which directly reuses the kernel’s buffer
cache after a s-crash; Otherworld [54], which microreboots the OS ker-
nel without affecting applications; and TxIPC [114], the state-of-the-art
recovery support for microkernels.

We later perform a quantitative comparison with the Membrane ap-
proach to address the state gap problem in §6.6, examining the cost in-
curred in the common case that violates the no force flush principle. We
do not compare with approaches that address the state gap by funda-
mentally assuming that the filesystem metadata is not corrupted, such as
in Rio, Otherworld, and TxIPC. Membrane is also vulnerable to memory
corruption, but it is vulnerable to corruption in the rest of the monolithic
kernel space, not because of reusing the filesystem states, which is less
of a concern with a clean restart like ours. It is relatively less sensible to
quantitatively compare the restarting mechanisms due to differences in
kernel architecture.

We also introduce two baseline systems for comparison: uFS^ and
uFS-Sync^. Neither system systematically performs p-crash recovery nor
tackles state gap, as described in §6.1.4. uFS^ augments the original open-
source crash-consistent version of uFS with only restarting (i.e, reconnect
with applications and devices). uFS-Sync^ is a variant of uFS^ that goes
one step further for correctness; it provides failure transparency to ap-
plications by relying on s-crash recovery. uFS-Sync^ eliminates the state
gap by synchronously writing all updates to the disk to ensure that all
operations are durable before making results visible to clients.
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Nebula uFS^ uFS-Sync^ Mem-
brane [185] Rio [37] Other-

world [54] TxIPC [114]

Robust
Restart

Robust to
Memory

Corruption
Handling
State Gap
Negligible

Performance
Impact

Practical
Detection

Assumption

Table 6.1: Qualitative Comparison with Other Systems (a). Black indi-
cates the best and white the worst.

Nebula uFS^ uFS-Sync^ Mem-
brane [185] Rio [37] Other-

world [54] TxIPC [114]

Robust
Restart

new
process

new
process

new
process

unwind,
remount

new os
kernel

new os
kernel unwind

Robust
Memory

Corruption
reuse
p-log no reuse no reuse

reuse
kernel
space

reuse
metadata

reuse
kernel
space

reuse
process
address
space

Handling
State Gap p-log not handle full sync

upon each
full sync

upon
many

reuse in-
memory

states

reuse in-
memory

states

reuse in-
memory

states
Negligible

Performance
Impact

p-log,
checksum

no extra
work

full sync
upon each

full sync
upon
many

atomic
metadata
updates

no extra
work

instruction
undo-log

Practial
Detection

Assumption
on-disk
states

on-disk
states

on-disk
states

on-disk
check-
points

in-
memory

states
(fail-stop)

in-
memory

states
(fail-stop)

in-
memory

states
(gap ⩽
one op)

Table 6.2: Qualitative Comparison with Other Systems (b). Brief expla-
nation: restart mechanism, memory vulnerable to corruption, methods to handle
state gaps, work added to normal execution, and assumed correct states.
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The other four systems we compare with, instead, incorporate well-
thought design and fair amount of work in the recovery path after the
failure occurs. Their techniques can be used for exit activation, but unfor-
tunately, cannot meet all our goals in Nebula.

The comparison is based on five crucial properties: robust restart, ro-
bust to memory corruption, handling state gap, negligible performance
impact, and practical detection assumption. As shown in Table 6.1, Neb-
ula excels across all five properties. We discuss each property in detail
below. Table 6.2 provides a brief explanation of the comparison.

6.5.1 Robust Restart

The robustness of a restart reflects the likelihood that the restarting mech-
anism will succeed; successful recovery fundamentally depends on this
robustness.

Systems that use a new address space – either through a new process
(Nebula, uFS^, and uFS-Sync^) or a new OS kernel (i.e., Rio and Other-
world) – are less error-prone.

Systems that run code by the original threads (e.g., the same sets of
stacks) for restart are considered less robust. TxIPC rolls back the ef-
fects of ongoing IPC, reusing the failed process, whose address space
might contain erroneous states that impede the restart. Membrane un-
winds the threads executing the kernel filesystem code, unmounts, and
remounts. The restart is less robust because it is soft, only running the
unwind and unmount procedures and freeing filesystem objects within
the same monolithic kernel’s address space, instead of performing a hard
reset that completely drops the kernel space.
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6.5.2 Robust to Memory Corruption

Robustness to memory corruption in the failed system depicts the health
of the initial state for a successfully restarted system, reflecting how effec-
tively the recovery cleans up problematic states from the failed system.
Systems that reuse more unprotected memory from the failed system are
less robust.

A hard reset (i.e., starting a new process or a kernel) has the benefit
of discarding all memory from the failed system, as employed by Nebula,
uFS^, and uFS-Sync^.

However, Rio and Otherworld, despite using a new OS kernel, are
vulnerable to memory corruption because they intentionally reuse parts
of the failed system’s memory, like the buffer cache containing metadata
in Rio. Otherworld copies the application’s address space into the new
kernel.

In contrast, systems that utilize a soft reset for restart are naturally
susceptible to memory corruption. Membrane does not reuse the filesys-
tem metadata, but it reuses the kernel’s address space, which contains
numerous states interacting with the kernel filesystem. As noted by the
authors, “some filesystem bugs can still corrupt kernel state outside the
filesystem, and recovery will not succeed” [185]. TxIPC suffers from the
same issue becuase of reusing the failed process’s address space, which
might contain corrupted states before handling the current IPC.

Nebula indeed reuses p-log, but it is well-specified and well-protected,
making it safe to reuse. Therefore, Nebula exhibits better tolerance for
memory corruption.

6.5.3 Handling State Gap

Handling state gap is especially important for stateful systems like filesystems
to ensure that the recovery does not lose any updates. If a system can only
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handle less realistic state gap, it needs to induce extra behavior during
normal execution (usually costly) to enforce the state gap to meet certain
constraints.

Systems that directly reuse the in-memory states of the failed system
(Rio, Otherworld, and TxIPC), despite more vulnerable to memory cor-
ruption, readily handle state gaps, as no states are dropped.

In contrast, systems that relies on a checkpoint (e.g., on-disk states)
needs to consider the state gap between the last checkpoint and the failed
system’s in-memory states. uFS^ does not handle the state gap, leading
to potential data loss. uFS-Sync^ avoids the state gap issue by flushing
every update. Membrane is an improved version of uFS-Sync^, which
simplifies the state gap. Membrane turns an fsync into a full sync of the
entire buffer; it also requires an extra sync after directory-related oper-
ations (e.g., create, unlink, etc.) to ensure full transparency (e.g., same
inode number).

Nebula goes to great lengths to accommodate the realistic state gap
produced by the original filesystem under applications’ workloads. The
p-log records the source of the difference between in-memory states and
on-disk states, accurately conveying the state gap without altering the
filesystem’s behavior during normal execution.

6.5.4 Negligible Performance Impact

Any recovery machinery should incur negligible overhead to the nor-
mal execution when no-failures occur; such overhead directly relates to
the methods for handling state gaps and enhancing error detection (e.g.,
SFI [203]).

Therefore, comparison according to this property often shows results
similar to handling state gaps. Systems that simplifies the state gap com-
monly incurs significant overhead during normal execution, such as uFS-
Sync^ and Membrane.
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Systems that better handle realistic state gap, instead, perform well
during normal execution. Rio needs to ensure the updates to in-memory
metadata are atomic. TxIPC uses an instruction-level undo log to rollback
the IPC effects. Nebula relies on the p-log to capture the state gap, which
is designed to be efficient.

6.5.5 Practical Detection Assumption

All recovery mechanisms necessarily assume a version of the filesystem
states to be correct, serving as the starting point for recovery. They are
also aware of potential corruption in the failed system’s memory, leading
to assumptions for error detection that establish guarantees for recovery
correctness.

Systems that directly reuse the in-memory states typically assume faults
are fail-stop, presuming the in-memory states are correct. In contrast,
systems using a checkpoint and replay method assume that errors are de-
tected before the next checkpoint; for example, Nebula, uFS^, uFS-Sync^,
and Membrane assume the on-disk states are correct. Assuming on-disk
states are correct is more practical than assuming faults are completely
fail-stop.

6.6 Evaluation
Our evaluation in this section answers the following questions:

• Does Nebula achieve seamless recovery for applications?

• How problematic is the state gap for real-world applications in the
case where it is not handled?

• Is Nebula robust to memory corruption?
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• How much performance overhead and memory overhead does Neb-
ula incur in the common-path when no failure occurs?

• Does Nebula achieve fast recovery? How long does it take for each
mechanism during recovery?

6.6.1 Benchmarks and Methodology

We also create benchmark suites for evaluating the recovery correctness,
common-path performance overhead, and recovery time of Nebula.
Baselines Systems: We compare Nebula to two baseline systems: uFS^
and uFS-Sync^, both of which are integrated with the restarting mecha-
nism designed for Nebula.

We demonstrate the necessity of handling state gap by analyzing ap-
plications’ reaction to uFS^, showing the benefits of lossless recovery pro-
vide by Nebula. We demonstrate that exit activation, designed for p-crash
recovery, achieves the goal of negligible performance overhead in com-
mon path by comparing with uFS-Sync^, which provides failure trans-
parency thorough s-crash recovery. We also show that Nebula incurs far
less common-path overhead than an approach of using Membrane-style
reply (e.g., 0.15% vs. 3.43x).
Recovery Correctness: Our benchmarks perform intensive fault injection
to show the effectiveness in addressing the state gap and the robustness
against memory corruption.

We run several workloads, including 24 controlled system-call sequences
and ten workloads for five real-world applications (gnu-sort, cp, unzip,
SQLite, and LevelDB). The length of operation sequence is long enough
to cover a wide range of system calls and their combinations. Importantly,
we inject fail-stop p-crashes in the filesystem server immediately after and
in the middle of every single operation during the workloads. By enu-
merating all crash points during a workload sequence, our benchmarks
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Figure 6.3: Recovery with uFS^, uFS-Sync^, Nebula on LevelDB Load.
After the p-crash at time 800ms, LevelDB on uFS^ is not able to continue
without manual intervention. With uFS-Sync^, LevelDB continues after
the p-crash, but performance suffers because dirty pages are persisted
after every operation. Nebula achieves the best of both: transparent re-
covery and high performance. Recovery time with uFS-Sync^ is 346ms;
with Nebula it is 178ms.
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Figure 6.4: Recovery with uFS^, uFS-Sync^, Nebula on LevelDB YCSB-
A. On a read-write mixed workload, the common case performance of
uFS-Sync^ suffers because dirty pages are persisted after every operation.
Recovery time with uFS-Sync^ is 337ms; with Nebula it is 240ms.
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Figure 6.5: Recovery with uFS^, uFS-Sync^, Nebula on LevelDB YCSB-
C. After a restart, read-only workloads must rewarm the page cache. Re-
covery time with uFS-Sync^ is 165ms; with Nebula it is 180ms.
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evaluate the correctness of handling each single prefix of the operation
sequence and the resulting different state gaps. To the best of our knowl-
edge, this is the first systematic evaluation and analysis of the state gap
problem in filesystem recovery, and their consequences to real-world ap-
plications.

A p-crash during an operation stresses the exactly-once semantics en-
sured by the p-log entry design. The fail-stop p-crash is emulated by a
null pointer dereference, causing a SIGSEGV.

We inject memory corruption across the main memory regions: stack,
heap, DMA-able memory, and p-log. According to the literature [24, 54],
random bitflips often do not manifest to detected errors; therefore we em-
ploy targeted memory corruption. We exhaustively corrupt all the mem-
ory regions, by setting a particular trunk of memory to be uniformly filled
with a specific value.
Common-path Performance Overhead and Recovery Performance: We
run copy, sort, and LevelDB with six workloads to evaluate the common-
path overhead, comparing it with uFS-Sync^. We evaluate the recovery
time of Nebula by injecting p-crashes after every 500 operations in the
workload, showing the impact of restarting, s-crash recovery, and exit ac-
tivation on recovering the state gap.

6.6.2 Transparent Recovery vs. Performance

Our first experiments highlight that after a p-crash, Nebula provides trans-
parent recovery to unmodified applications and does not impact common-
case performance. In contrast, uFS^ is not able to recover from a simple
p-crash; uFS-Sync^ recovers from the p-crash, but has significantly worse
performance for non-read-only workloads.

We run LevelDB with three continuous workloads (Load, YCSB-A,
YCSB-C), inject a single p-crash, and report the throughput delivered by
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LevelDB over time for uFS^, uFS-Sync^, and Nebula, as shown in Fig-
ure 6.3, Figure 6.4, and Figure 6.5.

The first graph of each workload set shows LevelDB throughput with
uFS^. When each workload begins, throughput is high until the p-crash
occurs, at which point, uFS^ restarts, replays the on-disk journal for s-
crash consistency, and recovers its connections with the LevelDB client.
However, on its next interaction with uFS^, LevelDB encounters an error
and exits, requiring manual intervention to repair the database. The rea-
sons LevelDB and other applications have poor recovery with uFS^ are
explored later (§6.6.3).

The second graph of each set shows throughput with uFS-Sync^. As
desired, uFS-Sync^ transparently recovers from the p-crash allowing Lev-
elDB to continue operating without manual intervention: there is sim-
ply a pause in throughput for a few hundred milliseconds. However,
common-case performance of uFS-Sync^ suffers significantly compared
to that of uFS^ for non-read-only workloads; in particular, the YCSB-Load
workload which consists of sequential writes and YCSB-A which has a 1:1
read:write mix, are approximately 5x and 3x slower. The performance of
uFS-Sync^ is compared to Nebula in detail later (§6.6.5).

Finally, the third graphs show throughput with Nebula. As desired,
Nebula transparently recovers from the p-crash while still delivering high
throughput before and after the p-crash. We make several observations
from these graphs. First, for YCSB-Load, the periodic drops in through-
put occur due to compaction threads in LevelDB performing additional
I/O; performance is similar in uFS^ and Nebula. Second, for write-intensive
workloads (e.g., YCSB-Load in Figure 6.3), throughput does not drop af-
ter recovery since Nebula re-uses dirty data pages; for read-only work-
loads (e.g., YCSB-C in Figure 6.5), performance drops but then increases
again, because clean pages are discarded and refetched to rewarm the
page cache. Finally, the recovery time of Nebula is sometimes slightly
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# System Call Sequence Followed by P-Crash uFS^
uFS

1 open(f) read(f)
open(f) lseek(f)

BadFd
✓

2 open(f) read(f) close(f)
open(f) read(f) close(f)

✓
✓

3 open(f) write(f) close(f)
open(f) write(f) close(f)

DLoss
✓

4 open(f) pwrite(f) close(f)
open(f) pwrite(f) close(f)

DLoss
✓

5 open(f) write(f) sync(f)
open(f) lseek(f) sync(f)

BadFd
✓

6 open(f) write(f) sync(f) write(f)
open(f) lseek(f) sync(f) write(f)

BadFd,DLoss
✓

7 open(f) pwrite(f) sync(f)
open(f) pwrite(f) sync(f)

BadFd
✓

8 open(f) write(f) sync(f) close(f)
open(f) write(f) sync(f) close(f)

✓
✓

Figure 6.6: Recovery of uFS^ and uFS on 24 System-Call Sequences:
(a) Include Simple Operations Unrelated to Directories. The first row
of each group shows the system call sequence in the test and the uFS^ re-
sult (DLoss: DataLoss) after a single p-crash. The second row shows the
system calls performed by uFS on restart (green operations are modified;
gray operations are ignored) and its result (successful: ✓).

faster than that of uFS-Sync^. Recovery time is explored in detail below
(§6.6.6).

We now explore the strengths and weaknesses of uFS^, uFS-Sync^,
and Nebula for performing transparent recovery and delivering high common-
case performance.

6.6.3 Transparent P-crash Recovery: Handling State Gap

To stress the recovery of the uFS variants on p-crashes, in experiments be-
low we inject more than 30,000 faults in workloads containing both con-
trolled system-call sequences and real applications. We show that both
UNIX utilities (sort, cp, and unzip) and production-level data libraries
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# System Call Sequence Followed by P-Crash uFS^
uFS

9 creat(f) close(f)
creat(f) close(f)

FLoss
✓

10 creat(f) write(f)
creat(f) write(f)

BadFd,FLoss
✓

11 creat(f) write(f) close(f)
creat(f) write(f) close(f)

FLoss
✓

12 creat(D/f) write(D/f) sync(all)
open(D/f) lseek(D/f) sync(all)

BadFd
✓

13 creat(D/f) write(D/f) close(D/f) sync(all)
creat(D/f) write(D/f) close(D/f) sync(all)

✓
✓

14 open(f) write(f) unlink(f)
open(f) write(f) unlink(f)

BadFd,DLoss,DFE
✓

15 open(f) write(f) close(f) unlink(f)
open(f) write(f) close(f) unlink(f) #nlink=0

DFE
✓

16 open(f) write(f) close(f) rname(f,f1)
open(f) write(f) close(f) rname(f,f1) #nlink=0

NRevoke,DLoss
✓

17 open(f) write(f) unlink(f) sync(all)
creat(f) lseek(f) unlink(f) sync(all)

BadFd
✓

18 open(f) write(f) close(f) unlink(f) sync(all)
open(f) write(f) close(f) unlink(f) sync(all)

✓
✓

19 open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(all)
open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(all)

✓
✓

20 open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(D)
open(D/f1) write(D/f1) close(D/f1) rname(D/f,D/f1) sync(D)

DLoss
✓

21 creat(D/f1) write(D/f1) sync(D/f1)
CreatReuseDInode(D/f1) lseek(D/f1) sync(D/f1)

BadFd,FLoss
✓

22 creat(D/f1) write(D/f1) sync(D)
open(D/f1) write(D/f1) sync(D)

BadFd,Garbage
✓

23 creat(D/f1) write(D/f1) close(D/f1) sync(D/f1)
CreatReuseDInode(D/f1) write(D/f1) close(D/f1) sync(D/f1)

FLoss
✓

24 creat(D/f1) write(D/f1) close(D/f1) sync(D)
open(D/f1) write(D/f1) close(D/f1) sync(D)

Garbage
✓

Figure 6.7: Recovery of uFS^ and uFS on 24 System-Call Sequences: (b)
Include Operations Related to Directories. The first row of each group
shows the system call sequence in the test (rname represents rename)
and the uFS^ result (DLoss: DataLoss; DFE: Deleted File Exists; FLoss:
FileLoss; NRevoke: Rename Revoked) after a single p-crash. The second
row shows the system calls performed by uFS on restart (green operations
are modified; gray operations are ignored) and its result (successful: ✓).
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(SQLite and LevelDB) are not robust to uFS^ p-crashes, exhibiting failure
for return codes, data loss, and corruption. In contrast, Nebula recovers
from all p-crashes such that applications continue successfully.

6.6.3.1 Controlled System-Call Sequences

To ensure that Nebula correctly recovers a range of system calls, we build
a test suite containing 24 sequences of system calls with a p-crash at the
end. Figure 6.6 and Figure 6.7 show the original system call sequence, the
result when uFS^ is used, and the operations Nebula replays on restart,
modified or ignored by AIM as indicated.

The results show that Nebula correctly handles all cases, in contrast
to uFS^. Specifically, if any file descriptors are not closed before the p-
crash, uFS^ returns EBADFD when fd is used since uFS^ has no record
of it (e.g., in 1, 5, 6, 7, 12, 14, 21, and 22). If any file writes are not synced,
uFS^ loses data (e.g., in 3, 4, 6, 14, 16, and 20). If a create’s change is lost,
uFS^ loses entire files (9, 10, 11, 21, and 23). Finally, unlink and rename
operations can be lost (14, 15, 16).

6.6.3.2 Real Application Behavior

We evaluate how different system utilities (gnu-sort, cp, unzip) and data-
intensive applications (SQLite and LevelDB) react to simple p-crashes
and restarts with both Nebula and uFS^. Figure 6.8 gives workload de-
tails and shows these applications exercise a range of file system calls. For
each workload, we inject a simple p-crash both after and during each of
the 15,000+ filesystem operations and examine the application’s resulting
behavior. Since behavior is dependent on when data is persisted to disk,
we control the timing of flushes performed by uFS in the background (if
an application directly calls fsync, the flush is performed immediately).

The desired result is for each application to exit with the same return
code and produce the same filesystem content as when there is no p-crash.
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Sort ✓✓✓ ✓ ✓ ✓ ✓✓✓
CpDir ✓✓✓ ✓✓ ✓ ✓ ✓ ✓
Unzip ✓✓ ✓✓✓ ✓ ✓ ✓
SQLite ✓✓✓ ✓ ✓ ✓ ✓ ✓ ✓✓
LevelDB ✓✓ ✓ ✓ ✓ ✓ ✓✓✓✓✓

Figure 6.8: Operations in Applications. The five applications use a range
of system calls as shown with ✓. Sort is an external gnu sort over 10M
data. CpDir and Unzip operate on a 5-directory tree with depth of 3 and
4 files of sizes 100KB, 110KB, 200KB, and 210KB. SQLite performs a se-
quential load with 400 keys, 2 transactions. LevelDB performs a sequen-
tial load of 2000 keys.

We characterize the actual results for each fault-injection experiment as
S_OK, S_BAD, F_OK, and F_BAD, where S/F indicates the return code
(success or failure) by the application and OK/BAD indicates whether
the data is identical to an execution with no failures; thus, S_OK is ideal
and S_BAD is incorrect; F_OK and F_BAD may be acceptable, since they
indicate an error the application could not handle, but require manual
intervention.

Figure 6.3 shows that applications are not robust to p-crashes with
uFS^, with many instances of return code failures (F_OK/F_BAD) and
bad data (S_BAD/F_BAD). The application behavior with uFS^ is de-
scribed further in Figure 6.9, illustrating how a p-crash at different points
in a realistic filesystem call sequence can result in various unexpected and
challenging outcomes for applications. A single background sync can
change the consequences drastically. Moreover, given the complex com-
binations of system call sequences exhibited by real-world applications
and their unpreparedness for p-crashes, a systematic solution like Neb-



123

5322

4 12 8 10 41

Copy Dir

+/ Bg 
Sync

4

Gnu Sort

+/ Bg 
Sync

3 5 4 3 4

7

3

6

Unzip

+/ Bg 
Sync

7

3 7 9 3

S_OK S_BAD

F_OK F_BAD

(a) sort

(b) CpDir

(c) unzip

(d) SQLite

(e) LevelDB

SQLite

3 3 7 5941 35 6

Corr

X35
+/ Bg 
Sync

LevelDB

3

+/ Bg 
Sync

12 14 1964

Corr

Loss
1964

Corr

6

Figure 6.9: Application Reaction to p-crash of uFS^. Each symbol in-
dicates the impact of a p-crash and restart with uFS^ after each system
call. The first line shows the results with no background sync; the second
line shows with a background sync, where the thick bar shows where the
sync occurs. The arrows between lines indicate cases that differ across no
sync and sync.
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Workload #of ops
Fail after each op Fail during an op

uFS^ Nebula Nebula
S_OK F_OK F_BAD S_BAD S_OK S_OK

Sort 5327 4 0 5322 1 5327 5327
Sort (w/s) 5327 4 0 5322 1 5327 5327

CpDir 82 4 0 77 1 82 82
Cpdir (w/s) 82 6 0 71 5 82 82

Unzip 77 11 6 47 13 77 77
Unzip (w/s) 77 18 6 27 26 77 77

SQLite 154 3 89 62 0 154 154
SQLite (w/s) 154 3 54 97 0 154 154

LevelDB 1997 5 26 1966 0 1997 1997
LevelDB (w/s) 1997 5 28 1964 0 1997 1997

Table 6.3: Transparent Recovery of Applications. A single p-crash is
inserted after (or during) each system call of the five benchmark applica-
tions. With uFS^, applications may return the wrong error code (F_OK
and F_BAD) or have the wrong data (S_BAD and F_BAD); with Nebula,
all applications are correct.

ula is necessary to ensure transparent recovery, especially for handling
the state gap.

For Sort and CpDir with uFS^, most cases are F_BAD (5322/5327 and
77/82) because the utilities depend on an opened file descriptor that is
lost, causing both to terminate with an error code. Sort does not fsync
after its last operation, causing a problematic case where the exit code in-
dicates success, but data is lost (S_BAD). For CpDir, a background sync
flushes a newly-created destination directory, causing some later oper-
ations to succeed and confusing the utility into returning success even
though data is lost (5/82).

Unzip with uFS^ usually results in F_BAD (47/77), but has more com-
plicated behavior. First, unzip retries some failed system calls, but does
not correctly identify the root cause and retries irrelevant operations. Sec-
ond, unzip sometimes prints warning messages, but continues executing
and incorrectly exits with a success return code. As a result, many cases
with a background sync report S_BAD (26/77).
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While simple utilities may not be expected to correctly retry operations
when a filesystem returns an error, production-quality libraries that care
about durability, such as SQLite and LevelDB, contain recovery mecha-
nisms such as write-ahead-logging. To study their reactions to p-crashes,
we run a simple load workload. With uFS^, as desired, SQLite and Lev-
elDB never return success if data was lost or corrupted (S_BAD=0): if
there is a problem with the data, SQLite and LevelDB correctly return an
error. However, in many cases, SQLite and LevelDB exit prematurely with
error codes. In these cases, we reopen the database and try to read back
the inserted keys: F_OK indicates the reopening succeeds and no data is
lost; F_BAD signifies the reopening fails, the database reports corruption
(labeled Corr), or there is data loss (labeled Loss). We have verified that
offline tools can manually repair the database when it cannot be opened or
is corrupted, but not when data is lost; however, offline tools reduce sys-
tem availability and burden administrators [158, 201]. Thus, even appli-
cations with sophisticated durability techniques need more support than
uFS^.

These results indicate it is unrealistic to expect current applications
to correctly handle p-crashes: to provide transparent filesystem availabil-
ity, a reliable filesystem must go beyond merely restarting and rebuilding
connections and instead ensure that all states are recovered properly as if
no error occurred. Figure 6.3 shows Nebula meets this goal: all five appli-
cations proceed successfully for all 30,000+ p-crash points, regardless of
whether the p-crash occurred after or during a system call and whether
or not a background sync occurred: as desired, the applications return
S_OK and have identical data as when no p-crash occurs.

6.6.3.3 Multiple Processes

As a shared filesystem service, handling multiple applications is essential.
To demonstrate that Nebula transparently recovers multiple processes,



126

Region # of Cases Successful
Restart

Correct
FS Metadata

Correct
FS Data

Stack 15 15 (100%) 15 (100%) 11 (73%)
Heap 2547 2547 (100%) 2547 (100%) 2542 (99.8%)

DMA-mem: Metadata 375 375 (100%) 375 (100%) 375 (100%)
P-log 436 436 (100%) 436 (100%) 436 (100%)

Table 6.4: Nebula Recovery after Memory Corruption. The corruption
experiments fully enumerate each memory region and we report the number of
cases as where the fault manifests to detected errors (e.g., filesystem errors or
application errors). The percentages of cases with detected errors for each memory
region are: 0.71%, 20.4%, 73.5%, and 100%.

we simultaneously run three applications (LevelDB, Sort, and CpDir)
and inject p-crashes at 300 random points. In all cases, with Nebula the
three applications continue executing correctly and return S_OK.

6.6.4 Transparent P-crash Recovery: Memory Corruption

We demonstrate Nebula provides transparent p-crash recovery in the persence
of memory corruption. These experiments show that Nebula recovers
naturally from memory corruption since it builds from the on-disk states
of the filesystem and relies on the well-protected p-log; thus, any cor-
rupted data in memory is simply discarded and new values are recreated
by replaying the p-log.

We inject memory corruption into the four major memory regions of
the filesystem process address space (as depicted by Figure 6.1): stack,
heap, filesystem metadata (within DMA-able memory), and p-log. After
completing the first half of the workload, the fault injection module de-
rives the runtime memory layout from /proc/self/maps, injects memory
corruption in a configured region, and then Nebula continues handling
the rest of workload. We monitor the cases where the faults actually man-
ifest into errors, including filesystem errors (and thus recovery) or appli-
cation errors (e.g., the application warns or aborts). Table 6.4 presents
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the results.
Each experiment corrupts a 4KB chunk of memory in a specific re-

gion, except for the stack (64B). The total size of the stack region is much
smaller compared with others, so a large corruption size leads to the same
amount of work for recovery (as long as a particularly problematic por-
tion is corrupted), while a 4KB memory corruption in other regions is
adequate for generating diverse cases. The correctness of filesystem meta-
data and data is also checked. Our experiments thus exhaustively cover
the corruption of all these memory regions, with a total of 18,100 mem-
ory corruption injection experiments, including the 3,373 cases where an
error occurs, which are included in the table.

Nebula successfully performs a restart, continues handling applica-
tion workloads, and ensures the correctness of filesystem metadata in all
cases, demonstrating the robustness of the restart mechanism and p-log.

In a small amount of cases, four cases in stack region and five cases in
heap region, the filesystem data are not recovered properly, which is due
to limitations in our current implementation. Once the kernel monitors
the exit of the main process, it signals the main process, which runs the
procedure to rescue the data pages in the signal handler, thus corrupting a
particular region in stack and heap halts the procedure. We expect further
improvement that moves the rescue procedure (read-only) to the kernel
space to address this issue. An eBPF program is a promising lightweight
solution to safely run this procedure in the kernel space.

6.6.5 Common-Case Overheads

While both Nebula and uFS-Sync^ provide transparent recovery, uFS-
Sync^ provides this with a costly method: persisting dirty data before
returning to the client. In contrast, Nebula provides transparency effi-
ciently by saving only a small p-log. We show that Nebula incurs negli-
gible performance and memory overhead compared to uFS^.
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Figure 6.10: Performance Overhead of uFS-Sync^ and Nebula Variants.
Nebula-repl writes to 2 CRC’ed p-logs; Nebula-CRC adds CRCs to filesys-
tem in-memory structures (updated on all writes; checked on all reads);
Nebula-repl-CRC combines replication and CRCs.

6.6.5.1 Performance

Figure 6.10 shows the performance overheads of uFS-Sync^ and uFS (with
variants to protect structures with CRC and replicate the p-log) normal-
ized to uFS^ for a range of data-intensive applications: Copy, Sort, and
LevelDB for Load and five YCSB workloads. We use sufficiently long
workloads to trigger garbage collection in uFS.

The slowdown of uFS-Sync^ is significant, peaking at 6x slower than
uFS^. Copy performs many writes and meta-data updates; therefore, uFS-
Sync^ has high overhead (3.3x). Sort represents applications that are
data and computation intensive; therefore, the slowdown of uFS-Sync^
is not as severe (2x). The performance of LevelDB depends on the write-
activity in the workload: Load is the most write-intensive and has the
most slowdown; YCSB-B, C, D are all read-dominated and have low over-
head; YCSB-A, F have more balanced read/write ratios and intermediate
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Workload Baseline
Mem (MB)

Crc
dentry blocks

Crc
data bitmap

Crc
I bitmap

Nebula
Overhead (%)

Sort 419.2 64B (2) 384B (12) 32B (1) 0.00011%
CpDir 133.1 7.8KB (251) 19KB (600) 32B (1)) 0.01952%

LevelDB (SeqWrite) 102.0 32B (1) 160B (5) 32B (1) 0.00021%
LevelDB (YCSB-A) 115.1 64B (2) 256B (8) 32B (1) 0.00029%
LevelDB (YCSB-B) 93.6 32B (1) 96B (3) 32B (1) 0.00016%
LevelDB (YCSB-C) 49.1 32B (1) 64B (2) 32B (1) 0.00025%
LevelDB (YCSB-D) 43.2 64B (2) 32B (1) 32B (1) 0.00028%
LevelDB (YCSB-F) 100.7 64B (2) 256B (8) 32B (1) 0.00033%

Table 6.5: Memory Overhead Summary. The amount of Baseline Mem
includes: one is the difference between the amount of memory in the data
segment (heap) before and after running each workload; the second is
the in-memory file system structures (corresponding to disk, including
data blocks and metadata blocks); Overhead is calculated using the CRC
memory added.

overheads.
We have also implemented Membrane-style replay which requires ex-

tra full sync to handle fsync and directories operations like creat. For
LevelDB load and Copy workloads, Membrane-style replay has high over-
head compared with the baseline uFS, 1.33x and 3.43x, respectively.

For all workloads, the overhead of Nebula is low; in the worst cases
of very write-intensive workloads (Copy and LevelDB-Load) the over-
head of Nebula with no extra memory protection is less than 4%, while
adding both p-log replication and CRC protection to essential data struc-
tures raises it to 7%; the overhead of all other workloads is below 1%, or
2% with full memory protection.

6.6.5.2 Memory Overhead

We next evaluate the extra memory overhead incurred by Nebula to pro-
vide transparent recovery. Nebula adds memory to uFS^ in two ways: for
the p-log (and its replica) and for CRC checksums to detect corruptions.

The memory cost of the p-log is proportional to the number of requests
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Figure 6.11: p-log Memory Usage (LevelDB). (a) shows that memory us-
age varies across workloads and that garbage collection effectively reclaims log
entries. (b) illustrates the trade-off between the memory threshold for garbage
collection and performance.

that have not been garbage collected. Figure 6.11(a) presents the memory
used by the p-log when LevelDB consecutively runs the Load, YCSB-A,
and YCSB-C workloads. When the size of the p-log reaches a configurable
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threshold (4MB), Nebula performs garbage collection, reclaiming opera-
tions that will not be replayed on a p-crash; the p-log does not shrink to
0 because some file descriptors remain open as LevelDB runs. The write-
intensive Load workload fills the p-log faster than read-write YCSB-A;
similarly, read-only YCSB-C adds fewer operations to the p-log.

Figure 6.11(b) illustrates the trade-off between performance and the
maximum size allocated to the p-log for LevelDB-Load. We consider two
forms of garbage collection, both of which are triggered when the p-log
reaches a threshold: GC-NoSync which returns if no p-log entries can be
reclaimed; GC-Sync, which triggers a background sync if no p-log entries
were reclaimed. For both, LevelDB throughput is unacceptably low if the
p-log threshold is too small. GC-Sync enables a smaller p-log compared
to GC-NoSync (e.g., 0.65MB instead of 0.85MB), but slightly reduces Lev-
elDB performance (92% of the baseline instead of 96%) due to the more
frequent sync operations. Thus, we use GC-NoSync with a p-log thresh-
old (4MB) that is more than sufficient for even the most write-intensive
workloads.

Figure 6.11(c) summarizes CRC memory overhead relative to the in-
memory size of each workload. Each in-memory 4K block of inode bitmaps,
data bitmaps, and directory entries uses 32 one-byte CRCs; the 1B CRC
for each inode is embedded within existing inode structure and therefore
does not require extra memory. Thus, CRC adds minimal memory over-
head (at most 0.02%).

6.6.6 Recovery Performance

In our final experiments, we show recovery time for uFS^, uFS-Sync^, and
Nebula in Figure 6.12; since recovery time depends on filesystem state,
we consider two write-intensive workloads: CpDir and LevelDB-Load.
We inject a p-crash after every 500 system calls (shown along the x-axis);
the y-axis is the time for recovery after that p-crash point. While all ap-
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Figure 6.12: Recovery time with uFS^, uFS-Sync^, and uFS. The light
blue vertical lines indicate the time where a background sync occurs; the
deep blue (last) vertical lines indicate a checkpoint. X-axis is the timing
(# of ops) of a p-crash.
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proaches recover in less than 500ms thanks in part to kernel-coordinated
speculative restart, the more state that exists within uFS at the p-crash,
the longer recovery takes.

For uFS^, recovery time is relatively constant. Note that even though
uFS^ recovers, the currently-running application may not be able to use-
fully continue. uFS^ sees a jump in recovery time after a sync is per-
formed (CpDir w/ sync at 20K ops) because more operations exist in the
s-log. The very small increase in recovery time for other workloads as
they make more progress occurs because the kernel must destroy a larger
uFS address space.

The recovery time for uFS-Sync^ and Nebula includes the recovery
time of uFS^. For uFS-Sync^, recovery time increases as the applications
run longer because more operations have been persisted to the s-log. The
time for recovery becomes minimal at the end after uFS performs a s-log
checkpoint (marked by the last vertical line).

Finally, the recovery time of Nebula is directly related to the number
of operations in the p-log. The size of the p-log is reduced when the ap-
plication calls fsync or a background sync is performed. This reduction
is illustrated in CpDir when a background sync is performed at the first
vertical line; and in LevelDB-Load periodically when a foreground sync
occurs. Thus, depending on the size of the p-log and s-log, recovery may
be faster in Nebula or uFS-Sync^.

6.7 Summary and Conclusions
In this chapter, we present Nebula, the variant of uFS that realizes the
fault tolerance potential of semi-microkernel architecture. Returning to
the question asked in the beginning of this chapter, can applications us-
ing the filesystem seamlessly continue after a server process crash with
Nebula?
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The answer is a resounding yes. Nebula equips uFS with a range of
mechanisms designed for p-crash recovery, leveraging the fact that the
host OS, the on-disk state, and the failed process memory can all con-
tribute to the recovery, a unique opportunity arising in the p-crash model.

To address the aforementioned challenges, Nebula introduces three
mechanisms: kernel-coordinated speculative restart, lightweight protec-
tion of in-memory states, and the p-log data structure for exit activation.
These are combined to achieve a fast, robust, seamless p-crash recovery
machinery that does not sacrifice the performance benefits of uFS.

We demonstrate Nebula through extensive fault injection experiments,
including fail-stop errors and memory corruptions. Our benchmark suite,
which crashes the filesystem server to generate a large number of realistic
state gaps under real-world application workloads, is the first to analyze
and evaluate the state gap problem and the recoverability of all prefix op-
eration sequences. We also show that Nebula recovers quickly (in less
than 500 ms) and incurs negligible overhead in the common path (less
than 7%) even under challenging workloads.

Finally, relying on full system crash recovery to handle both process
crashes and power failures is worth reconsideration because it misses the
opportunities for better guarantees, availability, and performance. We be-
lieve that Nebula represents a step forward in the design of fault-tolerant
microkernels and user-space system services. The process crash recovery
machinery we have designed is beneficial, and the principles and mech-
anisms we introduce can be applied more broadly.
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7
When Slow is Good

We have alluded to the velocity and customization benefits of the semi-
microkernel approach earlier (§3.2.2), which we have leveraged to build
uFS and Nebula. The approach allows for fast development, release, up-
grade, and customization of various versions of the same system.

But why do we need yet another version of uFS? One perhaps ob-
vious answer is to fix a bug and release a new version. When a bug is
fixed, one might wish (though impossible) to go back in time and start
the filesystem server using the fixed code, avoiding any adverse conse-
quences caused by the bug.

The question then arises: can we have a version of uFS that is more
correct (i.e., free of bugs) by design, allowing Nebula to run a bug-free
code path during the recovery (i.e., replay)? We refer to this approach of
using a more robust version of the same system to recover from runtime
errors as Robust Alternative Execution (RAE).

The main benefit of RAE is that it allows the system to recover from
deterministic software bugs, as replaying the p-log with the original code
path would trigger the same bug and fail the recovery. Recovering from
deterministic errors is fundamentally difficult for generic recovery when
using the original implementation to replay the workload [127].

For the version of uFS utilized for RAE, slow is good, because by omit-
ting any designs and optimizations for performance (thus being slow),
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the system can be extremely simple, making it hard to go wrong. We
refer to this version of the system as a shadow filesystem.

We explore the idea of RAE by building a prototype of the shadow
filesystem for uFS and integrating it into Nebula. In this last chapter of
exploration, we go back to the beginning, where the filesystem is single-
threaded and minimally functional. The questions now are: How simple
can the shadow filesystem be while still being able to run the operations
in the p-log? And how much recovery time does it take? (§7.2 and §7.3)

The chapter is organized as follows. We first present a bug study of
Linux kernel filesystem (ext4), showing the prevalence of both determin-
istic and non-determinsitic bugs (§7.1.1). We then introduce the robust
alternative execution approach and the shadow filesystems (§7.1.2). We
present the design of uFS-Shadow, a shadow filesystem for uFS, that is in-
corporated into Nebula(§7.2). Finally, we demonstrate that uFS-Shadow
allows Nebula to recover from deterministic errors. We also evaluate the
recovery time and implementation efforts of uFS-Shadow(§7.3).

7.1 Motivation and Approach
We present a mini-study of filesystem bugs in Linux ext4 that motivates
the RAE approach and then describe the properties and strategies of shadow
filesystems for RAE.

7.1.1 Deterministic Bugs in a Kernel Filesystem

One common assumption is that deterministic bugs are rare in mature
softwares after extensive testing and debugging [54, 185]. However, a
number of deterministic bugs in Linux kernel filesystems are reported
and fixed every year. When a bug is reported with a reproducer including
a sequential workload, it is deterministic.
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Deter-
minism

Conse-
quence No Crash Crash WARN Unknown Total

Deterministic 68 78 11 8 165
Non-Deterministic 31 26 19 7 83

Unknown 5 2 1 0 8

Table 7.1: Study of filesystem bugs (Linux ext4). Bugs that do not
have reproducers, or are related to the interaction with IO (e.g., multi-
ple inflight requests), or are related to threading, are classified as non-
deterministic. Bugs are classified as Unknown in their consequence when
the commit message does not contain clear clues of external symptoms.
The columns present the numbers of bugs according to each consequence.
WARN indicates the bug hits a WARN_∗() path, the suggested substitute
of BUG() in the Linux kernel. We collect the bugs by filtering the ext4’s
subtree’s git log with the mentioning of “bugzilla” or “reported by”, so
the year of a bug corresponds to the year of its fix. (256 bugs in total since
2013).

We study 256 bugs in the Linux ext4 filesystem and categorize them.
As shown in Table 7.1, deterministic bugs are prevalent (165/256), and a
significant portion cause crashes or warnings that are detected as runtime
errors (89/165).

Figure 7.1 presents the number of deterministic bugs by the year of
fixes. More bugs are fixed in recent years for two reasons. First, advances
in testing reveal more vulnerabilities with the proper workloads, espe-
cially in input sanity checks [100]. Second, new kernel features such as
blk-mq, page folios, and iomap [47, 48, 60] introduce new bugs.

One notable type of deterministic bug occurs when a user mounts a
crafted disk image and issues operations to trigger crash (e.g., a null-
pointer dereference or use-after-free) in the kernel [39, 123, 209]; such
images can bypass FSCK [94], leading to crashes from malicious attack-
ers. One example of operation sequence that triggers a kernel crash in
ext4 is shown in Figure 7.2.
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Figure 7.1: Number of deterministic bugs (fixed) by year. Examples of
NoCrash consequences include data corruption, performance issue, per-
mission issue, freeze, deadlock, etc.

#/bin/bash
mount -o loop tmp32.img mnt # a corrupted image
mv mnt/foo/bar mnt/foo/Yzo... OFz
mv mnt/foo/Yzo... OFz mnt/foo/AId... 7oF

Figure 7.2: An Example of Error-Induced Sequence. According to CVE
2022-1184 [2], such a sequence triggers a user-after-free in the Linux ker-
nel (ext4).

N-version programming [13–15] (NVP) is a classic approach that can
handle deterministic bugs. NVP advocates the independent development
of several versions of software with the same specification, running them
simultaneously to generate output by combining the decision of each ver-
sion (via voting). Despite its conceptual advantage of detecting and mask-
ing one version’s fault, the assumption of statistically independent fail-
ures does not usually hold [102]. Further, maintaining and executing
multiple versions (often, at least three) incurs excessive overhead.

We propose a different approach – Robust Alternative Execution – to
handle deterministic and non-deterministic runtime errors for a given
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base filesystem via a shadow filesystem. As shown in Figure 7.3, after
detecting an error, a shadow is launched as the temporary substitute of
the base to execute the problematic filesystem operation sequence and
return correct metadata updates to a restarted base.

7.1.2 A Practical Approach: Robust Alternative Execution

We advocate robust alternative execution (RAE), a practical approach to
improving the reliability of existing high-performance filesystems [112]
via shadow filesystems. The shadow filesystem is a simple implemen-
tation of the base filesystem that focuses on correctly handling all work-
loads without concerning itself with performance.
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The main intuition of this approach is to separate the filesystem exe-
cution into a common path and a alternative path and run one implemen-
tation of the filesystem for each path. The two implementations share the
same on-disk format and can both execute the same API (e.g., POSIX).
While the base is optimized for performance in the common path, the
shadow strives for robustness.

As shown in Figure 7.3, RAE requires a component to record the error-
induced sequence. After an error is detected, the in-memory metadata
and file descriptors in the base are reset by a restart. A separate shadow
filesystem process is launched to execute the recorded operations (read-
ing any data required from the disk), and the shadow filesystem pro-
duces new (and correct) metadata structures that are directly used by
a rebooted base. As such, the rebooted base starts from the recovered
metadata and file descriptors without needing to re-execute the error-
triggering operation sequence.

Compared to NVP, RAE has a significant conceptual difference be-
tween the two implementations, as shown in Figure 7.3. The shadow
only needs the core functionality of the filesystem and does not need to
include other components in the base designed for performance. Such
a large difference and simplification are possible because the shadow is
only executed in the alternative path (i.e., rare cases).

The shadow filesystem has three properties: it is simple, it can afford
to be slow, and it is more robust, achieved mainly through two strategies.
Simple yet functional implementation: Modern filesystems (including
uFS) are complex, primarily due to optimizations for concurrency, caching,
and asynchronous interaction with storage devices. The software archi-
tecture (Figure 7.3) of modern filesystems (including uFS and kernel filesystems)
consists of an interface layer for (un)marshaling and user interaction (e.g.,
IPCs and VFS), a cache for inodes, data blocks, and directory entries, and
numerous concurrency-related optimizations. A block layer (e.g., blk-
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mq) interacts with storage devices asynchronously, employing various
mechanisms and policies for performance. In between, the core func-
tionality component handles the semantics of the filesystem metadata
and data, interacting with those concurrent and complex components
to acheive better performance. A filesystem implementation’s complex-
ity and likelihood of bugs are exacerbated by the interactions with these
performance components; worse, those performance components keep
evolving, causing more bugs, as shown in our bug study.

To improve robustness, a shadow eliminates all performance optimiza-
tions, focusing instead on correctness. It thus aims to be the simplest pos-
sible yet functional implementation of the base filesystem. To reduce com-
plexity and the likelihood of bugs, a shadow is not interactive with users,
does not have concurrency, does not have sophisticated caching structures
and policies (e.g., LRU 2Q [117]), performs IO synchronously, and does
not write to devices, as shown on the right side of Figure 7.3.

Therefore, the first vehicle for shadow’s robustness is simplification.
Such simplification reduces the size of the codebase, naturally reducing
the likelihood of bugs. The cost of simplification is low performance, and
the shadow intentionally avoids any performance techniques.
Extensive runtime checks: The shadow can further improve its robust-
ness by adding extensive runtime checks because the performance cost of
the checks is affordable in the alternative path.

For example, an input check can resolve the CVE we discussed above
that triggers a use-after-free. It is not practical to assume developers will
add source code to check for the validity of every function’s input (e.g.,
assertions), because it will make the code less clean and incur overhead.
Furthermore, assertions and checks are usually removed for performance
while executing the base in production.

The shadow implementation, instead, encourages as many runtime
checks as possible. For example, the validity of each function’s input can
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be checked, and invariants after completing one operation can also be
checked, which is helpful to detect silent corruption due to hardware.
Other helpful checks include memory sanitizers.

RAE can be applied to existing high-performance kernel filesystems
as our argument of why the shadow could be different, could be simple,
and thus could be robust also holds for a kernel filesystem, which shares
the software architecture as shown in Figure 7.3.

RAE naturally fits into Nebula as one step further to handle deter-
ministic bugs in addition to all the faults that Nebula already recovers
from. Nebula, with its restart and exit activation data structure, p-log,
provides the convenient infrastructure to utilize a shadow implementa-
tion of uFS. The p-log already records the workload that triggers an error,
and we build uFS-Shadow to explore the benefits and challenges of RAE.
The rest of this chapter will be focusing on uFS-Shadow.

7.2 uFS-Shadow
We build on Nebula to realize RAE. The practical difference between RAE
and Nebula (as described in §6.3.6) is that the transformed p-log is re-
played by uFS-Shadow, whereas Nebula utilizes the base uFS’s source
code to replay the p-log. With uFS-Shadow, the result of the replay (i.e.,
the state gap) is returned to the restarted uFS. The base uFS and uFS-
Shadow never run simultaneously, and they shares the same on-disk data
structures. We use uFS and the base, and uFS-Shadow and the shadow
interchangeably.

7.2.1 Design

We mainly discuss the design of uFS-Shadow in the context of replay and
its interaction with the base.
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Replay: The uFS-Shadow filesystem is launched as a separate userspace
process to ensure strong isolation of faults and a clean interface between
the base and shadow; uFS-Shadow does not interact with applications. It
has two operation modes: constrained and autonomous. When uFS is exe-
cuting, uFS-Shadow is dormant; its constrained and autonomous modes
handle completed and in-progress operations, respectively.

In constrained mode, uFS-Shadow executes completed operations, pos-
sibly performs disk reads, and produces output along with a set of modi-
fied data structures. Constrained mode also cross-checks with the output
of the original execution. Discrepancies in output are reported; whether
or not to continue can be configured. For inode number and file descriptor
allocation, uFS-Shadow validates if the value produced by uFS is usable,
rather than performing its own allocation (which could lead to a different
value). The shadow omits operations that returned an error by uFS.

In autonomous mode, uFS-Shadow executes the in-progress opera-
tions whose return values have not been seen by the client. In this mode,
uFS-Shadow must make policy decisions such as allocating new inode
numbers (as opposed to simply validating the decisions made by uFS).
Hand-off back to uFS: The base filesystem must provide well-tested in-
terfaces to absorb the output of uFS-Shadow: a set of file descriptors and
on-disk metadata structures. To implement the interfaces, uFSreads these
structures and reuses its existing logic to place them into its cache, marked
as dirty. After the hand-off, the restarted base resumes execution and ad-
mits new operations, at which point all state within the base filesystem is
correct and up to date.

The output of uFS-Shadow should not be persisted to the disk used
by uFS, because it requires uFS-Shadow to implement a crash consistency
protocol to ensure safety in case of a power failure. However, the crash
consistency protocol is a major source of complexity in filesystems (§4.3).
Limitation: The main limitation of uFS-Shadow is in cases where an error



144

causes a wrong value to be returned to the application before the error is
detected. For example, if it returns a 1000-byte read when the file only has
500 bytes, even though uFS-Shadow can produce the supposedly correct
results, it cannot correct the returned value. Therefore, uFS-Shadow still
assumes that the fault is detected before incorrect results are returned to
the applications.

7.2.2 Contrasting Base and Shadow

uFS and uFS-Shadow are different in several ways.
Performance optimizations: uFS-Shadow omits all the performance com-
ponents in uFS. Specifically, uFS-Shadow does not use a dentry cache
(§4.2), and instead always performs path lookup from the root inode and
scans the directory entries. uFS-Shadow does not utilize the complex
structures like inode cache and buffers caches; instead, it uses a simple
data structure (e.g., a hashmap without replacement) to manage filesys-
tem structures read from disk during recovery.

uFS-Shadow is strictly single-threaded; it does not deal with locking
and concurrency (§4.2). uFS-Shadow busy wait for the completion of the
device IO (via SPDK’s polling), avoid asynchronous IO and the associ-
ated complexity (§4.1).
API support: The shadow filesystem supports the same set of filesystem
operations as the base. The exception is those that persist data to disk,
such as fsync. We omit the sync family API for simplicity, to avoid inter-
acting with the crash consistency protocol. The process-crash model en-
ables such simplification because the restarted base can absort the results
of the shadow, which is better to be through memory (e.g., via tmpfs)
such that the metadata updates in uFS-Shadow do not need to be flushed
to the persistent device. If the base fails in the middle of fsync, our current
design relies on the uFS-Shadow for the prefix operations and the base to
perform fsync again after the hand-off.



145

Core functionality: For a given operation sequence, the output at the API
level and the effects to semantic states (e.g., file descriptors and metadata)
must be equivalent between uFS and the uFS-Shadow. While more low-
level policy decisions might differ, the two must agree on essential invari-
ants. For example, allocating ten data blocks for a 4K write can be valid
behavior for a particular base filesystem, but the specific blocks allocated
might differ, leading to different data bitmaps.

7.3 Evaluation
uFS-Shadow is implemented in around 2.3K lines of code in C++. The
current implementation adds the runtime check for the precondition and
postcondition for each operation’s execution. We run all the experiments
in this chapter using the same setup as in §6.6. Nebula with uFS-Shadow
can recover from both transient fault and deterministic software bugs.

Our evaluation in this section answer the following questions:

• Can uFS-Shadow offer better robustness than Nebula? Especially,
can it recover from deterministic errors?

• Is uFS-Shadow simple to implement? How does the implementa-
tion effort compare with uFS?

• How does the recovery performance of Nebula with uFS-Shadow
compare to that of Nebula with uFS?

7.3.1 Benchmarks and Methodology

We first use the benchmarks to evaluate Nebula and run all the fault in-
jection experiments described in Table 6.3. We also design a error injector
to emulate deterministic software bugs. The injector can trigger a null-
pointer-deference in two ways: (1) by a specific workload sequence pat-
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Workload # of ops
uFS-Shadow

Fail after each op Fail during an op
S_OK S_OK

Sort 5327 5327 5327
Sort (w/s) 5327 5327 5327

CpDir 82 82 82
CpDir (w/s) 82 82 82

Unzip 77 77 77
Unzip (w/s) 77 77 77

SQLite 154 154 154
SQLite (w/s) 154 154 154

LevelDB 1997 1997 1997
LevelDB (w/s) 1997 1997 1997

Table 7.2: Transparent Recovery of Applications. A single p-crash is
inserted after (or during) each system call of the five benchmark applica-
tions. With uFS-Shadow, all applications are correct.

tern (e.g., ten writes followed by a rename, and rename with a certain
pathname), or (2) by a variable’s specific value upon access. The failure
is deterministically triggered by the configured conditions.

We create 25 deterministic error benchmark, covering various patterns
that stress different code paths of uFS. We also refer to the ext4 filesystem
bugs we studied (Table 7.1) for workload patterns.

We compare uFS-Shadow with Nebula for recovery performance. We
also compare uFS-Shadow with uFS for implementation effort, discussing
the lines of code needed for each component.

7.3.2 The Goodness: Robustness and Simplicity

We first evaluate the robustness and simplicity of uFS-Shadow.

7.3.2.1 Robustness

We first run the 300,000+ fault injection experiments with transient p-
crash points (Table 7.2). In all the cases, uFS-Shadow recover from the
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Length of Sequence # of Cases Base Shadow
1 5 0 5

1 – 10 5 0 5
10 – 50 5 0 5
50 – 100 5 0 5

>100 5 0 5

Table 7.3: Recoverability under Error-Induced Sequence Last two
columns show the number of cases that Base and Shadow recover from.
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Figure 7.4: Lines of code comparison between the base and the shadow.
We show the components described in Figure 7.3.

transient p-crashes successfully (S_OK), demonstrating that uFS-Shadow
is properly functional as desired.

We demonstrate that uFS-Shadow recovers from deterministic errors,
as shown in the Table 7.3. The fault injection benchmarks include work-
loads whose length are within the five ranges, five cases for each range.

In all the total 25 cases, uFS-Shadow successfully recovers from the
deterministic errors, whereas Nebula cannot recover from any of them.

7.3.2.2 Simplicity

We compare the implementation efforts of uFS-Shadow and uFS, as shown
in Figure 7.4. Overall, the 2.3K lines of code in uFS-Shadow are signifi-
cantly fewer than the approximately 35K lines of code in uFS(i.e., 7%).
The uFS codebase includes other facilities commonly needed for complex
systems, such as debugging and logging. We also don’t include the fea-
tures of load management in the Figure 7.4. The comparison of imple-
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Figure 7.5: Recovery performance comparing the base and the shadow.
Recovery time (y-axis) is shown in milliseconds. X-axis shows the number of
operations before the crash, i.e., number of operations executed during recovery.

mentation efforts shows that uFS-Shadow is much simpler than uFS.
First, highly-optimized components like the interface (including the

IPC message ring), bio (non-blocking I/O), and block caches add sig-
nificant complexity to uFS. In contrast, uFS-Shadow has a much smaller
codebase by omitting these components.

Second, the core functionality implementation is much simpler in uFS-
Shadow, with only around half the code of uFS. The reasons are: uFS-
Shadow is single-threaded, does not interact with those complex compo-
nents, notably does not need to deal with non-blocking I/O which greatly
simplifies the implementation, and is single-threaded.

Third, the hand-off takes around 450 lines of code, which is simple
enough for extensive testing.

The implementations of uFS-Shadow and uFS are fairly different, and
importantly, the uFS-Shadow codebase is small enough to be easily un-
derstood, tested, and maintained.
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7.3.3 The Slowness: Recovery Performance

We now evaluate the recovery performance of uFS-Shadow, understand-
ing the cost of the shadow filesystem, as shown in Figure 7.5. We run the
write intensive CpDir workload. As in the previous evaluation (§6.6), we
inject a p-crash after 500 system calls (x-axis); the y-axis shows the re-
covery time after that p-crash point. We disable the background sync for
these experiment to focus on the time take for each to run a long sequence.
The gray region shows the time to run the operations in Figure 7.5.

Overall, the recovery time of uFS-Shadow compared with Nebula is
much slower. However, the slowdown is not as significant as orders of
magnitude – recovery time is around 1.6x. One reason is that Nebula only
uses a single thread to replay the p-log. The recovery time of uFS-Shadow
and Nebula are both proportional to the number of sequences needed
to replay. We believe that this slowdown is acceptable in the alternative
path.

7.4 Summary and Conclusions
In this chapter, we explore robust alternative execution (RAE), which en-
ables Nebula to recover from deterministic bugs. We build uFS-Shadow,
a shadow filesystem for the base uFS implementation, and incorporate it
into Nebula to replay the p-log during p-crash recovery. After an error
is detected, another version of the filesystem code is invoked to run the
workload that fails the base uFS. The filesystem execution is thus sepa-
rated into two paths: the base filesystem (uFS) handles most workloads in
the common path, optimizing for performance, while the shadow filesys-
tem (uFS-Shadow) runs in the alternative path, striving for robustness.

We demonstrate the robustness of uFS-Shadow through fault injec-
tion experiments that include both transient and deterministic errors, and
uFS-Shadow successfully recovers from all of them. We show that uFS-
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Shadow reduces the codebase to 7% of the base uFS. The recovery time is
around 1.6x compared with using the base.

Our observation of filesystem software architecture is that the com-
plexity of filesystems lies in the performance components and their in-
teractions, as well as durability, which are more likely to introduce bugs.
In contrast, an implementation that provides the core functionality (i.e.,
accessing on-disk states and executing APIs) is quite simple.

Existing high-performance filesystems continue to evolve and inevitably
introduce more bugs. RAE is a practical approach to improve the reliabil-
ity of these filesystems via a separate implementation that is more robust
by being simple and slow. Slow is good when running in the alternative
path and when striving for robustness and availability.

Finally, we believe that the velocity and customization benefits have
more potential in the framework of running different versions of filesystems
and combining them in the uncommon path, such as for failure diagno-
sis.
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8
Related Work

In this chapter, we discuss other works related to this dissertation. We
begin with recent efforts in OS architectures (§8.1) and discuss how our
semi-microkernel approach compares to them. We then cover works around
modern filesystems (§8.2), including new filesystem architectures for emerg-
ing devices, improvements in filesystem multi-core scalability, and other
efforts in user-level filesystem development. Finally, we describe relevant
works in fault tolerance (§8.3), including sources of errors, how other
filesystems improve fault tolerance and reliability, and general system
fault tolerance and reliability.

8.1 OS Architectures and Construction
We have discussed the earlier evolutions of microkernels (§2.1); we focus
on the recent works exploring new OS architectures in this section.

Optimizing the IO path has drawn great attention in recent years in re-
sponse to high-performance IO devices. Similar to our architecture, sev-
eral pioneering works such as IsoStack, Snap, TAS, and Shenango [99,
134, 155, 178] explore the benefits of semi-microkernels in the network
domain. Among them, Snap [134] is a user-level network stack that sup-
ports a large scale of Google’s infrastructure. Compared with network-
ing semi-microkernels, filesystems are more complex and have more cou-
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pling with the host OS kernel, such as in memory management, user per-
missions, and process management (e.g., for permissions). This is be-
cause networking is a transport layer, while a filesystem is a storage layer
that needs to retrieve data, whereas networking can forget the data (i.e.,
it is memoryless).

Another direction for accelerating the I/O path to overcome the Linux
kernel’s significant overhead is kernel-bypass libraries. These OSes, such
as Arrakis [157], IX [20], ZygOS [163], and Demikernel [215], integrate
hardware direct-access into the applications, offering high performance.
They require other techniques such as virtualization (e.g., SR-IOV) to
manage the sharing and protection of the devices across multiple appli-
cations.

In addition to the kernel-bypass library OSes in the I/O path, the Rust
language inspires recent exploration of general OS architectures. Redleaf [151]
explores leveraging Rust’s memory safety as the isolation mechanism to
build a microkernel. Theseus [24] is a single-address-space and single-
privilege OS that redesigns OS runtime models and abstractions accord-
ing to Rust’s ownership model, allowing resource usage safety to be en-
forced by the language. As noted by the authors [24], rebuilding an entire
OS to support modern applications takes a significant amount of time.
Our work relies on the process boundary to provide isolation between
the OS services and the host monolithic kernel.

General library OSes, notably unikernels [105, 133, 160], tailor and in-
tegrate the entire OS directly with applications to form single-address-
space applications that are efficient to run in the cloud (e.g., on a hy-
pervisor). The most relevant insight from these works is the compati-
bility issue: porting the applications and extracting the performance ben-
efits requires significant effort and expert knowledge [105, 109] when a
completely new OS is introduced. Our approach is more focused, de-
signed specifically for one critical subsystem – the filesystem – and pro-
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vides POSIX compatibility.
Another recent success in microkernels is the HongMeng OS [32],

driven by industry, which took seven years and many engineers to build
and has been deployed in millions of devices. The IPC frequency issues
are mentioned to be much more problematic (i.e., 70x higher) when the
OS becomes more general-purpose and supports applications in smart-
phones. The compatibility issues are also highlighted. Semi-microkernel
filesystems, by design, can avoid these issues by focusing on a single sub-
system and relying on the host kernel for other system services.

8.2 Modern Filesystems
uFS draws on a broad range of recent work in filesystems. We first dis-
cuss systems that explore new filesystem architectures; then we present
systems that address scalability; finally, we examine related work on user-
level filesystem development.

8.2.1 New Filesystem Architectures

Emergent devices (such as NVM and SSDs [90, 211]) have placed a spot-
light on kernel overheads and have motivated researchers to revisit filesys-
tem architecture. One approach is to enable applications to directly ac-
cess the device via user-level libraries, sometimes bypassing a central-
ized and trusted entity. Because library-based solutions avoid the high
cost of trapping into and out of the kernel [56, 95, 97, 107, 169, 202, 216],
they generally provide high performance as compared to traditional ker-
nel filesystems.

However, there are challenges with the library-based approach [97].
For example, to maintain filesystem integrity, the manipulation of meta-
data requires the involvement of a trusted entity, either to update the
metadata or to validate the updates done by the library. Thus, maintain-
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ing metadata integrity not only slows down metadata-intensive opera-
tions, but also complicates the write path, as metadata updates are inter-
twined with data operations in the traditional filesystem interface (e.g.,
an append to a file also changes its size).

One early example of this approach is found in Aerie [202], whose
library can directly access filesystem data but is read-only for metadata;
a separate trusted user-level process takes care of metadata updates and
inter-process sharing via a distributed locking mechanism. Strata [107]
decouples layout and access methods of different devices via data migra-
tion between media. The Strata library accelerates performance by ap-
pending to a per-process private NVM log. The library also maintains
a DRAM cache for structures (such as inodes) to improve read perfor-
mance and acquires leases from the trusted entity for shared-file access.
ZoFS [56] offloads filesystem functionality into the user’s address space,
where the library can directly update any data or metadata. To enforce
security and permission, ZoFS includes a cooperative protocol between
trusted library instances based on Intel MPK [4], but assumes the library
is trusted. Similarly, KucoFS [38] equips the library with a per-file range
lock to accelerate intra-process concurrent writing to a file. The library di-
rectly translates naming into device location, such that the trusted kernel
only needs validation instead of costly look-ups for metadata updates.

SplitFS [95] proposes another approach where the library handles data
operations and a kernel NVM filesystem (ext4-DAX) processes metadata
operations. The SplitFS library improves performance by replacing data
copying with linking pages and avoiding page faults on the write path.
However, it has the same performance problem for metadata operations
as a kernel filesystem. NOVA [207], a DAX kernel filesystem, provides
atomic filesystem operations for NVM via an atomic mmap; it optimizes
device access performance through per-core structures but still suffers
from kernel overhead above the VFS layer.
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Finally, a different approach is to push filesystem functionality further
down into the devices themselves. For example, DevFS [97] pushes the
filesystem entirely into the device, thus providing direct access and serv-
ing as a centralized, trusted entity, but at a cost: the device must provide
the full filesystem API – a large change from today’s devices – and also
be able to serve filesystem needs with limited resources (device CPU and
memory). Follow-on work on CrossFS [169] distributes filesystem func-
tionality across hardware, software, and firmware, but equires significant
changes to device firmware.

A filesystem semi-microkernel differs from these approaches in that
it retains the same key property of kernel-based filesystems: trust is cen-
tralized (in server software) instead of being distributed (across library,
trusted process, OS, and hardware) and no special hardware is required.
As such, it is relatively straightforward to implement, and can deliver
scalable high performance across the entire filesystem API.

8.2.2 Filesystems and Multicore Scalability

Researchers have been studying the limitations of OS scalability [25, 43,
53, 69]; most of them find that the poor scalability of applications is pri-
marily attributed to the OS. The kernel scalability bottleneck usually stems
from some highly contended lock, leading to significant effort to intro-
duce fine-grained locks and resolve the subsequent concurrency bugs [130].
The most recent Linux kernel filesystem scalability study [144] explores
how the design of each kernel filesystem and the VFS layer affects appli-
cation scalability, which leads to a conclusion of “speculating scalability is
precarious.” It is thus natural for a semi-microkernel like uFS to consider
a scalable-by-design approach.

Clements et al. [43] take a principled approach by using the scalable
commutativity rule to reason about system scalability. ScaleFS [23] follows
these scalability guidelines, implementing concurrency-optimized data
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structures and a per-core private operation log for durability. Scalability
is also a critical design point in recent library-heavy filesystems [38, 169,
206], commonly introducing fine-grained concurrency control into the
libraries. Unlike ScaleFS, uFS generally uses per-core partitioned struc-
tures (no locking needed) and a global journal (with a small critical sec-
tion).

Several kernel filesystems [50, 84, 96] exploit data partitioning for bet-
ter scalability. SpanFS [96] and Hare [84] partition both files and direc-
tories into cores in a static manner. uFS, instead, dynamically changes
the mapping of files (excluding directories) into cores. Recent work in
WAFL [50] incrementally re-architects a kernel filesystem for scalabil-
ity by sharding stripes of files to cores and multi-granularity partition-
ing of the directory tree based on the request type. Like uFS, message
passing is used for users to submit requests and communication between
filesystem threads. WAFL incorporates a scheduling policy that chooses
a filesystem thread with more requests into the kernel CPU scheduler,
which shares the same purpose as uServer’s load balancing and core allo-
cation. The data mapping in WAFL remains static and exploits NetApp’s
enterprise data to accelerate the common workload scalability. uFS’s dy-
namic data mapping mechanism relies on runtime performance monitor-
ing, and similar optimization based on offline workload characteristics
could also apply.

8.2.3 User-level Filesystems

Much efforts have been made to facilitate user-space developement of
filesystems. FUSE [66] has been the de facto framework for user-level
filesystem development. However, FUSE-based filesystems focus on func-
tionality (e.g., ssh-based remote file access, encryption, etc.). Performance
is a well-known weakness for FUSE filesystems, arising from its design.
Efforts have also been made to improve FUSE performance, such as XFUSE [80],
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and RFUSE [41].
Recently, Bento [142] provides user-space development and debug-

ging without performance cost, by downloading the memory-safe filesys-
tem directly into the kernel. Despite matching kernel filesystem perfor-
mance (i.e., ext4), Bento still suffers from the performance overhead in
VFS and other kernel subsystems, whereas uFS outperforms ext4 along
numerous axes. Furthermore, Bento restricts the choice of language (to
Rust) whereas uFS could be developed in any language framework.

8.3 Fault Tolerance
Our work to improve the fault tolerance of a filesystem semi-microkernel
in Nebula and uFS-Shadow benefits from the literature on fault tolerance
and reliability in systems. We first discuss the root causes of faults that
our fault model is based on. Then, we discuss filesystem fault tolerance
and reliability. Finally, we examine general system fault tolerance and
reliability.

8.3.1 Hardware and Software Faults

Hardware corruption is real. Sridharan et al. [183] performed a detailed
study of DRAM and SRAM faults. The study revealed that hardware-
based resilience techniques (e.g., ECC) cannot perfectly detect and repair
the hardware faults, resulting in unpredictable, undetected errors (e.g.,
corruptions) for software systems to handle. Unfortunately, users may
not adopt DRAM with strong hardware protections due to cost [214].

More recently, Alibaba [204], Google [79] and Meta [55] reported that
CPU core faults can lead to silent data corruption. Spanner, in partic-
ular, has encountered the consequences of silent corruption due to bad
cores [17].
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Software bugs also are prevalent, leading to crashes or memory cor-
ruption. Lu et al. [130] studied bug-fixing patches of several kernel filesystems,
revealing that around 20% of bugs lead to machine crashes. Data cor-
ruption accounts for the largest percentage (∼40%) of bug consequences,
although it is unclear how many of the bugs cause in-memory (vs. on-
disk) corruption. Huang et al. [81] studies patches of the Linux memory
management subsystem. Two findings are especially relevant: first, re-
gardless of a component’s maturity, bugs are still quite common. Second,
the consequences include a significant number of crashes.

8.3.2 Filesystem Fault Tolerance

Filesystem fault tolerance can be improved by enhancing detection to fail
fast, avoiding further propagation. Recon [65] and WAFL [106] both
check in-memory filesystem structures to detect semantic violations when
committing updates to disk. Both are complementary to Nebula as they
aim for error detection.

Recovering from runtime errors is another critical aspect of fault toler-
ance. Membrane [185] designs a restarting framework for kernel filesystems
by using sophisticated techniques to unwind the threads, unmount the
filesystems, and replay logged operations. However, Membrane requires
additional flushing in the common path. Membrane also does not fully
take advantage of a clean address space and is vulnerable to memory
corruption. IceFS [131] adds failure isolation between clients; it can also
prevent an error in a kernel filesystem from shutting down the entire ma-
chine. However, clients may notice data loss after recovery.

Nebula has similarities to the Rio File Cache [37], which preserves
the kernel file cache and enables an automatic warm reboot when the OS
kernel crashes. Rio tolerates runtime errors in the entire OS kernel but
is vulnerable to corrupted semantic states in the cache that occur before
the crash. Nova-Fortis [208] is a kernel NVM filesystem that tolerates
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the corruption of NVM devices, highlighting and addressing the prob-
lem of memory corruption when filesystem data is in persistent media
(i.e., NVM). Rio’s file cache is essentially a persistent memory used by
the restarted OS, and therefore, the memory corruption problem cannot
be overlooked.

8.3.3 Filesystem Reliability

Improving filesystem reliability involves other important aspects in ad-
dition to fault tolerance. The main focuses are reducing the likelihood
of bugs and ensuring the correctness of the filesystem. RAE requires a
more reliable filesystem to handle the alternative path and can thus ben-
efit from efforts such as testing and formal verification to achieve a more
robust filesystem.

Many testing techniques and frameworks have been proposed for filesystems,
such as fuzzing [100, 210] and model checking [124, 212]. Input genera-
tion is critical for testing filesystems, especially for semantic bugs. Crash-
Monkey [148] leverages effective heuristics about crash consistency, and
DogFood [31] proposes a layered model. Our p-crash benchmark, which
attempts to cover diverse workloads and each prefix sequence in one work-
load in evaluating Nebula and uFS-Shadow, has a similar goal of gener-
ating high-quality input and higher coverage. Testing the correctness of
uFS-Shadow and ensuring that Nebula functions the same as uFS will
also benefit from these techniques.

Formal verification is another approach to ensure filesystem reliability.
FSCQ [35] is the first verified filesystem with crash consistency semantics.
Other challenging properties like concurrency and transactions have also
been verified [29, 30, 33, 218]. uFS-Shadow has interesting aspects for
verification, as it eliminates many of the seemingly difficult properties
for automatic verification in uFS, and a verified version of uFS-Shadow
would be an interesting future work.
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8.3.4 General System Fault Tolerance and Reliability

Nebula is also similar to previous efforts such as microreboot [27] and
Rx [164]. However, microrebooting [27] requires applications to be de-
signed in a crash-only fashion, where important state must be saved in
a separate data store (e.g., a transactional database). Redesigning the
filesystem to be crash-only requires the filesystem’s semantic states to
be duplicated atomically after each operation, which is challenging to
achieve correctly and may incur significant overhead due to the large
amount of data. Rx [164] makes several retrying attempts from a check-
point by altering various environmental factors (scheduling order, mem-
ory allocation, etc.) while replaying. Performing whole-system check-
pointing with multiple versions is costly for a filesystem.

Efforts have been made to make operating system kernels more robust
to failures. Nooks [188] and Shadow Driver [189] are pioneering works
that attempt to recover the kernel from a component (i.e., drivers) crash.
Recovery Domains (RDs)[110] provide request-oriented recovery of the
OS kernel; for instance, the effect of a system call or an interrupt can be
recovered if an error occurs. RDs track and roll back the state changes of a
particular request using undo logging and assume that a fault’s influence
is limited to a single request without affecting the rest of the kernel. RDs
also leverage the recovery code path in the kernel source code, which is
risky to execute if the memory is corrupted. Such techniques are effective
if the error is detected at the request level before it is completed. Nebula
makes more realistic assumptions about detection. Otherworld[54] mi-
croreboots the monolithic OS kernel and reuses the application’s address
space (i.e., a snapshot after the crash) in the new kernel. However, less
work is done to recover the complex filesystem states inside the kernel,
which is one main challenge Nebula addresses.

Some previous work on microkernels adds fault-tolerant machinery [22,
114]. Minix3 [192] builds a Reincarnation Server to restart failed pro-
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cesses, but this can cause data loss when the filesystem fails [52]. Cu-
riOS [52] stores OS service states in clients’ address spaces with virtual
memory-based protection to survive a service crash and support restart;
however, the memory permissions and process isolation incur significant
overhead. Specifically, both OSIRIS [22] and TxIPC [114] incorporate
instruction-level undo logs to roll back problematic in-flight requests but
cannot deal with bad states (e.g., memory corruption or buggy results)
that occurred earlier than the current in-flight request.

Several works aim to improve the reliability of in-memory data struc-
tures and memory (de)allocation, and could perhaps be utilized within
Nebula. The DieHard [21] memory allocator leverages replication and
provides probabilistic memory protection; AMA [186] ensures that allo-
cations in the filesystem will never fail by statically analyzing the amount
of memory needed. Other approaches for protecting critical memory re-
gions from corruption could be helpful [145, 156]. RESIN [126], which
detects and mitigates memory leaks, could also be of use.

RAE draws inspiration from the concept of N-version programming [13–
15] and recovery blocks [165, 176]. N-version programming, however,
raises the complexity of the system and is not widely adopted due to the
cost of maintaining multiple versions of the same software. Research has
argued that creating diverse versions of the software is challenging, and
the assumption of independence of failures has failed statistically. RAE
is also similar to recovery blocks [165], where an idealized fault tolerance
component is advocated. EnvyFS [18] realizes N-version programming
in the context of filesystems, where various existing kernel filesystem im-
plementations execute the same set of operations and defend against bugs
and disk corruption via majority voting.

Using an alternative implementation for fault tolerance has been ex-
plored in other systems. Slicer [8], Google’s auto-sharding system, in-
corporated a Backup Distributor that has reduced complexity (i.e., static
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sharding) and is designed to be less error-prone. DIVA [12] proposes sep-
arating processor design into DIVA core and DIVA checkers; the checker
is designed to reduce correctness concerns and complexity in the DIVA
core’s functionality, enabling detection and recovery from CPU errors at
runtime. uFS-Shadow aims to tolerate broader types of errors, including
deterministic bugs in complex stateful filesystems.

Rx-like [164] methods can also handle some deterministic errors by
changing the environment of the software so that the error is no longer
deterministic. However, this technique is more suitable for applications
rather than system services like a filesystem, which acts more like an en-
vironment. The idea can be used to avoid deterministic hardware errors
like bad cores and bad memory regions, which is an interesting direction
to explore.
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9
Conclusions and Future Work

In this chapter, we summarize each part of this dissertation (§9.1). We
then present the lessons learned during the journey (§9.2), discuss the
future work (§9.3), and finally conclude (§9.4).

9.1 Summary
This dissertation is comprised of four parts. In the first part, we explored
the architectural advantage of high performance across broader work-
loads, addressing low latency and multi-core scalability. In the second
part, we examined the architectural challenge of resource elasticity aris-
ing from the decoupled application and filesystem threads, focusing on
balancing performance with CPU efficiency and adapting core numbers
to changing workloads. In the third part, we investigated the architectural
opportunity of fault tolerance by formulating the process crash model,
introducing exit activation and other mechanisms to enable fast, robust,
and seamless recovery. Finally, we proposed Robust Alternative Execu-
tion (RAE), which allows a slow but correct shadow filesystem to exe-
cute workloads that cause errors in the base high-performance filesystem,
thereby improving system reliability. We now summarize each of these
parts.
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9.1.1 Functionality and High Performance

We designed and implemented uFS, a fully functional, high-performance,
and crash-consistent user-space filesystem. We began by addressing the
necessary issues for correctness, API support, and low latency with a
single-threaded uFS server. uFS relies on the Storage Performance De-
velopment Kit (SPDK) to directly access ultra-fast NVMe SSDs in user
space.

Three mechanisms were designed for single-thread performance, in-
cluding a non-blocking filesystem thread (i.e., worker), which adopts an
event-driven programming model, performing tasks such as polling and
processing application requests, issuing hardware I/Os and processing
completions, and handling background tasks, all in a non-blocking man-
ner; a shared-memory-based inter-process communication (IPC), opti-
mized for filesystem calls and modern CPU caches; and keeping kernel
interaction off the critical path without compromising security.

uFS further achieved multi-core scalability through designs that al-
low multiple cores to operate independently as much as possible, fol-
lowing two principles: avoiding block-induced synchronization and sep-
arating designs for in-memory and on-disk data structures. uFS adopts a
“shared-nothing” design for in-memory data structures, partitioning in-
odes across multiple cores so that each core can operate on its own set of
inodes. Other in-memory data structures are also carefully designed to
avoid blocking (e.g., locking). uFS uses a “shared-everything” design for
writing to disk (i.e., crash consistency), where all workers share a single
logical journal, and only a small non-blocking critical section is needed
for allocating journal space, allowing multiple inflight journaling transac-
tions. For simplicity, directory operations are handled only by a primary
worker, while other operations can be handled by any worker.

To evaluate uFS, we created 32 single-operation microbenchmarks to
assess various facets of uFS’s performance and compared it with Linux
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ext4, a well-optimized kernel filesystem. Through the microbenchmarks
and macrobenchmarks (i.e., a web server and a mail server), we demon-
strated that uFS performs well across a wide range of workloads, achiev-
ing low latency and excellent multi-core scalability.

9.1.2 Resource Elasticity

With optimal performance in mind, we designed and implemented the
load management feature in uFS. The load management has two main
goals: to control the number of cores used by uFS without compromising
performance, and to dynamically adapt the number of cores to changing
workloads.

Our load management mechanism is centered around a separate load
management thread, which periodically collects runtime statistics from
each uFS server worker and makes centralized decisions. We found that
the combination of per-core effective CPU cycles (i.e., cycles spent on use-
ful work) and congestion (i.e., request queuing delay) is an effective indi-
cator of the load status, conveying both end-application performance and
internal CPU efficiency. These two simple metrics are exported by each
worker with negligible overhead, again, in a non-blocking manner.

We designed an algorithm to use the collected statistics to detect work-
load changes, decide the number of cores, and balance the load across
cores. The algorithm predicts load status by addressing two orthogonal
subproblems: load balancing – how to balance the load with a fixed num-
ber of cores, and core allocation – how many cores are needed assuming
a balanced load. The predicted load status is then used for comparing the
three configurations: adding one core, removing one core, and keeping
the current number of cores, all with balanced load. Each worker enforces
these decisions by shuffling inodes across cores.

We demonstrated the effectiveness of the load management feature
using load balancing microbenchmarks and core allocation microbench-
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marks, covering various changing factors of workload and combinations
of workloads. Finally, we evaluated uFS under LevelDB with eight differ-
ent workloads, showing that uFS outperforms Linux ext4 by a significant
margin in scaled settings (by 1.3x to 4.6x) while controlling the number
of cores used.

9.1.3 Process Crash Recovery via Exit Activation

In the third part, we discussed the process crash (i.e., p-crash) model of
filesystem semi-microkernels and its implications, comparing it with the
full system crash (i.e., s-crash) model of monolithic kernel filesystems.
We explained why relevant filesystem applications cannot easily continue
on a newly restarted filesystem server that relies only on s-crash recovery;
this results from the state gap – the difference between the states per-
ceived by the applications and those persisted to disk due to buffered
updates.

We proposed an approach for process crash recovery, exit activation.
Exit activation is code runs when a process crashes, before the failed pro-
cess’s memory is reclaimed by the OS. Exit activation allows the failed
process’s memory states (in addition to the on-disk states) and the OS to
contribute to the recovery.

We built Nebula, a system that leverages exit activation to enable fast,
robust, and seamless recovery from process crashes, appearing to appli-
cations as merely a small latency spike. Central to the recovery is an exit
activation data structure – p-log (process log) – an in-memory log that is
well-protected to ensure safe access by exit activation. The p-log is em-
powered by a novel algorithm AIM (Act/Ignore/Modify), which accu-
rately captures sources of the state gap (i.e., system calls) without im-
posing extra behaviors on the original filesystem, such as heavyweight
flushing. We found that naively replaying the filesystem calls cannot re-
cover the proper state gap because the effects of filesystem calls are not
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made durable in the same order as they are executed (and as perceived
by the applications). However, ignoring some operations and modifying
particular operations to another system call allows the state gap to be re-
covered through the original filesystem code; such transformations are
also based on AIM.

Nebula incorporates a set of other mechanisms to support exit activa-
tion, especially for robustness and efficiency, including lightweight meta-
data protection to enhance detection, fast and safe per-core logging for
common-path performance, and kernel-coordinated speculative restart
that reduces recovery time by seconds. After a p-crash, control is trans-
ferred to the exit activation code before the failed process’s memory is
reclaimed, which rescues the p-log to the host OS, and then the fresh
filesystem server replays the p-log to recover the state gap.

We systematically analyzed the consequences of the state gap problem
for continued applications and evaluated Nebula’s recoverability from
state gaps via a benchmark suite that includes operation sequences from
24 synthetic workloads and 10 real-world application workloads (ranging
in length from 77 to over 5,000 calls). We exhaustively injected p-crashes
after each system call, covering a wide range of state gaps. We found
that applications’ reactions to state gap behaviors are diverse and unpre-
dictable, possibly leading to severe consequences like silent data loss. We
demonstrated that Nebula recovers from all the 30,000+ fault injections.
Furthermore, we showed that Nebula recovers from corruptions of the
failed filesystem’s address space and incurs negligible overhead in the
common path (less than 2% in most cases). Finally, Nebula recovery is
fast (⩽500ms).
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9.1.4 Robust Alternative Execution via Shadow
Filesystems

In the last part, we aimed to improve the reliability of filesystems by re-
covering from virtually all runtime errors. The idea is to have a shadow
filesystem that is slow but correct, which can execute workloads that cause
errors in the base high-performance filesystem; we call this approach Ro-
bust Alternative Execution (RAE).

We studied the Linux ext4 filesystem bugs over the last 10 years and
found that both transient errors and deterministic errors are prevalent.
Furthermore, the number of bugs is increasing over time due to new fea-
tures, optimizations, and refactoring.

We observed that the complexity of filesystems lies in the performance
techniques and optimizations, such as caching, asynchronous I/O, con-
currency, and crash consistency, which are more likely to introduce bugs.
In contrast, the core functionality of filesystems, which only needs to un-
derstand the on-disk data structures and execute the filesystem APIs, is
quite simple. Therefore, shadow filesystems can be more robust by de-
sign, omiting the features for performance.

We built uFS-Shadow, a shadow filesystem for the base uFS, which is
incorporated into Nebula to replay the p-log during p-crash recovery. We
showed that uFS-Shadow recovers from emulated deterministic bugs and
greatly simplifies the codebase to 7% of the base uFS. The recovery time
of uFS-Shadow is relatively slow, around 1.6x that of the base.

9.2 Lessons Learned
We now present the general lessons we learned while working on this
dissertation.
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9.2.1 Mechanisms First, and then Policies

During the design and implementation of uFS, Nebula, and uFS-Shadow,
we generally followed the paradigm of building a strong and solid foun-
dation and then adding policies on top of it.1,2,3 In retrospect, this ap-
proach has proven beneficial, and we believe that such a practice is gen-
erally fruitful in system design and construction.

We first built the mechanisms for the no-blocking worker thread in
uFS, which constructs the software in a event-driven programming model,
encapsulating the event of polling, processing, and issuing I/Os, and han-
dling IPCs. Then, policies of scheduling can be added, such as pre-fetching
and batching. We also built the mechanisms of dynamically exchange
inodes across cores and statistics collection before the right policies and
algorithms for core allocation and load balancing.

In Nebula, the restarting mechanism is the foundation for recovery,
and the exit activation data structure p-log, is the mechanism for captur-
ing the state gap, while using base uFS or uFS-Shadow code to replay the
p-log is the policy.

Such a methodology, perhaps a variant of the famous “separation of
mechanisms and policies”[111], has several benefits. First, it allows us
to separately understand the performance of the mechanisms (relatively
stable) and the influence of the policies. The performance impact of the
mechanisms tends to be less dependent on workloads, whereas policies
are just the opposite.

Second, it helps to avoid premature optimizations[83]. Policy opti-
1“In system, it is always mechanism first.” – Remzi Arpaci-Dusseau (advises during

a research meeting).
2“You have the mechanism built, and can explore interesting policies...” – Andrea

Arpaci-Dusseau (comment made during a talk about kernel interrupts in February
2020).

3Other said firsts concerning how to do research includes: “Most interesting fisrt”
and “Simplest first”. It occurs like “You know, there is depth-first search, breadth-first
search, and in doing research, it is the most interesting first.”



170

Performance

Utilization

Reliability

Figure 9.1: Illusration of Three Dimensions, Trade-offs, and our
Roadmap. The arrows shows the path of §4 → §5 → §6 → §7 .

mizations play an important role in system performance [51], often im-
posing a number of tuning knobs that complicate the system and perfor-
mance reasoning. When building a research system, it is neither prac-
tical nor necessary to enable all possible policies that might suit differ-
ent workloads. Instead of chasing performance numbers by fine-tuning
policies, addressing key research questions is more important; thus, poli-
cies should remain simple until approaching the core problems. Third,
it helps to modularize the code, making it easier to maintain and extend,
which is essential for research systems.

9.2.2 Understand the Extreme First, and then Trade-offs

Another lesson we learned is to understand the extremes first, which is
perhaps more helpful for research than for production systems. For ex-
ample, in the design of uFS, we first focused on understanding single-
threaded performance before addressing multi-core scalability. We also
examined the best possible performance before adding support for load
management and CPU efficiency. This understanding of performance
helped us make sense of the trade-offs involved in achieving fault toler-
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ance and reliability. Finally, understanding the extreme level of simplic-
ity in uFS-Shadow provided insights into the cost of reliability in terms
of performance.

There are essentially three dimensions to consider for a system with
specific functionalities: performance, utilization,4 and reliability. Improv-
ing one dimension often comes at the cost of at least one other, and possi-
bly both. For instance, improving utilization often comes at the expense
of performance (e.g., load management for CPU efficiency). Enhancing
performance typically adds complexity and reduces reliability. In con-
trast, improving reliability inevitably has a negative impact on perfor-
mance. Reliability enhancements also require extra resources, which, in
some sense, reduce utilization. For example, formally-verified systems
often have lower performance, and performance optimizations is diffi-
cult to verify (e.g., asynchrony and concurrency). Figure 9.1 illustrates
the works presented in this dissertation along these three dimensions.

Without understanding the extremes, it is difficult to make sense of the
trade-offs we made in the design and implementation of these systems.
Furthermore, focusing on and achieving one extreme can be an effective
way to understand the essence of a problem, often leading to interesting
research questions [154], which is beneficial for research.

9.2.3 Make Assumptions First, and then? – Some
Assumptions cannot be Removed Incrementally

In doing research and building systems, we often need to make assump-
tions. Making assumptions is beneficial for making progress on a sim-
plified problem. However, we believe that making assumptions is worth
a second thought on the question of whether the assumption can be re-
moved incrementally. Put another way, we need to ensure that the sim-

4Sharing and isolation can be regarded as forms of utilization.



172

plified problem is a subproblem of the final problem, but not a divergent
or conflicting one.

For example, assumptions can often be incrementally removed when
evaluating the performance of a given system. One can start by measur-
ing single-threaded performance or a subset of APIs, then move on to
multi-threaded performance, and finally address complex and dynamic
workloads.

One interesting example we encountered is the assumption made for
fault tolerance – the fault model. During our review of the literature, we
found that the fault model is often not clearly defined, particularly with
the notion of “fail-stop.” But the question is, how fail-stop is it? It is vir-
tually impossible to detect all faults immediately. The assumption of fail-
stop is difficult to remove incrementally. Consider Nebula, if the fail-stop
assumption holds, it implies that the memory states in the failed process
are still intact, so the most straightforward way to recover the state gap is
to directly read them from the failed process’s memory. However, those
memory states are fundamentally unsafe to access if the assumption does
not hold (which could be the case), leading us to the trusted p-log ap-
proach. In this case, removing the assumption changes the entire problem
definition.

I think that in the context of fault tolerance, assumptions are relatively
more difficult to remove incrementally. The reason is that the root causes
of faults are too diverse, including hardware faults, software bugs, and
human errors, causing the essence of the problems to diverge. The issue
with assuming fail-stop is that it does not assume what can happen, but
rather assumes what cannot happen. Not to mention that the notion of
fail-stop itself lacks a clear definition, as it depends on detection. We be-
lieve it is beneficial to be explicit – getting all of the assumptions out on
the table [174]. We attempted to do so in Nebula (e.g.,Table 6.1 and Ta-
ble 6.2).
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9.2.4 Perspectives on Building Research Systems with a
Clean Slate

Overall, building research systems with a clean slate is a rewarding expe-
rience, though more challenging than we initially thought.

First, building such a system requires a large amount of effort invested
in the basic infrastructure, such as API compatibility, basic functionality,
and so on. We need to address many problems that have already been
solved in existing systems (e.g., challenges of event-driven programming
model, page caches, etc.) before we can focus on the core research prob-
lems. In addition, much effort is also devoted to building benchmarks and
the surrounding ecosystem. We developed a set of microbenchmarks and
created tools to support fault injection experiments. The dilemma of ve-
locity is that, on the one hand, building a user-space system is supposed
to be easier and faster than building a kernel system, but on the other
hand, we needed to start from scratch, selecting the right tools, customiz-
ing them for our needs, and building a wide range of utilities. For in-
stance, we integrated tools like Linux perf, Intel Pin [88], and Intel PMU
hardware counters [87]. We also built command-line tools for uFS and
tools to check integrity.

Second, comparing apples to apples is challenging. As we have shown
in this dissertation, the system has many components, and ours differs in
many ways from existing systems. On the one hand, this is an oppor-
tunity to explore the design space and innovate. On the other hand, we
also need to understand the performance of Linux ext4 and kernel storage
stacks. The recovery machinery is also an entire system that needs to ad-
dress several problems. However, some problems are dependent on the
OS architectures (e.g., the restarting mechanism), some are dependent on
the assumptions, and others are more general, like the state gap problem.
Therefore, a more sensible approach is probably to compare according to
these specific problems, rather than the entire system.
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9.3 Future Work
In this section, we discuss directions that can extend the work presented
in this dissertation.

9.3.1 Composable and Extensible Filesystems

Despite the benefits of customization, we did not fully explore the new
approach to extending filesystems, compared with FUSE [66] and other
new kernel filesystems. The issues with classic approaches like these are:
i) the entire filesystem needs to be rebuilt, such as supporting all APIs
together, and ii) performance components like the page cache and dentry
cache must be shared by all filesystems.

It would be interesting to explore composable and extensible filesystems
where the components (as shown in Figure 7.3) are built as processes that
can be reused at runtime, each with its own focus, such as performance
optimization for a particular workload or type of hardware. By dividing
the filesystem process into several components, with multiple instances
of each component, applications could choose the components they wish
to use at runtime. For example, multiple buffer cache processes could be
present, each with different data structures optimized for various hard-
ware types, allowing applications to choose and switch the buffer cache
they wish to use. In contrast, all filesystems in a monolithic kernel must
share the same buffer cache. This is similar to the Trio architecture [217],
but with an aim to make the components even more composable and ex-
tensible.

9.3.2 Formally Verified Shadow Filesystems

One interesting direction is to formally verify the shadow filesystem, uFS-
Shadow. uFS-Shadow requires strong correctness guarantees, which can
benefit from formal methods and recent automatic proof tools based on
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Rust, such as Verus [108]. Additionally, the simplicity of the shadow
filesystem simplifies the verification efforts, as difficult properties to ver-
ify – such as crash consistency, concurrency, and asynchrony – are omit-
ted [121]. A formally verified shadow filesystem also suggests an inter-
esting approach to bringing verified systems into practice (i.e., in the al-
ternative path) and improving the reliability of mature systems.

9.3.3 Study and Regulate Kernel Warning

During our study of the kernel filesystem bugs in Chapter 7, we find that
the Linux kernel subsystems have inconsistencies and various viewpoints
on how to handle warnings [46, 49]. The tension is that, on the one
hand, avoiding panic and “continue regardless” is essential for the OS
kernel [116]. On the other hand, fail-fast is a good practice. There is no
consensus on how to handle warnings, and what kind of warnings should
be ignored, and what are their consequences. The discussion showed that
different developers can have different opinions on when to use what.
Studying and regulating kernel warnings will improve the reliability of
Linux kernel, and we believe systematic study like fault injections, and
automatic recovery procedures are beneficial.

9.3.4 Generalized Exit Activation for Other Systems

We believe that a customized logic that can be safely executed before
the failed process’s memory is reclaimed by the OS is a powerful mech-
anism that can benefit more applications. For example, in the context
of databases, exit activation can be used to achieve prefix recoverabil-
ity [113]. Exit activation can also be used to avoid global fail-over in
in-memory distributed systems. Furthermore, such a mechanism can be
used for failure triage and diagnosis.
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We envision that such an investigation could start with a study of the
potential benefits of seamless process crash recovery in other contexts,
such as in a single node of a distributed system. For example, in what
percentage of cases can process crash recovery be used to avoid global
fail-over in a safe manner, while in the rest it must be escalated to global
fail-over?

9.4 Closing Words
In this dissertation, we have shown that the semi-microkernel approach
for filesystems can achieve high performance on modern hardware and
provide better fault tolerance for applications. Overall, such an approach
is promising for rapid adoption of new hardware, customizations for ap-
plications, and better fault isolation.

Nevertheless, a filesystem is a complex piece of software, requiring
a considerable amount of engineering effort to build, test, maintain, and
support applications. Compatibility is also important. For instance, sup-
port for mmap and fork is essential for a wide range of applications, which
goes beyond API compatibility and involves deep coupling with the host
OS kernel (e.g., process management, memory management, etc.). Re-
source elasticity in uFS is one example where semi-microkernels need to
take charge of CPU scheduling [134, 155].

Therefore, this approach is most suitable for cases where high perfor-
mance and fault isolation on a single machine are important, and many
applications can benefit from it, weighing the benefits against the engi-
neering efforts. These could include powerful desktops, large-scale cloud
VMs running small or medium applications, or a local filesystem serving
as a backend for a distributed filesystem [9]. One interesting scenario
is when reliability is critical, such as in vehicles [32], where a filesystem
error not crashing the kernel is a life-saving property.
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The demand for extending system services offered by the OS kernel
is real, driven by the increasing volume of applications, the diversity of
workloads, and modern hardware [86, 177]. The need for extending such
services in a safe manner that does not easily crash the OS kernel is also
significant, as evidenced by the prevalence of eBPF frameworks [161],
which are referred to as another form of microkernel. Additionally, the
demand for improving the reliability of the Linux kernel is real, as its
complexity continues to increase [112]. We believe the techniques and
mechanisms we have developed could be beneficial for these efforts to
extend OS kernels.
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