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The performance of file systems and related software depends on characteristics of the under-

lying file-system image (i.e., file-system metadata and file contents). Unfortunately, rather than

benchmarking with realistic file-system images, most system designers and evaluators rely on

ad hoc assumptions and (often inaccurate) rules of thumb. Furthermore, the lack of standardiza-

tion and reproducibility makes file-system benchmarking ineffective. To remedy these problems,

we develop Impressions, a framework to generate statistically accurate file-system images with

realistic metadata and content. Impressions is flexible, supporting user-specified constraints on

various file-system parameters using a number of statistical techniques to generate consistent im-

ages. In this article, we present the design, implementation, and evaluation of Impressions and

demonstrate its utility using desktop search as a case study. We believe Impressions will prove to

be useful to system developers and users alike.
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1. INTRODUCTION
File system benchmarking is in a state of disarray. In spite of tremendous ad-
vances in file system design, the approaches for benchmarking still lag far
behind. The goal of benchmarking is to understand how the system under
evaluation will perform under real-world conditions and how it compares to
other systems; however, recreating real-world conditions for the purposes of
benchmarking file systems has proven challenging. The two main challenges
in achieving this goal are generating representative workloads, and creating
realistic file-system state.

While creating representative workloads is not an entirely solved problem,
significant steps have been taken towards this goal. Empirical studies of file-
system access patterns [Baker et al. 1991; Gribble et al. 1998; Ousterhout et al.
1985] and file-system activity traces [Riedel et al. 2002; SNIA 2007] have led
to work on synthetic workload generators [Anderson and Chase 2002; Ebling
and Satyanarayanan 1994] and methods for trace replay [Anderson et al. 2004;
Mesnier et al. 2007].

The second, and perhaps more difficult, challenge is to re-create the file-
system state such that it is representative of the target usage scenario. Sev-
eral factors contribute to file-system state, important among them are the in-
memory state (contents of the buffer cache), the on-disk state (disk layout and
fragmentation) and the characteristics of the file-system image (files and direc-
tories belonging to the namespace and file contents).

One well understood contributor to state is the in-memory state of the file
system. Previous work has shown that the contents of the cache can have sig-
nificant impact on the performance results [Dahlin et al. 1994]. Therefore, sys-
tem initialization during benchmarking typically consists of a cache “warm-up”
phase wherein the workload is run for some time prior to the actual measure-
ment phase. Another important factor is the on-disk state of the file system,
or the degree of fragmentation; it is a measure of how the disk blocks belong-
ing to the file system are laid out on disk. Previous work has shown that
fragmentation can adversely affect performance of a file system [Smith and
Seltzer 1997]. Thus, prior to benchmarking, a file system should undergo aging
by replaying a workload similar to that experienced by a real file system over
a period of time [Smith and Seltzer 1997].

Surprisingly, one key contributor to file-system state has been largely
ignored—the characteristics of the file-system image. The properties of file-
system metadata and the actual content within the files are key contributors
to file-system state, and can have a significant impact on the performance of
a system. Properties of file-system metadata include information on how di-
rectories are organized in the file-system namespace, how files are organized
into directories, and the distributions for various file attributes such as size,
depth, and extension type. Consider a simple example: the time taken for a
find operation to traverse a file system while searching for a file name depends
on a number of attributes of the file-system image, including the depth of the
file-system tree and the total number of files. Similarly, the time taken for a
grep operation to search for a keyword also depends on the type of files (i.e.,
binary vs. others) and the file content.
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File-system benchmarking frequently requires this sort of information on
file systems, much of which is available in the form of empirical studies of
file-system contents [Agrawal et al. 2007; Douceur and Bolosky 1999; Irlam
1993; Mullender and Tanenbaum 1984; Satyanarayanan 1981; Sienknecht et al.
1994]. These studies focus on measuring and modeling different aspects of file-
system metadata by collecting snapshots of file-system images from real ma-
chines. The studies range from a few machines to tens of thousands of machines
across different operating systems and usage environments. Collecting and an-
alyzing this data provides useful information on how file systems are used in
real operating conditions.

In spite of the wealth of information available in file-system studies, system
designers and evaluators continue to rely on ad hoc assumptions and often
inaccurate rules of thumb. Table I presents evidence to confirm this hypothesis;
it contains a (partial) list of publications from top-tier systems conferences in
the last ten years that required a test file-system image for evaluation. We
present both the description of the file-system image provided in the paper and
the intended goal of the evaluation.

In the table, there are several examples where a new file system or ap-
plication design is evaluated on the evaluator’s personal file system without
describing its properties in sufficient detail for it to be reproduced [Cipar et al.
2007; Hutchinson et al. 1999; Prabhakaran et al. 2005]. In others, the descrip-
tion is limited to coarse-grained measures such as the total file-system size and
the number of files, even though other file-system attributes (e.g., tree depth)
are relevant to measuring performance or storage space overheads [Cox et al.
2002; Cox and Noble 2003; Gopal and Manber 1999; Muthitacharoen et al.
2001]. File systems are also sometimes generated with parameters chosen ran-
domly [Storer et al. 2008; Zhang and Ghose 2003], or chosen without expla-
nation of the significance of the values [Fu et al. 2002; Padioleau and Ridoux
2003; Sobti et al. 2004]. Occasionally, the parameters are specified in greater
detail [Rowstron and Druschel 2001], but not enough to recreate the original
file system.

The important lesson to be learned here is that there is no standard technique
to systematically include information on file-system images for experimenta-
tion. For this reason, we find that more often than not, the choices made are
arbitrary, suited for ease-of-use more than accuracy and completeness. Further-
more, the lack of standardization and reproducibility of these choices makes it
near-impossible to compare results with other systems.

To address these problems and improve one important aspect of file system
benchmarking, we develop Impressions, a framework to generate representa-
tive and statistically accurate file-system images. Impressions gives the user
flexibility to specify one or more parameters from a detailed list of file system
parameters (file-system size, number of files, distribution of file sizes, etc.). Im-
pressions incorporates statistical techniques (automatic curve-fitting, resolving
multiple constraints, interpolation and extrapolation, etc.) and uses statistical
tests for goodness-of-fit to ensure the accuracy of the image.

We believe Impressions will be of great use to system designers, evaluators,
and users alike. A casual user looking to create a representative file-system
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Table I. Choice of File System Parameters in Prior Research

Paper Description Used to Measure

HAC [Gopal and Manber

1999]

File system with 17000 files

totaling 150 MB

Time and space needed to

create a Glimpse index

IRON [Prabhakaran et al.

2005]

None provided Checksum and metadata

replication overhead;

parity block overhead for

user files

LBFS [Muthitacharoen et al.

2001]

10702 files from /usr/local, total

size 354 MB

Performance of LBFS

chunking algorithm

LISFS [Padioleau and

Ridoux 2003]

633 MP3 files, 860 program

files, 11502 man pages

Disk space overhead;

performance of search-like

activities: UNIX find and

LISFS lookup

PAST [Rowstron and

Druschel 2001]

2 million files, mean size 86 KB,

median 4 KB, largest file size

2.7 GB, smallest 0 Bytes, total

size 166.6 GB

File insertion, global storage

utilization in a P2P system

Pastiche [Cox et al. 2002] File system with 1641 files, 109

dirs, 13.4 MB total size

Performance of backup and

restore utilities

Pergamum [Storer et al.

2008]

Randomly generated files of

“several” megabytes

Data transfer performance

Samsara [Cox and Noble

2003]

File system with 1676 files and

13 MB total size

Data transfer and querying

performance, load during

querying

Segank [Sobti et al. 2004] 5-deep directory tree, 5 subdirs,

and 10 8 KB files per directory

Performance of Segank:

volume update, creation of

read-only snapshot, read

from new snapshot

SFS read-only [Fu et al.

2002]

1000 files distributed evenly

across 10 directories and

contain random data

Single client/single server

read performance

TFS [Cipar et al. 2007] Files taken from /usr to get

“realistic” mix of file sizes

Performance with varying

contribution of space from

local file systems

WAFL backup [Hutchinson

et al. 1999]

188 GB and 129 GB volumes

taken from the Engineering

department

Performance of physical and

logical backup, and

recovery strategies

yFS [Zhang and Ghose 2003] Avg. file size 16 KB, avg.

number of files per directory

64, random file names

Performance under various

benchmarks (file creation,

deletion)

image without worrying about carefully selecting parameters can simply run
Impressions with its default settings; Impressions will use prespecified dis-
tributions from file-system studies to create a representative image. A more
sophisticated user has the power to individually control the knobs for a compre-
hensive set of file-system parameters; Impressions will carefully work out the
statistical details to produce a consistent and accurate image. In both cases, Im-
pressions ensures complete reproducibility of the image, by reporting the used
distributions, parameter values, and seeds for random number generators.

In this article we present the design, implementation and evaluation of the
Impressions framework (Section 3), which we have made publicly available.
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Fig. 1. Impact of directory tree structure. Shows impact of tree depth on time taken by find. The

file systems are created by Impressions using default distributions (Table II). To exclude effects of

the on-disk layout, we ensure a perfect disk layout (layout score 1.0) for all cases except the one

with fragmentation (layout score 0.95). The flat tree contains all 100 directories at depth 1; the deep
tree has directories successively nested to create a tree of depth 100.

Impressions is built with the following design goals:

—accuracy in generating various statistical constructs to ensure a high degree
of statistical rigor;

—flexibility in allowing users to specify a number of file-system distributions
and constraints on parameter values, or in choosing default values;

—representativeness by incorporating known distributions from file-system
studies.

—ease of use by providing a simple, yet powerful, command-line interface.

Using desktop search as a case study, we demonstrate the usefulness and ease
of use of Impressions in quantifying application performance, and in finding
application policies and bugs (Section 4). To bring the paper to a close, we
discuss related work (Section 6), and finally conclude (Section 7).

2. EXTENDED MOTIVATION

We begin this section by asking a basic question: does file-system structure
really matter? We then describe the goals for generating realistic file-system
images and discuss existing approaches to do so.

2.1 Does File-System Structure Matter?

Structure and organization of file-system metadata matters for workload per-
formance. Let us take a look at the simple example of a frequently used UNIX
utility: find. Figure 1 shows the relative time taken to run “find /” searching
for a file name on a test file system as we vary some parameters of file-system
state.

The first bar represents the time taken for the run on the original test file
system. Subsequent bars are normalized to this time and show performance
for a run with the file-system contents in buffer cache, a fragmented version of
the same file system, a file system created by flattening the original directory
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tree, and finally one by deepening the original directory tree. The graph echoes
our understanding of caching and fragmentation, and brings out one aspect
that is often overlooked: structure really matters. From this graph we can see
that even for a simple workload, the impact of tree depth on performance can
be as large as that with fragmentation, and varying tree depths can have sig-
nificant performance variations (300% between the flat and deep trees in this
example).

Assumptions about file-system structure have often trickled into file system
design, but no means exist to incorporate the effects of realistic file-system im-
ages in a systematic fashion. As a community, we well understand that caching
matters, and have begun to pay attention to fragmentation, but when it comes
to file-system structure, our approach is surprisingly laissez faire.

2.2 Goals for Generating FS Images

We believe that the file-system image used for an evaluation should be realistic
with respect to the workload; the image should contain a sufficient degree of
detail to realistically exercise the workload under consideration. An increasing
degree of detail will likely require more effort and slow down the process. Thus
it is useful to know the degree sufficient for a given evaluation. For example, if
the performance of an application simply depends on the size of files in the file
system, the chosen file-system image should reflect that. On the other hand,
if the performance is also sensitive to the fraction of binary files amongst all
files (e.g., to evaluate desktop search indexing), then the file-system image also
needs to contain realistic distributions of file extensions.

We walk through some examples that illustrate the different degrees of detail
needed in file-system images.

—At one extreme, a system could be completely oblivious to both metadata
and content. An example of such a system is a mirroring scheme (RAID-1
[Patterson et al. 1988]) underneath a file system, or a backup utility taking
whole-disk backups. The performance of such schemes depends solely on the
block traffic.

Alternately, systems could depend on the attributes of the file-system image
with different degrees of detail:

—The performance of a system can depend on the amount of file data (number
of files and directories, or the size of files and directories, or both) in any given
file system (e.g., a backup utility taking whole file-system snapshots).

—Systems can depend on the structure of the file system namespace and how
files are organized in it (e.g., a version control system for a source-code repos-
itory).

—Finally, many systems also depend on the actual data stored within the files
(e.g., a desktop search engine for a file system, or a spell-checker).

Impressions is designed with this goal of flexibility from the outset. The user
is given complete control of a number of file-system parameters, and is provided
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with an easy to use interface. Transparently, Impressions seamlessly ensures
accuracy and representativeness.

2.3 Existing Approaches

One alternate approach to generating realistic file-system images is to ran-
domly select a set of actual images from a corpus, an approach popular in
other fields of computer science such as Information Retrieval, Machine Learn-
ing, and Natural Language Processing [NIST 2007]. In the case of file systems
the corpus would consist of a set of known file-system images. This approach
arguably has several limitations which make it difficult and unsuitable for
file systems research. First, there are too many parameters required to ac-
curately describe a file-system image that need to be captured in a corpus.
Second, without precise control in varying these parameters according to ex-
perimental needs, the evaluation can be blind to the actual performance de-
pendencies. Finally, the cost of maintaining and sharing any realistic corpus of
file-system images would be prohibitive. The size of the corpus itself would
severely restrict its usefulness especially as file systems continue to grow
larger.

Unfortunately, these limitations have not deterred researchers from using
their personal file systems as a (trivial) substitute for a file-system corpus.

3. THE IMPRESSIONS FRAMEWORK

In this section we describe the design, implementation and evaluation of Im-
pressions: a framework for generating file-system images with realistic and
statistically accurate metadata and content. Impressions is flexible enough to
create file-system images with varying configurations, guaranteeing the accu-
racy of images by incorporating a number of statistical tests and techniques.

We first present a summary of the different modes of operation of Impres-
sions, and then describe the individual statistical constructs in greater detail.
Wherever applicable, we evaluate their accuracy and performance.

3.1 Modes of Operation

A system evaluator can use Impressions in different modes of operation, with
varying degree of user input.

Sometimes, an evaluator just wants to create a representative file-system
image without worrying about the need to carefully select parameters. Hence, in
the automated mode, Impressions is capable of generating a file-system image
with minimal input required from the user (e.g., the size of the desired file-
system image), relying on default settings of known empirical distributions to
generate representative file-system images. We refer to these distributions as
original distributions.

At other times, users want more control over the images, for example, to
analyze the sensitivity of performance to a given file-system parameter, or to
describe a completely different file-system usage scenario. Hence, Impressions
supports a user-specified mode, where a more sophisticated user has the power
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Table II. Parameters and Default Values in Impressions

List of distributions and their parameter values used in the

default mode.

Parameter Default Model & Parameters

Directory count w/ depth Generative model

Directory size (subdirs) Generative model

File size by count Lognormal-body

(α1 = 0.99994, μ = 9.48, σ = 2.46)

Pareto-tail (k = 0.91, Xm = 512MB)

File size by containing Mixture-of-lognormals

bytes (α1 = 0.76, μ1 = 14.83, σ1 = 2.35

α2 = 0.24, μ2 = 20.93, σ2 = 1.48)

Extension popularity Percentile values

File count w/ depth Poisson (λ = 6.49)

Bytes with depth Mean file size values

Directory size (files) Inverse-polynomial

(degree = 2, offset = 2.36)

File count w/ depth Conditional probabilities

(w/ special directories) (biases for special dirs)

Degree of Fragmentation Layout score (1.0)

or Pre-specified workload

to individually control the knobs for a comprehensive set of file-system pa-
rameters; we refer to these as user-specified distributions. Impressions care-
fully works out the statistical details to produce a consistent and accurate
image.

In both the cases, Impressions ensures complete reproducibility of the file-
system image by reporting the used distributions, their parameter values, and
seeds for random number generators.

Impressions can use any dataset or set of parameterized curves for the
original distributions, leveraging a large body of research on analyzing file-
system properties [Agrawal et al. 2007; Douceur and Bolosky 1999; Irlam
1993; Mullender and Tanenbaum 1984; Satyanarayanan 1981; Sienknecht et al.
1994]. For illustration, in this article we use a recent static file-system snap-
shot dataset made publicly available [Agrawal et al. 2007]. The snapshots
of file-system metadata were collected over a five-year period representing
over 60,000 Windows PC file systems in a large corporation. These snapshots
were used to study distributions and temporal changes in file size, file age,
file-type frequency, directory size, namespace structure, file-system population,
storage capacity, and degree of file modification. The study also proposed a gen-
erative model explaining the creation of file-system namespaces.

Impressions provides a comprehensive set of individually controllable file
system parameters. Table II lists these parameters along with their default
selections. For example, a user may specify the size of the file-system image,
the number of files in the file system, and the distribution of file sizes, while se-
lecting default settings for all other distributions. In this case, Impressions will
ensure that the resulting file-system image adheres to the default distributions
while maintaining the user-specified invariants.
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3.2 Basic Techniques

The goal of Impressions is to generate realistic file-system images, giving the
user complete flexibility and control to decide the extent of accuracy and detail.
To achieve this, Impressions relies on a number of statistical techniques.

In the simplest case, Impressions needs to create statistically accurate file-
system images with default distributions. Hence, a basic functionality required
by Impressions is to convert the parameterized distributions into real sam-
ple values used to create an instance of a file-system image. Impressions uses
random sampling to take a number of independent observations from the re-
spective probability distributions. Wherever applicable, such parameterized
distributions provide a highly compact and easy-to-reproduce representation
of observed distributions. For cases where standard probability distributions
are infeasible, a Monte Carlo method is used.

A user may want to use file system datasets other than the default choice.
To enable this, Impressions provides automatic curve-fitting of empirical data.

Impressions also provides the user with the flexibility to specify distribu-
tions and constraints on parameter values. One challenge thus is to ensure
that multiple constraints specified by the user are resolved consistently. This
requires statistical techniques to ensure that the generated file-system images
are accurate with respect to both the user-specified constraints and the default
distributions.

In addition, the user may want to explore values of file system parameters,
not captured in any dataset. For this purpose, Impressions provides support for
interpolation and extrapolation of new curves from existing datasets.

Finally, to ensure the accuracy of the generated image, Impressions con-
tains a number of built-in statistical tests, for goodness-of-fit (e.g., Kolmogorov-
Smirnov, Chi-Square, and Anderson-Darling), and to estimate error (e.g., Con-
fidence Intervals, MDCC, and Standard Error). Where applicable, these tests
ensure that all curve-fit approximations and internal statistical transforma-
tions adhere to the highest degree of statistical rigor desired.

3.3 Creating Valid Metadata

The simplest use of Impressions is to generate file-system images with realistic
metadata. This process is performed in two phases: first, the skeletal file-system
namespace is created; and second, the namespace is populated with files con-
forming to a number of file and directory distributions.

3.3.1 Creating File-System Namespace. The first phase in creating a file
system is to create the namespace structure or the directory tree. We assume
that the user specifies the size of the file-system image. The count of files and
directories is then selected based on the file system size (if not specified by the
user). Depending on the degree of detail desired by the user, each file or directory
attribute is selected step by step until all attributes have been assigned values.
We now describe this process assuming the highest degree of detail.

To create directory trees, Impressions uses the generative model proposed
by Agrawal et al. [2007] to perform a Monte Carlo simulation. According to
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Fig. 2. Accuracy of Impressions in recreating file system properties. Shows the accuracy of the

entire set of file system distributions modeled by Impressions. D: the desired distribution; G: the

generated distribution. Impressions is quite accurate in creating realistic file system state for all

parameters of interest shown here. We include a special abscissa for the zero value on graphs

having a logarithmic scale.

this model, new directories are added to a file system one at a time, and the
probability of choosing each extant directory as a parent is proportional to
C(d ) + 2, where C(d ) is the count of extant subdirectories of directory d . The
model explains the creation of the file system namespace, accounting both for
the size and count of directories by depth, and the size of parent directories.
The input to this model is the total number of directories in the file system.
Directory names are generated using a simple iterative counter.

To ensure the accuracy of generated images, we compare the generated dis-
tributions (i.e., created using the parameters listed in Table II), with the de-
sired distributions (i.e., ones obtained from the dataset discussed previously in
Section 3.1). Figures 2 and 3 shows in detail the accuracy for each step in the
namespace and file creation process. For almost all the graphs, the y-axis rep-
resents the percentage of files, directories, or bytes belonging to the categories
or bins shown on the x-axis, as the case may be.

Figures 2(a) and 2(b) show the distribution of directories by depth, and direc-
tories by subdirectory count, respectively. The y-axis in this case is the percent-
age of directories at each level of depth in the namespace, shown on the x-axis.
The two curves representing the generated and the desired distributions match
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Fig. 3. Accuracy of Impressions in recreating file system properties. Shows the accuracy of the

entire set of file system distributions modeled by Impressions. D: the desired distribution; G: the

generated distribution. Impressions is quite accurate in creating realistic file system state for all

parameters of interest shown here. We include a special abscissa for the zero value on graphs

having a logarithmic scale.

quite well, indicating good accuracy and reaffirming prior results [Agrawal et al.
2007].

3.3.2 Creating Files. The next phase is to populate the directory tree with
files. Impressions spends most of the total runtime and effort during this phase,
as the bulk of its statistical machinery is exercised in creating files. Each file
has a number of attributes such as its size, depth in the directory tree, parent
directory, and file extension. Similarly, the choice of the parent directory is
governed by directory attributes such as the count of contained subdirectories,
the count of contained files, and the depth of the parent directory. Analytical
approximations for file system distributions proposed previously [Douceur and
Bolosky 1999] guided our own models.

First, for each file, the size of the file is sampled from a hybrid distribution de-
scribing file sizes. The body of this hybrid curve is approximated by a lognormal
distribution, with a Pareto tail distribution (k = 0.91, Xm = 512MB) accounting
for the heavy tail of files with size greater than 512 MB. The exact parameter
values used for these distributions are listed in Table II. These parameters
were obtained by fitting the respective curves to file sizes obtained from the
file-system dataset previously discussed (Section 3.1). Figure 2(c) shows the
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accuracy of generating the distribution of files by size. We initially used a sim-
pler model for file sizes represented solely by a lognormal distribution. While
the results were acceptable for files by size (Figure 2(c)), the simpler model
failed to account for the distribution of bytes by containing file size; coming up
with a model to accurately capture the bimodal distribution of bytes proved
harder than we had anticipated. Figure 2(d) shows the accuracy of the hybrid
model in Impressions in generating the distribution of bytes. The pronounced
double mode observed in the distribution of bytes is a result of the presence of
a few large files; an important detail that is otherwise missed if the heavy-tail
of file sizes is not accurately accounted for.

Once the file size is selected, we assign the file name and extension. Im-
pressions keeps a list of percentile values for popular file extensions (i.e.,
top 20 extensions by count, and by bytes). These extensions together account
for roughly 50% of files and bytes in a file system ensuring adequate cov-
erage for the important extensions. The remainder of files are given ran-
domly generated three-character extensions. Currently filenames are gener-
ated by a simple numeric counter incremented on each file creation. Figure 3(e)
shows the accuracy of Impressions in creating files with popular extensions by
count.

Next, we assign file depth d , which requires satisfying two criteria: the distri-
bution of files with depth, and the distribution of bytes with depth. The former is
modeled by a Poisson distribution, and the latter is represented by the mean file
sizes at a given depth. Impressions uses a multiplicative model combining the
two criteria, to produce appropriate file depths. Figures 3(f) and 3(g) show the
accuracy in generating the distribution of files by depth, and the distribution
of bytes by depth, respectively.

The final step is to select a parent directory for the file, located at depth
d −1, according to the distribution of directories with file count, modeled using
an inverse-polynomial of degree 2. As an added feature, Impressions supports
the notion of “Special” directories containing a disproportionate number of files
or bytes (e.g., “Program Files” folder in the Windows environment). If required,
during the selection of the parent directory, a selection bias is given to these
special directories. Figure 3(h) shows the accuracy in supporting special direc-
tories with an example of a typical Windows file system having files in the web
cache at depth 7, in Windows and Program Files folders at depth 2, and System
files at depth 3.

Table III shows the average difference between the generated and desired
images from Figure 3 for 20 trials. The difference is measured in terms of the
MDCC (Maximum Displacement of the Cumulative Curves). For instance, an
MDCC value of 0.03 for directories with depth, implies a maximum difference
of 3% on an average, between the desired and the generated cumulative dis-
tributions. Overall, we find that the models created and used by Impressions
for representing various file-system parameters produce fairly accurate dis-
tributions in all the above cases. While we have demonstrated the accuracy
of Impressions for the Windows dataset, there is no fundamental restriction
limiting it to this dataset. We believe that with little effort, the same level of
accuracy can be achieved for any other dataset.
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Table III. Statistical Accuracy of Generated Images

Shows average accuracy of generated file-system

images in terms of the MDCC (Maximum

Displacement of the Cumulative Curves) representing

the maximum difference between cumulative curves of

generated and desired distributions. Averages are

shown for 20 trials. (*) For bytes with depth, MDCC is

not an appropriate metric, we instead report the

average difference in mean bytes per file (MB). The

numbers correspond to the set of graphs shown in

Figure 3 and reflect fairly accurate images.

Parameter MDCC

Directory count with depth 0.03

Directory size (subdirectories) 0.004

File size by count 0.04

File size by containing bytes 0.02

Extension popularity 0.03

File count with depth 0.05

Bytes with depth 0.12 MB*

File count w/ depth w/ special dirs 0.06

3.4 Resolving Arbitrary Constraints

One of the primary requirements for Impressions is to allow flexibility in speci-
fying file system parameters without compromising accuracy. This means that
users are allowed to specify somewhat arbitrary constraints on these param-
eters, and it is the task of Impressions to resolve them. One example of such
a set of constraints would be to specify a large number of files for a small file
system, or vice versa, given a file size distribution. Impressions will try to come
up with a sample of file sizes that best approximates the desired distribution,
while still maintaining the invariants supplied by the user, namely the number
of files in the file system and the sum of all file sizes being equal to the file
system used space.

Multiple constraints can also be implicit (i.e., arise even in the absence of
user-specified distributions). Due to random sampling, different sample sets of
the same distribution are not guaranteed to produce exactly the same result,
and consequently, the sum of the elements can also differ across samples. Con-
sider the previous example of file sizes again: the sum of all file sizes drawn
from a given distribution need not add up to the desired file system size (to-
tal used space) each time. More formally, this example is represented by the
following set of constraints:

N = {Constant1 ∨ x : x ∈ D1(x)}
S = {Constant2 ∨ x : x ∈ D2(x)}

F = {x : x ∈ D3(x; μ, σ )}; |
N∑

i=0

Fi − S | ≤ β ∗ S,

whereN is the number of files in the file system;S is the desired file system used
space; F is the set of file sizes; and β is the maximum relative error allowed.
The first two constraints specify that N and S can be user specified constants
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or sampled from their corresponding distributions D1 and D2. Similarly, F is
sampled from the file size distribution D3. These attributes are further subject
to the constraint that the sum of all file sizes differs from the desired file system
size by no more than the allowed error tolerance, specified by the user. To solve
this problem, we use the following two techniques.

—If the initial sample does not produce a result satisfying all the constraints,
we oversample additional values ofF fromD3, one at a time, until a solution is
found, or the oversampling factor α/N reaches λ (the maximum oversampling
factor). α is the count of extra samples drawn from D3. Upon reaching λ

without finding a solution, we discard the current sample set and start over.

—The number of elements in F during the oversampling stage is N + α. For
every oversampling, we need to find if there exists FSub, a subset of F with
N elements, such that the sum of all elements of FSub (file sizes) differs from
the desired file system size by no more than the allowed error. More formally
stated, we find if:

∃ FSub = {X : X ⊆ P(F ), |X | = N , |F | = N + α,

|
N∑

i=0

Xi − S| ≤ β ∗ S, α ∈ N ∧ α

N ≤ λ}

The problem of resolving multiple constraints as formulated above, is a vari-
ant of the more general “Subset Sum Problem” which is NP-complete [Cormen
et al. 2001]. Our solution is thus an approximation algorithm based on an ex-
isting O(n log n) solution [Przydatek 2002] for the Subset Sum Problem.

The existing algorithm has two phases. The first phase randomly chooses
a solution vector which is valid (the sum of elements is less than the desired
sum), and maximal (adding any element not already in the solution vector
will cause the sum to exceed the desired sum). The second phase performs
local improvement: for each element in the solution, it searches for the largest
element not in the current solution which, if replaced with the current element,
would reduce the difference between the desired and current sums. The solution
vector is updated if such an element is found, and the algorithm proceeds with
the next element, until all elements are compared.

Our problem definition and the modified algorithm differ from the original
in the following ways.

—First, in the original problem, there is no restriction on the number of el-
ements in the solution subset FSub. In our case, FSub can have exactly N
elements. We modify the first phase of the algorithm to set the initial FSub as
the first random permutation of N elements selected from F such that their
sum is less than S.

—Second, the original algorithm either finds a solution or terminates without
success. We use an increasing sample size after each oversampling to reduce
the error, and allow the solution to converge.

—Third, it is not sufficient for the elements in FSub to have a numerical sum
close to the desired sum S, but the distribution of the elements must also be
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close to the original distribution in F . A goodness-of-fit test at the end of each
oversampling step enforces this requirement. For our example, this ensures
that the set of file sizes generated after resolving multiple constraints still
follow the original distribution of file sizes.

The algorithm terminates successfully when the difference between the sums,
and between the distributions, falls below the desired error levels. The suc-
cess of the algorithm depends on the choice of the desired sum, and the ex-
pected sum (the sum due to the choice of parameters, e.g., μ and σ ); the far-
ther the desired sum is from the expected sum, the lesser are the chances of
success.

Consider an example where a user has specified a desired file system size of
90000 bytes, a lognormal file size distribution (μ = 8.16, σ = 2.46), and 1000
files. Figure 4(a) shows the convergence of the sum of file sizes in a sample set
obtained with this distribution. Each line in the graph represents an indepen-
dent trial, starting at a y-axis value equal to the sum of its initially sampled file
sizes. Note that in this example, the initial sum differs from the desired sum by
more than a 100% in several cases. The x-axis represents the number of extra
iterations (oversamples) performed by the algorithm. For a trial to succeed, the
sum of file sizes in the sample must converge to within 5% of the desired file
system size. We find that in most cases λ ranges between 0 and 0.1 (i.e., less
than 10% oversampling); and in almost all cases, λ ≤ 1.

The distribution of file sizes in FSub must be close to the original distribu-
tion in F . Figure 4(b) and 4(c) show the difference between the original and
constrained distributions for file sizes (for files by size, and files by bytes), for
one successful trial from Figure 4(a). We choose these particular distributions
as examples throughout this paper for two reasons. First, file size is an impor-
tant parameter, so we want to be particularly thorough in its accuracy. Second,
getting an accurate shape for the bimodal curve of files by bytes presents a
challenge for Impressions; once we get our techniques to work for this curve,
we are fairly confident of its accuracy on simpler distributions.

We find that Impressions resolves multiple constraints to satisfy the require-
ment on the sum, while respecting the original distributions. Table IV gives the
summary for the above example of file sizes for different values of the desired
file system size. The expected sum of 1000 file sizes, sampled as specified in
the table, is close to 60000. Impressions successfully converges the initial sam-
ple set to the desired sum with an average oversampling rate α less than 5%.
The average difference between the desired and achieved sum β is close to 3%.
The constrained distribution passes the two-sample K-S test at the 0.05 signifi-
cance level, with the difference between the two distributions being fairly small
(the D statistic of the K-S test is around 0.03, which represents the maximum
difference between two empirical cumulative distributions).

We repeat the previous experiment for two more choices of file system sizes,
one lower than the expected mean (30K), and one higher (90K); we find that even
when the desired sum is quite different from the expected sum, our algorithm
performs well. Only for 2 of the 20 trials in the 90K case, did the algorithm fail
to converge. For these extreme cases, we drop the initial sample and start over.
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Fig. 4. Resolving multiple constraints. (a) Shows the process of convergence of a set of 1000 file

sizes to the desired file system size of 90000 bytes. Each line represents an individual trial. A

successful trial is one that converges to the 5% error line in less than 1000 oversamples. (b) Shows

the difference between the original distribution of files by size, and the constrained distribution

after resolution of multiple constraints in (a). O: Original; C: Constrained. (c) Same as (b), but for

distribution of files by bytes instead.

3.5 Interpolation and Extrapolation

Impressions requires knowledge of the distribution of file system parameters
necessary to create a valid image. While it is tempting to imagine that Impres-
sions has perfect knowledge about the nature of these distributions for all pos-
sible values and combinations of individual parameters, it is often impossible.

First, the empirical data is limited to what is observed in any given dataset
and may not cover the entire range of possible values for all parameters. Sec-
ond, even with an exhaustive dataset, the user may want to explore regions
of parameter values for which no data point exists, especially for “what if”
style of analysis. Third, from an implementation perspective, it is more effi-
cient to maintain compact representations of distributions for a few sample
points, instead of large sets of data. Finally, if the empirical data is statistically
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Table IV. Summary of Resolving Multiple Constraints

Shows average rate and accuracy of convergence after resolving multiple constraints for different

values of desired file system size generated with a lognormal file size distribution D3 (μ = 8.16,

σ = 2.46). β: % error between the desired and generated sum, α: % of oversamples required, D is

the test statistic for the K-S test representing the maximum difference between generated and

desired empirical cumulative distributions. Averages are for 20 trials. Success is the number of

trials having final β ≤ 5%, and D passing the K-S test.

Num. Files Sizes Sum Avg. β Avg. β Avg. D Avg. D
N S (bytes) Initial Final Avg. α Count Bytes Success

1000 30000 21.55% 2.04% 5.74% 0.043 0.050 100%

1000 60000 20.01% 3.11% 4.89% 0.032 0.033 100%

1000 90000 34.35% 4.00% 41.2% 0.067 0.084 90%

Fig. 5. Piecewise interpolation of file sizes. Piece-wise interpolation for the distribution of files

with bytes, using file systems of 10 GB, 50 GB and 100 GB. Each power-of-two bin on the x-axis

is treated as an individual segment for interpolation (inset). Final curve is the composite of all

individual interpolated segments.

insignificant, especially for outlying regions, it may not serve as an accurate
representation. Impressions thus provides the capability for interpolation and
extrapolation from available data and distributions.

Impressions needs to generate complete new curves from existing ones. To
illustrate our procedure, we describe an example of creating an interpolated
curve; extensions to extrapolation are straightforward. Figure 5 shows how
Impressions uses piece-wise interpolation for the distribution of files with con-
taining bytes. In this example, we start with the distribution of file sizes for file
systems of size 10 GB, 50 GB, and 100 GB, shown in the figure. Each power-
of-two bin on the x-axis is treated as an individual segment, and the available
data points within each segment are used as input for piece-wise interpolation;
the process is repeated for all segments of the curve. Impressions combines the
individual interpolated segments to obtain the complete interpolated curve.

To demonstrate the accuracy of our approach, we interpolate and extrapolate
file size distributions for file systems of sizes 75 GB and 125 GB, respectively.
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Fig. 6. Accuracy of interpolation and extrapolation. Shows results of applying piecewise interpo-

lation to generate file size distributions (by count and by bytes), for file systems of size 75 GB (a

and b, respectively), and 125 GB (c and d, respectively).

Table V. Accuracy of Interpolation and Extrapolation

Impressions produces accurate curves for file systems of size 75 GB and

125 GB, using interpolation (I) and extrapolation (E), respectively.

FS Region D K-S Test

Distribution (I/E) Statistic (0.05)

File sizes by count 75 GB (I) 0.054 passed

File sizes by count 125 GB (E) 0.081 passed

File sizes by bytes 75 GB (I) 0.105 passed

File sizes by bytes 125 GB (E) 0.105 passed

Figure 6 shows the results of applying our technique, comparing the generated
distributions with actual distributions for the file system sizes (we removed this
data from the dataset used for interpolation). We find that the simpler curves
such as Figure 6(a) and (c) are interpolated and extrapolated with good accuracy.
Even for more challenging curves such as Figure 6(b) and (d), the results are
accurate enough to be useful. Table V contains the results of conducting K-S
tests to measure the goodness-of-fit of the generated curves. All the generated
distributions passed the K-S test at the 0.05 significance level.

3.6 File Content

Actual file content can have substantial impact on the performance of an ap-
plication. For example, Postmark [Katcher 1997], one of the most popular file
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system benchmarks, tries to simulate an email workload, yet it pays scant at-
tention to the organization of the file system, and is completely oblivious of
the file data. Postmark fills all the “email” files with the same data, generated
using the same random seed. The evaluation results can range from mislead-
ing to completely inaccurate, for instance in the case of content-addressable
storage (CAS). When evaluating a CAS-based system, the disk-block traffic
and the corresponding performance will depend only on the unique content—
in this case belonging to the largest file in the file system. Similarly, perfor-
mance of Desktop Search and Word Processing applications is sensitive to file
content.

In order to generate representative file content, Impressions supports a num-
ber of options. For human-readable files such as .txt, .html files, it can popu-
late file content with random permutations of symbols and words, or with more
sophisticated word-popularity models. Impressions maintains a list of the rela-
tive popularity of the most popular words in the English language, and a Monte
Carlo simulation generates words for file content according to this model. How-
ever, the distribution of word popularity is heavy-tailed; hence, maintaining
an exhaustive list of words slows down content generation. To improve perfor-
mance, we use a word-length frequency model [Sigurd et al. 2004] to generate
the long tail of words, and use the word-popularity model for the body alone.
According to the word-length frequency model the observed frequencies of word
lengths is approximated by a variant of the gamma distribution, and is of the
general form: fexp = a ∗ Lb ∗ cL, where fexp is the observed frequency for word-
length L, and (a,b,c) are language-specific parameters.

The user has the flexibility to select either one of the models in entirety, or
a specific combination of the two. It is also relatively straightforward to add
extensions in the future to generate more nuanced file content. An example of
such an extension is one that carefully controls the degree of content similarity
across files.

In order to generate content for typed files, Impressions either contains
enough information to generate valid file headers and footers itself, or calls
into a third-party library or software such as Id3v21 for mp3; GraphApp2 for
gif, jpeg and other image files; Mplayer3 for mpeg and other video files; asci-
idoc for html; and ascii2pdf for PDF files.

3.7 Disk Layout and Fragmentation

To isolate the effects of file system content, Impressions can measure the degree
of on-disk fragmentation, and create file systems with user-defined degree of
fragmentation. The extent of fragmentation is measured in terms of layout
score [Smith and Seltzer 1997]. A layout score of 1 means all files in the file
system are laid out optimally on disk (i.e., all blocks of any given file are laid
out consecutively one after the other), while a layout score of 0 means that no
two blocks of any file are adjacent to each other on disk.

1http://id3v2.sourceforge.net/.
2http://enchantia.com/software/graphapp/.
3http://www.mplayerhq.hu/.
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Table VI. Performance of Impressions

Shows time taken to create file-system images with

break down for individual features. Image1: 4.55 GB,

20000 files, 4000 dirs. Image2: 12.0 GB, 52000 files, 4000

dirs. Other parameters are default. The two entries for

additional parameters are shown only for Image1 and

represent times in addition to default times.

Time Taken (seconds)

FS Distribution (Default) Image1 Image2

Directory structure 1.18 1.26

File sizes distribution 0.10 0.28

Popular extensions 0.05 0.13

File with depth 0.064 0.29

File and bytes with depth 0.25 0.70

File content (Single-word) 0.53 1.44

On-disk file/dir creation 437.80 1394.84

Total time 473.20 1826.12

(8 mins) (30 mins)

File content (Hybrid model) 791.20 –

Layout score (0.98) 133.96 –

Impressions achieves the desired degree of fragmentation by issuing pairs
of temporary file create and delete operations, during creation of regular files.
When experimenting with a file-system image, Impressions gives the user com-
plete control to specify the overall layout score. In order to determine the on-disk
layout of files, we rely on the information provided by debugfs. Thus currently
we support layout measurement only for Ext2 and Ext3. In future work, we
will consider several alternatives for retrieving file layout information across a
wider range of file systems. On Linux, the FIBMAP and FIEMAP ioctl()s are
available to map a logical block to a physical block.4 Other file system-specific
methods exist, such as the XFS IOC GETBMAP ioctl for XFS.

The previous approach however does not account for differences in fragmen-
tation strategies across file systems. Impressions supports an alternate specifi-
cation for the degree of fragmentation wherein it runs a pre-specified workload
and reports the resulting layout score. Thus if a file system employs better
strategies to avoid fragmentation, it is reflected in the final layout score after
running the fragmentation workload.

There are several alternate techniques for inducing more realistic fragmen-
tation in file systems. Factors such as burstiness of I/O traffic, out-of-order
writes and inter-file layout are currently not accounted for; a companion tool to
Impressions for carefully creating fragmented file systems will thus be a good
candidate for future research.

3.8 Performance

In building Impressions, our primary objective was to generate realistic file-
system images, giving top priority to accuracy, instead of performance. Nonethe-
less, Impressions does perform reasonably well. Table VI shows the breakdown

4http://lwn.net/Articles/260795/.
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Fig. 7. Debunking application assumptions. Examples of assumptions made by Beagle and GDL,

along with details of the amount of file-system content that is not indexed as a consequence.

of time taken to create a default file-system image of 4.55 GB. We also show
time taken for some additional features such as using better file content, and
creating a fragmented file system. Overall, we find that Impressions creates
highly accurate file-system images in a reasonable amount of time and thus is
useful in practice.

4. CASE STUDY: DESKTOP SEARCH

In this section, we use Impressions to evaluate desktop searching applications.
Our goals for this case study are twofold. First, we show how simple it is to
use Impressions to create either representative images or images across which
a single parameter is varied. Second, we show how future evaluations should
report the settings of Impressions so that results can be easily reproduced.

We choose desktop search for our case study because its performance and
storage requirements depend not only on the file system size and structure, but
also on the type of files and the actual content within the files. We evaluate
two desktop search applications: open-source Beagle5 and Google’s Desktop for
Linux (GDL).6 Beagle supports a large number of file types using 52 search-
filters; it provides several indexing options, trading performance and index
size with the quality and feature-richness of the index. Google Desktop does
not provide as many options: a Web interface allows users to select or exclude
types of files and folder locations for searching, but does not provide any control
over the type and quality of indexing.

4.1 Representative Images

Developers of data-intensive applications frequently need to make assumptions
about the properties of file-system images. For example, file systems and ap-
plications can often be optimized if they know properties such as the relative
proportion of metadata to data in representative file systems. Previously, de-
velopers could infer these numbers from published papers [Agrawal et al. 2007;
Douceur and Bolosky 1999; Satyanarayanan 1981; Sienknecht et al. 1994], but
only with considerable effort. With Impressions, developers can simply create a
sample of representative images and directly measure the properties of interest.

Figure 7 lists assumptions we found in GDL and Beagle limiting the search
indexing to partial regions of the file system. However, for the representative file

5http://www.beagle-project.org/.
6http://desktop.google.com/linux/index.html.
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Fig. 8. Tree depth and completeness of index. Shows the percentage of files indexed by Beagle and

GDL with varying directory tree depths in a given file-system image.

systems in our data set, these assumptions omit large portions of the file system.
For example, GDL limits its index to only those files less than ten directories
deep; our analysis of typical file systems indicates that this restriction causes
10% of all files to be missed.

Figure 8 shows one such example: it compares the percentage of files in-
dexed by Beagle and GDL for a set of file-system images. The topmost graph
shows the results for deep file-system trees created by successively nesting
a new directory in the parent directory; a file system with D directories
will thus have a maximum depth of D. The y-axis shows the % of files in-
dexed, and the x-axis shows the number of directories in the file system.
We find that GDL stops indexing content after depth 10, while Beagle in-
dexes 100% of the files. The middle graph repeats the experiment on flat
trees, with all directories at depth 1. This time, GDL’s percentage complete-
ness drops off once the number of directories exceeds 10. For regular file sys-
tem trees, shown in the lowermost graph, we find that both Beagle and GDL
achieve near 100% completeness. Since the percentage of user-generated con-
tent deeper in the namespace is growing over the years, it might be useful
to design search indexing schemes which are better suited for deeper name
spaces.
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This strange behavior further motivates the need for a tool like Impressions
to be a part of any application designer’s toolkit. We believe that instead of ar-
bitrarily specifying hard values, application designers should experiment with
Impressions to find acceptable choices for representative images.

We note that Impressions is useful for discovering these application assump-
tions and for isolating performance anomalies that depend on the file-system
image. Isolating the impact of different file system features is easy using Im-
pressions: evaluators can use Impressions to create file-system images in which
only a single parameter is varied, while all other characteristics are carefully
controlled.

This type of discovery is clearly useful when one is using closed-source code,
such as GDL. For example, we discovered the GDL limitations by constructing
file-system images across which a single parameter is varied (e.g., file depth
and file size), measuring the percentage of indexed files, and noticing precipi-
tous drops in this percentage. This type of controlled experimentation is also
useful for finding non-obvious performance interactions in open-source code.
For instance, Beagle uses the inotify mechanism7 to track each directory for
change; since the default Linux kernel provides 8192 watches, Beagle resorts
to manually crawling the directories once their count exceeds 8192. This de-
terioration in performance can be easily found by creating file-system images
with varying numbers of directories.

4.2 Reproducible Images

The time spent by desktop search applications to crawl a file-system image is
significant (i.e., hours to days); therefore, it is likely that different developers
will innovate in this area. In order for developers to be able to compare their
results, they must be able to ensure they are using the same file-system images.
Impressions allows one to precisely control the image and report the parameters
so that the exact same image can be reproduced.

For desktop search, the type of files (i.e., their extensions) and the content of
files has a significant impact on the time to build the index and its size. We imag-
ine a scenario in which the Beagle and GDL developers wish to compare index
sizes. To make a meaningful comparison, the developers must clearly specify
the file-system image used; this can be done easily with Impressions by report-
ing the size of the image, the distributions listed in Table II, the word model,
disk layout, and the random seed. We anticipate that most benchmarking will
be done using mostly default values, reducing the number of Impressions pa-
rameters that must be specified.

An example of the reporting needed for reproducible results is shown in
Figure 9. In these experiments, all distributions of the file system are kept
constant, but only either text files (containing either a single word or with the
default word model) or binary files are created. These experiments illustrate
the point that file content significantly affects the index size; if two systems are
compared using different file content, obviously the results are meaningless.
Specifically, different file types change even the relative ordering of index size

7http://www.linuxjournal.com/article/8478.
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between Beagle and GDL: given text files, Beagle creates a larger index; given
binary files, GDL creates a larger index.

Figure 10 gives an additional example of reporting Impressions parameters
to make results reproducible. In these experiments, we discuss a scenario in
which different developers have optimized Beagle and wish to meaningfully
compare their results. In this scenario, the original Beagle developers reported
results for four different images: the default, one with only text files, one with
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only image files, and one with only binary files. Other developers later create
variants of Beagle: TextCache to display a small portion of every file alongside
a search hit, DisDir to disable directory indexing, and DisFilter to index only
attributes. Given the reported Impressions parameters, the variants of Beagle
can be meaningfully compared to one another.

In summary, Impressions makes it extremely easy to create both controlled
and representative file-system images. Through this brief case study evaluating
desktop search applications, we have shown some of the advantages of using
Impressions. First, Impressions enables developers to tune their systems to the
file system characteristics likely to be found in their target user populations.
Second, it enables developers to easily create images where one parameter is
varied and all others are carefully controlled; this allows one to assess the
impact of a single parameter. Finally, Impressions enables different developers
to ensure they are all comparing the same image; by reporting Impressions
parameters, one can ensure that benchmarking results are reproducible.

5. OTHER APPLICATIONS

Besides its use in conducting representative and reproducible benchmarking,
Impressions can also be handy in other experimental scenarios. In this section
we present two examples, the usefulness of Impressions in generating realistic
rules of thumb, and in testing soundness of hypothesis.

5.1 Generating Realistic Rules of Thumb

In spite of the availability of Impressions, designers of file systems and related
software will continue to rely on rules of thumb to make design decisions. In-
stead of relying on old wisdom, one can use Impressions to generate realistic
rules of thumb. One example of such a rule of thumb is to calculate the over-
head of file-system metadata—a piece of information often needed to compute
the cost of different replication, parity or check summing schemes for data re-
liability. Figure 11 shows the percentage of space taken by metadata in a file
system, as we vary the distribution of file sizes. We find that the overhead can
vary between 2 and 14% across the file size distributions in this example. Sim-
ilarly, Impressions can be used to compute other rules of thumb for different
metadata properties.

5.2 Testing Hypothesis

In our experience, we found Impressions convenient and simple to use for test-
ing hypothesis regarding application and file system behavior, hiding away the
statistical complexity of the experiment from the end-user. To illustrate this,
we describe our experience with a failed experiment.

It was our hypothesis that the distribution of bytes and files by namespace
depth would affect the time taken to build the search index: indexing file content
in deeper namespace would be slower. To test our hypothesis, all we had to do
was use Impressions to create file-system images, and measure the time taken
by Beagle to build the index, varying only a single parameter in the configu-
ration file for each trial: the λ value governing the Poisson distribution for file
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depth. Although our hypothesis was not validated by the results (i.e., we didn’t
find significant variation in indexing time with depth), we found Impressions
to be suitable and easy to use for such experimentation.

6. RELATED WORK

We discuss previous research in four related areas. First, we discuss previous
studies on file-system metadata; second, we discuss existing tools for generating
file-system images; third, we present prior research on improving file system
benchmarking; finally, we discuss existing models for explaining file system
metadata properties.

6.1 File System Measurement Studies

Impressions enables file system measurement studies to be put into prac-
tice. Besides the metadata studies on Windows workstations [Agrawal et al.
2007; Douceur and Bolosky 1999], previous work in non-Windows envi-
ronments includes Satyanarayanan’s study of a Digital PDP-10 [Satya-
narayanan 1981], Irlam’s and Mullender’s studies of Unix systems [Irlam
1993; Mullender and Tanenbaum 1984], and the study of HP-UX systems at
Hewlett-Packard [Sienknecht et al. 1994]. These studies provide valuable data
for designers of file systems and related software, and can be incorporated in
Impressions.

6.2 Tools for Generating File-System Images

We are not aware of any existing system that generates file-system images with
the level of detail that Impressions delivers; here we discuss some tools that
we believe provide some subset of features supported by Impressions.

FileBench, a file system workload framework for measuring and comparing
file system performance [McDougall] is perhaps the closest to Impressions in
terms of flexibility and attention to detail. FileBench generates test file system
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images with support for different directory hierarchies with namespace depth
and file sizes according to statistical distributions. We believe Impressions in-
cludes all the features provided by FileBench and provides additional capa-
bilities; in particular, Impressions allows one to contribute newer datasets and
makes it easier to plug in distributions. FileBench also does not provide support
for allowing user-specified constraints.

The SynRGen file reference generator by Ebling and Satyanarayanan [1994]
generates synthetic equivalents for real file system users. The volumes or im-
ages in their work make use of simplistic assumptions about the file system
distributions as their focus is on user access patterns.

File system and application developers in the open-source community also
require file-system images to test and benchmark their systems, tools for which
are developed in-house, often customized to the specific needs of the system
being developed.

Genbackupdata is one such tool that generates test data sets for performance
testing of backup software [Wirzenius 2009]. Like Impressions, but in a much
simplified fashion, it creates a directory tree with files of different sizes. Since
the tool is specifically designed for backup applications, the total file system
size and the minimum and maximum limits for file sizes are configurable, but
not the file size distribution or other aspects of the file system. The program
can also modify an existing directory tree by creating new files, and deleting,
renaming, or modifying existing files, inducing fragmentation on disk.

Another benchmarking system that generates test file systems matching a
specific profile is Fstress [Anderson and Chase 2002]. However, it does contain
many of the features found standard in Impressions, such as popularity of
file extensions and file content generation according to file types, supporting
user-specified distributions for file system parameters and allowing arbitrary
constraints to be specified on those parameters.

6.3 Tools and Techniques for Improving Benchmarking

A number of tools and techniques have been proposed to improve the state of
the art of file and storage system benchmarking. Chen and Patterson proposed
a “self-scaling” benchmark that scales with the I/O system being evaluated, to
stress the system in meaningful ways [Chen and Patterson 1993]. Although
useful for disk and I/O systems, the self-scaling benchmarks are not directly
applicable for file systems.

TBBT is a NFS trace replay tool that derives the file-system image underly-
ing a trace [Zhu et al. 2005]. It extracts the file system hierarchy from a given
trace in depth-first order and uses that during initialization for a subsequent
trace replay. While this ensures a consistent file-system image for replay, it does
not solve the more general problem of creating accurately controlled images for
all types of file system benchmarking.

The Auto-Pilot tool [Wright et al. 2005] provides an infrastructure for run-
ning tests and analysis tools to automate the benchmarking process. Auto-Pilot
can help run benchmarks with relative ease by automating the repetitive tasks
of running, measuring, and analyzing a program through test scripts.
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6.4 Models for File-System Metadata

Several models have been proposed to explain observed file-system phenom-
ena. Mitzenmacher [2002] proposed a generative model, called the Recursive
Forest File model to explain the behavior of file size distributions. The model is
dynamic as it allows for the creation of new files and deletion of old files. The
model accounts for the hybrid distribution of file sizes with a lognormal body
and Pareto tail.

Downey’s Multiplicative File Size model [Downey 2001] is based on the as-
sumption that new files are created by using older files as templates for exam-
ple, by copying, editing or filtering an old file. The size of the new file in this
model is given by the size of the old file multiplied by an independent factor.

The HOT (Highly Optimized Tolerance) model provides an alternate gener-
ative model for file size distributions. These models provide an intuitive under-
standing of the underlying phenomena, and are also easier for computer sim-
ulation. In future, Impressions can be enhanced by incorporating more such
models.

7. CONCLUSION

File system benchmarking is in a state of disarray. One key aspect of this prob-
lem is generating realistic file-system state, with due emphasis given to file-
system metadata and file content. To address this problem, we have developed
Impressions, a statistical framework to generate realistic and configurable file-
system images. Impressions provides the user flexibility in selecting a compre-
hensive set of file system parameters, while seamlessly ensuring accuracy of
the underlying images, serving as a useful platform for benchmarking.

In our experience, we find Impressions easy to use and well suited for a
number of tasks. It enables application developers to evaluate and tune their
systems for realistic file system characteristics, representative of target usage
scenarios. Impressions also makes it feasible to compare the performance of
systems by standardizing and reporting all used parameters, a requirement
necessary for benchmarking. We believe Impressions will prove to be a valuable
tool for system developers and users alike; we have made it publicly available
for download. Please visit the URL http://www.cs.wisc.edu/adsl/Software/
Impressions/ to obtain a copy.
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