
TOWARDS RELIABLE STORAGE SYSTEMS

by

Haryadi S. Gunawi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Sciences

University of Wisconsin-Madison

2009

Awarded:

The 2009 departmental Best Thesis Award

The 2009 ACM Doctoral Dissertation Award Honorable Mention

Committee in charge:
Prof. Andrea C. Arpaci-Dusseau (Co-chair)
Prof. Remzi H. Arpaci-Dusseau (Co-chair)
Prof. Ben Liblit
Prof. Michael M. Swift
Prof. Kewal Saluja

ii

iv

v

To the three important women in my life:
my daughter, my wife, and my mother

vi

vii

Acknowledgements

Faculty, friends, and family members have been a great support for me in com-
pleting this Ph.D. journey. In this special section, I wouldlike to express my deep
gratitude to these individuals.

Andrea and Remzi definitely come first, for without them this Ph.D. would
not have been an exceptional journey. This journey started nine years ago when I
was still an undergraduate looking for a professor who wanted to advise me in an
independent study. I recall knocking some doors without anyluck until I knocked
Remzi’s after which he welcomed me for an independent study.My research life
started then, and I was extremely happy to be able to continueto graduate school
under Remzi’s and Andrea’s supervision.

It has been a great privilege to have both of them as my “research parents”.
As great research parents, they care not only about results,but also crucial skills
that a student should develop to be a successful researcher.I am wholeheartedly
thankful for the many opportunities they have given me, including teaching a senior
Operating System class, connecting to top industries for internships, advising some
students, attending special meetings and conferences, andmany more. I recall some
students asked me: “What is the key to success in graduate school?” I paused and
answered “you simply learn from the best” – in my case, I have learned a great deal
from Andrea and Remzi.

I also would like to thank my other thesis-committee members, Ben Liblit,
Mike Swift, and Kewal Saluja, for their insights, questions, and advice for my
research. I would like to thank Mike for his challenging questions during my pre-
liminary exam; the questions have helped me in better preparing my defense. I also
really enjoyed working with Ben Liblit and his student, Cindy Rubio-Gonzalez.
This wonderful collaboration has resulted in two publishedpapers, one is part of
this dissertation.

I am fortunate to get the chance to work on some projects with smart and hard-
working colleagues: Nitin Agrawal, Lakshmi Bairavasundaram, Thanh Do, Shweta
Krishnan, Zhenxiao Luo, Vijayan Prabhakaran, Abhishek Rajimwale, Sriram Sub-

viii

ramanian, and Yupu Zhang. I also have enjoyed interacting with other members in
the group: Leo Arulraj, John Bent, Nate Burnett, Tim Denehy,Todd Jones, Andrew
Krioukov, Joe Meehan, Florentina Popovici, Meenali Rungta, Muthian Sivathanu,
Swami Sundararaman, Laxman Visampalli, and Yiying Zhang. Ifeel lucky to have
Lakshmi and Abhishek as my officemates as both of them are really neat persons.

I have benefited greatly from interning at EMC Corp. and Microsoft Research.
I would like to thank the companies as well as my mentors and managers there: Jiri
Schindler (now at NetApp) and Peter Lauterbach at EMC, and Orion Hodson and
Galen Hunt at Microsoft Research.

Finally, I would like to thank my family, without whose love and support this
Ph.D. would have been meaningless. My wife, Anna, has sharedwith me the happy
and also stressful moments. I am thankful that she has kept meenergetic and ex-
tremely healthy during my Ph.D. years. My almost 2-year-olddaughter, Livia, has
always cheered me up when I am tired. My mother is a special mother. She worked
very hard to fulfill her commitment that her sons should be able to study abroad,
taste high-quality undergraduate education, and continueto graduate school. I ded-
icate this dissertation to these three important women in mylife.

ix

Abstract

TOWARDS RELIABLE STORAGE SYSTEMS
Haryadi S. Gunawi

“There’s no way of reporting error ... to userspace. So ignore it.”
– A comment in ext3 (inode.c, line 1517)

Users are storing increasingly massive amounts of data. Storage software complex-
ity is growing. The use of cheap and less reliable hardware isincreasing. The com-
bination of these trends presents us with a terrific challenge: How can we promise
users that storage systems work robustly in spite of the complex failures that can
arise?

In the first part of this dissertation, we respond to this question with our anal-
ysis of three reliability components present in many modernfile systems: the file
system checker (fsck), failure detection and recovery policies (failure policy), and
journaling. We find that these subsystems are deficient in handling partial disk fail-
ures: in the fsck analysis, we find that some repairs are buggy(making the repaired
file system more corrupted) and some repairs are missing (leaving some corruptions
unattended). In the failure policy analysis, we observe a major problem of diffused
fault handling, which causes policies to be inconsistent, buggy, and inflexible to
change. In the journaling analysis, we uncover that currentjournaling frameworks
cannot recover from checkpoint write failures, and hence write failures are inten-
tionally ignored. The results of our analysis hint that managing failures is hard (as
also hinted by the developer’s comment), and hence demand for novel solutions
towards building more reliable storage systems.

In the second part of this dissertation, we present our solutions to the problems
above. First, we re-architect the file system checker by introducing SQCK, a robust
file system checker that employs a declarative query language. By writing hundreds

x

of checks and repairs in a query language (e.g., SQL), the high-level intent of the
checker can be specified in a clear and compact manner. We showthat SQCK is
able to perform the same functionality as the Linux ext2/3 checker with elegant and
compact queries.

Second, we present EDP, a static analysis tool that shows howerror codes flow
through file systems and storage drivers. We observe that low-level errors are some-
times lost as they travel through the many layers of the storage subsystem: out of
the 9022 function calls through which the analyzed error codes propagate, we find
that 1153 calls (13%) do not correctly save the propagated error codes. Our detailed
analysis shows that many violations are not corner-case mistakes; the return codes
of some functions are consistently ignored.

Finally, we present I/O shepherding, a new reliability infrastructure for file sys-
tems. With I/O shepherding, the reliability policies of a file system are well-defined,
easy to understand, and simple to tailor to environment and workload. As part of
this framework, we also introducechained transactions, a novel and more power-
ful transactional model for checkpoint recoveries. We showthat I/O shepherding
enables simple, powerful, and correctly-implemented reliability policies by imple-
menting an increasingly complex set of policies.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Analysis of File System Reliability Components 3

1.1.1 Analysis of File System Checker 4
1.1.2 Analysis of Failure Policy 5
1.1.3 Analysis of Journaling 6

1.2 Building More Reliable File Systems 7
1.2.1 SQCK: A Declarative File System Checker 7
1.2.2 EDP: A Static Analysis Tool for Tracing Error-Codes Prop-

agation . 8
1.2.3 I/O Shepherding: A New Reliability Infrastructure 9

1.3 Summary of Contributions / Overview 11

2 Background 13
2.1 The Storage Stack . 13
2.2 Disk Failures . 15

2.2.1 Sources of Failures . 15
2.2.2 Types of Partial Disk Failures 17
2.2.3 Frequency of Failures . 17

2.3 Ext3 Data Structures . 18
2.4 Type-Aware Fault Injection . 20

3 Analysis of File System Reliability Components 23
3.1 Analysis of File System Checker 24

3.1.1 Ext2 Fsck Overview . 25
3.1.2 Methodology . 27

xi

xii

3.1.3 Results . 29
3.1.4 Summary: The Need for a New Fsck Framework 32

3.2 Analysis of Failure Policy . 33
3.2.1 IRON Taxonomy . 34
3.2.2 Methodology . 37
3.2.3 Results . 41
3.2.4 Summary: The Need for a New Fault-Management Frame-

work . 47
3.3 Analysis of Journaling . 48

3.3.1 Journaling Basics . 49
3.3.2 Failed Intentions . 50
3.3.3 Summary: The Need for a New Journaling Scheme 51

3.4 Conclusion . 51

4 SQCK: A Declarative File System Checker 53
4.1 Goals . 54
4.2 Declarative Query Language . 55
4.3 Architecture . 58

4.3.1 Database Tables . 59
4.3.2 Declarative Checks . 60
4.3.3 Declarative Repairs . 63
4.3.4 Ordering of Repairs . 65

4.4 Implementation . 67
4.4.1 Scanning and Loading 67
4.4.2 Checker . 69
4.4.3 Flusher . 70

4.5 Evaluation . 71
4.5.1 Flexibility . 71
4.5.2 Complexity . 74
4.5.3 Robustness . 77
4.5.4 Performance . 77

4.6 Conclusion . 80

5 EDP: A Static Analysis Tool for Error-Code Propagation 83
5.1 Methodology . 84

5.1.1 Target Systems . 84
5.1.2 EDP Analysis . 84

5.2 Results . 91
5.2.1 Unsaved Error Codes . 91

xiii

5.2.2 Unchecked Error Codes 106
5.2.3 Overwritten Error Codes 107

5.3 Analysis of Results . 108
5.3.1 Complexity and Robustness 109
5.3.2 Neglected Write Errors 110
5.3.3 Inconsistent Calls: Corner Case or Majority?112
5.3.4 Characteristics of Error Channels 113

5.4 Conclusion . 115

6 I/O Shepherding: A New Reliability Infrastructure 117
6.1 Goals . 118
6.2 Architecture . 120

6.2.1 Policy Table and Code 121
6.2.2 Policy Metadata . 121
6.2.3 Policy Primitives . 122

6.3 Example Policy Code . 123
6.4 Implementation . 127

6.4.1 Consistency Management 128
6.4.2 System Integration . 133
6.4.3 Code Complexity . 136

6.5 Crafting a Policy . 136
6.5.1 Experimental Setup . 137
6.5.2 Propagate . 138
6.5.3 Reboot vs. Retry . 138
6.5.4 Parity Protection . 142
6.5.5 Mirroring . 144
6.5.6 Sanity Checks . 145
6.5.7 Multiple Levels of Defense 146
6.5.8 D-GRAID . 148

6.6 Conclusion . 149
6.6.1 Porting the Shepherd . 149
6.6.2 Lessons . 149

7 Related Work 151
7.1 Building Robust File and Storage Systems151

7.1.1 Adding Redundancy . 151
7.1.2 Using Specification . 152
7.1.3 Redesigning Systems . 153

7.2 Robustness Analysis . 154

xiv

7.2.1 Fault Injection . 154
7.2.2 Formal Techniques . 156
7.2.3 Monitoring and Modeling 156

8 Future Work and Conclusions 159
8.1 Summary . 160

8.1.1 Analysis of File System Reliability Components160
8.1.2 Towards Building Reliable Storage Systems 161

8.2 Lessons Learned . 162
8.3 Future Work . 165

8.3.1 Continuous Checker and Repair Utility 165
8.3.2 Solving the Problem of Incorrect Error Propagation 166
8.3.3 Other Data Management Systems 167
8.3.4 Revisiting Failure Management 168

8.4 Closing Words . 169

1

Chapter 1

Introduction

“Just ignore errors at this point.
There is nothing we can do except to try to keep going.”

– A comment in XFS (xfsvnodeops.c, line 1785)

With the success of low-cost, high-capacity disk drives, all types of users are
storing increasingly massive amounts of data. Personal users create digitized forms
of music, images, and videos, as well as conventional documents, and it is estimated
that almost 800 MB of data is produced per person each year [91]. Organizations,
in addition to storing new data, are also keeping old data longer for the purposes of
compliance and business intelligence [121]. Scientific users are capturing large
amounts of data, as much as 200 GB data per day per project [118], and they
estimate that the amount is doubling every year [134].

Given the rising amount of data, access to data is critical. Data unavailability
may cost a company more than one million dollars per hour [81,101]. Data loss
can be more catastrophic; a recent survey shows that 7 out of 10 small and medium
firms that experience a major data loss go out of business within a year [35].
For larger organizations such as banking, data loss can havemuch greater con-
sequences; in July 2009, a large bank was fined a record total of £3 millions after
losing data on thousands of its customers [98].

Unfortunately, disks fail, and they fail more often than manufacturers expect
them to [115]. Furthermore, the manner in which their failures arise is becoming
more complex. The simple view that disks either work or fail completely no longer
holds. The reality today is that disks not only exhibit whole-disk failure [115] but
also partial failures. For example, disks can exhibit latent sector errors, where

2

a disk block or set of blocks are inaccessible [30, 79, 117]. Worse, disk blocks
sometimes become silently corrupted [18, 53, 130, 131]. In arecent large scale
study of 1.5 million disk drives deployed in the field, Bairavasundaramet al. have
shown that latent sector errors affect a significant percentage of disk drives (e.g., up
to 20% of the drives of a SATA disk model in just two years) [13]and corruptions
affect 400,000 blocks over three years [14].

Exacerbating the aforementioned problems, several technology trends and mar-
ket forces may combine to make storage system failures occurmore frequently
over time. First, disk drives are becoming more dense as morebits are packed
into smaller spaces [55]. As density increases, the logicalcomplexity of the drive
mechanics and firmware also increases, which can lead to morefailures. For exam-
ple, errors such as bit spillovers on adjacent tracks can corrupt more bits at higher
areal densities [10]. It is also known that complex firmware logic can introduce
bugs that could corrupt data [143]. In this denser world, reliability becomes more
challenging.

Second, the use of cheap and less reliable hardware is increasing. Companies
are striving to lower costs by cutting corners in a competitive market place, and
thus, they increasingly consolidate on low-cost PCs using ATA drives [46, 54, 128].
These low-cost PC drives tend to be less tested and have less internal machinery
to prevent failures from occurring [72]. The result, in the field, is that ATA drives
are observably less reliable [6, 11, 13, 14, 135]. Therefore, the prevalent use of
these drives implies that disk failures will not be a rarity but rather a commonplace
occurrence.

Finally, the amount of software is increasing in storage systems and, as others
have noted, software is often the root cause of errors [50]. In the storage system,
hundreds of thousands of lines of software are present in thelower-level drivers and
firmware. This low-level code is generally the type of code that is difficult to write
and debug [40, 133], and hence a likely source of increased errors in the storage
stack.

The combination of these trends presents us with a terrific challenge: How
can we promise users that storage systems work robustly in spite of their massive
software complexity and all the complex disk failures that can arise?As hinted by
the developers’ comments quoted throughout this dissertation, this is a challenging
problem; even when the developers are aware of the failures that can arise, they do
not know how to implement the correct response. To respond tothis challenging
question, we believe it is of utmost importance to firstanalyzeexisting approaches
and thenbuild new techniques for designing and building robust software on top of
increasingly complex and unreliable hardware. We discuss these two parts of this

3

dissertation in the following two sections.

1.1 Analysis of File System Reliability Components

Since disks fail, it is important to analyze how disk failures impact modern systems.
In the first part of this dissertation, we focus on analyzing the impact ofpartial disk
failureson local commodity file systems.

Partial disk failures such as latent sector errors and corruptions occur due the
complex nature of disk drives; trapped particles could cause scratches thereby ren-
dering sectors unreadable [11, 117]; high gaps between the disk head and the
medium could cause data to be written poorly [13]; firmware bugs could silently
lose, misdirected, or torn disk writes [46, 53, 130, 131]; software bugs in device
drivers could corrupt data [28, 40, 133]. As mentioned earlier, recent studies have
shown that partial disk failures occur in practice at a higher rate than what was
expected before [13, 14].

The impact of partial disk failures could affect a full rangeof data management
systems such as databases, distributed file systems, and RAID arrays. In this dis-
sertation, we focus and limit our scope only to local commodity file systems for
the following two reasons. First, these file systems are widely deployed in personal
computers of millions of users. Users store valuable data such as financial infor-
mation, pictures, videos, and other types of documents in their personal laptops or
PCs. Once users store their data, they expect it to be persistent forever, and perpet-
ually available. Second, a fundamental change is occurringwithin high-end storage
systems design; while traditionally, high-end storage systems are assembled from
highly customized components, today, people want to lower hardware costs and
build large scalable storage clusters. Thus, modern high-end storage systems are
comprised of commodity PCs running commodity operating systems and file sys-
tems [37, 46, 58, 68, 70, 129]. Therefore, analyzing local file systems will bring
benefits to other systems built on top of it.

As a first step, to emulate partial disk failures, we developed type-aware fault
injection in earlier work [106]. Our approach is to inject faults just beneath the sys-
tem under test and observe how the system responds. Many standard fault injectors
fail disk blocks in atype-obliviousmanner [25, 120]; that is, a block is failed re-
gardless of how it is being used by the system. In contrast, with type-aware fault
injection, we fail blocks of a specific type (e.g., an inode block in a file system
or a user data page in a virtual-memory system). Type information is crucial for
reverse-engineering the different strategies that a system applies for its different
data structures.

4

With the fault-injection framework in place, we analyze howpartial disk fail-
ures are handled by three important reliability componentspresent in many modern
file systems: the file system checker [65, 93], an important repair utility that fixes
file system inconsistency; failure policy [106], the file system detection and re-
covery techniques for dealing with disk failures; and journaling [52, 64, 140], a
mechanism that guarantees write atomicity in the presence of system crashes.

This dissertation reports our analysis of the three components within the Linux
ext3 file system [140], which is the default file system for many popular Linux
distributions such as Red Hat. However, in some cases, we have extended our
analysis to other file systems including ReiserFS [109], IBM’s JFS [20], and Win-
dows NTFS [124]. Interestingly, although these file systemshave been in active
development for more than one decade, we still find flaws, bugs, and design prob-
lems in terms of how their reliability components deal with partial disk failures.
This highlights that the impact of partial disk failures to file systems has not been
well examined in literature and in practice. Below, we discuss our motivations
for choosing the three reliability components and also present the summary of our
findings.

1.1.1 Analysis of File System Checker

The first component that we evaluate is the offline file system checker (also known
as fsck) [61]. Tools such as fsck have existed for many years [93] and are applied
to restore a damaged or otherwise inconsistent file system image to a working and
usable state. Although many newer file systems have tried to avoid the inclusion of
an offline checker in their tool suite [65] (for example, by assuming that journaling
always keeps the file system consistent), they inevitably find that a checker must be
deployed. For example, SGI’s XFS was introduced as a file system with “no need
for fsck, ever,” but soon found it necessary to deliver such atool [44]. Thus, a key
component to a robust file system is a robust fsck.

Unfortunately, robust checkers are not currently straightforward to design or
implement. First, checkers are large and complex beasts; for example, the Linux
ext2 checker performs more than 120 data structure repairs in sixteen thousand
lines of C code, while the ext2 file system itself is less than ten thousand lines.
Checkers are often written in a low-level systems language such as C, which can
be difficult to reason about. Checkers also are hard to test, given the huge possible
state space of input file systems. Finally, checkers are often run only when a serious
problem has occurred; it is well known that rarely-run recovery code tends to be
less reliable [26, 107].

Nevertheless, fsck is considered as the last line of defenseto fix damaged file

5

systems; if fsck fails to repair file systems correctly, no other tools can. Therefore,
it is important to analyze whether current checkers could properly repair inconsis-
tencies due to partial disk failures (e.g., corruptions). To achieve that, we evaluate
e2fsck, the Linux ext2/3 checker. We injected corruptions to ext2 on-disk pointers
in order to observe how e2fsck repairs file system inconsistencies.

Our results show many weaknesses of e2fsck that lead to unmountable file sys-
tems and data loss [61]. For example, first, e2fsck sometimesperforms out-of-order
repairs that can corrupt the file system image by overwritingimportant metadata
such as files, directories, and even the superblock. Second,e2fsck does not always
use all available information to perform the correct repairs, and hence can lose por-
tions of the directory tree; a dreadful mistake is when e2fsck ignores replicas of
important pointers such that a corrupt pointer is considered unfixable, and hence
all information behind that pointer (e.g., all files in an inode table) is considered
lost. Third, e2fsck does not follow the same policies (e.g., block allocation policy)
as the original ext2/3 file system. Finally, e2fsck does not always perform a secure
repair, and hence data from one user can leak to another user.

These findings show that fsck is truly complex and when not designed properly,
the correctness of such a complex system is hard to achieve. Other than e2fsck,
other checkers are unfortunately written in the same way (i.e., hundreds of checks
and repairs in thousands of lines of code). Thus, we believe other checkers have
the same weaknesses as in e2fsck.

1.1.2 Analysis of Failure Policy

Our second analysis is offailure policy [106]. That is, we attempt to unearth how
a running file system detects and recovers from a range of partial disk failures
(e.g., corruptions, read and write errors). In this analysis, we specifically choose
commodity file systems because their failure policies have not been captured in
literature, unlike those of high-end storage systems. For example, many high-end
storage systems are known to incorporate a backgrounddisk scrubbingprocess [78,
117] for detecting latent sector faults. Some also employ extra levels of redundancy
to reduce the potential data loss of undetected latent faults [30]. Finally, it is well-
known that highly-reliable systems utilize end-to-end checksums to detect block
corruptions [18].

As part of a larger group effort [106], we analyze several commodity file sys-
tems; the author specifically analyzes Windows NTFS [124] and the rest of the
group analyze three other file systems, ext3 [140], ReiserFS[109], and IBM JFS[20].
To unearth the failure policies of these file systems, we use the type-aware fault in-
jection framework to insert block-level read/write faultsand corruptions.

6

Our findings point us to a major problem ofdiffused handling; there are more
than a hundred places where the file system tries to handle I/Ofailures. One reason
for this diffusion is that the file system tries to handle eachfault where it arises in
the code. Because I/Os are generated from many different locations within the file
system, the fault-handling policy is also spread throughout the code. As a result, we
find that failure policies areinconsistent, buggy, andinflexible: different recovery
actions are employed under similar failure scenarios, error-codes are dropped in-
correctly leading to serious silent failures, and changingone simple policy requires
modifications in many places. This shows that commodity file systems do not have
a proper framework for disk failure handling.

1.1.3 Analysis of Journaling

In our final analysis, we look into journaling [60]. Journaling (also known as write-
ahead logging [52]) is a mechanism that guarantees write atomicity in the presence
of system crashes. This mechanism was first introduced to thefile system world
more than two decades ago [64]. Since then, journaling has been widely deployed
in many modern file systems including ext3 [140], ReiserFS [109], IBM JFS [20],
XFS [132] and Windows NTFS [124].

Journaling is accomplished with a sequence of three main operations. First,
file system updates are first committed as a transaction in thejournal (write-ahead
log). Then, the updates in the transaction are checkpointedto their final locations.
Finally, after the checkpoint completes, the transaction can be released. Although
this sequence of technique works perfectly in anticipatingcrashes, its correctness
has not been evaluated when partial disk failures (write failures in particular) come
into the picture. Therefore, to analyze this, we inject write failures at all unique
points within the journaling sequence.

We find that journaling file systems suffer from a generalproblem of failed
intentions[60], which arises when the intent as written to the journal cannot be
realized due to disk failure during checkpointing. More specifically, when a trans-
action is being checkpointed and a checkpoint write fails, the file system might
desire to perform a recovery (e.g., remap the failed write), which could result in a
metadata change (e.g., a remap table is modified). In order to properly reflect the
recovery on behalf of the checkpointed transaction, the metadata update must be
written to the diskbeforethe checkpointed transaction is released from the journal.
This is done by committing a new transaction that contains the metadata update.
However, the current journaling semantic allows the checkpointed transaction to be
released before the new transaction is committed. Thus, if acrash occurs after the
checkpointed transaction is released and before the new transaction is committed,

7

then the metadata update performed by the recovery is lost. As a result, the file
system will be in an inconsistent state.

In summary, with this major flaw, a simple block remapping during a check-
point failure cannot be done at the file system level. As a result, many modern
file systems that employ journaling (such as ext3, IBM JFS, and ReiserFS) ignore
checkpoint failure. Thus, the fact that we cannot recover from a checkpoint failure
properly with the current journaling scheme is disastrous.

1.2 Building More Reliable File Systems

We believe our three analyses illustrate a sad reality of today’s commodity file
systems; when recovery is hard, failures are often ignored (again, as hinted by the
developers’ comments). Thus, all the issues we raised abovecall for novel solutions
towards building more reliable storage systems. In the second part of this disser-
tation, we present our approaches to solving the problems wehave found. First,
we introduce SQCK [59], a robust file system checker that employs a declarative
query language. Next, we present EDP [62], a static analysistool that shows where
error-codes are ignored in file systems and storage drivers.Finally, we present I/O
shepherding [60], a simple yet powerful way to build robust and centralized failure
policies within a file system.

1.2.1 SQCK: A Declarative File System Checker

As mentioned before, robust checkers are not currently straightforward to design
or implement; a typical implementation needs to perform hundreds of checks and
repairs in tens of thousands of lines of C code. Given this reality, it is perhaps
not surprising that file system checkers often corrupt or lose data. Thus, to build
a new generation of robust and reliable file system checkers,we believe a new
approach is required. The ideal approach should enable the high-level intent of the
checker to be specified in a clear and compact manner; further, the description of
the intent should be cleanly separated from its low-level implementation and how
it is optimized. A high-level specification has multiple benefits: by its very nature
it is easier to understand, modify, and maintain.

To realize this new approach, we introduce SQCK [61] (pronounced “squeak”),
a novel file system checker. Borrowing heavily from the database community,
SQCK employs declarative queries to check and repair a file system image. We
find that a declarative query language is an excellent match for the cross-checks
that must be made across the different structures of a file system; declarative re-

8

pairs can be surprisingly elegant and compact, especially compared to the original
e2fsck code. Specifically, we find that SQCK can reproduce thefunctionality of
e2fsck in many fewer lines of code; we rewrote the checks and repairs in e2fsck
in 150 queries in about 1100 lines of SQL statement (along with some helper code
written in C).

As checks and repairs are written in declarative queries, SQCK enables file
system developers to plug-in/out checks and repairs in a straightforward fashion.
In our evaluation, we show how SQCK can improve upon the traditional checks
and repairs. First, SQCK avoids the inconsistent repairs performed by e2fsck by
ensuring that its queries are executed in the correct order;specifically, a file system
structure is only repaired after the location of that structure has been validated.
Second, SQCK can perform more interesting and complete repairs than e2fsck by
combining information from multiple sources. For example,SQCK easily performs
majority voting over superblock and group descriptor replicas to handle the case
where the primary copy is corrupted. Finally, SQCK ensures that its repairs follow
the same allocation policies as ext2/3 by laying out new blocks with the appropriate
locality.

SQCK achieves this simplicity and completeness with littlecost to perfor-
mance. Our evaluation of the first-generation prototype of SQCK on top of the
MySQL DBMS shows that SQCK can handle even large file system partitions with
comparable performance to e2fsck. Overall, we believe thatthe SQCK-style declar-
ative approach will lead to a new generation of simpler, morerobust, and more
complete file system checking and repair.

1.2.2 EDP: A Static Analysis Tool for Tracing Error-Codes Propaga-
tion

Our failure-policy analysis has shown that file systems are especially unreliable
when the underlying disk system does not behave as expected [106]. Specifically,
many modern commodity file systems have serious bugs and inconsistencies in
how they handle errors from the storage system. However, thequestion remains
unanswered as to why these fault-handling bugs are present.

Therefore, we investigate what we believe is one of the root causes of deficient
fault handling: incorrect error code propagation. To be properly handled, a low-
level error code (e.g., an “I/O error” returned from a device driver) must be correctly
propagated to the appropriate code in the file system. Further, if the file system is
unable to recover from the fault, it should pass the error up to the application,
again requiring correct error propagation. Without correct error propagation, any
comprehensive failure policy is useless: recovery mechanisms and policies cannot

9

be invoked if the error is not propagated.
To analyze how error codes are propagated in file and storage system code,

we have developed a static source-code analysis technique.Our technique, named
Error Detection and Propagation (EDP)analysis [62], shows how error codes flow
through the file system and storage drivers. EDP performs a dataflow analysis
by constructing a function-call graph showing how error codes propagate through
return values and function parameters.

We have applied EDP analysis to all file systems and three major storage device
drivers (SCSI, IDE, and Software RAID) implemented in Linux2.6. We find that
error handling is occasionally correct. Specifically, we see that low-level errors
are sometimes lost as they travel through the many layers of the storage subsystem:
out of the 9022 function calls through which the analyzed error codes propagate,
we find that 1153 calls (13%) do not correctly save the propagated error codes.

Our detailed analysis enables us to make a number of conclusions. First, we
find that the more complex the file system (in terms of both lines of code and num-
ber of function calls with error codes), the more likely it isto incorrectly propagate
errors; thus, these more complex file systems are more likelyto suffer from silent
failures. Second, we show how inter-module calls play a major part in causing
incorrect error propagation. Third, we observe that I/O write operations are more
likely to neglect error codes than I/O read operations. Finally, we find that many
violations are not corner-case mistakes: the return codes of some functions are con-
sistently ignored, which makes us suspect that the omissions are intentional. The
last two observations hint that dealing with failures in thecurrent infrastructure is
hard, and hence failures are often ignored; in fact, the quoted developers’ com-
ments are found near where error codes are dropped. Therefore, our next approach
is to revisit the need for a new reliability infrastructure.

1.2.3 I/O Shepherding: A New Reliability Infrastructure

Our final contribution stems from two needs: the need for proper storage fault
handling and for flexible policies within the file system. First, current approaches
bury fault handling features deep within the file system code, making both the intent
and the realization of the approach to reliability difficultto understand or evolve.
As a consequence, storage fault handling is buggy and inconsistent. This shows
that reliability is a second-class citizen in commodity filesystems.

Second, even if a perfectly working fault management systemcould be built,
there is little consensus on the set of detection and recovery mechanisms that it
should deploy, especially because file systems have classically been deployed in
diverse environments. For example, a file system that runs ona desktop machine

10

with a single SATA drive is often the same file system that runsatop a hardware
RAID consisting of high-end SCSI drives. Furthermore, file systems typically run
underneath a wide variety of application workloads with differing needs. For exam-
ple, desktop workloads may wish for high data reliability with reasonable perfor-
mance, while web-server workloads with database support may desire the highest
performance possible combined with modest reliability. Asfile systems are used
in diverse settings, the best fault management strategy is likely a function of the
environment (e.g., how reliable the disks are) and the workload (e.g., how much
performance overhead can be tolerated, or how fault-tolerant the applications are).
Unfortunately, systems today have a single approach built in, allowing little flexi-
bility when deployed.

To fulfill the two needs above, we present the design, implementation, and eval-
uation ofI/O shepherding[60], a new reliability infrastructure for file systems. I/O
shepherding provides a simple yet powerful way to build robust reliability policies
within a file system, and does so by adhering to a single underlying design princi-
ple: reliability should be a first-class file system concern. As a result, the reliability
policies of a file system are well-defined, easy to understand, powerful, and simple
to tailor to environment and workload.

The I/O shepherd achieves these ends by interposing on each I/O that the file
system issues. The shepherd then takes responsibility for the “care and feeding” of
the request, specifically by executing areliability policy for the given block. Simple
policies will do simple things, such as issue the request to the storage system and
return the resulting data and error code (success or failure) to the file system above.
However, the true power of shepherding lies in the rich set ofpolicies that one can
construct; I/O shepherding makes the creation of policies simple by providing a
library of primitives that can be readily assembled into a fully-formed reliability
policy.

A major challenge in implementing I/O shepherding is propersystems inte-
gration; it requires changes to the file system consistency management routines,
layout engine, disk scheduler, and buffer cache, as well as the addition of thread
support. Of these changes, the most important interaction between the shepherd
and the rest of the file system is in the consistency management subsystem (i.e.,
the journaling subsystem). Policies developed in the shepherd often add new on-
disk state (e.g., checksums, or replicas) and thus must also update these structures
atomically. However, as mentioned earlier, we have found that journaling file sys-
tems suffer from a general problem of failed intentions (Section 1.1.3). To solve
this major flaw, the shepherd incorporateschained transactions, a novel and more
powerful transactional model that allows policies to handle unexpected faults dur-

11

ing checkpointing and still consistently update on-disk structures. The shepherd
provides this support transparently to all reliability policies, as the required actions
are encapsulated in various systems primitives.

We demonstrate how I/O shepherding enables simple but powerful policies by
implementing an increasingly complex set of policies including sophisticated retry
mechanisms, strong sanity checking, the addition of checksums to detect data cor-
ruption, and mirrors or parity protection to recover from lost blocks or disks. All
these policies are written in a few lines of code; even complex policies can be
implemented in less than 100 lines of code. As an implication, policies can be
correctly implemented, and hence behave as desired under disk faults. We thus
conclude that I/O shepherding is a powerful framework for building robust and
efficient reliability features within file systems.

1.3 Summary of Contributions / Overview

Below is the summary of our contributions (and also how the rest of this dissertation
is organized).

• Background: Chapter 2 provides a background on the storage stack, the
partial disk failures that occur within, the ext2/3 file system data structures,
and the type-aware fault-injection technique we have developed to analyze
file systems.

• Problems: We begin presenting the first contribution of this dissertation
in Chapter 3, which reports the impact of partial disk failures to three re-
liability components present in many modern file systems: the file system
checker [61] (Section 3.1), failure policy [106] (Section 3.2) and journal-
ing [60] (Section 3.3).

• Solutions: The next three chapters collectively present the second major con-
tribution of this dissertation, which is a set of solutions to the problems we
have found. Chapter 4 presents SQCK [61], a declarative file system checker.
Chapter 5 presents EDP [62, 113], a static analysis tool for error-code detec-
tion and propagation. Finally, Chapter 6 presents I/O shepherding [60], a
new reliability infrastructure for file systems.

• Related Work: Chapter 7 summarizes research efforts in analyzing system
robustness and building more robust file systems. We also discuss other spe-
cific approaches related to our three solutions.

12

• Conclusions and Future Work: Chapter 8 concludes this dissertation, first
summarizing our work and highlighting the lessons learned,and then dis-
cussing various avenues for future work that arise from our research, includ-
ing extending our techniques and analyses to other data management systems
such as databases [125]. Thus, we believe our contributionsare generally ap-
plicable to many data management systems beyond file systems.

13

Chapter 2

Background

“We ... encounter a disk error.”
– A comment in XFS (xfsutils.c, line 182)

This chapter provides a background on various aspects integral to this disser-
tation. First, Section 2.1 explains the components of a storage stack, which is a
complex layered collection of electrical, mechanical, firmware and software com-
ponents. Second, Section 2.2 discusses failures that occurin the storage stack,
describes specific partial disk failures that are addressedin this dissertation, and
present statistics on the frequency of partial disk failures. Third, Section 2.3 gives
an introduction on file system data structures as disk failures affect these structures.
We will specifically describe the data structures of a popular file system, the Linux
ext3 [141]; ext3 is the default file system in several distributions of Linux (e.g.,
Red Hat). Although we heavily focus on ext3 file system in thisdissertation, we
believe our analyses and solutions are applicable to other file systems as well. Fi-
nally, Section 2.4 presents our fault-injection methodology developed in previous
work [106]. This fault-injection methodology is crucial for two purposes: analyz-
ing the robustness of file systems in dealing with disk failures and evaluating the
robustness of our solutions.

2.1 The Storage Stack

Figure 2.1 presents a typical layered storage subsystem below the file system. An
error can occur in any of these layers and propagate itself tothe file system above.

14

Generic Block I/O
Device Driver

Device Controller

Firmware

Media

Transport

H
os

t
D

is
k

Generic File System
Specific File System

S
to

ra
ge

 S
ub

sy
st

em

Electrical
Mechanical Cache

Figure 2.1:The storage stack.We present a schematic of the entire storage stack.
At the top is the file system; beneath are the many layers of thestorage subsystem.
Gray shading implies software or firmware, whereas white (unshaded) is hardware.

At the bottom of the storage stack is the disk itself; beyond the magnetic stor-
age media, there are mechanical (e.g., the motor and arm assembly) and electrical
components (e.g., buses). A particularly important component is firmware – the
code embedded within the drive to control most of its higher-level functions, in-
cluding caching, disk scheduling, and error handling. Thisfirmware code is often
substantial and complex (e.g., a modern Seagate drive contains roughly 400,000
lines of code [36]).

Connecting the drive to the host is the transport. In low-endsystems, the trans-
port medium is often a bus (e.g., SCSI), whereas networks are common in higher-
end systems (e.g., FibreChannel).

At the top of the stack is the host. Herein there is a hardware controller that
communicates with the device, and above it a software devicedriver that controls
the hardware. Block-level software forms the next layer, providing a generic device
interface and implementing various optimizations (e.g., request reordering).

Above all other software is the file system. This layer is often split into two
pieces: a high-level component common to all file systems, and a specific com-
ponent that maps generic operations onto the data structures of the particular file
system. A standard interface (e.g., Vnode/VFS [84]) is positioned between the two.

15

2.2 Disk Failures

This section provides a background on disk failures, with a focus onpartial disk
failures. Partial disk failures implies that disks do not always failin whole-failure
mode where the disk is either working completely or not usable at all. Realistically,
some parts of the disk can fail while some other parts are still working.

To understand partial disk failures, we first discuss the different sources of fail-
ures in the storage stack and then describe specific types of partial disk failures that
we model. In reality, any element of the storage stack could cause a failure that ap-
pears as a “disk failure.” We refer to such failures in other subsystem components
as disk failures as well; most systems today cannot distinguish between failures
that occur at different levels of the stack. Finally, we present some statistics on the
frequency of partial disk failures.

2.2.1 Sources of Failures

This section presents different causes of partial failuresin the storage subsystem.
Almost all layers of the storage stack contribute to these partial failures.

Media: There are two primary problems that occur in the magnetic medium.
First, the medium may have imperfections. These imperfections could either
cause the medium to be poorly magnetized during writes, or could cause a
“head crash”, where the drive head contacts the surface momentarily. Sec-
ond, a medium scratch could occur when a particle is trapped between the
drive head and the media [117]. Such dangers are well-known to drive man-
ufacturers, and hence today’s disks park the drive head whenthe drive is not
in use to reduce the number of head crashes; SCSI disks sometimes include
filters to remove particles [11]. Media errors most often lead to permanent
failure of individual disk blocks.

Mechanical: “Wear and tear” eventually leads to failure of moving parts.A
drive motor can spin irregularly or fail completely. Erratic arm movements
can cause head crashes and media flaws. Inaccurate arm movement caused
by rotational vibration can misposition the drive head during writes, leaving
blocks inaccessible or corrupted upon subsequent reads. “High-fly” writes,
in which the gap between the disk head and the medium is too high, could
cause data to be poorly written, thereby causing an ECC errorwhen the sector
is eventually read.

16

Drive firmware: Interesting errors arise in the drive controller, which consists
of many thousands of lines of real-time, concurrent firmware. For exam-
ple, disks have been known to return correct data but circularly shifted by a
byte [88] or have memory leaks that lead to intermittent failures [137]. Other
firmware problems can lead to poor drive performance [114]. Some firmware
bugs are well-enough known in the field that they have specificnames; for ex-
ample, “misdirected” writes are writes that place the correct data on the disk
but in the wrong location, and “phantom” writes are writes that the drive re-
ports as completed but that never reach the media [143]. Phantom writes can
be caused by a buggy or even misconfigured cache (i.e., write-back caching is
enabled). In summary, drive firmware errors often lead to sticky or transient
block corruption but can also lead to performance problems.

Transport: The transport connecting the drive and host can also be problem-
atic. For example, a study of a large disk farm [135] reveals that most of
the systems tested had interconnect problems, such as bus timeouts. Parity
errors also occurred with some frequency, either causing requests to succeed
(slowly) or fail altogether. Thus, the transport often causes transient errors
for the entire drive.

Bus controller: The main bus controller can also be problematic. For exam-
ple, the EIDE controller on a particular series of motherboards incorrectly
indicates completion of a disk request before the data has reached the main
memory of the host, leading to data corruption [142]. A similar problem
causes some other controllers to return status bits as data if the floppy drive
is in use at the same time as the hard drive [53]. Others have also observed
IDE protocol version problems that yield corrupt data [46].In summary,
controller problems can lead to transient block failure anddata corruption.

Low-level drivers: Recent research has shown that device driver code is more
likely to contain bugs than the rest of the operating system [28, 40, 133].
While some of these bugs will likely crash the operating system, others can
issue disk requests with bad parameters, data, or both, resulting in data cor-
ruption.

File system: Finally, at the very top of the storage stack, the file system it-
self may contain bugs that lead to silent data corruption. Recent research
has identified various bugs various file system components including the
journaling infrastructure, file-system mount code, and in failure-handling
code [106, 145, 146, 147].

17

2.2.2 Types of Partial Disk Failures

In order to emulate the failures mentioned above, we need a more realistic model
of disk failures. From the perspective of the file system, disk failures manifest as
block-level failures; the disk interface abstracts the disk as a linear array of equal
sized blocks each identified by a logical block number (LBN).Thus, in our model,
failures manifest themselves in two specific ways:

• Block failure: One or more blocks are not accessible; often referred to as
latent sector faults[78, 79]. As an implication, a read or a write to the block
will fail.

• Block corruption: The data within individual blocks is altered. Corruption
is particularly insidious because it is silent – the storagesubsystem simply
returns “bad” data upon a read.

We term this model thefail-partial model, to emphasize that pieces of the stor-
age subsystem can fail. We now discuss two key elements of thefail-partial model:
the transience and locality of failures.

Transience of failures: In our model, failures can be “sticky” (permanent) or
“transient” (temporary). Which behavior manifests itselfdepends upon the
root cause of the problem. For example, a low-level media problem portends
the failure of subsequent requests. In contrast, a transport or higher-level
software issue might at first cause block failure or corruption; however, the
operation could succeed if retried.

Locality of failures: Because multiple blocks of a disk can fail, one must con-
sider whether such block failures are dependent. The root causes of block
failure suggest that some forms of block failure do indeed exhibit spatial lo-
cality [79]. For example, a scratched surface or thermal asperity can render
a number of contiguous blocks inaccessible. However, all failures do not
exhibit locality; for example, a corruption due to a misdirected write may
impact only a single block.

2.2.3 Frequency of Failures

Until recently, there was very little data on how often partial disk failures arose
in modern storage systems. Although there was much anecdotal information [18,
131, 143], and a host of protection techniques that systems employ to handle such
corruptions [86], there was little hard data.

18

Recently, Bairavasundaramet al.performed the first large-scale study on partial
disk failures [13]. they analyzed data collected from production systems over 32
months across 1.53 million disks (both nearline and enterprise class). The find that
a total of 3.45% of 1.53 million disks developed latent sector errors over a period
of 32 months. The also find that latent sector errors affect a significant percentage
of a disk drive model (e.g., up to 20% of the drives of a SATA disk model).

In a subsequent study, Bairavasundaramet al. also demonstrated that corrup-
tion does indeed occur across a broad range of modern drives [14]. In that study of
1.5 million disk drives deployed in the field, the authors found more than 400,000
blocks have checksum mismatches over three years. They alsofound that nearline
disks develop checksum mismatches an order of magnitude more often than enter-
prise class disk drives. Furthermore, checksum mismatcheswithin the same disk
show high spatial and temporal locality, and checksum mismatches across different
disks in the same storage system are not independent. This shows that corruption
takes place, and systems must be prepared to handle it.

2.3 Ext3 Data Structures

To analyze how file systems deal with disk failures, we want toemulate the block-
level failures mentioned in the previous section and observe how file systems react
to the failures. In emulating block-level failures, we do not use a random fault-
injection approach. Rather, we use specific file system knowledge (i.e., file system
data structures) to enhance our fault-injection methodology. In this section, we
first give an introduction on the data structures of a popularfile system, Linux
ext3 [140, 141]. In the next section, we show how we utilize this knowledge to
enhance our fault-injection methodology.

Ext3 is built as an extension to the ext2 file system [27]; ext2and ext3 use
the same data structures. The only difference is ext3 employs journaling (or write-
ahead logging) to perform write-atomicity [140].

Figure 2.2 depicts the ext2/3 on-disk layout. In this organization (which is
loosely based on FFS [92]), the disk is split into a number ofblock groups; within
each block group are bitmaps, an inode table, and data blocks. Each block group
also contains a redundant copy of crucial filesystem controlinformations such as
the superblock and the group descriptors.

The superblockcontains important layout information such as inodes count,
blocks count, and how the block groups are laid out. Without the information in the
superblock, the file system cannot be mounted properly.

A group descriptordescribes a block group. It contains information such as the

19

Block group 0 Block group N
Boot
Block

Super
Block Descriptors

Group
Bitmap
Data Inode

Bitmap
Inode
Table

Data blocks

1 block 1 block1 block n blocks n blocks n blocks

Indirect Ptr

Triple Indirect Ptr

Double Indirect Ptr

Direct [12]

blocks
Data

block
Indirect

block
Double indirect

Info (size, mode, ...)

Inode

Figure 2.2:Ext2/3 Layout. The upper picture shows the layout of an ext2/3 file
system. The disk address space is broken down into a series ofblock groups (akin
to FFS cylinder groups), each of which is described by a groupdescriptor and has
bitmaps to track allocations and regions for inodes and datablocks. The lower fig-
ure shows the organization of an inode. An ext2/3 inode has twelve direct pointers
to data blocks. If the file is large, indirect pointers are used.

location of the inode table, block bitmap, and inode bitmap for the corresponding
group. In addition, it also keeps track of allocation information such as the number
of free blocks, free inodes, and used directories in the group.

An inode tableconsists of an array ofinodes, and it can span multiple blocks.
An inode can represent a user file, a directory, or other special files (e.g., symbolic
link). An inode mainly contains file attributes (e.g., size, access control list) and
pointers to its data blocks. An inode has 12 direct pointers to its data blocks. If
its data needs more blocks, the inode will use its indirect pointer that points to
an indirect blockwhich contains pointers to data blocks. If the indirect block is
not enough, the inode will use adouble indirect blockwhich contains pointers to
indirect blocks. At most, an inode can use a triple indirect block which contains
pointers to double indirect blocks.

A data blockcan contain user’s data or directory entries. If an inode represents
a user file, its data blocks contain user’s data. If an inode represents a directory,
its data blocks contain directory entries. Directory entries are managed as linked

20

lists of variable length entries. Each directory entry contains the inode number, the
entry length, the file name and its length.

2.4 Type-Aware Fault Injection

In this section, we describe a fault-injection technique that we developed in previ-
ous work [106] to uncover file system behaviors in respondingto disk failures. We
have used this methodology as a basic framework in uncovering many reliability
problems in file systems (Chapter 3) and evaluating our solutions to the problems
(Chapter 4 and Chapter 6). This section provides a brief outline of the methodol-
ogy; more details are described in the corresponding chapters.

To emulate block-level failures, our approach is to inject faults just beneath the
system under test and observe how the system responds. If theresponses are en-
tirely consistent within a system, this could be done quite simply; we could run any
workload, fail one of the blocks that is accessed, and conclude that the response to
this block failure fully demonstrates the reaction of the system. However, systems
are in practice more complex: they employ different techniques depending upon the
operation performed and the type of the faulty block. For example, upon a write
failure of a data block, the file system can simply propagate the failure to the appli-
cation, while upon the superblock, the file system might wantto retry the write or
remap the superblock. Therefore, we must trigger all these interesting cases. Our
challenge is to coerce the system down its different code paths to observe how each
path handles failure. This requires that we run workloads exercising as many code
paths as possible in combination with induced faults on all data structures.

Type Awareness:Many standard fault injectors [25, 120] fail disk blocks in a
type obliviousmanner; that is, a block is failed regardless of how it is being used by
the system. However, repeatedly injecting faults into random blocks and waiting
to uncover new aspects of the system’s reactions would be a laborious and time-
consuming process, likely yielding little insight. The keyidea that allows us to
test a system in a relatively efficient and thorough manner istype-aware fault in-
jection. With type-aware fault injection, we fail blocks of a specific type (e.g., an
inode block in a file system). Type information is crucial in reverse-engineering the
system’s responds, allowing us to discern the different strategies that the system ap-
plies for its different data structures. The disadvantage of our type-aware approach
is that the fault injector must be tailored to each system. However, we believe that
the benefits of type-awareness clearly outweigh these complexities.

Context Awareness: Our goal in fault injection is to exercise the system as
thoroughly as possible, following as many internal code paths as possible. We be-

21

lieve that different code paths using the same data structures may not respond to
failure in a consistent manner. Therefore, we use a suite of workloads that stress
the system in different ways. These workloads are fine-grained; each workload
performs a very specific action, often corresponding to a single system call (e.g.,
open of a file). Each system under test also introduces special cases that must be
stressed. For example, in the case of the ext3 file system, theinode uses an im-
balanced tree with indirect, doubly-indirect, and triply-indirect pointers, to support
large files; hence, our workloads ensure that sufficiently large files are created to
access these structures.

Mechanism: Our mechanism for injecting faults is to use a software layerdi-
rectly beneath the system (e.g., a pseudo-device driver in Linux). This layer injects
both block read and write errors, and can also corrupt contents of disk blocks. By
injecting failures just below the system, we emulate faultsthat could be caused by
any of the layers in the storage subsystem. Therefore, unlike approaches that em-
ulate faulty disks using additional hardware [25], we can imitate faults introduced
by buggy device drivers and controllers. A drawback of our approach is that it does
not discern how lower layers handle disk faults; for example, some SCSI drivers
retry commands after a failure [110]. However, given that weare characterizing
how a specific file system responds to partial disk failures, we believe this is the
correct layer for fault injection.

After running a workload and injecting a fault, the final stepis to determine how
the system behaved. To determine how a partial disk failure affected the system,
we compare the results of running with and without the failure. We perform this
comparison across all observable outputs from the system: any error codes and data
returned by the system API, the contents of the system log, and the low-level I/O
traces recorded by the fault-injection layer. This is the most human-intensive part
of the process, as it requires manual inspection of the visible outputs.

22

23

Chapter 3

Analysis of File System Reliability
Components

“Error, skip block and hope for the best.”
– A comment in ext3 (namei.c, line 880)

File systems have an important task: managing datareliably. Unfortunately, in
a world of imperfect software and hardware, many problems arise that lead to data
loss. In order to manage data reliably, file systems have to cope with many kinds
of problems such as disk failures, crashes, file system bugs,and many more. To
deal with these problems, file systems are typically equipped with many reliability
components, each handling a certain kind of problem. In thischapter, we look into
three reliability components present in many modern file systems and show in what
ways each of the components is unreliable.

More specifically, Section 3.1 first describes thefile system checker (fsck), an
important repair utility that fixes file system inconsistency (e.g., due to bugs or
disk corruption). In this section we unearth many weaknesses of a popular checker
(e.g., some repairs are incorrect, making the repaired file systemmore corrupted).
Section 3.2 then looks intofailure policy, the file system component responsible
for dealing with disk failures. Our findings show that the failure policies of several
commodity file systems are broken (e.g., some disk failures are ignored, error-
codes are dropped incorrectly, and many other problems). Finally, Section 3.3
describesjournaling, a mechanism that guarantees write atomicity in the presence
of system crashes. We have found that the current journalingframework does not
work correctly when partial disk failures come into the picture.

24

To build a new generation of robust file systems, solutions tothese problems
are needed. Thus, Section 3.4 preliminarily introduces oursolutions which are
presented more extensively in following chapters.

3.1 Analysis of File System Checker

A file system checker, also known as fsck, is historically used to repair file system
inconsistency caused by system crashes. When a file system update takes place,
a set of blocks is written to the disk. Unfortunately, if the system crashes in the
middle of the sequence of writes, the file system is left in an inconsistent state. To
repair the inconsistency, earlier systems such as FFS [92] and ext2 [27] scan the
entire file system and perform integrity checks using fsck [93] before mounting the
file system again. This scan is a time-consuming process and can take several hours
for large file systems.

To alleviate the long scan, modern file systems employ write-ahead logging
or journaling [52]. By forcing journal updates to disk before updating complex
file system structures, this write-ahead logging techniqueenables efficient crash
recovery; a simple scan of the journal and a redo of any incomplete committed
operations bring the file system to a consistent state.

Although journaling alleviates the need for fsck upon system crashes, fsck is
still widely used today. The reason is that despite the best efforts of the file and
storage system community, file system images become corruptand require repair.
In particular, problems with many different parts of the fileand storage system
stack can corrupt a file system image: disk media, mechanicalcomponents, drive
firmware, the transport layer, bus controller, and OS drivers [13, 14, 46, 53, 106,
135]. Since file systems do not usually contain the machineryto fix corruptions
themselves [15, 106], there is still a broad need for robust file system checkers.

Since fsck is a crucial repair utility, it should be robust inhandling all pos-
sible corruption scenarios. More specifically, the repair process should have the
following goals:

• Consistent: The explicit purpose and goal of fsck is to always create a con-
sistent file system. All possible corruptions should be repaired such that the
file system is usable.

• Information-complete: A file system usually contains some explicit redun-
dancies (e.g., multiple copies of superblock) and some implicit redundan-
cies (e.g., double-linked pointers connecting parent and child directories).
Fsck should use this redundant structural information to perform consistency

25

checks. Thus, we define a repair to be information-complete if it reconstructs
the file system to match the original file system to the greatest extent possi-
ble given the information available on disk. The notion of aninformation-
complete repair is needed because a repair can easily createa consistent, but
useless file system by simply removing all of the contents.

• Policy-consistent: A repair to be policy consistent must follow the same
policies as the original file system; for example, if the ext3file system al-
locates data blocks in the same group as its corresponding inode, then its
checker should as well.

• Secure:Since a file system could be used by multiple users, a repair should
not leak information from one user to another. For example, when a data
block is accidentally shared by two users, a user’s file should not be repaired
to contain data from the other user’s file.

To evaluate the robustness of file system checkers, this section presents our
evaluation of a popular file system checker, e2fsck (the Linux ext2/3 checker).
Section 3.1.1 gives a brief overview of the checks and repairs performed by e2fsck.
Section 3.1.2 presents the methodology. Finally, our evaluation in Section 3.1.3
shows that e2fsck has many weaknesses that do not satisfy thegoals mentioned
above.

3.1.1 Ext2 Fsck Overview

Given both its popularity and our ability to access its source code, we focus on the
file system checker for ext2/3, e2fsck. The purpose of the e2fsck utility is to check
and repair the data structures of an ext2/3 file system on disk; in the ideal case, the
repaired file system is readable, writable, and contains allof the directories, files,
and data of the original file system.

E2fsck is a non-trivial piece of code: it contains more than 16 thousands lines
of C code and can identify and return 269 different error codes. Its checks and
repairs are performed in six different phases [27] as listedin Table 3.1.

In pass 0, e2fsck checks the consistency of the superblock. The fields in the
superblock are crucial for obtaining the group layouts. Since ext2/3 file system
replicates the superblock across block groups, all copies of the superblock can be
cross-checked.

In pass 1, e2fsck iterates over all of the inodes and performschecks over each
inode in isolation; these checks do not require any cross-checks to other file system
structures. Examples of such checks include making sure thefile mode is valid and

26

Checks Performed
28 Phase 0: Check consistency in the superblock
23 Field check:Check all superblock fields (e.g., fs size,

inode count, groups count, mount/write time)
3 Range check:Ensure pointers to block bitmap, inode

bitmap, inode table are in the group
2 Special feature:Check resize inode feature

35 Phase 1: Scan and check inodes and block pointers
9 Bad block:Check fields of bad-block inode; ensure

superblocks and group descriptors in healthy blocks
18 Inode structure:Check fields (e.g., mode, time, size)

of different inodes (e.g., root, reserved, boot load)
1 Range check:Ensure direct and indirect pointers

point within the file system
7 Conflicts:Ensure no conflict among block pointers

(e.g., two inodes should not share a block)
38 Phase 2: Scan and check all directory entries
16 Directory: Check each has ’.’ and ’..’ entry,

’.’ points to itself, does not have missing block,
fields of dir inode consistent (e.g., acl, fragment size)

9 Dir Entry: Check each entry has correct name length,
each points to an in-range inode, record length valid,
filename contains legal characters

5 Pathnames:Each entry points to used inode, does not
point to self, does not point to inode in bad block,
does not point to root, dir has only one parent

8 Special inodes:Check device inodes and symlinks
6 Phase 3: Ensure all directories are connected to

the file system tree
3 lost+found: Ensure lost+found directory is valid and

ready to be populated
3 Reattach: Reattach orphan directory to lost+found
3 Phase 4: Fix reference counts and

reattach zero-linked file to lost+found
11 Phase 5: Check block and inode bitmaps against

on-disk bitmaps
121 Total

Table 3.1:Repairs performed by e2fsck. The table summarizes the 121 repairs
performed by the e2fsck.

that all of the data block pointers point to valid block numbers. If e2fsck notices
data blocks that are claimed by more than one inode, it resolves the conflict by

27

cloning the shared blocks by default. In this pass, the checker also keeps track of
blocks and inodes that are marked as being used.

In pass 2, e2fsck checks directory entries in isolation; since directory entries
do not span disk blocks, each directory block can be checked individually. The
directory blocks are checked to make sure that the directoryentries are valid and
contain references to inode numbers that are in use. For the first directory block
in each directory inode, e2fsck verifies that the “.” and “..”entries exist, and that
the “.” entry points to the current directory. Pass 2 also records each sub-directory
inode that is pointed to by multiple parent directories.

In pass 3, the directory connectivity is checked; all directories should be ac-
cessible from the root inode. At this time, the “..” entry foreach directory is
also checked. Any directories not reachable from the root are attached to the
/lost+found directory.

In pass 4, e2fsck checks the reference counts for all inodes by comparing the
stored link counts on the disk and the computed link counts from the earlier passes.

Finally, in pass 5, e2fsck checks the validity of the file system summary in-
formation such as the block and inode bitmaps. It compares the block and in-
ode bitmaps which were constructed during the previous passes against the actual
bitmaps stored on the disk.

3.1.2 Methodology

To begin to understand the complex runtime behavior of e2fsck, we explore how
e2fsck repairs a single on-disk corruption. Given that it isinfeasible to exhaustively
corrupt every data structure field to every possible value, we limit our scope to
corrupting on-disk pointers.

A pointer-corruption study is especially difficult becauseit is nearly impossible
to corrupt every pointer on disk to every possible value in a reasonable amount
of time. Often, the solution has been to use random values [120]. This approach
suffers from two problems: (a) a large number of corruption experiments might be
needed to trigger the interesting scenarios, and (b) use of random values makes it
more difficult to understand underlying causes of observed behavior.

To address both problems, we usetype-aware pointer corruption(TAC), which
is an extension of type-aware fault injection described in Section 2.4. Type-awareness
reduces the exploration space for corruption experiments by assuming that system
behavior depends only on two types: (i) the type of pointer that has been corrupted,
and (ii) the type of block that it points to after corruption.Examples are (i) cor-
rupting File A’s data pointer is the same as corrupting File B’s data pointer, and (ii)
corrupting a pointer to refer to inode-block P is the same as corrupting it to refer

28

Block pointer types: Boot, superblock, group descriptor,
block bitmap, inode bitmap, inode table,
single indirect, double indirect, triple indirect,
directory, used data, free data, out of range

Index pointer types: Directory inode, file inode,
free inode, out of range inode

Table 3.2: Block-pointer and index-pointer types in ext2. The table shows
different types of block pointers and index pointers in ext2.

to inode-block Q (if all inodes in P and Q are for user files). This approach is mo-
tivated by the fact that code paths that exercise the same types of pointers are the
same, and disk blocks of the same type of data structure contain similar contents.
Thus, TAC greatly reduces the experimental space while still covering almost all
of the interesting cases. Also, by its very design, this approach attaches file system
semantics to each experiment, which can be used to understand the results.

Our TAC model reflects the state of a file system on functioninghardware that
experienced a corruption event in the past:

• Exactly one pointer is corrupted for each experiment. The rest of the data is
not corrupted. Also, other faults like crashes or sector errors are not injected.

• We emulate pointer corruptions that are persistent. The corruption is per-
sistent because simply re-reading the pointer from disk will not recover the
correct value.

For ext2, we define two classes of pointers: block and index pointers. First, a
block pointer contains a physical block number; for example, data block pointers
in inodes contain the block numbers of corresponding data blocks. Second, an
index pointer contains an index into a table; for example, aninode index picks an
entry in the inode table within a block group. Table 3.2 liststhe types of block
and index pointers in ext2. We use these types to change the value of a pointer.
For example, we could corrupt the data-block pointer of an inode to point to the
primary superblock, an inode table, or an out-of-range block.

To examine the results, we use the the goals introduced earlier in this chap-
ter, i.e., repairs should be consistent, information-complete, policy-consistent, and
secure. We use the debugfs utility [1] to compare the original file system and the
repaired file system, and check manually if any of the goals have been violated. For
example, to check if e2fsck performs consistent repairs, wecheck if the repaired

29

file system can be mounted properly. To compare how much the repaired file sys-
tem matches the original file system, we manually analyze thedifferences of their
data structures, especially those that are affected by the injected corruptions. This
manual process is manageable and not time-consuming since the file system that
we corrupt is relatively small.

3.1.3 Results

In this section, we first describe our visual representationof the results and then
distill the results into higher-level observations. Table3.3 shows the results of
injecting block-pointer corruptions. Each row presents the results of corrupting one
pointer (e.g., indirect pointer) and is divided into 13 columns, each corresponding
to different block types that we have introduced in Table 3.2. Note that the number
of columns (i.e., all block types) is higher than the number of rows (i.e., corruptable
block pointers). This is because ext2 does not explicitly store all types of block-
pointers on the disk. For example, ext2 does not store group-descriptor pointers; it
uses fixed group size stored in the superblock to locate the group descriptor block
for each group.

Each cell (row X and column Y) represents an experiment wherea block pointer
X is corrupted to a Y-value. Each cell is marked with one or more symbols repre-
senting our observations when the pointer for its row is corrupted with the column
value. For cells where the row and column have the same type, the pointer is cor-
rupted to some other block that has the same type. For example, a pointer to a data
block can be corrupted to point to some other data block that belongs to a different
user. A cell with a dot (.) represents that e2fsck performs the correct repair.

Table 3.4 shows the results of injecting index-pointer corruptions. The format
of this table is similar to Table 3.3.

From our fault-injection experiments, we find that e2fsck fails along the four
different axes that we setup earlier: e2fsck sometimes performsinconsistent(marked
with C), information-incomplete(I), policy-inconsistent(P), and insecure(S) re-
pairs. We now describe the specific behaviors of e2fsck that lead to these problems.

Inconsistent Repair (C): Clears “Indirect Blocks” Incorrectly. Fundamentally,
e2fsck checks and repairs certain pointers in an incorrect order; as a result,
e2fsck can itself corrupt arbitrary data on disk, even the superblock. Specif-
ically, e2fsck clears block pointers that fall out of range of the file system
inside indirect blocks without first checking that the pointer to the indirect
block itself is correct. Thus, if an indirect pointer was corrupt, e2fsck may
clear the block that the indirect pointer incorrectly refers to. This clearing

30

B
oo

t

S
up

er
bl

oc
k

G
ro

up
de

sc
rip

to
r

B
lo

ck
bi

tm
ap

In
od

e
bi

tm
ap

In
od

e
ta

bl
e

S
in

gl
e

in
di

re
ct

D
ou

bl
e

in
di

re
ct

T
rip

le
in

di
re

ct

D
ire

ct
or

y

U
se

d
da

ta

F
re

e
da

ta

O
ut

of
ra

ng
e

1. 2. 3. 4. 5. 6. 7. 8. 9. 10
.

11
.

12
.

13
.

1. Block bitmap
2. Inode bitmap
3. Inode table I I I I I . I I I I I I I
4. Single indirect . C C . . C . . . C C C .
5. Double indirect . C C C C C C . . C C C .
6. Triple indirect . C C C C C C C . C C C .
7. Directory PS PS PS PS PS . .
8. Data S S S PS S . .

Symbols: C: Inconsistent repair I : Information-incomplete repair
P: Policy-inconsistent repair S: Insecure-repair Dot (.): Correct repair

Table 3.3:Results of block-pointer corruptions. This figure shows how e2fsck
responds to block-pointer corruptions. Each row characterizes the behavior for the
given pointer. Each cell in a row is marked with the behavior observed for the given
pointer when it is corrupted with the value of that column.

can lead to arbitrary corruptions of file, directory, and meta-data in the file
system; most notably, if the file system contains only a single superblock, the
file system can even be unmountable after running e2fsck (e.g., row #4 and
column #2 of Table 3.3).

Information Incomplete (I): False Parenthood.e2fsck does not always use all of
the information available to it regarding directories. Oneexample is the case
where an inode index within a directory is corrupted to pointto a different
valid directory inode (row #1 and column #1 of Table 3.4). This situation
is illustrated in Figure 3.1. If a directory entry is corrupted to point to an-
other target directory (parts a and b), the e2fsck repair might move the target
directory to the wrong parent (part c).

We emphasize that enough information is available in an ext2file system
for e2fsck to make the correct repair: each directory contains an entry for

31

D
ire

ct
or

y
in

od
e

F
ile

in
od

e

F
re

e
in

od
e

O
ut

of
ra

ng
e

in
od

e

1. 2. 3. 4.

1. Directory inode I . . .
2. File inode I . . .

Table 3.4:Results of index-pointer corruptions. This figure shows how e2fsck
responds to index-pointer corruptions. Each row characterizes the behavior for the
given pointer. Each cell in a row is marked with the behavior observed for the given
pointer when it is corrupted with the value of that column.

its parent (denoted “..”). To perform an information complete repair, e2fsck
could simply observe this entry to keep the target directorywith its correct
parent and to reattach the lost directory to its parent instead of moving it to
lost+found. In general, the directory hierarchy in ext2 contains much more
information than is being used currently in e2fsck.

Information Incomplete (I): Ignores Replicas of Inode Table Pointers.Ext2 con-
tains replicas for important meta-data, such as pointers tothe inode tables;
however, e2fsck does not always use this redundant information. For ex-
ample, when an inode-table pointer becomes corrupted and points to other
blocks (e.g., block bitmap) inside the same block group (e.g., row #3 and
column #4 of Table 3.3), e2fsck assumes the pointer is correct; e2fsck then
finds that the “inodes” are not valid. For consistency, e2fsck removes the
corresponding directories and files from the directory tree; if this group con-
tains the root directory, the file system is trivially consistent with no directo-
ries. Again, enough information is available for e2fsck to make the correct
repair: each inode-table pointer is replicated across block groups; e2fsck
should check that all block groups agree on these important values.

Policy Inconsistent (P):Different Layout.e2fsck does not allocate blocks on disk
with the same layout policy as ext2; as a result, e2fsck can fragment files and
directories, degrading the future performance of file system operations. For
example, when e2fsck detects that the same data block is pointed to by both

32 /d 1 d 2d 3 d 4
/d 1 d 2d 3 d 4(a) B e f o r e c o r r u p t i o n (b) A f t e r c o r r u p t i o n

/d 1 d 2 d 3d 4 L & F
(c) A f t e r r e c o v e r y

Figure 3.1:The false parenthood problem.This figure shows the problem in the
recovery done by e2fsck for corruption in directories. Eachnode is a directory in
the file system. For clear understanding, we use dotted backpointers to show the
parent for each directory as present in the ‘..’ entry for that directory. Part (a)
of the figure shows the initial file system structure. Part (b)shows the file system
structure after corruption. We inject this fault where the entry for dir3 in dir1 is
corrupted to point to the inode of dir4. After recovery by e2fsck, the dir1 claims
dir4 and the original parent child link between dir2 and dir4is deleted. This results
in totally different structure of the file system after recovery as shown in part (c).
For convenience we show the lost+found (L&F) directory onlyin the final structure.

a directory and a file (row #8 and column #10 of Table 3.3), e2fsck clones
the block by allocating a new block for the file and retaining the old block
for the directory. To perform a policy-consistent repair, e2fsck should allow
the closer inode to retain the original data block.

Insecure Repair (S):Copies Data Freely.Whenever e2fsck discovers that two
pointers refer to the same block (row #8 and column #11 of Table 3.3), e2fsck
clones the block. However, this policy has the potential to leak private infor-
mation. For example, if a data block is shared by two inodes, one in the
/home/userA directory and one in the/root directory, we might want to
remove the pointer fromuserA and keep the one from the root.

3.1.4 Summary: The Need for a New Fsck Framework

We have found that e2fsck has a number of problems in how it performs repairs; we
note that these problems are not simple implementation bugs, but are fundamental

33

design flaws. In particular, it is difficult for e2fsck to combine the many pieces of
information available (e.g., replicas of pointers and parent directory entries) and to
ensure that all checks and repairs are done in the correct order.

We believe one of the reasons why these problems exist is because e2fsck is a
complex piece of imperfect code written in more than ten thousands lines of low-
level C code, which is hard to reason about. Other than e2fsck, other checkers
are unfortunately written in the same way; the ReiserFS [5] checker performs 156
cross-checks and the corresponding repairs in 11 thousandslines of C code, and
the XFS [132] checker performs 344 in 22 thousands lines. To the best of our
knowledge, we have not found any available tools that the filesystem developers
use to verify the correctness of these checkers. Thus, although so far we have
only analyzed one checker, we believe these other checkers might have the same
weaknesses as in e2fsck.

To build a new generation of robust and reliable file system checkers, we be-
lieve a new approach is required. Chapter 4 presents our new approach, SQCK,
in which the high-level intent of a checker can be specified ina clear and compact
manner; further, the description of the intent is cleanly separated from its low-level
implementation and how it is optimized.

3.2 Analysis of Failure Policy

In this section, we turn our attention to how running file systems deal with disk
failures. As mentioned in Section 2.2, storage systems faildue to a large number
of reasons such as latent sector faults, silent block corruption, and performance
glitches. Developers of high-end systems have realized thenature of these disk
faults and built mechanisms into their systems to handle them. For example, many
redundant storage systems incorporate a backgrounddisk scrubbingprocess [78,
117] to proactively detect and subsequently correct latentsector faults by creating
a new copy of inaccessible blocks. Some recent storage arrays incorporate extra
levels of redundancy to lessen the potential damage of undiscovered latent faults
[30]. Finally, highly-reliable systems (e.g., Tandem NonStop) utilize end-to-end
checksums to detect when block corruption occurs [18].

The above said failure characteristics (latent sector faults and block corruption)
and our knowledge about reliable high-end systems raise thequestion: how do
commodity file systems handle disk failures?To answer this question, our main
objective is to determine which detection and recovery techniques each file system
uses and the assumptions each makes about how the underlyingstorage system can
fail. The detection and recovery mechanisms employed by a file system define its

34

Level Technique Comment
DZero No detection Assumes disk works
DErrorCode Check return codes Assumes lower level

from lower levels can detect errors
DSanity Check data structures May require extra

for consistency space per block
DRedundancy Redundancy over Detect corruption

one or more blocks in end-to-end way

Table 3.5:The Levels of the IRON Detection Taxonomy.

failure policy. By comparing the failure policies across file systems, we can learn
not only which file systems are the most robust to disk failures, but also suggest
improvements for each.

To describe the failure policy of a file system, we begin by presenting the IRON
taxonomy [106] of failure-handling policies (Section 3.2.1). This taxonomy serves
as an overview of the different techniques that may be used bythe file system to
handle partial disk failures. Section 3.2.2 then describesour methodology details.
Finally, in Section 3.2.3, we present the results of our analysis of four commodity
file systems (Linux ext3, ReiserFS, JFS, XFS, and Windows NTFS).

3.2.1 IRON Taxonomy

We now describe the IRON taxonomy of failure-handling strategies that we devel-
oped in previous work [106]. IRON stands for “Internal RObustNess”; it focuses
on failure-handling strategies to be used, not across disksas is common in RAID
systems, but within a single disk. We have found from experience that this taxon-
omy can be used to sufficiently describe the failure-handling strategies of various
file systems.

To cope with the failures in modern disks, file systems include machinery to
both detect(Level D) partial faults andrecover(Level R) from them. Tables 3.5
and 3.6 present our IRON detection and recovery taxonomies,respectively. Note
that the taxonomy is by no means complete. Many other techniques are likely to
exist, just as many different RAID variations have been proposed over the years [8,
144].

35

Level Technique Comment
RZero No recovery Assumes disk works
RPropagate Propagate error Informs user
RStop Stop activity Limit amount

(crash, prevent writes) of damage
RRetry Retry read or write Handles failures

that are transient
RRepair Repair data structs Could lose data
RRemap Remaps block or file Assumes disk informs

to different locale FS of failures
RRedundancy Block replication Enables recovery

or other forms from loss/corruption

Table 3.6:The Levels of the IRON Recovery Taxonomy.

Levels of Detection

LevelD techniques are used by a file system to detect that a problem has occurred
(i.e., that a block cannot currently be accessed or has been corrupted).

Zero: The simplest detection strategy is none at all; the file system assumes the
disk works and does not check return codes. As we will see in Section 3.2.3,
this approach is surprisingly common (although often it is applied uninten-
tionally).

ErrorCode: A more pragmatic detection strategy that a file system can imple-
ment is to check return codes provided by the lower levels of the storage
system. For example, if there are low-level I/O failures,EIO error-codes are
often returned.

Sanity: With sanity checks, the file system verifies that its data structures are
consistent by verifying individual fields (e.g., that pointers are within valid
ranges) or verifying thetype of the block. For example, most file system
superblocks include a “magic number” and some older file systems such as
Pilot even include a header per data block [108]. By checkingwhether a
block has the correct type information, a file system can guard against some
forms of block corruption.

Redundancy: The final level of the detection taxonomy is redundancy. Many
forms of redundancy can be used to detect block corruption. For example,

36

checksumminghas been used in reliable systems for years to detect corrup-
tion [18] and has recently been applied to improve security as well [100, 126].
Checksums are useful for a number of reasons. First, they assist in detect-
ing classic “bit rot”, where the bits of the media have been flipped. How-
ever, in-media ECC often catches and corrects such errors. Checksums are
therefore particularly well-suited for detecting corruption in higher levels of
the storage system stack (e.g., a buggy controller that “misdirects” disk up-
dates to the wrong location or does not write a given block to disk at all).
However, checksums must be carefully implemented to detectthese prob-
lems [18, 143]; specifically, a checksum that is stored alongwith the data it
checksums will not detect such misdirected or phantom writes.

Higher levels of redundancy, such as block mirroring [22], parity [99, 103]
and other error-correction codes [90], can also detect corruption. For ex-
ample, a file system could keep three copies of each block, reading and
comparing all three to determine if one has been corrupted. However, such
techniques are truly designed for correction (as discussedbelow); they often
assume the presence of a lower-overhead detection mechanism [103].

Levels of Recovery

Level R of the IRON taxonomy facilitates recovery from block failure within a
single disk drive. These techniques handle both latent sector faults and block cor-
ruptions.

Zero: Again, the simplest approach is to implement no recovery strategy at all,
not even notifying clients that a failure has occurred.

Propagate: A straightforward recovery strategy is to propagate errors up through
the file system; the file system informs the application that an error occurred
and assumes the client program or user will respond appropriately to the
problem.

Stop: One way to recover from a disk failure is to stop the current file system
activity. This action can be taken at many different levels of granularity. At
the coarsest level, one can crash the entire machine. One positive feature
is that this recovery mechanism turns alldetecteddisk failures into fail-stop
failures and likely preserves file system integrity. However, crashing assumes
the problem is transient; if the faulty block contains repeatedly-accessed data
(e.g., a script run during initialization), the system may repeatedly reboot, at-
tempt to access the unavailable data, and crash again. At an intermediate

37

level, one can kill only the process that triggered the disk fault and subse-
quently mount the file system in a read-only mode. This approach is ad-
vantageous in that it does not take down the entire system andthus allows
other processes to continue. At the finest level, a journaling file system can
abort only the current transaction. This approach is likelyto lead to the most
available system, but may be more complex to implement.

Retry: A simple response to failure is to retry the failed operation and recent
work shows that file systems do recover from most number of disk errors
by simply retrying [51]. Retry can appropriately handle transient errors, but
wastes time retrying if the failure is indeed permanent.

Repair: If a file system can detect an inconsistency in its internal data structures,
it can likely repair them, just asfsck would. For example, a block that is
not pointed to, but is marked as allocated in a bitmap, could be freed.

Remap: This technique can be used to fix errors that occur when writing a block,
but cannot recover failed reads. Specifically, when a write to a given block
fails, the file system could choose to simply write the block to another loca-
tion. More sophisticated strategies could remap an entire “semantic unit” at
a time (e.g., a user file), thus preserving logical contiguity.

Redundancy: Finally, redundancy (in its many forms) can be used to recover
from block loss. The simplest form isreplication, in which a given block
has two (or more) copies in different locations within a disk. Another redun-
dancy approach employs parity to facilitate error correction. Similar to RAID
4/5 [103], by adding a parity block per block group, a file system can toler-
ate the unavailability or corruption of one block in each such group. More
complex encodings (e.g., Tornado codes [90]) could also be used, a subject
worthy of future exploration.

3.2.2 Methodology

This subsection describes our methodology to uncover the failure-policies of sev-
eral commodity file systems that we analyzed. As described inSection 2.4, our
approach is to inject faults just beneath the file system and observe how the file
system reacts. Overall, our failure policy analysis consists of three major steps:
create the right workload, inject faults, and deduce failure policy. We describe each
of these steps in detail.

38

Workload Purpose
Singlets:
access, chdir, chroot,
stat, statfs, lstat, open,
utimes, read, readlink, Exercise the
getdirentries, creat, Posix API
link, mkdir, rename, chown,
symlink, write, truncate,
rmdir, unlink, mount,
chmod, fsync, sync, umount

Generics:
Path traversal Traverse hierarchy
Recovery Invoke recovery
Log writes Update journal

Table 3.7:Workloads. The table presents the workloads applied to the file systems
under test. The first set of workloads each stresses a single system call, whereas
the second group invokes general operations that span many of the calls (e.g., path
traversal).

Applied Workload

Our workload suite contains two sets of programs that run on UNIX -based file
systems (fingerprinting NTFS requires a different set of similar programs). The
first set of programs, calledsinglets, each focus upon a single call in the file system
API (e.g., mkdir). The second set,generics, stresses functionality common across
the API (e.g., path traversal). Table 3.7 summarizes the test suite.

Certain workload requires an already existing file, directory or a symbolic link
as its parameter. For example, thestat POSIX call takes a file path as an input,
searches the parent directories, and returns information about the specified file.
Before running such workloads, we must first create the files and directories that
are necessary. In the case of injecting read faults, it is necessary to clear the file
system buffer cache so that the on-disk copy will be read by the workload.

Each file system under test also introduces special cases that must be stressed.
For example, the ext3 inode uses an imbalanced tree with indirect, doubly-indirect,
and triply-indirect pointers, to support large files; hence, our workloads ensure that
sufficiently large files are created to access these structures. Other file systems have
similar peculiarities that we make sure to exercise (e.g., the B+-tree balancing code
of ReiserFS). The block types of the file systems we test are listed in Tables 3.8

39

Ext3 Structures Purpose
inode Info about files and directories
directory List of files in directory
data bitmap Tracks data blocks per group
inode bitmap Tracks inodes per group
indirect Allows for large files to exist
data Holds user data
super Contains info about file system
group descriptor Holds info about each block group
journal super Describes journal
journal revoke Tracks blocks that will not be replayed
journal descriptor Describes contents of transaction
journal commit Marks the end of a transaction
journal data Contains blocks that are journaled

Table 3.8:Ext3 Data Structures. The table presents the data structures of interest
in ext3 file system. In the table, we list the names of the majorstructures and their
purpose.

Fault Injection

Our second step is to inject faults that emulate partial diskfaliures. In our error
model, we assume that the latent faults or block corruption originate from any of
the layers of the storage stack. These errors can be accurately modeled through
software-based fault injection because in Linux, all detected low-level errors are
reported to the file system in a uniform manner as “I/O errors”at the device-driver
layer.

The errors we inject into the block write stream have three different attributes,
similar to the classification of faults injected into the Linux kernel by Guet al.[56].
The fault specification consists of the following attributes:
Failure Type: This specifies whether a read or write must be failed. If it is aread
error, one can specify either a latent sector fault or block corruption. Additional
information such as whether the system must be crashed before or after certain
block failure can also be specified.
Block Type: This attribute specifies the file system and block type to be failed.
The request to be failed can be a dynamically-typed one (likea directory block) or
a statically typed one (like a super block). Specific parameters can also be passed
such as an inode number of an inode to be corrupted or a particular block number
to be failed.
Transience: This determines whether the fault that is injected is a transient error

40

 Workloads
W1 W2 W3 W4

S
tr

uc
tu

re
s

D
at

a
D1
D2
D3
D4
D5

Key for Recovery
© RZero

/ RRetry

− RPropagate

\ RRedundancy

| RStop

Figure 3.2:Example Failure Policy Graph. The figure presents a sample failure
policy graph. A gray box indicates that the workload is not applicable for the block
type. If multiple mechanisms are observed, the symbols are superimposed.

(i.e., fails for the nextN requests, but then succeeds) or a permanent one (i.e., fails
upon all subsequent requests).

Failure Policy Inference

After running a workload and injecting a fault, the final stepis to determine how the
file system behaved. To determine how a fault affected the filesystem, we compare
the results of running with and without the fault. We performthis comparison
across all observable outputs from the system: the error codes and data returned
by the file system API, the contents of the system log, and the low-level I/O traces
recorded by the fault-injection layer. Currently, this is the most human-intensive
part of the process, as it requires manual inspection of the visible outputs.

In certain cases, if we identify an anomaly in the failure policy, we check the
source code to verify specific conclusions; however, given its complexity, it is not
feasible to infer failure policy only through code inspection.

We collect large volumes of results in terms of traces and error logs for each
fault injection experiment we run. Due to the sheer volume ofexperimental data, it
is difficult to present all results for the reader’s inspection. We represent file system
failure policies using a unique representation calledfailure policy graphs, which is
similar to the one shown in Figure 3.2.

In Figure 3.2, we plot the different workloads on x-axis and the file system data
structures on y-axis. If applicable, each<row, column> entry presents the IRON
detection or recovery technique used by a file system. If not applicable (i.e., if the
workload does not generate the particular block type traffic), a gray box is used.
The symbols are superimposed when multiple mechanisms are employed by a file
system.

41

Next, we explain how the entries in Figure 3.2 must be interpreted by walking
through an example. Specifically, consider the entry for workload “W1” and “D5”
data structure. It has three symbols superimposed: retry (RRetry), error propagation
(RPropagate) and finally, a file system stop (RStop). This means that whenever an
I/O to “D5” fails during workload “W1”, the file system first retries and if that fails,
stops and propagates the error to the application.

We use failure policy graphs not only to present our analysisresults but also
throughout this thesis to represent the failure policies wecraft in our solution
(Chapter 6).

3.2.3 Results

We have performed a failure-policy analysis for four commodity file systems: ext3
[140], ReiserFS (version 3) [109], and IBM’s JFS [20] on Linux and NTFS [124] on
Windows; we have analyzed the impact of read errors, write errors, and corruption
of entire disk blocks in these file systems. This analysis wasdone by four peo-
ple [106]: Vijayan Prabhakaran (who analyzed ext3), Lakshmi Bairavasundaram
(IBM JFS), Nitin Agrawal (ReiserFS), and Haryadi Gunawi (Windows NTFS). In
this subsection, we primarily present the problems that Prabhakaran found in ext3
because we use this file system to evaluate our solution to theproblems in Chap-
ter 6. Thus, this subsection serves as an important background for Chapter 6. At
the end of this subsection, we summarize the findings of the entire study [106].

Linux ext3

Key for Detection Key for Recovery
© DZero © RZero

− DErrorCode / RRetry

| DSanity − RPropagate

\ RRedundancy

| RStop

Table 3.9:Keys for Detection and Recovery.The table presents the keys we use
to represent the detection and recovery policies in file systems.

Figure 3.3 shows Prabhakaran’s findings for ext3 [106]. The figure presents the
detection and reaction techniques used by ext3 to handle read, write, and corruption

42

 Detection Recovery
a b c d e f g h i j k l mn o p q r s t a b c d e f g h i j k l mn o p q r s t

 R
ea

d
F

ai
lu

re

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

W
rit

e
F

ai
lu

re

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

C

or
ru

pt
io

n

j-data
j-commit
j-desc
j-revoke
j-super
g-desc
super
data
indirect
i-bitmap
bitmap
dir
inode

Figure 3.3: Ext3 Failure Policies. The failure policy graphs plot detection and
recovery policies of ext3 for read, write, and corruption faults injected for each
block type across a range of workloads. The workloads area: path traversalb: ac-
cess,chdir,chroot,stat,statfs,lstat,openc: chmod,chown,utimesd: read e: readlink
f: getdirentriesg: creath: link i: mkdir j: renamek: symlinkl: write m: truncate
n: rmdir o: unlink p: mountq: fysnc,syncr: umounts: FS recoveryt: log write
operations. A gray box indicates that the workload is not applicable for the block
type. If multiple mechanisms are observed, the symbols are superimposed. The keys
for detection and recovery are presented in Table 3.9. Theseext3 failure policies
were analyzed by Prabhakaran [106].

43

failures. Each row in the set of figures corresponds to a data structure. Each column
corresponds to a specific workload. The symbols in each cell correspond to how
ext3 responds when the data structure for that row fails whenaccessed as a result of
the workload for that column. Note that symbols corresponding to different policies
may be superimposed.

Detection: Prabhakaran observed that, to detect read failures, ext3 primar-
ily uses error codes (DErrorCode). However, when a write fails, ext3 does
not record the error code (DZero); hence, write errors are often ignored, po-
tentially leading to serious file system problems (e.g., when checkpointing
a transaction to its final location). Ext3 also performs a fair amount of san-
ity checking (DSanity). For example, ext3 explicitly performs type checks
for certain blocks such as the superblock and many of its journal blocks.
However, little type checking is done for many important blocks, such as
directories, bitmap blocks, and indirect blocks. Ext3 alsoperforms numer-
ous other sanity checks (e.g., when the file-size field of an inode contains an
overly-large value,open detects this and reports an error).

Recovery: For most detected errors, ext3 propagates the error to the user
(RPropagate). For read failures, ext3 also often aborts the journal (RStop);
aborting the journal usually leads to a read-only remount ofthe file system,
preventing future updates without explicit administratorinteraction. Ext3
also uses retry (RRetry), although sparingly; when a prefetch read fails, ext3
retries only the originally requested block.

Bugs and Inconsistencies:Prabhakaran also found a number of bugs and
inconsistencies in the ext3 failure policy. First, errors are not always prop-
agated to the user (e.g., truncate andrmdir fail silently). Second, ext3
does not always perform sanity checking; for example,unlink does not
check thelinkscount field before modifying it and therefore a corrupted
value can lead to a system crash. Third, although ext3 has redundant copies
of the superblock (RRedundancy), these copies are never updated after file
system creation and hence are not useful.

File System Summary

We now present a qualitative summary of each of the file systems we tested. Ta-
ble 3.10 presents a summary of the techniques that each file system employs (ex-
cluding NTFS); because our analysis requires detailed knowledge of on-disk struc-

44

Level ext3 ReiserFS JFS
DZero

√√ √ √√√

DErrorCode

√√√√ √√√√ √√

DSanity

√√√ √√√√ √√√

DRedundancy

RZero

√√ √ √√

RPropagate

√√√ √√ √√

RStop

√√ √√√ √√

RRetry

√ √√

RRepair

RRemap

RRedundancy

√

Table 3.10: IRON Techniques Summary. The table depicts a summary of the
IRON techniques used by the file systems under test. More check marks (

√
) indicate

a higher relative frequency of usage of the given technique.

tures, and not all NTFS structures are publicly documented,we could not com-
pletely analyze all NTFS failure policies.

Ext3: Overall simplicity. Ext3 implements a simple and mostly reliable
failure policy, matching the design philosophy found in theext family of
file systems. It checks error codes, uses a modest level of sanity checking,
and reacts by reporting errors and aborting operations. Themain problem
with ext3 is its failure handling for write errors, which areignored and cause
serious problems including possible file-system corruption.

ReiserFS: First, do no harm. ReiserFS is the most concerned about disk
failures. This concern is particularly evident upon write failures, which often
induce apanic; ReiserFS takes this action to ensure that the file system is
not corrupted. ReiserFS also uses a great deal of sanity and type checking.
These behaviors combine to form a Hippocratic failure policy: first, do no
harm.

JFS: The kitchen sink. JFS is the least consistent and most diverse in its
failure detection and reaction techniques. For detection,JFS sometimes uses
sanity, sometimes checks error codes, and sometimes does nothing at all.
For reaction, JFS sometimes uses available redundancy, sometimes crashes
the system, and sometimes retries operations, depending onthe block type
that fails, the error detection and the API that was called.

45

NTFS: Persistence is a virtue.Compared to the Linux file systems, NTFS
is the most persistent, retrying failed requests many timesbefore giving up.
It also seems to report errors to the user quite reliably.

Overall, we find that different file systems use different sets of policies to detect
and react to partial disk failures. For example, JFS was onlyLinux file system that
used some redundancy to recover (in the case of the superblock). Even in using the
same policies, the degree to which a policy is used changes from one file system to
another. For example, while all file systems employ retries to some extent, NTFS
retries a failed operation many more times than the other filesystems.

Technique Summary

Finally, we present three high-level observations of the techniques applied by all of
the file systems to detect and recover from disk failures.

Detection and Recovery: Illogical inconsistency is common. We found a high
degree ofillogical inconsistencyin failure policy across all file systems. For
example, ReiserFS performs a great deal of sanity checking;however, in one
important case it does not (journal replay), and the result is that a single cor-
rupted block in the journal can corrupt the entire file system. JFS is the most
illogically inconsistent, employing different techniques in scenarios that are
quite similar.

We note that inconsistency in and of itself is not problematic [38]; for exam-
ple, it would belogically inconsistent (and a good idea, perhaps) for a file
system to provide a higher level of redundancy to data structures it deems
more important, such as the root directory [123]. What we arecriticizing are
inconsistencies that are undesirable (and likely unintentional); for example,
as shown in Figure 3.3, when reading an indirect block fails,ext3 sometimes
propagates the error to the user (RPropagate), retries the operation (RRetry),
remounts the file system read-only (RStop), and ignores the failure (RZero),
depending on where in the code the fault is detected.

After a closer source code inspection, we found that the rootcause of illogical
inconsistency isfailure policy diffusion; the code that implements the failure
policy is spread throughout the kernel. Figure 3.3 illustrates the scattered
policy code in ext3. There are more than a hundred of places where the file
system tries to handle I/O failures. One reason for this diffusion is that the
file system tries to handle each fault where it arises in the code. Because I/Os

46

0

1000
LOC

2000
LOC

3000
LOC

ac
l.c

ba
llo

c.
c

ch
ec

kp
nt

.c

co
m

m
it.

c

di
r.

c

ia
llo

c.
c

in
od

e.
c

jo
ur

na
l.c

na
m

ei
.c

re
co

ve
r.

c

re
si

ze
.c

su
pe

r.
c

tr
an

x.
c

xt
re

e.
c

Li
ne

 #

ext3 source files

Figure 3.4:Diffused policy code. The figure shows the scattered policy code in
ext3 source code. The x-axis lists all the source files for Linux ext3 file system. The
y-axis represents the lines of code. Each vertical bar represents how big is the file
(in terms of LOC). The small horizontal lines appearing inside the bars represent
the location of ext3’s failure policies.

are generated from many different locations within the file system, the fault-
handling policy is also spread throughout the code; as otherresearchers have
shown, diffused handling leads to policies that are likely to be inconsistent,
buggy, and inflexible [83]. We pay attention to this problem and design a
centralized failure handler for file systems, which we discuss in Chapter 6.

Detection and Recovery: Bugs are common.We also found numerous bugs
across the file systems we tested, some of which are serious, and many of
which are not found by other sophisticated techniques [147]. We believe
this is generally indicative of the difficulty of implementing a correct failure
policy; it certainly hints that more effort needs to be put into testing and
debugging of such code. One suggestion in the literature that could be helpful
would be to periodically inject faults in normal operation as part of a “fire
drill” [102]. Our method reveals that testing needs to be broad and cover as
many code paths as possible; for example, only by testing theindirect-block
handling of ReiserFS did we observe certain classes of faultmishandling.

Detection: Error codes are sometimes ignored.Amazingly (to us), error codes

47

were sometimes clearly ignored by the file system. As an example, the ext3
code below shows a serious silent failure arises during file system recovery
because an error code is silently dropped.sync blockdev (line 2) is re-
sponsible in flushing the dirty buffer pages. It does the job by calling two
other functions (line 4 and 5). When a low-level I/O failure occurs, these
two functions will propagateEIO error codes via return values (line 4 and 5).
sync blockdev then correctly propagates theEIO error codes to the caller
(line 7). Unfortunately,journal recover neglects the error code propa-
gated bysync blockdev (line 12), leading to a silent failure during journal
recovery.

1 // fs/buffer.c
2 int sync_blockdev() {
3 ...
4 ret = fm_fdatawrite(); /* PROPAGATE EIO */
5 err = fm_fdatawait(); /* PROPAGATE EIO */
6 if(!ret) ret = err;
7 return ret; /* RETURN EIO */
8 }
9 // jbd/recovery.c

10 int journal_recover() {
11 ...
12 sync_blockdev(); /* IGNORE EIO */
13 ...
14 }

The example above clearly shows that correct error propagation is an impor-
tant aspect of a robust file system. To be properly handled, any fault must
be correctly propagated to the code within the file system that is responsible
for handling such fault. Further, if the file system is unableto recover from
the fault, it may desire to simply pass the error up to the application, again
requiring correct error propagation. Thus, an infrastructure to analyze how
errors propagate should be a part of the file system developer’s toolkit; with
such tools, this class of error is easily discovered. In fact, in Section 5, we
show how a static analysis tool that we have developed can findhundreds of
errors in file systems and storage drivers.

3.2.4 Summary: The Need for a New Fault-Management Framework

The results of our failure policy analysis point us to two lessons: First, different
file systems use different sets of policies to detect and react to partial disk failures.

48

This shows that there is no single best policy. However, given a file system, we are
limited to the reliability policies that the file system provides; it is hard to modify
its policies. Second, diffused handling causes policies tobe inconsistent, buggy,
and inflexible to change. In addition to that, as fault handlers are buried deep in the
code, they generally do not have access to all of the contextual information about
the failed request, thus can only implement a limited set of responses. Therefore,
what we need is a new fault-management framework where we could deploy differ-
ent sets of failure policies in a centralized fashion. With such locality, the hope is
to make the policies more flexible, less buggy, and much easier to manage. These
needs drive our I/O shepherding approach, presented in Chapter 6.

Furthermore, we need to solve the problem of incorrect errorpropagation or
otherwise it could lead to serious problems (e.g., misleading error-codes, wrong re-
covery actions, or even frustation for human debugging). Thus, building an infras-
tructure that unearths all instances of this problem and enables deeper root-cause
analysis is an essential component in building a robust file system. One approach
is via a static analysis. In Chapter 5, we present our technique, namedError Detec-
tion and Propagation (EDP) analysis, which shows how error codes flow through
file systems and storage drivers.

3.3 Analysis of Journaling

In addition to disk failures, another failure that file systems need to handle is system
crashes. When a file system update takes place, a set of blocksis written to the disk.
If the system crashes in the middle of the sequence of writes,the file system is left in
an inconsistent state. The idea of journaling is to ensure the atomicity of the writes
despite the presence of crashes, specifically by recording some extra information
on the disk in the form of a write-ahead log or a journal [52]. By forcing journal
updates to disk before updating complex file system structures, this write-ahead
logging technique enables efficient crash recovery; a simple scan of the journal and
a redo of any incomplete committed operations bring the file system to a consistent
state.

In this section, we first give an introduction to how journaling works (Sec-
tion 3.3.1). Although the journaling approach works perfectly in anticipating crashes,
we have found that journaling file systems suffer from a general problem of failed
intentions(Section 3.3.2) when disk failures come in to the picture. Section 3.3.3
summarizes the significance of this problem as many modern file systems employ
journaling and disk failures happen in practice.

49M e mL o gF i x e d
W r i t e C o m m i t C h e c k p o i n t R e l e a s e

T 0 T 1 T 2 T 3
B I DB I D B I D B I D B I Dt b t cB I Dt b t c B I Dt b t c IDB IDB

Figure 3.5: Journaling Data Flow.. The figure shows the series of actions that
take place in data journaling mode. Both in-memory (top) andon-disk (bottom)
states are shown.D is a data block,I an inode,B a bitmap,tb the beginning of
a transaction, andtc the commit block. Darker gray shading indicates that blocks
have been released after checkpointing.

3.3.1 Journaling Basics

To describe the basics of journaling, we borrow the terminology of ext3 [140].
Journaling exists in three different modes (data, ordered,and write-back), each
of which provides different levels of consistency. In data journaling, all traffic
to disk is first committed to a log (i.e., the journal) and then checkpointed to its
final on-disk location. The other journaling modes journal only metadata, enabling
consistent update for file systems structures but not for user data. In this section,
we only illustrate how data journaling works.

Figure 3.5 illustrates the sequence of operations in data journaling when an
application appends a data blockD to a file. At timeT0, the data blockD and bitmap
B are updated in memory and a pointer toD is added to the inodeI ; all three blocks
(D, I, B) now sit in memory and are dirty. At timeT1, the three blocksD, I, and
B are wrapped into atransactionand the journaling layercommitsthe transaction
(which includes markers for the starttb and endtc of the transaction) to the journal;
the blocks are now marked clean but are still pinned in memory. After the commit
step is complete, atT2, the blocks arecheckpointedto their final fixed locations.
Finally, atT3, the transaction isreleasedand all three blocks are unpinned and can
be flushed from memory and the log space reused. Note that multiple transactions
may be in the checkpointing step concurrently (i.e., committed but not yet released).
If the system crashes, the file system will recover by replaying transactions in the
journal that are committed but not yet released.

50 M e mL o gF i x e d
W r i t e C o m m i t C P F a i l R e l e a s e

T 0 T 1 T 2 T 4
I DB I D I D I D B I Dt bB I Dt b B I Dt b I It c R

R e m a p
T 3

I D IB I Dt b RMB ' C r a s h
T 5 IRB BB D t c t c t cDB B ' B 'M MB BD D

Figure 3.6:Failed intentions. The figure illustrates how current journaling frame-
work cannot deal with the problem of failed intentions.

3.3.2 Failed Intentions

Although journaling works correctly for crashes, disk failures happen. In this case,
we can assume that a checkpoint failure to blockD has occurred. A simple way
to react to this fault is to perform a retry. However, if the failure is permanent, we
might want to perform a more sophisticated recovery approach such as remapping.
To illustrate the problem of failed intentions, let’s assume that the file system main-
tains a remapping tableM to track bad block remapping. This remapping procedure
should be very simple: allocate a new block (e.g., R), update the bitmap blockB’
for this new allocation, write the content ofD to the new locationR, and update the
remap tableM , specifying thatD has been remapped toR. However, in the current
journaling scheme, these recovery actions cannot be performed consistently in the
presence of crashes, as illustrated in Figure 3.6.

Figure 3.6 illustrates that after the write to a data blockD fails (T2) the policy
wants to remap blockD to R (T3), which implies that the bitmap and the remap
table are modified (B’ andM). Since it is too late to modify the transaction that
has been committed, these modifications only happen in the memory. However,
from the perspective of the journaling layer, the checkpointing of this transaction
containingB, I , andD have finished, and thus, the transaction can be released (T4).
If a crash occurs (T5) after the transaction is released (T4), all metadata changes
introduced by the recovery actions will be discarded and thedisk will be in an
inconsistent state. Specifically, the data blockD is lost since the modified remap
tableM that has the reference toR has been discarded. As a consequence, future
access toI ’s data block will not be remapped toR. The general point here is that
the current journaling scheme cannot perform any checkpoint failure recoveries
that result in metadata changes.

51

3.3.3 Summary: The Need for a New Journaling Scheme

Journaling is deployed in many modern file systems includingext3 [140], Reis-
erFS [109], IBM JFS [20], XFS [132] and Windows NTFS [124]. The fact that
we cannot recover from a checkpoint failure properly with the current journaling
scheme is disastrous. In fact, Prabhakaranet al. have shown that ext3, IBM JFS,
and ReiserFS ignore checkpoint failure [105] (although they did not point out the
reason). In this section, we have uncovered a major flaw that shows why these
journaling file systems are unable to react to checkpoint failure. Given the signifi-
cance of this journaling flaw, in Chapter 6, we present our solution to the problem:
chained transactions.

3.4 Conclusion

In this chapter, we have shown that many file system reliability components are
actually not reliable, in particular when dealing with partial disk failures. To build
a new generation of robust and reliable file systems, we believe a new approach to
each of the problems is required.

First, in Section 3.1, we have found that file system checkersare not always ro-
bust in how they perform repairs. We mainly believe that whencheckers are written
in the low-level C language, their logic is hard to reason about, and hence can be
buggy. Thus, to build a new generation of robust and reliablefile system checkers,
in Chapter 4, we introduceSQCK, a novel file system checker that employsdeclar-
ativequeries where the high-level intent of the checker can be specified in a clear
and compact manner.

Second, in Section 3.2, we have shown that today’s commodityfile systems do
not have a good reliability framework for dealing with disk failures. Their failure
policies are diffused, leading to inconsistent and buggy policies. To solve this prob-
lem, in Chapter 6, we presentI/O Shepherding, a simple yet powerful way to build
robust and centralized failure policies within a file system.

Third, in the same section, we also unearthed the problem of incorrect error-
code propagation where error-codes are accidentally dropped in the middle of their
propagation, leading to serious silent failures. In Chapter 5, we presentError De-
tection and Propagation (EDP), a static analysis tool that shows where error-codes
are dropped in file systems and storage drivers.

Finally, in Section 3.3, we have shown why many journaling file systems can-
not recover from checkpoint failure properly. Thus, in Section 6.4.1, as part of the
Shepherding framework, we also introduce the concept ofchained-transactions, a

52

novel and more powerful transactional model that allows policies to handle unex-
pected faults during checkpointing and still consistentlyupdate on-disk structures.

53

Chapter 4

SQCK: A Declarative File System
Checker

“FIXME: In the future, inodes which are still in use should behandled

specially. Right now we just (do a simple repair), instead of (the right

repair). This won’t catch (a particular corrupt scenario),but it’s better

than nothing. The right answer is that there shouldn’t be anybugs in

(this corruption) handling.:-)”

– A comment in e2fsck (pass1.c, line 778)

Despite the best efforts of the file and storage system community, file system
images become corrupt and require repair. In particular, problems with many dif-
ferent parts of the file and storage system stack can corrupt afile system image:
disk media, mechanical components, drive firmware, the transport layer, bus con-
troller, and OS drivers [13, 14, 46, 53, 106, 135]. Since file systems do not usually
contain the machinery to fix corruptions themselves [15, 106], there is a broad need
for robust file system checkers.

Unfortunately, our analysis of file system checkers in Section 3.1 has shown
that robust checkers are not straightforward to design or implement. Checkers are
typically large and complex; for example, the Linux ext2 checker contains more
than ten thousand lines of low-level C code which can be difficult to reason about.
Due to this complexity, it is not surprising that we found many weaknesses in the
Linux ext2/3 checker.

54

To build a new generation of robust and reliable file system checkers, we believe
a new approach is required. The ideal approach should enablethe high-level intent
of the checker to be specified in a clear and compact manner; further, the description
of the intent should be cleanly separated from its low-levelimplementation and how
it is optimized. A high-level specification has multiple benefits: by its very nature
it is easier to understand, modify, and maintain.

In this section, we introduce SQCK (pronounced “squeak”), anovel file system
checker. Borrowing heavily from the database community, SQCK employs declar-
ative queries to check and repair a file system image. We find that a declarative
query language is an excellent match for the cross-checks that must be made across
the different structures of a file system.

The rest of this chapter is organized as follows. We first describe our goals (Sec-
tion 4.1) and then motivate why declarative query language is suitable for fulfilling
the goals (Section 4.2). Next, we present the overall architecture of SQCK, includ-
ing how declarative checks and declarative repairs are performed (Section 4.3). We
discuss implementation challenges in Section 4.4 and finally evaluate SQCK in
Section 4.5.

4.1 Goals

We believe that a file system checker should be correct, flexible, and have reason-
able performance; we believe a declarative language will enable us to meet these
goals for the following reasons.

Correctness: The primary responsibility of a file system checker is to produce a
consistent file system image. A declarative language allowsone to check and
repair hundreds of corruption scenarios in a clean and compact fashion; we
believe the ability to produce correct repairs is improved due to the simplicity
of the queries and the separation of the specification from the implementa-
tion. A secondary goal is to produce repairs that leverage all of the on-disk
information to retain as much as possible of the file system. We believe
declarative languages allow one to easily combine the disparate information
that resides throughout the file system.

Flexibility: Given a single corruption, there are many reasonable repairs that
could be performed. For example, if two inodes share the samedata block,
there are many ways to repair this inconsistency: a “cheap” repair could sim-
ply remove one of the pointers [32], the inode with the earliest modification
time could release the block [93], the block could be cloned (e2fsck’s way),

55

or the operator could decide. The simplicity of a declarative language en-
courages one to explore this policy space and even provide different modes
of repair (e.g., fast but partial repair, or slow but full/smart repairs).

Performance: While the performance of a file system checker is not a primary
concern, it must not be prohibitively slow; specifically, the checker must
be able to handle the amount of data on modern disks and storage systems.
Thus, our goal is to create a checker that is competitive in speed to a tradi-
tional checker.

4.2 Declarative Query Language

Implementing a file system checker that satisfies all the goals above (especially the
correctness part) has proven to be difficult. Thus, an alternative is needed. One
alternative is to view a file system checking as ensuring thatthe content satisfies
a specification. With this view, some researchers have attempted to auto-generate
fsck code by writing a specification in an object modeling language. Specifically,
Demsky and Rinard’s work repairs inconsistencies automatically given specified
constraints [32]. Their automated repair finds the cheapestway to repair the sys-
tem such that it satisfies the constraints again. For example, if two inodes share the
same data block, the cheapest repair could simply remove oneof the pointers; how-
ever, this may not be the desired result. In fact, there are many ways to solve the
problem: the inode with the earliest modification time couldrelease the block [93],
the block could be cloned (e2fsck’s way), or the operator could decide. In our
terminology introduced in Section 3.1, the modeling approaches ensure that the re-
pairs are consistent, but not necessarily information-complete or policy-consistent.

When reinventing fsck, we need a language that can declaratively express both
the checks and the repairs. Like others who have applied declarative languages to
domains such as system configuration [34] and network overlays [89], we believe
the solution is to use a declarative language. We specifically choose a declarative
querylanguage, SQL [2], as our choice. Thus, we name our declarative file system
checker as SQCK (SQl-based fsCK).

The first advantage of using SQL is to easily achieve the performance goal;
the database community has tuned this language and its engine for years. Thus,
rather than tuning a new declarative or modeling language, we can directly use the
built-in optimization of an off-the-self SQL engine. However, besides performance,
achieving correctness is also highly important. We believethat by using a query
language such as SQL, we can express hundreds of checks and repairs in a more
correct fashion. Below, we give several short examples thatillustrate why that is.

56

first_block = sb->s_first_data_block;
last_block = first_block + blocks_per_group;

for (i = 0, gd=fs->group_desc;
i < fs->group_desc_count;
i++, gd++) {

if (i == fs->group_desc_count - 1)
last_block = sb->s_blocks_count;

// the core logic of range-checking
if ((gd->bg_block_bitmap < first_block) ||

(gd->bg_block_bitmap >= last_block)) {
px.blk = gd->bg_block_bitmap;
if (fix_problem(PR_0_BB_NOT_GROUP, ...))

gd->bg_block_bitmap = 0;
}
...

}

Figure 4.1:Range-checking in C code.The C fragment above shows the e2fsck’s
implementation of the “check block bitmap not in group.” Thecore logic of the
range-checking, marked in italic, is buried in implementation details.

First, range-checking is very common in file system checkers. One example
in e2fsck is verifying that the block bitmap pointer for a group points to a block
located within that group. The logic of this check is a simplerange-checking.
However, the actual implementation of this check, shown in Figure 4.1, illustrates
that a low-level C implementation tends to make a simple check hard to understand
and debug. The core logic of the range-checking, marked in italic, is buried in im-
plementation details such as for-loop, data traversal, andmany others. In contrast,
with a query language, we can write the check declaratively as shown in Figure 4.2.
The query simply performs aSELECT from the group descriptor table to find any
bitmaps that are not within the desired range for the group. The query also shows
that, in SQCK, all checks and repairs are performed by running queries on database
tables. Thus, before running the queries, SQCK must preloadthe database tables
with the on-disk structures. More details on this design areexplained in the next
section.

Second, what is also common is cross-checking fields across different struc-
tures. A simple example is verifying that all pointers referto blocks within the file
system; this check involves verifying that every pointer iswithin the range speci-
fied in the primary superblock. As illustrated in Figure 4.3,this check can be easily

57

SELECT *
FROM GroupDescTable G
WHERE G.blkBitmap NOT BETWEEN G.start AND G.end

Figure 4.2:Range-checking in SQL.The SQL fragment above shows the SQCK’s
implementation of the “check block bitmap not in group.”

SELECT B.*
FROM BlockPointer B, SuperblockTable S
WHERE B.blknum NOT BETWEEN S.firstBlk AND S.lastBlk

Figure 4.3:Cross-checking in SQL. Cross-checking can be easily done in SQL
by joining the structures (FROM clause) and specifying the condition to be found
(WHEREclause).

done in SQL byjoining the two structures (the FROM clause) and specifying the
condition (the WHERE clause). As we will see in the next section, there are many
more complex instances of cross-checking that can be easilyexpressed in query
language.

Third, for each inconsistency found, a checker must repair the inconsistency,
which is done by updating related structures. In the simplest cases, a repair must
simply adjust a few fields within a table (a file system structure). In these cases, a
repair can be performed with an UPDATE query in SQL. In more complex cases,
repairs may need to update more than one table. In these cases, SQCK easily
combines a series of SQL queries with C code. More detailed examples will be
shown in Section 4.3.3. In short, repairs can be naturally expressed in SQL as this
query language has been built from day one to support massiveamount of updates.

Fourth, a checker usually runs hundreds of checks and repairs. With a query
language, we can write each check or repair as a query (as shown in the examples
above). As a result, hundreds of checks and repairs can be composed by gluing
all the queries together. Furthermore, the repairs must be ordered correctly; our
evaluation of e2fsck in Section 3.1.3 has shown that misordered repairs can leave
the file system in an inconsistent state. We believe that ensuring the correct ordering
is easier done in SQCK rather than in C code. This is because, in SQCK, the logic of
each query can be understood in isolation, while in C code, the repairs are typically
cluttered. In Section 4.3.4, we show how we can ensure the correct ordering of
repairs in SQCK.

58 D a t a b a s e T a b l e sL o a d e rS c a n n e r F l u s h e rC h e c k + R e p a i r
D i s k

Figure 4.4: SQCK Architecture. The diagram depicts the basic SQCK archi-
tecture. The left part of the design, the loader and scanner,and the right part of
the design, the checker and flusher are decoupled, allowing us to optimize each
component in isolation.

Finally, there might be many ways to repair an inconsistency; in the beginning
of this section, we listed more than one approach to repair a data block shared by
two inodes. In SQCK, since a repair is basically a query (or a set of queries), we
can plug-in and plug-out different queries in a straightforward fashion. We believe
this is hard to do in C code. In the evaluation section (Section 4.5), we show the
flexibility of building different versions of fsck in SQCK.

In summary, the above examples have illustrated the ease of using declarative
query language to build checkers. In the next two sections wedescribe our specific
design and implementation of SQCK.

4.3 Architecture

In this section, we provide a detailed overview of SQCK architecture. SQCK con-
tains five primary components, as shown in Figure 4.4. Thescannerreads the
relevant portions of the file system from the disk, while theloader loads the corre-
sponding information into the databasetables. Thecheckeris then responsible for
running the declarative queries that both check and repair the file system structures.
Theflushercompletes the loop by writing out the changes to disk. We postpone our
description of the scanner, loader, and flusher until Section 4.4. In this section, we
explain the tables and the checker.

59

Tables Fields
Superblock blkNum, copyNum, dirty,
Table firstBlk, lastBlk, blockSize, ...
GroupDesc blkNum, gdNum, copyNum, dirty,
Table start, end, blkBitmap, inoBitmap, iTable, ...
Inode ino, blkNum, used, dirty,
Table mode, linksCount, blocksCount, size, ...
DirEntry blkNum, entryNum, dirty,
Table ino, entryIno, recLen, nameLen, name
Extent start, end,pBlk, pByte, type,
Table startLogical, endLogical,

ino, dirty, ...

Table 4.1:SQCK Tables. Italic fields represent information we generate since
they are not stored on the disk.

4.3.1 Database Tables

It is important to construct the database tables such that the SQCK checker can per-
form efficient queries that cover the same repairs as e2fsck.Conceptually, SQCK
contains a table for each of the different metadata types in the file system: su-
perblocks, group descriptors, inodes, directories, and block pointers [27]. Together,
the tables store all of the information about the file system image that was origi-
nally on disk. However, with this on-disk information alone, the SQCK checks and
repairs are neither simple nor efficient; therefore, SQCK stores extra, easily calcu-
lated information in the tables. Table 4.1 shows the five database tables utilized by
SQCK. We describe briefly the important fields in each table.

Superblock: Since the superblock is replicated, we load each replica into a row
of the table; this table allows SQCK to easily check the consistency across
superblocks. As expected, each row contains the information available from
the superblocks on disk. To be able to reflect repairs back to the disk in the
flusher, we also introducecopyNumandblkNumfields that specify where a
replica lives on the disk and adirty field.

GroupDescTable:Each group descriptor and its replicas are loaded into separate
rows of this table; as expected, we store here the on-disk information such
as the pointers to the block bitmap, inode bitmap, and inode table. SQCK
also adds thestart andendblock of each group; this addition allows SQCK
to easily check whether pointers fall within the desired range of the block

60

group.

InodeTable: Each row of the table corresponds to a different allocated inode, with
appropriate fields for the on-disk information such as mode,links, and size.
Theusedfield tracks which inodes are part of the final directory tree so that
SQCK can calculate the final inode bitmap.

DirEntryTable: Each row of the table corresponds to a different directory entry.
SQCK performs many cross-checks on this table to verify the directory tree
structure.

ExtentTable: The conceptual idea of this table is to record all of the pointers
to data blocks, so that SQCK can ensure that no two pointers refer to the
same block. In our initial implementation, we loaded each direct pointer as
its own row; however, this is intractable for a large file system because the
table grows too large and the loader takes too long. Therefore, we switched
our table design to represent extents of contiguous direct blocks; specifically,
each extent specifies the start and end block. Additionally,each row records
the location of the original pointer and thetypeof the pointer (e.g., direct,
single, double, or triple indirect).

4.3.2 Declarative Checks

A declarative query language is an excellent match for the checks and repairs that
must be performed by a file system checker. To give some intuition as to why
this is true, we categorize the different checks that must bemade and show how a
prototypical check from each category can be specified with SQL [2].

The original e2fsck performs a total of 121 interesting repairs. We have catego-
rized all of these repairs into four categories, depending upon how many file system
structures the repair must simultaneously peruse. As shownin Table 4.2, a repair
can touch a single instance of a single structure type, one instance of one type
with another of a different type, multiple instances of the same type, or multiple
instances from multiple types.

There are 63 fsck repairs that involve fields of a single structure in isolation. A
simple example of this type of repair is ensuring that the deletion time of a used
inode is zero. Another example is verifying that the block bitmap for a group is
located within that group. We have shown how this check can beexpressed simply
and efficiently using SQL in Figure 4.2. The query simply performs aSELECT from
the group descriptor table to find any bitmaps that are not within the desired range
for the group. Thus, range-checking queries are easily specified.

61

Single Multiple
instance instances

Intra Category #1 Category #3
structure 63 checks 11 checks

Inter Category #2 Category #4
structures 12 checks 35 checks

Table 4.2:Taxonomy of fsck cross-checking.We distinguish four types of cross-
check. We report the number of checks that fall into each category. In the first cate-
gory, a cross-check can be made within an instance of a structure. In the second, a
cross-check is performed on an instance of a structure and aninstance of another
different structure. The third category cross-checks multiple instances of a struc-
ture. Finally, the last category involves information stored in multiple instances of
more than one structures. Each number in the box represents the number of checks
that are done by e2fsck in each category.

SELECT X.*
FROM ExtentTable X, SuperblockTable S
WHERE S.copyNum = 1 AND

X.type = INDIRECT_POINTER AND
(X.start < S.firstBlk OR
X.end >= S.lastBlk)

Figure 4.5: Check illegal indirect block. An illegal indirect block is one that
points to outside the file system range

The second category includes checks between one instance ofa structure and
an instance of another different structure; fsck runs 12 checks of this type. A
simple example is verifying that all pointers refer to blocks within the file sys-
tem; this check involves verifying that every pointer is within the range specified
in the primary superblock. Unlike the previous example, this example must ex-
amine values in different structures and subsequently different tables. Figure 4.5
shows how to check that no indirect block points outside the file system. Specif-
ically, the query returns all extents (X.start..X.end) corresponding to indirect
pointers that fall outside the file system range specified in the primary superblock
(S.firstBlk..S.lastBlk). Hence, SQCK can easily join multiple structures to
perform the necessary cross-checks.

The third category contains 11 cross-checks of multiple instances of the same

62

SELECT *
FROM DirEntryTable P, DirEntryTable C
WHERE // P says C is his child

P.entryNum >= 3 AND
P.entryIno = C.ino AND
// but C says P is not his parent
C.entryNum = 2 AND
C.entryIno <> P.ino

Figure 4.6:Bad dot dot. This query finds a directory entry that does not claim the
actual parent.

structure. One example of this type of repair is checking that multiple inodes do
not point to the same data block. A second example, shown in Figure 4.6 checks
that the “..” entry of a directory points to the actual parent. This check can be done
easily in SQL: the query simply joins the directory entry table with itself, selecting
cases where the parent directory contains an entry for a child (whereP.entryNum
>= 3), but the child’s entry for “..” (P.entryNum = 2) is not the parent’s inode.

Finally, 35 checks fall into the fourth category in which thecross-checks in-
volve multiple instances of more than one structure. One example is the rule that
validates the link count of an inode, since it must traverse all directory entries
and count how many times each entry appears. We give two examples of these
queries to further convince the reader that even these typesof seemingly compli-
cated checks are surprisingly straightforward to express.

The first example checks for conflicting block pointers; in ext2, block pointers
are stored in many places and none should refer to the same block. Figure 4.7 shows
a query that ensures blocks pointed from an inode do not overlap with file system
metadata blocks. The query is a little bit cumbersome because it checks whether an
extent overlaps with each piece of file system metadata separately (i.e., superblock
copies, group descriptors, inode bitmaps, block bitmaps, and inode tables).

The second example verifies that multiple directory entriesdo not point to a
same directory, corresponding to the false parenthood problem discussed in Sec-
tion 3.1.3; we show how it can be expressed in SQL in Figure 4.8. Basically, the
query selects directory entries that appear more than once in the tree structure. In
more detail, the query does not select the “.” or “..” entriesand selects only di-
rectory inodes, as determined by theirmode field in the inode table. Counting the
number of entries satisfying this constraint is straightforward with theORDER BY

andHAVING features of the query language. Note that this query returnsthe small-

63

SELECT X.*
FROM ExtentTable X
WHERE EXISTS
(SELECT *
FROM SuperblockTable S
WHERE
// extent overlaps superblock copies
S.blk BETWEEN X.start AND X.end)

OR EXISTS
(SELECT *
FROM GroupDescTable G, SuperblockTable S
WHERE
// or extent overlaps group descriptors
(X.start BETWEEN G.blk AND G.blkEnd OR
X.end BETWEEN G.blk AND G.blkEnd) OR

// or extent overlaps inode table
(X.start BETWEEN G.iTbl AND G.iTblEnd OR
X.end BETWEEN G.iTbl AND G.iTblEnd) OR

// or extent overlaps block bitmap
G.blkBitmap BETWEEN X.start AND X.end OR

// or extent overlaps inode bitmap
G.inoBitmap BETWEEN X.start AND X.end)

Figure 4.7:Check block overlaps metadata.This query locates inode’s extents
that overlap with the filesystem metadata. To reduce space, we abbreviate some
fields: G.iTblEnd should be G.iTable + S.inodeBlocksPerGroup - 1; G.blkEnd
should be G.blk + S.gdBlks - 1.

est inode number among the parents (MIN(P.ino)), which is needed to mimic
how e2fsck incorrectly repairs this problem. In particular, e2fsck always assumes
the parent with the smallest inode number is the real parent without consulting the
“..” entry of the child. We show how we can easily improve thisquery in Sec-
tion 4.5.1.

4.3.3 Declarative Repairs

Performing checks of file system state is only part of the problem; after SQCK
detects an inconsistency, it must then perform the actual repair. SQCK performs
the repair by first modifying its own tables; the flush processthen propagates these
changes to the disk itself. We have found that repair operations on the tables can be
performed in one of two ways.

64

SELECT P.entryIno, COUNT(*), MIN(P.ino)
FROM DirEntryTable P, InodeTable I
WHERE P.entryNum >= 3 AND

P.entryIno = I.ino AND
I.mode = DIR

GROUP BY P.entryIno
HAVING (COUNT(P.entryIno) > 1)

Figure 4.8: Check multiple parents. This query returns directories that have
multiple parents. The parent that has the smallest inode number (MIN(P.ino))
will be the one that keeps the child directory.

UPDATE ExtentTable X
INNER JOIN
(result from the
‘‘check illegal indirect block’’ query) AS V
ON X.ino = V.ino AND

X.type = V.type AND
X.start = V.start AND
X.end = V.end

SET X.start = 0, X.end = 0, X.dirty = 1

Figure 4.9:Repair illegal indirect block number. This query repairs indirect
block numbers that fall outside the file system range (returned by the “check illegal
indirect block” query in Figure 4.5), by clearing them to zero.

In the simplest cases, a repair must simply adjust a few fieldswithin a table.
These repairs can be performed by embedding the declarativechecks presented
previously into a larger query that then sets fields within the selected rows. For
example, an illegal indirect block pointer (one that pointsoutside the file system
range) is fixed by clearing the pointer to zero. Figure 4.9 shows that these pointers
can be cleared with a query that sets to zero the illegal extents found by the check
query in Figure 4.5. Note that the query also sets the dirty flag so that the flusher
will later propagate these changes from the database tablesto the on-disk structures.

In more complex cases, repairs may need to update more than one table. In
these cases, SQCK combines a series of SQL queries with C code. SQCK currently
supports a variety of repair primitives, such as finding freeblocks and inodes and
adding and deleting extents, directory entries, and inodes. Figure 4.10 shows how
a valid directory with a reference count of zero (i.e., a lost directory) is reconnected

65

result = run(findUnconnectedDir.sql); [9]
while(dir = mysql_fetch_row(result)) {
run(changeDotDot.sql, dir, lfIno); [3]
slot = run(findEntrySlot.sql, lfIno); [7]
if (!slot) {
lfBlk = run(getLocation.sql, lfIno); [3]
newBlk = run(allocNewBlock.sql, lfBlk); [25]
if (run(needIndirect.sql, lfIno)) [5]
{ // alloc indirect (not shown) }
run(addNewBlock.sql, newBlk, lfIno); [3]
run(addInodeSize.sql, lfIno); [3]
run(initNewDirBlk.sql, newBlk, lfIno); [3]
slot = run(findEntrySlot.sql, lfIno); [7]

}
// now break the slot and prepare [13]
// newSlot based on dir. (not shown)
run(updateOldSlot.sql, oldSlot); [3]
run(insertNewSlot.sql, newSlot); [3]
run(incrementLinkCount.sql, lfIno); [3]

}

Figure 4.10:Complex repair. The C pseudo-code above illustrates the complex
repair in reattaching unconnected directories to the lost+found directory. The files
with the.sql extension are the SQL files that are executed. The bold numbers in
the brackets represent the lines count of each SQL file. The italic number is the
lines count of the C code.lfIno is the inode number of the lost+found directory.

to the lost+found directory. Briefly, the code behaves as follows. After a query
finds the set of unconnected directories, SQCK performs the following operations
on each such directory. First, the “..” entry is adjusted to point to lost+found. Next,
a directory entry slot is allocated within lost+found, which may require allocating
new blocks and increasing the size of the lost+found. After the slot is ready, the
entry is filled to correspond to the unconnected directory.

4.3.4 Ordering of Repairs

After all the checks and repairs are written declaratively,they must be ordered cor-
rectly. Without a correct ordering, the resulting file system can be more corrupted.
For example, as shown in Section 3.1.3, e2fsck wrongly “repairs” direct pointers
before checking that the indirect block containing those pointers is valid, leaving
the file system in an inconsistent state.

66

I n d i r e c t p o i n t e rR a n g e c h e c kI n � r a n g e i n d i r e c t p o i n t e r s I n � r a n g e I n d i r e c t p o i n t e rC o n fl i c t c h e c kV a l i d i n d i r e c t p o i n t e r s D i r e c t p o i n t e r sR a n g e � c h e c kI n � r a n g e d i r e c t p o i n t e r s
S u p e r b l o c k C o p i e sM a j o r i t y + C o n fl i c tV a l i d # b l k s / g r o u p G r o u p D e s c . C o p i e sM a j o r i t y + C o n fl i c tV a l i d G D s I n o d e T a b l e p o i n t e rR a n g e a n d c o n fl i c t c h e c kV a l i d I n o d e T a b l e p o i n t e r I n o d eS o m e c h e c k sV a l i d I n o d e

f s c k o u t ® o f ® o r d e r
Figure 4.11:Information dependency graph. The figure shows a chain of in-
formation dependency. Note that the full graph forms a tree-like graph; to save
space, only a partial dependency chain is shown. Each box contains three rows:
a new information obtained from the previous box, the check (and the correspond-
ing repair, not shown), and the new state of the information after the check. For
example, in box 1, an indirect pointer is obtained from a valid inode. After the
range-check, the indirect pointer is marked in-range, but not yet valid. After it
passes the conflict-check in box 2, it is finally marked as valid, which implies that
we can proceed to box 3 which repairs out-of-range direct blocks contained in this
indirect block. Unfortunately, e2fsck does not follow thisordering, as shown by
the dashed lines; fsck proceeds repairing the direct pointers from a not yet valid
indirect block. When e2fsck later finds out that the indirectblock is indeed invalid
(e.g., conflicting with other file system metadata), the content of the metadata has
been accidentally corrupted in box 3.

In general, repairs of a complex data structure must be performed in a specific
order; specifically, if a piece of information A is obtained from B, then B must be
checked and repaired first. To ensure this ordering, we have constructed aninfor-
mation dependency graphfor the data structures in ext2. A portion of this graph
is shown in Figure 4.11. The figure also illustrates that e2fsck does not follow the
order specified by the dependency graph. We reorder the relevant queries to ensure
that single, double, and triple indirect blocks are all validated in the correct order
before repairing the direct pointers themselves. We find that reordering repairs in
SQCK is straightforward due to the structure of the queries;we do not believe such
reordering is simple in e2fsck.

Currently, the dependency graph must be manually constructed by the file sys-
tem developer or administrator. Since the repair queries inSQCK are neatly struc-
tured, the ordering can then be manually verified against thedependency graph.

67

Improving Scan Time
1 Reduce seek time with sorted job queue

Improving Load Time
2 Make the table content compact
3 Only load checked information
4 Use threads to exploit idle time

Improving Check Time
5 Write queries that leverage indices
6 Leverage fs domain specific knowledge
7 Use bitmaps to reduce search space

Table 4.3:Optimization Principles. The table lists the optimizations that we have
performed such that performance of SQCK is competitive withe2fsck.

More ideally, a static tool could be built on top of SQCK to verify the ordering
automatically. Specifically, each query could be tagged with a unique name that
describes the check/repair performed, then a parser could automatically construct
the ordering from the code, and finally a verifier could compare the constructed
ordering against the specified ordering. This highlights that a structured fsck can
be easily verified than a cluttered one.

4.4 Implementation

We now describe our implementation of the SQCK phases for scanning the file
system image from disk, loading the database tables, checking and repairing the
structures, and finally flushing the repairs to disk. Our current implementation of
SQCK runs on top of a MySQL database and targets the ext2 file system in Linux
2.6.12. When describing our implementation, we focus on theoptimizations we
found were necessary for achieving respectable performance; Table 4.3 summarizes
these optimizations across the phases.

4.4.1 Scanning and Loading

In our current implementation, SQCK combines its scanning and loading phases.
Conceptually, SQCK maintains a queue of the structures thatmust be read from
disk, processed, and loaded into the tables. As structures are processed, SQCK
follows their pointers to determine the next structures. For example, the queue is
initialized from the primary superblock; after the superblock, the locations of the

68

group descriptor copies are known; subsequently, the inodetables are processed,
which leads to individual inodes and their data blocks.

SQCK implements a number of performance optimizations for scanning and
loading. First, to reduce the scan time, SQCK sorts the requests in the queue based
on their on-disk locations; sorting the requests minimizesdisk head positioning
time, especially for file systems that are fragmented. We note that although e2fsck
performs a partial optimization of this sort (i.e., directory blocks are sorted before
read from the disk [27]), e2fsck is not able to perform the same optimization (e.g.,
indirect blocks still have to be traversed logically) because it heavily intermixes
scanning with checking [65]. SQCK is able to optimize scanning because reading
from disk is completely decoupled from checking; hence, SQCK does not need to
follow structures in a logical manner.

The primary reason we decouple scanning from checking is because we want to
make the common case fast; if corruption is a rare case than our approach improves
the overall fsck time. However, there is a tradeoff: if corruption is huge, extra
work is needed to invalidate the garbage loaded into the database. Our design is not
limited only to that approach; if desired, SQCK can be redesigned by intermixing
some phases of scanning and checking according to the structural logical hierarchy.
For example, when loading and checking indirect blocks, triple indirect blocks will
be loaded and repaired in the database, then only valid double indirect blocks will
be loaded to the database, and so on.

Second, SQCK improves load time (and check time) by reducingthe size of
the initial database tables. Our initial implementation loaded the ext2 structures to
match their on-disk format; specifically, SQCK loaded each on-disk pointer as a
direct pointer. However, we found that this approach made checking even 100 GB
file systems unattractive. Therefore, our next optimization modified the tables to
instead use extents to represent pointers referring to contiguous blocks.

Third, SQCK reduces loading time by only loading allocated meta-data. Given
that most file systems are half-full [7], a great deal of the inodes are not actually
used. To reduce the size of the tables, SQCK does not load the unused inodes
into the database tables (though it of course still scans them from disk). However,
e2fsck performs one check on unused inodes that SQCK must be able to replicate:
e2fsck verifies that each inode with a link count of zero also has a deletion time of
zero. To handle this repair, SQCK performs this one check during processing. If
SQCK finds a non-conforming inode, that inode is loaded into the table on the fly;
to mark that the inode has been repaired, itsusedfield is cleared and thedirty field
is set. We note that this optimization is consistent with thedirection in which future
file systems are going: ext4 explicitly marks unallocated sections of the inode table

69

to help e2fsck run more efficiently [3].
Fourth, the scanner-loader in SQCK is multi-threaded. Eachthread within the

pool is able to independently grab a structure from the queue, read the data from
disk, process it, and load the information into the corresponding table. Multiple
threads allow SQCK to overlap reading requests from disk with loading the tables.
As we will see in our evaluation, this optimization is especially important for large
partitions.

4.4.2 Checker

After all metadata has been uploaded into the database tables, SQCK initiates the
checking phase, which runs the queries as discussed in the previous section. One
important note is that since the checker runs only after the loader, corrupt data can
be loaded into the tables. Hence, SQCK provides primitives to invalidate a struc-
ture along with the information that originates from it. Forexample, if the block
number that points to an inode table is corrupt, the wrong inodes and the wrong
data pointers will be loaded into the table. Later, when the checker discovers that
the inode table pointer is corrupt, it simply calls the SQCK primitives to invalidate
the corresponding inodes, extents, and directory entries.

The checker has been optimized for performance in three mainways. First,
we have found that SQCK must contain appropriate indices foreach table; without
indices a full scan must be done for each check and joining multiple tables requires
a very long time. Thus, each table contains indices over the fields that are checked
with the comparison operators.

Given the indices, some queries must be rewritten to leverage them. In our
experience, MySQL is not able to always extract the implicitindex comparisons in
some queries. For example, the check that no directory entrypoints to an unused
inode was originally written as shown in the top half of Figure 4.12. When the rule
was rewritten to make the index comparison explicit, as shown in the bottom part of
the figure, the query time improved significantly. Thus, making index comparison
explicit is an important principle to do fast checking. We rewrote a total of four
queries in this manner, reducing the check time for those four queries from 72
seconds down to just 0.09 seconds on a 1 GB partition.

Second, we have found it beneficial to incorporate file systemdomain knowl-
edge into the queries. One example is the rule that counts howmany blocks are be-
ing used in a group. Since SQCK uses extents, it must first select the extents in that
group. The naive range-checking query could be written as follows: (G.start
<= X.start AND X.end <= G.end). However, given that we know valid
extents cannot overlap group boundaries (this has been verified in previous queries),

70

// find an entryIno that is in the list of
// unused inodes
SELECT *
FROM DirEntryTable
WHERE entryIno IN

(SELECT ino
FROM InodeTable
WHERE used = 0)

--------- vs. ---------

// find an entryIno that exists in the
// InodeTable and the used field is zero
SELECT *
FROM DirEntryTable
WHERE EXISTS

(SELECT *
FROM InodeTable AS I
WHERE I.ino = D.entryIno AND

I.used = 0)

Figure 4.12:Explicit index comparison. We rewrite the code to unearth the index
comparison.

the range-check query can be simplified to(G.start <= X.start <= G.end).
This simplified query improves check performance.

The final optimization addresses how to join tables where an index comparison
is not possible. For example, the query finding shared blocksacross files joins the
ExtentTable with itself to find any overlapping extents. We optimize this query
by making the search space smaller with bitmaps. For this example, SQCK uses
two bitmaps: one for marking used blocks and one for marking shared blocks; the
latter bitmap provides a hint as to which extents have overlapping blocks. To find
out which part of an extent is actually overlapping, SQCK joins the resulting small
table with itself.

4.4.3 Flusher

Finally, SQCK needs to update any repaired structures to thedisk. SQCK is able
to determine which structures have been modified by selecting those entries where
the dirty flag is set. Following the same behavior as e2fsck, SQCK updates the
structures in-place on disk (i.e., it does not currently use a separate journal).

71

To ensure the metadata writes are ordered correctly [45], currently SQCK per-
forms a series of queries ordered by the dependency graph; the graph ensures that
blocks are updated before the pointers to those blocks. In the next generation of
SQCK, a journaling facility will be added to ensure that a crashed repair process
will not modify the old data partially.

4.5 Evaluation

In this section we evaluate SQCK along four axes: flexibility, complexity, robust-
ness, and performance.

4.5.1 Flexibility

The simplicity of implementing checks and repairs in SQCK enables one to con-
struct different versions with different repair policies.At this time, we have created
two versions of SQCK. The first one simply emulates e2fsck with both its good
and bad polices. The second one fixes what e2fsck does wrong (by using the infor-
mation dependency graph in Figure 4.11) and adds new functionality that e2fsck
does not even attempt (i.e., performs information-complete and policy-consistent
repairs).

Our basic version, SQCKfsck, emulates the repairs made by e2fsck. From our
analysis of e2fsck, we have determined that it performs 153 different repairs, of
which 121 are significant and interesting for ext2 (the remaining 32 repairs fix the
ext3 journal and other optional features). These 121 repairs have been detailed in
Table 3.1 in Section 3.1.1. As shown, e2fsck performs these repairs in six distinct
phases, in which reading the file system image from the disk isintermixed with
the actual checks and repairs. SQCKfsck implements these 121 repairs each as a
separate query within the check and repair process.

Our second version, SQCKimproved, improves how the file system is checked
by utilizing more of the information that resides within thefile system image. Ta-
ble 4.4 lists the new information-complete, policy-consistent, and secure repairs in
SQCKimproved.

The first three repairs utilize the replicas that ext2 keeps of the group descriptor
blocks on disk. While e2fsck does examine these replicas if the primary copy
is obviously corrupted, e2fsck misses opportunities to usecorrect replicas when
the primary “looks” fine. Thus, SQCKimproved always examines all replicas and
performs majority voting across them to determine the correct values; this voting is
performed for three important fields: the pointer to the datablock bitmap, the inode

72

LOC LOC
New Repair (C) (SQL)

Majority rule on block bitmap pointers 40 22
Majority rule on inode bitmap pointers 40 22
Majority rule on inode table pointers 40 22
Finding false parents 13 14
Reconstructing missing directories (*) 47 20
Precedence cloning 23 19
Secure cloning (**) 41 8

Table 4.4: New repairs. The table lists all the new repairs we introduce. (*)
In addition to the number of lines reported here, this new rule heavily uses the
primitives as in Figure 4.10. (**) The number of lines reported for this rule is the
additional code to the original cloning repair.

bitmap, and the inode table. With these fixes, SQCKimproved performs information-
complete repairs when the pointer to the inode table is corrupted, as desired. These
new repairs are straightforward to implement, requiring only 22 lines of SQL and
40 lines of C.

The fourth repair utilizes the extra information kept in directory “..” fields to
repair corrupted directories. First, we fix the false parenthood problem exhibited
by e2fsck. With SQCK, we replace the incorrect check of e2fsck originally shown
in Figure 4.8 with the one in Figure 4.13. This new query elegantly expresses
relatively complex behavior: it only returns false directory entries in which the
child directory does not claim them as a parent with “..”; thus, this false directory
entry is correctly cleared instead of that of the rightful parent.

We can extend this repair slightly to write the fifth repair, which corrects even
more complicated corruptions of the directory hierarchy. For example, if a path
/a/b/c/ exists andb’s inode is corrupted such thatb no longer appears to be a
directory, e2fsck does not do any reconstruction and simplymovesc to lost+found.
However, SQCKimproved completely reconstructs the contents ofb from the back
pointers of its children. The complete rule requires a totalof 20 new SQL lines
with C code similar to that shown in Figure 4.10.

The sixth repair corrects the allocation policy of e2fsck. Specifically, e2fsck
clones data blocks without checking which file is closer to the shared data block.
Ideally, the repair should give the existing block to the closest inode and allocate
the new clone to the other inode. With SQCK, locality optimizations are easily
performed. For example, Figure 4.14 shows how we utilize theABS andORDER

73

SELECT F.*
FROM DirEntryTable P, DirEntryTable C,

DirEntryTable F
WHERE // P says C is his child

P.entry_num >= 3 AND
P.entry_ino = C.ino AND
// and C says P is his parent
C.entry_num = 2 AND
C.entry_ino = P.ino AND
// but F, the false parent, says
// C is also his child. P wins.
F.ino <> P.ino AND
F.entry_num >= 3 AND
F.entry_ino = C.ino

Figure 4.13:Finding false parents. This query returns the actual false parents. A
false parent is a parent that claims to own a child even thoughthe child is already
strongly connected to another parent.

SELECT X.ino, X.start, X.end,
V.start, V.end,
(ABS(X.pBlk-V.start)) as distance

FROM ExtentTable C,
(A query that returns the start and
end of a shared extent) AS V

WHERE X.start <= V.start AND V.end <= X.end
ORDER BY V.start, distance

Figure 4.14:Locality-aware repair. The query above returns shared blocks that
are sorted based on the locality distance from the pointers.The inner query (not
shown), stored in Table V, returns a the list of duplicate blocks. TheABS command
helps sorting the result based on locality distance.

BY SQL commands to calculate the distance between a block and its pointer. The
bold text shows that the results are sorted on the start of theshared extents and then
on the distance between the shared extent and the blocks thatpoint to the extent
(X.pBlk). Given this list, SQCK can easily perform the repair such that the shared
extent is kept with its closest pointer.

Finally, the seventh repair adds secure cloning. This is done in two ways. First,
suppose a corrupt direct pointer incorrectly points to a bitmap block; since the

74

C Code SQL
Component LOC ; count LOC

Scanner 2759 1378 –
Loader 609 177 103
Checker+Repair *2527 1468 910
Primitives 695 348 98
Flusher 114 49 27
Total 6704 3420 1138

Table 4.5: SQCKimproved LOC. The table presents the complexity of
SQCKimproved. Scanner includes threads and functions that process the structures.
(*) The C code for the checkers and repairs are mostly wrappers that call the SQL
files.

bitmap block is pointed to by more than one group descriptor replica, it is more
likely the direct pointer is mistaken than all of the group descriptor replicas; there-
fore, cloning of that block simply leaks information and does not need to be per-
formed.

Second, suppose a data block is shared by two inodes, one in the /root di-
rectory and one in the/home/UserA directory. In this case, if we want to prevent
leaking of information, we might not want to clone the sharedblock, instead we re-
move the pointer from the user and keep the one from the root inode. In addition to
the existing block conflict check and cloning primitives, this new rule only requires
additional two SQL files, for a total of 8 lines to do the path traversal, and 41 lines
of C code.

The secure clone repair could be seen as an example where an administrator’s
decision is more appropriate than an automated one. SQCK does not throw away
the need to ask the administrator for the right decision. In such cases, different
policies should be present for the administrator to choose from. In SQCK, we can
execute different policies easily; each policy is simply mapped to a query or a set
of queries.

4.5.2 Complexity

Table 4.5 presents the complexity of SQCKimproved, the most complete version
of SQCK. As the table suggests, SQCK is comprised of C and SQL code. The
scanner is the only place where the complexity of the C code still exists. However,
the code is generally simple because it scans the file system in a logical hierarchy.

75

SQCK ext2 ReiserFS XFS
LOC 2527 16472 11281 21773
Chks 121 121 156 344
Instr. gap 16± 16 71± 161 56± 203 128± 257
Func. gap 1± 1 4± 6 1± 3 5± 6
Chk func. 121 31 32 72
Chks/chk-func 1± 0.1 4± 5 5± 8 5± 5

Table 4.6: Checkers complexity. The table shows the logical complexity of
SQCKimproved (without the new added repairs), ext2, ReiserFS and XFS checker
codes (excluding libraries). Standard deviation is shown right next to the± sign.
“Inst. and Func. gaps” quantify the number of C instructionsand functions sepa-
rating one check from the next check. “# Chk func” shows in howmany functions
the checks are diffused. Finally, “# Chks/func” averages the number of checks
performed in each checker function.

The checker code looks big, however, it is mostly wrapper functions that call the
corresponding queries; most wrappers consist of the same 15lines of C code. A
generic wrapper could be built to reduce the amount of C code.

SQCK so far has been written all at once by one small group. Thus, it is possible
that SQCK will become more complex when developed by a biggergroup over a
longer period of time. However, we believe the core power of SQCK lies within the
simple and robust queries; each query consists of 7 lines of code on average. These
queries decouple the checks from the C code, enabling us to maintain reliability in
an easier way. Compared to e2fsck, which consists of 16 thousand LOC of cluttered
checks and repairs and 14 thousand LOC of scan utilities, allwritten in low-level C
code, SQCK can be considered a big step towards simplifying file system checkers.

To show that we are solving a broader significant problem, Table 4.6 attempts
to quantify the logical complexity of ext2, ReiserFS, and XFS checker utilities, all
written in C. The metrics shown in the table are generated by our parser written
using CIL [97]. In fsck-related code, we annotate the location where each check is
performed. The parser computes the complexity-metrics as described in the table.
For example, we compute how many instructions and function calls separate each
neighboring checks. If the numbers are high, the checks are most likely diffused
and reasoning about their correctness might be nontrivial,if not impossible. The
numbers reported in Table 4.6 exclude fsck libraries (e.g., scanner), hence they only
depict the logical complexity of the checker component.

We make two important observations: First, the average number of C instruc-

76

B
oo

t

S
up

er
bl

oc
k

G
ro

up
de

sc
rip

to
r

B
lo

ck
bi

tm
ap

In
od

e
bi

tm
ap

In
od

e
ta

bl
e

S
in

gl
e

in
di

re
ct

D
ou

bl
e

in
di

re
ct

T
rip

le
in

di
re

ct

D
ire

ct
or

y

U
se

d
da

ta

F
re

e
da

ta

O
ut

of
ra

ng
e

1. 2. 3. 4. 5. 6. 7. 8. 9. 10
.

11
.

12
.

13
.

1. Block bitmap
2. Inode bitmap
3. Inode table I I I I I . I I I I I I I
4. Single indirect . C C . . C . . . C C C .
5. Double indirect . C C C C C C . . C C C .
6. Triple indirect . C C C C C C C . C C C .
7. Directory PS PS PS PS PS . .
8. Data S S S PS S . .

Symbols: C: Consistent repair I: Information-complete repair
P: Policy-consistent repair S: Secure-repair Dot (.): Correct repair

Table 4.7:Results of block-pointer corruptions. This figure shows how SQCK
responds to block-pointer corruptions. Each row characterizes the behavior for the
given pointer. Each cell in a row is marked with the behavior observed for the given
pointer when it is corrupted with the value of that column. Insummary, with SQCK,
we have removed all the problems we have found in e2fsck, as shown Table 3.3

tions and functions that separate two checks are high in all fsck utilities, with sig-
nificant standard deviations; the separation can be as low as4 or as high as 1700
instructions. Second, checks are greatly diffused in many functions; a function
could make a small number of checks while some other could perform as many as
47 checks. In such implementations verifying that all checks are complete and or-
dered correctly can be cumbersome. On the other hand, SQCK hides the complex
logic of the checks in declarative queries, greatly reducing the gap between neigh-
boring checks; the standard deviations shown in the SQCK column illustrate the
neat organization we have achieved. In summary, we believe all C-implementations
of fsck are likely to suffer from the same problems as e2fsck.

77

D
ire

ct
or

y
in

od
e

F
ile

in
od

e

F
re

e
in

od
e

O
ut

of
ra

ng
e

in
od

e

1. 2. 3. 4.

1. Directory inode I . . .
2. File inode I . . .

Table 4.8:Results of index-pointer corruptions. This figure shows how SQCK
responds to index-pointer corruptions. Each row characterizes the behavior for the
given pointer. Each cell in a row is marked with the behavior observed for the given
pointer when it is corrupted with the value of that column. Insummary, with SQCK,
we have removed all the problems we have found in e2fsck, as shown Table 3.4

4.5.3 Robustness

To test the robustness of SQCK, we have verified that it passesthe same corruption
scenarios that we injected for analyzing e2fsck (as described in Section 3.1.3). Ta-
bles 4.7 and 4.8 show how SQCK responds to the corruptions we injected. In sum-
mary, we have turned all inconsistent, information-incomplete, policy-inconsistent,
and insecure repairs into consistent, information-complete, policy-consistent, and
secure ones respectively.

We do not claim that our fault injection methodology is complete (i.e., it covers
all possible corruption scenarios). However, we believe the power of SQCK lies in
the simplicity of fixing buggy and adding new repairs. Thus, if a more powerful
testing tool found more buggy repairs, we can simply change the corresponding
queries. Or, if some repairs are missing, we can easily add new queries, as we have
illustrated in the previous section.

4.5.4 Performance

The experiments in this section were performed on an 2.2 GHz AMD Opteron
machine with 1 GB memory and 1 TB WDC WD10EACS disk. We used Linux
2.6.12, e2fsck 1.39, and MySQL 5.0.51a. The tables are mounted on a 512 MB
ramdisk.

We test the performance of SQCK and e2fsck on four partitionswith different

78

File System Partition Size (GB)
1 10 100 800T

ot
al

 R
un

 T
im

e
(n

or
m

al
iz

ed
 to

 e
2f

sc
k)

0

1

2

7.
0 65 22
4

18
47

8.
2 86 32

5

23
15

7.
0 65 22
4

18
47

8.
2 86 32

5

23
15

7.
0 65 22
4

18
47

8.
2 86 32

5

23
15

7.
0 65 22
4

18
47

8.
2 86 32

5

23
15

e2fsck time
SQCK time

Figure 4.15:Overall runtime comparison . The bar graph shows the comparison
of the total runtime of e2fsck and fully optimized SQCK for different file system
sizes. The bars are all normalized to e2fsck runtime and the SQCK bar show the
relative slowdown. The absolute runtime figures in seconds are shown on top of the
bars.

sizes: 1, 10, 100, and 800 GB. Each of the partition is made half-full [7] by filling
it with the root file system image of a machine in our laboratory along with a large
number small files from kernel builds and large files from virtual machine images.

Figure 4.15 shows e2fsck compared to our fully optimized SQCK. The fully
optimized SQCK incorporates all the principles described in Table 4.3; specifically,
it sorts the block scan, loads extents and linked inodes only, uses 16 worker threads,
and uses fast queries. In our first generation prototype we managed to keep the
running time of SQCK within 1.5 times of e2fsck runtime.

We show in more detail how each of the scan and load optimization principles
improve the runtime significantly by turning off one optimization feature at a time.
The runtime of each of these unoptimized versions are compared relative to the
fully optimized SQCK.

First, the sorted job queue is disabled such that we scan the file system logically.
Figure 4.16 shows that for a large file system (e.g., 800 GB), sorting the job queue
plays a significant role; scanning the file system logically takes almost 3 times
as long as the fully optimized one. Note that in this experiment, we disabled the
loading phase to compare only the scan performance. The serial scanning for the
100 GB file system is 8 seconds faster than the fully optimizedSQCK because the

79

File System Partition Size (GB)
1 10 100 800

N
or

m
al

iz
ed

 S
Q

C
K

 S
ca

n
T

im
e

0

1

2

3

5.
9 49 21
2

13
596.

0

49

20
4

38
43

5.
9

49
1

21
2

14
60

Fully optimized SQCK
Serial scanning
Sorted block scanning

Figure 4.16:Scan time improvement with sorted queue. This bar graph shows
the time to scan each file system without loading. In each set,the left-most to right-
most bars show the fully optimized SQCK, the logical scan, and the sorted scan
with only 1 thread. The values are normalized to the fully optimized SQCK time.

file system was almost not fragmented at all; the advantage ofthe sorted scanning
is noticeable for fragmented and/or big file systems.

Second, we show the importance of making the initial table compact. Fig-
ure 4.17 shows the slowdown of two unoptimized versions: onethat loads all in-
odes, and one that loads direct pointers instead of extents.When loading all inodes,
the runtime is increased significantly; for 800 GB file systems, 97 million inodes
will be loaded out of which only 900 thousand have non-zero link counts. When
loading direct pointers, the runtime increases dramatically. For the 100 GB file
system, the DirectPointerTable already consumes 360 MB, while the ExtentTable
only consumes 9 MB.

Third, Figure 4.18 shows how multiple threads enable us to significantly over-
lap scan and load time. When the number of worker threads is reduced to one, the
slowdown is almost 1.5 times in all file systems. For large filesystems, increasing
the number of threads gives a faster runtime; at 800 GB, using16 worker threads
improves the runtime.

In summary, our evaluation of the first generation prototypeof SQCK shows
that SQCK obtains comparable performance to e2fsck. In the next generation of
SQCK, we plan to perform two additional enhancements. First, some checks can
be merged so that the table-scan time can be reduced. If the checks find a prob-

80

File System Partition Size (GB)
1 10 100 800

N
or

m
al

iz
ed

 S
Q

C
K

 S
ca

n+
Lo

ad
 T

im
e

0

1

2

3

7.
6 79 28
3

17
69

15

14
9

N
A

N
A

10

10
1

75
1

N
A

Fully optimized time
Loading all inodes
Using block pointer
table

Figure 4.17:Making the table compact. The bar graph shows the slowdown of
scan and load time when we load big tables. In each set, the left-most to right-most
bars show the fully optimized SQCK, fully optimized SQCK butwith loading all
inodes, and loading direct pointers instead of extents. Thevalues are normalized
to the fully optimized SQCK time. “NAs” imply experiments that do not finish in 3
hours.

lem, then nested sub-checks will be run to pinpoint the actual problem. Second, we
plan to run some checks and repairs concurrently by utilizing the information de-
pendency graph in Figure 4.11. The graph provides the dependency tree that tells
which checks and repairs are safe to run in parallel. With a faster overall check
time, we hope file system developers will be encouraged to write as many rules as
needed.

4.6 Conclusion

We have found that declarative queries can succinctly express the many different
types of checks and repairs that fsck performs. Our experience also shows that
writing checks and repairs in declarative queries is relatively straightforward; each
query is written in a few iterative refinement. A complex check or repair, with a
little bit of help from C code, can be broken into several short queries that are easy
to understand. On average, each query we have written is 7 lines long, and the
longest one is 22 lines. Furthermore, only 24 repairs require help from C code. The
functionalities of the corresponding C code are generally simple; C code is only

81

File System Partition Size (GB)
1 10 100 800

N
or

m
al

iz
ed

 S
Q

C
K

 S
ca

n+
Lo

ad
 T

im
e

0

1

2

10 11
2

35
2 24

85

7.
5 78 29
6

19
29

7.
6 79 28
3

17
697.
6 81

34
3

17
84

1 thread
8 threads
16 threads − fully optimized
32 threads

Figure 4.18:Overlapping scan and load time.The bar graphs show the runtime
of different runs that use different number of threads. Withone thread, the runtime
is the worst as we cannot utilize the idle time during scanning. The values shown
are normalized to fully optimized SQCK time with 16 threads.

used to run a set of queries and iterate the query results. Note that this is different
than how C code is used for cross-checking in e2fsck, which tends to make a simple
check hard to understand and debug.

In conclusion, complexity is the enemy of reliability. Current approaches de-
scribe recovery at a very low-level: thousands of lines of C code. Thus, recovery
code is complex and hard to get right. We instead advocate a higher-level strategy.
By encapsulating the logic of a file system checker in a set of declarative queries,
we provide a more concise description of what the checker should do. In doing so,
we believe we have taken an important step towards improvingthe robustness of
file system checking.

Nevertheless, SQCK is not the last word in file system checking; it is still pos-
sible that developers write bad queries. In this case, applying more formal tech-
niques that find bugs [41] will definitely help and thus evolvethe code towards a
less-buggy future. What SQCK provides is a nice framework for implementing
a checker; if bugs are found, we believe that SQCK-style implementation will be
easier to fix than an implementation in C code.

82

83

Chapter 5

EDP: A Static Analysis Tool for
Error-Code Propagation

“Should we pass any errors back?”
– A comment in CIFS (file.c, line 1869)

The reliability of file systems depends in part on how well they propagate er-
rors. Thus, in this chapter, we investigate the problem ofincorrect error code
propagation. To be properly handled, a low-level error code (e.g., an “I/O error”
returned from a device driver) must be correctly propagatedto the appropriate code
in the file system. Further, if the file system is unable to recover from the fault,
it may wish to pass the error up to the application, again requiring correct error
propagation.

To analyze how errors are propagated in file and storage system code, we have
developed a static source-code analysis technique. Our technique, namedError
Detection and Propagation (EDP)analysis, shows how error codes flow through
the file system and storage drivers. EDP performs a dataflow analysis by construct-
ing a function-call graph showing how error codes propagatethrough return values
and function parameters.

We have applied EDP analysis to all file systems and three major storage device
drivers (SCSI, IDE, and Software RAID) implemented in Linux2.6. We find that
error handling is occasionally correct. Specifically, we see that low-level errors
are sometimes lost as they travel through the many layers of the storage subsystem:
out of the 9022 function calls through which the analyzed error codes propagate,
we find that 1153 calls (13%) do not correctly save the propagated error codes.

84

Our detailed analysis enables us to make a number of conclusions. First, we
find that the more complex the file system (in terms of both lines of code and num-
ber of function calls with error codes), the more likely it isto incorrectly propagate
errors; thus, these more complex file systems are more likelyto suffer from silent
failures. Second, we observe that I/O write operations are more likely to neglect
error codes than I/O read operations. Third, we find that manyviolations are not
corner-case mistakes: the return codes of some functions are consistently ignored,
which makes us suspect that the omissions are intentional. Finally, we show how
inter-module calls play a major part in causing incorrect error propagation, but that
chained propagations do not.

The rest of this paper is organized as follows. We first describe our methodol-
ogy and present our results in Section 5.1 and 5.2 respectively. We then describe
our deeper analysis in Section 5.3 in order to understand theroot causes of the
problem.

5.1 Methodology

To understand the propagation of error codes, we have developed a static analysis
technique that we nameError Detection and Propagation (EDP). In this section,
we identify the components of Linux 2.6 that we will analyze and describe EDP.

5.1.1 Target Systems

In this paper, we analyze how errors are propagated through the file systems and
storage device drivers in Linux 2.6.15.4. We examine all Linux implementations
of file systems that are located in 51 directories. These file systems are of different
types, including disk-based file systems, network file systems, file system proto-
cols, and many others. Our analysis follows requests through the virtual file system
and memory management layers as well. In addition to file systems, we also exam-
ine three major storage device drivers (SCSI, IDE, and software RAID), as well as
all lower-level drivers. Beyond these subsystems, our toolcan be used to analyze
other Linux components as well.

5.1.2 EDP Analysis

The basic mechanism of EDP is a dataflow analysis: EDP constructs a function-
call graph covering all cases in which error codes propagatethrough return values
or function parameters. To build EDP, we harness the C Intermediate Language
(CIL) [97]. CIL performs source-to-source transformationof C programs and thus

85

Construction
Channel

Analysis
Channel

construction
Channel
construction:

dataflow
analysis

Categorize
error−complete,
error−broken
channels

Fault inject
broken channel

Endpoints

call path,

Information

EIO

EROFS

ENOMEM

....

Error Code

Figure 5.1:EDP Architecture. The diagram shows the framework for Error De-
tection and Propagation (EDP) analysis of file and storage systems code.

can be used in the analysis of large complex programs such as the Linux kernel.
The EDP analysis is written as a CIL extension in 4000 lines ofcode in the OCaml
language.

The abstraction that we introduce in EDP is that error codes flow alongchan-
nels, where a channel is the set of function calls between where anerror code is first
generated and where it is terminated (e.g., by being either handled or dropped). As
shown in Figure 5.1, EDP contains three major components. The first component
identifies the error codes that will be tracked. The second constructs the channels
along which the error codes propagate. Finally, the third component analyzes the
channels and classifies each as being either complete or broken.

Table 5.1 reports the EDP runtime for different subsystems,running on a ma-
chine with 2.4 GHz Intel Pentium 4 CPU and 512 MB of memory. Overall, EDP
analysis is fast; analyzing all file systems together in a single run only takes 47
seconds. We now describe the three components of EDP in more detail.

Error Code Information

The first component of EDP identifies the error codes to track.One example isEIO,
a generic error code that commonly indicates I/O failure andis used extensively
throughout the file system; for example, in ext3,EIO touches 266 functions and
propagates through 467 calls. BesidesEIO, many kernel subsystems commonly
use other error codes as defined ininclude/asm-generic/errno.h. In total,
there are hundreds of error codes that are used for differentpurposes. We report our

86

Single Full Subsystem
Subsystem (seconds) (seconds) Size (Kloc)
VFS 4 – 34
Mem. Mgmt. 3 – 20
XFS 8 13 71
ReiserFS 3 8 24
ext3 2 7 12
Apple HFS 1 6 5
VFAT 1 5 1
All File Systems Together 47 372

Table 5.1:EDP Performance. The table shows the EDP runtime for different
subsystems. “Single” runtime represents the time to analyze each subsystem in
isolation without interaction with other subsystems (e.g., VFS and MM). “Full”
runtime represents the time to analyze a file system along with the virtual file system
and the memory management. The last row reports the time to analyze all of the
file systems together.

findings on the propagation of 34 basic error codes that are mostly used across all
file systems and storage device drivers. Table 5.2 lists these 34 basic error codes.
These error codes can also be found ininclude/asm-generic/errno-base.h.

Channel Construction

The second component of EDP constructs thechannelin which the specified er-
ror codes propagate. A channel can be constructed from function calls and asyn-
chronous wake-up paths; in our current analysis, we focus only on function calls.

We define a channel by its two endpoints: generation and termination. Thegen-
eration endpointis the function that exposes an error code, either directly through
a return value (e.g., the function contains areturn -EIO statement) or indirectly
through a function argument passed by reference. After finding all generation end-
points, EDP marks each function that propagates the error codes;propagating func-
tions receive error codes from the functions that they call and then simply propa-
gate them in a return value or function parameter. Thetermination endpointis the
function in which an error code is no longer propagated in thereturn value or a
parameter of the function.

One of the major challenges we address when constructing error channels is
handling function pointers. The typical approach for handling function pointers is
to implement a points-to analysis [67] that identifies the set of real functions each

87

Error Integer
Codes Value Description
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 I/O error
ENXIO 6 No such device or address
E2BIG 7 Argument list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file number
ECHILD 10 No child processes
EAGAIN 11 Try again
ENOMEM 12 Out of memory
EACCES 13 Permission denied
EFAULT 14 Bad address
ENOTBLK 15 Block device required
EBUSY 16 Device or resource busy
EEXIST 17 File exists
EXDEV 18 Cross-device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory
EISDIR 21 Is a directory
EINVAL 22 Invalid argument
ENFILE 23 File table overflow
EMFILE 24 Too many open files
ENOTTY 25 Not a typewriter
ETXTBSY 26 Text file busy
EFBIG 27 File too large
ENOSPC 28 No space left on device
ESPIPE 29 Illegal seek
EROFS 30 Read-only file system
EMLINK 31 Too many links
EPIPE 32 Broken pipe
EDOM 33 Math argument out of domain of func
ERANGE 34 Math result not representable

Table 5.2: 34 Basic Error Codes. The table lists the 34 basic er-
ror codes that we analyze. These error codes can also be foundin
include/asm-generic/errno-base.h.

88

function pointer might point at; however, field-sensitive points-to analyses can be
expensive. Therefore, we customize our points-to analysisto exploit the systematic
structure that these pointers exhibit.

First, we keep track of all structures that have function pointers. For example,
the VFS read and write interfaces are defined as fields in thefile ops structure:

struct file_ops {
int (*read) ();
int (*write) ();

};

Since each file system needs to define its ownfile ops, we automatically find
all global instances of such structures, look for the function pointer assignments
within the instances, and map function-pointer implementations to the function
pointer interfaces. For example, ext2 and ext3 define their file operations like this:

struct file_ops ext2_f_ops {
.read = ext2_read;
.write = ext2_write;

};
struct file_ops ext3_f_ops {

.read = ext3_read;

.write = ext3_write;
};

Given such global structure instances, we add the interfaceimplementations
(e.g., ext2 read) to the implementation list of the corresponding interfaces (e.g.,
file ops→read). Although this technique connects most of the mappings, a
function pointer assignment could still occur in an instruction rather than in a global
structure instance. Thus, our tool also visits all functions and finds any assignment
that maps an implementation to an interface. For example, ifwe find an assign-
ment such asf op->read = ntfs read, then we addntfs read to the list of
file ops→read implementations.

In the last phase, we change function pointer calls to directcalls. For example,
if VFS makes an interface call such as(f op->read)(), then we automatically
rewrite such an assignment to:

switch (...) {
case ext2: ext2_read(); break;
case ext3: ext3_read(); break;
case ntfs: ntfs_read(); break;
...

}

89

Across all Linux file systems and storage device drivers, there are 191 structural
interfaces (e.g., file ops), 904 function pointer fields (e.g., read), 5039 imple-
mentations (e.g., ext2 read), and 2685 function pointer calls (e.g.,(f op->read)()).
Out of 2865 function pointer calls, we connect all except 564calls (20%). The
unconnected 20% of calls are due to indirect implementationassignment. For ex-
ample, we cannot map assignment such asf op->read = f, wheref is either a
local variable or a function parameter, and not a function name. While it is feasible
to traceback such assignments using stronger and more expensive analysis, we as-
sume that major interfaces linking modules together have already been connected
as part of global instances. If all calls are connected, moreof the error propagation
chain can be analyzed, which means more violations are likely to be found.

Channel Analysis

The third component of EDP distinguishes two kinds of channels: error-complete
and error-broken channels. Anerror-completechannel is a channel that minimally
checks the occurrence of an error. An error-complete channel thus has this property
at its termination endpoint:

∃ if (expr) { ... }, where
errorCodeV ariable ⊆ expr

which states that an error code is considered checked if there exist anif condition
whose expression contains the variable that stores the error code. For example, the
function in the code segment below carries an error-complete channel because the
function saves the returned error code (line 2) and checks the error code (line 3):

1 void goodTerminationEndpoint() {
2 int err = generationEndpoint();
3 if (err)
4 ...
5 }
6 int generationEndpoint() {
7 return -EIO;
8 }

Note that an error could be checked but not handled properly (e.g., no error
handling in theif condition). Since error handling is usually specific to eachfile
system, and hence there are many instances of it, we decided to be “generous” in
the way we define how error is handled (i.e., by just checking it). More violations
might be found when we incorporate all instances of error handling.

90

An error-brokenchannel is the inverse of an error-complete channel. In par-
ticular, the error code is eitherunsaved, unchecked, or overwritten. For example,
the function below carries an error-broken channel of unchecked type because the
function saves the returned error code (line 2) but it never checks the error before
the function exits (line 3):

1 void badTerminationEndpoint() {
2 int err = generationEndpoint();
3 return;
4 }

An error-broken channel is a serious file system bug because it can lead to a
silent failure. In a few cases, we inject faults in error-broken channels to confirm
the existence of silent failures. We utilize our block-level fault injection technique
(described in Section 2.4) to exercise error-broken channels that relate to disk I/O.
In a broken channel, we look for two pieces of information: which workload and
which failure led us to that channel. After finding the necessary information, we
run the workload, inject the specific block failure, and observe the I/O traces and
the returned error codes received in upper layers (e.g., the application layer) to con-
firm whether a broken channel leads to a silent failure. The reader will note that
our fault-injection technique is limited to disk I/O related channels. To exercise
all error-broken channels, techniques such as symbolic execution and directed test-
ing [42, 49] that simulate the environment of the component in test would be of
great utility.

Limitations

Error propagation has complex characteristics: correct error codes must be re-
turned; each subsystem uses both generic and specific error codes; one error code
could be mapped to another; error codes are stored not only inscalar variables
but also in structures (e.g., control blocks); and error codes flow not only through
function calls but also asynchronously via interrupts and callbacks. In our static
analysis, we have not modeled all these characteristics. Nevertheless, by just fo-
cusing on the propagation of basic error codes via function call, we have found
numerous violations that need to be fixed. A more complete tool that covers the
properties above would uncover even more incorrect error handling.

91

5.2 Results

We have performed EDP analysis on all file systems and storagedevice drivers in
Linux 2.6.15.4. Our analysis studies how 34 basic error codes (listed in Table 5.2)
propagate through these subsystems. We examine these basicerror codes because
they involve thousands of functions and propagate across thousands of calls.

In these results, we distinguish three types of violations that make up an error-
broken channel: unsaved, unchecked, and overwritten errorcodes. Anunsaved
error code(Section 5.2.1) is found when a callee propagates an error code via the
return value, but the caller does not save the return value (i.e., it is treated as a
void-returning call even though it actually returns an error code). Throughout the
paper, we refer to this type of broken channel as a “bad call.” An unchecked error
code(Section 5.2.2) is found when a variable that may contain an error code is
neither checked nor used in the future; we always refer to this case as an unchecked
code. Anoverwritten error code(Section 5.2.3) is found when the container that
holds the error code is overwritten with another value before the previous error is
checked.

5.2.1 Unsaved Error Codes

First, we report the number of error-broken channels due to acaller simply not
saving the returned error code (i.e., the number of bad calls). The simplified HFS
code below shows an example of an unsaved error code. The function find init

accepts a new uninitializedfind data structure (line 2), allocates a memory space
for the search key field (line 3), and returns theENOMEM error code when the
memory allocation fails (line 5). However, one of its callers, file lookup, does
not save the returned error code (line 10) but tries to accessthesearch key field
which still points toNULL (line 11). Hence, a null-pointer dereference takes place
and the system could crash or corrupt data.

1 // hfs/bfind.c
2 int find_init(find_data *fd) {
3 fd->search_key = kmalloc(..)
4 if (!fd->search_key)
5 return -ENOMEM;
6 ...
7 }
8 // hfs/inode.c
9 int file_lookup() {
10 find_init(fd); /* NOT-SAVED E.C */
11 fd->search_key->cat = ...; /* BAD!! */

92

12 ...
13 }

To show how EDP is useful in finding error propagation bugs, webegin by
showing a sample of EDP analysis for a simple file system, Apple HFS (Sec-
tion 5.2.1). Then, we present our findings on all subsystems that we analyze (Sec-
tion 5.2.1). Finally, we discuss false positives (Section 5.2.1) and serious silent
failures caused by unsaved error codes (Section 5.2.1).

EDP on Apple HFS

Figures 5.2 and 5.3 depict the EDP output when analyzing the propagation of the 34
basic error codes in the Apple HFS file system. There are two important elements
that EDP produces in order to ease the debugging process. First, EDP generates an
error propagation graph (Figure 5.2) that only includes functions and function calls
through which the analyzed error codes propagate. From the graph, one can easily
catch all bad calls and functions that make the bad calls. Second, EDP provides a
table (Figure 5.3) that presents more detailed informationfor each bad call (e.g.,
the location where the bad call is made).

Using the information that EDP provides, we found three major error-handling
inconsistencies in HFS. First, 11 out of 14 calls tofind init drop the returned
error codes. As described earlier in this section, this bug could cause the system to
crash or corrupt data. Second, 4 out of 5 total calls to the function brec find are
bad calls (as indicated by the four black edges, E, D, N, and Q,found in the lower
left of the graph). The task of this function is to find a recordin an HFS node that
best matches the given key, and returnENOENT (no entry) error code if it fails. The
only call that saves this error code is made by the wrapper,brec find. Interest-
ingly, all 18 calls to this wrapper propagate the error code properly (as indicated by
all gray edges coming into the function).

Finally, 3 out of 4 calls tofree exts do not save the returned error code (la-
beled R, I, and J). This function traverses a list of extents and locates the extents
to be freed. If the extents cannot be found, the function returns EIO. More inter-
estingly, the developer wrote a comment “panic?” just before the return statement
(maybe in the hope that in this failure case the callers will call panic, which will
never happen if the error code is dropped). By and large, we found similar incon-
sistencies in all the subsystems we analyzed.

93

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 5.2:A Sample of EDP Output (The Graph). The figure depicts the EDP output for the HFS file system. Some
function names have been shortened to improve readability.As summarized in the legend in Figure 5.3, a gray node with
a thicker border represents a function that generates an error code. The other gray node represents the same thing, but
the function also propagates the error code received from its callee. A white node represents a good function, i.e. it either
propagates the error code to its caller or if it does not propagate the error code it minimally checks the error code. A
black node represents an error-broken termination endpoint, i.e. it is a function that commits the violation of unsaved
error codes. The darker and thicker edge coming out from a black node implies a broken error channel (a bad call);
an error code actually flows from its callee, but the caller drops the error code. For ease of debugging, each bad call
is labeled with a violation number whose detailed information can be found in the violation table in Figure 5.3. For
example, violation #E found in the bottom left corner of the graph is a bad call made bybrec updt prnt when calling
brec find, which can be located infs/hfs/brec.c line 345.

94

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super findinit super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete freefork catalog.c 228
G cat delete findinit catalog.c 213
H cat create findinit catalog.c 95
I file trunc freeexts extent.c 507
J file trunc freeexts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext readext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir findinit dir.c 68
P cat move findinit catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

Figure 5.3:A Sample of EDP Output (The Table and Legend).The top legend
describes the graph in Figure 5.2. For ease of debugging, each bad call is labeled
with a violation number whose detailed information can be found in the bottom vio-
lation table. For example, violation #E found in the bottom left corner of the graph
in Figure 5.2 is a bad call made bybrec updt prnt when calling brec find,
which can be located infs/hfs/brec.c line 345.

95

EDP on All File Systems and Storage Drivers

Figures 5.4 to 5.9 show EDP outputs for six more file systems whose error-propagation
graphs represent an interesting sample. EDP outputs for therest of the file systems
can be downloaded from our web site [57]. A small file system such as HFS+
has simple propagation chains, yet bad calls are still made.More complex error
propagation can be seen in ext3, ReiserFS, and IBM JFS; within these file systems,
error-codes propagate throughout 180 to 340 function calls. The error propaga-
tion in NFS is more structured compared to other file systems.Finally, among all
file systems we analyze, XFS has the most complex error propagation chain; al-
most 1500 function calls propagate error-codes. Note that each graph in the figures
was produced by analyzing each file system in isolation (i.e., the graph only shows
intra-module but not inter-module calls), yet they alreadyillustrate the complex-
ity of error code propagation in each file system. Manual codeinspection would
require a tremendous amount of work to find error-propagation bugs.

Next, we analyzed the propagation of error codes across all file systems and
storage device drivers as a whole. All inter-module calls were connected by our
EDP channel constructor, which connects all function pointer calls; hence, we were
able to catch inter-module bad calls in addition to intra-module ones. Tables 5.3,
5.4, and 5.5 summarize our findings. Note that the number of violations reported is
higher than the ones reported in the figures because we catch more bugs when we
analyze each file system in conjunction with other subsystems (e.g., ext3 with the
journaling layer, VFS, and memory management).

Surprisingly, out of 9022 error channels, 1153 (nearly 13%)constitute bad
calls. This appears to be a long-standing problem. We ran a partial analysis in
Linux 2.4 and found that the magnitude of incomplete error code propagation is es-
sentially the same; we found 61 bad calls in ext3 in Linux 2.4.20 , vs. 80 in 2.6.15.
In Section 5.3, we try to dissect the root causes of this problem.

False Positives

It is important to note that while the number of bad calls is high, not all bad
calls could cause damage to the system. The primary reason iswhat we call a
double error code; some functions expose two or more error codes at the same
time, and checking one of the error codes while ignoring the others can still be
correct. For example, in the ReiserFS code below, the error code returned from
sync dirty buffer does not have to be saved (line 8)if and only if the function
performs the check on the second error code (line 9); the buffer must be checked
whether it is is up-to-date.

96

HFS+ [22 bad / 84 calls, 26%]

Figure 5.4:EDP output for HFS+. The figures illustrate the prevalent problem of incomplete error-propagation across
different types of file systems. Details such as function names and violation numbers have been removed. Gray edges
represent calls that propagate error codes. Black edges represent bad calls. The number of edges are reported in [X / Y
, Z%] format where X and Y represent the number of black and all(gray and black) edges respectively, and Z represents
the fraction of X and Y. For more information, please see the legend in Figure 5.3.

97

ext3 [37 bad / 188 calls, 20%]

Figure 5.5:EDP output for ext3. Please see caption in Figure 5.4.

98

ReiserFS [35 bad / 218 calls, 16%]

Figure 5.6:EDP output for ReiserFS. Please see caption in Figure 5.4.

99

IBM JFS [61 bad / 340 calls, 18%]

Figure 5.7:EDP output for IBM JFS. Please see caption in Figure 5.4.

10
0

NFS Client [54 bad / 446 calls, 12%]

Figure 5.8:EDP output for NFS Client. Please see caption in Figure 5.4.

101

XFS [105 bad / 1453 calls, 7%]

Figure 5.9:EDP output for XFS. Please see caption in Figure 5.4.

102

File Systems

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

XFS 101 1457 71 6.9 1.4
Virtual FS 96 1149 34 8.4 2.9
IBM JFS 95 390 17 24.4 5.6
ext3 80 362 12 22.1 7.2
NFS Client 62 482 18 12.9 3.6
CIFS 43 339 21 12.7 2.1
ReiserFS 42 399 24 10.5 1.8
Mem. Mgmt. 40 351 20 11.4 2.0
Apple HFS+ 25 98 7 25.5 3.7
JFFS v2 24 153 11 15.7 2.2
Apple HFS 20 76 5 26.3 4.8
SMB 19 196 6 9.7 3.5
ext2 18 103 6 17.5 3.3
AFS 16 62 7 25.8 2.6
NTFS 15 186 18 8.1 0.9
NFS Server 15 265 14 5.7 1.2
NCP 13 169 5 7.7 2.6
UFS 12 44 5 27.3 2.6
JBD 10 43 4 23.3 2.6
FAT 9 81 4 11.1 2.9
Plan 9 9 80 4 11.2 2.4
System V 7 30 3 23.3 3.2
JFFS 7 56 5 12.5 1.4
UDF 6 50 9 12.0 0.7
MSDOS 5 39 1 12.8 9.3
VFAT 4 39 1 10.3 5.0
Minix 4 31 4 12.9 1.2

Table 5.3:Error-broken channels due to unsaved error codes. Tables 5.3, 5.4
and 5.5 report the number of bad calls found across all file systems and storage
device drivers in Linux 2.6.15.4. In each table, from left toright column we report
the name of the subsystem, the number of bad calls, the numberof error channels
(i.e., the number of calls to functions that propagate errorcodes), the size of the
subsystem, the fraction of bad calls over all error-relatedcalls (ratio of 2nd and
3rd column), and finally the number of violations per Kloc (ratio of 2nd and 4th
column). We categorize a directory as a subsystem.

103

File Systems (Cont’d)

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

FUSE 4 48 3 8.3 1.5
Automounter4 4 53 2 7.5 2.7
NFS Lockd 3 21 4 14.3 0.8
Relayfs 2 5 1 40.0 2.7
Partitions 2 3 4 66.7 0.6
ISO 2 19 3 10.5 0.7
HugeTLB Sup 2 10 1 20.0 3.0
Compr. ROM 2 3 1 66.7 4.5
ADFS 2 30 2 6.7 1.3
sysfs sup. 1 29 2 3.4 0.8
romfs sup. 1 3 1 33.3 2.4
ramfs sup. 1 6 1 16.7 6.0
QNX 4 1 8 2 12.5 0.9
proc fs sup. 1 44 6 2.3 0.2
OS/2 HPFS 1 18 6 5.6 0.2
FreeVxFS 1 4 2 25.0 0.7
EFS 1 3 1 33.3 1.4
devpts 1 2 1 50.0 6.2
Boot FS 1 9 1 11.1 1.2
BeOS 1 5 3 20.0 0.5
Automounter 1 41 2 2.4 1.0
Amiga FFS 1 34 3 2.9 0.3
exportfs sup. 0 1 1 0.0 0.0
Coda 0 149 3 0.0 0.0

Total 833 7278 366 – –
Average 16.3 142.7 7.2 17.0 2.4

Table 5.4: Error-broken channels due to unsaved error codes (Cont’d). Ta-
bles 5.3, 5.4 and 5.5 report the number of bad calls found across all file systems
and storage device drivers in Linux 2.6.15.4. Please see thecaption in Table 5.3.

104

Storage Drivers

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

SCSI (root) 123 628 198 19.6 0.6
IDE (root) 53 223 15 23.8 3.5
Block Dev (root) 39 195 36 20.0 1.1
Software RAID 31 290 32 10.7 1.0
SCSI (aacraid) 30 76 7 39.5 4.8
SCSI (lpfc) 14 30 16 46.7 0.9
Blk Dev (P-IDE) 11 17 8 64.7 1.5
SCSI aic7xxx 8 62 37 12.9 0.2
IDE (pci) 5 106 12 4.7 0.4
IDE legacy 2 3 3 66.7 0.8
Blk Layer Core 2 65 8 3.1 0.3
SCSI megaraid 1 30 6 3.3 0.2
Blk Dev (Eth) 1 5 2 20.0 0.7
SCSI (sym53c8) 0 6 10 0.0 0.0
SCSI (qla2xxx) 0 8 49 0.0 0.0

Total 320 1744 430 – –
Average 21.3 116.3 28.6 22.4 1.1

Table 5.5:Error-broken channels due to unsaved error codes (Cont’d). Ta-
bles 5.3, 5.4 and 5.5 report the number of bad calls found across all file systems and
storage device drivers in Linux 2.6.15.4. We categorize a directory as a subsystem.
Thus, for storage drivers, since different SCSI device drivers exist in the first-level
of thescsi/ directory, we put all of them as one subsystem. SCSI device drivers
that are located in different directories (e.g.,scsi/lpfc/, scsi/aacraid/) are
categorized as different subsystems. The same principle isapplied to IDE. Please
see the caption in Table 5.3.

105

journal_recover

sync_blockdev

filemap_fdatawait filemap_fdatawrite

journal_recover()
/* BROKEN CHANNEL */
sync_blockdev();

sync_blockdev()
ret = fm_fdatawrite();
err = fm_fdatawait();
if(!ret) ret = err;
/* PROPAGATE EIO */
return ret;

Figure 5.10:Silent error in journal recovery. In the figure on the left, EDP
marksjournal recover as a termination endpoint of a broken channel. The code
snippet on the right shows thatjournal recover ignores theEIO propagated by
sync blockdev.

1 // fs/buffer.c
2 int sync_dirty_buffer (buffer_head* bh) {
3 ...
4 return ret; // RETURN ERROR CODE
5 }
6 // reiserfs/journal.c
7 int flush_commit_list() {
8 sync_dirty_buffer(bh); // UNSAVED EC
9 if (!buffer_uptodate(bh)) {
10 return -EIO;
11 }
12 }

To ensure that the number of false positives we report is not overly large, we
manually analyze the code snippets around the bad calls we found to check whether
a second error code is being checked. Note that this manual process can be auto-
mated if we incorporate all types of error codes into EDP. We have found only a
total of 39 false positives out of 1192 bad calls, which have been excluded from the
numbers we report in this paper. Thus, the high numbers in Tables 5.3, 5.4, and 5.5
provide a hint to a real and critical problem.

Silent Failures: Manifestations of Unsaved Error Codes

To show that unsaved error codes represent a serious problemthat can lead to silent
failures, we injected disk block failures in two subsystems, JBD and NFS. For
injecting the faults, we use our methodology described in Section 2.4.

106

First, as shown in Figure 5.10, one serious silent failure arises during file sys-
tem recovery: the journaling block device layer (JBD) does not properly propa-
gate any block write failures, including inode, directory,bitmap, superblock, and
other block write failures. EDP unearths these silent failures by pinpointing the
journal recover function, which is responsible for file system recovery, as it
calls sync blockdev to flush the dirty buffer pages owned by the block device.
Unfortunately,journal recover does not save the error code propagated by
sync blockdev in the case of block write failures. This is an example where
the error code is dropped in the middle of its propagation chain; sync blockdev

correctly propagates theEIO error codes received from the two function calls it
makes.

Second, a similar problem occurs in the NFS server code. Froma similar fail-
ure injection experiment, we found that the NFS client is notinformed when a write
failure occurs during async operation. In the experiment, the client updates old
data and then sends async operation with the data to the NFS server. The NFS
server then invokes thenfsd dosync operation, which mainly performs three op-
erations similar to thesync blockdev call above. First, the NFS server writes
dirty pages to the disk; second, it writes dirty inodes and the superblock to disk;
third, it waits until the ongoing I/O data transfer terminates. All these three oper-
ations could return error codes, but the implementation ofnfsd dosync does not
save any return values. As a result, the NFS client will nevernotice any disk write
failures occurring in the server. Thus, even a careful, error-robust client cannot trust
the server to inform it of errors that occur.

In the NFS server code, we might expect that at least one return value would
be saved and checked properly. However, no return values aresaved, leading one
to question whether the returned error codes from thewrite or sync operations
are correctly handled in general. It could be the case that the developers are not
concerned about write failures. We investigate this hypothesis in Section 5.3.2.

5.2.2 Unchecked Error Codes

Lastly, we report the number of error-broken channels due toa variable that con-
tains an error code not being checked or used in the future. For example, in the
IBM JFS code below,rc carries an error code propagated fromtxCommit (line 4),
butrc is never checked.

1 // jfs/jfs_txnmgr.c
2 int jfs_sync () {
3 int rc;
4 rc = txCommit(); // UNCHECKED ’rc’

107

5 // No usage or check of ’rc’
6 // after this line
7 }

This analysis can also report false positives due to the double error code prob-
lem described previously. In addition, we also find the problem of overloaded
variablesthat contribute as false positives. We define a variable to beoverloaded
if the variable could contain an error code or a data value. For instance,blknum in
the QNX4 code below is an example of an overloaded variable:

1 // qnx4/dir.c
2 int qnx4_readdir () {
3 int blknum;
4 struct buffer_head *bh;
5 blknum = qnx4_block_map();
6 bh = sb_bread (blknum);
7 if (bh == NULL)
8 // error
9 }

In this code,qnx4 block map could return an error code (line 5), which is
usually a negative value.sb bread takes a block number and returns a buffer
head that contains the data for that particular block (line 6). Since a negative block
number will lead to aNULL buffer head (line 7), the error code stored inblknum
does not have to be explicitly checked. The developer believes that the other part
of the code will catch this error or eventually raise relatederrors. This practice
reduces the accuracy of our static analysis.

Since the number of unchecked error code reports is small (only 21 reported),
we were able to remove the false positives and find a total of 3 unchecked error
codes in file systems (CIFS, NFS Server, and JFS) and 2 in storage drivers (software
RAID and loopback driver).

5.2.3 Overwritten Error Codes

Broken channels can also be caused byoverwritten error codes, in which the con-
tainer that holds the error code is overwritten with anothervalue before the previous
error is checked. For example, the CIFS code below overwrites (line 6) the previous
error code received from another call (line 4).

1 // cifs/transport.c
2 int SendReceive () {

108

3 int rc;
4 rc = cifs_sign_smb(); // PROPAGATE E.C.
5 ... // No use of ’rc’ here
6 rc = smb_send(); // OVERWRITTEN
7 }

Currently, EDP detects overwritten error codes, but reports too many false pos-
itives to be useful. The biggest problem we have encounteredis due to the nature
of the error hierarchy: in many cases, a less critical error code is overwritten with a
more critical one. For example, in the memory management code below, when first
encountering a page error, the error code is set toEIO (line 6). Later, the function
checks whether the flags of amap structure carry a no-space error code (line 8). If
so, theEIO error code is overwritten (line 9) with a new error codeENOSPC.

1 // mm/filemap.c
2 int wait_on_page_writeback_range (pg, map) {
3 int ret = 0;
4 ...
5 if (PageError(pg))
6 ret = -EIO;
7 ...
8 if (test_bit(AS_ENOSPC, &map->flags))
9 ret = -ENOSPC;

10 if (test_bit (AS_EIO, &map->flags))
11 ret = -EIO;
12 return ret;
13 }

Manually inspecting the results obtained from EDP (only 12 reported), we have
identified five real cases of overwritten error codes: one each in AFS and FAT, and
three in CIFS.

5.3 Analysis of Results

In the following sections, we present four analyses wherebywe try to uncover
the root causes and impact of incomplete error propagation.Since the number of
unchecked and overwritten error codes is small, we only consider unsaved error
codes (bad calls) in our analyses; thus we use “bad calls” and“broken channels”
interchangeably from now on. First, we made a correlation between robustness and
complexity (Section 5.3.1). Second, we analyzed whether file systems and storage
device drivers give different treatment to errors occurring in I/O read vs. I/O write

109

By % Broken By Viol/Kloc
Rank FS Frac. FS Viol/Kloc

1 IBM JFS 24.4 ext3 7.2
2 ext3 22.1 IBM JFS 5.6
3 JFFS v2 15.7 NFS Client 3.6
4 NFS Client 12.9 VFS 2.9
5 CIFS 12.7 JFFS v2 2.2
6 MemMgmt 11.4 CIFS 2.1
7 ReiserFS 10.5 MemMgmt 2.0
8 VFS 8.4 ReiserFS 1.8
9 NTFS 8.1 XFS 1.4
10 XFS 6.9 NFS Server 1.2

Table 5.6:Least Robust File Systems.The table shows the ten least robust file
systems using two ranking systems. In the first ranking system, file system robust-
ness is ranked based on the fraction of broken channels over all error channels (the
5th column of Table 5.3). The second ranking system sorts filesystems based on
the number of broken channels found in every Kloc (the 6th column of Table 5.3).

operations (Section 5.3.2). From that analysis we find that many write errors are
neglected; hence we perform the next study in which we try to answer whether
ignored errors are corner-case mistakes or intentional choices (Section 5.3.3). In
the final analysis, we analyze whether chained error propagation and inter-module
calls play major parts in causing incorrect error propagation (Section 5.3.4).

5.3.1 Complexity and Robustness

In our first analysis, we would like to correlate the number ofmistakes in a subsys-
tem with the complexity of that subsystem. For file systems, XFS with 71 Kloc has
more mistakes than other, smaller file systems. However, this does not necessarily
imply that XFS is the least robust file system. Table 5.6 sortsthe robustness of each
file system based on two rankings:percentage-brokenandviol/kloc rankings. In
the first ranking system, file system robustness is ranked based on the fraction of
broken channels over all error channels (the 5th column of Table 5.3). The second
ranking system sorts file systems based on the number of broken channels found
in every Kloc (the 6th column of Table 5.3). In both rankings,we only include file
systems that are at least 10 Kloc in size with at least 50 error-related calls (i.e. we
only consider “complex” file systems).

A noteworthy observation is that ext3 and IBM JFS are ranked as the two least

110

robust file systems. This fact affirms our earlier findings on the robustness of ext3
and IBM JFS [106]. In this prior work, we found that ext3 and IBM JFS are incon-
sistent in dealing with different kinds of disk failures. Thus, it might be the case
that these inconsistent policies correlate with inconsistent error propagation.

Among storage device drivers, it is interesting to compare the robustness of
the SCSI and IDE subsystems. If we compare SCSI and IDE subsystems using
the percentage-broken ranking system, SCSI and IDE are almost comparable (21%
vs. 18%). However, if we compare them based on the viol/kloc ranking system,
then the SCSI subsystem is almost four times more robust thanIDE (0.6 vs. 2.1
errors/Kloc). Nevertheless it seems the case that SCSI utilizes basic error codes
much more than IDE does.

When the robustness of storage drivers and file systems is compared using the
percentage-broken ranking, on average storage drivers areless robust compared to
file systems (22% vs. 17%, as reported in the last rows of Table5.3). On the other
hand, in the viol/kloc ranking system, storage drivers are more robust compared to
file systems (1.1 vs. 2.4 mistakes/Kloc). From our point of view, the percentage-
broken ranking system is more valid because a subsystem could be comprised of
submodules that do not necessarily use error codes; what is more important is the
number of bad calls in the population of all error-related calls.

5.3.2 Neglected Write Errors

As mentioned in Section 5.2.1, we have observed that error codes propagated in
write or sync operations are often ignored. Thus, we investigate how manywrite
errors are neglected compared to read errors. This study is motivated by our find-
ings in that section as well as by our earlier findings that at least for ext3, read
failures are detected, but write errors are often ignored [106].

To perform this study, we filter out calls that do not relate toread and write
operations. Since it is impractical to do that manually, we use a simple string
comparison to mark calls that are relevant to our analysis. That is we only take
a caller→callee pair where the callee contains the stringread, write, sync, or
wait. We includewait-type calls because in many caseswait-type callees (e.g.,
filemap datawait) represent waiting for one or more I/O operations and could
return error information on the operation. Thus, in our study, write-, sync-, and
wait-type calls are categorized as write operations.

The upper half of Table 5.7 reports our findings. The last column shows how
often errors are ignored in the file system code. Interestingly, file systems have a
tendency to correctly handle error codes propagated fromread-type calls, but not
those fromwrite-type calls (4.3% vs. 19.6%). The 29 (4.3%) unsaved read error

111

Bad EC Frac.
Callee Type Calls Calls (%)

Read∗ 26 603 4.3
Sync 70 236 29.7
Wait 27 70 38.6
Write 80 598 13.4
Sync+Wait+Write 177 904 19.6

Specific Callee
filemap fdatawait 22 29 75.9
filemap fdatawrite 30 47 63.8
sync blockdev 15 21 71.4

Table 5.7: Neglected write errors in file system code. The table shows that
read errors are handled more correctly than write errors. The upper table shows
the fraction of bad calls over four category of calls: read, sync, wait, and write.
The later three can be categorized as a write operation. The lower table shows
neglected write errors for three specific functions. The 29 (∗) violated read calls
are all related to readahead and asynchronous read; in otherwords, all error codes
returned in synchronous reads are being saved and checked.

codes are all found in readahead operations in the memory management subsystem;
it might be acceptable to ignore prefetch read errors because such reads can be
reissued in the future whenever the page is actually read.

As discussed in Section 5.2.1, a function could return more than one error code
at the same time, and checking only one of them suffices. However, if we know
that a certain function only returns a single error code and yet the caller does not
save the return value properly, then we know that such a call is really a flaw. To find
real flaws in the file system code, we examined three importantfunctions that we
know only return single error codes:sync blockdev, filemap fdatawrite,
andfilemap fdatawait. A file system that does not check the returned error
codes from these functions would obviously let failures go unnoticed in the upper
layers.

The lower half of Table 5.7 reports our findings. Many error codes returned
from the three methods are simply not saved (> 63% in all cases). Two conclusions
might be drawn from this observation. First, this could suggest that higher-level
recovery code does not exist (since if it exists, it will not be invoked due to the
broken error channel), or it could be the case that errors areintentionally neglected.
We consider this second possibility in greater detail in thenext section.

112

0

200

400

600

800

1000

1153

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

C
um

ul
at

iv
e

#B
ad

 C
al

ls

C
um

ul
at

iv
e

F
ra

ct
io

n

Inconsistency Frequency

CDF of Inconsistency Frequency vs. #Bad Calls

Figure 5.11:Inconsistent calls frequency. The figure shows that inconsistent calls
are not corner-case bugs. The x-axis represents the inconsistent-call frequency of
a function. x=20% means that there is one bad call out of five total calls; x=80%
means that there are four bad calls out of five total calls. Theleft y-axis counts the
cumulative number of bad calls. For example, below the 20% mark, there are 80
bad calls that have an inconsistent-call frequency of less than 20%. As reported in
Tables 5.4 and 5.5, there exist a total of 1153 bad calls. The right y-axis shows the
cumulative fraction of bad calls over the 1153 bad calls.

5.3.3 Inconsistent Calls: Corner Case or Majority?

In this section, we consider the nature ofinconsistentcalls. For example, we found
that 1 out of 33 calls toide setup pci device does not save the return value.
One would probably consider this single call as an inconsistent implementation
because the majority of the calls to that function save the return value. On the other
hand, we also found that 53 out of 54 calls tounregister filesystem do not
save the return error codes. Assuming that most kernel developers are essentially
competent, this suggests that it may actually be safe to not check the error code
returned from this particular function.

To quantify inconsistent calls, we define theinconsistent call frequencyof
a function as the ratio of bad calls over all error-related calls to the function,
and correlate this frequency with the number of bad calls to the function. For
example, the inconsistent call frequencies foride setup pci blockdev and
unregister filesystem are 3% (1/33) and 98% (53/54) respectively and the
numbers of bad calls are 1 and 53 respectively.

113

Figure 5.11 plots the cumulative distribution function of this behavior. The
graph could be seen as a means to prioritize which bad calls tofix first. Bad calls
that fall below the 20% mark could be treated ascorner cases(i.e., we should be
suspicious on one bad call in the midst of four good calls to the same function).
On the other hand, bad calls that fall above the 80% mark couldhint that either
different developers make the same mistake and ignore it, orit is probably safe to
make such a “mistake”.

One perplexing phenomenon visible in the graph is that around 871 bad calls
fall above the 50% mark. In other words, they cannot be considered as corner-
case bugs; the developers might be aware of these bad calls, but probably just
ignore them. One thing we have learned from our recent work onfile system code
is that if a file system does not know how to recover from a failure, it has the
tendency to just ignore the error code. For example, ext3 ignores write failures
during checkpointing simply because it has no recovery mechanism (e.g., chained
transactions [60]) to deal with such failures. Thus, we suspect that there are deeper
design shortcomings behind poor error code handling; errorcode mismanagement
may be as much symptom as disease.

Our analysis is similar to the work of Engleret al. on findings bugs automat-
ically [40]. In their work, they use existing implementation to imply beliefs and
facts. Applying their analysis to our case, the bad calls that fall above the 80%
mark might be considered as good calls. However, since we areanalyzing the spe-
cific problem of error propagation, we use that semantic knowledge and demand
a discipline that promotes checking an error code in all circumstances, rather than
one that follows majority rules.

5.3.4 Characteristics of Error Channels

Finally, we study whether the characteristic of an error channel has an impact on
the robustness of error code propagation in that channel. Inparticular, we explore
two characteristics of error channels: one based on the error propagation distance
and one based on the location distance (inter- vs. intra-filecalls).

With the first characteristic, we would like to find out whether error codes are
lost near the generation endpoint or somewhere in the middleof the propagation
chain. We distinguish two calls: direct-error and propagate-error calls. In adirect-
error call, the callee is an error-generation endpoint. In apropagate-error call, the
callee is not a generation endpoint; rather it is a function that propagates an error
code from one of the functions that it calls (i.e., it is a function in the middle of the
propagation chain). Next, we define abaddirect-error (or propagate-error) call as
a direct-error (or propagate-error) call that does not savethe returned error code.

114

Bad EC Frac.
Calls Calls (%)

File Systems
Inter-module 307 1944 15.8
Inter-file 367 2786 13.2
Intra-file 159 2548 6.2

Storage Drivers
Inter-module 48 199 24.1
Inter-file 92 495 18.6
Intra-file 180 1050 17.1

Table 5.8:Calls based on location distance.The table shows that the fraction of
bad calls in inter-module calls is higher than the one in inter-file calls. Similarly,
inter-file calls are less robust than intra-file calls. Note that “inter-file” refers to
cross-file calls within the same module. Inter-file calls across different modules are
categorized as inter-module.

Initially, we assumed that the frequency of bad propagate-error calls would
be higher than that of bad direct-error calls; we assumed error codes tend to be
dropped in the middle of the chain rather than near the generation endpoint. It
turns out that the number of bad direct-error and propagate-error calls are similar
for file system code but the other way around for storage driver code. In particular,
for file systems, the ratio of bad over all direct-error callsis 10%, and the ratio of
bad over all propagate-error calls is 14%. For storage drivers, they are 20% and
15% respectively.

For the second characteristic, we categorized calls based on the location dis-
tance between a caller and a callee. In particular, we distinguish three calls: inter-
module, inter-file (but within the same module), and intra-file calls. Table 5.8 re-
ports that intra-file calls are more robust than inter-file calls, and inter-file calls are
more robust than intra-file calls. For example, out of 1944 inter-module calls in
which error codes propagate in file system, 307 (16%) of them are bad calls. How-
ever, out of 2786 inter-file calls within the same module, there are only 367 (13%)
bad calls. Intra-file calls only exhibit 6% bad calls. The same pattern occurs in
storage device drivers. Thus, we conclude that the locationdistance between the
caller and the callee plays a role in the robustness of the call.

115

5.4 Conclusion

In this chapter, we have analyzed the file and storage systemsin Linux 2.6 and
found that error codes are not consistently propagated. In the beginning of each
chapter of this dissertation, we have reprinted some developer comments we found
near some problematic cases (filenames and line numbers are shown inside the
parentheses). Unfortunately, there are more:

“Retval ignored?” – in SCSI (sg.c, 2612)

“Todo: handle failure.” – in SCSI (mac53c94.c, 504)

“Can this catch a write error?”– in SCSI (osst.c, 737)

“FIXME: Handle lost commands”– in SCSI (scsierror.c, 1139)

“Not much we can do if it fails anyway, ignore rc.”– in CIFS (file.c,
553)

“Ignore errors.” – in NCPFS (dir.c, 259)

“Never mind errors we might get here.”– in XFS (xfs mount.c, 1177)

These comments from developers indicate part of the problem: even when the
developers are aware they are not properly propagating an error, they do not know
how to implement the correct response. Given static analysis tools to identify the
source of bugs (such as EDP), developers may still not be ableto fix all bugs in a
straightforward manner.

Due to these observations, we believe it is thus time to rethink how failures
are managed in large systems. Preaching that developers follow error handling
conventions and hoping the resulting systems work as desired seems naive at best.
New approaches to error detection, propagation, and recovery are needed.

For future work, we advocate two approaches to help file and storage system
programmers avoid these types of mistakes. First, we propose building systems
with semantic error codes; with this approach, the system does not blindly believe
in the success or failure signal reported by an error code butinstead performs extra
checks to confirm whether the corresponding operation is successful or not. This
technique is similar to dynamic verification techniques [43]. Second, we propose
adopting themalloc-freeparadigm for error codes [82]. Specifically, once an er-
ror code is generated, it is treated as immutable and can onlybe destroyed if it

116

transforms to another error code or the corresponding failure is handled. If there
is a “dangling” error code, then the system has forgotten to check or handle cer-
tain faults. This new architecture ensures that errors do not disappear easily, hence
reducing the instances of silent failure.

117

Chapter 6

I/O Shepherding: A New
Reliability Infrastructure

“Note: todo: log error handler.”
– A comment in IBM JFS (jfslogmgr.c, line 222)

Modern disks, due to their complex and intricate nature [11], have a wide range
of “interesting” failure modes, including latent sector faults [79], block corrup-
tion [46, 53], transient faults [135], and whole-disk failure [115]. To store data
reliably, file systems need to handle all these failures properly. Our analysis in Sec-
tion 3.2 reveals that unfortunately file system failure handling is broken, primarily
due to the diffusion of I/O failure handling; the code that detects I/O failures and
performs recovery (such as retry or stopping the file system)is spread over different
places. This eventually leads to several problems. First, failure policies areillogi-
cally inconsistent; different failure handling techniques are used even undersimilar
failure scenarios unintentionally. Second, failure policies and mechanisms are tan-
gled; it is hard to separate failure policies (e.g., “detect block corruption”) from
their implementation (e.g., “read from a replica”). As a result of this tangled policy
and mechanism, neither can be modified without affecting theother, resulting in an
inflexible failure handling system.

As a way to mitigate the aforementioned problems, this chapter presents the
design, implementation, and evaluation of a new reliability infrastructure for file
systems calledI/O shepherding. With I/O shepherding, the reliability policies of a
file system are well-defined, easy to understand, powerful, and simple to tailor to
environment and workload. The I/O shepherd achieves these ends by interposing

118

on each I/O that the file system issues. The shepherd then takes responsibility for
the “care and feeding” of the request, specifically by executing a reliability policy
for the given block. Simple policies will do simple things, such as issue the request
to the storage system and return the resulting data and errorcode (success or failure)
to the file system above. However, the true power of shepherding lies in the rich set
of policies that one can construct, including sophisticated retry mechanisms, strong
sanity checking, the addition of checksums to detect data corruption, and mirrors
or parity protection to recover from lost blocks or disks.

The rest of this chapter is organized as follows. We first present the goals of
file system reliability (Section 6.1) and then the design of I/O shepherding (Sec-
tion 6.2). To show how we can easily specify reliability policies in this framework,
Section 6.3 presents some examples of policies that file system administrators can
specify. Section 6.4 then shows how we take an existing journaling file system,
Linux ext3, and transform it into a shepherding-aware file system, which we call
CrookFS. As part of this implementation, we also introduce anovel concept of
chained transactions(Section 6.4.1), which is a solution to the major problem of
failed intentions we found in journaling file systems (as described in Section 3.3).
Finally, in Section 6.5, we explore how to craft reliabilitypolicies and evaluate their
overheads.

6.1 Goals

The single underlying design principle of this work is thatreliability should be a
first-class file system concern.We believe a reliability framework should adhere
to the following three goals: simple specification, powerful policies, and low over-
head.

Simple specification:We believe that system developers should be able to spec-
ify reliability policies simply and succinctly. Writing code for reliability is
usually complex, given that one must explicitly deal with both misbehaving
hardware and rare events; it is especially difficult to ensure that recovery ac-
tions remain consistent in the presence of system crashes. We envision that
file system administrators will take on the role of faultpolicy writers; the I/O
shepherd should ease their task.

The I/O shepherd simplifies the job of a policy writer in two ways. First,
all reliability policies are written in a single locale (i.e., the shepherd layer).
This is achieved by routing all I/O requests to the shepherd layer first. As
the shepherd interposes on each request, it can apply the desired reliability

119

policies to the request. By writing policies in a centralized fashion, policies
are easier to maintain and debug.

Second, the I/O shepherd provides a diverse set of detectionand recovery
primitives that hide much of the complexity. For example, the I/O shepherd
takes care of both the asynchrony of initiating and waiting for I/O and keeps
multiple updates and new metadata consistent in the presence of crashes.
Policy writers are thus able to stitch together the desired reliability policy
with relatively few lines of code; each of the complex policies we craft (Sec-
tion 6.5) requires fewer than 80 lines of code to implement. The end result:
less code and (presumably) fewer bugs.

Powerful policies: We believe the reliability framework should enable not only
correct policies, but more powerful policies than currently exist in commod-
ity file systems today. Specifically, the framework should enable compos-
able, flexible, and fine-grained policies.

A composablepolicy allows the file system to use different sequences of
recovery mechanisms. For example, if a disk read fails, the file system can
first retry the read; if the retries continue to fail, the file system can try to read
from a replica. With shepherding, policy writers can compose basic detection
and recovery primitives in the manner they see fit.

A flexiblepolicy allows the file system to perform the detection and recov-
ery mechanisms that are most appropriate for the expected workload and
underlying storage system. For example, one may want different levels of
redundancy for temporary files in one volume and home directories in an-
other. Further, if the underlying disk is known to suffer from transient faults,
one may want extra retries in response. With I/O shepherding, administrators
can configure these policy variations for each mounted volume.

A fine-grainedpolicy is one that takes different recovery actions depending
on the block that has failed. Different disk blocks have different levels of
importance to the file system; thus, some disk faults are morecostly than
others and more care should be taken to prevent their loss. For example,
the loss of disk blocks containing directory contents is catastrophic [123];
therefore, a policy writer can specify that all directory blocks be replicated.
With I/O shepherding, policies are specified as a function ofblock type.

Low overhead: Users are unlikely to be willing to pay a large performance cost
for improved reliability. For reasonable performance, we have found that it
is critical to properly integrate reliability mechanisms with the consistency

120

management, layout, caching, and disk scheduling subsystems. Of course,
reliability mechanisms do not always add overhead; for example, a smart
scheduler can utilize replicas to improve read performance[71, 148].

6.2 Architecture

F i l e S y s t e mJ o u r n a l i n g C a c h e

D i s kG e n e r i c I / O [S c h e d u l i n g , D e v i c e I / O]
C rookFS I / O S h e p h e r dM a p sa n do t h e rs t a t eP o l i c yT a b l es u p e ri n o d ed i rd a t a R F C o kP o l i c yC o d eP o l i c yP r i m i t i v e s M e t ad a t a

Figure 6.1:System Architecture. The architecture of a file system containing an
I/O shepherd is shown. The file system proper (including journaling) and caching
subsystems sit above the I/O shepherd, but have been modifiedin key locations to
interact with the shepherd as necessary. The shepherd itself consists of a policy ta-
ble, which points to policy code that dictates the detectionand recovery strategy for
that particular block type. Beneath the shepherd is the generic I/O layer (including
disk scheduling, which is slightly modified as well) and one (or more) disks.

To manage the storage system in a reliable way, the I/O shepherd must be able
to interpose on every I/O request and response, naturally leading to an architecture
in which the shepherd is positioned between the file system and disks (Figure 6.1).
As shown therein, I/O requests issued from different components of a file system
(e.g., the file system, journaling layer, and cache) are all passedto the I/O shep-

121

herd. The shepherd unifies all reliability code in a single location, making it easier
to manage faults in a correct and consistent manner. The shepherd may modify
the I/O request (e.g., by remapping it to a different disk block) or perform addi-
tional requests (e.g., by reading a checksum block) before sending the request to
disk. When a request completes, the response is again routedthrough the shepherd,
which performs the desired fault detection and recovery actions, again potentially
performing more disk operations. After the shepherd has executed the reliability
policy, it returns the response (success or failure) to the file system.

6.2.1 Policy Table and Code

With I/O shepherding, the reliability policy of the file system is specified by apolicy
table; this structure specifies which code to execute when the file system reads or
writes each type of on-disk data structure (e.g., superblock, inode, or directory).
Each entry in the table points topolicy code, which defines the sequence of actions
taken for a block of a particular type. For example, given an ext3-based file system,
a policy writer can specify a different policy for each of its13 block types (as
shown in Table 6.1). The table could thus mandate replication of the superblock,
checksum protection for other metadata, and an aggressive retry scheme for user
data.

Although this design does not directly support different policies for individ-
ual files, the I/O shepherd allows a different policy table per mounted file system.
Thus, administrators can tailor the policy of each volume, abasic entity they are
accustomed to managing. For example, a/tmp volume could employ little protec-
tion to obtain high performance while an archive could add checksums and parity
to improve reliability at some performance cost.

6.2.2 Policy Metadata

To implement useful policies, an I/O shepherd often requires additional on-disk
state to track the location of various blocks it is using (e.g., the location of check-
sums, replicas, or parity blocks). Thus, to aid in the management of persistent
metadata, the I/O shepherd framework providesmaps. Some commonly used maps
are aCMap to track checksum blocks, anRMap to record bad block remappings,
and anMMap to track multiple replicas.

A policy can choose to use either astaticor dynamicmap for a particular type
of metadata. With static mapping, the association between agiven on-disk block
and its checksum or replica location is fixed when the file system is created. With
a dynamic map, new associations between blocks can be created over time.

122

Ext3 Structures Read Policy Write Policy
inode ChecksumWrite() ChecksumRead()
directory ChecksumWrite() ChecksumRead()
data bitmap ChecksumWrite() ChecksumRead()
inode bitmap ChecksumWrite() ChecksumRead()
indirect ChecksumWrite() ChecksumRead()
data RetryWrite() RetryRead()
super MirrorWrite() MirrorRead()
group descriptor ChecksumWrite() ChecksumRead()
journal super ChecksumWrite() ChecksumRead()
journal revoke ChecksumWrite() ChecksumRead()
journal descriptor ChecksumWrite() ChecksumRead()
journal commit ChecksumWrite() ChecksumRead()
journal data ChecksumWrite() ChecksumRead()

Table 6.1:Policy Table. The table presents an example of a policy table that a
policy writer can specify. The policy table specifies different policies for each of
the 13 block types in ext3. For example, the table mandates replication of the su-
perblock, checksum protection for other metadata, and an aggressive retry scheme
for user data. Section 6.3 will show the implementation of some of policy code.

There are obvious trade-offs to consider when deciding between static and dy-
namic maps. Static maps are simple to maintain but inflexible; for example, if a
static map is used to track a block and its copy, and one copy becomes faulty due
to a latent sector error, the map cannot be updated with a new location of the copy.

Dynamic maps are more flexible, as they can be updated as the file system
is running and thus can react to faults as they occur. However, dynamic maps
must be reflected to disk for reliability. Thus, updating dynamic maps consistently
and efficiently is a major challenge; we describe the problemand our approach to
solving it in more detail in Section 6.4.1.

6.2.3 Policy Primitives

To ease the construction of policy code, the shepherd provides a set ofpolicy prim-
itives. The primitives hide the complexity inherent to reliable I/O code; specifi-
cally, the primitives ensure that policy code updates on-disk structures in a single
transaction. Clearly, a fundamental tension exists here: as more functionality is
encapsulated in each primitive, the simpler the policy codebecomes, but the less
control one has over the reliability policy. Our choice has generally been to expose
more control to the policy writers.

123

The I/O shepherd provides five classes of reliability primitives. All primitives
return failure when the storage system itself returns an error code or when blocks
do not have the expected contents.

Read and Write: The I/O shepherd contains basic primitives for reading and
writing either a single block or a group of blocks concurrently from disk.
A specialized primitive reads from mirrored copies on disk:given a list of
blocks, it reads only the block that the disk scheduler predicts has the shortest
access time.

Integrity: On blocks that reside in memory, primitives are provided to compute
and compare checksums, compare multiple blocks, and perform strong sanity
checks (e.g., checking the validity of directory blocks or inodes).

Higher-level Recovery: The I/O shepherd contains primitives to stop the file
system with a panic, remount the file system read-only, or even reboot the
system. Primitives are also provided that perform semanticrepair depending
upon the type of the block (e.g., an inode or a directory block) or that run a
full fsck across the disk.

Persistent Maps: The I/O shepherd provides primitives for looking up blocks
in an indirection map and for allocating (or reallocating and freeing) new
entries in such a map (if it is dynamic).

Layout: To allow policy code to manage blocks for its own use (e.g., for check-
sums, remapped blocks, and replicas), the I/O shepherd can allocate blocks
from the file system. One primitive exposes information about the current
layout in the file system while a second primitive allocates new blocks, with
hooks to specify preferences for block placement. With control over block
placement, policy code can provide trade-offs between performance and re-
liability (e.g., by placing a replica near or far from its copy).

6.3 Example Policy Code

With all the shepherd’s features mentioned in the previous section, writing reliabil-
ity policies within the shepherd is more straightforward than in current approaches.
In this section, we show how the I/O shepherd enables one to specify reliability
policies that are traditionally implemented across different levels of the storage
stack. For example, one can specify policies that operate ona single block and are
often performed within disks (e.g., retrying, remapping, and checksums), policies

124

that operate across multiple blocks or multiple disks (e.g., mirrors and parity), and
finally, one can specify policies requiring semantic information about the failed
block and are usually performed by the file system (e.g., stopping the file system,
data structure repair, and fsck). A shepherd enables policies that compose all of
these strategies.

We now show the simplicity and power of the shepherd through anumber of
examples. The names of all policy primitives begin withIOS for clarity. We sim-
plify the pseudo-code by ignoring some of the error codes that are returned by the
policy primitives, such asIOS MapLookup andIOS MapAllocate.

The first example policy is based loosely on NTFS [106]. The NTFS policy
tries to keep the system running when a fault arises by first retrying the failed read
or write operation a fixed number of times; if it is unable to complete the operation,
the fault is simply propagated to the application. We show the read version of the
code here (the write is similar).

NTFSRead(DiskAddr D, MemAddr A)
for (int i = 0; i < RETRY_MAX; i++)

if (IOS_Read(D, A) == OK)
return OK;

return FAIL;

The code above takes the disk address D on which the file systemissues a read.
The IOS Read primitive sends the read request to the disk and put the content
from the disk address to the memory address A. If the read operation is successful,
the code returns success to the file system. Otherwise, the policy will repeat the
read forRETRY MAX times.

The second example policy loosely emulates the behavior of ReiserFS [106].
This policy chooses reliability over availability; whenever a write fault occurs, the
policy simply halts the file system by calling theIOS Stop primitive. By avoiding
updates after a fault, this conservative approach minimizes the chance of further
damage.

ReiserFSWrite(DiskAddr D, MemAddr A)
if (IOS_Write(D, A) == OK)

return OK;
else

IOS_Stop(IOS_HALT);

The next two examples show the ease with which one can specifypolicies that
detect block corruption. First, theSanityRead policy performs type-specific
sanity checking on the read block using a shepherd primitive(IOS SanityCheck).
Note in this example how the block type can be passed to and used by policy code.

125

For example, if the block is an inode block, then theIOS SanityCheck primi-
tive will perform specific inode checks (e.g., an inode being used should not have a
zero modification time).

SanityRead(DiskAddr D, MemAddr A, BlockT T)
if (IOS_Read(D, A) == FAIL)

return FAIL;
return IOS_SanityCheck(A, T);

Second, theChecksumRead policy below uses checksums to detect block
corruption; the policy code first finds the location of the checksum block by looking
up the checksum map (CMap), then concurrently reads both the stored checksum
and the data block (the checksum may be cached), and then compares the stored
and newly computed checksums.

ChecksumRead(DiskAddr D, MemAddr A)
DiskAddr cAddr;
ByteOffset off;
CheckSum onDisk;
// find the checksum block
IOS_MapLookupOffset(CMap, D, &cAddr, &off);
// read from checksum and D concurrently
if (IOS_Read(cAddr, &onDisk, D, A)==FAIL)

return FAIL;
// compare the stored and computed checksums
CheckSum calc = IOS_Checksum(A);
return IOS_Compare(onDisk, off, calc);

The next two examples compare how static and dynamic maps canbe used
for tracking replicas. First, theStaticMirrorWrite policy code assumes that
the mirror map,MMap, was configured for each block when the file system was
created. Thus, the code looks simple. This kind of policy code is useful for on-disk
structures that are stored in static locations (e.g., inodes in ext3).

StaticMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copyAddr;
IOS_MapLookup(MMap, D, ©Addr);
// write to both copies concurrently
return (IOS_Write(D, A, copyAddr, A));

Second,DynMirrorWrite checks to see if a copy already exists for the
block being written to; if the copy does not exist, the code picks a location for the
mirror and allocates (and persistently stores) an entry inMMap for this mapping.
Note that this policy needs to do more work than the static one; when a replica does

126

not exist, this policy needs to ask the file system to allocatea new block (via the
PickMirrorLoc primitive) and stores this new location in the mirror map (via
theIOS MapAllocate primitive). This kind of policy code is useful for on-disk
structures that are allocated dynamically on the fly (e.g., data blocks in ext3).

DynMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copyAddr;
// copyAddr is set to mirrored block
// or NULL if no copy of D exists
IOS_MapLookup(MMap, D, ©Addr);
if (copyAddr == NULL)

PickMirrorLoc(MMap, D, ©Addr);
IOS_MapAllocate(MMap, D, copyAddr);

return (IOS_Write(D, A, copyAddr, A));

The final two policy examples show how blocks can be remapped;the map of
remapped blocks is most naturally a dynamic map, since the shepherd does not
know a priori which writes will fail. The first remap code,RemapWrite, is re-
sponsible for the remapping; if a write operation fails, thepolicy code picks a new
location for that block, allocates a new mapping for that block in RMap, and tries
the write again.

RemapWrite(DiskAddr D, MemAddr A)
DiskAddr remap;
// remap is set to remapped block
// or to D if not remapped
IOS_MapLookup(RMap, D, &remap);
if (IOS_Write(remap, A) == FAIL)

PickRemapLoc(RMap, D, &remap);
IOS_MapAllocate(RMap, D, remap);

return IOS_Write(remap, A);

The second remap code,RemapRead, checksRMap to see if this block has
been previously remapped; the read to the disk is then redirected to the possibly
new location. Of course, all of these policies can be extended, for example, by
retrying if the disk accesses fail or stopping the file systemon failure.

RemapRead(DiskAddr D, MemAddr A)
DiskAddr remap;
IOS_MapLookup(RMap, D, &remap);
return IOS_Read(remap, A);

In summary, this section has shown how different policies can be specified
easily within the shepherd. With the ease of writing policies, we enable not only

127

file system developers, but also file system administrators to write the policies that
fit for their specific goals.

6.4 Implementation

A major challenge in implementing I/O shepherding is propersystems integration.
We now describe how to integrate I/O shepherding into an existing file system,
Linux ext3. For our prototype system, we believe that it is important to work with
an existing file system in order to leverage the optimizations of modern systems
and to increase the likelihood of deployment. We refer to theext3 variant with I/O
shepherding as CrookFS, named for the hooked staff of a shepherd.

Integrating shepherding with ext3 instead of designing a system from scratch
does introduce challenges in that it requires changes to thefile system consistency
management routines, layout engine, disk scheduler, and buffer cache, as well as
the addition of thread support. Many of these alterations are necessary to pass in-
formation throughout the system (e.g., informing the disk scheduler where replicas
are located so it can read the closer copy); some are requiredto provide improved
control to reliability policies (e.g., enabling a policy to control placement of on-disk
replicas).

Of those changes, the most important interaction between the shepherd and the
rest of the file system is in the consistency management subsystem. Most modern
file systems usewrite-ahead loggingto a journal to update on-disk structures in a
consistent manner [64]. Policies developed in the shepherdoften add new on-disk
state (e.g., checksums, or replicas) and thus must also update these structures atom-
ically. In most cases, doing so is straightforward. However, as described in Sec-
tion 3.3, we have found that journaling file systems suffer from a generalproblem
of failed intentions, which arises when the intent as written to the journal cannot
be realized due to disk failure during checkpointing. Thus,the shepherd incor-
porateschained transactions, a novel and more powerful transactional model that
allows policies to handle unexpected faults during checkpointing and still consis-
tently update on-disk structures. The shepherd provides this supporttransparently
to all reliability policies, as the required actions are encapsulated in various systems
primitives.

In this section, we devote most of our discussion to how we integrate CrookFS
with ext3 journaling to ensure consistency (Section 6.4.1), and then describe inte-
gration with other key subsystems (Section 6.4.2). Finally, we present the com-
plexity of CrookFS in Section 6.4.3.

128

6.4.1 Consistency Management

In order to implement some reliability policies, an I/O shepherd requires additional
data (e.g., checksum and replica blocks) and metadata (e.g., persistent maps). Keep-
ing this additional information consistent can be challenging. As an example, con-
sider policy code that dynamically creates a replica of a block; doing so requires
picking available space on disk for the replica, updating the mirror map to record
the location of the replica, and writing the original and replica blocks to disk. One
would like these actions to be performed atomically despitethe presence of crashes.

Given that the goal of I/O shepherding is to enable highly robust file systems,
we build upon the most robust form of journaling, data journaling. (Journaling
basics have been described in more detail in Section 3.3). Tounderstand how
CrookFS uses the ext3 data journaling to maintain consistency, we begin with two
strawman approaches (Section 6.4.1). Neither work; rather, we use them to illus-
trate some of the subtleties of the problem. We then present our working solution
with chained transactions (Section 6.4.1).

Strawman Shepherds

In the early strawmanapproach, the shepherd interposes on the preceding jour-
nal writes to insert its own metadata for this transaction. This requires splitting
policy code for a given block type into two portions: one for the operations to be
performed on the journal write for that block and one for operations on a check-
point. In thelate strawman, the shepherd appends a later transaction to the journal
containing the needed information. This approach assumes that the policy code
for a given block is invoked only at checkpoint time. We now describe how both
strawmen fail.

First, consider theDynMirrorWrite policy (presented in Section 6.3). On
the first write to a blockD, the policy code picks, allocates, and writes to a mirror
block C (denotedcopyAddr in the policy code); at this time, the data bitmapB’
and the mirror mapM are also updated to account forC. All of these actions must
be performed atomically relative to the writing ofD on disk.

The early strawman can handle theDynMirrorWrite policy, as shown in
Figure 6.2. When the early strawman sees the entry forD written to the journal
(T1), it invokes policy code to allocate an entry forC in M andB’ and to insertM
andB’ in the current transaction. WhenD is later checkpointed (T2), similar policy
code is again invoked so that the copyC is updated according to the mirror map
M . With the early strawman, untimely crashes do not cause problems because all
metadata is in the same transaction.

129M e mL o gF i x e d
W r i t e C o m m i t C h e c k p o i n t R e l e a s e

T 0 T 1 T 2 T 3
I DB I D B ' I D I D B I Dt bB I Dt b B I Dt b M IDB ' IDB 'MB ' t c t cB 'M C M Ct cB ' MB ' B '

Figure 6.2:Early Strawman for DynMirrorWrite. The figure shows how the
early strawman writes to a replica of a data blockD. Both in-memory (top) and
on-disk (bottom) states are shown.D is a data block,I an inode,B a bitmap,tb the
beginning of a transaction, andtc the commit block. Darker gray shading indicates
that blocks have been released after checkpointing.M e mL o gF i x e d

W r i t e C o m m i t C P F a i l R e l e a s e
T 0 T 1 T 2 T 4

I DB I D I D I D B I Dt bB I Dt b B I Dt b I It c R
R e m a p

T 3
I D IB I Dt b R

MB ' C r a s h
T 5 IR

B BB D t c t c t cDB B ' B 'M MB BD D
Figure 6.3: Early Strawman for RemapWrite. The figure illustrates how the
early strawman cannot deal with the problem of failed intentions.

Now, consider theRemapWrite policy (presented in Section 6.3). This policy
responds to the checkpoint failure of a blockD by remappingD to a new location,
R (denotedremap in the policy code). However, the early strawman cannot im-
plement this policy. As shown in Figure 6.3, after the write to a data blockD fails
(T2) the policy wants to remap blockD to R (T3), which implies that the bitmap
andRMap are modified (B’ andM). However, it is too late to modify the trans-
action that has been committed. Thus, if a crash occurs (T5) after the transaction
is released (T4), all metadata changes will be discarded and the disk will bein an
inconsistent state. Specifically, the data blockD is lost since the modifiedRMap
that has the reference toR has been discarded.

130 M e mL o gF i x e d W r i t e C o m m i t C P T M i r r o r R e l e a s e
T 0 T 1 T 2 T 4 a

I DB I D I D B I Dt bB I Dt b t ct bIt c C
N e w T x

T 3
I D IB I Dt b MB ' C r a s h

T 4 b IB D t c t cB B 'M MB BD DC B ' M MB 'B DC I B ' C
Figure 6.4:Late Strawman for DynMirrorWrite. The figure shows the incor-
rect timing of the new transaction commit.

More generally, the early strawman cannot handle any checkpoint failures that
result in metadata changes, because it must calculatea priori to the actual check-
point what will happen at checkpoint time. In Section 3.3, wehave referred to
this as the problem offailed intentions. Failed intentions occur when a commit to
the journal succeeds but the corresponding checkpoint doesnot; the intent of the
update (as logged in the journal) cannot be realized due to checkpoint failure.

We now examine the late strawman which only invokes policy code at check-
point time. Given that it is “too late” to modify a transaction at checkpoint time, the
late strawman adds another transaction with the new metadata. Unfortunately, the
late strawman cannot correctly handle theDynMirrorWrite policy, as shown in
Figure 6.4. During the checkpoint of blockD (T2), the late strawman invokes the
policy code, creates and updates the copyC as desired. After this transaction has
been released (T3), a new transaction containingB’ andM is added to the journal
(T4a). The problem with the late strawman is that it cannot handlea system crash
that occurs between the two transactions (i.e., T4b, which can occur betweenT3 and
T4a): D will not be properly mirrored with a reachable copy. When thefile system
recovers from this crash, it will not replay the transactionwriting D (andC) because
it has already been released and it will not replay the transaction containingB’ and
M because it has not been committed; as a result, copyC will be unreachable.
Thus, the timing of the new transaction is critical and must be carefully managed,
as we will see below.

Chained Transactions

We solve the problem of failed intentions with the development of chained trans-
actions. With this approach, like the late strawman, all metadata changes initiated

131

by policy code are made at checkpoint time and are placed in a new transaction;
however, unlike the late strawman, this new chained transaction is committed to
the journalbeforethe old transaction is released. As a result, a chained transaction
makes all metadata changes associated with the checkpoint appear to have occurred
at the same time.

To illustrate chained transactions we consider a reliability policy that combines
mirroring and remapping. We consider the case where this is not the first write to
the blockD (i.e., an entry in the mirror map should already exist) and it is thewrite
to the copyC that fails. Code pathsnot taken areslanted.

RemapMirrorWrite(DiskAddr D, MemAddr A)
DiskAddr copy, remap;
Status status1 = OK, status2 = OK;
IOS_MapLookup(MMap, D, ©);
// remap is set to D if not remapped

IOS_MapLookup(RMap, D, &remap);
if (copy == NULL)

PickMirrorLoc(MMap, D, ©);
IOS_MapAllocate(MMap, D, copy);

if (IOS_Write(remap, A, copy, A) == FAIL)
if (IOS_Failed(remap))

PickRemapLoc(RMap, D, &remap);
IOS_MapAllocate(RMap, D, remap);
status1 = IOS_Write(remap, A);

if (IOS_Failed(copy))
PickMirrorLoc(MMap, D, ©);
IOS_MapAllocate(MMap, D, copy);
status2 = IOS_Write(copy, A);

return ((status1==FAIL)||(status2==FAIL));

Figure 6.5 presents a timeline of the activity in the system with chained transac-
tions. With chained transactions, committing the originaltransaction is unchanged
as seen at timesT0 andT1 (policy code will be invoked when each of the blocks
in the journal is written, but its purpose is to implement thereliability policy of the
journal itself). When the data blockD is checkpointed, theRemapMirrorWrite
policy code is invoked forD. The policy code finds the copy location ofC (denoted
copy) and the potentially remapped location ofR (denotedremap). In our exam-
ple, we assume that writing to the copyC fails (T2); in this case, the policy code
allocates a new location forC (hence dirtying the bitmap,B’), writes the copy to a
new location, and updates the mirror mapM’ (T3). Our integration of the shepherd
primitive, IOS MapAllocate, with the ext3 journaling layer ensures that the
chained transaction containingB’ andM’ is committed to the journal (T4) before
releasing the original transaction (T5). At time T6 (not shown), when the chained

132M e mL o gF i x e d
W r i t e C o m m i t C P F a i l R e m a p M i r r o r

T 0 T 1 T 2 T 3
B I DB I D B I D B I DB I Dt b t c B I Dt b t cIDB IDB

C h a i n e d T x
T 4

B I D IDB
R e l e a s e

T 5
B I D IDBB I Dt b t c B I Dt b t c B I Dt b t cC t b t cM ' C Ct b t cM 'B ' B 'B ' M 'B ' B '

C
M M 'M '

Figure 6.5:Chained Transactions forRemapMirrorWrite. The figure shows
how chained transactions handle failed intentions.

transaction is checkpointed, the blocksB’ andM’ are finally written to their fixed
locations on disk; given that these are normal checkpoint writes, the relevant policy
code will be applied to these updates.

With a chained transaction, a crash cannot occur “between” the two related
transactions, because the second transaction is always committed before the first is
released. If the system crashes before the first transactionis released, all operations
will be replayed.

Chained transactions ensure that shepherd data and metadata are kept consistent
in the presence of crashes. However, if one is not careful, chained transactions
introduce the possibility of deadlock. Specifically, because CrookFS now holds
the previous checkpoint while waiting to commit the chainedtransaction, we must
avoid the two cases that can lead to circular dependencies. First, CrookFS must
ensure that sufficient space exists in the journal for all chained transactions; this
constrains the number of remappings (and subsequent chained transactions) that
can occur in any policy code. Second, CrookFS must use shadowcopies when
updating a shepherd metadata block that exists in a previoustransaction (just as it
does for its own metadata), instead of acquiring locks.

Non-Idempotent Policies

To maintain consistency, all failure scenarios must be considered, including re-
peated crashes during recovery. Repeated crashes will cause CrookFS to replay
the same transactions and their corresponding checkpoints. In such scenario, only
idempotentpolicy code will work correctly.

For example, consider a policy that protects data blocks with parity. Although
parity can be computed using an idempotent equation (P = D1⊕D2⊕ ...⊕Dn),

133

this approach performs poorly becauseN − 1 blocks must be read every time a
block is modified. However, the more efficient way of computing parity (Pnew =
Pold ⊕ Dold ⊕ Dnew) is non-idempotent sincePold andDold will be overwritten
with Pnew andDnew, respectively. Thus, repeated journal replays will incorrectly
calculate the parity block.

To handle non-idempotent policies such as parity, CrookFS provides an old-
value logging mechanism [52]. The old-value log annotates versions to distinguish
old and new values, and writes the old data and its corresponding version into
the log atomically. Thus, non-idempotent policy code must take care to read the
old values and log them into the old-value log, using supportwithin CrookFS.
Simplified policy code forParityWrite is as follows.

ParityWrite(DiskAddr D, MemAddr aNew)
DiskAddr P;
MemAddr aOld, apOld, apNew;
IOS_MapLookup(PMap, D, &P);
if (IOS_ReadStable(D,aOld,P,apOld) == FAIL)

return FAIL;
if (IOS_WriteAndLog(D,aOld,P,apOld) == FAIL)

return FAIL;
apNew = ComputeParity(apOld, aOld, aNew);
return (IOS_Write(D, aNew, P, apNew));

Reliability of the Journal and Shepherd Maps

A final complication arises when the reliability policy wishes to increase the pro-
tection of the journal or of shepherd metadata itself. Although there are a large
number of reasonable policies that do not add protection features to the journal
(since it is only read in the event of an untimely crash), somepolicies might wish
to add features (e.g., replication or checksumming). The approaches we describe
above do not work for the journal, since they use the journal itself to update other
structures properly. Thus, we treat journal replication, checksumming, and other
similar actions as a special case, mandating a restricted set of possible policies.

6.4.2 System Integration

To build effective reliability policies, the shepherd mustinteract with other com-
ponents of the existing file system. Below, we discuss these remaining technical
hurdles.

134

Semantic Information: To implement fine-grained policies, the shepherding layer
must have information about the current disk request; in ourimplementation,
shepherding must know the type of each block (e.g., whether it is an inode
or a directory) and whether the request is a read or a write in order to call the
correct policy code as specified in the policy table.

In the case where requests are issued directly from the file system, acquiring
this information is straightforward: the file system is modified to pass the
relevant information with each I/O call. When I/O calls are issued from
common file system layers (e.g., the generic buffer cache manager), extra
care must be taken. First, the buffer cache must track block type for its
file blocks and pass this information to the shepherd when calling into it.
Second, the buffer cache must only pass this information to shepherd-aware
file systems. A similar extension was made to the generic journaling and
recovery layers to track the type of each journaled block.

Threads: I/O shepherding utilizes threads to handle each I/O requestand any
related fault management activity. A thread pool is createdat mount time,
and each thread serves as an execution context for policy code. Thus, instead
of the calling context issuing a request directly and waiting for it to complete,
it enqueues the request and lets a thread from the pool handlethe request.
This thread then executes the corresponding policy code, returning success
or failure as dictated by the policy. When the policy code is complete, the
caller is woken and passed this return code.

We have found that a threaded approach greatly simplifies thetask of writing
policy code, where correctness is of paramount importance;without threads,
policy code was split into a series of event-based handlers that executed be-
fore and after each I/O, often executing in interrupt context and thus quite
difficult to program. A primary concern of our threaded approach is over-
head, which we explore in Section 6.5.2.

Legacy Fault Management:Because the shepherd now manages file system re-
liability, we removed the existing reliability code from ext3. Thus, the upper
layers of CrookFS simply propagate faults to the application. Note that some
sanity checks from ext3 are kept in CrookFS, since they are still useful in
detecting memory corruption.

One issue we found particularly vexing was correct error propagation; a
closer look revealed that ext3 often accidentally changed error codes or ig-
nored them altogether. In the previous chapter we have presented our static
analysis tool to find these bugs so we could fix them.

135

Layout Policy: Fault management policies that dynamically require disk space
(e.g., for checksum or replica blocks) must interact with the file system layout
and allocation policies. Since reliability policies are likely to care about the
location of the allocated blocks (e.g., to place blocks away from each other
for improved reliability), we have added two interfaces to CrookFS. The first
exposes information about the current layout in the file system. The second
allows a reliability policy to allocate blocks with optionsto steer block place-
ment. Policy code can use these two interfaces to query the file system and
request appropriate blocks.

Disk Scheduling: For improved performance, the disk scheduler should be inte-
grated properly with reliability policies. For example, the scheduler should
know when a block is replicated, and access the nearer block for better per-
formance [71, 148].

We have modified the disk scheduler to utilize replicas as follows. Our im-
plementation inserts a request for each copy of a block into the Linux disk
scheduling queue; once the existing scheduling algorithm selects one of these
requests to be serviced by disk, we remove the other requests. When the re-
quest completes, the scheduler informs the calling policy which replica was
serviced, so that faults can be handled appropriately (e.g., by trying to read
the other replica). Care must be taken to ensure that replicated requests are
not grouped and sent together to the disk.

Caching: The major issue in properly integrating the shepherd with the existing
buffer cache is ensuring that replicas of the same data do notsimultaneously
reside in the cache, wasting memory resources. By placing the shepherd
beneath the file system, we circumvent this issue entirely bydesign. When a
read is issued to a block that is replicated, the scheduler decides to read one
copy or the other; while this block is cached, the other copy will never be
read, and thus only a single copy can reside in cache.

Multiple Disks: One final issue arose from our desire to run CrookFS on multiple
disks to implement more interesting reliability policies.To achieve this, we
mount multiple disks using a concatenating RAID driver [33]. The set of
disks appears to the file system as one large disk, with the first portion of the
address space representing the first disk, the second portion of the address
space representing the second disk, and so forth. By informing CrookFS of
the boundary addresses between disks, CrookFS allocation policies can place
data as desired across disks (e.g., data on one disk, a replica on another).

136

Changes in Core OS
Chained transactions 26
Semantic information 600
Layout and allocation 176
Recovery 108
Total 910

Shepherd infrastructure
Thread model 900
Data structures 743
Read/Write + Chained Transactions 460
Layout and allocation 66
Scheduling 220
Sanity + Checksums + fsck + Mirrors 429
Support for multiple disks 645
Total 3463

Table 6.2:CrookFS Code Complexity. The table presents the amount of code
added to implement I/O shepherding as well as a breakdown of where that code
lives. The number of lines of code is counted by tallying the number of semi-colons
in code that we have added or changed.

6.4.3 Code Complexity

Table 6.2 summarizes the code complexity of CrookFS. The table shows that the
changes to the core OS were not overly intrusive (i.e., 910 C statements were added
or changed); the majority of the changes were required to propagate the semantic
information about the type of each block through the file system. Many more lines
of code (i.e., 3463) were needed to implement the shepherd infrastructure itself. We
are hopeful that incorporating I/O shepherding into file systems other than ext3 will
require even smaller amounts of new code, given that much of the infrastructure can
be reused.

6.5 Crafting a Policy

We now explore how I/O shepherding simplifies the construction of reliability poli-
cies. We make two major points in this section. First, the I/Oshepherding frame-
work does not add a significant performance penalty. Second,a wide range of use-
ful policies can be easily built in CrookFS, such as policiesthat propagate errors,
perform retries and reboots, policies that utilize parity,mirroring, sanity checks,

137

Propagate 8 Mirror 18
Reboot 15 Sanity Check 10
Retry 15 Multiple Lines of Defense 39
Parity 28 D-GRAID 79

Table 6.3:Complexity of Policy Code. The table presents the number of semi-
colons in the policy code evaluated in Section 6.5.

and checksums, and policies that operate over multiple disks. Overall, we find
that our framework adds less than 5% performance overhead oneven I/O-intensive
workloads and that no policy requires more than 80 lines of policy code to imple-
ment. Table 6.3 reports the number of lines of code to implement each reliability
policy.

We also make two relatively minor points. First, effective yet simple reliability
policies (e.g., retrying requests and performing sanity checks) are not consistently
deployed in commodity file systems, but they should be to improve availability and
reliability. Second, CrookFS is integrated well with the other components of the
file system, such as layout and scheduling.

6.5.1 Experimental Setup

The experiments in this section were performed on an Intel Pentium 4 machine with
1 GB of memory and up to four 120 GB 7200 RPM Western Digital EIDE disks
(WD1200BB). We used the Linux 2.6.12 operating system and built CrookFS from
ext3 therein.

To evaluate the performance of different reliability policies under fault-free
conditions, we use a set of well-known workloads: PostMark [80], which emu-
lates an email server, a TPC-B variant [138] to stress synchronous updates, and
SSH-Build, which unpacks and builds the ssh source tree. Table 6.4 shows the
performance on PostMark, TPC-B, and SSH-Build of eight reliability policies ex-
plored in more detail in this section, relative to unmodifiedext3.

To evaluate the reliability policies when faults occur, we stress the file system
using type-aware fault injection with a pseudo-device driver (Section 3.2.2). To
emulate a block failure, the pseudo-device simply returns the appropriate error code
and does not issue the operation to the underlying disk. To emulate corruption, the
pseudo-device changes bits within the block before returning the data. The fault
injection is type aware in that it can be selectively appliedto each of the 13 different
block types in ext3 (as shown in Table 6.1).

138

PostMark TPC-B SSH-Build
Linux ext3 1.00 1.00 1.00
Propagate 1.00 1.05 1.01
Retry and Reboot 1.00 1.05 1.01
Parity 1.14 1.27 1.02
MirrorNear 1.59 1.41 1.04
MirrorF ar 1.65 1.87 1.06
Sanity Check 1.01 1.05 1.01
Multiple Lines of Defense 1.10 1.28 1.01

Table 6.4:Performance Overheads. The table shows the performance overhead
of different policies in CrookFS relative to unmodified ext3. Three workloads are
run: PostMark, TPC-B, and ssh. Each workload is run five times; averages are
reported (there was little deviation). Running times for standard ext3 on PostMark,
TPC-B, and SSH-Build are 51, 29.33, 68.19 seconds respectively. The Multiple
Lines of Defense policy incorporates checksums, sanity checks, and mirrors.

6.5.2 Propagate

The first and most basic question we answer is: how costly is itto utilize the
shepherding infrastructure within CrookFS? To measure thebasic overhead of I/O
shepherding, we consider the simplest reliability policy:a null policy that simply
propagates errors through the file system. This basic propagate policy is extremely
simple, requiring only 8 statements.

The second line of Table 6.4 reports the performance of the propagate policy,
normalized with respect to unmodified Linux ext3. For the propagate policy, the
measured slowdowns are 5% or less for all three workloads. Thus, we conclude that
the basic infrastructure and its threaded programming model do not add noticeable
overhead to the system.

6.5.3 Reboot vs. Retry

We next show the simplicity of building robust policies given our I/O shepherding
framework. We use CrookFS to implement two straightforwardpolicies: the first
halts the file system upon a fault (with optional reboot); thesecond retries the failed
operation a fixed number of times and then propagates the error code to the appli-
cation. The pseudo code for these two policies was presentedearlier (Section 6.3).
As shown in Table 6.3 the actual number of lines of code neededto implement
these policies is very small: 15 for each.

139

path open* ch mod* read readli nk getdi r creat li nk mkdi r rename s ymli nk wri t e t runc rmdi r unli nk mount f s ync* recover yumount l ogwri t e

Reboot:

i n o d ed i rb i t m a pi b i t m a pi n d i r e c td a t as u p e rg ¸ d e s cj ¸ s u p e rj ¸ r e v o k ej ¸ d e s cj ¸ c o m m i tj ¸ d a t a
Retry:

i n o d ed i rb i t m a pi b i t m a pi n d i r e c td a t as u p e rg Ë d e s cj Ë s u p e rj Ë r e v o k ej Ë d e s cj Ë c o m m i tj Ë d a t a
Figure 6.6:Comparison of Ext3, Reboot, and Retry Policies.The table shows
how CrookFS with a reboot (top) and a retry (bottom) policy react to read faults
(compared to the original ext3 recovery behavior shown in Figure 3.3 in Sec-
tion 3.2). Along the x-axis, different workloads are shown;each workload stresses
either a posix API call or common file system functionality (e.g., path lookup).
Along the y-axis, the different data structures of the file system are presented. Each
(x,y) location presents the results of a read fault injection of a particular data struc-
ture (y) under the given workload (x). The four symbols (/, −, |, andO) represent
the detection and recovery techniques used by the file systems.

To demonstrate that CrookFS implements the desired reliability policy, we in-
ject type-aware faults on read operations. To stress many paths within the file sys-
tem, we utilize a synthetic workload that exercises the POSIX file system API. The
three graphs in Figure 6.6 show how the default ext3 file system, the Reboot, and
Retry policies respond to read faults for each workload and for each block type.
The top graph (taken from Figure 3.3 in Section 3.2.3) shows that the default ext3
file system does not have a consistent policy for dealing withread faults; for ex-
ample, when reading an indirect block fails as part of the filewriting workload, the

140

0

40

80

tx
/s

ec

Throughput

No Failure

0

40

80

tx
/s

ec

System Reboot

0

40

80

tx
/s

ec
FS Reboot

0

40

80

 0 100 200 300

tx
/s

ec

Time (sec)

Retry(~1 Sec)

Figure 6.7:Reboot vs. Retry (Throughput).The throughput of PostgreSQL 8.2.4
running pgbench is depicted. The database is initialized with 1.5 GB of data, and
the workload performs a series of simple SELECTs. Four graphs are presented:
the first with no fault injected (top), and the next three witha transient fault. The
bottom three graphs show the different responses from threedifferent policies: full
system reboot, file system reboot, and retry.

error is not even propagated to the application.

The middle and bottom graphs of Figure 6.6 show CrookFS is able to correctly
implement the Reboot and Retry policies; for every workloadand for every type of
block, CrookFS either stops the file system or retries the request and propagates the
error, as desired. Further, during fault-free operation, the CrookFS implementation
of these two policies has negligible overhead; Table 6.4 shows that the performance
of these two policies is equivalent to the simple Propagate policy on the three stan-
dard workloads.

Figure 6.7 compares the availability implications of system reboot, a file system
microreboot (in which the file system is unmounted and remounted), and retrying in
the presence of a transient fault. For these experiments, wemeasure the throughput
of PostgreSQL 8.2.4 running a simple database benchmark (pgbench) over time;
we inject a single transient fault in which the storage system is unavailable for one
second. Not surprisingly, the full reboot can be quite costly; the system takes nearly

141

8-nines

7-nines

6-nines

5-nines

4-nines

3-nines

2-nines

1-nine

15
m

30
m

1
h

3
h

6
h

12
h

1
d

2
d

1
w

2
w

1
m

3
m

6
m

1
y

A
va

ila
bi

lit
y

(L
og

 S
ca

le
)

 Mean time between transient failures

Availability and Failure Rate

Retry (~1 sec)
FS Reboot

Sys Reboot

Figure 6.8: Reboot vs. Retry (Availability). The graph shows the computed
availability (in terms of “nines”) plotted versus the mean time between transient
failures for the three policies: full system reboot, file system reboot, and retry. The
system is considered “available” when its delivered performance is within 10% of
average steady-state performance.

a minute to reboot, and then delivers lower throughput for roughly another minute
as the cache warms. The microreboot fairs better, but still suffers from the same
cold-cache effects. Finally, the simple retry is quite effective in the face of transient
faults.

Given these measurements, one can calculate the impact of these three reliabil-
ity policies on system availability. Figure 6.8 plots system availability as a function
of the frequency of transient faults, assuming that unavailability is due only to tran-
sient faults and that the system is available when its delivered throughput is within
10% of its average steady-state throughput. To calibrate the expected frequency of
transient faults, we note that although most disks encounter transient faults only
a few times a year, a poorly-behaving disk may exhibit a transient fault once per
week [13]. Given a weekly transient fault, the reboot strategy has availability of
only “three 9s”, while the retry strategy has “six 9s”.

In summary, it is well known that rebooting a system when a fault occurs has
a large negative impact on availability; however, many commodity file systems
deployed today still stop the system instead of retrying an operation when they
encounter a transient error (e.g., ext3 and ReiserFS [106]). With CrookFS, one
can easily specify a consistent retry policy that adds negligible slowdown and can
improve availability markedly in certain environments.

142

6.5.4 Parity Protection

With the increasing prevalence of latent sector errors [13], file systems should con-
tain reliability policies that protect against data loss. Such protection is usually
available in high-end RAIDs [30], but not in desktop PCs [106]. For our next relia-
bility policy, we demonstrate the ease with which one can addparity protection to
a single drive so that user data can survive latent sector errors.

The parity policy is slightly more complex than the retry andreboot policies,
but is still quite reasonable to implement in CrookFS; as shown in Table 6.3, our
simple parity policy requires 28 lines of code. As describedin Section 6.4.1, cal-
culating parity efficiently is a non-idempotent operation,and thus the policy code
must perform old-value logging. We employ a static parity scheme, which adds one
parity block fork file system blocks (k is configured at boot time). A static map is
used to locate parity blocks.

To help configure the value ofk, we examine the trade-off between the prob-
ability of data loss and space overhead. Figure 6.9 shows both the probability of
data loss (bottom) and the space overhead (top) as a functionof the size of the par-
ity set. To calculate the probability of data loss, we utilize recent work reporting
the frequency of latent sector errors [13], as described in the figure caption. The
bottom graph shows that using too large of a parity set leads to a high probability
of data loss; for example, one parity block for the entire disk (the rightmost point)
has over a 20% chance of data loss. However, the top graph shows that using too
small of a parity set leads to high space overheads; for example, one parity block
per file system block (the leftmost point) is equivalent to mirroring and wastes half
the disk. A reasonable trade-off is found with parity sets between about 44 KB and
1 MB (k = 10 andk = 255); in this range, the space overhead is reasonable (i.e.,
less than 10%) while the probability of loss is small (i.e., less than 0.001%). In the
rest of our parity policies, we use parity sets ofk = 10 blocks.

Adding parity protection to a file system can have a large impact on perfor-
mance. Figure 6.10 shows the performance of the parity policy for sequential and
random access workloads that are either read or write intensive. The first graph
shows, given no faults, that random reads perform well; however, random updates
are quite slow. This result is not surprising, since each random update requires
reading the old data and parity and writing the new data and parity; on a single
disk, there is no overlap of these I/Os and hence the poor performance. The second
graph shows that when there are no faults, the performance impact of parity blocks
on sequential I/O is minimal, whether performing reads or writes. The parity pol-
icy code optimizes sequential write performance by buffering multiple updates to
a parity block and then flushing the parity block in a chained transaction. Finally,

143

 0
 10
 20
 30
 40
 50

S
pa

ce
 O

vh
. (

%
)

Space Overhead

1e-06
1e-04

0.01
1

100

8
KB

64 256 1
MB

4 16 64 256 1
GB

4 16 128

P
ro

b.
 (

%
)

 Size of a Parity Set ((k+1)*BlockSize)

Prob. of Data Loss

Figure 6.9:Overhead and Reliability with Parity. The bottom graph shows the
probabilty of data loss and the top graph the space overhead,as the size of the
parity set is increased from 2 4-KB blocks (equivalent to mirroring) to one parity
block for the entire disk. To compute probability of data loss, we focused on the
roughly 1 in 20 ATA disks that exhibited latent sector errors; for those disks, the
data in [13] reports that they exhibit roughly 0.01 errors per GB per 18 months,
or a block failure rateFB of 2.54 × 10−8 errors per block per year. Thus, if one
has such a disk, the odds of at least one failure occurring is1 − P (NoFailure)
whereP (NoFailure) = (1 − FB)N on a disk of sizeN . For a 100 GB disk,
this implies a 63% chance of data loss. A similar analysis is applied to arrive at
the bottom graph above, but assuming one must have 2 (or more)failures within
a parity set to achieve data loss. Note that our analysis assumes that latent sector
errors are independent.

given a latent sector error on each initial read, read performance is significantly
slower because the data must be reconstructed; however, this is (hopefully) a rare
case.

In summary, CrookFS can be used to add parity protection to file systems. Al-
though parity protection can incur a high performance cost for random update-
intensive workloads (e.g., TPC-B in Table 6.4), it still adds little overhead in many
cases. We believe that parity protection should be considered for desktop file sys-
tems, since it enables important data to be stored reliably even in the presence of
problematic disks.

144

 0

 0.4

 0.8

 1.2

 1.6

Read Write

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Random

Ext3
Parity

w/ Fault

 0

 20

 40

 60

Read Write

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Sequential

Figure 6.10:Parity Throughput. The figure plots the throughput of the parity pol-
icy under some simple microbenchmarks. For sequential writes, we simply write
24 MB to disk. For random reads and writes, we either read or update random
4-KB blocks in a large (2 GB) file. For reads, both the normal and failure cases
are reported; failures are injected by causing each initialread to fail which trig-
gers reconstruction. Each experiment is repeated 60 times;averages and standard
deviations are reported.

6.5.5 Mirroring

For parity protection, we assumed that the parity location was determined when
the file system was created. However, to improve performanceor reliability, more
sophisticated policies may wish to control the location of redundant information on
disk. We explore this issue in the context of a policy that mirrors user data blocks.
The code for this policy has been presented (Section 6.3); implementing it requires
18 statements, as shown in Table 6.3.

We first examine the cost of mirroring during writes. The leftmost graph of
Figure 6.11 presents the results of a simple experiment thatrepeatedly writes a
small 4 KB block to disk synchronously. Three approaches arecompared. The first
approach does not mirror the block (None); the second does sobut places the copy
as near to the original as possible (Near); the third places the copy as far away as
possible (Far). As one can see, placing the copy nearby is nearly free, whereas
placing the blocks far away exacts a high performance cost (aseek and a rotation).
However, in terms of reliability, the far strategy is betteras spatial localized faults
could occur.

However, when reading back data from disk, spreading mirrors across the disk
surface can improve performance [71, 148]. The rightmost graph of the figure
shows an experiment in which a process reads a random block alternately from

145

 0
 5

 10
 15
 20
 25
 30

None Near Far

T
im

e
(m

s)

Replication Strategy

Writing

 0
 5

 10
 15
 20
 25
 30

None Near Far

T
im

e
(m

s)

Replication Strategy

Reading

Figure 6.11:Mirroring: Layout and Scheduling. The leftmost graph shows the
average cost of writing a small file (4 KB) synchronously to disk, under three differ-
ent replication strategies. The rightmost graph shows the average cost of reading
a random 4 KB block alternately from two files. Different replication strategies are
used; “None” indicates no replication, “Near” that replicas are placed as close to
the original as possible, and “Far” that replicas are placedapproximately 20 GB
away).

each of two files placed on opposite ends of the disk. Without replication (None),
performance is poor, incurring high seek costs. With the filereplica near its original
(Near), there is also no benefit, as expected. Finally, with replicas far away, read
performance improves dramatically: the scheduler is free to pick the copy to read
from, reducing access time by nearly a factor of two.

In summary, the best choice for mirror locations is highly nuanced and depends
on the workload. As expected, when the workload contains a significant percentage
of metadata operations, performance suffers with mirroring, regardless of the mir-
ror location (e.g., the PostMark and TPC-B workloads shown in Table 6.4). How-
ever, in other cases, the location does matter. If spatiallylocalized faults are likely,
or read operations dominate (e.g., in a transactional workload), the Far replication
strategy is most appropriate; however, if data write performance is more critical
(e.g., in an archival scenario), the Near strategy may be the best choice. In any
case, CrookFS can be used to dynamically choose different block layouts within a
reliability policy.

6.5.6 Sanity Checks

Our next policy demonstrates that CrookFS allows differentreliability mechanisms
to be applied to different block types. For example, different sanity checks can be

146

applied to different block types; we have currently implemented sanity checking of
inodes.

Sanity checking detects whether a data structure has been corrupted by com-
paring each field of the data structure to its possible values. For example, to sanity
check an inode, the mode of an inode is compared to all possible modes and point-
ers to data blocks (i.e., block numbers) are forced to point within the valid range.
The drawback of sanity checks are that they cannot detect bitcorruption that does
not lead to invalid values (e.g., a data block pointer that is shifted by one is consid-
ered valid as long as it points within the valid range).

Table 6.3 shows that sanity checks require only 10 statements of policy code,
since the I/O shepherd contains the corresponding primitive. To evaluate the per-
formance of inode sanity checking, we constructed two inode-intensive workloads:
the first reads one million inodes sequentially while the seconds reads 5000 inodes
in a random order. Our measurements reveal that sanity checking incurs no mea-
surable overhead relative to the baseline Propagate policy, since the sanity checks
are performed at the speed of the CPU and require no additional disk accesses. As
expected, sanity checks also add no overhead to the three workloads presented in
Table 6.4.

In conclusion, given that sanity checking has no performance penalty, we be-
lieve all file systems should sanity check data structures; we note that sanity check-
ing can be performed in addition to other mechanisms for detecting corruption,
such as checksumming. Although file systems such as ext3 do contain some san-
ity checks, it is currently done in anad hocmanner and is diffused throughout the
code base. Due to the centralized architecture of I/O shepherding, CrookFS can
guarantee that each block is properly sanity checked beforebeing accessed.

6.5.7 Multiple Levels of Defense

We next demonstrate the use of multiple data protection mechanisms within a sin-
gle policy. Specifically, the multiple levels of defense policy uses checksums and
replication to protect against data corruption. Further, for certain block types, the
policy employs repair routines when a structure does not pass a checksum match
but looks mostly “OK” (e.g., all fields in an inode are valid except time fields).
Finally, if all of these attempts fail to repair metadata inconsistencies, the system
unlocks the block, queues any pending requests, runsfsck, and then remounts
and begins running again. As indicated in Table 6.3, the multiple levels of defense
policy is one of the more complex policies, requiring 39 lines of code.

Figure 6.12 shows the activity over time in a system employing this policy
for four different fault injection scenarios; in each case,the workload consists of

147

Compare
Checksum Blk

Inode Blk

Compare
Relica Blk
Compare

Checksum Blk
Inode Blk

Repair
Compare

Relica Blk
Compare

Checksum Blk
Inode Blk

(2.5 secs) Fsck
Repair

Compare
Relica Blk
Compare

Checksum Blk
Inode Blk

 0 0.5 1 1.5 2 2.5 3 3.5 4

Time (ms)

Multiple Levels of Defense

Checksum matches

Checksum mismatch; fetch replica

Replica fails; semantic repair works

All fails; fsck is run

Figure 6.12: A Multi-Level Policy. The figure shows four different runs of the
multiple lines of defense policy. From top to bottom, each experiment induces a new
fault and the y-axis highlights which action the system takes. These experiments use
UML, which impacts absolute timing.

reading a single inode. The topmost part of the timeline shows what happens when
there are no disk faults: the inode and its checksum are read from disk and the
checksums match, as desired. In the next experiment, we inject a single disk fault,
corrupting one inode; in this case, when the policy sees thatthe checksums do
not match, it reads the alternate inode which matches, as desired. In the third, we
perform a small corruption of both copies of the inode; here,the policy finds that
neither inode’s calculated checksum matches the stored checksum, but finds that the
inode looks mostly intact and can be repaired simply (e.g., clears a non-zero dtime
because the inode is in use). In our final experiment, we corrupt both copies of the
inode more drastically. In this case, all of these steps failto fix the problem, and
the policy runs the fullfsck; when this action completes, the file system remounts
and continues serving requests (not shown).

The performance overhead of adding multiple levels of defense for inode blocks
is summarized in Table 6.4. Given no faults, the basic overheads of this policy
are to verify and update the inode checksums and to update theinode replicas.
Although updating on-disk checksums and replicas is costly, performing multiple
levels of defense has a smaller performance penalty than some other policies since
the checks are applied only to inode blocks.

148

100%
80%
60%
40%
20%

0%
 0 2 4 6 8 10

F
ile

s
A

va
ila

bl
e

(%
)

Disk Failures

Availability

10-way
5-way
1-way

 1
 1.1
 1.2
 1.3
 1.4
 1.5

4321

S
lo

w
do

w
n

Metadata Replication

Performance

Figure 6.13: D-GRAID Availability and Performance. The graphs show the
availability and performance of D-GRAID on a workload creating 1000 4-KB files.
On the left, each line varies the number of metadata replicas, while increasing the
number of injected disk failures along the x-axis up to the full size of an emulated
10-disk array. The y-axis plots the percentage of files available. On the right,
performance on four disks is shown as the number of metadata replicas increases;
the y-axis shows slowdown compared to a single copy.

6.5.8 D-GRAID

To demonstrate the full flexibility of CrookFS, we consider afine-grained reliabil-
ity policy that enacts different policies for different on-disk data types. We explore
this policy given multiple disks. In this final policy, we implement D-GRAID style
replication within the file system [123]. In D-GRAID, directories are widely repli-
cated across many disks and a copy of each file (i.e., its inode, all data blocks, and
any indirect blocks) is mirrored and isolated within a disk boundary. This strategy
ensures graceful degradation in that the failure of a disk does not render all of the
data on the array unavailable.

With shepherding, the D-GRAID policy is straightforward toimplement. First,
the policy code for important metadata (such as directoriesand the superblock)
specifies a high degree of replication. Second, the policy for inode, data, and indi-
rect blocks specifies that a mirror copy of each block should be dynamically allo-
cated to a particular disk. As indicated in Table 6.3, the D-GRAID policy requires
79 statements; although this is more than any of the other policies, it is significantly
less than was required for the original D-GRAID implementation [123].

Figure 6.13 presents the availability and performance of CrookFS D-GRAID.
The leftmost graph shows the availability benefit: with a high degree of metadata
replication, most files remain available even when multipledisks fail. The right-

149

most graph shows performance overhead; as the amount of metadata replication is
increased from one to four, the time for a synchronous write (and thus metadata-
intensive) benchmark increases by 25%.

In conclusion, CrookFS is particularly interesting given multiple disks since it
enables the file system to add reliability features across the disks without a separate
volume manager (much like ZFS [130]). Due to the ability of CrookFS to enact
different policies for different block types, we are able toimplement even relatively
complex reliability policies, such as D-GRAID.

6.6 Conclusion

In this paper, we have described a flexible approach to reliability in file systems. I/O
Shepherding provides a way to tailor reliability features to fit the needs of applica-
tions and the demands of the environment. Through its basic design, shepherding
makes sophisticated policies simple to describe; through careful integration with
the rest of the system, shepherding implements policies efficiently and correctly.

6.6.1 Porting the Shepherd

Similar to other interfaces internal to the OS [84], we believe that multiple file sys-
tems can leverage the same functionalities we have providedin our current shep-
herding framework. Hence, I/O shepherding can be seen as a general layer of which
all file systems can take advantage.

At this point, we have ported shepherding to Linux ext2 and partially to Reis-
erFS. The ext2 port has been straightforward, as it is simplya non-journaling ver-
sion of ext3. Thus, we removed all consistency management code and embrace the
ext2 philosophy of writing blocks to disk in any order. ReiserFS has been more
challenging as it utilizes entirely different on-disk structures than the ext family.
Thus far, we have successfully built simple policies. Through this work, we are
slowly gaining confidence about the general applicability of the shepherding ap-
proach.

6.6.2 Lessons

Adding reliability through the I/O shepherd was simple in some ways and chal-
lenging in others. In the process of building the environment, we have learned a
number of lessons.

150

Interposition simplifies fault management. One of the most powerful aspects
of I/O Shepherding is its basic design: the shepherd interposes on all I/O and
thus can implement a reliability policy consistently and correctly. Expecting
reliability from code that is scattered throughout is unrealistic.

Block-level interposition can make things difficult. The I/O shepherd inter-
poses on block reads and writes that the file system issues. While natural
for many policies (e.g., replicating blocks of a particular type), block-level
interposition makes some kinds of policies more difficult toimplement. For
example, implementing stronger sanity checks on directorycontents (which
span many blocks) is awkward at best. Perhaps a higher-levelstorage system
interface would provide a better interposition target.

Shepherding need not be costly.The shepherd is responsible for the execution
of all I/O requests in the system. Careful integration with other subsystems
is essential in achieving low overheads, with particular attention paid to the
concurrency management infrastructure.

Good policies stem from good information. Although not the main focus of
this paper, shaping an appropriate reliability policy clearly requires accurate
data on how the disks the system is using actually fail as wellas the nature
of the workloads that run on the system. Fortunately, more data is becoming
available on the true nature of disk faults [13, 115]; systems that deploy I/O
shepherding may also need to incorporate a fault and workload monitoring
infrastructure to gather the requisite information.

Fault handling in journaling file systems is challenging. By its nature, write-
ahead logging places intentions on disks; reactive fault handling by its na-
ture must behave reasonably when these intentions cannot bemet. Chained
transactions help to overcome this inherent difficulty, butat the cost of com-
plexity (certainly it is the most complex part of our code). Alternate simpler
approaches would be welcome.

Fault propagation is important (and yet often buggy). An I/O shepherd can
mask a large number of faults, depending on the exact policy specified; how-
ever, if a fault is returned, the file system above the shepherd is responsible
for passing the error to the calling application. Unfortunately, we have found
many bugs in error propagation. In the previous chapter, we have presented a
static analysis tool that shows where error-codes are dropped in file systems
and storage drivers.

151

Chapter 7

Related Work

This chapter discusses various research efforts and real systems that are related to
this dissertation. We first discuss literature on building more robust file systems
and then close this chapter with with other efforts in analyzing system robustness.

7.1 Building Robust File and Storage Systems

This section discusses three classes of approach in building more reliable file and
storage systems: adding some forms of redundancy (e.g., replication, checksum-
ming), using specification, and redesigning how systems arebuilt.

7.1.1 Adding Redundancy

Our work was partially inspired by work within Google. Therein, Acharya suggests
that when using cheap hardware, one should “be paranoid” andassume it will fail
often and in unpredictable ways [6]. However, Google (perhaps with good reason)
treats this as an application-level problem, and thereforebuilds checksumming on
top of the file system; disk-level redundancy is kept across drives (on different ma-
chines) but not within a drive [46]. With I/O shepherding, these techniques can
be incorporated into the file system, where all applicationscan benefit from them.
Note that I/O shepherding is complimentary to application-level approaches; for
example, if a file systemmetadatablock becomes inaccessible, user-level check-
sums and replicas do not enable recovery of the now-corrupted volume.

The fail-partial failure model for disks is better understood by the high-end
storage and high-availability systems communities. For example, Network Appli-
ance introduced “Row-Diagonal” parity, which can toleratetwo disk faults and can

152

continue to operate, in order to ensure recovery despite thepresence of latent sector
errors [30]. Further, virtually all Network Appliance products use checksumming
to detect block corruption [69]. Similarly, systems such asthe Tandem NonStop
kernel [18] include end-to-end checksums, to handle problems such as misdirected
writes [18].

Sivathanuet al. also embraces more replication within a RAID-5 storage ar-
ray [123]. They find that, in a RAID-5 storage array, if one disk fails before an-
other is repaired, the entire array is corrupted. Until a time-consuming restore
from backup, the entire array remains unavailable, although most disks are still op-
erational. Thus, they propose D-GRAID to ensure that most files within the file
system remain available even when an unexpectedly high number of faults occur.
This done by replicates naming and system meta-data structures of the file system
to a high degree while using standard redundancy techniquesfor data. Thus, with
a small amount of overhead, excess failures do not render theentire array unavail-
able. Instead, the entire directory hierarchy can still be traversed, and only some
fraction of files will be missing, proportional to the numberof missing disks.

Interestingly, redundancy has been usedwithin a single disk in a few instances.
For example, FFS uses internal replication in a limited fashion, specifically by mak-
ing copies of the superblock across different platters of the drive [92]. As we noted
earlier, some commodity file systems have similar provisions.

Yu et al.suggest making replicas within a disk in a RAID array to reduce rota-
tional latency [148]. Hence, although not the primary intention, such copies could
be used for recovery. However, within a storage array, it would be difficult to ap-
ply said techniques in a selective manner (e.g., for metadata). Yuet al.’s work
also indicates that replication can be useful for improvingboth performance and
fault-tolerance.

Checksumming is also becoming more commonplace to improve system secu-
rity. For example, both Patilet al. [100] and Steinet al. [126] suggest, implement,
and evaluate methods for incorporating checksums into file systems. Both systems
aim to make the corruption of file system data by an attacker more difficult.

Finally, the Sun ZFS is a good example of a file system that usesIRON tech-
niques [23]. ZFS uses checksums to detect block corruption and employs redun-
dancy across multiple drives to ensure recoverability.

7.1.2 Using Specification

Specification languages like Alloy [74] and Z [31] are usefulfor describing con-
straints of a system and then finding violations of that model. Demsky and Rinard
took this approach for writing a specification for a simplified Linux file system [32].

153

For example, they can express consistency constraints suchas “the inode bitmap is
consistent with the use of inodes”, “blocks are not shared between files or other
disk structures”, and “inode reference counts are correct.” Furthermore, they took
the specification for automatically repairing file systems [32]; their automated re-
pair finds the cheapest way to repair the system such that it satisfies the constraints
again. For example, if two inodes share the same data block, the cheapest repair
could simply remove one of the pointers; however, this may not be the desired re-
sult. In fact, there are many ways to solve the problem: the inode with the earliest
modification time could release the block [93], the block could be cloned (e2fsck’s
way), or the operator could decide. Thus, we believe the drawback of their work is
that it does not allow one to naturally express the repairs that should be performed
when violations are discovered.

Specifications are also useful to ensure correct data accesses. For example, Si-
vathanuet al.propose the notion of a type-safe disk (TSD) [122], a disk system that
has knowledge of the pointer relationships between blocks.With this knowledge,
a TSD can enforce invariants on data access, providing better data integrity and
security. For example, it can enforce the invariant that fora block to be accessed,
a parent block pointing to this block should have been accessed in the recent past.
With this invariant, it is impossible for a buggy file system to access an unallocated
block.

Developers could also use simple specifications to ensure correct error-code
propagation. For example, developers could adopt a simple set-check-use method-
ology [21], i.e., before using a value that was set before, one should check the
corresponding error code. However, it is interesting to seethat this simple practice
has not been applied thoroughly in file systems and storage device drivers. As men-
tioned in Section 5.4, we suspect that there are deeper design shortcomings behind
poor error-code handling.

7.1.3 Redesigning Systems

Numerous researchers have recently explored the advantages of using declarative
languages in other domains. DeTreville introduced a checkable declarative ap-
proach to system configuration that improves system integrity and makes systems
more dependable [34]. With this declarative framework, onecan apply a system
model to a set of system parameters to produce a statically typed, fully configured
system instance. Looet al. implemented P2, a system that uses a declarative logic
language to express overlay networks in a highly compact andreusable form [89].
With P2, they can specify Chord [127], a peer-to-peer lookupprotocol, in 47 simple
logic rules, versus thousands of lines of code for the MIT Chord reference imple-

154

mentation.
Aspect-oriented programming [29, 83] addresses the general issue that code to

implement certain high-level properties (e.g., “performance”) isscatteredthrough-
out systems, much as we observed that fault-handling is often diffused through a
file system. Aspect-oriented programming provides language-level assistance in
implementing these “crosscutting concerns,” by allowing the relevant code to be
described in a single place and then “weaved” into the code with an aspect com-
piler. Thus, one could consider building I/O Shepherding with aspects; however,
the degree of integration required with OS subsystems couldmake this quite chal-
lenging.

Our work also drew inspiration from both the Congestion Manager (CM) [9, 17]
and Click [95]. CM centralizes information about network congestion within the
OS, thus enabling multiple network flows to utilize this knowledge and improve
their behavior; in a similar manner, the I/O Shepherd centralizes both information
and control and thus improves file system reliability. Clickis a modular system for
assembling customized routers [95]. We liked the clarity ofClick router configu-
rations from basic elements, and as a result there are parallels in our policies and
primitives.

We also note that our chained transactions (Section 6.4.1) are similar tocom-
pensating transactionsin the database literature [85]; both deal with the case where
committed transactions are treated as irreversible, and yet there is a need to change
them. In databases, this situation commonly arises when an event external to the
transactional setting occurs (e.g., a customer returns a purchase); in our case, we
use chained transactions in a much more limited manner, specifically to handle
unexpected disk failures during checkpointing.

7.2 Robustness Analysis

In this section, we present related work that analyzes system robustness, with a
focus on file systems and storage systems. We first discuss techniques that use fault
injection, and then formal techniques such as model checking and static analysis,
and finally monitoring and modeling techniques.

7.2.1 Fault Injection

The fault-tolerance community has worked for many years on techniques for inject-
ing faults into a system to determine its robustness [19, 24,77, 120, 139]. These
techniques differ in various ways (e.g., the types of faults they can inject, the ease of

155

use of the framework, the monitoring capability). Some simulate hardware faults
such as processor, memory, and bus faults. For example, FIAT(Fault Injection-
based Automated Testing) simulates the occurrence of hardware errors by altering
the contents of memory or registers [19]. Others simulate software faults. For ex-
ample, FINE (Fault Injection and moNitoring Environment) injects software faults
(e.g., pointer errors) into an operating system and traces the execution flow of the
kernel [77].

The FTAPE (Fault Tolerance And Performance Evaluator) framework [139] is
closely related to our work. It consists of a workload generator and a device-driver-
level disk-fault injector (which injects disk errors, but not corruption). FTAPE
injects faults by automatically determining the time and location that will maximize
fault propagation. The authors show that this approach leads to higher errors to
faults ratio, an indication that fault-tolerant mechanisms are being well-exercised.
Unlike our approach, the FTAPE fault injector does not inject type-aware faults.
Also, while in our framework a fault is initiated upon an I/O read/write, they use
stress-based injection techniques to inject faults duringhigh workload activities.

Another related fault-injection study is an analysis by Siewioreket al. [120]. In
their analysis, they test the dependability of a file system’s libraries by corrupting
file pointers. Unlike our approach to pointer corruption, they do not corrupt pointers
in other metadata structures and do not use type-aware corruption values.

Also closely related to our work is Brown and Patterson’s work on RAID fail-
ure analysis [24]. Therein the authors suggest that the hidden policies of RAID
systems are worth understanding, and demonstrate (via fault injection) that three
different software RAID systems have qualitatively different failure-handling and
recovery policies. Specifically, they find that while the Linux version is paranoid
about transient errors and values application performanceover reconstruction upon
failure, the Windows and Solaris versions tolerate transient errors better and per-
form reconstruction more aggressively. Similar to their work, our goal is also to
discover “failure policy”, but target the file system (not RAID), hence requiring a
more complex type-aware approach.

In recent work, Johansson analyzes run-time error propagation based on inter-
face observations [75]. Specifically, an error is injected at the OS-driver interface
by changing the value of a data parameter. By observing the application-OS in-
terface after the error injection, they reveal whether errors occurring in the OS en-
vironment (device drivers) will propagate through the OS and affect applications.
This run-time technique is complementary to our work, especially to uncover the
eventual bad effects of error-broken channels.

156

7.2.2 Formal Techniques

Model checking is a formal technique that has been used over the years to analyze
a variety of systems [76]. Recently, Bairavasundaramet al.use model checking to
examine data protection in RAID systems [86]. They found that schemes in many
RAID systems are broken; they do not protect against one or more failures, leading
to unrecoverable data loss or corrupt data being returned toapplications. Yanget
al. also have adapted model checking to analyze real operating system code [96],
and subsequently find bugs in file systems [147]. Their techniques are well-suited
to finding certain classes of bugs, whereas our approach is aimed at the discovery
of file system failure policy. Interestingly, our approach also uncovers some serious
file system bugs that Yanget al.do not. One reason for this may be that our testing
is better under scale; whereas model-checking must be limited to small file systems
to reduce run-time, our approach can be applied to large file systems.

Static analysis is another formal technique that has been used to study file sys-
tems. For example, Yanget al.uses symbolic execution to automatically find bugs
in file system code that sanity checks on-disk data structurevalues [146]. In this
work, they found bugs in ext2, ext3, and JFS. These bugs couldpotentially cause
a kernel panic or allow buffer overflow attacks when a malicious disk image is
mounted. Meta-level compilation (MC) [39, 40] enables a programmer to write
simple, system-specific compiler extensions to automatically check software for
rule violations. With their work, one can find broken channels by specifying a rule
such as “a returned variable must be checked.” Compared to their work, our EDP
presents more information on how error propagates and convert it into graphical
output for ease of analysis and debugging.

Our EDP tool is also similar to Jex [111]. While Jex is a staticanalysis tool
that determines exception flow information in Java programs, our tool determines
the error code flow information within the Linux kernel.

7.2.3 Monitoring and Modeling

Systems can also be stress tested and monitored to understand their failure charac-
teristics. Grayet al.measure the disk error rates in SATA drives by moving several
petabytes of data [51]. They run programs in office-like and data-center-like setups
that write and read data from large files and compare the checksum of the data look-
ing for uncorrectable read errors. They measure about 30 uncorrectable bit errors
as seen by the file system and 4 errors at the application level.

In a larger-scale study, Bairavasundaramet al.analyze data collected from pro-
duction storage systems over 32 months across 1.53 million disks [13]. They ana-

157

lyze factors that impact latent sector errors, observe trends, and explore their impli-
cations on the design of reliability mechanisms in storage systems. They find that
almost 20% of nearline (SATA) disk drives are afflicted by latent sector errors in 2
years of use, and that latent sector errors show high spatialand temporal locality.

In a subsequent study, Bairavasundaramet al. analyze corruption instances
recorded in production storage systems [14]. They find that more than 400,000
instances of checksum mismatches over the 41-month period.They also find many
interesting trends among these instances including: (i) nearline disks (and their
adapters) develop checksum mismatches an order of magnitude more often than
enterprise class disk drives, (ii) checksum mismatches within the same disk are
not independent events and they show high spatial and temporal locality, and (iii)
checksum mismatches across different disks in the same storage system are not
independent.

These statistics and characteristics of failures can be further used for analyt-
ically modeling systems reliability. For example, Gibson develops an analytical
model of the reliability of redundant disk arrays [48]. He discusses four different
models ranging from a simple one that considers independentdisk failures, to more
complex models that include spare disks and dependency among disk unit failures.
The models are validated using software simulation. In similar work, Kari develops
reliability models which includes both sector faults and disk unit faults. However,
he treats sector failures as independent events and does notaccount for the spatial
locality in sector errors. [78]. In the world of archiving, Baker et al. model the
reliability of long-term replicated storage systems [16].They consider correlated
failures that might occur due to spatial locality, assumingthat the correlated failures
are exponentially distributed.

158

159

Chapter 8

Future Work and Conclusions

“We can’t do anything about an error here.”
– A comment in ReiserFS (inode.c, line 75)

Years of research on the design and implementation of local file systems has
led to an abundance of innovations, many of which are realized in modern systems.
For example, many performance enhancements have been suggested and evaluated
in order to improve read and write performance [92, 94, 112].Scalability has also
been a focus, with the development of more advanced structures [132]. Consistency
management has also received a great deal of attention, withwork on journaling and
soft updates demonstrating how to safely update on-disk structures [119]. Finally,
search functionality has also been incorporated within thefile system [47]. How-
ever, not all salient aspects of file system design and implementation have been
as carefully studied. In particular, thefailure-handling subsystemsof modern file
systems have largely been ignored.

Disks are one of the primary causes of failure in modern storage systems [87],
and the manner in which their failures arise is becoming morecomplex. The sim-
ple view that disks either work or fail completely no longer holds. The reality
today, disks not only exhibit whole-disk failure [115] but also partial and temporal
failures, including latent sector faults [13, 79], block corruption [14, 46, 53], and
transient faults [135]. As disk failure modes increase in their richness, file system
failure handling comes into sharp focus. Thus, this becomesthe focus of our work.

In this dissertation, we started with our analysis of three reliability components
present in many modern file systems: the file system checker, failure policy, and
journaling (Chapter 3). Ironically, we found that these subsystems are deficient in

160

handling partial disk failures, leading to many serious problems such as unmount-
able file systems and silent data loss. We note that these subsystems have been in
active development for more than one decade. The fact that they are still problem-
atic hints that dealing with disk failures is not easy. In fact, the developer comment
quoted in the beginning of this chapter indicates that even when the developers are
aware of the problems, they do not know how to respond.

The results of our analysis call for novel solutions towardsbuilding more reli-
able storage systems. Therefore, we have presented our approaches to solving the
problems we have found. First, we introduced SQCK, a robust file system checker
that employs declarative query language (Chapter 4). Next,we built EDP, a static
analysis tool that shows error-codes propagation in file systems and storage drivers
(in Chapter 5). Finally, we presented I/O shepherding, a simple yet powerful way
to build robust and centralized failure policies within a file system (Chapter 6).

In this chapter, we first summarize our analysis and solutions (Section 8.1). We
then list a set of lessons we learned from years of researching file system reliability
(Section 8.2). Finally, we outline future directions whereour work can possibly be
extended (Section 8.3).

8.1 Summary

This dissertation is mainly divided in two parts: analysis of file system reliability
components and our solutions to the problems we have found. We choose to fo-
cus on local file systems due to their ubiquitous presence andnew challenges they
present. We summarize each part in turn.

8.1.1 Analysis of File System Reliability Components

The first part of this dissertation is about analyzing how three reliability compo-
nents present in many modern file systems react to partial disk failures. First, we
evaluated a popular file system checker, e2fsck, the Linux ext2 checker. We injected
corruptions to ext2 on-disk pointers and found that some repairs are buggy (mak-
ing the repaired file system more corrupted) and some repairsare missing (leaving
some corruptions unattended). We believe these problems exist because e2fsck is a
complex piece of code; it performs more than 120 data structure repairs in in more
than ten thousand lines of low-level C code, which is hard to reason about. As a
result, it is difficult for e2fsck to combine the many pieces of information available
and to ensure that all checks and repairs are done in the correct order. Other than
e2fsck, other checkers (e.g., ReiserFS and XFS checkers) are unfortunately writ-

161

ten in the same way. Thus, we believe these other checkers might have the same
weaknesses as in e2fsck.

Second, we looked into failure policy, the file system component responsible
for dealing with disk failures. We injected block-level read and write errors and cor-
ruptions to four commodity file systems (Linux ext3, ReiserFS, JFS, and Windows
NTFS). Our findings point us to a major problem of diffused handling; policies
that deal with disk failures are scattered in more than one hundred places across
different sections of the file system code. This diffused handling causes policies to
be inconsistent, buggy, and inflexible to change: differentrecovery actions are em-
ployed under similar failure scenarios, error-codes are dropped incorrectly leading
to serious silent failures, and changing one simple policy requires modifications in
many places.

Finally, we analyzed how journaling reacts to write failures. We uncovered that
the current journaling framework cannot perform any checkpoint failure recoveries
that result in metadata changes. We call this a problem offailed intentions. With
this flaw, even a simple block remapping during a checkpoint failure cannot be
done at the file system level. As a result, many modern file systems that employ
journaling (such as ext3, IBM JFS, and ReiserFS) ignore checkpoint failure. Thus,
the fact that we cannot recover from a checkpoint failure properly with the current
journaling scheme is disastrous.

8.1.2 Towards Building Reliable Storage Systems

In the second part of this dissertation, we presented our approaches in building
a new generation of robust file systems. First, we re-architected the file system
checker by introducing SQCK, a robust file system checker that employs declara-
tive query language. By writing hundreds of checks and repairs in a query language
(e.g., SQL), the high-level intent of the checker can be specified in a clear and com-
pact manner. We showed that SQCK is able to perform the same functionality
as e2fsck with surprisingly elegant and compact queries; wewrote e2fsck in 150
queries in about 1100 lines of SQL statement. We also showed that SQCK can
improve upon the traditional checks and repairs; SQCK ensures correct ordering
of repairs and enables new repairs to be plugged-in easily. SQCK achieves this
simplicity and completeness with little cost to performance. Overall, we believe
that the SQCK-style declarative approach will lead to a new generation of simpler,
more robust, and more complete file system checking and repair.

Second, we presented Error Detection and Propagation (EDP), a static analysis
tool that shows how error codes flow through the file system andstorage drivers.
EDP performs a dataflow analysis by constructing a function-call graph showing

162

how error codes propagate through return values and function parameters. We have
applied EDP analysis to all file systems and 3 major storage device drivers (SCSI,
IDE, and Software RAID) implemented in Linux 2.6. We found that error han-
dling is occasionally correct. Specifically, we observed that low-level errors are
sometimes lost as they travel through the many layers of the storage subsystem:
out of the 9022 function calls through which the analyzed error codes propagate,
we found that 1153 calls (13%) do not correctly save the propagated error codes.
Our detailed analysis shows that many violations are not corner-case mistakes; the
return codes of some functions are consistently ignored. For example, I/O write
operations are more likely to neglect error codes than I/O read operations. This
makes us suspect that the omissions are intentional, which again hints that dealing
with disk failures is not easy.

Finally, we designed, implemented, and evaluated a new reliability infrastruc-
ture for file systems calledI/O shepherding[60]. With I/O shepherding, the relia-
bility policies of a file system are well-defined, easy to understand, powerful, and
simple to tailor to environment and workload. The I/O shepherd achieves these
ends by interposing on each I/O that the file system issues andexecuting a relia-
bility policy for the given I/O. Thus, all disk fault-management policies are local-
ized within the shepherd. Also, as part of this framework, weintroducechained
transactions, a novel and more powerful transactional model that allows policies
to handle unexpected faults during checkpointing and stillconsistently update on-
disk structures. We showed that I/O shepherding enables simple, powerful, and
correctly-implemented reliability policies by implementing an increasingly com-
plex set of policies, incorporating data protection techniques such as retry, parity,
mirrors, checksums, sanity checks, and data structure repairs; even complex poli-
cies can be implemented in less than 100 lines of code.

8.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on
this dissertation.

Reliability as a first class citizen: Traditionally, systems have been built with
high performance as the primary goal. As a result, reliability features are not
designed carefully. For example, we have shown that, in the e2fsck code, its
subcomponents such as loader, scanner, checker, and repairare intermixed.
We have also observed that, in the file system code, reliability features are
buried deep within the code. These unelegant designs make both the intent

163

and the realization of the approach to reliability difficultto understand or
evolve.

Furthermore, when reliability is not a first class citizen, building new relia-
bility features on top of traditional systems is hard to achieve. For example,
regardless of two decades of file system development, modernfile systems
still do not have online recovery; in the current state, a damaged file system
needs to be taken down to be repaired, which greatly reduces availability.
As Henson states, efficient online recovery is hard to build because file sys-
tem data structures were not designed with “repair-driven”in mind [66]. We
believe in the future, when systems are built from scratch, all aspects of reli-
ability should be considered in the first place [26, 66, 73].

Complexity is the enemy of reliability: Recovery code is complex and hard to
get right. Current approaches describe recovery in thousands of lines of low-
level C code and it is scattered throughout. Thus, we advocate a higher-level
strategy where the logic of reliability policies can be described clearly and
concisely. This way, the completeness and correctness of the policies can be
reasoned about in a straightforward manner.

We believe this lesson can be taken more broadly. The next generation soft-
ware will contain many more features than today’s software.If we still write
these systems in low-level system languages such as C code, we believe fail-
ures will not be manageable. Unfortunately, that is the state-of-the-art of how
we build large systems such as file system and operating systems. Thus, it
is a truly great challenge to come up with higher-level approaches that can
describe how big and complex systems should operate.

Interfaces to support reliability testing: Related to the first lesson above, we
believe that if a system is built with reliability in mind, itshould provide
suitable interfaces that enable a variety of reliability testing. For our case,
interfaces that provide type information would have helpedgreatly. In our
experience, to perform our fault-injection experiments, we must change a
considerable amount of code. More specifically, we must modify ext3, the
generic buffer cache layer, and the journaling layer to passsemantics of the
file system into our block-level fault injection. This is because, in the current
framework, file system semantics are lost for all I/Os issuedvia the generic
buffer cache manager and journaling layer.

We also experience a similar ordeal when analyzing e2fsck; when e2fsck
reads a block of a particular type from the file system image, it simply uses

164

the read() POSIX interface. Hence, the intent of the read is not explic-
itly stated. Ideally, for the purpose of testing, we would like to have another
wrapper that specifies more explicitly the read intent (e.g., read(blockType,..),
which would eventually call the POSIX interface. This way, any testing that
leverages type information can perform fault-injections cleanly within this
new layer.

The need for formal specification: With the I/O shepherding framework, we
have the machinery to implement good and complex policies, however we
have not provided a method to reason about the correctness ofthe policies.
For example, one might want to define a property such as “thereis no single-
point of failure”; a policy writer that forgets to mirror themirror map will
break the rule because the mirror map is a single-point of failure.

Another example is the severe implication of failed intentions during check-
pointing (as described in Section 6.4.1): On a successfulfsync, a user is
likely to think that the data is consistent as “guaranteed” by journaling file
systems; however, if checkpoint failure is ignored, the consistency assurance
no longer holds. Ironically, the journaling framework has been widely de-
ployed for a decade [5, 20, 64, 132, 140], but only recently have we found
this major flaw. Furthermore, we unearthed this flaw via our rigorous fault-
injection experiment. If only there existed a formal specification of journal-
ing that incorporates all possible failure models (e.g., including partial disk
failures), we believe that this flaw could be caught easily. Besides journal-
ing, some systems use other forms of consistency management(e.g., shadow
paging [52]), and there are many reliability trade-offs in these approaches
that are not yet well understood. We believe using formal specification will
be highly useful in these other cases.

The need for longitudinal failure simulation: Measuring data reliability is hard.
Our current method in measuring robustness is to inject one failure at a time
and observe how the evaluated system behaves. In reality, failures do not hap-
pen at one time and the life-span of data could be of several years. Ideally,
what we need is a longitudinal failure simulator that reflects how systems fail
over a long period of time. This kind of simulator needs to incorporate the
failure models of all parts that can fail (e.g., partial disk failures, spatial lo-
cality, etc.), the corresponding real-world statistics, and also real workloads
that run over many years. Given such as simulator, we will be able to answer
high-level questions such as: “after two years, is all my data still available?”,
“how often are file systems taken down due to disk failures in one year?”,

165

“after multiple corruptions occur over several months, canfsck repair the
corruptions?”, and many others. By having the answers to these high-level
questions, we believe that the many problems we uncovered inChapter 3 can
be more correlated to real-world scenarios. Fortunately, the storage commu-
nity recently has gathered large-scale statistics of low-level disk and memory
failures [13, 14, 104, 115, 116]. These statistics will be animportant founda-
tion in building a longitudinal failure simulator.

8.3 Future Work

In terms of future work, our vision is to build highly-reliable and -available systems.
This section outlines various directions for this vision.

8.3.1 Continuous Checker and Repair Utility

Traditionally, file systems rely on an offline checker utility, fsck [93], to repair all
inconsistencies caused by corruptions. Unfortunately, asthe name suggests, offline
fsck can only work when the file system is not running. Since file system downtime
is usually avoided in reality, offline fsck is run very rarely(e.g., every 30 mounts).
As a result, the occasional runs of offline fsck is risky for reliability; corruptions
are not detected early in time, and hence, corrupt data may potentially be used by
the file system.

Therefore, to improve file system reliability and availability, the file system
should be armed with a continuous checker and repair utility. The checker guar-
antees that the file system does not use corrupt data structures, while the repair
restores the file system consistency without the need to shutdown the file system.
As mentioned in the previous section, unfortunately, most of today’s file systems
lack such a utility [60, 66, 106]. To build one, several challenges must be addressed.
Below we present the challenges and sketch our proposal.

First, to detect a corruption, the consistency of each data structure and all of its
fields needs to be verified. This is an expensive process sincethe whole file system
must be scanned in order to run the cross-checks. Checksumming can alleviate this
cost, however it is often done at a coarse-grained level (e.g., sector- or block-level);
it does not pinpoint which data structures are corrupt within the block. To detect
a corruption in a fine-grained manner, we recommend the use ofdata-structure
checksumming, with which the file system can easily retain non-corrupt data struc-
tures and repair only the corrupt ones.

166

After corrupt data structures have been detected, one can use existing redun-
dancy to repair them on-the-fly. However, the corruption detection and the redun-
dancy could appear at different levels in the storage stack (e.g., checksumming at
the file system level, and parity at the RAID-level). Unfortunately, the current stor-
age interface hides low-level information from the upper levels. Thus, we propose
that the storage interface has to supportcooperative repair. Specifically, a small
interface is added such that the file system can delegate the repair to the underlying
storage subsystem. Such an interface that exposes more information and control
has been shown to be powerful in operating and networking systems [12, 59].

Third, since redundancy is not always available, not all important metadata can
be repaired. For example, commonly directory names are not replicated. A corrupt
directory name could cause its subdirectories to be untraversable. We suggest the
use of asummary databasewhich stores partial redundancy of important file system
metadata. Metadata copies can be added or removed flexibly depending on the level
of availability needed.

Lastly, when all forms of fast repair cannot fix the corruption, a full online fsck
is needed. Designing a full online fsck is tricky because it could unsafely modify
data structures that are being used. If not designed carefully, a complex manage-
ment of in-kernel data-structures is required [66]. Thus, we propose a design of
online fsck that follows one important rule: it should not perform removal of data
structures that are in-use. This rule can be implemented by adding arepair bit in
each of the file system data structures. The bit is set when thecorresponding data
structure is found corrupt (i.e., the checksum is wrong). This marker guarantees
that the file system can only use non-corrupt data structures. The online fsck then
performs all types of repair (update, addition, and removal) on data structures that
have been marked, but could only perform update and addition(but not removal)
on those that can be in-use. Without the repair bit, an onlinefsck cannot distinguish
which data structures are safely repairable on-the-fly.

8.3.2 Solving the Problem of Incorrect Error Propagation

With EDP, we are able to catch incorrect propagation of errorcodes that are stored
and propagated mainly in integer containers. However, file and storage systems
also use other specific error codes stored in complex structures. Moreover, we
have not yet provided an elegant solution that prevents developers from making the
same mistakes. Before laying out our future plan on these matters, we make two
important observations that shed light on the complexity ofbuilding a complete and
accurate static error propagation analysis.

The first one is abouterror transformation. Each layer uses different error

167

codes, thus an error code transforms and its error containeralso changes (e.g., the
block layer clears the uptodate bit stored in a buffer structure to signal I/O failure,
the VFS layer simply uses generic error code such asEIO andEROFS). We have
observed a path where an error container changes five times involving four different
type of containers. A complete analysis must recognize all transformations along
with the variables or containers that hold the errors.

The second observation is abouterror channels; error codes do not propagate
through function call paths only, but alsoasynchronous paths. We briefly describe
two examples of asynchronous paths and their complexities.First, when a lower
layer interrupts an upper one to notify it of the completion of an I/O, the low-level
I/O error code is usually stored in a structure located in theheap; the receiver of
the interrupt should grab the structure and check the error it carries, but tracking
this propagation through the heap is not straightforward. Another example occurs
during journaling: a journal daemon is woken up somewhere inthefsync() path
and propagates a journal error code via a global journal state.

By taking into account the observations above, there are twoapproaches we can
take. The first one is to enhance our static analysis into a more complete and sound
analysis by considering error transformation and asynchronous path. However,
without complete error code specification, EDP will obviously miss violations that
forget to check the unspecified error codes. Thus, each layerin the system must
properly declare a set of error codes that it exposes to another layer [136].

The second approach is to build a new error propagation architecture that pro-
hibits file system programmers to make the same mistakes. Here, we advocate two
approaches. First, we propose building systems withsemantic error codes; with
this approach, the system does not blindly believe in the success or failure signal
reported by an error code but instead performs extra checks to confirm whether
the corresponding operation is successful or not. This technique is similar to dy-
namic verification techniques [43]. Second, we propose adopting themalloc-free
paradigm for error codes [82]. Specifically, once an error code is generated, it is
treated as immutable and can only be destroyed if it transforms to another error
code or the corresponding failure is handled. If there is a “dangling” error code,
then the system has forgotten to check or handle certain faults. This new archi-
tecture ensures that errors do not disappear easily, hence reducing the instances of
silent failure.

8.3.3 Other Data Management Systems

In this dissertation, we have focused on the problems of and solutions for local file
systems. However, there are other systems that are also responsible for managing

168

data, such as distributed file systems and database management systems. These
systems are more complex than local file systems with many more components
in their storage stack. As an example, the MySQL database management system
consists of 425,000 lines of code [4]. We believe our analyses and solutions can
directly contribute to these other data management systems.

As a first step, in fact, we have examined the effects of corruption on database
management systems [125]. Through fault injection of the MySQL DBMS, we find
that in certain cases, corruption can greatly harm the system, leading to untimely
crashes, data loss, or even incorrect results. Overall, of 145 injected faults, 110
lead to serious problems. More detailed observations pointus to three deficiencies:
MySQL does not have the capability to detect some corruptions due to lack of
redundant information, does not isolate corruptions from valid data, and does not
have a proper framework for corruption handling.

Furthermore, we also find that MySQL offline checker is not comprehensive in
the checks it performs, misdiagnosing many corruption scenarios and missing oth-
ers. Sometimes the checker itself crashes; more ominously,its incorrect checking
can lead to incorrect repairs. Overall, we find that the checker does not behave cor-
rectly in 18 of 145 injected corruptions, and thus can leave the DBMS vulnerable
to the problems described above.

We note that these findings are similar to the ones we found in file systems. We
suspect there are two reasons behind this. First, the impactof partial disk failures to
data management systems has not been well examined in literature and in practice.
Second, many data management systems also describe recovery at a very low-level:
thousands of lines of C code. Therefore, beyond local file systems, our analyses and
solutions can be of significant contributions for other datamanagement systems.

8.3.4 Revisiting Failure Management

Finally, we believe that failure management in current systems should be revisited.
In this dissertation, we have found a major flaw in current journaling frameworks,
bugs in error-code propagation, and design problems in managing storage failures.
In short, failure management is hard. This is more true basedon our interactions
with some file system developers (ext4, JFS, and CIFS). Thesedevelopers are aware
that failures are not always handled properly, however, they may still not be able to
fix all the bugs in a straightforward manner; there are largerdesign issues. Guo and
Engler also point out a similar observation; in their study of developer responses on
bug reports, they report that developers tend to address easy-to-fix bugs and defer
difficult (but possibly critical) bugs [63].

Fortunately, we have published a full report of our error propagation analy-

169

sis [57]. This report pinpoints all places where failures are ignored in Linux file
systems, and thus, can be seen as a “database” of problems. The next step is to per-
form an in-depth study of this database in order to unearth asmany design problems
as possible.

8.4 Closing Words

“The price of reliability is the pursuit of the utmost simplicity. “

– C.A.R. Hoare, “The Emperor’s Old Clothes”, Turing Award Lecture (1980)

Data reliability is of utmost importance. As the future worksection suggests,
the journey does not end here; there are still many challenges to face. In this disser-
tation, we have adhered to two important principles that help us face the challenges
of building more reliable storage systems.

First, reliability should be a first-class storage system concern. The reliabil-
ity principle demands that storage systems anticipate and properly handle all types
of failures. Hence, it is important to critically analyze how modern data manage-
ment systems react to the different types of faults that can occur, how such faults
propagate through the systems, and the broader-scale failure architecture.

Second,complexity is the enemy of reliability. Recovery code is complex and
hard to get right. Current approaches describe recovery in thousands of lines of
low-level C code and it is scattered throughout different sections of the code. Thus,
we have advocated a higher-level strategy where the logic ofreliability policies
can be described clearly and concisely. This strategy aligns with what Tony Hoare
said (quoted above), but this does not mean that we are simplifying the features
of today’s systems. In fact, we accept the fact that tomorrow’s systems will be
much larger and complex than current ones. Therefore, the new challenge that
this dissertation has addressed is how we can design large, reliable systems with
simplicity while still keeping them powerful.

170

Bibliography

[1] e2fsprogs.sourceforge.net.

[2] en.wikipedia.org/wiki/SQL.

[3] en.wikipedia.org/wiki/Ext4.

[4] www.coverity.com/html/pressstory0502 15 05.html.

[5] ReiserFS. en.wikipedia.org/wiki/ReiserFS.

[6] Anurag Acharya. Reliability on the Cheap: How I Learned to Stop Worrying and Love Cheap
PCs. EASY Workshop ’02, October 2002.

[7] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A Five-Year Study
of File-System Metadata. InProceedings of the 5th USENIX Symposium on File and Storage
Technologies (FAST ’07), San Jose, California, February 2007.

[8] Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Cristian. Tolerating Multiple Failures
in RAID Architectures with Optimal Storage and Uniform Declustering. InProceedings of
the 24th Annual International Symposium on Computer Architecture (ISCA ’97), pages 62–72,
Denver, Colorado, May 1997.

[9] David G. Andersen, Deepak Bansal, Dorothy Curtis, Srinivasan Seshan, and Hari Balakrish-
nan. System Support for Bandwidth Management and Content Adaptation in Internet Applica-
tions. InProceedings of the 4th Symposium on Operating Systems Design and Implementation
(OSDI ’00), pages 213–226, San Diego, California, October 2000.

[10] Dave Anderson. You Don’t Know Jack about Disks. ACM Queue, June 2003.

[11] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an Interface: SCSI vs. ATA. In
Proceedings of the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03),
San Francisco, California, April 2003.

[12] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James Nugent, and Florentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 90–105, Bolton Landing
(Lake George), New York, October 2003.

[13] Lakshmi N. Bairavasundaram, Garth R. Goodson, ShankarPasupathy, and Jiri Schindler. An
Analysis of Latent Sector Errors in Disk Drives. InProceedings of the 2007 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’07),
San Diego, California, June 2007.

171

172

[14] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. An Analysis of Data Corruption in the Storage
Stack. InProceedings of the 6th USENIX Symposium on File and Storage Technologies (
FAST ’08), pages 223–238, San Jose, California, February 2008.

[15] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. Systematically Benchmarking the Effects
of Disk Pointer Corruption. InProceedings of the International Conference on Dependable
Systems and Networks (DSN ’08), Anchorage, Alaska, June 2008.

[16] Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Roussopoulos, Petros Maniatis,
TJ Giuli, and Prashanth Bungale. A fresh look at the reliability of long-term digital storage.
In Proceedings of the 2006 EuroSys Conference, Leuven, Belgium, April 2006.

[17] Hari Balakrishnan, Hariharan S. Rahul, and SrinivasanSeshan. An Integrated Congestion
Management Architecture for Internet Hosts. InProceedings of SIGCOMM ’99, pages 175–
187, Cambridge, Massachusetts, August 1999.

[18] Wendy Bartlett and Lisa Spainhower. Commercial Fault Tolerance: A Tale of Two Systems.
IEEE Transactions on Dependable and Secure Computing, 1(1):87–96, January 2004.

[19] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault Injection Experiments Using
FIAT. IEEE Transactions on Computers, 39(4):1105–1118, April 1990.

[20] Steve Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html, 2000.

[21] Michael W. Bigrigg and Jacob J. Vos. The Set-Check-Use Methodology for Detecting Error
Propagation Failures in I/O Routines. InWorkshop on Dependability Benchmarking (WDB
’02), Washington, DC, June 2002.

[22] Dina Bitton and Jim Gray. Disk shadowing. InProceedings of the 14th International Confer-
ence on Very Large Data Bases (VLDB 14), pages 331–338, Los Angeles, California, August
1988.

[23] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Systems. openso-
laris.org/os/community/zfs/docs/zfslast.pdf, 2007.

[24] Aaron Brown and David A. Patterson. Towards Maintainability, Availability, and Growth
Benchmarks: A Case Study of Software RAID Systems. InProceedings of the USENIX
Annual Technical Conference (USENIX ’00), pages 263–276, San Diego, California, June
2000.

[25] Aaron B. Brown and David A. Patterson. Towards Availability Benchmarks: A Case Study
of Software RAID Systems. InProceedings of the USENIX Annual Technical Conference
(USENIX ’00), pages 263–276, San Diego, California, June 2000.

[26] George Candea and Armando Fox. Crash-Only Software. InThe Ninth Workshop on Hot
Topics in Operating Systems (HotOS IX), Lihue, Hawaii, May 2003.

[27] Remy Card, Theodore Ts’o, and Stephen Tweedie. Design and Implementation of the Second
Extended Filesystem. In Proceedings of the First Dutch International Symposium on Linux,
1994.

[28] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem,and Dawson Engler. An Empirical
Study of Operating System Errors. InProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), pages 73–88, Banff, Canada, October 2001.

173

[29] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC to Improve
the Modularity of Path-Specific Customization in OperatingSystem Code. InESEC/FSE-9,
September 2001.

[30] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong, and
Sunitha Sankar. Row-Diagonal Parity for Double Disk Failure Correction. InProceedings of
the 3rd USENIX Symposium on File and Storage Technologies (FAST ’04), pages 1–14, San
Francisco, California, April 2004.

[31] Jim Davies and Jim Woodcock.Using Z: Specification, Refinement, and Proof. Prentice Hall,
1996.

[32] Brian Demsky and Martin Rinard. Automatic Detection and Repair of Errors in Data Struc-
tures. InThe 18th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03), Anaheim, California, October 2003.

[33] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and RemziH. Arpaci-Dusseau. Bridging the
Information Gap in Storage Protocol Stacks. InProceedings of the USENIX Annual Technical
Conference (USENIX ’02), pages 177–190, Monterey, California, June 2002.

[34] John DeTreville. Making system configuration more declarative. InThe Tenth Workshop on
Hot Topics in Operating Systems (HotOS X), Sante Fe, New Mexico, June 2005.

[35] DTI/PriceWaterHouse. Information Security BreachesSurvey, 2008.

[36] James Dykes. “A modern disk has roughly 400,000 lines ofcode”. Personal Communication
from James Dykes of Seagate, August 2005.

[37] EMC. EMC Centera: Content Addressed Storage System. www.emc.com, 2004.

[38] Ralph Waldo Emerson. Essays and English Traits – IV: Self-Reliance. The Harvard classics,
edited by Charles W. Eliot. New York: P.F. Collier and Son, 1909-14, Volume 5, 1841.A
foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers
and divines.

[39] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking System Rules
Using System-Specific, Programmer-Written Compiler Extensions . InProceedings of the
4th Symposium on Operating Systems Design and Implementation (OSDI ’00), San Diego,
California, October 2000.

[40] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring Errors inSystems Code. InProceedings of
the 18th ACM Symposium on Operating Systems Principles (SOSP ’01), pages 57–72, Banff,
Canada, October 2001.

[41] Dawson Engler and Madanlal Musuvathi. Static Analysisversus Software Model Checking
for Bug Finding. In5th International Conference Verification, Model Checkingand Abstract
Interpretation (VMCAI ’04), Venice, Italy, January 2004.

[42] Dawson R. Engler and Daniel Dunbar. Under-constrainedexecution: making automatic code
destruction easy and scalable. InProceedings of the International Symposium on Software
Testing and Analysis (ISSTA ’07), London, United Kingdom, July 2007.

[43] R.S. Fabry. Dynamic Verification of Operating System Decisions. Communications of the
ACM, 16(11):659–668, November 1973.

[44] Rob Funk. fsck / xfs. lwn.net/Articles/226851.

174

[45] Gregory R. Ganger and Yale N. Patt. Metadata Update Performance in File Systems. In
Proceedings of the 1st Symposium on Operating Systems Design and Implementation (OSDI
’94), pages 49–60, Monterey, California, November 1994.

[46] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages
29–43, Bolton Landing (Lake George), New York, October 2003.

[47] Dominic Giampaolo.Practical File System Design with the Be File System. Morgan Kauf-
mann, 1999.

[48] Garth A. Gibson.Redundant Disk Arrays: Reliable, Parallel Secondary Storage. PhD thesis,
University of California at Berkeley, 1991.

[49] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. InProceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI ’05), Chicago, Illinois, June 2005.

[50] Jim Gray. A Census of Tandem System Availability Between 1985 and 1990. Technical Report
90.1, Tandem Computers, 1990.

[51] Jim Gray and Catharine Van Ingen. Empirical measurements of disk failure rates and error
rates. Microsoft Technical Report, December 2005.

[52] Jim Gray and Andreas Reuter.Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[53] Roedy Green. EIDE Controller Flaws Version 24. mindprod.com/jgloss/eideflaw.html, Febru-
ary 2005.

[54] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta.
Towards a next generation data center architecture: scalability and commoditization. InPro-
ceedings of the ACM workshop on Programmable routers for extensible services of tomorrow
(PRESTO ’09), Seattle, Washington, August 2002.

[55] Edward Grochowski. Emerging Trends in Data Storage on Magnetic Hard Disk Drives.Datat-
ech, September 1999.

[56] Weining Gu, Z. Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang. Characterization of Linux
Kernel Behavior Under Errors. InProceedings of the International Conference on Dependable
Systems and Networks (DSN ’03), pages 459–468, San Francisco, California, June 2003.

[57] Haryadi S. Gunawi. EDP Output for All File Systems. www.cs.wisc.edu/adsl/Publications/
eio-fast08/readme.html.

[58] Haryadi S. Gunawi, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Jiri Schindler. Deconstructing Commodity Storage Clusters. InProceedings of the 32nd
Annual International Symposium on Computer Architecture (ISCA ’05), pages 60–73, Madi-
son, Wisconsin, June 2005.

[59] Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and RemziH. Arpaci-Dusseau. Deploying
Safe User-Level Network Services with icTCP. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI ’04), pages 317–332, San Francisco,
California, December 2004.

[60] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Improving File System Reliability with I/O Shepherding. InPro-
ceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP ’07), pages
283–296, Stevenson, Washington, October 2007.

175

[61] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. SQCK: A Declarative File System Checker. InProceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI ’08), San Diego, California, December
2008.

[62] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Ben Liblit. EIO: Error Handling is Occasionally Correct. InProceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST’08), pages 207–222, San
Jose, California, February 2008.

[63] Philip J. Guo and Dawson Engler. Linux kernel developerresponses to static analysis bug
reports. InProceedings of the USENIX Annual Technical Conference (USENIX ’09), San
Diego, California, June 2009.

[64] Robert Hagmann. Reimplementing the Cedar File System Using Logging and Group Commit.
In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP ’87),
Austin, Texas, November 1987.

[65] Val Henson. The Many Faces of fsck. lwn.net/Articles/248180/, September 2007.

[66] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs: Using divide-and-
conquer to improve file system reliability and repair. InIEEE 2nd Workshop on Hot Topics in
System Dependability (HotDep ’06), Seattle, Washington, November 2006.

[67] Michael Hind. Pointer Analysis: Haven’t We Solved ThisProblem Yet? InACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools andEngineering (PASTE ’01),
Snowbird, Utah, June 2001.

[68] Hitachi Data Systems. Hitachi Universal Storage Platform V. www.hds.com.

[69] Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File Server
Appliance. InProceedings of the USENIX Winter Technical Conference (USENIX Winter
’94), San Francisco, California, January 1994.

[70] HP. HP XC Clusters. www.hp.com.

[71] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: dynamic data replication in free disk space
for improving disk performance and energy consumption. InProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ’05), pages 263–276, Brighton, United
Kingdom, October 2005.

[72] Gordon F. Hughes and Joseph F. Murray. Reliability and Security of RAID Storage Systems
and D2D Archives Using SATA Disk Drives.ACM Transactions on Storage, 1(1):95–107,
February 2005.

[73] Galen C. Hunt, James R. Larus, Martin Abadi, Paul Barham, Manuel Fahndrich, Chris Haw-
blitzel Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted
Wobber, and Brian Zill. An Overview of the Singularity Project. Technical Report 2005-135,
Microsoft Research, 2005.

[74] Daniel Jackson. Alloy: a lightweight object modellingnotation. Software Engineering and
Methodology, 11(2):256–290, 2002.

[75] Andreas Johansson and Neeraj Suri. Error Propagation Profiling of Operating Systems . In
Proceedings of the International Conference on DependableSystems and Networks (DSN ’05),
Yokohama, Japan, June 2005.

176

[76] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled.Model Checking. MIT Press,
1999.

[77] Wei-lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: AFault Injection and Monitoring
Environment for Tracing the UNIX System Behavior Under Faults. In IEEE Transactions on
Software Engineering, pages 1105–1118, 1993.

[78] Hannu H. Kari. Latent Sector Faults and Reliability of Disk Arrays. PhD thesis, Helsinki
University of Technology, September 1997.

[79] Hannu H. Kari, H. Saikkonen, and F. Lombardi. Detectionof Defective Media in Disks. InThe
IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pages 49–55,
Venice, Italy, October 1993.

[80] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical Report TR-3022,
Network Appliance Inc., October 1997.

[81] Kimberly Keeton, Cipriano Santos, Dirk Beyer, JeffreyChase, and John Wilkes. Designing
for disasters. InProceedings of the 3rd USENIX Symposium on File and Storage Technologies
(FAST ’04), San Francisco, California, April 2004.

[82] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall,
Inc., 1988.

[83] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), pages 220–242, 1997.

[84] Steve R. Kleiman. Vnodes: An Architecture for MultipleFile System Types in Sun UNIX.
In Proceedings of the USENIX Summer Technical Conference (USENIX Summer ’86), pages
238–247, Atlanta, Georgia, June 1986.

[85] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A Formal Approach to Recovery
by Compensating Transactions. InProceedings of the 16th International Conference on Very
Large Data Bases (VLDB 16), pages 95–106, Brisbane, Australia, August 1990.

[86] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R.Goodson, Kiran Srinivasan, Randy
Thelen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Parity Lost and Parity
Regained. InProceedings of the 6th USENIX Symposium on File and Storage Technologies (
FAST ’08), pages 127–141, San Jose, California, February 2008.

[87] Larry Lancaster and Alan Rowe. Measuring Real World Data Availability. In Proceedings of
the LISA 2001 15th Systems Administration Conference, pages 93–100, San Diego, California,
December 2001.

[88] Blake Lewis. Smart Filers and Dumb Disks. NSIC OSD Working Group Meeting, April 1999.

[89] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and
Ion Stoica. Implementing Declarative Overlays. InProceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP ’05), Brighton, United Kingdom, October 2005.

[90] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman, and
Volker Stemann. Practical Loss-Resilient Codes. InProceedings of the Twenty-ninth Annual
ACM symposium on Theory of Computing (STOC ’97), pages 150–159, El Paso, Texas, May
1997.

[91] Peter Lyman and Hal R. Varian. How Much Information? 2003. www2.sims.berkeley.edu/
research/projects/how-much-info-2003/.

177

[92] Marshall K. McKusick, William N. Joy, Sam J. Leffler, andRobert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[93] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffler, and Robert S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager’s Manual - 4.3 BSD Virtual
VAX-11 Version, April 1986.

[94] Jeffrey C. Mogul. A Better Update Policy. InProceedings of the USENIX Summer Technical
Conference (USENIX Summer ’94), Boston, Massachusetts, June 1994.

[95] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The Click Modular
Router. InProceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP
’99), pages 217–231, Kiawah Island Resort, South Carolina, December 1999.

[96] Madanlal Musuvathi, David Y.W. Park, Andy Chou, DawsonR. Engler, and David L. Dill.
CMC: A Pragmatic Approach to Model Checking Real Code. InProceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (OSDI ’02), Boston, Massachusetts,
December 2002.

[97] George C. Necula, Scott McPeak, S. P. Rahul, and WestleyWeimer. Cil: An infrastructure for
c program analysis and transformation. InInternational Conference on Compiler Construction
(CC ’02), pages 213–228, April 2002.

[98] John Oates. Bank fined 3 millions pound sterling for dataloss, still not taking it seriously.
www.theregister.co.uk/2009/07/22/fsahsbcdataloss.

[99] Arvin Park and K. Balasubramanian. Providing fault tolerance in parallel secondary storage
systems. Technical Report CS-TR-057-86, Department of Computer Science, Princeton Uni-
versity, November 1986.

[100] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, andErez Zadok. I3FS: An In-kernel
Integrity Checker and Intrusion detection File System. InProceedings of the 18th Annual
Large Installation System Administration Conference (LISA ’04), Atlanta, Georgia, November
2004.

[101] Dave Patterson. A new focus for a new century: Availability and maintainability ¿¿ perfor-
mance. Keynote at FAST 2002, February 2002.

[102] David Patterson, Aaron Brown, Pete Broadwell, GeorgeCandea, Mike Chen, James Cutler,
Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher, David Oppenheimer,
Naveen Sastry, William Tetzlaff, Jonathan Traupman, and Noah Treuhaft. Recovery Oriented
Computing (ROC): Motivation, Definition, Techniques, and Case Studies. Technical Report
CSD-02-1175, U.C. Berkeley, March 2002.

[103] David Patterson, Garth Gibson, and Randy Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the Management of
Data (SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[104] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso. Failure Trends in a Large
Disk Drive Population. InProceedings of the 5th USENIX Symposium on File and Storage
Technologies (FAST ’07), pages 17–28, San Jose, California, February 2007.

[105] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Model-
Based Failure Analysis of Journaling File Systems. InProceedings of the International Con-
ference on Dependable Systems and Networks (DSN ’05), pages 802–811, Yokohama, Japan,
June 2005.

178

[106] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. InProceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[107] American Data Recovery. Data loss statistics. www.californiadatarecovery.com/content/
adr lossstat.html.

[108] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C. Lynch,
Paul R. McJones, Hal G. Murray, and Stephen C.Purcell. Pilot: An Operating System for a
Personal Computer.Communications of the ACM, 23(2):81–92, February 1980.

[109] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[110] Peter M. Ridge and Gary Field.The Book of SCSI 2/E. No Starch, June 2000.

[111] Martin P. Robillard and Gail C. Murphy. Designing Robust Java Programs with Exceptions. In
Proceedings of the 8th ACM SIGSOFT international symposiumon Foundations of software
engineering (FSE ’00), San Diego, CA, November 2000.

[112] Mendel Rosenblum and John Ousterhout. The Design and Implementation of a Log-Structured
File System.ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[113] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau, and An-
drea C. Arpaci-Dusseau. Error propagation analysis for filesystems. InProceedings of the
ACM SIGPLAN 2009 Conference on Programming Language Designand Implementation
(PLDI ’09), Dublin, Ireland, June 2009.

[114] Jiri Schindler. “We have experienced a severe performance degradation that was identified as
a problem with disk firmware. The disk drives had to be reprogrammed to fix the problem”.
Personal Communication from J. Schindler of EMC, July 2005.

[115] Bianca Schroeder and Garth Gibson. Disk failures in the real world: What does an MTTF of
1,000,000 hours mean to you? InProceedings of the 5th USENIX Symposium on File and
Storage Technologies (FAST ’07), pages 1–16, San Jose, California, February 2007.

[116] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild:
A Large-Scale Field Study. InProceedings of the 2009 Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS/Performance ’09), Seattle,
Washington, June 2007.

[117] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, DarrellD.E. Long, Andy Hospodor, and
Spencer Ng. Disk Scrubbing in Large Archival Storage Systems. InProceedings of the 12th
Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), Volendam, Netherlands, October
2004.

[118] Simon CW See. Data Intensive Computing. InSun Preservation and Archiving Special Interest
Group (PASIG ’09), San Fancisco, California, October 2009.

[119] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick,Keith A. Smith, Craig A. N. Soules,
and Christopher A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data Protec-
tion in File Systems. InProceedings of the USENIX Annual Technical Conference (USENIX
’00), pages 71–84, San Diego, California, June 2000.

[120] D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segal. Development of a Benchmark to
Measure System Robustness. InProceedings of the 23rd International Symposium on Fault-
Tolerant Computing (FTCS-23), Toulouse, France, June 1993.

179

[121] Aameek Singh, Madhukar Korupolu, and Kaladhar Voruganti. Zodiac: Efficient impact anal-
ysis for storage area networks. InProceedings of the 4th USENIX Symposium on File and
Storage Technologies (FAST ’05), San Francisco, California, December 2005.

[122] Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-Safe Disks. InPro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06),
Seattle, Washington, November 2006.

[123] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Improving Storage System Availability with D-GRAID. In Proceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST’04), pages 15–30, San
Francisco, California, April 2004.

[124] David A. Solomon.Inside Windows NT. Microsoft Programming Series. Microsoft Press, 2nd
edition, May 1998.

[125] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan,Haryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Jeffrey F. Naughton. Impact of Disk Corrup-
tion on Open-Source DBMS. InProceedings of the 26th International Conference on Data
Engineering (ICDE ’10), Long Beach, California, March 2010.

[126] Christopher A. Stein, John H. Howard, and Margo I. Seltzer. Unifying File System Protec-
tion. In Proceedings of the USENIX Annual Technical Conference (USENIX ’01), Boston,
Massachusetts, June 2001.

[127] Ion Stoica, Robert Morris, David Liben-Nowell, DavidR. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet
applications. InProceedings of SIGCOMM ’01, San Diego, California, August 2001.

[128] Scott Studham. Commoditization of high performance storage: breaking into the next frontier.
In Scientific Computing and Instrumentation, April 2004.

[129] Sun. Sun StorageTek 5800 System. www.sun.com.

[130] Sun Microsystems. ZFS: The last word in file systems. www.sun.com/2004-0914/feature/,
2006.

[131] Rajesh Sundaram. The Private Lives of Disk Drives. www.netapp.com/go/techontap/matl/
sample/0206totresiliency.html, February 2006.

[132] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,Mike Nishimoto, and Geoff Peck.
Scalability in the XFS File System. InProceedings of the USENIX Annual Technical Confer-
ence (USENIX ’96), San Diego, California, January 1996.

[133] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the Reliability of Com-
modity Operating Systems. InProceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), Bolton Landing (Lake George), New York, October 2003.

[134] Alexander Szalay and Jim Gray. 2020 Computing: Science in an exponential world.Nature,
(440):413–414, March 2006.

[135] Nisha Talagala and David Patterson. An Analysis of Error Behaviour in a Large Storage
System. InThe IEEE Workshop on Fault Tolerance in Parallel and Distributed Systems, San
Juan, Puerto Rico, April 1999.

[136] Douglas Thain and Miron Livny. Error Scope on a Computational Grid: Theory and Practice.
In Proceedings of the 11th IEEE International Symposium on High Performance Distributed
Computing (HPDC 11), Edinburgh, Scotland, July 2002.

180

[137] The Data Clinic. Hard Disk Failure. www.dataclinic.co.uk/hard-disk-failures.htm, 2004.

[138] Transaction Processing Council. TPC Benchmark B Standard Specification, Revision 3.2.
Technical Report, 1990.

[139] T. K. Tsai and R. K. Iyer. Measuring Fault Tolerance with the FTAPE Fault Injection Tool.
In The 8th International Conference On Modeling Techniques and Tools for Computer Perfor-
mance Evaluation, pages 26–40, September 1995.

[140] Stephen C. Tweedie. Journaling the Linux ext2fs File System. InThe Fourth Annual Linux
Expo, Durham, North Carolina, May 1998.

[141] Stephen C. Tweedie. EXT3, Journaling File System. olstrans.sourceforge.net/release/
OLS2000-ext3/OLS2000-ext3.html, July 2000.

[142] John Wehman and Peter den Haan. The Enhanced IDE/Fast-ATA FAQ. thef-
nym.sci.kun.nl/cgi-pieterh/atazip/atafq.html, 1998.

[143] Glenn Weinberg. The Solaris Dynamic File System. members.visi.net/∼thedave/sun/
DynFS.pdf, 2004.

[144] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID Hierar-
chical Storage System.ACM Transactions on Computer Systems, 14(1):108–136, February
1996.

[145] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A Lightweight, General System for
Finding Serious Storage System Errors. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), Seattle, Washington, November 2006.

[146] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. Automatically
Generating Malicious Disks using Symbolic Execution. InIEEE Security and Privacy (SP
’06), Berkeley, California, May 2006.

[147] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using Model Check-
ing to Find Serious File System Errors. InProceedings of the 6th Symposium on Operating
Systems Design and Implement ation (OSDI ’04), San Francisco, California, December 2004.

[148] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, and T. E. Anderson. Trading
Capacity for Performance in a Disk Array. InProceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI ’00), San Diego, California, October 2000.

