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Abstract

TOWARDS RELIABLE STORAGE SYSTEMS
Haryadi S. Gunawi

“There’s no way of reporting error ... to userspace. So ignir
— A comment in ext3 (inode.c, line 1517)

Users are storing increasingly massive amounts of dataa@isoftware complex-
ity is growing. The use of cheap and less reliable hardwarereasing. The com-
bination of these trends presents us with a terrific chalehtpw can we promise
users that storage systems work robustly in spite of the nfpilures that can
arise?

In the first part of this dissertation, we respond to this tjoaswith our anal-
ysis of three reliability components present in many modiéensystems: the file
system checker (fsck), failure detection and recoveryciesi (failure policy), and
journaling. We find that these subsystems are deficient idlmanpartial disk fail-
ures: in the fsck analysis, we find that some repairs are b(lggking the repaired
file system more corrupted) and some repairs are missingiiigaome corruptions
unattended). In the failure policy analysis, we observe pnmoblem of diffused
fault handling, which causes policies to be inconsisteaggy, and inflexible to
change. In the journaling analysis, we uncover that cuijmmhaling frameworks
cannot recover from checkpoint write failures, and henciewailures are inten-
tionally ignored. The results of our analysis hint that nging failures is hard (as
also hinted by the developer's comment), and hence demanubf@| solutions
towards building more reliable storage systems.

In the second part of this dissertation, we present ourisaisito the problems
above. First, we re-architect the file system checker bpthicing SQCK, a robust
file system checker that employs a declarative query lareyudg writing hundreds



of checks and repairs in a query languageag( SQL), the high-level intent of the
checker can be specified in a clear and compact manner. Wetblab\BQCK is
able to perform the same functionality as the Linux ext2/8oier with elegant and
compact gueries.

Second, we present EDP, a static analysis tool that showshowcodes flow
through file systems and storage drivers. We observe thalkdeal errors are some-
times lost as they travel through the many layers of the giosabsystem: out of
the 9022 function calls through which the analyzed erroresgoropagate, we find
that 1153 calls (13%) do not correctly save the propagated endes. Our detailed
analysis shows that many violations are not corner-castakais; the return codes
of some functions are consistently ignored.

Finally, we present I/O shepherding, a new reliability agftructure for file sys-
tems. With I/O shepherding, the reliability policies of & fdystem are well-defined,
easy to understand, and simple to tailor to environment amdload. As part of
this framework, we also introducghained transactionsa novel and more power-
ful transactional model for checkpoint recoveries. We sltloat 1/0 shepherding
enables simple, powerful, and correctly-implementedatslity policies by imple-
menting an increasingly complex set of policies.
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Chapter 1

Introduction

“Just ignore errors at this point.
There is nothing we can do except to try to keep going.”
— A comment in XFS (xfsynodeops.c, line 1785)

With the success of low-cost, high-capacity disk drivebtygdes of users are
storing increasingly massive amounts of data. Persona gseate digitized forms
of music, images, and videos, as well as conventional dootsnand it is estimated
that almost 800 MB of data is produced per person each year (®@ganizations,
in addition to storing new data, are also keeping old datgdoiffor the purposes of
compliance and business intelligence [121]. Scientifiosusee capturing large
amounts of data, as much as 200 GB data per day per projec}, [A48 they
estimate that the amount is doubling every year [134].

Given the rising amount of data, access to data is criticataMnavailability
may cost a company more than one million dollars per hour I81). Data loss
can be more catastrophic; a recent survey shows that 7 oGtehall and medium
firms that experience a major data loss go out of businessinnithyear [35].
For larger organizations such as banking, data loss can imaxt greater con-
sequences; in July 2009, a large bank was fined a record fofdl millions after
losing data on thousands of its customers [98].

Unfortunately, disks fail, and they fail more often than mfatturers expect
them to [115]. Furthermore, the manner in which their fakiarise is becoming
more complex. The simple view that disks either work or fainpletely no longer
holds. The reality today is that disks not only exhibit whdlisk failure [115] but
also partial failures. For example, disks can exhibit latent sectorrerravhere



a disk block or set of blocks are inaccessible [30, 79, 117prs#&/, disk blocks
sometimes become silently corrupted [18, 53, 130, 131]. tacant large scale
study of 1.5 million disk drives deployed in the field, Baisaundaranet al. have
shown that latent sector errors affect a significant peemgnbf disk drivesd.g, up
to 20% of the drives of a SATA disk model in just two years) [&Bd corruptions
affect 400,000 blocks over three years [14].

Exacerbating the aforementioned problems, several téapyntrends and mar-
ket forces may combine to make storage system failures aocue frequently
over time. First, disk drives are becoming more dense as rbitseare packed
into smaller spaces [55]. As density increases, the logioaiplexity of the drive
mechanics and firmware also increases, which can lead tofaibnes. For exam-
ple, errors such as bit spillovers on adjacent tracks camupbmore bits at higher
areal densities [10]. It is also known that complex firmwanrgid can introduce
bugs that could corrupt data [143]. In this denser worldalslity becomes more
challenging.

Second, the use of cheap and less reliable hardware is silmgeaCompanies
are striving to lower costs by cutting corners in a compeatitmarket place, and
thus, they increasingly consolidate on low-cost PCs usify dxives [46, 54, 128].
These low-cost PC drives tend to be less tested and haventessal machinery
to prevent failures from occurring [72]. The result, in theldi, is that ATA drives
are observably less reliable [6, 11, 13, 14, 135]. Thereftite prevalent use of
these drives implies that disk failures will not be a rarityt bather a commonplace
occurrence.

Finally, the amount of software is increasing in storagdesys and, as others
have noted, software is often the root cause of errors [50thé storage system,
hundreds of thousands of lines of software are present ilother-level drivers and
firmware. This low-level code is generally the type of codattl difficult to write
and debug [40, 133], and hence a likely source of increasedsen the storage
stack.

The combination of these trends presents us with a terrifadlenge: How
can we promise users that storage systems work robustlyite afotheir massive
software complexity and all the complex disk failures tlaat arise?As hinted by
the developers’ comments quoted throughout this disgamtahis is a challenging
problem; even when the developers are aware of the failbagcan arise, they do
not know how to implement the correct response. To resporillisochallenging
guestion, we believe it is of utmost importance to fastlyzeexisting approaches
and therbuild new techniques for designing and building robust softwaréop of
increasingly complex and unreliable hardware. We dischigse two parts of this



dissertation in the following two sections.

1.1 Analysis of File System Reliability Components

Since disks fall, it is important to analyze how disk failsiinpact modern systems.
In the first part of this dissertation, we focus on analyzimg impact opartial disk
failureson local commodity file systems

Partial disk failures such as latent sector errors and ptions occur due the
complex nature of disk drives; trapped particles could eagsatches thereby ren-
dering sectors unreadable [11, 117]; high gaps between idlehgtad and the
medium could cause data to be written poorly [13]; firmwargsaould silently
lose, misdirected, or torn disk writes [46, 53, 130, 131ftware bugs in device
drivers could corrupt data [28, 40, 133]. As mentioned earliecent studies have
shown that partial disk failures occur in practice at a higtade than what was
expected before [13, 14].

The impact of partial disk failures could affect a full rangfadata management
systems such as databases, distributed file systems, aridl &rdys. In this dis-
sertation, we focus and limit our scope only to local comrhoéile systems for
the following two reasons. First, these file systems are Wyideployed in personal
computers of millions of users. Users store valuable data sis financial infor-
mation, pictures, videos, and other types of documentsdin grersonal laptops or
PCs. Once users store their data, they expect it to be m@sistrever, and perpet-
ually available. Second, a fundamental change is occuwitign high-end storage
systems design; while traditionally, high-end storagdaesys are assembled from
highly customized components, today, people want to loveeddare costs and
build large scalable storage clusters. Thus, modern highstorage systems are
comprised of commodity PCs running commaodity operatingesyis and file sys-
tems [37, 46, 58, 68, 70, 129]. Therefore, analyzing local $ystems will bring
benefits to other systems built on top of it.

As a first step, to emulate partial disk failures, we devetbpype-aware fault
injection in earlier work [106]. Our approach is to injectfes just beneath the sys-
tem under test and observe how the system responds. Mamastafault injectors
fail disk blocks in atype-obliviousmanner [25, 120]; that is, a block is failed re-
gardless of how it is being used by the system. In contrash type-aware fault
injection, we fail blocks of a specific typee.g, an inode block in a file system
or a user data page in a virtual-memory system). Type infdonas crucial for
reverse-engineering the different strategies that a systeplies for its different
data structures.



With the fault-injection framework in place, we analyze hpartial disk fail-
ures are handled by three important reliability componenésent in many modern
file systems: the file system checker [65, 93], an importgodireutility that fixes
file system inconsistency; failure policy [106], the file ®m detection and re-
covery techniques for dealing with disk failures; and jalimg [52, 64, 140], a
mechanism that guarantees write atomicity in the presehsgstem crashes.

This dissertation reports our analysis of the three compisneithin the Linux
ext3 file system [140], which is the default file system for mamopular Linux
distributions such as Red Hat. However, in some cases, we &dended our
analysis to other file systems including ReiserFS [109], IB3FS [20], and Win-
dows NTFS [124]. Interestingly, although these file systdrage been in active
development for more than one decade, we still find flaws, baiyd design prob-
lems in terms of how their reliability components deal witrgal disk failures.
This highlights that the impact of partial disk failures tle fsystems has not been
well examined in literature and in practice. Below, we dsgswur motivations
for choosing the three reliability components and alsogmethe summary of our
findings.

1.1.1 Analysis of File System Checker

The first component that we evaluate is the offline file systeatker (also known
as fsck) [61]. Tools such as fsck have existed for many y&8kdnd are applied
to restore a damaged or otherwise inconsistent file systeageno a working and
usable state. Although many newer file systems have triedadid #he inclusion of
an offline checker in their tool suite [65] (for example, bg@sing that journaling
always keeps the file system consistent), they inevitabtythat a checker must be
deployed. For example, SGI's XFS was introduced as a fileesystith “no need
for fsck, ever,” but soon found it necessary to deliver sutbch[44]. Thus, a key
component to a robust file system is a robust fsck.

Unfortunately, robust checkers are not currently strdayiatard to design or
implement. First, checkers are large and complex beast&xfample, the Linux
ext2 checker performs more than 120 data structure repaisixteen thousand
lines of C code, while the ext2 file system itself is less them thousand lines.
Checkers are often written in a low-level systems languagé ss C, which can
be difficult to reason about. Checkers also are hard to testn ghe huge possible
state space of input file systems. Finally, checkers are ofiie only when a serious
problem has occurred; it is well known that rarely-run resgvcode tends to be
less reliable [26, 107].

Nevertheless, fsck is considered as the last line of defenfie damaged file
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systems; if fsck fails to repair file systems correctly, nbesttools can. Therefore,
it is important to analyze whether current checkers coutiberly repair inconsis-
tencies due to partial disk failures.{, corruptions). To achieve that, we evaluate
e2fsck, the Linux ext2/3 checker. We injected corruptiansxt2 on-disk pointers
in order to observe how e2fsck repairs file system inconsiss.

Our results show many weaknesses of e2fsck that lead to umatue file sys-
tems and data loss [61]. For example, first, e2fsck sometoaderms out-of-order
repairs that can corrupt the file system image by overwritmpgortant metadata
such as files, directories, and even the superblock. See@feik does not always
use all available information to perform the correct repaind hence can lose por-
tions of the directory tree; a dreadful mistake is when d2fgoores replicas of
important pointers such that a corrupt pointer is considlenafixable, and hence
all information behind that pointere(g, all files in an inode table) is considered
lost. Third, e2fsck does not follow the same policiegy( block allocation policy)
as the original ext2/3 file system. Finally, e2fsck does heags perform a secure
repair, and hence data from one user can leak to another user.

These findings show that fsck is truly complex and when nagdesl properly,
the correctness of such a complex system is hard to achietteer @han e2fsck,
other checkers are unfortunately written in the same way bundreds of checks
and repairs in thousands of lines of code). Thus, we belitheracheckers have
the same weaknesses as in e2fsck.

1.1.2 Analysis of Failure Policy

Our second analysis is ¢dilure policy [106]. That is, we attempt to unearth how
a running file system detects and recovers from a range ofapalisk failures
(e.g, corruptions, read and write errors). In this analysis, wectically choose
commodity file systems because their failure policies haseheen captured in
literature, unlike those of high-end storage systems. kample, many high-end
storage systems are known to incorporate a backgrdiskdscrubbingorocess [78,
117] for detecting latent sector faults. Some also empldsad®vels of redundancy
to reduce the potential data loss of undetected latentsfga@]. Finally, it is well-
known that highly-reliable systems utilize end-to-end aktseims to detect block
corruptions [18].

As part of a larger group effort [106], we analyze several nwdity file sys-
tems; the author specifically analyzes Windows NTFS [124] e rest of the
group analyze three other file systems, ext3 [140], Reisgl69], and IBM JFS[20].
To unearth the failure policies of these file systems, we luseype-aware fault in-
jection framework to insert block-level read/write faudisd corruptions.



Our findings point us to a major problem diffused handlingthere are more
than a hundred places where the file system tries to handiailies. One reason
for this diffusion is that the file system tries to handle efalit where it arises in
the code. Because I/Os are generated from many differeatidos within the file
system, the fault-handling policy is also spread througtiveicode. As a result, we
find that failure policies arenconsistentbuggy andinflexible different recovery
actions are employed under similar failure scenarios,rewdes are dropped in-
correctly leading to serious silent failures, and changing simple policy requires
modifications in many places. This shows that commodity jitesms do not have
a proper framework for disk failure handling.

1.1.3 Analysis of Journaling

In our final analysis, we look into journaling [60]. Jourmagi(also known as write-
ahead logging [52]) is a mechanism that guarantees writaieity in the presence
of system crashes. This mechanism was first introduced tilehsystem world
more than two decades ago [64]. Since then, journaling has Wwidely deployed
in many modern file systems including ext3 [140], ReiserARB®[1IBM JFS [20],
XFS [132] and Windows NTFS [124].

Journaling is accomplished with a sequence of three mairatipes. First,
file system updates are first committed as a transaction ijothieal (write-ahead
log). Then, the updates in the transaction are checkpoiotéukir final locations.
Finally, after the checkpoint completes, the transactiam loe released. Although
this sequence of technique works perfectly in anticipatirashes, its correctness
has not been evaluated when partial disk failures (writef@s in particular) come
into the picture. Therefore, to analyze this, we inject evffailures at all unique
points within the journaling sequence.

We find that journaling file systems suffer from a gengsaiblem of failed
intentions[60], which arises when the intent as written to the jourrahrwot be
realized due to disk failure during checkpointing. Moredfieally, when a trans-
action is being checkpointed and a checkpoint write falig, file system might
desire to perform a recovergg, remap the failed write), which could result in a
metadata change.Qg, a remap table is modified). In order to properly reflect the
recovery on behalf of the checkpointed transaction, theadst update must be
written to the diskbeforethe checkpointed transaction is released from the journal.
This is done by committing a new transaction that contairesntietadata update.
However, the current journaling semantic allows the cheokpd transaction to be
released before the new transaction is committed. Thusgridsh occurs after the
checkpointed transaction is released and before the nesetttion is committed,



then the metadata update performed by the recovery is losta Aesult, the file
system will be in an inconsistent state.

In summary, with this major flaw, a simple block remappingidgra check-
point failure cannot be done at the file system level. As altemany modern
file systems that employ journaling (such as ext3, IBM JF8,ReiserFS) ignore
checkpoint failure. Thus, the fact that we cannot recovamfa checkpoint failure
properly with the current journaling scheme is disastrous.

1.2 Building More Reliable File Systems

We believe our three analyses illustrate a sad reality odysdcommodity file
systems; when recovery is hard, failures are often ignoagdi(, as hinted by the
developers’ comments). Thus, all the issues we raised atadM®r novel solutions
towards building more reliable storage systems. In thersgart of this disser-
tation, we present our approaches to solving the problembave found. First,
we introduce SQCK [59], a robust file system checker that eygoa declarative
guery language. Next, we present EDP [62], a static analgsighat shows where
error-codes are ignored in file systems and storage driv@nglly, we present I/O
shepherding [60], a simple yet powerful way to build robusd aentralized failure
policies within a file system.

1.2.1 SQCK: A Declarative File System Checker

As mentioned before, robust checkers are not currentlygsttfarward to design
or implement; a typical implementation needs to performdrads of checks and
repairs in tens of thousands of lines of C code. Given thifityed is perhaps
not surprising that file system checkers often corrupt oe Idata. Thus, to build
a new generation of robust and reliable file system checkeeshelieve a new
approach is required. The ideal approach should enableighddwvel intent of the
checker to be specified in a clear and compact manner; futtiedescription of
the intent should be cleanly separated from its low-levgllementation and how
it is optimized. A high-level specification has multiple ledits: by its very nature
it is easier to understand, modify, and maintain.

To realize this new approach, we introduce SQCK [61] (proweudl “squeak’™),
a novel file system checker. Borrowing heavily from the datsbcommunity,
SQCK employs declarative queries to check and repair a fdeery image. We
find that a declarative query language is an excellent maicthe cross-checks
that must be made across the different structures of a fileesysdeclarative re-



pairs can be surprisingly elegant and compact, especiaftypared to the original
e2fsck code. Specifically, we find that SQCK can reproducdithetionality of
e2fsck in many fewer lines of code; we rewrote the checks apdirs in e2fsck
in 150 queries in about 1100 lines of SQL statement (alon soime helper code
written in C).

As checks and repairs are written in declarative queriesCis@nables file
system developers to plug-infout checks and repairs inaggstiforward fashion.
In our evaluation, we show how SQCK can improve upon the ticadil checks
and repairs. First, SQCK avoids the inconsistent repairfopeed by e2fsck by
ensuring that its queries are executed in the correct ospegifically, a file system
structure is only repaired after the location of that stiwethas been validated.
Second, SQCK can perform more interesting and completersetpan e2fsck by
combining information from multiple sources. For examB&CK easily performs
majority voting over superblock and group descriptor regi to handle the case
where the primary copy is corrupted. Finally, SQCK ensunas its repairs follow
the same allocation policies as ext2/3 by laying out newKsadth the appropriate
locality.

SQCK achieves this simplicity and completeness with littest to perfor-
mance. Our evaluation of the first-generation prototype QC& on top of the
MySQL DBMS shows that SQCK can handle even large file systatitipas with
comparable performance to e2fsck. Overall, we believettiab QCK-style declar-
ative approach will lead to a new generation of simpler, motaust, and more
complete file system checking and repair.

1.2.2 EDP: A Static Analysis Tool for Tracing Error-Codes Propaga-
tion

Our failure-policy analysis has shown that file systems aeeially unreliable
when the underlying disk system does not behave as expeléfl [Specifically,
many modern commodity file systems have serious bugs andhsistencies in
how they handle errors from the storage system. Howevergtiestion remains
unanswered as to why these fault-handling bugs are present.

Therefore, we investigate what we believe is one of the raases of deficient
fault handling:incorrect error code propagatianTo be properly handled, a low-
level error code€.g, an “I/O error” returned from a device driver) must be cothec
propagated to the appropriate code in the file system. Ruithbe file system is
unable to recover from the fault, it should pass the erroraupht application,
again requiring correct error propagation. Without cotrecor propagation, any
comprehensive failure policy is useless: recovery meamsiand policies cannot



be invoked if the error is not propagated.

To analyze how error codes are propagated in file and stonagiers code,
we have developed a static source-code analysis techriuretechnique, named
Error Detection and Propagation (EDRnalysis [62], shows how error codes flow
through the file system and storage drivers. EDP performstaflda analysis
by constructing a function-call graph showing how error e®g@ropagate through
return values and function parameters.

We have applied EDP analysis to all file systems and threerrs@jage device
drivers (SCSI, IDE, and Software RAID) implemented in Lin26. We find that
error handling is occasionally correctSpecifically, we see that low-level errors
are sometimes lost as they travel through the many layeftedftbrage subsystem:
out of the 9022 function calls through which the analyzedrecodes propagate,
we find that 1153 calls (13%) do not correctly save the profembarror codes.

Our detailed analysis enables us to make a number of coonkisiFirst, we
find that the more complex the file system (in terms of bothslioecode and num-
ber of function calls with error codes), the more likely itdsincorrectly propagate
errors; thus, these more complex file systems are more likeyffer from silent
failures. Second, we show how inter-module calls play a mpgot in causing
incorrect error propagation. Third, we observe that I/Otevoperations are more
likely to neglect error codes than I/O read operations. Ikinave find that many
violations are not corner-case mistakes: the return coflesmoe functions are con-
sistently ignored, which makes us suspect that the omissaom intentional. The
last two observations hint that dealing with failures in twerent infrastructure is
hard, and hence failures are often ignored; in fact, the efldevelopers’ com-
ments are found near where error codes are dropped. Therefar next approach
is to revisit the need for a new reliability infrastructure.

1.2.3 1/0 Shepherding: A New Reliability Infrastructure

Our final contribution stems from two needs: the need for progiorage fault
handling and for flexible policies within the file system. sEjrcurrent approaches
bury fault handling features deep within the file system ¢oaking both the intent
and the realization of the approach to reliability diffictdtunderstand or evolve.
As a consequence, storage fault handling is buggy and irstens This shows
that reliability is a second-class citizen in commaodity fijestems.

Second, even if a perfectly working fault management systeuaid be built,
there is little consensus on the set of detection and regawechanisms that it
should deploy, especially because file systems have ddlgsieen deployed in
diverse environments. For example, a file system that rurs @esktop machine
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with a single SATA drive is often the same file system that ratop a hardware
RAID consisting of high-end SCSI drives. Furthermore, fifstems typically run
underneath a wide variety of application workloads wittietihg needs. For exam-
ple, desktop workloads may wish for high data reliabilitythwieasonable perfor-
mance, while web-server workloads with database suppoytdeaire the highest
performance possible combined with modest reliability. fides systems are used
in diverse settings, the best fault management strategiealy la function of the
environment €.g, how reliable the disks are) and the workloadg, how much
performance overhead can be tolerated, or how fault-totetee applications are).
Unfortunately, systems today have a single approach yitllowing little flexi-
bility when deployed.

To fulfill the two needs above, we present the design, impidati®n, and eval-
uation ofl/O shepherding60], a new reliability infrastructure for file systems. 1/O
shepherding provides a simple yet powerful way to build sblvaliability policies
within a file system, and does so by adhering to a single uyidgrdesign princi-
ple: reliability should be a first-class file system concefs a result, the reliability
policies of a file system are well-defined, easy to understpowerful, and simple
to tailor to environment and workload.

The 1/O shepherd achieves these ends by interposing on &cdhdt the file
system issues. The shepherd then takes responsibilithédicare and feeding” of
the request, specifically by executingsdiability policy for the given block. Simple
policies will do simple things, such as issue the requedhécstorage system and
return the resulting data and error code (success or faitarie file system above.
However, the true power of shepherding lies in the rich sgtadities that one can
construct; I/O shepherding makes the creation of policiegple by providing a
library of primitives that can be readily assembled into Byfformed reliability
policy.

A major challenge in implementing I/O shepherding is propgstems inte-
gration; it requires changes to the file system consistenagagement routines,
layout engine, disk scheduler, and buffer cache, as welhasddition of thread
support. Of these changes, the most important interactiwden the shepherd
and the rest of the file system is in the consistency managesuésystemi(e.,
the journaling subsystem). Policies developed in the strebbften add new on-
disk state €.g, checksums, or replicas) and thus must also update thestusas
atomically. However, as mentioned earlier, we have fourd jiurnaling file sys-
tems suffer from a general problem of failed intentions (®&cl.1.3). To solve
this major flaw, the shepherd incorporatgsined transactionsa novel and more
powerful transactional model that allows policies to hanathexpected faults dur-



11

ing checkpointing and still consistently update on-diskidures. The shepherd
provides this support transparently to all reliability jp@#s, as the required actions
are encapsulated in various systems primitives.

We demonstrate how 1/O shepherding enables simple but awelicies by
implementing an increasingly complex set of policies idahg sophisticated retry
mechanisms, strong sanity checking, the addition of chenksto detect data cor-
ruption, and mirrors or parity protection to recover fronstidolocks or disks. All
these policies are written in a few lines of code; even complelicies can be
implemented in less than 100 lines of code. As an implicatfmslicies can be
correctly implemented, and hence behave as desired unsleffalilts. We thus
conclude that 1/0 shepherding is a powerful framework follding robust and
efficient reliability features within file systems.

1.3 Summary of Contributions / Overview

Below is the summary of our contributions (and also how tls¢ @éthis dissertation
is organized).

e Background: Chapter 2 provides a background on the storage stack, the

partial disk failures that occur within, the ext2/3 file srst data structures,
and the type-aware fault-injection technique we have dpezl to analyze
file systems.

e Problems: We begin presenting the first contribution of this disséstat
in Chapter 3, which reports the impact of partial disk fadsito three re-
liability components present in many modern file systemg: file system
checker [61] (Section 3.1), failure policy [106] (SectiorRBand journal-
ing [60] (Section 3.3).

e Solutions: The next three chapters collectively present the secondrroan-
tribution of this dissertation, which is a set of solutionstlie problems we
have found. Chapter 4 presents SQCK [61], a declarativeyfiliem checker.
Chapter 5 presents EDP [62, 113], a static analysis toolrfor-eode detec-
tion and propagation. Finally, Chapter 6 presents 1/0 sagtihg [60], a
new reliability infrastructure for file systems.

e Related Work: Chapter 7 summarizes research efforts in analyzing system

robustness and building more robust file systems. We alsoisksother spe-
cific approaches related to our three solutions.
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e Conclusions and Future Work: Chapter 8 concludes this dissertation, first
summarizing our work and highlighting the lessons learreet] then dis-
cussing various avenues for future work that arise from esearch, includ-
ing extending our techniques and analyses to other datagearent systems
such as databases [125]. Thus, we believe our contributicngenerally ap-
plicable to many data management systems beyond file systems
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Chapter 2

Background

“We ... encounter a disk error”
— A comment in XFS (xfautils.c, line 182)

This chapter provides a background on various aspectsraitagthis disser-
tation. First, Section 2.1 explains the components of aagtistack, which is a
complex layered collection of electrical, mechanical, firane and software com-
ponents. Second, Section 2.2 discusses failures that atdhe storage stack,
describes specific partial disk failures that are addregsdlis dissertation, and
present statistics on the frequency of partial disk faBur€hird, Section 2.3 gives
an introduction on file system data structures as disk feslaffect these structures.
We will specifically describe the data structures of a popfillea system, the Linux
ext3 [141]; ext3 is the default file system in several disttitns of Linux €.g,
Red Hat). Although we heavily focus on ext3 file system in thigsertation, we
believe our analyses and solutions are applicable to otlees\fstems as well. Fi-
nally, Section 2.4 presents our fault-injection methodgldeveloped in previous
work [106]. This fault-injection methodology is crucialrfowo purposes: analyz-
ing the robustness of file systems in dealing with disk fatuand evaluating the
robustness of our solutions.

2.1 The Storage Stack

Figure 2.1 presents a typical layered storage subsysteolike file system. An
error can occur in any of these layers and propagate itsdiiggdile system above.



14

Generic File System
Specific File System
Generic Block I/0
Device Driver
Device Controller

N Transport ;:

Host

Firmware

Electrical
Mechanical acne

T
Storage Subsystem

Disk

:

Figure 2.1:The storage stack.We present a schematic of the entire storage stack.
At the top is the file system; beneath are the many layers dfttiiage subsystem.
Gray shading implies software or firmware, whereas whitsfizled) is hardware.

At the bottom of the storage stack is the disk itself; beydralrhagnetic stor-
age media, there are mechanioaly, the motor and arm assembly) and electrical
components€.g, buses). A particularly important component is firmware e th
code embedded within the drive to control most of its higlkeel functions, in-
cluding caching, disk scheduling, and error handling. Tinlmware code is often
substantial and complex.g, a modern Seagate drive contains roughly 400,000
lines of code [36]).

Connecting the drive to the host is the transport. In low-gystems, the trans-
port medium is often a bug(g, SCSI), whereas networks are common in higher-
end systemsg(g, FibreChannel).

At the top of the stack is the host. Herein there is a hardwargraller that
communicates with the device, and above it a software delriger that controls
the hardware. Block-level software forms the next layenyjling a generic device
interface and implementing various optimizatiorsy( request reordering).

Above all other software is the file system. This layer is ofgplit into two
pieces: a high-level component common to all file systemd, aaspecific com-
ponent that maps generic operations onto the data strgctdirie particular file
system. A standard interface.¢, Vnode/VFS [84]) is positioned between the two.
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2.2 Disk Failures

This section provides a background on disk failures, witlo@é onpartial disk
failures Partial disk failures implies that disks do not always failvhole-failure
mode where the disk is either working completely or not usallall. Realistically,
some parts of the disk can fail while some other parts ardenstilking.

To understand partial disk failures, we first discuss thiesht sources of fail-
ures in the storage stack and then describe specific typestidiplisk failures that
we model. In reality, any element of the storage stack coaltse a failure that ap-
pears as a “disk failure.” We refer to such failures in othdrs/stem components
as disk failures as well; most systems today cannot disshgbetween failures
that occur at different levels of the stack. Finally, we préssome statistics on the
frequency of partial disk failures.

2.2.1 Sources of Failures

This section presents different causes of partial failimethe storage subsystem.
Almost all layers of the storage stack contribute to thestgldailures.

Media: There are two primary problems that occur in the magneticiomed
First, the medium may have imperfections. These impedastcould either
cause the medium to be poorly magnetized during writes, oldccause a
“head crash”, where the drive head contacts the surface miamilg. Sec-
ond, a medium scratch could occur when a patrticle is trapgddden the
drive head and the media [117]. Such dangers are well-knowdnive man-
ufacturers, and hence today’s disks park the drive head wieedrive is not
in use to reduce the number of head crashes; SCSI disks soesatclude
filters to remove particles [11]. Media errors most ofterdléa permanent
failure of individual disk blocks.

Mechanical: “Wear and tear” eventually leads to failure of moving part&.
drive motor can spin irregularly or fail completely. Er@trm movements
can cause head crashes and media flaws. Inaccurate arm nmiveaused
by rotational vibration can misposition the drive head dgnivrites, leaving
blocks inaccessible or corrupted upon subsequent readgh-fty” writes,
in which the gap between the disk head and the medium is tdg hauld
cause data to be poorly written, thereby causing an ECCwtien the sector
is eventually read.
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Drive firmware: Interesting errors arise in the drive controller, which sists
of many thousands of lines of real-time, concurrent firmwaF®r exam-
ple, disks have been known to return correct data but cirgushifted by a
byte [88] or have memory leaks that lead to intermittenufais [137]. Other
firmware problems can lead to poor drive performance [L1dm&firmware
bugs are well-enough known in the field that they have speatdines; for ex-
ample, “misdirected” writes are writes that place the corgata on the disk
but in the wrong location, and “phantom” writes are writeattthe drive re-
ports as completed but that never reach the media [143].t&Mmanrites can
be caused by a buggy or even misconfigured caiohewrite-back caching is
enabled). In summary, drive firmware errors often lead tckgtor transient
block corruption but can also lead to performance problems.

Transport: The transport connecting the drive and host can also be gebl
atic. For example, a study of a large disk farm [135] reveh most of
the systems tested had interconnect problems, such asnesutis. Parity
errors also occurred with some frequency, either causiggasts to succeed
(slowly) or fail altogether. Thus, the transport often csugransient errors
for the entire drive.

Bus controller: The main bus controller can also be problematic. For exam-
ple, the EIDE controller on a particular series of motherldeancorrectly
indicates completion of a disk request before the data rechesl the main
memory of the host, leading to data corruption [142]. A samiproblem
causes some other controllers to return status bits as fdhi floppy drive
is in use at the same time as the hard drive [53]. Others haweadiserved
IDE protocol version problems that yield corrupt data [46h summary,
controller problems can lead to transient block failure dath corruption.

Low-level drivers: Recent research has shown that device driver code is more
likely to contain bugs than the rest of the operating syst28) 40, 133].
While some of these bugs will likely crash the operating esystothers can
issue disk requests with bad parameters, data, or botHhtingsin data cor-
ruption.

File system: Finally, at the very top of the storage stack, the file system i
self may contain bugs that lead to silent data corruptionceReresearch
has identified various bugs various file system componertsiding the
journaling infrastructure, file-system mount code, and aiufe-handling
code [106, 145, 146, 147].
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2.2.2 Types of Partial Disk Failures

In order to emulate the failures mentioned above, we needra realistic model

of disk failures. From the perspective of the file systemk dlures manifest as
block-level failures; the disk interface abstracts thékdis a linear array of equal
sized blocks each identified by a logical block number (LBNjus, in our model,

failures manifest themselves in two specific ways:

e Block failure: One or more blocks are not accessible; often referred to as
latent sector fault$78, 79]. As an implication, a read or a write to the block
will fail.

e Block corruption: The data within individual blocks is altered. Corruption
is particularly insidious because it is silent — the storagbsystem simply
returns “bad” data upon a read.

We term this model th&il-partial model to emphasize that pieces of the stor-
age subsystem can fail. We now discuss two key elements ddithgartial model:
the transience and locality of failures.

Transience of failures: In our model, failures can be “sticky” (permanent) or
“transient” (temporary). Which behavior manifests itséfpends upon the
root cause of the problem. For example, a low-level medialpra portends
the failure of subsequent requests. In contrast, a trahgwdrigher-level
software issue might at first cause block failure or coruptinowever, the
operation could succeed if retried.

Locality of failures: Because multiple blocks of a disk can fail, one must con-
sider whether such block failures are dependent. The ramesaof block
failure suggest that some forms of block failure do indedti@kspatial lo-
cality [79]. For example, a scratched surface or thermadatypcan render
a number of contiguous blocks inaccessible. However, dliress do not
exhibit locality; for example, a corruption due to a misdiex write may
impact only a single block.

2.2.3 Frequency of Failures

Until recently, there was very little data on how often palrilisk failures arose
in modern storage systems. Although there was much andddfiiemation [18,
131, 143], and a host of protection techniques that systenmog to handle such
corruptions [86], there was little hard data.
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Recently, Bairavasundaragt al. performed the first large-scale study on partial
disk failures [13]. they analyzed data collected from puithn systems over 32
months across 1.53 million disks (both nearline and entamlass). The find that
a total of 3.45% of 1.53 million disks developed latent seetwors over a period
of 32 months. The also find that latent sector errors affe@j@ifscant percentage
of a disk drive modeld.g, up to 20% of the drives of a SATA disk model).

In a subsequent study, Bairavasundaretnal. also demonstrated that corrup-
tion does indeed occur across a broad range of modern ddvégslp that study of
1.5 million disk drives deployed in the field, the authorsridumore than 400,000
blocks have checksum mismatches over three years. Theyoalsd that nearline
disks develop checksum mismatches an order of magnitude aften than enter-
prise class disk drives. Furthermore, checksum mismatefithin the same disk
show high spatial and temporal locality, and checksum mishes across different
disks in the same storage system are not independent. Tdwsghat corruption
takes place, and systems must be prepared to handle it.

2.3 Ext3 Data Structures

To analyze how file systems deal with disk failures, we warntmlate the block-
level failures mentioned in the previous section and oleseow file systems react
to the failures. In emulating block-level failures, we da mge a random fault-
injection approach. Rather, we use specific file system kedgé {.e., file system
data structures) to enhance our fault-injection methagiploln this section, we
first give an introduction on the data structures of a popfilarsystem, Linux
ext3 [140, 141]. In the next section, we show how we utilizes #tnowledge to
enhance our fault-injection methodology.

Ext3 is built as an extension to the ext2 file system [27]; exttd ext3 use
the same data structures. The only difference is ext3 emptaynaling (or write-
ahead logging) to perform write-atomicity [140].

Figure 2.2 depicts the ext2/3 on-disk layout. In this orgation (which is
loosely based on FFS [92]), the disk is split into a numbdslo€k groups within
each block group are bitmaps, an inode table, and data bldtksh block group
also contains a redundant copy of crucial filesystem commiformations such as
the superblock and the group descriptors.

The superblockcontains important layout information such as inodes count
blocks count, and how the block groups are laid out. Withbatimformation in the
superblock, the file system cannot be mounted properly.

A group descriptodescribes a block group. It contains information such as the
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Figure 2.2: Ext2/3 Layout. The upper picture shows the layout of an ext2/3 file
system. The disk address space is broken down into a serdsciafgroups (akin

to FFS cylinder groups), each of which is described by a gmegcriptor and has
bitmaps to track allocations and regions for inodes and dataks. The lower fig-
ure shows the organization of an inode. An ext2/3 inode hakséndirect pointers

to data blocks. If the file is large, indirect pointers are dse

location of the inode table, block bitmap, and inode bitmarptiie corresponding
group. In addition, it also keeps track of allocation infation such as the number
of free blocks, free inodes, and used directories in thegrou

An inode tableconsists of an array dhodes and it can span multiple blocks.
An inode can represent a user file, a directory, or other apélgs €.g, symbolic
link). An inode mainly contains file attribute®.g, size, access control list) and
pointers to its data blocks. An inode has 12 direct pointergstdata blocks. If
its data needs more blocks, the inode will use its indiredéhtgo that points to
an indirect blockwhich contains pointers to data blocks. If the indirect klie
not enough, the inode will usedouble indirect blockvhich contains pointers to
indirect blocks. At most, an inode can use a triple indirdotk which contains
pointers to double indirect blocks.

A data blockcan contain user’s data or directory entries. If an inodeasgnts
a user file, its data blocks contain user's data. If an inogeesents a directory,
its data blocks contain directory entries. Directory exgtrare managed as linked
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lists of variable length entries. Each directory entry eams the inode number, the
entry length, the file name and its length.

2.4 Type-Aware Fault Injection

In this section, we describe a fault-injection technique thie developed in previ-
ous work [106] to uncover file system behaviors in respondingisk failures. We
have used this methodology as a basic framework in uncayenany reliability
problems in file systems (Chapter 3) and evaluating our isolsitto the problems
(Chapter 4 and Chapter 6). This section provides a briefrmutsf the methodol-
ogy; more details are described in the corresponding chapte

To emulate block-level failures, our approach is to injeatlts just beneath the
system under test and observe how the system responds. réshenses are en-
tirely consistent within a system, this could be done quitgsy; we could run any
workload, fail one of the blocks that is accessed, and calecthat the response to
this block failure fully demonstrates the reaction of theteyn. However, systems
are in practice more complex: they employ different techemdepending upon the
operation performed and the type of the faulty block. Fomepke, upon a write
failure of a data block, the file system can simply propadagefailure to the appli-
cation, while upon the superblock, the file system might wametry the write or
remap the superblock. Therefore, we must trigger all thetesting cases. Our
challenge is to coerce the system down its different codesgatobserve how each
path handles failure. This requires that we run workloads@sing as many code
paths as possible in combination with induced faults onatth dtructures.

Type Awareness:Many standard fault injectors [25, 120] fail disk blocks in a
type obliviousnanner; that is, a block is failed regardless of how it is beised by
the system. However, repeatedly injecting faults into candlocks and waiting
to uncover new aspects of the system’s reactions would bbaitaus and time-
consuming process, likely yielding little insight. The kiglea that allows us to
test a system in a relatively efficient and thorough mannéyps-aware fault in-
jection With type-aware fault injection, we fail blocks of a specifype €.g, an
inode block in a file system). Type information is crucial @verse-engineering the
system’s responds, allowing us to discern the differeatasgies that the system ap-
plies for its different data structures. The disadvantagauotype-aware approach
is that the fault injector must be tailored to each systemweler, we believe that
the benefits of type-awareness clearly outweigh these axitipks.

Context Awareness: Our goal in fault injection is to exercise the system as
thoroughly as possible, following as many internal coddpais possible. We be-
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lieve that different code paths using the same data stestray not respond to
failure in a consistent manner. Therefore, we use a suiteookleads that stress
the system in different ways. These workloads are fine-grhireach workload
performs a very specific action, often corresponding to glsisystem call€.g,
open of afile). Each system under test also introduces speciakdast must be
stressed. For example, in the case of the ext3 file systenindae uses an im-
balanced tree with indirect, doubly-indirect, and trifhglirect pointers, to support
large files; hence, our workloads ensure that sufficientigddiles are created to
access these structures.

Mechanism: Our mechanism for injecting faults is to use a software lairer
rectly beneath the systera.§, a pseudo-device driver in Linux). This layer injects
both block read and write errors, and can also corrupt cdsiteindisk blocks. By
injecting failures just below the system, we emulate fathigg could be caused by
any of the layers in the storage subsystem. Therefore, @ialiproaches that em-
ulate faulty disks using additional hardware [25], we caitate faults introduced
by buggy device drivers and controllers. A drawback of oyprapch is that it does
not discern how lower layers handle disk faults; for exampteme SCSI drivers
retry commands after a failure [110]. However, given thatave characterizing
how a specific file system responds to partial disk failures,bglieve this is the
correct layer for fault injection.

After running a workload and injecting a fault, the final stepo determine how
the system behaved. To determine how a partial disk failtfexcted the system,
we compare the results of running with and without the failuvWe perform this
comparison across all observable outputs from the systayermor codes and data
returned by the system API, the contents of the system |adjttza low-level 1/O
traces recorded by the fault-injection layer. This is thestauman-intensive part
of the process, as it requires manual inspection of theleisibtputs.
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Chapter 3

Analysis of File System Reliabllity
Components

“Error, skip block and hope for the best.”
— A comment in ext3 (namei.c, line 880)

File systems have an important task: managing daiably. Unfortunately, in
a world of imperfect software and hardware, many problensedhat lead to data
loss. In order to manage data reliably, file systems have pe gath many kinds
of problems such as disk failures, crashes, file system argbmany more. To
deal with these problems, file systems are typically equippigh many reliability
components, each handling a certain kind of problem. Indhépter, we look into
three reliability components present in many modern filéesys and show in what
ways each of the components is unreliable.

More specifically, Section 3.1 first describes file system checker (fs¢lgn
important repair utility that fixes file system inconsistgr(e.g, due to bugs or
disk corruption). In this section we unearth many weakres$a popular checker
(e.g, some repairs are incorrect, making the repaired file systeme corrupted).
Section 3.2 then looks inttailure policy, the file system component responsible
for dealing with disk failures. Our findings show that thddee policies of several
commodity file systems are brokem.§, some disk failures are ignored, error-
codes are dropped incorrectly, and many other problemshalllyj Section 3.3
describegournaling, a mechanism that guarantees write atomicity in the pre&senc
of system crashes. We have found that the current journflamgework does not
work correctly when partial disk failures come into the pigt.
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To build a new generation of robust file systems, solutionthése problems
are needed. Thus, Section 3.4 preliminarily introduces smlutions which are
presented more extensively in following chapters.

3.1 Analysis of File System Checker

A file system checker, also known as fsck, is historicallyduserepair file system
inconsistency caused by system crashes. When a file systéateutakes place,
a set of blocks is written to the disk. Unfortunately, if theseem crashes in the
middle of the sequence of writes, the file system is left inrmonsistent state. To
repair the inconsistency, earlier systems such as FFS [@2kat2 [27] scan the
entire file system and perform integrity checks using fs& f@fore mounting the
file system again. This scan is a time-consuming processamthke several hours
for large file systems.

To alleviate the long scan, modern file systems employ vatitead logging
or journaling [52]. By forcing journal updates to disk befoupdating complex
file system structures, this write-ahead logging technignables efficient crash
recovery; a simple scan of the journal and a redo of any indetmEommitted
operations bring the file system to a consistent state.

Although journaling alleviates the need for fsck upon systashes, fsck is
still widely used today. The reason is that despite the biésite of the file and
storage system community, file system images become cangptequire repair.
In particular, problems with many different parts of the fdad storage system
stack can corrupt a file system image: disk media, mechaooaponents, drive
firmware, the transport layer, bus controller, and OS ds\ég, 14, 46, 53, 106,
135]. Since file systems do not usually contain the machiteryx corruptions
themselves [15, 106], there is still a broad need for robiessfistem checkers.

Since fsck is a crucial repair utility, it should be robusthandling all pos-
sible corruption scenarios. More specifically, the repagcpss should have the
following goals:

e Consistent: The explicit purpose and goal of fsck is to always create a con
sistent file system. All possible corruptions should be irgplasuch that the
file system is usable.

¢ Information-complete: A file system usually contains some explicit redun-
dancies €.g, multiple copies of superblock) and some implicit redundan
cies €.9, double-linked pointers connecting parent and child doees).
Fsck should use this redundant structural information tfope consistency
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checks. Thus, we define a repair to be information-compfétesiconstructs
the file system to match the original file system to the greaetent possi-
ble given the information available on disk. The notion ofiaiormation-
complete repair is needed because a repair can easily ereatesistent, but
useless file system by simply removing all of the contents.

e Policy-consistent: A repair to be policy consistent must follow the same
policies as the original file system; for example, if the efil® system al-
locates data blocks in the same group as its correspondodg jrthen its
checker should as well.

e Secure: Since a file system could be used by multiple users, a repairigh
not leak information from one user to another. For exampleenva data
block is accidentally shared by two users, a user’s file shoot be repaired
to contain data from the other user’s file.

To evaluate the robustness of file system checkers, thigoeegtesents our
evaluation of a popular file system checker, e2fsck (the xiamt2/3 checker).
Section 3.1.1 gives a brief overview of the checks and regmgrformed by e2fsck.
Section 3.1.2 presents the methodology. Finally, our exelo in Section 3.1.3
shows that e2fsck has many weaknesses that do not satisgo#te mentioned
above.

3.1.1 Ext2 Fsck Overview

Given both its popularity and our ability to access its sewode, we focus on the
file system checker for ext2/3, e2fsck. The purpose of theakAftility is to check
and repair the data structures of an ext2/3 file system on iliske ideal case, the
repaired file system is readable, writable, and containefathe directories, files,
and data of the original file system.

E2fsck is a non-trivial piece of code: it contains more thartiousands lines
of C code and can identify and return 269 different error sodis checks and
repairs are performed in six different phases [27] as ligteéfhable 3.1.

In pass 0, e2fsck checks the consistency of the superblobk. fi€lds in the
superblock are crucial for obtaining the group layouts. c8iext2/3 file system
replicates the superblock across block groups, all cofi¢iseosuperblock can be
cross-checked.

In pass 1, e2fsck iterates over all of the inodes and perfatmsks over each
inode in isolation; these checks do not require any crossiahto other file system
structures. Examples of such checks include making suri¢hmode is valid and
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# Checks Performed
28 Phase 0: Check consistency in the superblock
23 Field check:Check all superblock field®(g, fs size,
inode count, groups count, mount/write time)

3 Range checkEnsure pointers to block bitmap, inode
bitmap, inode table are in the group

2 Special featureCheck resize inode feature

35 Phase 1: Scan and check inodes and block pointers

9 Bad block:Check fields of bad-block inode; ensure

superblocks and group descriptors in healthy blocks
18 Inode structure:Check fields €.g, mode, time, size)
of different inodes€.g, root, reserved, boot load)

1 Range checkEnsure direct and indirect pointers
point within the file system

7 Conflicts: Ensure no conflict among block pointers
(e.g, two inodes should not share a block)

38 Phase 2: Scan and check all directory entries

16 Directory: Check each has ' and ..’ entry,
'’ points to itself, does not have missing block,
fields of dir inode consisteng(g, acl, fragment size)

9 Dir Entry: Check each entry has correct name length,
each points to an in-range inode, record length valid,
filename contains legal characters

5 PathnamesEach entry points to used inode, does not
point to self, does not point to inode in bad block,
does not point to root, dir has only one parent

8 Special inodesCheck device inodes and symlinks

6 Phase 3: Ensure all directories are connected to
the file system tree

3 lost+found Ensure lost+found directory is valid and

ready to be populated
Reattach Reattach orphan directory to lost+found
3 Phase 4: Fix reference counts and
reattach zero-linked file to lost+found
11 Phase 5: Check block and inode bitmaps against
on-disk bitmaps
121  Total

w

Table 3.1:Repairs performed by e2fsck. The table summarizes the 121 repairs
performed by the e2fsck.

that all of the data block pointers point to valid block numshelf e2fsck notices
data blocks that are claimed by more than one inode, it resdilre conflict by
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cloning the shared blocks by default. In this pass, the dreglso keeps track of
blocks and inodes that are marked as being used.

In pass 2, e2fsck checks directory entries in isolationgesidirectory entries
do not span disk blocks, each directory block can be chedakéidually. The
directory blocks are checked to make sure that the direcatyies are valid and
contain references to inode numbers that are in use. Forrgtalfiectory block
in each directory inode, e2fsck verifies that the “.” and ‘eritries exist, and that
the “.” entry points to the current directory. Pass 2 alsmrds each sub-directory
inode that is pointed to by multiple parent directories.

In pass 3, the directory connectivity is checked; all dioeiets should be ac-
cessible from the root inode. At this time, the “..” entry feach directory is
also checked. Any directories not reachable from the roetatached to the
/1 ost +f ound directory.

In pass 4, e2fsck checks the reference counts for all inogesimparing the
stored link counts on the disk and the computed link couats fthe earlier passes.

Finally, in pass 5, e2fsck checks the validity of the file eystsummary in-
formation such as the block and inode bitmaps. It comparesbtbck and in-
ode bitmaps which were constructed during the previousgsaagainst the actual
bitmaps stored on the disk.

3.1.2 Methodology

To begin to understand the complex runtime behavior of é2fae explore how
e2fsck repairs a single on-disk corruption. Given thatiibfeasible to exhaustively
corrupt every data structure field to every possible value,limit our scope to
corrupting on-disk pointers.

A pointer-corruption study is especially difficult becaitsis nearly impossible
to corrupt every pointer on disk to every possible value ireaspnable amount
of time. Often, the solution has been to use random valued].[Ithis approach
suffers from two problems: (a) a large number of corruptigpegiments might be
needed to trigger the interesting scenarios, and (b) usenofom values makes it
more difficult to understand underlying causes of obsenedthbior.

To address both problems, we ugpe-aware pointer corruptio(iTAC), which
is an extension of type-aware fault injection describeddat®n 2.4. Type-awareness
reduces the exploration space for corruption experimeytssuming that system
behavior depends only on two types: (i) the type of pointat bias been corrupted,
and (ii) the type of block that it points to after corruptioBxamples are (i) cor-
rupting File A's data pointer is the same as corrupting Filed&ata pointer, and (ii)
corrupting a pointer to refer to inode-block P is the sameasupting it to refer
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Block pointer types:  Boot, superblock, group descriptor,
block bitmap, inode bitmap, inode table,
single indirect, double indirect, triple indirect,
directory, used data, free data, out of range
Index pointer types:  Directory inode, file inode,
free inode, out of range inode

Table 3.2: Block-pointer and index-pointer types in ext2. The table shows
different types of block pointers and index pointers in ext2

to inode-block Q (if all inodes in P and Q are for user files)isTdgpproach is mo-
tivated by the fact that code paths that exercise the sanas typpointers are the
same, and disk blocks of the same type of data structure inogitailar contents.
Thus, TAC greatly reduces the experimental space whilkcstilering almost all
of the interesting cases. Also, by its very design, this apgin attaches file system
semantics to each experiment, which can be used to undertamesults.

Our TAC model reflects the state of a file system on functiomagdware that
experienced a corruption event in the past:

e Exactly one pointer is corrupted for each experiment. Tis¢ oéthe data is
not corrupted. Also, other faults like crashes or sectarrsrare not injected.

e We emulate pointer corruptions that are persistent. Theuption is per-
sistent because simply re-reading the pointer from diskvat recover the
correct value.

For ext2, we define two classes of pointers: block and indextexs. First, a
block pointer contains a physical block number; for examgkga block pointers
in inodes contain the block numbers of corresponding datakisl Second, an
index pointer contains an index into a table; for exampleinade index picks an
entry in the inode table within a block group. Table 3.2 lidie types of block
and index pointers in ext2. We use these types to change the g&a pointer.
For example, we could corrupt the data-block pointer of adeto point to the
primary superblock, an inode table, or an out-of-range lloc

To examine the results, we use the the goals introducedeeanlithis chap-
ter, i.e.,, repairs should be consistent, information-completeicgatonsistent, and
secure. We use the debugfs utility [1] to compare the oridifesystem and the
repaired file system, and check manually if any of the goale ha&en violated. For
example, to check if e2fsck performs consistent repairschexk if the repaired
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file system can be mounted properly. To compare how much thearesl file sys-
tem matches the original file system, we manually analyzealifferences of their
data structures, especially those that are affected bynjbeted corruptions. This
manual process is manageable and not time-consuming $iadide system that
we corrupt is relatively small.

3.1.3 Results

In this section, we first describe our visual representatibthe results and then
distill the results into higher-level observations. TaBI8 shows the results of
injecting block-pointer corruptions. Each row presentsrsults of corrupting one
pointer €.g, indirect pointer) and is divided into 13 columns, each egponding
to different block types that we have introduced in Table Blate that the number
of columns {.e,, all block types) is higher than the number of rows.( corruptable
block pointers). This is because ext2 does not explicithyesall types of block-
pointers on the disk. For example, ext2 does not store gdmsoriptor pointers; it
uses fixed group size stored in the superblock to locate thapgiescriptor block
for each group.

Each cell (row X and column Y) represents an experiment wadteck pointer
X'is corrupted to a Y-value. Each cell is marked with one or engymbols repre-
senting our observations when the pointer for its row isumed with the column
value. For cells where the row and column have the same thpedinter is cor-
rupted to some other block that has the same type. For examplaEnter to a data
block can be corrupted to point to some other data block thiangs to a different
user. A cell with a dot.j represents that e2fsck performs the correct repair.

Table 3.4 shows the results of injecting index-pointer wptions. The format
of this table is similar to Table 3.3.

From our fault-injection experiments, we find that e2fsciksfalong the four
different axes that we setup earlier: e2fsck sometimespasginconsisten{marked
with C), information-incompletdl), policy-inconsisten{P), andinsecure(S) re-
pairs. We now describe the specific behaviors of e2fsck dzat to these problems.

Inconsistent Repair (C): Clears “Indirect Blocks” Incorrectly. Fundamentally,
e2fsck checks and repairs certain pointers in an incornetgrpas a result,
e2fsck can itself corrupt arbitrary data on disk, even thgesblock. Specif-
ically, e2fsck clears block pointers that fall out of rangetlwe file system
inside indirect blocks without first checking that the peinto the indirect
block itself is correct. Thus, if an indirect pointer was regot, e2fsck may
clear the block that the indirect pointer incorrectly raféo. This clearing
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Symbols: C Inconsistent repair |: Information-incomplete repair
P: Policy-inconsistent repair S: Insecure-repair Dot (.): Correct repair

Table 3.3:Results of block-pointer corruptions. This figure shows how e2fsck
responds to block-pointer corruptions. Each row charaietes the behavior for the
given pointer. Each cell in a row is marked with the behavios@rved for the given
pointer when it is corrupted with the value of that column.

can lead to arbitrary corruptions of file, directory, and adata in the file
system; most notably, if the file system contains only a sisgperblock, the
file system can even be unmountable after running e2fsgk fow #4 and
column #2 of Table 3.3).

Information Incomplete (I): False Parenthoode2fsck does not always use all of

the information available to it regarding directories. Gxxample is the case
where an inode index within a directory is corrupted to paéma different
valid directory inode (row #1 and column #1 of Table 3.4). Skituation
is illustrated in Figure 3.1. If a directory entry is corregtto point to an-
other target directory (parts a and b), the e2fsck repaihtrigpve the target
directory to the wrong parent (part c).

We emphasize that enough information is available in an ékiXystem
for e2fsck to make the correct repair: each directory castain entry for
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2. File inode
3. Free inode
4. Out of range inode

1. Directory inode
2. Fileinode

— —| 1. Directory inode

Table 3.4:Results of index-pointer corruptions. This figure shows how e2fsck
responds to index-pointer corruptions. Each row charaets the behavior for the
given pointer. Each cell in a row is marked with the behavioserved for the given
pointer when it is corrupted with the value of that column.

its parent (denoted “.."). To perform an information contpleepair, e2fsck
could simply observe this entry to keep the target directoity its correct
parent and to reattach the lost directory to its parent atstef moving it to
lost+found. In general, the directory hierarchy in ext2 teams much more
information than is being used currently in e2fsck.

Information Incomplete (I): Ignores Replicas of Inode Table PointeExt2 con-
tains replicas for important meta-data, such as pointetkgdnode tables;
however, e2fsck does not always use this redundant infeowmatFor ex-
ample, when an inode-table pointer becomes corrupted aimispio other
blocks €.g, block bitmap) inside the same block groumd, row #3 and
column #4 of Table 3.3), e2fsck assumes the pointer is dpre@ésck then
finds that the “inodes” are not valid. For consistency, é2fsmoves the
corresponding directories and files from the directory tiethis group con-
tains the root directory, the file system is trivially conerst with no directo-
ries. Again, enough information is available for e2fsck taka the correct
repair: each inode-table pointer is replicated acrosskblgroups; e2fsck
should check that all block groups agree on these impor&oes.

Poalicy Inconsistent (P):Different Layout.e2fsck does not allocate blocks on disk
with the same layout policy as ext2; as a result, e2fsck @gnient files and
directories, degrading the future performance of file systperations. For
example, when e2fsck detects that the same data block ieddim by both
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(a) Before corruption (b) After corruption (c) After recovery

Figure 3.1:The false parenthood problem.This figure shows the problem in the
recovery done by e2fsck for corruption in directories. Eacde is a directory in
the file system. For clear understanding, we use dotted logaiqus to show the
parent for each directory as present in the ‘.. entry for tithrectory. Part (a)
of the figure shows the initial file system structure. Partgpws the file system
structure after corruption. We inject this fault where tharg for dir3 in dirl is
corrupted to point to the inode of dir4. After recovery byseRf the dirl claims
dir4 and the original parent child link between dir2 and disddeleted. This results
in totally different structure of the file system after reexgvas shown in part (c).
For convenience we show the lost+found (L&F) directory dnlthe final structure.

a directory and a file (row #8 and column #10 of Table 3.3), @fdones
the block by allocating a new block for the file and retainihg bld block
for the directory. To perform a policy-consistent repafsek should allow
the closer inode to retain the original data block.

Insecure Repair (S):Copies Data FreelyWhenever e2fsck discovers that two
pointers refer to the same block (row #8 and column #11 of&at8), e2fsck
clones the block. However, this policy has the potentiaktklprivate infor-
mation. For example, if a data block is shared by two inodeg io the
/ hone/ user A directory and one in thér oot directory, we might want to
remove the pointer frornser A and keep the one from the root.

3.1.4 Summary: The Need for a New Fsck Framework

We have found that e2fsck has a number of problems in howfibpes repairs; we
note that these problems are not simple implementation, lugsire fundamental
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design flaws. In particular, it is difficult for e2fsck to comb the many pieces of
information availabled.qg, replicas of pointers and parent directory entries) and to
ensure that all checks and repairs are done in the correet.ord

We believe one of the reasons why these problems exist isibea®fsck is a
complex piece of imperfect code written in more than ten famdls lines of low-
level C code, which is hard to reason about. Other than e2fsitier checkers
are unfortunately written in the same way; the ReiserFS fiigcker performs 156
cross-checks and the corresponding repairs in 11 thoudaredsof C code, and
the XFS [132] checker performs 344 in 22 thousands lines. h€obest of our
knowledge, we have not found any available tools that thesjistem developers
use to verify the correctness of these checkers. Thus,wuthso far we have
only analyzed one checker, we believe these other checkigis mave the same
weaknesses as in e2fsck.

To build a new generation of robust and reliable file systemckars, we be-
lieve a new approach is required. Chapter 4 presents our ppvoach, SQCK,
in which the high-level intent of a checker can be specified alear and compact
manner; further, the description of the intent is cleaniyasated from its low-level
implementation and how it is optimized.

3.2 Analysis of Failure Policy

In this section, we turn our attention to how running file seyss deal with disk
failures. As mentioned in Section 2.2, storage systemdfalto a large number
of reasons such as latent sector faults, silent block coampand performance
glitches. Developers of high-end systems have realizechétigre of these disk
faults and built mechanisms into their systems to handleiteor example, many
redundant storage systems incorporate a backgrdisidscrubbingprocess [78,
117] to proactively detect and subsequently correct ladentor faults by creating
a new copy of inaccessible blocks. Some recent storagesaimagrporate extra
levels of redundancy to lessen the potential damage of coxksed latent faults
[30]. Finally, highly-reliable systemse(g, Tandem NonStop) utilize end-to-end
checksums to detect when block corruption occurs [18].

The above said failure characteristics (latent sectotgand block corruption)
and our knowledge about reliable high-end systems raisejtiestion: how do
commodity file systems handle disk failure$@ answer this question, our main
objective is to determine which detection and recoveryrapes each file system
uses and the assumptions each makes about how the undatigiage system can
fail. The detection and recovery mechanisms employed by ayitem define its
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Level Technique Comment
Dzero No detection Assumes disk works
DErrorCode Check return codes| Assumes lower level
from lower levels can detect errors
Dsanity Check data structures May require extra
for consistency space per block
DRedundancy Redundancy over Detect corruption
one or more blocks | in end-to-end way

Table 3.5:The Levels of the IRON Detection Taxonomy.

failure policy. By comparing the failure policies across file systems, welearn
not only which file systems are the most robust to disk fagutaut also suggest
improvements for each.

To describe the failure policy of a file system, we begin byspraging the IRON
taxonomy [106] of failure-handling policies (Section AR.This taxonomy serves
as an overview of the different technigues that may be usetthdyile system to
handle partial disk failures. Section 3.2.2 then descriagsmethodology details.
Finally, in Section 3.2.3, we present the results of ourysialof four commodity
file systems (Linux ext3, ReiserFS, JFS, XFS, and Windows ®yTF

3.2.1 IRON Taxonomy

We now describe the IRON taxonomy of failure-handling sig&s that we devel-
oped in previous work [106]. IRON stands for “Internal ROtNBss”; it focuses
on failure-handling strategies to be used, not across disks common in RAID
systems, but within a single disk. We have found from expegethat this taxon-
omy can be used to sufficiently describe the failure-hagdiitrategies of various
file systems.

To cope with the failures in modern disks, file systems inelagachinery to
both detect(Level D) partial faults andecover(Level R) from them. Tables 3.5
and 3.6 present our IRON detection and recovery taxonomespectively. Note
that the taxonomy is by no means complete. Many other teabsigre likely to
exist, just as many different RAID variations have been psmgl over the years [8,
144].
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Level Technique Comment
Rzero No recovery Assumes disk works
Rpropagate Propagate error Informs user
Rstop Stop activity Limit amount
(crash, prevent writes of damage
RRetry Retry read or write Handles failures
that are transient
RRepair Repair data structs Could lose data
RRremap Remaps block or file| Assumes disk informs
to different locale FS of failures
RRedundancy Block replication Enables recovery
or other forms from loss/corruption

Table 3.6:The Levels of the IRON Recovery Taxonomy.

Levels of Detection

Level D techniques are used by a file system to detect that a problsmdearred
(i.e., that a block cannot currently be accessed or has been tedjup

Zero. The simplest detection strategy is none at all; the fileesgsassumes the
disk works and does not check return codes. As we will see @ti@e3.2.3,
this approach is surprisingly common (although often itppleed uninten-
tionally).

ErrorCode: A more pragmatic detection strategy that a file system cagriam
ment is to check return codes provided by the lower levelshefdtorage
system. For example, if there are low-level I/O failuresOerror-codes are
often returned.

Sanity: With sanity checks, the file system verifies that its datacttires are
consistent by verifying individual fieldse(g, that pointers are within valid
ranges) or verifying theype of the block. For example, most file system
superblocks include a “magic number” and some older fileesgstsuch as
Pilot even include a header per data block [108]. By checkitngther a
block has the correct type information, a file system candjagrinst some
forms of block corruption.

Redundancy: The final level of the detection taxonomy is redundancy. Wan
forms of redundancy can be used to detect block corruptiar.ekample,



36

checksummingas been used in reliable systems for years to detect corrup-
tion [18] and has recently been applied to improve secustyell [100, 126].
Checksums are useful for a number of reasons. First, thest assletect-
ing classic “bit rot”, where the bits of the media have beeppfid. How-
ever, in-media ECC often catches and corrects such errdisckSums are
therefore particularly well-suited for detecting corrigpt in higher levels of
the storage system staok g, a buggy controller that “misdirects” disk up-
dates to the wrong location or does not write a given blockist dt all).
However, checksums must be carefully implemented to déftese prob-
lems [18, 143]; specifically, a checksum that is stored alwiily the data it
checksums will not detect such misdirected or phantom write

Higher levels of redundancy, such as block mirroring [2rity [99, 103]
and other error-correction codes [90], can also detectuption. For ex-
ample, a file system could keep three copies of each blocklingaand
comparing all three to determine if one has been corruptamveder, such
techniques are truly designed for correction (as discubséalv); they often
assume the presence of a lower-overhead detection meshft08].

Levels of Recovery

Level R of the IRON taxonomy facilitates recovery from block faguwithin a
single disk drive. These techniques handle both latenbséilts and block cor-
ruptions.

Zero. Again, the simplest approach is to implement no recovategy at all,
not even notifying clients that a failure has occurred.

Propagate: A straightforward recovery strategy is to propagate ertgy through
the file system; the file system informs the application tima¢@or occurred
and assumes the client program or user will respond apmtatyito the
problem.

Stop: One way to recover from a disk failure is to stop the currelat $iystem
activity. This action can be taken at many different levdlgranularity. At
the coarsest level, one can crash the entire machine. Ornigv@dsature
is that this recovery mechanism turns dditecteddisk failures into fail-stop
failures and likely preserves file system integrity. Howegeashing assumes
the problem is transient; if the faulty block contains repedéy-accessed data
(e.g, a script run during initialization), the system may rejeelt reboot, at-
tempt to access the unavailable data, and crash again. Attemmiediate
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level, one can Kill only the process that triggered the dakitfand subse-
quently mount the file system in a read-only mode. This aptraa ad-

vantageous in that it does not take down the entire systenttarsdallows

other processes to continue. At the finest level, a jourgdile system can
abort only the current transaction. This approach is likeliead to the most
available system, but may be more complex to implement.

Retry: A simple response to failure is to retry the failed opermatand recent
work shows that file systems do recover from most number & disors
by simply retrying [51]. Retry can appropriately handlens&nt errors, but
wastes time retrying if the failure is indeed permanent.

Repair: If a file system can detect an inconsistency in its intersa dtructures,
it can likely repair them, just asck would. For example, a block that is
not pointed to, but is marked as allocated in a bitmap, coalffded.

Remap: This technique can be used to fix errors that occur whenmngrii block,
but cannot recover failed reads. Specifically, when a wadta given block
fails, the file system could choose to simply write the blozlahother loca-
tion. More sophisticated strategies could remap an ensieenantic unit” at
atime €.g, a user file), thus preserving logical contiguity.

Redundancy: Finally, redundancy (in its many forms) can be used to recov
from block loss. The simplest form igplication in which a given block
has two (or more) copies in different locations within a diskother redun-
dancy approach employs parity to facilitate error corgactiSimilar to RAID
4/5 [103], by adding a parity block per block group, a file systcan toler-
ate the unavailability or corruption of one block in eachtsgcoup. More
complex encodingse(g, Tornado codes [90]) could also be used, a subject
worthy of future exploration.

3.2.2 Methodology

This subsection describes our methodology to uncover thedgoolicies of sev-

eral commodity file systems that we analyzed. As describeSeiction 2.4, our

approach is to inject faults just beneath the file system ds#mwe how the file

system reacts. Overall, our failure policy analysis cdssid three major steps:
create the right workload, inject faults, and deduce failpolicy. We describe each
of these steps in detalil.



38

Workload Purpose

Singlets:

access, chdir,chroot,
stat,statfs,| stat,open,
uti nes,read,readlink, Exercise the
getdirentries,creat, Posix API
l'i nk, nkdi r,renane, chown,
symink,wite,truncate,
rdi r,unl i nk, nount,
chnod, f sync, sync, unount

Generics:
Path traversal Traverse hierarchy
Recovery Invoke recovery
Log writes Update journal

Table 3.7:Workloads. The table presents the workloads applied to the file systems
under test. The first set of workloads each stresses a siggters call, whereas
the second group invokes general operations that span miahyg calls (e.g., path
traversal).

Applied Workload

Our workload suite contains two sets of programs that run onxtbased file
systems (fingerprinting NTFS requires a different set ofilsinprograms). The
first set of programs, callesinglets each focus upon a single call in the file system
API (e.g, nkdi r). The second segenerics stresses functionality common across
the API €.g, path traversal). Table 3.7 summarizes the test suite.

Certain workload requires an already existing file, directar a symbolic link
as its parameter. For example, thieat POSIX call takes a file path as an input,
searches the parent directories, and returns informatimutathe specified file.
Before running such workloads, we must first create the fitek directories that
are necessary. In the case of injecting read faults, it iessary to clear the file
system buffer cache so that the on-disk copy will be read bybrkload.

Each file system under test also introduces special casesitish be stressed.
For example, the ext3 inode uses an imbalanced tree witreirtdidoubly-indirect,
and triply-indirect pointers, to support large files; henmer workloads ensure that
sufficiently large files are created to access these stest@ther file systems have
similar peculiarities that we make sure to exercisg(the B+-tree balancing code
of ReiserFS). The block types of the file systems we test stediin Tables 3.8
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Purpose

inode

directory

data bitmap
inode bitmap
indirect

data

super

group descriptor
journal super
journal revoke
journal descriptor
journal commit

journal data

Info about files and directories
List of files in directory

Tracks data blocks per group
Tracks inodes per group

Allows for large files to exist

Holds user data

Contains info about file system
Holds info about each block group
Describes journal

Tracks blocks that will not be replayed
Describes contents of transaction
Marks the end of a transaction
Contains blocks that are journaled

Table 3.8:Ext3 Data Structures. The table presents the data structures of interest
in ext3 file system. In the table, we list the names of the ns#ijoctures and their
purpose.

Fault Injection

Our second step is to inject faults that emulate partial thékires. In our error
model, we assume that the latent faults or block corruptiggirate from any of
the layers of the storage stack. These errors can be adgunateleled through
software-based fault injection because in Linux, all dietgédow-level errors are
reported to the file system in a uniform manner as “I/O erratthe device-driver
layer.

The errors we inject into the block write stream have thrdfeidint attributes,
similar to the classification of faults injected into the winkernel by Guet al.[56].
The fault specification consists of the following attribsite
Failure Type: This specifies whether a read or write must be failed. If it iead
error, one can specify either a latent sector fault or bloakuption. Additional
information such as whether the system must be crashedebefoafter certain
block failure can also be specified.

Block Type: This attribute specifies the file system and block type to beda
The request to be failed can be a dynamically-typed one dilizectory block) or
a statically typed one (like a super block). Specific paramsetan also be passed
such as an inode number of an inode to be corrupted or a gartislock number
to be failed.

Transience: This determines whether the fault that is injected is a teariserror
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Workloads
W1 W2 W3 W4 Key for Recovery
8 D5 O RZero
- 5 D4 / RRetry
4(—61_‘6 D3 - gPropagate
QO E D2 \ RRedundancy
& b1 | s

Figure 3.2:Example Failure Policy Graph. The figure presents a sample failure
policy graph. A gray box indicates that the workload is ngplégable for the block
type. If multiple mechanisms are observed, the symbolsuperinposed.

(i.e. fails for the nextN requests, but then succeeds) or a permanentignddils
upon all subsequent requests).

Failure Policy Inference

After running a workload and injecting a fault, the final stefo determine how the
file system behaved. To determine how a fault affected they#eem, we compare
the results of running with and without the fault. We perfotiis comparison
across all observable outputs from the system: the erroesaaid data returned
by the file system API, the contents of the system log, andawdével I/O traces
recorded by the fault-injection layer. Currently, this etmost human-intensive
part of the process, as it requires manual inspection ofigiblg outputs.

In certain cases, if we identify an anomaly in the failureipglwe check the
source code to verify specific conclusions; however, giteromplexity, it is not
feasible to infer failure policy only through code inspecti

We collect large volumes of results in terms of traces andrdags for each
fault injection experiment we run. Due to the sheer volumexglerimental data, it
is difficult to present all results for the reader’s inspenti\We represent file system
failure policies using a unigue representation caflgtlire policy graphswhich is
similar to the one shown in Figure 3.2.

In Figure 3.2, we plot the different workloads on x-axis ane file system data
structures on y-axis. If applicable, eaefow, column> entry presents the IRON
detection or recovery technique used by a file system. If pplieable (.e., if the
workload does not generate the particular block type thafficgray box is used.
The symbols are superimposed when multiple mechanismsvguoged by a file
system.
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Next, we explain how the entries in Figure 3.2 must be inttga by walking
through an example. Specifically, consider the entry forkdaad “W1” and “D5”
data structure. It has three symbols superimposed: r&igy;f, ), error propagation
(Rpropagate) @nd finally, a file system stopgi(s;,,). This means that whenever an
I/0 to “D5” fails during workload “W1”, the file system first tees and if that fails,
stops and propagates the error to the application.

We use failure policy graphs not only to present our analyesssilts but also
throughout this thesis to represent the failure policiesonadt in our solution
(Chapter 6).

3.2.3 Results

We have performed a failure-policy analysis for four comio€lle systems: ext3
[140], ReiserFS (version 3) [109], and IBM’s JFS [20] on Lirand NTFS [124] on
Windows; we have analyzed the impact of read errors, writgrgrand corruption
of entire disk blocks in these file systems. This analysis d@® by four peo-
ple [106]: Vijayan Prabhakaran (who analyzed ext3), LakisBairavasundaram
(IBM JFS), Nitin Agrawal (ReiserFS), and Haryadi Gunawi (Mbws NTFS). In
this subsection, we primarily present the problems thablakaran found in ext3
because we use this file system to evaluate our solution tpridi@ems in Chap-
ter 6. Thus, this subsection serves as an important backdrfmr Chapter 6. At
the end of this subsection, we summarize the findings of thieeestudy [106].

Linux ext3

Key for Detection Key for Recovery

O DZer'o O RZe'r'o
- DEr'ro'rCOde / RRetr'y
| DSanity - RPropagate
\ RRedundancy
| RStop

Table 3.9:Keys for Detection and Recovery.The table presents the keys we use
to represent the detection and recovery policies in fileesyst

Figure 3.3 shows Prabhakaran’s findings for ext3 [106]. Téparé& presents the
detection and reaction techniques used by ext3 to handlewe#e, and corruption
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Figure 3.3: Ext3 Failure Policies. The failure policy graphs plot detection and
recovery policies of ext3 for read, write, and corruptionulta injected for each
block type across a range of workloads. The workloadssagath traversab: ac-
cess,chdir,chroot,stat,statfs,|stat,openchmod,chown,utimed: read e: readlink

f. getdirentriesg: creath: link i: mkdirj: renamek: symlinkl: write m: truncate
n: rmdir o: unlink p: mountq: fysnc,syna: umounts: FS recovenyt: log write
operations. A gray box indicates that the workload is notlapple for the block
type. If multiple mechanisms are observed, the symbolsigernposed. The keys
for detection and recovery are presented in Table 3.9. Teet2failure policies
were analyzed by Prabhakaran [106].
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failures. Each row in the set of figures corresponds to a datetare. Each column
corresponds to a specific workload. The symbols in each oelespond to how
ext3 responds when the data structure for that row fails vaoeessed as a result of
the workload for that column. Note that symbols correspogdo different policies
may be superimposed.

Detection: Prabhakaran observed that, to detect read failures, ext@apr
ily uses error codeslg.orcode). HOWever, when a write fails, ext3 does
not record the error coddXz.,,); hence, write errors are often ignored, po-
tentially leading to serious file system problenesg, when checkpointing
a transaction to its final location). Ext3 also performs a #&ount of san-
ity checking ODsanity). For example, ext3 explicitly performs type checks
for certain blocks such as the superblock and many of itsnglublocks.
However, little type checking is done for many importantdie, such as
directories, bitmap blocks, and indirect blocks. Ext3 gieoforms numer-
ous other sanity checke.g, when the file-size field of an inode contains an
overly-large valueppen detects this and reports an error).

Recovery: For most detected errors, ext3 propagates the error to the us
(Rpropagate)- For read failures, ext3 also often aborts the jourd@d.(,);
aborting the journal usually leads to a read-only remourtheffile system,
preventing future updates without explicit administratateraction. Ext3
also uses retryRr.:r,), although sparingly; when a prefetch read fails, ext3
retries only the originally requested block.

Bugs and Inconsistencies:Prabhakaran also found a number of bugs and
inconsistencies in the ext3 failure policy. First, errore aot always prop-
agated to the usee(g, t r uncat e andr ndi r fail silently). Second, ext3
does not always perform sanity checking; for exampilel i nk does not
check thd i nkscount field before modifying it and therefore a corrupted
value can lead to a system crash. Third, although ext3 hasmdeaht copies

of the superblock Bredundancy), these copies are never updated after file
system creation and hence are not useful.

File System Summary

We now present a qualitative summary of each of the file systemtested. Ta-
ble 3.10 presents a summary of the techniques that each $ilersyemploys (ex-
cluding NTFS); because our analysis requires detailed ledye of on-disk struc-
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Level ext3 ReiserFS| JFS
Dzero VvV VA ERVAVAY)
Dgrrorcode | VVVV | VVVV VvV
Dsanity VAVAVAN BERVAVAVAVAR IRRVAVAYA
DRedundancy

Rzero vV Vv vV
Rpropagate VVV VvV VvV
Rstop avs VVV VvV
RRetry Vv VvV
RRepair

RRE’HL(LP

RRedundancy \/

Table 3.10:IRON Techniques Summary. The table depicts a summary of the
IRON techniques used by the file systems under test. Mork efegks (/) indicate
a higher relative frequency of usage of the given technique.

tures, and not all NTFS structures are publicly documentesl,could not com-
pletely analyze all NTFS failure policies.

Ext3: Overall simplicity. Ext3 implements a simple and mostly reliable
failure policy, matching the design philosophy found in i family of
file systems. It checks error codes, uses a modest level af sdrecking,
and reacts by reporting errors and aborting operations. rmam problem
with ext3 is its failure handling for write errors, which agnored and cause
serious problems including possible file-system corruptio

ReiserFS: First, do no harm. ReiserFS is the most concerned about disk
failures. This concern is particularly evident upon wraddres, which often
induce apani c; ReiserFS takes this action to ensure that the file system is
not corrupted. ReiserFS also uses a great deal of sanityypedchecking.
These behaviors combine to form a Hippocratic failure golifirst, do no
harm.

JFS: The kitchen sink. JFS is the least consistent and most diverse in its
failure detection and reaction techniques. For detecflBf$, sometimes uses
sanity, sometimes checks error codes, and sometimes dt@saqat all.
For reaction, JFS sometimes uses available redundancetisoes crashes
the system, and sometimes retries operations, dependitigednlock type
that fails, the error detection and the API that was called.
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NTFS: Persistence is a virtue.Compared to the Linux file systems, NTFS
is the most persistent, retrying failed requests many tibedsre giving up.

It also seems to report errors to the user quite reliably.

Overall, we find that different file systems use differenss#tpolicies to detect

and react to partial disk failures. For example, JFS was hinlyx file system that
used some redundancy to recover (in the case of the supkybiexen in using the
same policies, the degree to which a policy is used changeasdne file system to
another. For example, while all file systems employ retriesame extent, NTFS
retries a failed operation many more times than the othesyistems.

Technique Summary

Finally, we present three high-level observations of tiohéques applied by all of
the file systems to detect and recover from disk failures.

Detection and Recovery: lllogical inconsistency is commonVe found a high

degree ofllogical inconsistencyn failure policy across all file systems. For
example, ReiserFS performs a great deal of sanity checkimgever, in one
important case it does not (journal replay), and the resuhat a single cor-
rupted block in the journal can corrupt the entire file systdiS is the most
illogically inconsistent, employing different techniqui scenarios that are
quite similar.

We note that inconsistency in and of itself is not problem&8]; for exam-
ple, it would belogically inconsistent (and a good idea, perhaps) for a file
system to provide a higher level of redundancy to data sirastit deems
more important, such as the root directory [123]. What wecaitecizing are
inconsistencies that are undesirable (and likely uningeat); for example,
as shown in Figure 3.3, when reading an indirect block fai¥$3 sometimes
propagates the error to the Usétr,,qqaic), retries the operation{zc;,),
remounts the file system read-onli 4;,,), and ignores the failurer(z...),
depending on where in the code the fault is detected.

After a closer source code inspection, we found that theqaose of illogical
inconsistency ifailure policy diffusion the code that implements the failure
policy is spread throughout the kernel. Figure 3.3 illusisathe scattered
policy code in ext3. There are more than a hundred of placesewie file
system tries to handle 1/O failures. One reason for thisudién is that the
file system tries to handle each fault where it arises in tlidec8ecause 1/0s
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Figure 3.4:Diffused policy code. The figure shows the scattered policy code in
ext3 source code. The x-axis lists all the source files fonx iext3 file system. The
y-axis represents the lines of code. Each vertical bar regmés how big is the file
(in terms of LOC). The small horizontal lines appearing desthe bars represent
the location of ext3's failure policies.

are generated from many different locations within the fijlstem, the fault-
handling policy is also spread throughout the code; as odssarchers have
shown, diffused handling leads to policies that are likelyoé inconsistent,
buggy, and inflexible [83]. We pay attention to this problend alesign a
centralized failure handler for file systems, which we dsscin Chapter 6.

Detection and Recovery: Bugs are commonWe also found numerous bugs
across the file systems we tested, some of which are serindsnany of
which are not found by other sophisticated techniques [14XE believe
this is generally indicative of the difficulty of implemeng a correct failure
policy; it certainly hints that more effort needs to be pubirtesting and
debugging of such code. One suggestion in the literatutethdd be helpful
would be to periodically inject faults in normal operatios part of a “fire
drill” [102]. Our method reveals that testing needs to beadrand cover as
many code paths as possible; for example, only by testingnthiect-block
handling of ReiserFS did we observe certain classes of faishandling.

Detection: Error codes are sometimes ignored.Amazingly (to us), error codes
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were sometimes clearly ignored by the file system. As an elgritpe ext3
code below shows a serious silent failure arises during yiesn recovery
because an error code is silently dropped.nc_bl ockdev (line 2) is re-
sponsible in flushing the dirty buffer pages. It does the jglcalling two
other functions (line 4 and 5). When a low-level I/O failurecars, these
two functions will propagat&! Oerror codes via return values (line 4 and 5).
sync_bl ockdev then correctly propagates tig O error codes to the caller
(line 7). Unfortunately,j our nal _r ecover neglects the error code propa-
gated bysync_bl ockdev (line 12), leading to a silent failure during journal
recovery.

1// fs/buffer.c
2 int sync_bl ockdev() {

ret fmfdatawite(); /* PROPAGATE El O */
err fmfdatawait (); /* PROPAGATE El O */
if('ret) ret = err;

return ret; !+ RETURN EI O */

}

/1 jbd/recovery.c

10 int journal recover() {

11 C

12 sync_bl ockdev(); /* |1 GNORE El O */
13 C

14 }

©Coo~NOO UL~ W

The example above clearly shows that correct error propaigé an impor-
tant aspect of a robust file system. To be properly handleg farit must
be correctly propagated to the code within the file systerhith@sponsible
for handling such fault. Further, if the file system is unatal@ecover from
the fault, it may desire to simply pass the error up to theiappbn, again
requiring correct error propagation. Thus, an infrastmoetto analyze how
errors propagate should be a part of the file system devesopenkit; with
such tools, this class of error is easily discovered. In,facBection 5, we
show how a static analysis tool that we have developed carfindreds of
errors in file systems and storage drivers.

3.2.4 Summary: The Need for a New Fault-Management Framewdr

The results of our failure policy analysis point us to twoslass: First, different
file systems use different sets of policies to detect and tegmartial disk failures.
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This shows that there is no single best policy. However,rgavdéile system, we are
limited to the reliability policies that the file system prdgs; it is hard to modify
its policies. Second, diffused handling causes policiesetanconsistent, buggy,
and inflexible to change. In addition to that, as fault harsdéee buried deep in the
code, they generally do not have access to all of the corgkktformation about
the failed request, thus can only implement a limited seesponses. Therefore,
what we need is a new fault-management framework where wd deploy differ-
ent sets of failure policies in a centralized fashion. Witlts locality, the hope is
to make the policies more flexible, less buggy, and much esimanage. These
needs drive our 1/O shepherding approach, presented int&h@p

Furthermore, we need to solve the problem of incorrect goropagation or
otherwise it could lead to serious problenesy, misleading error-codes, wrong re-
covery actions, or even frustation for human debuggingusTbuilding an infras-
tructure that unearths all instances of this problem andhlesadeeper root-cause
analysis is an essential component in building a robust yiséesn. One approach
is via a static analysis. In Chapter 5, we present our tectenigamedError Detec-
tion and Propagation (EDP) analysisvhich shows how error codes flow through
file systems and storage drivers.

3.3 Analysis of Journaling

In addition to disk failures, another failure that file systeneed to handle is system
crashes. When a file system update takes place, a set of iBogkitten to the disk.

If the system crashes in the middle of the sequence of wtitedile system is leftin
an inconsistent state. The idea of journaling is to enswe@tbmicity of the writes
despite the presence of crashes, specifically by recordimge £xtra information
on the disk in the form of a write-ahead log or a journal [52} Brcing journal
updates to disk before updating complex file system strasiuthis write-ahead
logging technique enables efficient crash recovery; a graphn of the journal and
a redo of any incomplete committed operations bring the fi$tesn to a consistent
state.

In this section, we first give an introduction to how journgliworks (Sec-
tion 3.3.1). Although the journaling approach works pettiein anticipating crashes,
we have found that journaling file systems suffer from a gain@oblem of failed
intentions(Section 3.3.2) when disk failures come in to the picturecti®a 3.3.3
summarizes the significance of this problem as many modersygtems employ
journaling and disk failures happen in practice.
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Figure 3.5:Journaling Data Flow.. The figure shows the series of actions that
take place in data journaling mode. Both in-memory (top) anedisk (bottom)
states are shownD is a data block,| an inode,B a bitmap,tb the beginning of

a transaction, andc the commit block. Darker gray shading indicates that blocks
have been released after checkpointing.

3.3.1 Journaling Basics

To describe the basics of journaling, we borrow the ternuggl of ext3 [140].
Journaling exists in three different modes (data, ordeesd write-back), each
of which provides different levels of consistency. In datarpaling, all traffic
to disk is first committed to a log.€., the journal) and then checkpointed to its
final on-disk location. The other journaling modes journalyanetadata, enabling
consistent update for file systems structures but not for dae. In this section,
we only illustrate how data journaling works.

Figure 3.5 illustrates the sequence of operations in datemg@ing when an
application appends a data bldoko a file. AttimeTy, the data bloclo and bitmap
B are updated in memory and a pointeiigs added to the inodk all three blocks
(D, I, B) now sit in memory and are dirty. At tim&}, the three block®, I, and
B are wrapped into &ansactionand the journaling layecommitsthe transaction
(which includes markers for the stait and endc of the transaction) to the journal,
the blocks are now marked clean but are still pinned in memafter the commit
step is complete, af,, the blocks areheckpointedo their final fixed locations.
Finally, atT3, the transaction iseleasedand all three blocks are unpinned and can
be flushed from memory and the log space reused. Note thapfauitansactions
may be in the checkpointing step concurrentlg.(committed but not yet released).
If the system crashes, the file system will recover by repigyransactions in the
journal that are committed but not yet released.
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Figure 3.6:Failed intentions. The figure illustrates how current journaling frame-
work cannot deal with the problem of failed intentions.

3.3.2 Failed Intentions

Although journaling works correctly for crashes, disk fmés happen. In this case,
we can assume that a checkpoint failure to bléckas occurred. A simple way
to react to this fault is to perform a retry. However, if thddee is permanent, we
might want to perform a more sophisticated recovery apgr@ach as remapping.
To illustrate the problem of failed intentions, let's assuthat the file system main-
tains aremapping tabM to track bad block remapping. This remapping procedure
should be very simple: allocate a new blogkd, R), update the bitmap blodk’
for this new allocation, write the content Bfto the new locatioR, and update the
remap tableM, specifying thaD has been remapped B However, in the current
journaling scheme, these recovery actions cannot be peefibiconsistently in the
presence of crashes, as illustrated in Figure 3.6.

Figure 3.6 illustrates that after the write to a data bl@ckails (73) the policy
wants to remap blocb to R (73), which implies that the bitmap and the remap
table are modified’ andM). Since it is too late to modify the transaction that
has been committed, these modifications only happen in thmame However,
from the perspective of the journaling layer, the checkpiogof this transaction
containingB, I, andD have finished, and thus, the transaction can be reled3&d (
If a crash occursd) after the transaction is releas€fly), all metadata changes
introduced by the recovery actions will be discarded anddis& will be in an
inconsistent state. Specifically, the data blérks lost since the modified remap
tableM that has the reference B has been discarded. As a consequence, future
access td’s data block will not be remapped ®. The general point here is that
the current journaling scheme cannot perform any checkgdaiture recoveries
that result in metadata changes.
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3.3.3 Summary: The Need for a New Journaling Scheme

Journaling is deployed in many modern file systems inclu@rtg [140], Reis-
erFS [109], IBM JFS [20], XFS [132] and Windows NTFS [124]. elfact that
we cannot recover from a checkpoint failure properly witk tturrent journaling
scheme is disastrous. In fact, Prabhakaetial. have shown that ext3, IBM JFS,
and ReiserFS ignore checkpoint failure [105] (althougly ttliel not point out the
reason). In this section, we have uncovered a major flaw thaws why these
journaling file systems are unable to react to checkpoiturii Given the signifi-
cance of this journaling flaw, in Chapter 6, we present ountsmh to the problem:
chained transactions

3.4 Conclusion

In this chapter, we have shown that many file system relitgbdomponents are
actually not reliable, in particular when dealing with palrdisk failures. To build
a new generation of robust and reliable file systems, we\mehenew approach to
each of the problems is required.

First, in Section 3.1, we have found that file system checkexsiot always ro-
bust in how they perform repairs. We mainly believe that wtleeckers are written
in the low-level C language, their logic is hard to reasonuiband hence can be
buggy. Thus, to build a new generation of robust and relifitdesystem checkers,
in Chapter 4, we introduc8QCK a novel file system checker that emplaelar-
ative queries where the high-level intent of the checker can beifspé in a clear
and compact manner.

Second, in Section 3.2, we have shown that today’s commatitgystems do
not have a good reliability framework for dealing with diskilfires. Their failure
policies are diffused, leading to inconsistent and bugdicies. To solve this prob-
lem, in Chapter 6, we presell© Shepherdinga simple yet powerful way to build
robust and centralized failure policies within a file system

Third, in the same section, we also unearthed the problemaafriect error-
code propagation where error-codes are accidentally éxppthe middle of their
propagation, leading to serious silent failures. In Chapteve presenkError De-
tection and Propagation (EDPa static analysis tool that shows where error-codes
are dropped in file systems and storage drivers.

Finally, in Section 3.3, we have shown why many journaling §ystems can-
not recover from checkpoint failure properly. Thus, in $&tt6.4.1, as part of the
Shepherding framework, we also introduce the concepghafned-transactionsa
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novel and more powerful transactional model that allowscpes to handle unex-
pected faults during checkpointing and still consistentiglate on-disk structures.
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Chapter 4

SQCK: A Declarative File System
Checker

“FIXME: In the future, inodes which are still in use should bandled
specially. Right now we just (do a simple repair), insteadtloé fight
repair). This won't catch (a particular corrupt scenaridut it's better
than nothing. The right answer is that there shouldn’t be bogs in
(this corruption) handling:-)”

— A comment in e2fsck (passl.c, line 778)

Despite the best efforts of the file and storage system contyndite system
images become corrupt and require repair. In particularblems with many dif-
ferent parts of the file and storage system stack can corrtijg aystem image:
disk media, mechanical components, drive firmware, thesfrart layer, bus con-
troller, and OS drivers [13, 14, 46, 53, 106, 135]. Since fgtams do not usually
contain the machinery to fix corruptions themselves [15] 1ib@re is a broad need
for robust file system checkers.

Unfortunately, our analysis of file system checkers in $&c8.1 has shown
that robust checkers are not straightforward to design ptement. Checkers are
typically large and complex; for example, the Linux ext2 cker contains more
than ten thousand lines of low-level C code which can be diffio reason about.
Due to this complexity, it is not surprising that we found maveaknesses in the
Linux ext2/3 checker.
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To build a new generation of robust and reliable file systeatkhrs, we believe
a new approach is required. The ideal approach should ettabkigh-level intent
of the checker to be specified in a clear and compact mannérefuthe description
of the intent should be cleanly separated from its low-léwvgllementation and how
it is optimized. A high-level specification has multiple ledits: by its very nature
it is easier to understand, modify, and maintain.

In this section, we introduce SQCK (pronounced “squeaktipeel file system
checker. Borrowing heavily from the database communityC8@mploys declar-
ative queries to check and repair a file system image. We fiataldeclarative
guery language is an excellent match for the cross-cheeksrthst be made across
the different structures of a file system.

The rest of this chapter is organized as follows. We first desour goals (Sec-
tion 4.1) and then motivate why declarative query languagiitable for fulfilling
the goals (Section 4.2). Next, we present the overall achite of SQCK, includ-
ing how declarative checks and declarative repairs ar@padd (Section 4.3). We
discuss implementation challenges in Section 4.4 and yiredhluate SQCK in
Section 4.5.

4.1 Goals

We believe that a file system checker should be correct, flexémd have reason-
able performance; we believe a declarative language wabknus to meet these
goals for the following reasons.

Correctness: The primary responsibility of a file system checker is to el a
consistent file system image. A declarative language altovesto check and
repair hundreds of corruption scenarios in a clean and cobfpahion; we
believe the ability to produce correct repairs is improved tb the simplicity
of the queries and the separation of the specification framrtiplementa-
tion. A secondary goal is to produce repairs that leveragefadhe on-disk
information to retain as much as possible of the file systene balieve
declarative languages allow one to easily combine the thgpanformation
that resides throughout the file system.

Flexibility: Given a single corruption, there are many reasonable e hit
could be performed. For example, if two inodes share the sateeblock,
there are many ways to repair this inconsistency: a “chegypdir could sim-
ply remove one of the pointers [32], the inode with the eatlmodification
time could release the block [93], the block could be clorefqck’s way),
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or the operator could decide. The simplicity of a declamianguage en-
courages one to explore this policy space and even provithratit modes
of repair €.g, fast but partial repair, or slow but full/smart repairs).

Performance: While the performance of a file system checker is not a primary
concern, it must not be prohibitively slow; specificallyetbhecker must
be able to handle the amount of data on modern disks and stsyesgems.
Thus, our goal is to create a checker that is competitive @edpo a tradi-
tional checker.

4.2 Declarative Query Language

Implementing a file system checker that satisfies all thesgalabve (especially the
correctness part) has proven to be difficult. Thus, an atem is needed. One
alternative is to view a file system checking as ensuring ttatcontent satisfies
a specification. With this view, some researchers have ateino auto-generate
fsck code by writing a specification in an object modelingglaage. Specifically,
Demsky and Rinard’s work repairs inconsistencies autarabyi given specified
constraints [32]. Their automated repair finds the cheapasgtto repair the sys-
tem such that it satisfies the constraints again. For exanfile inodes share the
same data block, the cheapest repair could simply removefdhe pointers; how-
ever, this may not be the desired result. In fact, there ameynaays to solve the
problem: the inode with the earliest modification time cowase the block [93],
the block could be cloned (e2fsck’s way), or the operatoriddaecide. In our
terminology introduced in Section 3.1, the modeling apphes ensure that the re-
pairs are consistent, but not necessarily informationqete or policy-consistent.

When reinventing fsck, we need a language that can deslaagxpress both
the checks and the repairs. Like others who have appliedudgitle languages to
domains such as system configuration [34] and network oy&fB0], we believe
the solution is to use a declarative language. We specifichlbose a declarative
guerylanguage, SQL [2], as our choice. Thus, we name our declarfle system
checker as SQCK (SQI-based fsCK).

The first advantage of using SQL is to easily achieve the padace goal;
the database community has tuned this language and itseefwilyears. Thus,
rather than tuning a new declarative or modeling languagecam directly use the
built-in optimization of an off-the-self SQL engine. Hovwasybesides performance,
achieving correctness is also highly important. We belignzg by using a query
language such as SQL, we can express hundreds of checkspai i@ a more
correct fashion. Below, we give several short examplesillogtrate why that is.
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first_block = sb->s_first_data_bl ock;
| ast _block = first_block + bl ocks_per_group;

for (i = 0, gd=fs->group_desc
i < fs->group_desc_count;
i ++, gd++) {
if (i == fs->group_desc_count - 1)
| ast _bl ock = sbh->s_bl ocks_count;
/1 the core logic of range-checking
if ((gd->bg_block bitmap < first_block) |
(gd->bg_bl ock_bitmap >= Il ast_block)) {
px. bl k = gd->bg_bl ock_bi t map;
if (fix_problem PR_O_BB_NOT_GROUP, ...))
gd- >bg_bl ock_bi tmap = O;

Figure 4.1:Range-checking in C codeThe C fragment above shows the e2fsck’s
implementation of the “check block bitmap not in group.” Témre logic of the
range-checking, marked in italic, is buried in implemeitatdetails.

First, range-checking is very common in file system checké&ae example
in e2fsck is verifying that the block bitmap pointer for a gpopoints to a block
located within that group. The logic of this check is a simm@age-checking.
However, the actual implementation of this check, shownigufe 4.1, illustrates
that a low-level C implementation tends to make a simple khecd to understand
and debug. The core logic of the range-checking, markedlit,tis buried in im-
plementation details such as for-loop, data traversal,naady others. In contrast,
with a query language, we can write the check declarativelsh@wn in Figure 4.2.
The query simply performs aeLECT from the group descriptor table to find any
bitmaps that are not within the desired range for the groupe query also shows
that, in SQCK, all checks and repairs are performed by runpgireries on database
tables. Thus, before running the queries, SQCK must preloadiatabase tables
with the on-disk structures. More details on this designeaq@ained in the next
section.

Second, what is also common is cross-checking fields aciffesedt struc-
tures. A simple example is verifying that all pointers reti@blocks within the file
system; this check involves verifying that every pointewithin the range speci-
fied in the primary superblock. As illustrated in Figure 4t8s check can be easily
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SELECT =
FROM G oupDescTable G
WHERE G bl kBi t map NOT BETWEEN G start AND G end

Figure 4.2:Range-checking in SQL.The SQL fragment above shows the SQCK'’s
implementation of the “check block bitmap not in group.”

SELECT B. =
FROM Bl ockPoi nter B, Superbl ockTable S
VWHERE  B. bl knum NOT BETWEEN S.firstBl k AND S. | astBl k

Figure 4.3:Cross-checking in SQL. Cross-checking can be easily done in SQL
by joining the structuresHROM clause) and specifying the condition to be found
(WHERECclause).

done in SQL byjoining the two structures (the FROM clause) and specifying the
condition (the WHERE clause). As we will see in the next setgtthere are many
more complex instances of cross-checking that can be eagisessed in query
language.

Third, for each inconsistency found, a checker must refrerimconsistency,
which is done by updating related structures. In the simimases, a repair must
simply adjust a few fields within a table (a file system stroejuln these cases, a
repair can be performed with an UPDATE query in SQL. In momnplex cases,
repairs may need to update more than one table. In these, GQ&K easily
combines a series of SQL queries with C code. More detailedngles will be
shown in Section 4.3.3. In short, repairs can be naturalpressed in SQL as this
guery language has been built from day one to support maasieeint of updates.

Fourth, a checker usually runs hundreds of checks and sep4iith a query
language, we can write each check or repair as a query (ansiaive examples
above). As a result, hundreds of checks and repairs can bpasmd by gluing
all the queries together. Furthermore, the repairs mustrbered correctly; our
evaluation of e2fsck in Section 3.1.3 has shown that misetiespairs can leave
the file system in an inconsistent state. We believe that#mgstine correct ordering
is easier done in SQCK rather than in C code. This is becauS€CK, the logic of
each query can be understood in isolation, while in C coderahairs are typically
cluttered. In Section 4.3.4, we show how we can ensure thecaoordering of
repairs in SQCK.
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| Database Tables ‘

( Loader ) Check+Repair
C Scanner ) Flusher )

Figure 4.4: SQCK Architecture. The diagram depicts the basic SQCK archi-
tecture. The left part of the design, the loader and scarerad, the right part of
the design, the checker and flusher are decoupled, allowintp wptimize each
component in isolation.

Finally, there might be many ways to repair an inconsisteirtyhe beginning
of this section, we listed more than one approach to repaata llock shared by
two inodes. In SQCK, since a repair is basically a query (cgtao queries), we
can plug-in and plug-out different queries in a straightfard fashion. We believe
this is hard to do in C code. In the evaluation section (Sacfi®), we show the
flexibility of building different versions of fsck in SQCK.

In summary, the above examples have illustrated the eassiraf declarative
query language to build checkers. In the next two sectiondageribe our specific
design and implementation of SQCK.

4.3 Architecture

In this section, we provide a detailed overview of SQCK aetdtiure. SQCK con-
tains five primary components, as shown in Figure 4.4. 3tennerreads the
relevant portions of the file system from the disk, while kb&derloads the corre-
sponding information into the databasdles Thecheckeris then responsible for
running the declarative queries that both check and repaifile system structures.
Theflushercompletes the loop by writing out the changes to disk. Wegmost our
description of the scanner, loader, and flusher until Sectid. In this section, we
explain the tables and the checker.
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Tables Fields
Superblock| blkNum copyNumdirty,
Table firstBIk, lastBlk, blockSize, ...
GroupDesc| blkNum gdNum copyNumdirty,
Table start, end blkBitmap, inoBitmap, iTable, ...
Inode ino, blIkNum used dirty,
Table mode, linksCount, blocksCount, size, ...
DirEntry blkNum entryNum dirty,
Table ino, entrylno, recLen, namelLen, name
Extent start, endpBlk, pByte type
Table startLogical endLogica)

ino, dirty, ...

Table 4.1: SQCK Tables. lItalic fields represent information we generate since
they are not stored on the disk.

4.3.1 Database Tables

It is important to construct the database tables such teeB@CK checker can per-
form efficient queries that cover the same repairs as e2i6cokceptually, SQCK
contains a table for each of the different metadata type$eénfite system: su-
perblocks, group descriptors, inodes, directories, andkopointers [27]. Together,
the tables store all of the information about the file systamge that was origi-
nally on disk. However, with this on-disk information algniee SQCK checks and
repairs are neither simple nor efficient; therefore, SQQGifest extra, easily calcu-
lated information in the tables. Table 4.1 shows the fivelukga tables utilized by
SQCK. We describe briefly the important fields in each table.

Superblock: Since the superblock is replicated, we load each repliGaamow
of the table; this table allows SQCK to easily check the @iBacy across
superblocks. As expected, each row contains the informati@ilable from
the superblocks on disk. To be able to reflect repairs backdalisk in the
flusher, we also introduceopyNumandblkNumfields that specify where a
replica lives on the disk anddirty field.

GroupDescTable: Each group descriptor and its replicas are loaded into agpar
rows of this table; as expected, we store here the on-digkrvdtion such
as the pointers to the block bitmap, inode bitmap, and inabiet SQCK
also adds thstart andendblock of each group; this addition allows SQCK
to easily check whether pointers fall within the desiredgeamf the block
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group.

InodeTable: Each row of the table corresponds to a different allocatedanwith
appropriate fields for the on-disk information such as mdidks, and size.
Theusedfield tracks which inodes are part of the final directory tredisat
SQCK can calculate the final inode bitmap.

DirEntryTable: Each row of the table corresponds to a different directotyyen
SQCK performs many cross-checks on this table to verify trectbry tree
structure.

ExtentTable: The conceptual idea of this table is to record all of the ot
to data blocks, so that SQCK can ensure that no two pointées t@ the
same block. In our initial implementation, we loaded eaakdipointer as
its own row; however, this is intractable for a large file gystbecause the
table grows too large and the loader takes too long. Tharefee switched
our table design to represent extents of contiguous diteckb; specifically,
each extent specifies the start and end block. Additiona#lgh row records
the location of the original pointer and tlygpe of the pointer €.g, direct,
single, double, or triple indirect).

4.3.2 Declarative Checks

A declarative query language is an excellent match for theeks and repairs that
must be performed by a file system checker. To give some imituds to why
this is true, we categorize the different checks that mushbhde and show how a
prototypical check from each category can be specified wih £].

The original e2fsck performs a total of 121 interesting repale have catego-
rized all of these repairs into four categories, dependpmithow many file system
structures the repair must simultaneously peruse. As shiowable 4.2, a repair
can touch a single instance of a single structure type, osianoe of one type
with another of a different type, multiple instances of tlaeng type, or multiple
instances from multiple types.

There are 63 fsck repairs that involve fields of a single stmecin isolation. A
simple example of this type of repair is ensuring that theetlah time of a used
inode is zero. Another example is verifying that the blockraip for a group is
located within that group. We have shown how this check caexpeessed simply
and efficiently using SQL in Figure 4.2. The query simply pearis aseLECTfrom
the group descriptor table to find any bitmaps that are ndtiwithe desired range
for the group. Thus, range-checking queries are easilyifspec
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Single Multiple
instance instances
Intra Category #1 | Category #3
structure 63 checks 11 checks
Inter Category #2 | Category #4
structures 12 checks 35 checks

Table 4.2:Taxonomy of fsck cross-checking. We distinguish four types of cross-
check. We report the number of checks that fall into eactgcage In the first cate-
gory, a cross-check can be made within an instance of a sireictn the second, a
cross-check is performed on an instance of a structure anicigtance of another
different structure. The third category cross-checks iplgltinstances of a struc-
ture. Finally, the last category involves information gtdrin multiple instances of
more than one structures. Each number in the box represkatsumber of checks
that are done by e2fsck in each category.

SELECT X *
FROM Ext ent Tabl e X, Superbl ockTable S
WHERE  S.copyNum= 1 AND
X. type = | NDI RECT_PO NTER  AND
(X start < S.firstBlk R
X. end >= S. | ast Bl k)

Figure 4.5: Check illegal indirect block. An illegal indirect block is one that
points to outside the file system range

The second category includes checks between one instarecstafcture and
an instance of another different structure; fsck runs lxkbef this type. A
simple example is verifying that all pointers refer to bleckithin the file sys-
tem; this check involves verifying that every pointer is it the range specified
in the primary superblock. Unlike the previous examples tkample must ex-
amine values in different structures and subsequentlerdifit tables. Figure 4.5
shows how to check that no indirect block points outside tleesfrstem. Specif-
ically, the query returns all extentX.(st art . . X. end) corresponding to indirect
pointers that fall outside the file system range specifiedhéngrimary superblock
(S.firstBlk..S. |astBl k). Hence, SQCK can easily join multiple structures to
perform the necessary cross-checks.

The third category contains 11 cross-checks of multipléaimses of the same
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SELECT +

FROM DirEntryTable P, DirEntryTable C

WHERE // P says Cis his child
P.entryNum >= 3 AND
P.entrylno = C.ino AND
/1 but C says P is not his parent
C.entryNum = 2 AND
C.entrylno <> P.ino

Figure 4.6:Bad dot dot. This query finds a directory entry that does not claim the
actual parent.

structure. One example of this type of repair is checking thaltiple inodes do
not point to the same data block. A second example, showngiar&i4.6 checks
that the “..” entry of a directory points to the actual parertis check can be done
easily in SQL: the query simply joins the directory entryleatith itself, selecting
cases where the parent directory contains an entry for d @ihereP. ent r yNum
>= 3), but the child’s entry for “..” P. ent r yNum = 2) is not the parent’s inode.

Finally, 35 checks fall into the fourth category in which tbess-checks in-
volve multiple instances of more than one structure. Onengi@ is the rule that
validates the link count of an inode, since it must traverdbalieectory entries
and count how many times each entry appears. We give two dgamp these
queries to further convince the reader that even these ypssemingly compli-
cated checks are surprisingly straightforward to express.

The first example checks for conflicting block pointers; it2edlock pointers
are stored in many places and none should refer to the samie Bigure 4.7 shows
a query that ensures blocks pointed from an inode do notagvevith file system
metadata blocks. The query is a little bit cumbersome beciobtecks whether an
extent overlaps with each piece of file system metadata aeghalg.e., superblock
copies, group descriptors, inode bitmaps, block bitmapd,i@ode tables).

The second example verifies that multiple directory entdesnot point to a
same directory, corresponding to the false parenthoodlg@mololiscussed in Sec-
tion 3.1.3; we show how it can be expressed in SQL in Figure Baskically, the
guery selects directory entries that appear more than antteeitree structure. In
more detail, the query does not select the “.” or “..” entréesl selects only di-
rectory inodes, as determined by thede field in the inode table. Counting the
number of entries satisfying this constraint is straigifard with theORDER BY
andHAVING features of the query language. Note that this query retilneasmall-
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SELECT X *
FROM ExtentTable X
VWHERE EXI STS
( SELECT +
FROM  Superbl ockTable S
VWHERE
/1 extent overl aps superbl ock copies
S. bl k BETVWEEN X. start AND X. end)
OR EXI STS
( SELECT +
FROM G oupDescTabl e G Superbl ockTable S
VWHERE
/1 or extent overlaps group descriptors
(X. start BETWEEN G bl k AND G bl kEnd OR
X. end BETWEEN G bl k AND G bl kEnd) OR
/1 or extent overlaps inode table
(X.start BETWEEN G i Thl AND G i Thl End OR
X. end BETWEEN G. i Tbl AND G i Thl End) OR
/1 or extent overlaps bl ock bitmap
G bl kBi t map BETWEEN X. start AND X. end OR
/1 or extent overlaps inode bitmap
G i noBi tmap BETWEEN X. start AND X end)

Figure 4.7:Check block overlaps metadata.This query locates inode’s extents
that overlap with the filesystem metadata. To reduce spaeeablireviate some
fields: G.iTbIEnd should be G.iTable + S.inodeBlocksPerpre 1; G.blkEnd
should be G.blk + S.gdBIks - 1.

est inode number among the parerts N( P. i no) ), which is needed to mimic
how e2fsck incorrectly repairs this problem. In particuke2fsck always assumes
the parent with the smallest inode number is the real parghbut consulting the
“..” entry of the child. We show how we can easily improve thisery in Sec-
tion 4.5.1.

4.3.3 Declarative Repairs

Performing checks of file system state is only part of the j@obh after SQCK
detects an inconsistency, it must then perform the actyeire SQCK performs
the repair by first modifying its own tables; the flush procé&sn propagates these
changes to the disk itself. We have found that repair opmraton the tables can be
performed in one of two ways.
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SELECT P.entrylno, COUNT(*), M N(P.ino)
FROM DirEntryTable P, | nodeTable |

VWHERE P.entryNum >= 3 AND
P.entrylno = 1.ino AND
| . node = DR

GROUP BY P.entrylno
HAVI NG ( COUNT( P. entrylno) > 1)

Figure 4.8: Check multiple parents. This query returns directories that have
multiple parents. The parent that has the smallest inodebaurM N( P. i no) )
will be the one that keeps the child directory.

UPDATE Extent Table X
I NNER JO N
(result fromthe
“‘check illegal indirect block’’ query) AS V
ON X.ino = V.ino AND

X.type = V.type AND
X.start = V.start AND
X. end = V.end
SET X.start = 0, Xend =0, Xdirty =1

Figure 4.9: Repair illegal indirect block number.  This query repairs indirect
block numbers that fall outside the file system range (retdroy the “check illegal
indirect block” query in Figure 4.5), by clearing them to eer

In the simplest cases, a repair must simply adjust a few figittsn a table.
These repairs can be performed by embedding the declaretiveks presented
previously into a larger query that then sets fields withia selected rows. For
example, an illegal indirect block pointer (one that poiotgside the file system
range) is fixed by clearing the pointer to zero. Figure 4.9ghthat these pointers
can be cleared with a query that sets to zero the illegal &xtennd by the check
query in Figure 4.5. Note that the query also sets the dirty $lathat the flusher
will later propagate these changes from the database tabtes on-disk structures.

In more complex cases, repairs may need to update more theatable. In
these cases, SQCK combines a series of SQL queries with C8QueK currently
supports a variety of repair primitives, such as finding fiéecks and inodes and
adding and deleting extents, directory entries, and inoBegire 4.10 shows how
a valid directory with a reference count of zei®( a lost directory) is reconnected
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result = run(findUnconnectedDir. sql); [9]
while(dir = nysql _fetch_romresult)) {
run(changeDot Dot . sql, dir, |flno); [ 3]
slot = run(findEntrySlot.sql, Iflno);
if (!slot) {
I fBl k = run(getLocation.sql, |flno); [ 3]
newBl k = run(al |l ocNewBIl ock. sql, IfBIk); [25]
if (run(needlndirect.sql, [flno)) [ 5]
{// alloc indirect (not shown) }
run(addNewBl ock. sql, newBl k, |flno); [ 3]
run(addl nodeSi ze. sql, [ flno); [ 3]
run(init NewDirBl k. sql, newBl k, |flno); [ 3]
slot = run(findEntrySlot.sql, Iflno); [ 7]
}
/1 now break the slot and prepare [13]
/1 newSl ot based on dir. (not shown)
run(updat ed dSl ot . sql, ol dSlot); [ 3]
run(i nsert NewSl ot. sql, newSl ot); [ 3]
run(i ncrenent Li nkCount . sql, 1flno); [ 3]
}

Figure 4.10:Complex repair. The C pseudo-code above illustrates the complex
repair in reattaching unconnected directories to the Idstind directory. The files
with the. sgl extension are the SQL files that are executed. The bold nsniber
the brackets represent the lines count of each SQL file. Htie itumber is the
lines count of the C codéf | no is the inode number of the lost+found directory.

to the lost+found directory. Briefly, the code behaves akvid. After a query
finds the set of unconnected directories, SQCK performsahening operations
on each such directory. First, the “..” entry is adjustedampto lost+found. Next,
a directory entry slot is allocated within lost+found, whimay require allocating
new blocks and increasing the size of the lost+found. Atwerdlot is ready, the
entry is filled to correspond to the unconnected directory.

4.3.4 Ordering of Repairs

After all the checks and repairs are written declarativiilgy must be ordered cor-
rectly. Without a correct ordering, the resulting file systean be more corrupted.
For example, as shown in Section 3.1.3, e2fsck wrongly ‘irepalirect pointers
before checking that the indirect block containing thosmigos is valid, leaving
the file system in an inconsistent state.
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Superblock Copies Group Desc. Copies Inode Table pointer Inode
Majority+Conflict f Majority+Conflict ’( Range and conflict check f Some checks

Valid #blks/group Valid GDs Valid Inode Table pointer Valid Inode
»  N—
Indirect pointer In-range Indirect pointer < Direct pointers N
1\ )
Range check Conflict check : Range-check ;
1
In-range indirect pointers Valid indirect pointers L In-range direct pointers /
_____ 7 /
~~~~~~~~ \\\ ,,r I,
~~~~~~~~~~~ S "l
fsck out-of-order e

Figure 4.11:Information dependency graph. The figure shows a chain of in-
formation dependency. Note that the full graph forms a lilee-graph; to save
space, only a partial dependency chain is shown. Each botaitmnthree rows:
a new information obtained from the previous box, the chaokl the correspond-
ing repair, not shown), and the new state of the informatifterethe check. For
example, in box 1, an indirect pointer is obtained from adiatiode. After the
range-check, the indirect pointer is marked in-range, bot yet valid. After it
passes the conflict-check in box 2, it is finally marked aglyalthich implies that
we can proceed to box 3 which repairs out-of-range directkéocontained in this
indirect block. Unfortunately, e2fsck does not follow tbidering, as shown by
the dashed lines; fsck proceeds repairing the direct pasnbeom a not yet valid
indirect block. When e2fsck later finds out that the inditdotk is indeed invalid
(e.g., conflicting with other file system metadata), the eaindf the metadata has
been accidentally corrupted in box 3.

In general, repairs of a complex data structure must be pedd in a specific
order; specifically, if a piece of information A is obtainedrh B, then B must be
checked and repaired first. To ensure this ordering, we hamstucted amnfor-
mation dependency graghr the data structures in ext2. A portion of this graph
is shown in Figure 4.11. The figure also illustrates that@fioes not follow the
order specified by the dependency graph. We reorder thearglepieries to ensure
that single, double, and triple indirect blocks are all dated in the correct order
before repairing the direct pointers themselves. We fintl bardering repairs in
SQCK is straightforward due to the structure of the quemesdo not believe such
reordering is simple in e2fsck.

Currently, the dependency graph must be manually constiuay the file sys-
tem developer or administrator. Since the repair queri€SQCK are neatly struc-
tured, the ordering can then be manually verified againsd#mendency graph.
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Improving Scan Time

1 Reduce seek time with sorted job queue
Improving Load Time

2 Make the table content compact

3 Only load checked information

4 Use threads to exploit idle time
Improving Check Time

5 Write queries that leverage indices

6 Leverage fs domain specific knowledge

7 Use bitmaps to reduce search space

Table 4.3:0Optimization Principles. The table lists the optimizations that we have
performed such that performance of SQCK is competitive @dfhck.

More ideally, a static tool could be built on top of SQCK toifietthe ordering
automatically. Specifically, each query could be taggedh aitunique name that
describes the check/repair performed, then a parser caiddretically construct
the ordering from the code, and finally a verifier could coneptire constructed
ordering against the specified ordering. This highlights t structured fsck can
be easily verified than a cluttered one.

4.4 Implementation

We now describe our implementation of the SQCK phases fanrsog the file
system image from disk, loading the database tables, aingekid repairing the
structures, and finally flushing the repairs to disk. Our entimplementation of
SQCK runs on top of a MySQL database and targets the ext2 fitersyin Linux
2.6.12. When describing our implementation, we focus onojiemizations we
found were necessary for achieving respectable performarable 4.3 summarizes
these optimizations across the phases.

4.4.1 Scanning and Loading

In our current implementation, SQCK combines its scannimgj laading phases.
Conceptually, SQCK maintains a queue of the structuresrthet be read from
disk, processed, and loaded into the tables. As structusepracessed, SQCK
follows their pointers to determine the next structuresr &ample, the queue is
initialized from the primary superblock; after the suped¥, the locations of the
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group descriptor copies are known; subsequently, the itaoles are processed,
which leads to individual inodes and their data blocks.

SQCK implements a number of performance optimizations éansing and
loading. First, to reduce the scan time, SQCK sorts the &glie the queue based
on their on-disk locations; sorting the requests minimidesk head positioning
time, especially for file systems that are fragmented. We tiwt although e2fsck
performs a partial optimization of this soitd,, directory blocks are sorted before
read from the disk [27]), e2fsck is not able to perform the saptimization €.g,
indirect blocks still have to be traversed logically) besait heavily intermixes
scanning with checking [65]. SQCK is able to optimize scagrbecause reading
from disk is completely decoupled from checking; hence, 8@0Ges not need to
follow structures in a logical manner.

The primary reason we decouple scanning from checking isusscwe want to
make the common case fast; if corruption is a rare case theappuoach improves
the overall fsck time. However, there is a tradeoff: if cation is huge, extra
work is needed to invalidate the garbage loaded into thébdata Our design is not
limited only to that approach; if desired, SQCK can be regiesil by intermixing
some phases of scanning and checking according to thewtrlictgical hierarchy.
For example, when loading and checking indirect blockpldénndirect blocks will
be loaded and repaired in the database, then only valid dandirect blocks will
be loaded to the database, and so on.

Second, SQCK improves load time (and check time) by reduttiegsize of
the initial database tables. Our initial implementatioaded the ext2 structures to
match their on-disk format; specifically, SQCK loaded eankdisk pointer as a
direct pointer. However, we found that this approach madeking even 100 GB
file systems unattractive. Therefore, our next optimizatoodified the tables to
instead use extents to represent pointers referring tagromis blocks.

Third, SQCK reduces loading time by only loading allocategtardata. Given
that most file systems are half-full [7], a great deal of thedies are not actually
used. To reduce the size of the tables, SQCK does not loadnileed inodes
into the database tables (though it of course still scans finem disk). However,
e2fsck performs one check on unused inodes that SQCK musidéoereplicate:
e2fsck verifies that each inode with a link count of zero alas & deletion time of
zero. To handle this repair, SQCK performs this one checinduysrocessing. If
SQCK finds a non-conforming inode, that inode is loaded iné&téble on the fly;
to mark that the inode has been repairedugiedfield is cleared and thdirty field
is set. We note that this optimization is consistent withdhection in which future
file systems are going: ext4 explicitly marks unallocatettisas of the inode table
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to help e2fsck run more efficiently [3].

Fourth, the scanner-loader in SQCK is multi-threaded. BEhamad within the
pool is able to independently grab a structure from the queass the data from
disk, process it, and load the information into the corresliog table. Multiple
threads allow SQCK to overlap reading requests from dish leiading the tables.
As we will see in our evaluation, this optimization is espdlgiimportant for large
partitions.

4.4.2 Checker

After all metadata has been uploaded into the databasest&@CK initiates the
checking phase, which runs the queries as discussed in ¢i®ps section. One
important note is that since the checker runs only afterabeér, corrupt data can
be loaded into the tables. Hence, SQCK provides primitigesvalidate a struc-
ture along with the information that originates from it. Fetample, if the block
number that points to an inode table is corrupt, the wronglésoand the wrong
data pointers will be loaded into the table. Later, when thecker discovers that
the inode table pointer is corrupt, it simply calls the SQGHnitives to invalidate
the corresponding inodes, extents, and directory entries.

The checker has been optimized for performance in three mays. First,
we have found that SQCK must contain appropriate indicesdoh table; without
indices a full scan must be done for each check and joiningipheitables requires
a very long time. Thus, each table contains indices over éhdsfithat are checked
with the comparison operators.

Given the indices, some queries must be rewritten to leeethgm. In our
experience, MySQL is not able to always extract the impiiaiex comparisons in
some queries. For example, the check that no directory @uints to an unused
inode was originally written as shown in the top half of Figdr.12. When the rule
was rewritten to make the index comparison explicit, as shiovthe bottom part of
the figure, the query time improved significantly. Thus, makindex comparison
explicit is an important principle to do fast checking. Weavrete a total of four
gueries in this manner, reducing the check time for those ¢ueries from 72
seconds down to just 0.09 seconds on a 1 GB patrtition.

Second, we have found it beneficial to incorporate file sysddlemain knowl-
edge into the queries. One example is the rule that countstemy blocks are be-
ing used in a group. Since SQCK uses extents, it must firsttdble extents in that
group. The naive range-checking query could be written #evis: ( G st art
<= X.start AND X. end <= G end). However, given that we know valid
extents cannot overlap group boundaries (this has bediegdn previous queries),
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/1 find an entrylno that is in the list of
/1 unused i nodes
SELECT =+
FROM DirEntryTabl e
WHERE entrylno IN
( SELECT i no
FROM | nodeTabl e
WHERE used = 0)

/1 find an entrylno that exists in the
/1 InodeTabl e and the used field is zero
SELECT *

FROM DirEntryTabl e

VWHERE EXI STS

( SELECT =

FROM I nodeTable AS |

WHERE |.ino = D.entrylno AND
|.used = 0)

Figure 4.12:Explicit index comparison. We rewrite the code to unearth the index
comparison.

the range-check query can be simplifieqta start <= X. start <= G end).
This simplified query improves check performance.

The final optimization addresses how to join tables wherendex comparison
is not possible. For example, the query finding shared blacksss files joins the
ExtentTable with itself to find any overlapping extents. Wsimize this query
by making the search space smaller with bitmaps. For thimpleg SQCK uses
two bitmaps: one for marking used blocks and one for markivayed blocks; the
latter bitmap provides a hint as to which extents have opeitay blocks. To find
out which part of an extent is actually overlapping, SQCHKgiihe resulting small
table with itself.

4.4.3 Flusher

Finally, SQCK needs to update any repaired structures tadlifle SQCK is able
to determine which structures have been modified by setpthiose entries where
the dirty flag is set. Following the same behavior as e2fs€CK updates the
structures in-place on disk €., it does not currently use a separate journal).
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To ensure the metadata writes are ordered correctly [45iently SQCK per-
forms a series of queries ordered by the dependency graplgréph ensures that
blocks are updated before the pointers to those blocks. dméxt generation of
SQCK, a journaling facility will be added to ensure that asteed repair process
will not modify the old data partially.

4.5 Evaluation

In this section we evaluate SQCK along four axes: flexihiligymplexity, robust-
ness, and performance.

4.5.1 Flexibility

The simplicity of implementing checks and repairs in SQClaldas one to con-
struct different versions with different repair policiest this time, we have created
two versions of SQCK. The first one simply emulates e2fscl wibth its good
and bad polices. The second one fixes what e2fsck does wrgngifig the infor-
mation dependency graph in Figure 4.11) and adds new furadtip that e2fsck
does not even attempitd., performs information-complete and policy-consistent
repairs).

Our basic version, SQCK.,, emulates the repairs made by e2fsck. From our
analysis of e2fsck, we have determined that it performs 1f8rent repairs, of
which 121 are significant and interesting for ext2 (the remmegy 32 repairs fix the
ext3 journal and other optional features). These 121 rgfaive been detailed in
Table 3.1 in Section 3.1.1. As shown, e2fsck performs thepairs in six distinct
phases, in which reading the file system image from the diskte&smixed with
the actual checks and repairs. SQECK implements these 121 repairs each as a
separate query within the check and repair process.

Our second version, SQGK,,,,,.q, improves how the file system is checked
by utilizing more of the information that resides within tfie system image. Ta-
ble 4.4 lists the new information-complete, policy-cotesi$, and secure repairs in
SQC&mproved'

The first three repairs utilize the replicas that ext2 kedpbagroup descriptor
blocks on disk. While e2fsck does examine these replicakefpgrimary copy
is obviously corrupted, e2fsck misses opportunities to ameect replicas when
the primary “looks” fine. Thus, SQCK,,,....s @lways examines all replicas and
performs majority voting across them to determine the abivalues; this voting is
performed for three important fields: the pointer to the déteck bitmap, the inode
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LOC | LOC

New Repair (©) | (SQL)
Majority rule on block bitmap pointers 40 22
Majority rule on inode bitmap pointers 40 22
Majority rule on inode table pointers 40 22
Finding false parents 13 14
Reconstructing missing directories () 47 20
Precedence cloning 23 19
Secure cloning (**) 41 8

Table 4.4: New repairs. The table lists all the new repairs we introduce. (*)
In addition to the number of lines reported here, this newerhkavily uses the
primitives as in Figure 4.10. (**) The number of lines repadtfor this rule is the
additional code to the original cloning repair.

bitmap, and the inode table. With these fixes, SQGK,,.4 performs information-
complete repairs when the pointer to the inode table is pted) as desired. These
new repairs are straightforward to implement, requirindgy&® lines of SQL and
40 lines of C.

The fourth repair utilizes the extra information kept inatitory “..” fields to
repair corrupted directories. First, we fix the false pdnentl problem exhibited
by e2fsck. With SQCK, we replace the incorrect check of d2tsaginally shown
in Figure 4.8 with the one in Figure 4.13. This new query ettlyaexpresses
relatively complex behavior: it only returns false diragta@ntries in which the
child directory does not claim them as a parent with “..”;ghthis false directory
entry is correctly cleared instead of that of the rightfuiqrd.

We can extend this repair slightly to write the fifth repaihieh corrects even
more complicated corruptions of the directory hierarchyr Example, if a path
/ al b/ ¢/ exists andb’s inode is corrupted such thatno longer appears to be a
directory, e2fsck does not do any reconstruction and simpulyesc to lost+found.
However, SQCK,,.,, ... cOmpletely reconstructs the contentsbafrom the back
pointers of its children. The complete rule requires a tofa20 new SQL lines
with C code similar to that shown in Figure 4.10.

The sixth repair corrects the allocation policy of e2fsclpeSifically, e2fsck
clones data blocks without checking which file is closer ® shared data block.
Ideally, the repair should give the existing block to theselst inode and allocate
the new clone to the other inode. With SQCK, locality optiatians are easily
performed. For example, Figure 4.14 shows how we utilizeAhs and ORDER
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SELECT F.

FROM DirEntryTable P, DirEntryTable C,
DirEntryTable F

WHERE // P says Cis his child
P.entry_num >= 3 AND
P.entry_ino = C.ino AND
/1 and C says P is his parent
C.entry_num = 2 AND
C.entry_ino = P.ino AND
/1 but F, the false parent, says
/Il Cis also his child. P wins.

F.ino <> P.ino AND
F.entry_num >= 3 AND
F.entry_ino = C.ino

Figure 4.13:Finding false parents. This query returns the actual false parents. A
false parent is a parent that claims to own a child even thaiinghchild is already
strongly connected to another parent.

SELECT X.ino, X start, X end,
V.start, V.end,
(ABS(X.pBlk-V.start)) as distance
FROM Ext ent Tabl e C,
(A query that returns the start and
end of a shared extent) AS V
WHERE X start <= V.start AND V.end <= X end
ORDER BY V.start, distance

Figure 4.14:Locality-aware repair. The query above returns shared blocks that
are sorted based on the locality distance from the point@ise inner query (not
shown), stored in Table V, returns a the list of duplicateckéo TheABS command
helps sorting the result based on locality distance.

BY SQL commands to calculate the distance between a block saupdiititer. The
bold text shows that the results are sorted on the start cfttheed extents and then
on the distance between the shared extent and the blockpdimtto the extent
(X.pBIk). Given this list, SQCK can easily perform the rapaich that the shared
extent is kept with its closest pointer.

Finally, the seventh repair adds secure cloning. This i®dotwo ways. First,
suppose a corrupt direct pointer incorrectly points to anbjp block; since the
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C Code SQL

Component LOC ;count | LOC
Scanner 2759 1378 -
Loader 609 177 103
Checker+Repain *2527 1468 910
Primitives 695 348 98
Flusher 114 49 27
Total 6704 3420 | 1138

Table 4.5: SQCK,,,,ovea LOC.  The table presents the complexity of
SQCK,,proved- SCanner includes threads and functions that process thetstes.

(*) The C code for the checkers and repairs are mostly wrappleat call the SQL
files.

bitmap block is pointed to by more than one group descriptptica, it is more

likely the direct pointer is mistaken than all of the grougdgptor replicas; there-
fore, cloning of that block simply leaks information and da®t need to be per-
formed.

Second, suppose a data block is shared by two inodes, one in tlot di-
rectory and one in thehone/ User A directory. In this case, if we want to prevent
leaking of information, we might not want to clone the shabatk, instead we re-
move the pointer from the user and keep the one from the rodieinin addition to
the existing block conflict check and cloning primitivessthew rule only requires
additional two SQL files, for a total of 8 lines to do the patwersal, and 41 lines
of C code.

The secure clone repair could be seen as an example whereramsichtor’s
decision is more appropriate than an automated one. SQC&mmehrow away
the need to ask the administrator for the right decision. uchscases, different
policies should be present for the administrator to choom® f In SQCK, we can
execute different policies easily; each policy is simplypped to a query or a set
of queries.

4.5.2 Complexity

Table 4.5 presents the complexity of SQGK. .4, the most complete version
of SQCK. As the table suggests, SQCK is comprised of C and Sigke.c The
scanner is the only place where the complexity of the C catlesists. However,
the code is generally simple because it scans the file syst@nogical hierarchy.
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SQCK ext2 ReiserFS XFS
LOC 2527 16472 11281 21773
# Chks 121 121 156 344
Instr. gap 16+ 16 71+161| 564203 | 128+ 257
Func. gap 1+1 4+6 1+3 5+6
# Chk func. 121 31 32 72
# Chks/chk-func 1+01 4+5 54+8 545

Table 4.6. Checkers complexity. The table shows the logical complexity of
SQCK;proved (Without the new added repairs), ext2, ReiserFS and XFS eheck
codes (excluding libraries). Standard deviation is showghtrnext to thet sign.
“Inst. and Func. gaps” quantify the number of C instructicausd functions sepa-
rating one check from the next check. “# Chk func” shows in Ineawny functions
the checks are diffused. Finally, “# Chks/func” averages tiumber of checks
performed in each checker function.

The checker code looks big, however, it is mostly wrappecfions that call the
corresponding queries; most wrappers consist of the sanimd$of C code. A
generic wrapper could be built to reduce the amount of C code.

SQCK so far has been written all at once by one small groups;Tihis possible
that SQCK will become more complex when developed by a biggaup over a
longer period of time. However, we believe the core power@QCXK lies within the
simple and robust queries; each query consists of 7 linesd# on average. These
gueries decouple the checks from the C code, enabling usitdgaimareliability in
an easier way. Compared to e2fsck, which consists of 16 #mlisOC of cluttered
checks and repairs and 14 thousand LOC of scan utilitiesyraten in low-level C
code, SQCK can be considered a big step towards simplifyimgystem checkers.

To show that we are solving a broader significant problem|eT4t6 attempts
to quantify the logical complexity of ext2, ReiserFS, andSX¢hecker utilities, all
written in C. The metrics shown in the table are generated lbyparser written
using CIL [97]. In fsck-related code, we annotate the larativhere each check is
performed. The parser computes the complexity-metricseasribed in the table.
For example, we compute how many instructions and functalis separate each
neighboring checks. If the numbers are high, the checks ast hkely diffused
and reasoning about their correctness might be nontriifiaipt impossible. The
numbers reported in Table 4.6 exclude fsck librareg(scanner), hence they only
depict the logical complexity of the checker component.

We make two important observations: First, the average murabC instruc-
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7. Directory . . . . . PS PS PS PS PS
8. Data S S S PS s

Symbols: C: Consistent repair |: Information-complete repair
P: Policy-consistent repair S: Secure-repair Dot (.): Correct repair

Table 4.7:Results of block-pointer corruptions. This figure shows how SQCK
responds to block-pointer corruptions. Each row charaietes the behavior for the

given pointer. Each cell in a row is marked with the behavios@rved for the given

pointer when it is corrupted with the value of that columnsimmary, with SQCK,

we have removed all the problems we have found in e2fsckoamshable 3.3

tions and functions that separate two checks are high irseltl fitilities, with sig-
nificant standard deviations; the separation can be as lagoasas high as 1700
instructions. Second, checks are greatly diffused in mamgtfons; a function
could make a small number of checks while some other couldieras many as
47 checks. In such implementations verifying that all ctsesie complete and or-
dered correctly can be cumbersome. On the other hand, SQE&S ke complex
logic of the checks in declarative queries, greatly redgiche gap between neigh-
boring checks; the standard deviations shown in the SQCHnuolillustrate the
neat organization we have achieved. In summary, we belie@implementations
of fsck are likely to suffer from the same problems as e2fsck.
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2. File inode
3. Free inode
4. Out of range inode

1. Directory inode
2. Fileinode

— —| 1. Directory inode

Table 4.8:Results of index-pointer corruptions. This figure shows how SQCK
responds to index-pointer corruptions. Each row charaets the behavior for the

given pointer. Each cell in a row is marked with the behavioserved for the given

pointer when it is corrupted with the value of that columnsidmmary, with SQCK,

we have removed all the problems we have found in e2fsck passtable 3.4

45.3 Robustness

To test the robustness of SQCK, we have verified that it pahsesame corruption
scenarios that we injected for analyzing e2fsck (as desdrib Section 3.1.3). Ta-
bles 4.7 and 4.8 show how SQCK responds to the corruptiongjegted. In sum-
mary, we have turned all inconsistent, information-incéetey policy-inconsistent,
and insecure repairs into consistent, information-comeplpolicy-consistent, and
secure ones respectively.

We do not claim that our fault injection methodology is coatpl{.e., it covers
all possible corruption scenarios). However, we beliewesgbwer of SQCK lies in
the simplicity of fixing buggy and adding new repairs. Thdsa more powerful
testing tool found more buggy repairs, we can simply chahgecbrresponding
queries. Or, if some repairs are missing, we can easily addjoeries, as we have
illustrated in the previous section.

45.4 Performance

The experiments in this section were performed on an 2.2 GNWbDAOpteron
machine with 1 GB memory and 1 TB WDC WD10EACS disk. We usedikin
2.6.12, e2fsck 1.39, and MySQL 5.0.51a. The tables are raduo a 512 MB
ramdisk.

We test the performance of SQCK and e2fsck on four partitieitis different
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Figure 4.15:0Overall runtime comparison . The bar graph shows the comparison
of the total runtime of e2fsck and fully optimized SQCK fdfedint file system
sizes. The bars are all normalized to e2fsck runtime and @€kSbar show the
relative slowdown. The absolute runtime figures in seconglstzown on top of the
bars.

sizes: 1, 10, 100, and 800 GB. Each of the partition is madefllh[7] by filling
it with the root file system image of a machine in our labonat@long with a large
number small files from kernel builds and large files fromuattmachine images.

Figure 4.15 shows e2fsck compared to our fully optimized 8QThe fully
optimized SQCK incorporates all the principles describetiable 4.3; specifically,
it sorts the block scan, loads extents and linked inodes ass 16 worker threads,
and uses fast queries. In our first generation prototype weaged to keep the
running time of SQCK within 1.5 times of e2fsck runtime.

We show in more detail how each of the scan and load optinoizgrinciples
improve the runtime significantly by turning off one optiration feature at a time.
The runtime of each of these unoptimized versions are cosdpeglative to the
fully optimized SQCK.

First, the sorted job queue is disabled such that we scaridlsyfitem logically.
Figure 4.16 shows that for a large file systesrg( 800 GB), sorting the job queue
plays a significant role; scanning the file system logicadliges almost 3 times
as long as the fully optimized one. Note that in this experitheve disabled the
loading phase to compare only the scan performance. Tha seanning for the
100 GB file system is 8 seconds faster than the fully optim2&LK because the
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Figure 4.16:Scan time improvement with sorted queue. This bar graph shows
the time to scan each file system without loading. In eachtseteft-most to right-
most bars show the fully optimized SQCK, the logical scad, the sorted scan
with only 1 thread. The values are normalized to the fullyirojted SQCK time.

file system was almost not fragmented at all; the advantagieecforted scanning
is noticeable for fragmented and/or big file systems.

Second, we show the importance of making the initial tablmmact. Fig-
ure 4.17 shows the slowdown of two unoptimized versions: thaé loads all in-
odes, and one that loads direct pointers instead of extéftien loading all inodes,
the runtime is increased significantly; for 800 GB file sysse®7 million inodes
will be loaded out of which only 900 thousand have non-zem& tounts. When
loading direct pointers, the runtime increases dramdgicdfor the 100 GB file
system, the DirectPointerTable already consumes 360 Mie\ilie ExtentTable
only consumes 9 MB.

Third, Figure 4.18 shows how multiple threads enable usgnitantly over-
lap scan and load time. When the number of worker threadsliscesl to one, the
slowdown is almost 1.5 times in all file systems. For largedilstems, increasing
the number of threads gives a faster runtime; at 800 GB, usthgorker threads
improves the runtime.

In summary, our evaluation of the first generation prototgp&QCK shows
that SQCK obtains comparable performance to e2fsck. In éxé generation of
SQCK, we plan to perform two additional enhancements. ,F@he checks can
be merged so that the table-scan time can be reduced. If #ekgHtind a prob-
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Figure 4.17:Making the table compact. The bar graph shows the slowdown of
scan and load time when we load big tables. In each set, thenle$t to right-most
bars show the fully optimized SQCK, fully optimized SQCKwith loading all
inodes, and loading direct pointers instead of extents. Vidlees are normalized
to the fully optimized SQCK time. “NAs” imply experimentattto not finish in 3
hours.

lem, then nested sub-checks will be run to pinpoint the &piadlem. Second, we
plan to run some checks and repairs concurrently by utgdizive information de-
pendency graph in Figure 4.11. The graph provides the depeydree that tells
which checks and repairs are safe to run in parallel. Withstéefaoverall check
time, we hope file system developers will be encouraged ttevas many rules as
needed.

4.6 Conclusion

We have found that declarative queries can succinctly espifee many different
types of checks and repairs that fsck performs. Our expegieiso shows that
writing checks and repairs in declarative queries is reddyi straightforward; each
guery is written in a few iterative refinement. A complex ckhec repair, with a

little bit of help from C code, can be broken into several slooteries that are easy
to understand. On average, each query we have written ig long, and the
longest one is 22 lines. Furthermore, only 24 repairs requgip from C code. The
functionalities of the corresponding C code are generattypke; C code is only
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Figure 4.18:0Overlapping scan and load time.The bar graphs show the runtime
of different runs that use different number of threads. \Wfth thread, the runtime
is the worst as we cannot utilize the idle time during scagnifihe values shown
are normalized to fully optimized SQCK time with 16 threads.

used to run a set of queries and iterate the query results tHat this is different
than how C code is used for cross-checking in e2fsck, whiotig¢o make a simple
check hard to understand and debug.

In conclusion, complexity is the enemy of reliability. Cemt approaches de-
scribe recovery at a very low-level: thousands of lines ofodec Thus, recovery
code is complex and hard to get right. We instead advocatgheehlevel strategy.
By encapsulating the logic of a file system checker in a seeofadative queries,
we provide a more concise description of what the checkeunldhio. In doing so,
we believe we have taken an important step towards improtiagobustness of
file system checking.

Nevertheless, SQCK is not the last word in file system cheghtrnis still pos-
sible that developers write bad queries. In this case, applynore formal tech-
nigues that find bugs [41] will definitely help and thus evollie code towards a
less-buggy future. What SQCK provides is a nice frameworkirfgplementing
a checker; if bugs are found, we believe that SQCK-style é@mgntation will be
easier to fix than an implementation in C code.
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Chapter 5

EDP: A Static Analysis Tool for
Error-Code Propagation

“Should we pass any errors back?”
— A comment in CIFS (file.c, line 1869)

The reliability of file systems depends in part on how welltipeopagate er-
rors. Thus, in this chapter, we investigate the problemnobrrect error code
propagation To be properly handled, a low-level error coded, an “I/O error”
returned from a device driver) must be correctly propagatatie appropriate code
in the file system. Further, if the file system is unable to vecdrom the fault,
it may wish to pass the error up to the application, again iregucorrect error
propagation.

To analyze how errors are propagated in file and storageraysbee, we have
developed a static source-code analysis technique. Obnitpee, namederror
Detection and Propagation (EDRnalysis, shows how error codes flow through
the file system and storage drivers. EDP performs a dataflalysis by construct-
ing a function-call graph showing how error codes propagfateugh return values
and function parameters.

We have applied EDP analysis to all file systems and threerrsi@jage device
drivers (SCSI, IDE, and Software RAID) implemented in Lin2vs. We find that
error handling is occasionally correctSpecifically, we see that low-level errors
are sometimes lost as they travel through the many layetedftbrage subsystem:
out of the 9022 function calls through which the analyzedretodes propagate,
we find that 1153 calls (13%) do not correctly save the progabarror codes.
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Our detailed analysis enables us to make a number of coookisiFirst, we
find that the more complex the file system (in terms of bothsliofcode and num-
ber of function calls with error codes), the more likely itégsincorrectly propagate
errors; thus, these more complex file systems are more likebpffer from silent
failures. Second, we observe that 1/0O write operations aveertikely to neglect
error codes than I/O read operations. Third, we find that maokations are not
corner-case mistakes: the return codes of some functi@nscensistently ignored,
which makes us suspect that the omissions are intentionadlly; we show how
inter-module calls play a major part in causing incorrecbepropagation, but that
chained propagations do not.

The rest of this paper is organized as follows. We first descour methodol-
ogy and present our results in Section 5.1 and 5.2 respictiwe then describe
our deeper analysis in Section 5.3 in order to understanddbecauses of the
problem.

5.1 Methodology

To understand the propagation of error codes, we have desela static analysis
technique that we namerror Detection and Propagation (EDP)n this section,
we identify the components of Linux 2.6 that we will analyzelalescribe EDP.

5.1.1 Target Systems

In this paper, we analyze how errors are propagated througliile systems and
storage device drivers in Linux 2.6.15.4. We examine allukiiTmplementations

of file systems that are located in 51 directories. Theseydeems are of different

types, including disk-based file systems, network file systefile system proto-

cols, and many others. Our analysis follows requests thirdlig virtual file system

and memory management layers as well. In addition to fileegyst we also exam-
ine three major storage device drivers (SCSI, IDE, and su8vRAID), as well as

all lower-level drivers. Beyond these subsystems, our taol be used to analyze
other Linux components as well.

5.1.2 EDP Analysis

The basic mechanism of EDP is a dataflow analysis: EDP catsteufunction-

call graph covering all cases in which error codes propatimtaigh return values
or function parameters. To build EDP, we harness the C lradrate Language
(CIL) [97]. CIL performs source-to-source transformatioinC programs and thus
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Error Code Channel Channel
Information Construction Analysis

® Endpoints ® Categorize
EIO construction error-complete,
EROFS a Channel error—broken
construction: channels
ENOMEM call path, " Fault inject
dataflow broken channel
analysis

Figure 5.1:EDP Architecture. The diagram shows the framework for Error De-
tection and Propagation (EDP) analysis of file and storagetesys code.

can be used in the analysis of large complex programs sudtedsiriux kernel.
The EDP analysis is written as a CIL extension in 4000 linesooke in the OCaml
language.

The abstraction that we introduce in EDP is that error codeg 8longchan-
nels where a channel is the set of function calls between wheegrancode is first
generated and where it is terminatedg, by being either handled or dropped). As
shown in Figure 5.1, EDP contains three major components. fifét component
identifies the error codes that will be tracked. The secomitacts the channels
along which the error codes propagate. Finally, the thinthgonent analyzes the
channels and classifies each as being either complete agrbrok

Table 5.1 reports the EDP runtime for different subsystemnsning on a ma-
chine with 2.4 GHz Intel Pentium 4 CPU and 512 MB of memory. @iiegEDP
analysis is fast; analyzing all file systems together in glsimun only takes 47
seconds. We now describe the three components of EDP in retai. d

Error Code Information

The first component of EDP identifies the error codes to tr@ne example i€l O,

a generic error code that commonly indicates I/O failure Endsed extensively
throughout the file system; for example, in exB,0 touches 266 functions and
propagates through 467 calls. Besid&sD, many kernel subsystems commonly
use other error codes as defined imcl ude/ asm generi ¢/ errno. h. In total,
there are hundreds of error codes that are used for diffeuaposes. We report our
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Single Full Subsystem
Subsystem (seconds) (seconds) Size (Kloc)
VFS 4 - 34
Mem. Mgmt. 3 - 20
XFS 8 13 71
ReiserFS 3 8 24
ext3 2 7 12
Apple HFS 1 6 5
VFAT 1 5 1
All File Systems Together 47 372

Table 5.1: EDP Performance. The table shows the EDP runtime for different
subsystems. “Single” runtime represents the time to amaach subsystem in
isolation without interaction with other subsystems (e\M=S and MM). “Full”
runtime represents the time to analyze a file system alotgtiagtvirtual file system
and the memory management. The last row reports the timedlyzmnall of the
file systems together.

findings on the propagation of 34 basic error codes that agtlynosed across all
file systems and storage device drivers. Table 5.2 listetBdshasic error codes.
These error codes can also be foundniel ude/ asm generi c/ err no- base. h.

Channel Construction

The second component of EDP constructs ¢hannelin which the specified er-
ror codes propagate. A channel can be constructed fromifumcalls and asyn-
chronous wake-up paths; in our current analysis, we foctisamfunction calls.

We define a channel by its two endpoints: generation and tetion. Thegen-
eration endpoinis the function that exposes an error code, either direbtigugh
a return value€.g, the function contains met ur n - EI O statement) or indirectly
through a function argument passed by reference. Afterriipdill generation end-
points, EDP marks each function that propagates the erdws;propagating func-
tionsreceive error codes from the functions that they call and ieply propa-
gate them in a return value or function parameter. mnination endpoinis the
function in which an error code is no longer propagated inrdtarn value or a
parameter of the function.

One of the major challenges we address when constructimg enannels is
handling function pointers. The typical approach for harglfunction pointers is
to implement a points-to analysis [67] that identifies thieadeeal functions each
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Error Integer

Codes Value Description

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process

EINTR 4 Interrupted system call
EIO 5 I/O error

ENXIO 6 No such device or address
E2BIG 7 Argument list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file number
ECHILD 10 No child processes
EAGAIN 11 Try again

ENOMEM 12 Out of memory
EACCES 13 Permission denied
EFAULT 14 Bad address

ENOTBLK 15 Block device required
EBUSY 16 Device or resource busy
EEXIST 17 File exists

EXDEV 18 Cross-device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument
ENFILE 23 File table overflow
EMFILE 24 Too many open files
ENOTTY 25 Not a typewriter
ETXTBSY 26 Text file busy

EFBIG 27 File too large

ENOSPC 28 No space left on device
ESPIPE 29 lllegal seek

EROFS 30 Read-only file system
EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func
ERANGE 34 Math result not representable

Table 5.2: 34 Basic Error Codes.
ror codes that we analyze.
i ncl ude/ asm generi c/ errno- base. h.

The table

lists the 34 basic er-
These error codes can also be faond
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function pointer might point at; however, field-sensitiveiris-to analyses can be
expensive. Therefore, we customize our points-to anatgsgploit the systematic
structure that these pointers exhibit.

First, we keep track of all structures that have functiompars. For example,
the VFS read and write interfaces are defined as fields ifithe_ops structure:

struct file_ops {
int (xread) ();
int (rwite) ();
s

Since each file system needs to define its éwine_ops, we automatically find
all global instances of such structures, look for the fusrtipointer assignments
within the instances, and map function-pointer implemgona to the function
pointer interfaces. For example, ext2 and ext3 define tHeioperations like this:

struct file_ops ext2 f ops {

.read = ext 2 read;
.Wite = ext2 wite;

b

struct file_ops ext3 f _ops {
.read = ext3_read;
.Wite = ext3_ wite;

b

Given such global structure instances, we add the inteifapéementations
(e.g, ext 2_r ead) to the implementation list of the corresponding interfag,
fil e.ops—read). Although this technique connects most of the mappings, a
function pointer assignment could still occur in an instiat rather than in a global
structure instance. Thus, our tool also visits all functi@amd finds any assignment
that maps an implementation to an interface. For exampheifind an assign-
ment such a$ op- >read = ntf s_read, then we addct f s_r ead to the list of
fil e_ops—read implementations.

In the last phase, we change function pointer calls to doelts. For example,
if VFS makes an interface call such @k_op- >r ead) (), then we automatically
rewrite such an assignment to:

switch (...) {
case ext2: ext2 read(); break;
case ext3: ext3 read(); break;
case ntfs: ntfs read(); break;
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Across all Linux file systems and storage device driverggthee 191 structural
interfaces €.g, fi | e_ops), 904 function pointer fieldse(g, r ead), 5039 imple-
mentationsé€.g, ext 2_r ead), and 2685 function pointer calls.g, (f _op- >r ead) () ).
Out of 2865 function pointer calls, we connect all except 586#s (20%). The
unconnected 20% of calls are due to indirect implementagsignment. For ex-
ample, we cannot map assignment sucli ap- >r ead = f, wheref is either a
local variable or a function parameter, and not a functiom@aWhile it is feasible
to traceback such assignments using stronger and more @x@emalysis, we as-
sume that major interfaces linking modules together hakgadly been connected
as part of global instances. If all calls are connected, mbtke error propagation
chain can be analyzed, which means more violations areylitkdbe found.

Channel Analysis

The third component of EDP distinguishes two kinds of chémnerror-complete
and error-broken channels. Aamror-completechannel is a channel that minimally
checks the occurrence of an error. An error-complete cHahne has this property
at its termination endpoint:

3 if (expr) { ... }, where
errorCodeV ariable C expr

which states that an error code is considered checked # #ndst ari f condition
whose expression contains the variable that stores the@rde. For example, the
function in the code segment below carries an error-corapthinnel because the
function saves the returned error code (line 2) and checeksittor code (line 3):

voi d goodTer m nati onEndpoi nt () {
int err = generati onEndpoint();
if (err)

-

nt generati onEndpoint () {
return -El G

O~NO OIS WNPE

—

Note that an error could be checked but not handled property, (1o error
handling in the f condition). Since error handling is usually specific to efleh
system, and hence there are many instances of it, we deadwss “generous” in
the way we define how error is handlece( by just checking it). More violations
might be found when we incorporate all instances of errodhiag.
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An error-brokenchannel is the inverse of an error-complete channel. In par-
ticular, the error code is eithemsaveduncheckedor overwritten For example,
the function below carries an error-broken channel of unkbd type because the
function saves the returned error code (line 2) but it nevercks the error before
the function exits (line 3):

1 void badTerm nati onEndpoi nt () {
2 int err = generati onEndpoint();
3 return;
4}

An error-broken channel is a serious file system bug becaussnilead to a
silent failure. In a few cases, we inject faults in errort®n channels to confirm
the existence of silent failures. We utilize our block-lefault injection technique
(described in Section 2.4) to exercise error-broken chiarthat relate to disk 1/0.
In a broken channel, we look for two pieces of information:iethworkload and
which failure led us to that channel. After finding the neeegsnformation, we
run the workload, inject the specific block failure, and akisethe 1/O traces and
the returned error codes received in upper layers,(the application layer) to con-
firm whether a broken channel leads to a silent failure. Tiaelee will note that
our fault-injection technique is limited to disk I/O reldtehannels. To exercise
all error-broken channels, techniques such as symbolicutian and directed test-
ing [42, 49] that simulate the environment of the componantest would be of
great utility.

Limitations

Error propagation has complex characteristics: correairezodes must be re-
turned; each subsystem uses both generic and specific edes;cone error code
could be mapped to another; error codes are stored not ordgalar variables
but also in structurese(g, control blocks); and error codes flow not only through
function calls but also asynchronously via interrupts aatibacks. In our static
analysis, we have not modeled all these characteristicsermeless, by just fo-
cusing on the propagation of basic error codes via functalh we have found
numerous violations that need to be fixed. A more completettad covers the
properties above would uncover even more incorrect errodlinag.
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5.2 Results

We have performed EDP analysis on all file systems and stategiee drivers in
Linux 2.6.15.4. Our analysis studies how 34 basic error sdtisted in Table 5.2)
propagate through these subsystems. We examine theseshasicodes because
they involve thousands of functions and propagate acrass#nds of calls.

In these results, we distinguish three types of violatidrzd make up an error-
broken channel: unsaved, unchecked, and overwritten eades. Anunsaved
error code(Section 5.2.1) is found when a callee propagates an erd® ¢i@ the
return value, but the caller does not save the return vélee i is treated as a
void-returning call even though it actually returns an exode). Throughout the
paper, we refer to this type of broken channel agad' call” An unchecked error
code(Section 5.2.2) is found when a variable that may containraor €ode is
neither checked nor used in the future; we always refer todhse as an unchecked
code. Anoverwritten error codgSection 5.2.3) is found when the container that
holds the error code is overwritten with another value beftiie previous error is
checked.

5.2.1 Unsaved Error Codes

First, we report the number of error-broken channels due t¢aller simply not
saving the returned error codeg(, the number of bad calls). The simplified HFS
code below shows an example of an unsaved error code. Thedumé nd_i ni t
accepts a new uninitializeld nd_dat a structure (line 2), allocates a memory space
for the sear ch key field (line 3), and returns thENOVEM error code when the
memory allocation fails (line 5). However, one of its calldri | e_| ookup, does

not save the returned error code (line 10) but tries to adtessear ch_key field
which still points toNULL (line 11). Hence, a null-pointer dereference takes place
and the system could crash or corrupt data.

1 // hfs/bfind.c
2 int find_init(find data *fd) {

3 fd->search_key = kmal |l oc(..)

4 if (!fd->search_key)

5 return - ENOVEM

6

7}

8 // hfs/inode.c

9 int file_lookup() {
10 find_init(fd); /* NOT-SAVED E. C */
11 fd->search_key->cat = ...; /+ BADI! =*/
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12
13 }

To show how EDP is useful in finding error propagation bugs,begin by
showing a sample of EDP analysis for a simple file system, &piFS (Sec-
tion 5.2.1). Then, we present our findings on all subsystératvte analyze (Sec-
tion 5.2.1). Finally, we discuss false positives (Sectio2.B and serious silent
failures caused by unsaved error codes (Section 5.2.1).

EDP on Apple HFS

Figures 5.2 and 5.3 depict the EDP output when analyzingribggagation of the 34
basic error codes in the Apple HFS file system. There are twmitant elements
that EDP produces in order to ease the debugging process, EDP generates an
error propagation graph (Figure 5.2) that only includesfioms and function calls
through which the analyzed error codes propagate. Fromreqghgone can easily
catch all bad calls and functions that make the bad callsorgeEDP provides a
table (Figure 5.3) that presents more detailed informatwreach bad call€.g,
the location where the bad call is made).

Using the information that EDP provides, we found three meajcor-handling
inconsistencies in HFS. First, 11 out of 14 callsfimd_i ni t drop the returned
error codes. As described earlier in this section, this lugdcause the system to
crash or corrupt data. Second, 4 out of 5 total calls to thetfan__br ec_f i nd are
bad calls (as indicated by the four black edges, E, D, N, anfd@pd in the lower
left of the graph). The task of this function is to find a recoréan HFS node that
best matches the given key, and retENOENT (no entry) error code if it fails. The
only call that saves this error code is made by the wrapgperc f i nd. Interest-
ingly, all 18 calls to this wrapper propagate the error coampprly (as indicated by
all gray edges coming into the function).

Finally, 3 out of 4 calls td r ee_ext s do not save the returned error code (la-
beled R, I, and J). This function traverses a list of extent lacates the extents
to be freed. If the extents cannot be found, the functionrmstl O. More inter-
estingly, the developer wrote a comment “panic?” just betbe return statement
(maybe in the hope that in this failure case the callers vaill panic, which will
never happen if the error code is dropped). By and large, wadaimilar incon-
sistencies in all the subsystems we analyzed.
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Figure 5.2:A Sample of EDP Output (The Graph). The figure depicts the EDP output for the HFS file system. Some
function names have been shortened to improve readallysummarized in the legend in Figure 5.3, a gray node with
a thicker border represents a function that generates aorezode. The other gray node represents the same thing, but
the function also propagates the error code received frarallee. A white node represents a good function, i.e.hieeit
propagates the error code to its caller or if it does not prgpge the error code it minimally checks the error code. A
black node represents an error-broken termination endpaie. it is a function that commits the violation of unsaved
error codes. The darker and thicker edge coming out from akblzode implies a broken error channel (a bad call);
an error code actually flows from its callee, but the calleopls the error code. For ease of debugging, each bad call
is labeled with a violation number whose detailed informatcan be found in the violation table in Figure 5.3. For
example, violation #E found in the bottom left corner of thepl is a bad call made byr ec_updt _pr nt when calling «
__brec_find, which can be located ifis/ hf s/ br ec. c line 345.
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file_lookup  find.init
fill _super findinit
lookup findinit
brecupdtprnt __brecfind
brecupdtprnt __brecfind
catdelete freefork
catdelete findinit
catcreate findinit
file_trunc  freeexts
file_trunc  freeexts
file_trunc  find.init
extwrite_ext  find.init
extreadext find.init
brecrmv  __brecfind
readdir  findinit
catmove findinit
brecinsert __brecfind
freefork freeexts
freefork  find_init

Filename Line#

inode.c 493
super.c 385
dir.c 30

brec.c 405
brec.c 345
catalog.c 228
catalog.c 213
catalog.c 95
extent.c 507
extent.c 497
extent.c 494
extent.c 135
extent.c 188
brec.c 193
dir.c 68

catalog.c 280
brec.c 145
extent.c 307
extent.c 301

Figure 5.3:A Sample of EDP Output (The Table and Legend).The top legend
describes the graph in Figure 5.2. For ease of debuggingh éacl call is labeled
with a violation number whose detailed information can henfbin the bottom vio-
lation table. For example, violation #E found in the bottaft torner of the graph
in Figure 5.2 is a bad call made kyr ec_updt _pr nt when calling__br ec_f i nd,

which can be located ihs/ hf s/ br ec. c line 345.
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EDP on All File Systems and Storage Drivers

Figures 5.4 to 5.9 show EDP outputs for six more file systenmselerror-propagation
graphs represent an interesting sample. EDP outputs foegt®f the file systems
can be downloaded from our web site [57]. A small file systerhsas HFS+
has simple propagation chains, yet bad calls are still madigie complex error
propagation can be seen in ext3, ReiserFS, and IBM JFSnitibse file systems,
error-codes propagate throughout 180 to 340 function .calllse error propaga-
tion in NFS is more structured compared to other file systensally, among all
file systems we analyze, XFS has the most complex error patisagchain; al-
most 1500 function calls propagate error-codes. Note thett graph in the figures
was produced by analyzing each file system in isolati@n ¢the graph only shows
intra-module but not inter-module calls), yet they alredtlystrate the complex-
ity of error code propagation in each file system. Manual codpection would
require a tremendous amount of work to find error-propagaliogs.

Next, we analyzed the propagation of error codes acrosslalsystems and
storage device drivers as a whole. All inter-module callseansnnected by our
EDP channel constructor, which connects all function @winélls; hence, we were
able to catch inter-module bad calls in addition to intradile ones. Tables 5.3,
5.4, and 5.5 summarize our findings. Note that the numberaddtions reported is
higher than the ones reported in the figures because we catghbugs when we
analyze each file system in conjunction with other subsysteng, ext3 with the
journaling layer, VFS, and memory management).

Surprisingly, out of 9022 error channels, 1153 (nearly 13%stitute bad
calls. This appears to be a long-standing problem. We ranrt@abpanalysis in
Linux 2.4 and found that the magnitude of incomplete erratecpropagation is es-
sentially the same; we found 61 bad calls in ext3 in LinuxZ04.vs. 80 in 2.6.15.
In Section 5.3, we try to dissect the root causes of this probl

False Positives

It is important to note that while the number of bad calls ighhinot all bad
calls could cause damage to the system. The primary reasehatwe call a
double error code some functions expose two or more error codes at the same
time, and checking one of the error codes while ignoring ttieis can still be
correct. For example, in the ReiserFS code below, the ende ceturned from
sync_di rty_buf f er does not have to be saved (lineiBand only ifthe function
performs the check on the second error code (line 9); theebufiust be checked
whether it is is up-to-date.
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HFS+ [22 bad /84 calls, 26%)]

Figure 5.4:EDP output for HFS+. The figures illustrate the prevalent problem of incompleterepropagation across
different types of file systems. Details such as functionesaamd violation numbers have been removed. Gray edges
represent calls that propagate error codes. Black edgesessmt bad calls. The number of edges are reported in [ X /Y
, Z% ] format where X and Y represent the number of black an¢(bedly and black) edges respectively, and Z represents
the fraction of X and Y. For more information, please see ¢gemd in Figure 5.3.



ext3 [37 bad/ 188 calls, 20%)]
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Figure 5.5:EDP output for ext3. Please see caption in Figure 5.4.
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ReiserFS [ 35 bad /218 calls, 16% ]

Figure 5.6:EDP output for ReiserFS. Please see caption in Figure 5.4.



IBM JFS [61 bad /340 calls, 18% ]
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Figure 5.7:EDP output for IBM JFS. Please see caption in Figure 5.4.
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NFS Client [54 bad /446 calls, 12% ]

Figure 5.8:EDP output for NFS Client. Please see caption in Figure 5.4.



XFS [105 bad/ 1453 calls, 7% ]
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Figure 5.9:EDP output for XFS. Please see caption in Figure 5.4.
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File Systems

Bad EC Size  Frac Viol/
Calls Calls (Kloc) (%) Kloc

XFS 101 1457 71 6.9 1.4
Virtual FS 96 1149 34 84 2.9
IBM JFS 95 390 17 244 5.6
ext3 80 362 12 221 7.2
NFS Client 62 482 18 12.9 3.6
CIFS 43 339 21 12.7 2.1
ReiserFS 42 399 24 105 1.8
Mem. Mgmt. 40 351 20 11.4 2.0
Apple HFS+ 25 98 7 255 3.7
JFFS v2 24 153 11 157 2.2
Apple HFS 20 76 5 26.3 4.8
SMB 19 196 6 9.7 3.5
ext2 18 103 6 175 3.3
AFS 16 62 7 25.8 2.6
NTFS 15 186 18 8.1 0.9
NFS Server 15 265 14 5.7 1.2
NCP 13 169 5 77 2.6
UFS 12 44 5 27.3 2.6
JBD 10 43 4 233 2.6
FAT 9 81 4 111 2.9
Plan 9 9 80 4 11.2 24
System V 7 30 3 233 3.2
JFFS 7 56 5 125 1.4
UDF 6 50 9 12.0 0.7
MSDOS 5 39 1 128 9.3
VFAT 4 39 1 10.3 5.0
Minix 4 31 4 129 1.2

Table 5.3:Error-broken channels due to unsaved error codes. Tables 5.3, 5.4
and 5.5 report the number of bad calls found across all fildesys and storage
device drivers in Linux 2.6.15.4. In each table, from leftigiht column we report
the name of the subsystem, the number of bad calls, the nwhbaor channels
(i.e., the number of calls to functions that propagate erodes), the size of the
subsystem, the fraction of bad calls over all error-relatzdls (ratio of 2nd and
3rd column), and finally the number of violations per Kloctigaof 2nd and 4th
column). We categorize a directory as a subsystem.
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File Systems (Cont'd)

Bad EC Size  Frac Viol/
Calls Calls (Kloc) (%) Kloc

FUSE 4 48 3 83 15
Automounter4 4 53 2 7.5 2.7
NFS Lockd 3 21 4 143 0.8
Relayfs 2 5 1 40.0 2.7
Partitions 2 3 4 66.7 0.6
ISO 2 19 3 105 0.7
HugeTLB Sup 2 10 1 200 3.0
Compr. ROM 2 3 1 66.7 4.5
ADFS 2 30 2 6.7 1.3
sysfs sup. 1 29 2 34 0.8
romfs sup. 1 3 1 333 2.4
ramfs sup. 1 6 1 16.7 6.0
QNX 4 1 8 2 125 0.9
proc fs sup. 1 44 6 23 0.2
0S/2 HPFS 1 18 6 5.6 0.2
FreeVxXFS 1 4 2 250 0.7
EFS 1 3 1 333 1.4
devpts 1 2 1 50.0 6.2
Boot FS 1 9 1 111 1.2
BeOS 1 5 3 20.0 0.5
Automounter 1 41 2 24 1.0
Amiga FFS 1 34 3 29 0.3
exportfs sup. 0 1 1 0.0 0.0
Coda 0 149 3 00 0.0
Total 833 7278 366 - -
Average 16.3 142.7 7.2 17.0 24

Table 5.4: Error-broken channels due to unsaved error codes (Cont'd). Ta-
bles 5.3, 5.4 and 5.5 report the number of bad calls found secall file systems
and storage device drivers in Linux 2.6.15.4. Please seedhton in Table 5.3.
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Storage Drivers

Bad EC Size  Frac Viol/

Calls Calls (Kloc) (%) Kloc
SCSiI (root) 123 628 198 19.6 0.6
IDE (root) 53 223 15 23.8 3.5
Block Dev (root) 39 195 36 20.0 1.1
Software RAID 31 290 32 10.7 1.0
SCSI (aacraid) 30 76 7 395 4.8
SCSiI (Ipfc) 14 30 16 46.7 0.9
Blk Dev (P-IDE) 11 17 8 64.7 15
SCSI aic7xxx 8 62 37 129 0.2
IDE (pci) 5 106 12 4.7 0.4
IDE legacy 2 3 3 66.7 0.8
Blk Layer Core 2 65 8 31 0.3
SCSI megaraid 1 30 6 33 0.2
Blk Dev (Eth) 1 5 2 20.0 0.7
SCSI (sym53c8) 0 6 10 0.0 0.0
SCSI (gla2xxx) 0 8 49 0.0 0.0
Total 320 1744 430 - -
Average 21.3 116.3 28.6 22.4 1.1

Table 5.5: Error-broken channels due to unsaved error codes (Cont'd). Ta-

bles 5.3, 5.4 and 5.5 report the number of bad calls foundszcadl file systems and
storage device drivers in Linux 2.6.15.4. We categorizeectry as a subsystem.
Thus, for storage drivers, since different SCSI deviceedsiexist in the first-level
of thescsi / directory, we put all of them as one subsystem. SCSI devieerslr
that are located in different directories (e.ggsi /| pfc/,scsi/ aacrai d/) are

categorized as different subsystems. The same principlgpised to IDE. Please

see the caption in Table 5.3.
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journal _recover ()
[~ BROKEN CHANNEL =/
sync_bl ockdev();

sync_bl ockdev()
sync_blockdey ret = fmfdatawite();

err = fmfdatawait();
if(lret) ret = err;
filemap_fdatawai filemap_fdatawrite [ * PROPAGATE EI O */

return ret;
Figure 5.10: Silent error in journal recovery. In the figure on the left, EDP
marksj our nal _r ecover as atermination endpoint of a broken channel. The code
shippet on the right shows thpbur nal _r ecover ignores theEl Opropagated by
sync_bl ockdev.

1// fs/buffer.c
2 int sync_dirty buffer (buffer_head* bh) {

return ret; // RETURN ERROR CODE

3
4
51

6 // reiserfs/journal.c
7

8

9

int flush commt list() {
sync_dirty buffer(bh); // UNSAVED EC
i f (!buffer_uptodate(bh)) {
10 return -El O
11 }

To ensure that the number of false positives we report is wetlyp large, we
manually analyze the code snippets around the bad callswnel fim check whether
a second error code is being checked. Note that this manoeégs can be auto-
mated if we incorporate all types of error codes into EDP. \&eehfound only a
total of 39 false positives out of 1192 bad calls, which haserbexcluded from the
numbers we report in this paper. Thus, the high numbers ite$dh3, 5.4, and 5.5
provide a hint to a real and critical problem.

Silent Failures: Manifestations of Unsaved Error Codes

To show that unsaved error codes represent a serious prabégman lead to silent
failures, we injected disk block failures in two subsyste@BD and NFS. For
injecting the faults, we use our methodology described ittiSe 2.4.
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First, as shown in Figure 5.10, one serious silent failureearduring file sys-
tem recovery: the journaling block device layer (JBD) does properly propa-
gate any block write failures, including inode, directooytmap, superblock, and
other block write failures. EDP unearths these silent faduby pinpointing the
j our nal _recover function, which is responsible for file system recovery, tas i
callssync_bl ockdev to flush the dirty buffer pages owned by the block device.
Unfortunately, j our nal _recover does not save the error code propagated by
sync_bl ockdev in the case of block write failures. This is an example where
the error code is dropped in the middle of its propagatiorirgheaync_bl ockdev
correctly propagates thel O error codes received from the two function calls it
makes.

Second, a similar problem occurs in the NFS server code. Rrsimilar fail-
ure injection experiment, we found that the NFS client isinfitrmed when a write
failure occurs during aync operation. In the experiment, the client updates old
data and then sendssgnc operation with the data to the NFS server. The NFS
server then invokes thef sd_dosync operation, which mainly performs three op-
erations similar to theync_bl ockdev call above. First, the NFS server writes
dirty pages to the disk; second, it writes dirty inodes arelshperblock to disk;
third, it waits until the ongoing 1/0 data transfer termiest All these three oper-
ations could return error codes, but the implementationfafd_dosync does not
save any return values. As a result, the NFS client will nexadice any disk write
failures occurring in the server. Thus, even a careful,rawwbust client cannot trust
the server to inform it of errors that occur.

In the NFS server code, we might expect that at least onenrealue would
be saved and checked properly. However, no return valuesaaesl, leading one
to question whether the returned error codes fromvthiet e or sync operations
are correctly handled in general. It could be the case tletldvelopers are not
concerned about write failures. We investigate this hypsithin Section 5.3.2.

5.2.2 Unchecked Error Codes

Lastly, we report the number of error-broken channels dua variable that con-
tains an error code not being checked or used in the future.ekample, in the
IBM JFS code below, ¢ carries an error code propagated fronConmi t (line 4),
butr c is never checked.

1/ jfs/jfs_txnngr.c

2int jfs_sync () {

3 int rc;

4 rc = txCommit(); // UNCHECKED 'rc’
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5 /1 No usage or check of 'rc’
6 /1 after this line
7

}

This analysis can also report false positives due to the ldaeroor code prob-
lem described previously. In addition, we also find the peablof overloaded
variablesthat contribute as false positives. We define a variable tovegloaded
if the variable could contain an error code or a data value.iristancepl knumin
the QNX4 code below is an example of an overloaded variable:

1 // gnx4/dir.c
2 int gnx4_readdir () {
int bl knum
struct buffer head *bh;
bl knum = gnx4_bl ock_map();
bh = sb_bread (bl knum;
i f (bh == NULL)
/Il error

©oo~NOO UL~ W

}

In this code,qnx4_bl ock_map could return an error code (line 5), which is
usually a negative valuesb_br ead takes a block number and returns a buffer
head that contains the data for that particular block (lineStnce a negative block
number will lead to aNULL buffer head (line 7), the error code storedbinknum
does not have to be explicitly checked. The developer bedighiat the other part
of the code will catch this error or eventually raise relagtbrs. This practice
reduces the accuracy of our static analysis.

Since the number of unchecked error code reports is smdil @inreported),
we were able to remove the false positives and find a total afichecked error
codes in file systems (CIFS, NFS Server, and JFS) and 2 irgstordvers (software
RAID and loopback driver).

5.2.3 Overwritten Error Codes

Broken channels can also be causedtgrwritten error codesin which the con-
tainer that holds the error code is overwritten with anotredune before the previous
error is checked. For example, the CIFS code below oversiitge 6) the previous
error code received from another call (line 4).

1 /] cifs/transport.c
2 int SendReceive () {
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3 int rc;

4 rc = cifs_sign_snb(); // PROPAGATE E.C.
5 . I/ No use of "rc’ here

6 rc = snmb_send(); // OVERWRI TTEN

7}

Currently, EDP detects overwritten error codes, but reptd many false pos-
itives to be useful. The biggest problem we have encountierdde to the nature
of the error hierarchy: in many cases, a less critical eroalecis overwritten with a
more critical one. For example, in the memory managemere betbw, when first
encountering a page error, the error code is sé&i 10 (line 6). Later, the function
checks whether the flags ofnap structure carry a no-space error code (line 8). If
so, theEl Oerror code is overwritten (line 9) with a new error caeleOSPC.

1// mifilemap.c
2 int wait_on_page_witeback_range (pg, map) {

3 int ret = 0;

4

5 i f (PageError(pg))

6 ret = -EIQ

7

8 if (test_bit(AS_ENCSPC, &map->flags))
9 ret = - ENOSPC;

10 if (test_bit (AS_EIO &map->flags))
11 ret = -EIQ

12 return ret;

13 }

Manually inspecting the results obtained from EDP (onlydg@arted), we have
identified five real cases of overwritten error codes: ondéad@dFS and FAT, and
three in CIFS.

5.3 Analysis of Results

In the following sections, we present four analyses whenelytry to uncover
the root causes and impact of incomplete error propagatince the number of
unchecked and overwritten error codes is small, we only idensinsaved error
codes (bad calls) in our analyses; thus we use “bad calls™lamden channels”
interchangeably from now on. First, we made a correlatidwben robustness and
complexity (Section 5.3.1). Second, we analyzed whethesfistems and storage
device drivers give different treatment to errors occigrin I/O read vs. 1/O write
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By % Broken By Viol/Kloc
Rank | FS Frac.| FS Viol/Kloc
1 IBM JFS 24.4| ext3 7.2
2 ext3 22.1| IBM JFS 5.6
3 JFFS v2 15.7| NFS Client 3.6
4 NFS Client  12.9| VFS 2.9
5 CIFS 12.7| JFFSv2 2.2
6 MemMgmt 11.4| CIFS 2.1
7 ReiserFS 10.5 MemMgmt 2.0
8 VFS 8.4 | ReiserFS 1.8
9 NTFS 8.1| XFS 1.4
10 XFS 6.9 | NFS Server 1.2

Table 5.6:Least Robust File Systems.The table shows the ten least robust file
systems using two ranking systems. In the first ranking reystie system robust-
ness is ranked based on the fraction of broken channels dverrar channels (the
5th column of Table 5.3). The second ranking system sortsyfdeems based on
the number of broken channels found in every Kloc (the 6tlnenlof Table 5.3).

operations (Section 5.3.2). From that analysis we find thetynwrite errors are
neglected; hence we perform the next study in which we tryneaer whether
ignored errors are corner-case mistakes or intentionalkcesqSection 5.3.3). In
the final analysis, we analyze whether chained error prapgagand inter-module
calls play major parts in causing incorrect error propamatiSection 5.3.4).

5.3.1 Complexity and Robustness

In our first analysis, we would like to correlate the numbenugtakes in a subsys-
tem with the complexity of that subsystem. For file systentsSXvith 71 Kloc has
more mistakes than other, smaller file systems. Howeverdibés not necessarily
imply that XFS is the least robust file system. Table 5.6 sbgsobustness of each
file system based on two rankingpercentage-brokemand viol/kloc rankings. In
the first ranking system, file system robustness is rankeedbas the fraction of
broken channels over all error channels (the 5th column bfela.3). The second
ranking system sorts file systems based on the number of iorckannels found
in every Kloc (the 6th column of Table 5.3). In both rankings only include file
systems that are at least 10 Kloc in size with at least 50-eetated callsi(e. we
only consider “complex” file systems).

A noteworthy observation is that ext3 and IBM JFS are ranketha two least
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robust file systems. This fact affirms our earlier findings lo@ tobustness of ext3
and IBM JFS [106]. In this prior work, we found that ext3 andMBFS are incon-
sistent in dealing with different kinds of disk failures. 0%y it might be the case
that these inconsistent policies correlate with incoesiserror propagation.

Among storage device drivers, it is interesting to compéee robustness of
the SCSI and IDE subsystems. If we compare SCSI and IDE stansyusing
the percentage-broken ranking system, SCSI and IDE aresaltomparable (21%
vs. 18%). However, if we compare them based on the viol/kboiking system,
then the SCSI subsystem is almost four times more robust IDEN0.6 vs. 2.1
errors/Kloc). Nevertheless it seems the case that SC$tadibasic error codes
much more than IDE does.

When the robustness of storage drivers and file systems ipa@u using the
percentage-broken ranking, on average storage drivelgsseobust compared to
file systems (22% vs. 17%, as reported in the last rows of Taldle On the other
hand, in the viol/kloc ranking system, storage drivers acgemobust compared to
file systems (1.1 vs. 2.4 mistakes/Kloc). From our point ewithe percentage-
broken ranking system is more valid because a subsysterd beutomprised of
submodules that do not necessarily use error codes; whatns important is the
number of bad calls in the population of all error-relatetlsca

5.3.2 Neglected Write Errors

As mentioned in Section 5.2.1, we have observed that erdespropagated in
wri t e or sync operations are often ignored. Thus, we investigate how maitg
errors are neglected compared to read errors. This studyiwated by our find-
ings in that section as well as by our earlier findings thateast for ext3, read
failures are detected, but write errors are often ignoré&b]1

To perform this study, we filter out calls that do not relateréad and write
operations. Since it is impractical to do that manually, vee & simple string
comparison to mark calls that are relevant to our analysisat s we only take
a caller—callee pair where the callee contains the strirgd, write, sync, or
wai t . We includewai t -type calls because in many cases t -type callees€.q,
fil emap_dat awai t ) represent waiting for one or more 1/0O operations and could
return error information on the operation. Thus, in our gfud i t e-, sync-, and
wai t -type calls are categorized as write operations.

The upper half of Table 5.7 reports our findings. The last molishows how
often errors are ignored in the file system code. Interektifie systems have a
tendency to correctly handle error codes propagated freau-type calls, but not
those fromwr i t e-type calls (4.3% vs. 19.6%). The 29 (4.3%) unsaved read erro
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Bad EC Frac.

Callee Type Calls Calls (%)
Read 26 603 4.3
Sync 70 236 29.7
Wait 27 70 38.6
Write 80 598 13.4
Sync+Wait+Write 177 904 19.6
Specific Callee
filemap_fdatawait 22 29 75.9
filemapfdatawite 30 47 63.8
sync_bl ockdev 15 21 714

Table 5.7: Neglected write errors in file system code. The table shows that
read errors are handled more correctly than write errors. eTilipper table shows
the fraction of bad calls over four category of calls: reagins, wait, and write.

The later three can be categorized as a write operation. Dt table shows
neglected write errors for three specific functions. The Q9%{olated read calls

are all related to readahead and asynchronous read; in otherds, all error codes

returned in synchronous reads are being saved and checked.

codes are all found in readahead operations in the memorggeament subsystem;
it might be acceptable to ignore prefetch read errors becaush reads can be
reissued in the future whenever the page is actually read.

As discussed in Section 5.2.1, a function could return muose bne error code
at the same time, and checking only one of them suffices. Hemvédwe know
that a certain function only returns a single error code aglidtlye caller does not
save the return value properly, then we know that such a<egkilly a flaw. To find
real flaws in the file system code, we examined three impoftardtions that we
know only return single error codesync_bl ockdev, fil emap_fdatawite,
andfil emap_fdat awai t. A file system that does not check the returned error
codes from these functions would obviously let failures gaaticed in the upper
layers.

The lower half of Table 5.7 reports our findings. Many errodes returned
from the three methods are simply not saved3% in all cases). Two conclusions
might be drawn from this observation. First, this could segjghat higher-level
recovery code does not exist (since if it exists, it will na invoked due to the
broken error channel), or it could be the case that errorinéeationally neglected.
We consider this second possibility in greater detail inrtbgt section.
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CDF of Inconsistency Frequency vs. #Bad Calls
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Figure 5.11:Inconsistent calls frequency. The figure shows that inconsistent calls
are not corner-case bugs. The x-axis represents the ins@msicall frequency of
a function. x=20% means that there is one bad call out of fival &walls; x=80%
means that there are four bad calls out of five total calls. [Efiey-axis counts the
cumulative number of bad calls. For example, below the 20%&k mhbere are 80
bad calls that have an inconsistent-call frequency of laas 20%. As reported in
Tables 5.4 and 5.5, there exist a total of 1153 bad calls. Tgi# iy-axis shows the
cumulative fraction of bad calls over the 1153 bad calls.

5.3.3 Inconsistent Calls: Corner Case or Majority?

In this section, we consider the natureirdonsistentalls. For example, we found
that 1 out of 33 calls td de_set up_pci _devi ce does not save the return value.
One would probably consider this single call as an incoestsimplementation
because the majority of the calls to that function save themesalue. On the other
hand, we also found that 53 out of 54 callsutar egi st er fi | esyst emdo not
save the return error codes. Assuming that most kernel deges are essentially
competent, this suggests that it may actually be safe to metkcthe error code
returned from this particular function.

To quantify inconsistent calls, we define thconsistent call frequencpf
a function as the ratio of bad calls over all error-relatedisctb the function,
and correlate this frequency with the number of bad callsht function. For
example, the inconsistent call frequencies ifdie_set up_pci _ bl ockdev and
unregi ster_filesystemare 3% (1/33) and 98% (53/54) respectively and the
numbers of bad calls are 1 and 53 respectively.
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Figure 5.11 plots the cumulative distribution function bfst behavior. The
graph could be seen as a means to prioritize which bad cafiis fiost. Bad calls
that fall below the 20% mark could be treatedcasner casegi.e., we should be
suspicious on one bad call in the midst of four good calls ®oghme function).
On the other hand, bad calls that fall above the 80% mark chintdthat either
different developers make the same mistake and ignore iiti®probably safe to
make such a “mistake”.

One perplexing phenomenon visible in the graph is that at@#1L bad calls
fall above the 50% mark. In other words, they cannot be cemsttl as corner-
case bugs; the developers might be aware of these bad caflprdbably just
ignore them. One thing we have learned from our recent worklesystem code
is that if a file system does not know how to recover from a failuit has the
tendency to just ignore the error code. For example, ext8rigg write failures
during checkpointing simply because it has no recovery meism €.g, chained
transactions [60]) to deal with such failures. Thus, we satthat there are deeper
design shortcomings behind poor error code handling; ewde mismanagement
may be as much symptom as disease.

Our analysis is similar to the work of Englet al. on findings bugs automat-
ically [40]. In their work, they use existing implementatido imply beliefs and
facts. Applying their analysis to our case, the bad call$ tah above the 80%
mark might be considered as good calls. However, since waralyzing the spe-
cific problem of error propagation, we use that semantic kadge and demand
a discipline that promotes checking an error code in allusitstances, rather than
one that follows majority rules.

5.3.4 Characteristics of Error Channels

Finally, we study whether the characteristic of an errormcied has an impact on
the robustness of error code propagation in that channgdatticular, we explore
two characteristics of error channels: one based on the propagation distance
and one based on the location distance (inter- vs. intrazdilis).

With the first characteristic, we would like to find out whetleeror codes are
lost near the generation endpoint or somewhere in the miofdlee propagation
chain. We distinguish two calls: direct-error and propagatror calls. In airect-
error call, the callee is an error-generation endpoint. prgpagate-error call the
callee is not a generation endpoint; rather it is a functlwat propagates an error
code from one of the functions that it calise(, it is a function in the middle of the
propagation chain). Next, we defindad direct-error (or propagate-error) call as
a direct-error (or propagate-error) call that does not sheaeturned error code.



114

Bad EC Frac.
Calls Calls (%)

File Systems
Inter-module 307 1944 15.8
Inter-file 367 2786 13.2
Intra-file 159 2548 6.2

Storage Drivers
Inter-module 48 199 24.1
Inter-file 92 495 18.6
Intra-file 180 1050 17.1

Table 5.8:Calls based on location distanceThe table shows that the fraction of
bad calls in inter-module calls is higher than the one in ifile calls. Similarly,
inter-file calls are less robust than intra-file calls. Notet “inter-file” refers to
cross-file calls within the same module. Inter-file callsossrdifferent modules are
categorized as inter-module.

Initially, we assumed that the frequency of bad propagate-ealls would
be higher than that of bad direct-error calls; we assumear esdes tend to be
dropped in the middle of the chain rather than near the géoerandpoint. It
turns out that the number of bad direct-error and propagata- calls are similar
for file system code but the other way around for storage dawee. In particular,
for file systems, the ratio of bad over all direct-error cadl40%, and the ratio of
bad over all propagate-error calls is 14%. For storage tsj\ihey are 20% and
15% respectively.

For the second characteristic, we categorized calls basdteolocation dis-
tance between a caller and a callee. In particular, we disiah three calls: inter-
module, inter-file (but within the same module), and intta-Galls. Table 5.8 re-
ports that intra-file calls are more robust than inter-fildsgand inter-file calls are
more robust than intra-file calls. For example, out of 194érimodule calls in
which error codes propagate in file system, 307 (16%) of thembad calls. How-
ever, out of 2786 inter-file calls within the same modulerehare only 367 (13%)
bad calls. Intra-file calls only exhibit 6% bad calls. The sapattern occurs in
storage device drivers. Thus, we conclude that the locatistance between the
caller and the callee plays a role in the robustness of the cal
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5.4 Conclusion

In this chapter, we have analyzed the file and storage systemisux 2.6 and

found that error codes are not consistently propagatedhdrbeginning of each
chapter of this dissertation, we have reprinted some dpeelcomments we found
near some problematic cases (filenames and line humberdhanen dnside the
parentheses). Unfortunately, there are more:

“Retval ignored?” — in SCSI (sg.c, 2612)

“Todo: handle failure.” — in SCSI (mac53c94.c, 504)

“Can this catch a write error?”"—in SCSI (osst.c, 737)
“FIXME: Handle lost commands™ in SCSI (scsierror.c, 1139)

“Not much we can do if it fails anyway, ignore rc=- in CIFS (file.c,
553)

“Ignore errors.” —in NCPFS (dir.c, 259)
“Never mind errors we might get here> in XFS (xfsmount.c, 1177)

These comments from developers indicate part of the prabésmen when the
developers are aware they are not properly propagatingran grey do not know
how to implement the correct response. Given static argtyslls to identify the
source of bugs (such as EDP), developers may still not betalfie all bugs in a
straightforward manner.

Due to these observations, we believe it is thus time to mkthiow failures
are managed in large systems. Preaching that developdwoss fefror handling
conventions and hoping the resulting systems work as deseems naive at best.
New approaches to error detection, propagation, and regave needed.

For future work, we advocate two approaches to help file aocge system
programmers avoid these types of mistakes. First, we peopodding systems
with semantic error codeswith this approach, the system does not blindly believe
in the success or failure signal reported by an error codénstead performs extra
checks to confirm whether the corresponding operation isessful or not. This
technique is similar to dynamic verification techniques][43econd, we propose
adopting themalloc-freeparadigm for error codes [82]. Specifically, once an er-
ror code is generated, it is treated as immutable and can lmnigestroyed if it
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transforms to another error code or the corresponding riailsl handled. If there
is a “dangling” error code, then the system has forgottenhteck or handle cer-
tain faults. This new architecture ensures that errors dalisappear easily, hence
reducing the instances of silent failure.
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Chapter 6

I/O Shepherding: A New
Reliability Infrastructure

“Note: todo: log error handler”
— A comment in IBM JFS (jffdogmagr.c, line 222)

Modern disks, due to their complex and intricate nature,[hdye a wide range
of “interesting” failure modes, including latent sectoults [79], block corrup-
tion [46, 53], transient faults [135], and whole-disk faédu[115]. To store data
reliably, file systems need to handle all these failures gigpOur analysis in Sec-
tion 3.2 reveals that unfortunately file system failure Hangdis broken, primarily
due to the diffusion of I/O failure handling; the code thateds 1/O failures and
performs recovery (such as retry or stopping the file sysisspread over different
places. This eventually leads to several problems. Fadtire policies arellogi-
cally inconsistentdifferent failure handling techniques are used even ustheitar
failure scenarios unintentionally. Second, failure gelicand mechanisms are tan-
gled; it is hard to separate failure policies.q, “detect block corruption”) from
their implementationd.g, “read from a replica”). As a result of this tangled policy
and mechanism, neither can be modified without affectingther, resulting in an
inflexible failure handling system.

As a way to mitigate the aforementioned problems, this draptesents the
design, implementation, and evaluation of a new religpilifrastructure for file
systems calledfO shepherding With 1/O shepherding, the reliability policies of a
file system are well-defined, easy to understand, powenful,simple to tailor to
environment and workload. The I/O shepherd achieves thede lay interposing
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on each 1I/O that the file system issues. The shepherd thes taggonsibility for
the “care and feeding” of the request, specifically by exaguareliability policy
for the given block. Simple policies will do simple thingsich as issue the request
to the storage system and return the resulting data andeader(success or failure)
to the file system above. However, the true power of shephgidis in the rich set
of policies that one can construct, including sophistidatdry mechanisms, strong
sanity checking, the addition of checksums to detect dataigtion, and mirrors
or parity protection to recover from lost blocks or disks.

The rest of this chapter is organized as follows. We first gmeshe goals of
file system reliability (Section 6.1) and then the design/6f $hepherding (Sec-
tion 6.2). To show how we can easily specify reliability joais in this framework,
Section 6.3 presents some examples of policies that filersyatdministrators can
specify. Section 6.4 then shows how we take an existing gung file system,
Linux ext3, and transform it into a shepherding-aware filsteyn, which we call
CrookFS. As part of this implementation, we also introduceosel concept of
chained transactiong§Section 6.4.1), which is a solution to the major problem of
failed intentions we found in journaling file systems (asaié®d in Section 3.3).
Finally, in Section 6.5, we explore how to craft reliabilpplicies and evaluate their
overheads.

6.1 Goals

The single underlying design principle of this work is thaliability should be a
first-class file system concerWe believe a reliability framework should adhere
to the following three goals: simple specification, powkpgulicies, and low over-
head.

Simple specification: We believe that system developers should be able to spec-
ify reliability policies simply and succinctly. Writing @ for reliability is
usually complex, given that one must explicitly deal withttbmisbehaving
hardware and rare events; it is especially difficult to eagbat recovery ac-
tions remain consistent in the presence of system crashesnwision that
file system administrators will take on the role of fapitlicy writers the I/O
shepherd should ease their task.

The 1/0O shepherd simplifies the job of a policy writer in twoysa First,
all reliability policies are written in a single localed., the shepherd layer).
This is achieved by routing all I/O requests to the shephayerl first. As
the shepherd interposes on each request, it can apply tiredlesliability
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policies to the request. By writing policies in a centrafiZashion, policies
are easier to maintain and debug.

Second, the I/O shepherd provides a diverse set of deteatidrecovery
primitives that hide much of the complexity. For examples ttO shepherd
takes care of both the asynchrony of initiating and waitioglfO and keeps
multiple updates and new metadata consistent in the presaincrashes.
Policy writers are thus able to stitch together the desimd@lility policy
with relatively few lines of code; each of the complex pa&iwe craft (Sec-
tion 6.5) requires fewer than 80 lines of code to implemerite €nd result:
less code and (presumably) fewer bugs.

Powerful policies: We believe the reliability framework should enable not only
correct policies, but more powerful policies than currgmkist in commod-
ity file systems today. Specifically, the framework shoulélda compos-
able, flexible, and fine-grained policies.

A composablepolicy allows the file system to use different sequences of
recovery mechanisms. For example, if a disk read fails, tbesfistem can
first retry the read,; if the retries continue to falil, the fijesstem can try to read
from a replica. With shepherding, policy writers can conmgbasic detection
and recovery primitives in the manner they see fit.

A flexible policy allows the file system to perform the detection andvec
ery mechanisms that are most appropriate for the expectellloaol and
underlying storage system. For example, one may want diftelevels of
redundancy for temporary files in one volume and home dirextdn an-
other. Further, if the underlying disk is known to sufferrfrdransient faults,
one may want extra retries in response. With 1/0 shepheyadidgninistrators
can configure these policy variations for each mounted velum

A fine-grainedpolicy is one that takes different recovery actions depsmdi
on the block that has failed. Different disk blocks haveeat#ht levels of
importance to the file system; thus, some disk faults are mostly than
others and more care should be taken to prevent their loss.ex@mple,
the loss of disk blocks containing directory contents isasebphic [123];
therefore, a policy writer can specify that all directorptks be replicated.
With I/O shepherding, policies are specified as a functioblotk type.

Low overhead: Users are unlikely to be willing to pay a large performancstco
for improved reliability. For reasonable performance, veedr found that it
is critical to properly integrate reliability mechanismsthvthe consistency
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management, layout, caching, and disk scheduling sulmgst©f course,
reliability mechanisms do not always add overhead; for eptama smart
scheduler can utilize replicas to improve read performdirte148].

6.2 Architecture
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Figure 6.1:System Architecture. The architecture of a file system containing an
I/O shepherd is shown. The file system proper (includingrjalimg) and caching
subsystems sit above the I/O shepherd, but have been madike locations to
interact with the shepherd as necessary. The shepheréidtsatists of a policy ta-
ble, which points to policy code that dictates the detectiod recovery strategy for
that particular block type. Beneath the shepherd is the geh® layer (including
disk scheduling, which is slightly modified as well) and amenfore) disks.

To manage the storage system in a reliable way, the I/O she:phest be able
to interpose on every I/O request and response, naturatirlg to an architecture
in which the shepherd is positioned between the file systeddasks (Figure 6.1).
As shown therein, 1/O requests issued from different conepts of a file system
(e.g, the file system, journaling layer, and cache) are all passéde 1/O shep-
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herd. The shepherd unifies all reliability code in a singleatmn, making it easier

to manage faults in a correct and consistent manner. Thehshgpnay modify

the 1/0O requestd.g, by remapping it to a different disk block) or perform addi-
tional requestsd.g, by reading a checksum block) before sending the request to
disk. When a request completes, the response is again ribuitedyh the shepherd,
which performs the desired fault detection and recoverioast again potentially
performing more disk operations. After the shepherd haswaee the reliability
policy, it returns the response (success or failure) to feesfistem.

6.2.1 Policy Table and Code

With 1/0O shepherding, the reliability policy of the file sgst is specified by policy
table this structure specifies which code to execute when theytem reads or
writes each type of on-disk data structueeq, superblock, inode, or directory).
Each entry in the table points fwlicy code which defines the sequence of actions
taken for a block of a particular type. For example, givenxdB-ased file system,
a policy writer can specify a different policy for each of &8 block types (as
shown in Table 6.1). The table could thus mandate replicatfcthe superblock,
checksum protection for other metadata, and an aggresstigescheme for user
data.

Although this design does not directly support differentigpes for individ-
ual files, the I/O shepherd allows a different policy table p@unted file system.
Thus, administrators can tailor the policy of each volumbasic entity they are
accustomed to managing. For examplét ap volume could employ little protec-
tion to obtain high performance while an archive could addogsums and parity
to improve reliability at some performance cost.

6.2.2 Policy Metadata

To implement useful policies, an I/O shepherd often reguadditional on-disk
state to track the location of various blocks it is usiegg( the location of check-
sums, replicas, or parity blocks). Thus, to aid in the manege of persistent
metadata, the I/O shepherd framework providegps Some commonly used maps
are aCvap to track checksum blocks, d@iVap to record bad block remappings,
and anMvap to track multiple replicas.

A policy can choose to use eithestatic or dynamicmap for a particular type
of metadata. With static mapping, the association betweginesm on-disk block
and its checksum or replica location is fixed when the fileesysis created. With
a dynamic map, new associations between blocks can be dm@atetime.
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Ext3 Structures | Read Policy Write Policy

inode ChecksumWite() | ChecksunRead()
directory ChecksumWite() | ChecksunmRead()
data bitmap ChecksunWite() | ChecksunRead()
inode bitmap ChecksumWite() | ChecksunmRead()
indirect ChecksunWite() | ChecksunRead()
data RetryWite() Ret r yRead()
super MrrorWite() M rror Read()
group descriptor | ChecksumWite() | ChecksunRead()
journal super ChecksunWite() | ChecksunRead()
journal revoke ChecksunmWite() | ChecksunmRead()
journal descriptor| ChecksunmWite() | ChecksunRead()
journal commit | ChecksunmWite() | ChecksunRead()
journal data ChecksumWite() | ChecksunRead()

Table 6.1:Policy Table. The table presents an example of a policy table that a
policy writer can specify. The policy table specifies défgrpolicies for each of
the 13 block types in ext3. For example, the table mandasation of the su-
perblock, checksum protection for other metadata, and aymessive retry scheme
for user data. Section 6.3 will show the implementation aisof policy code.

There are obvious trade-offs to consider when deciding eetwstatic and dy-
namic maps. Static maps are simple to maintain but inflexfioleexample, if a
static map is used to track a block and its copy, and one copgrbes faulty due
to a latent sector error, the map cannot be updated with aoeatibn of the copy.

Dynamic maps are more flexible, as they can be updated as ¢heyitem
is running and thus can react to faults as they occur. Howelygramic maps
must be reflected to disk for reliability. Thus, updating dgric maps consistently
and efficiently is a major challenge; we describe the prokdewh our approach to
solving it in more detail in Section 6.4.1.

6.2.3 Policy Primitives

To ease the construction of policy code, the shepherd pes\adset opolicy prim-
itives The primitives hide the complexity inherent to reliabl® I€ode; specifi-
cally, the primitives ensure that policy code updates @hk-dtructures in a single
transaction. Clearly, a fundamental tension exists hesemare functionality is
encapsulated in each primitive, the simpler the policy doeeomes, but the less
control one has over the reliability policy. Our choice hagerally been to expose
more control to the policy writers.
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The I/O shepherd provides five classes of reliability priveis. All primitives
return failure when the storage system itself returns aor@wde or when blocks
do not have the expected contents.

Read and Write: The I/O shepherd contains basic primitives for reading and
writing either a single block or a group of blocks concurhgritom disk.
A specialized primitive reads from mirrored copies on digikven a list of
blocks, it reads only the block that the disk scheduler mtsdias the shortest
access time.

Integrity: On blocks that reside in memory, primitives are provideddmpute
and compare checksums, compare multiple blocks, and pegtrong sanity
checks €.g, checking the validity of directory blocks or inodes).

Higher-level Recovery: The 1/0O shepherd contains primitives to stop the file
system with a panic, remount the file system read-only, oneeboot the
system. Primitives are also provided that perform semaapeair depending
upon the type of the blocke(g, an inode or a directory block) or that run a
full f sck across the disk.

Persistent Maps: The 1/O shepherd provides primitives for looking up blocks
in an indirection map and for allocating (or reallocatingdaneeing) new
entries in such a map (if it is dynamic).

Layout: To allow policy code to manage blocks for its own usey( for check-
sums, remapped blocks, and replicas), the 1/O shepherdlicmata blocks
from the file system. One primitive exposes information altbe current
layout in the file system while a second primitive allocatew mlocks, with
hooks to specify preferences for block placement. With mdrdver block
placement, policy code can provide trade-offs betweeropaidnce and re-
liability (e.g, by placing a replica near or far from its copy).

6.3 Example Policy Code

With all the shepherd’s features mentioned in the previeasien, writing reliabil-

ity policies within the shepherd is more straightforwardrtin current approaches.
In this section, we show how the 1/O shepherd enables onedaifgpreliability
policies that are traditionally implemented across défdrlevels of the storage
stack. For example, one can specify policies that operatesingle block and are
often performed within diskse(g, retrying, remapping, and checksums), policies
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that operate across multiple blocks or multiple diskgy( mirrors and parity), and
finally, one can specify policies requiring semantic infation about the failed
block and are usually performed by the file systeag( stopping the file system,
data structure repair, and fsck). A shepherd enables pslitiat compose all of
these strategies.

We now show the simplicity and power of the shepherd througluraber of
examples. The names of all policy primitives begin wit@s for clarity. We sim-
plify the pseudo-code by ignoring some of the error codesalareturned by the
policy primitives, such af OS_MapLookup andl OS_MapAl | ocat e.

The first example policy is based loosely on NTFS [106]. The=NTpolicy
tries to keep the system running when a fault arises by fitsting the failed read
or write operation a fixed number of times; if it is unable torguete the operation,
the fault is simply propagated to the application. We shosvrtrad version of the
code here (the write is similar).

NTFSRead( Di skAddr D, MemAddr A)

for (int i =0; i < RETRY_MAX; i ++)
if (I0S_Read(D, A == X
return CK;
return FAIL;

The code above takes the disk address D on which the file sysseies a read.
The | OS_Read primitive sends the read request to the disk and put the obnte
from the disk address to the memory address A. If the readatiparis successful,
the code returns success to the file system. Otherwise, fiey pall repeat the
read forRETRY_MAX times.

The second example policy loosely emulates the behavioretseR-S [106].
This policy chooses reliability over availability; wherena write fault occurs, the
policy simply halts the file system by calling th€©S_St op primitive. By avoiding
updates after a fault, this conservative approach minisihe chance of further
damage.

Rei ser FSW it g Di skAddr D, MemAddr A)
if (IS Wite(D, A == )
return CK;
el se
| OS_Stop(l OS_HALT);

The next two examples show the ease with which one can spadlifsies that
detect block corruption. First, thBani t yRead policy performs type-specific
sanity checking on the read block using a shepherd primiti@s_Sani t yCheck).
Note in this example how the block type can be passed to amtlhyspolicy code.
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For example, if the block is an inode block, then theéS_Sani t yCheck primi-
tive will perform specific inode checke (g, an inode being used should not have a
zero modification time).

Sani t yRead Di skAddr D, MemAddr A, Bl ockT T)
if (10S_Read(D, A) == FAIL)
return FAIL;
return | OS_Sani tyCheck(A, T);

Second, theChecksunRead policy below uses checksums to detect block
corruption; the policy code first finds the location of the dksum block by looking
up the checksum mayCk/kap), then concurrently reads both the stored checksum
and the data block (the checksum may be cached), and theraoesnihe stored
and newly computed checksums.

ChecksunRead Di skAddr D, MenAddr A)
Di skAddr cAddr;
ByteOf f set off;
CheckSum onbDi sk;
/1 find the checksum bl ock
| OS_MapLookupOf f set (Cvap, D, &cAddr, &off);
/1 read fromchecksumand D concurrently
if (10S_Read(cAddr, &onDisk, D, A)==FAlL)
return FAIL;
/1l conpare the stored and conputed checksuns
CheckSum cal ¢ = | OS_Checksumn(A);
return | CS_Conpare(onDi sk, off, calc);

The next two examples compare how static and dynamic mapbearsed
for tracking replicas. First, th&t ati cM rror Wi t e policy code assumes that
the mirror map,MvRap, was configured for each block when the file system was
created. Thus, the code looks simple. This kind of policyecisduseful for on-disk
structures that are stored in static locatioag)( inodes in ext3).

StaticMrrorWitdD skAddr D, MemAddr A)
Di skAddr copyAddr;
| OS_MapLookup( MVap, D, &copyAddr);
/1 wite to both copies concurrently
return (10S_Wite(D, A copyAddr, A));

Second,DynM rror Wi t e checks to see if a copy already exists for the
block being written to; if the copy does not exist, the codekpia location for the
mirror and allocates (and persistently stores) an entdyNap for this mapping.
Note that this policy needs to do more work than the stati¢ when a replica does



126

not exist, this policy needs to ask the file system to alloeabew block (via the
Pi ckM rr or Loc primitive) and stores this new location in the mirror mapa(vi
thel OS_MapAl | ocat e primitive). This kind of policy code is useful for on-disk
structures that are allocated dynamically on the dlyg( data blocks in ext3).

DynM rrorWit gD skAddr D, MemAddr A)
Di skAddr copyAddr;
/1 copyAddr is set to mirrored bl ock
/1 or NULL if no copy of D exists
| OS_MapLookup( Mvap, D, &copyAddr);
if (copyAddr == NULL)
Pi ckM rrorLoc(Mvap, D, &copyAddr);
| OS_MapAl | ocat e(Mvap, D, copyAddr);
return (10S_Wite(D, A copyAddr, A));

The final two policy examples show how blocks can be remapthedmap of
remapped blocks is most naturally a dynamic map, since tephshtd does not
know a priori which writes will fail. The first remap codd&RenapW i t e, is re-
sponsible for the remapping; if a write operation fails, fodicy code picks a new
location for that block, allocates a new mapping for thatklomn RVap, and tries
the write again.

RemapW it g Di skAddr D, MemAddr A)
Di skAddr renap;
/1 remap is set to remapped bl ock
/1 or to Dif not renmapped
| OS_MapLookup(RVap, D, &remap);
if (10S Wite(remap, A) == FAIL)
Pi ckRemapLoc( Rvap, D, &remap);
| OS_MapAl | ocat e( Rvap, D, renap);
return 1CS_ Wite(remap, A);

The second remap codBenapRead, checksRMap to see if this block has
been previously remapped; the read to the disk is then &duleto the possibly
new location. Of course, all of these policies can be exténfter example, by
retrying if the disk accesses fail or stopping the file systeniailure.

RemapRead( Di skAddr D, MenAddr A)
Di skAddr renap;
| OS_MapLookup(RvVap, D, &remap);
return | OS_Read(remap, A);

In summary, this section has shown how different policies ba specified
easily within the shepherd. With the ease of writing pokcieze enable not only
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file system developers, but also file system administratoverite the policies that
fit for their specific goals.

6.4 Implementation

A major challenge in implementing 1/0O shepherding is propestems integration.
We now describe how to integrate 1/O shepherding into antiagidile system,
Linux ext3. For our prototype system, we believe that it ipariant to work with
an existing file system in order to leverage the optimizatioh modern systems
and to increase the likelihood of deployment. We refer toetkt® variant with I/0
shepherding as CrookFS, named for the hooked staff of a sheéph

Integrating shepherding with ext3 instead of designing iesy from scratch
does introduce challenges in that it requires changes thléhgystem consistency
management routines, layout engine, disk scheduler, affiermache, as well as
the addition of thread support. Many of these alteratiomsracessary to pass in-
formation throughout the systera.§, informing the disk scheduler where replicas
are located so it can read the closer copy); some are recuingavide improved
control to reliability policies €.g, enabling a policy to control placement of on-disk
replicas).

Of those changes, the most important interaction betwemslbpherd and the
rest of the file system is in the consistency management stérmay Most modern
file systems us&rite-ahead loggingo a journal to update on-disk structures in a
consistent manner [64]. Policies developed in the shepbited add new on-disk
state €.g, checksums, or replicas) and thus must also update thestusas atom-
ically. In most cases, doing so is straightforward. Howgasrdescribed in Sec-
tion 3.3, we have found that journaling file systems suffernfra generaproblem
of failed intentions which arises when the intent as written to the journal canno
be realized due to disk failure during checkpointing. Thilng® shepherd incor-
porateschained transactionsa novel and more powerful transactional model that
allows policies to handle unexpected faults during cheitkpay and still consis-
tently update on-disk structures. The shepherd providesstipporttransparently
to all reliability policies, as the required actions are@msulated in various systems
primitives.

In this section, we devote most of our discussion to how wegiraite CrookFS
with ext3 journaling to ensure consistency (Section 6,4ahjl then describe inte-
gration with other key subsystems (Section 6.4.2). Finailg present the com-
plexity of CrookFS in Section 6.4.3.
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6.4.1 Consistency Management

In order to implement some reliability policies, an I/O shem requires additional
data €.g, checksum and replica blocks) and metadatg,(persistent maps). Keep-
ing this additional information consistent can be challeggAs an example, con-
sider policy code that dynamically creates a replica of akjlaoing so requires
picking available space on disk for the replica, updatirg rfirror map to record
the location of the replica, and writing the original andlrego blocks to disk. One
would like these actions to be performed atomically degpigepresence of crashes.

Given that the goal of 1/0 shepherding is to enable highlyustlfile systems,
we build upon the most robust form of journaling, data jolinta (Journaling
basics have been described in more detail in Section 3.3)untierstand how
CrookFS uses the ext3 data journaling to maintain consigteme begin with two
strawman approaches (Section 6.4.1). Neither work; ratheruse them to illus-
trate some of the subtleties of the problem. We then presanivorking solution
with chained transactions (Section 6.4.1).

Strawman Shepherds

In the early strawmanapproach, the shepherd interposes on the preceding jour-
nal writes to insert its own metadata for this transactiorhisTrequires splitting
policy code for a given block type into two portions: one fbetoperations to be
performed on the journal write for that block and one for @iens on a check-
point. In thelate strawmanthe shepherd appends a later transaction to the journal
containing the needed information. This approach assuhastite policy code

for a given block is invoked only at checkpoint time. We novsctibe how both
strawmen fail.

First, consider th&ynM rror Wi t e policy (presented in Section 6.3). On
the first write to a blockD, the policy code picks, allocates, and writes to a mirror
block C (denotedcopyAddr in the policy code); at this time, the data bitmB&p
and the mirror ma are also updated to account for All of these actions must
be performed atomically relative to the writing Bfon disk.

The early strawman can handle tBgnM rror Wi t e policy, as shown in
Figure 6.2. When the early strawman sees the entnDfevritten to the journal
(T1), it invokes policy code to allocate an entry f6rin M andB’ and to inserivi
andB’ in the current transaction. Whdéhis later checkpointedi§), similar policy
code is again invoked so that the coPyis updated according to the mirror map
M. With the early strawman, untimely crashes do not causelgmubbecause all
metadata is in the same transaction.
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Figure 6.2:Early Strawman for DynM rr or Wi t e. The figure shows how the
early strawman writes to a replica of a data bloEk Both in-memory (top) and
on-disk (bottom) states are showhis a data block] an inode,B a bitmap,tb the
beginning of a transaction, artd the commit block. Darker gray shading indicates
that blocks have been released after checkpointing.
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Figure 6.3: Early Strawman for RenapW i t e. The figure illustrates how the
early strawman cannot deal with the problem of failed initemg.

Now, consider th&kermapW i t e policy (presented in Section 6.3). This policy
responds to the checkpoint failure of a blddkoy remappingD to a new location,
R (denotedr emap in the policy code). However, the early strawman cannot im-
plement this policy. As shown in Figure 6.3, after the writeatdata bloclD fails
(13) the policy wants to remap blodR to R (73), which implies that the bitmap
and Rvap are modified B' andM). However, it is too late to modify the trans-
action that has been committed. Thus, if a crash occliysdfter the transaction
is released), all metadata changes will be discarded and the disk wilhken
inconsistent state. Specifically, the data bldzks lost since the modifie®RVap
that has the reference R has been discarded.
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Figure 6.4:Late Strawman for DynM rr or Wi t e. The figure shows the incor-
rect timing of the new transaction commit.

More generally, the early strawman cannot handle any clmekfailures that
result in metadata changes, because it must calcalptéori to the actual check-
point what will happen at checkpoint time. In Section 3.3, eee referred to
this as the problem dhiled intentions Failed intentions occur when a commit to
the journal succeeds but the corresponding checkpoint doeghe intent of the
update (as logged in the journal) cannot be realized duedokgtvint failure.

We now examine the late strawman which only invokes poliayecat check-
pointtime. Given that it is “too late” to modify a transactiat checkpoint time, the
late strawman adds another transaction with the new metatltfortunately, the
late strawman cannot correctly handle iyenM rr or Wi t e policy, as shown in
Figure 6.4. During the checkpoint of bloék (13), the late strawman invokes the
policy code, creates and updates the c@pas desired. After this transaction has
been releasedl}), a new transaction containirf andM is added to the journal
(T4a). The problem with the late strawman is that it cannot haadégstem crash
that occurs between the two transactioins., (1, which can occur betweéer; and
Tye): D will not be properly mirrored with a reachable copy. When fifeesystem
recovers from this crash, it will not replay the transactiaiting D (andC) because
it has already been released and it will not replay the tr@imacontainingd’ and
M because it has not been committed; as a result, €myill be unreachable.
Thus, the timing of the new transaction is critical and mwsthrefully managed,
as we will see below.

Chained Transactions

We solve the problem of failed intentions with the developina& chained trans-
actions With this approach, like the late strawman, all metadatnges initiated
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by policy code are made at checkpoint time and are placed ewatransaction;
however, unlike the late strawman, this new chained traimmsacs committed to
the journalbeforethe old transaction is released. As a result, a chainedéaciios
makes all metadata changes associated with the checkppisaiato have occurred
at the same time.

To illustrate chained transactions we consider a relighiolicy that combines
mirroring and remapping. We consider the case where thistishe first write to
the blockD (i.e., an entry in the mirror map should already exist) and it isvihige
to the copyC that fails. Code pathsottaken areslanted

RemapM rror Wit € Di skAddr D, MemAddr A)
Di skAddr copy, renap;
Status statusl = OK, status2 = CK
| OS_MapLookup( Mvap, D, &copy);
/!l remap is set to Dif not renmapped
| OS_MapLookup(Rvap, D, &remap);
if (copy == NULL)
Pi ckM rrorLoc(Mvap, D, &copy);
| OS_MapAl | ocat e( Mvap, D, copy);
if (10S_Wite(remap, A copy, A == FAIL)
if (10S_Failed(renap))
Pi ckRemapLoc(Rvap, D, &remap);
| OS_MapAl | ocat e(Rvap, D, remap);
statusl = |OS_ Wite(remap, A);
if (10OS_Fail ed(copy))
Pi ckM rrorLoc(Mvap, D, &copy);
| OS_MapAl | ocat e(Mvap, D, copy);
status2 = 1OS_Wite(copy, A);
return ((statusl==FAIL)|| (status2==FAlL));

Figure 6.5 presents a timeline of the activity in the systeth shained transac-
tions. With chained transactions, committing the origitnahsaction is unchanged
as seen at time§, andT; (policy code will be invoked when each of the blocks
in the journal is written, but its purpose is to implement takability policy of the
journal itself). When the data blodk is checkpointed, thRemapM rrorWite
policy code is invoked fob. The policy code finds the copy location©f(denoted
copy) and the potentially remapped locationR®{denoted emap). In our exam-
ple, we assume that writing to the co@yfails (13); in this case, the policy code
allocates a new location f@ (hence dirtying the bitmagB’), writes the copy to a
new location, and updates the mirror mdp (73). Our integration of the shepherd
primitive, | OS_MapAl | ocat e, with the ext3 journaling layer ensures that the
chained transaction containii®j andM’ is committed to the journali(;) before
releasing the original transactiofis). At time Tg (not shown), when the chained
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Figure 6.5:Chained Transactions forRemapM rror Wi t e. The figure shows
how chained transactions handle failed intentions.

transaction is checkpointed, the blodksandM’ are finally written to their fixed
locations on disk; given that these are normal checkpoiitesrthe relevant policy
code will be applied to these updates.

With a chained transaction, a crash cannot occur “betwelestwo related
transactions, because the second transaction is alwaysitteah before the first is
released. If the system crashes before the first transdstiefeased, all operations
will be replayed.

Chained transactions ensure that shepherd data and neetae&ept consistent
in the presence of crashes. However, if one is not carefdineld transactions
introduce the possibility of deadlock. Specifically, besaCrookFS now holds
the previous checkpoint while waiting to commit the chaitrathsaction, we must
avoid the two cases that can lead to circular dependenciiest, ErookFS must
ensure that sufficient space exists in the journal for alirdthtransactions; this
constrains the number of remappings (and subsequent chaergsactions) that
can occur in any policy code. Second, CrookFS must use shadpigs when
updating a shepherd metadata block that exists in a pretiansaction (just as it
does for its own metadata), instead of acquiring locks.

Non-ldempotent Policies

To maintain consistency, all failure scenarios must be idened, including re-
peated crashes during recovery. Repeated crashes wik caumokFS to replay
the same transactions and their corresponding checkpomsich scenario, only
idempotenpolicy code will work correctly.

For example, consider a policy that protects data blocklk pairity. Although
parity can be computed using an idempotent equatioe=(D1 ® D2 & ... & Dn),
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this approach performs poorly because— 1 blocks must be read every time a
block is modified. However, the more efficient way of compgtparity (P,e., =
Poiqg @ Dyg © Dyew) is non-idempotent sincé,;; and D¢ will be overwritten
with P,.,, and D,,.,,, respectively. Thus, repeated journal replays will ineotly
calculate the parity block.

To handle non-idempotent policies such as parity, CrookfSiges an old-
value logging mechanism [52]. The old-value log annotatgsigns to distinguish
old and new values, and writes the old data and its correspgngersion into
the log atomically. Thus, non-idempotent policy code maketcare to read the
old values and log them into the old-value log, using suppéthin CrookFS.
Simplified policy code foPari t yWi t e is as follows.

ParityWit g D skAddr D, MemAddr aNew)

D skAddr P;

MemAddr ad d, apdd, apNew,

| OS_MapLookup(PMap, D, &P);

if (10OS_ReadStabl e(D,add, P,apdd) == FAIL)
return FAIL;

if (10S_WiteAndLog(D,ad d, P,apdd) == FAIL)
return FAIL;

apNew = ConputeParity(apd d, add, aNew);

return (10S_Wite(D, aNew, P, apNew));

Reliability of the Journal and Shepherd Maps

A final complication arises when the reliability policy wieshto increase the pro-
tection of the journal or of shepherd metadata itself. Alihio there are a large
number of reasonable policies that do not add protectiotuffea to the journal
(since it is only read in the event of an untimely crash), s@miicies might wish

to add featurese(g, replication or checksumming). The approaches we describe
above do not work for the journal, since they use the jounsalfito update other
structures properly. Thus, we treat journal replicationeaksumming, and other
similar actions as a special case, mandating a restricteaf pessible policies.

6.4.2 System Integration

To build effective reliability policies, the shepherd musteract with other com-
ponents of the existing file system. Below, we discuss thesgining technical
hurdles.
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Semantic Information: To implement fine-grained policies, the shepherding layer
must have information about the current disk request; inroptementation,
shepherding must know the type of each bloelg( whether it is an inode
or a directory) and whether the request is a read or a writedardo call the
correct policy code as specified in the policy table.

In the case where requests are issued directly from the Sy acquiring
this information is straightforward: the file system is nfegtl to pass the
relevant information with each I/O call. When I/O calls agsued from
common file system layer®.(g, the generic buffer cache manager), extra
care must be taken. First, the buffer cache must track blgpk for its
file blocks and pass this information to the shepherd whelingainto it.
Second, the buffer cache must only pass this informatiomeéplserd-aware
file systems. A similar extension was made to the genericnimg and
recovery layers to track the type of each journaled block.

Threads: 1/0O shepherding utilizes threads to handle each 1/O reqaedtany
related fault management activity. A thread pool is createthount time,
and each thread serves as an execution context for poli®. ddis, instead
of the calling context issuing a request directly and wagifor it to complete,
it enqueues the request and lets a thread from the pool h#maleequest.
This thread then executes the corresponding policy codginiag success
or failure as dictated by the policy. When the policy codeamplete, the
caller is woken and passed this return code.

We have found that a threaded approach greatly simplifies#eof writing
policy code, where correctness is of paramount importan@eput threads,
policy code was split into a series of event-based handhtertseixecuted be-
fore and after each I/O, often executing in interrupt contend thus quite
difficult to program. A primary concern of our threaded ammb is over-
head, which we explore in Section 6.5.2.

Legacy Fault Management:Because the shepherd now manages file system re-
liability, we removed the existing reliability code fromt&x Thus, the upper
layers of CrookFS simply propagate faults to the applicatidote that some
sanity checks from ext3 are kept in CrookFS, since they alteuseful in
detecting memory corruption.

One issue we found particularly vexing was correct errorppgation; a
closer look revealed that ext3 often accidentally changeatr eodes or ig-
nored them altogether. In the previous chapter we have mpiedeur static
analysis tool to find these bugs so we could fix them.
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Layout Policy: Fault management policies that dynamically require diskcep
(e.g, for checksum or replica blocks) must interact with the filstem layout
and allocation policies. Since reliability policies arkdlly to care about the
location of the allocated block®.g, to place blocks away from each other
for improved reliability), we have added two interfaces t@@kFS. The first
exposes information about the current layout in the fileeystThe second
allows areliability policy to allocate blocks with optiots steer block place-
ment. Policy code can use these two interfaces to query theyitem and
request appropriate blocks.

Disk Scheduling: For improved performance, the disk scheduler should be inte
grated properly with reliability policies. For examplegtscheduler should
know when a block is replicated, and access the nearer blodbefter per-
formance [71, 148].

We have madified the disk scheduler to utilize replicas dsvicd. Our im-
plementation inserts a request for each copy of a block imoLinux disk
scheduling queue; once the existing scheduling algorigietss one of these
requests to be serviced by disk, we remove the other requésten the re-
quest completes, the scheduler informs the calling polibjctvreplica was
serviced, so that faults can be handled appropriately, by trying to read
the other replica). Care must be taken to ensure that répticequests are
not grouped and sent together to the disk.

Caching: The major issue in properly integrating the shepherd withehisting
buffer cache is ensuring that replicas of the same data dsimodtaneously
reside in the cache, wasting memory resources. By placiagstiepherd
beneath the file system, we circumvent this issue entirelgdsyjgn. When a
read is issued to a block that is replicated, the schedulgdés to read one
copy or the other; while this block is cached, the other cojili wever be
read, and thus only a single copy can reside in cache.

Multiple Disks: One final issue arose from our desire to run CrookFS on maltipl
disks to implement more interesting reliability policieBo achieve this, we
mount multiple disks using a concatenating RAID driver [33Jhe set of
disks appears to the file system as one large disk, with thigobrion of the
address space representing the first disk, the second patithe address
space representing the second disk, and so forth. By infayr@irookFS of
the boundary addresses between disks, CrookFS allocatlmigs can place
data as desired across disksg, data on one disk, a replica on another).
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Changes in Core OS

Chained transactions 26
Semantic information 600
Layout and allocation 176
Recovery 108
Total 910

Shepherd infrastructure

Thread model 900
Data structures 743
Read/Write + Chained Transactions 460
Layout and allocation 66
Scheduling 220
Sanity + Checksums + fsck + Mirrors 429
Support for multiple disks 645
Total 3463

Table 6.2:CrookFS Code Complexity. The table presents the amount of code
added to implement 1/O shepherding as well as a breakdownrhefenthat code
lives. The number of lines of code is counted by tallying tiralver of semi-colons
in code that we have added or changed.

6.4.3 Code Complexity

Table 6.2 summarizes the code complexity of CrookFS. Thie tsliiiows that the
changes to the core OS were not overly intrusive, (910 C statements were added
or changed); the majority of the changes were required tpggate the semantic
information about the type of each block through the filesystMany more lines
of code (.e., 3463) were needed to implement the shepherd infrasteidkelf. We
are hopeful that incorporating 1/0 shepherding into filetegrss other than ext3 will
require even smaller amounts of new code, given that mudieafifrastructure can
be reused.

6.5 Crafting a Policy

We now explore how I/O shepherding simplifies the constauctif reliability poli-

cies. We make two major points in this section. First, thesi@pherding frame-
work does not add a significant performance penalty. Seandge range of use-
ful policies can be easily built in CrookFS, such as polidlest propagate errors,
perform retries and reboots, policies that utilize pantysroring, sanity checks,
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Propagate 8 Mirror 18
Reboot 15 Sanity Check 10
Retry 15 Multiple Lines of Defense 39
Parity 28 D-GRAID 79

Table 6.3:Complexity of Policy Code. The table presents the number of semi-
colons in the policy code evaluated in Section 6.5.

and checksums, and policies that operate over multiplesdisBverall, we find
that our framework adds less than 5% performance overheagtam|/O-intensive
workloads and that no policy requires more than 80 lines ditp@ode to imple-
ment. Table 6.3 reports the number of lines of code to impteraach reliability
policy.

We also make two relatively minor points. First, effectivat gimple reliability
policies €.g, retrying requests and performing sanity checks) are nosistently
deployed in commodity file systems, but they should be to awpavailability and
reliability. Second, CrookFS is integrated well with thé@t components of the
file system, such as layout and scheduling.

6.5.1 Experimental Setup

The experiments in this section were performed on an Intefid® 4 machine with
1 GB of memory and up to four 120 GB 7200 RPM Western Digital Eldisks
(WD1200BB). We used the Linux 2.6.12 operating system aild ®tookFS from
ext3 therein.

To evaluate the performance of different reliability pag under fault-free
conditions, we use a set of well-known workloads: PostM&®],[ which emu-
lates an email server, a TPC-B variant [138] to stress symzius updates, and
SSH-Build, which unpacks and builds the ssh source treeleTald shows the
performance on PostMark, TPC-B, and SSH-Build of eightat#lity policies ex-
plored in more detail in this section, relative to unmodifeeds3.

To evaluate the reliability policies when faults occur, viress the file system
using type-aware fault injection with a pseudo-device afi{Section 3.2.2). To
emulate a block failure, the pseudo-device simply retunrsappropriate error code
and does not issue the operation to the underlying disk. Tdaecorruption, the
pseudo-device changes bits within the block before retgrithe data. The fault
injection is type aware in that it can be selectively apptedach of the 13 different
block types in ext3 (as shown in Table 6.1).
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PostMark TPC-B  SSH-Build

Linux ext3 1.00 1.00 1.00
Propagate 1.00 1.05 1.01
Retry and Reboot 1.00 1.05 1.01
Parity 1.14 1.27 1.02
Mirror near 1.59 1.41 1.04
Mirror par 1.65 1.87 1.06
Sanity Check 1.01 1.05 1.01
Multiple Lines of Defense 1.10 1.28 1.01

Table 6.4:Performance Overheads. The table shows the performance overhead
of different policies in CrookFS relative to unmodified extdiree workloads are
run: PostMark, TPC-B, and ssh. Each workload is run five tinea®rages are
reported (there was little deviation). Running times fomstard ext3 on PostMark,
TPC-B, and SSH-Build are 51, 29.33, 68.19 seconds resplctirhe Multiple
Lines of Defense policy incorporates checksums, sanitgkshand mirrors.

6.5.2 Propagate

The first and most basic question we answer is: how costly te iitilize the
shepherding infrastructure within CrookFS? To measurébttséc overhead of I/0O
shepherding, we consider the simplest reliability polieynull policy that simply
propagates errors through the file system. This basic paipamplicy is extremely
simple, requiring only 8 statements.

The second line of Table 6.4 reports the performance of thpgate policy,
normalized with respect to unmodified Linux ext3. For thepagate policy, the
measured slowdowns are 5% or less for all three workloadas;Wie conclude that
the basic infrastructure and its threaded programming rbalaot add noticeable
overhead to the system.

6.5.3 Reboot vs. Retry

We next show the simplicity of building robust policies giveur I/O shepherding
framework. We use CrookFS to implement two straightformpaticies: the first

halts the file system upon a fault (with optional reboot);gheond retries the failed
operation a fixed number of times and then propagates the@de to the appli-

cation. The pseudo code for these two policies was presesatdidr (Section 6.3).
As shown in Table 6.3 the actual number of lines of code ne¢dechplement

these policies is very small: 15 for each.
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path
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chmod*
read
readlink
getdir
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Figure 6.6:Comparison of Ext3, Reboot, and Retry Policies.The table shows
how CrookFS with a reboot (top) and a retry (bottom) policgateto read faults
(compared to the original ext3 recovery behavior shown igufé 3.3 in Sec-
tion 3.2). Along the x-axis, different workloads are shoeach workload stresses
either a posix API call or common file system functionalityg.(epath lookup).
Along the y-axis, the different data structures of the filteay are presented. Each
(x,y) location presents the results of a read fault injectad a particular data struc-
ture (y) under the given workload (x). The four symbgis<, |, andO) represent
the detection and recovery techniques used by the file system

To demonstrate that CrookFS implements the desired ritiapolicy, we in-
ject type-aware faults on read operations. To stress mating pathin the file sys-
tem, we utilize a synthetic workload that exercises the PO system API. The
three graphs in Figure 6.6 show how the default ext3 file systae Reboot, and
Retry policies respond to read faults for each workload amwdefich block type.
The top graph (taken from Figure 3.3 in Section 3.2.3) shdwasthe default ext3
file system does not have a consistent policy for dealing va#d faults; for ex-
ample, when reading an indirect block fails as part of thewiléing workload, the
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Figure 6.7:Reboot vs. Retry (Throughput). The throughput of PostgreSQL 8.2.4
running pgbench is depicted. The database is initializetth Wi5 GB of data, and
the workload performs a series of simple SELECTs. Four ggagk presented:
the first with no fault injected (top), and the next three vettransient fault. The
bottom three graphs show the different responses from ttifesgent policies: full
system reboot, file system reboot, and retry.

error is not even propagated to the application.

The middle and bottom graphs of Figure 6.6 show CrookFS s @btorrectly
implement the Reboot and Retry policies; for every worklaad for every type of
block, CrookFS either stops the file system or retries thaestjand propagates the
error, as desired. Further, during fault-free operatibe, CrookFS implementation
of these two policies has negligible overhead; Table 6.4vshbat the performance
of these two policies is equivalent to the simple Propagalieyon the three stan-
dard workloads.

Figure 6.7 compares the availability implications of systeboot, a file system
microreboot (in which the file system is unmounted and rertemdnand retrying in
the presence of a transient fault. For these experimentmeasure the throughput
of PostgreSQL 8.2.4 running a simple database benchmabefpt) over time;
we inject a single transient fault in which the storage systeunavailable for one
second. Not surprisingly, the full reboot can be quite gostle system takes nearly
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Figure 6.8: Reboot vs. Retry (Availability). The graph shows the computed
availability (in terms of “nines”) plotted versus the meame between transient
failures for the three policies: full system reboot, fileteys reboot, and retry. The
system is considered “available” when its delivered pemnfance is within 10% of
average steady-state performance.

a minute to reboot, and then delivers lower throughput fogidy another minute
as the cache warms. The microreboot fairs better, but siifess from the same
cold-cache effects. Finally, the simple retry is quite efffee in the face of transient
faults.

Given these measurements, one can calculate the impaetsef three reliabil-
ity policies on system availability. Figure 6.8 plots syatavailability as a function
of the frequency of transient faults, assuming that unakdity is due only to tran-
sient faults and that the system is available when its deld/¢éhroughput is within
10% of its average steady-state throughput. To calibratexipected frequency of
transient faults, we note that although most disks encourdasient faults only
a few times a year, a poorly-behaving disk may exhibit a tearidault once per
week [13]. Given a weekly transient fault, the reboot strgtbas availability of
only “three 9s”, while the retry strategy has “six 9s”.

In summary, it is well known that rebooting a system when &t faccurs has
a large negative impact on availability; however, many caity file systems
deployed today still stop the system instead of retrying peration when they
encounter a transient erroe.g, ext3 and ReiserFS [106]). With CrookFS, one
can easily specify a consistent retry policy that adds gégé slowdown and can
improve availability markedly in certain environments.
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6.5.4 Parity Protection

With the increasing prevalence of latent sector errors,[fil&] systems should con-
tain reliability policies that protect against data lossucls protection is usually
available in high-end RAIDs [30], but not in desktop PCs [[L®@®r our next relia-
bility policy, we demonstrate the ease with which one canatity protection to
a single drive so that user data can survive latent sectorserr

The parity policy is slightly more complex than the retry anetboot policies,
but is still quite reasonable to implement in CrookFS; asashim Table 6.3, our
simple parity policy requires 28 lines of code. As describe&ection 6.4.1, cal-
culating parity efficiently is a non-idempotent operatiand thus the policy code
must perform old-value logging. We employ a static parityesoe, which adds one
parity block fork file system blocksK is configured at boot time). A static map is
used to locate parity blocks.

To help configure the value @&f, we examine the trade-off between the prob-
ability of data loss and space overhead. Figure 6.9 showsthetprobability of
data loss (bottom) and the space overhead (top) as a furafttbe size of the par-
ity set. To calculate the probability of data loss, we udilizcent work reporting
the frequency of latent sector errors [13], as describedhénfigure caption. The
bottom graph shows that using too large of a parity set leadshigh probability
of data loss; for example, one parity block for the entirkdithe rightmost point)
has over a 20% chance of data loss. However, the top graphssthaivusing too
small of a parity set leads to high space overheads; for elkarope parity block
per file system block (the leftmost point) is equivalent tororing and wastes half
the disk. A reasonable trade-off is found with parity setsveen about 44 KB and
1 MB (k = 10 andk = 255); in this range, the space overhead is reasonalde (
less than 10%) while the probability of loss is smak( less than 0.001%). In the
rest of our parity policies, we use parity setskof= 10 blocks.

Adding parity protection to a file system can have a large chpa perfor-
mance. Figure 6.10 shows the performance of the parity yp&dicsequential and
random access workloads that are either read or write ivend he first graph
shows, given no faults, that random reads perform well; Mewegandom updates
are quite slow. This result is not surprising, since eacldoam update requires
reading the old data and parity and writing the new data amilyp@n a single
disk, there is no overlap of these I/Os and hence the poooipegince. The second
graph shows that when there are no faults, the performangadtof parity blocks
on sequential 1/0 is minimal, whether performing reads dtegt The parity pol-
icy code optimizes sequential write performance by bufignnultiple updates to
a parity block and then flushing the parity block in a chainasdaction. Finally,
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Figure 6.9:0Overhead and Reliability with Parity. The bottom graph shows the
probabilty of data loss and the top graph the space overhaadhe size of the
parity set is increased from 2 4-KB blocks (equivalent toroning) to one parity
block for the entire disk. To compute probability of dataslose focused on the
roughly 1 in 20 ATA disks that exhibited latent sector errdes those disks, the
data in [13] reports that they exhibit roughly 0.01 errorsrg@B per 18 months,
or a block failure rateFp of 2.54 x 10~ errors per block per year. Thus, if one
has such a disk, the odds of at least one failure occurring-4s P(NoF ailure)
where P(NoFailure) = (1 — Fg)" on a disk of sizeV. For a 100 GB disk,
this implies a 63% chance of data loss. A similar analysispigliad to arrive at
the bottom graph above, but assuming one must have 2 (or rfagkes within
a parity set to achieve data loss. Note that our analysis mesuthat latent sector
errors are independent.

given a latent sector error on each initial read, read perémce is significantly
slower because the data must be reconstructed; howewis tfiiopefully) a rare
case.

In summary, CrookFS can be used to add parity protectiondsfistems. Al-
though parity protection can incur a high performance costréndom update-
intensive workloadsd.g, TPC-B in Table 6.4), it still adds little overhead in many
cases. We believe that parity protection should be cormsibfr desktop file sys-
tems, since it enables important data to be stored relialdy & the presence of
problematic disks.
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Figure 6.10:Parity Throughput. The figure plots the throughput of the parity pol-
icy under some simple microbenchmarks. For sequentiaksirive simply write
24 MB to disk. For random reads and writes, we either read cdaip random
4-KB blocks in a large (2 GB) file. For reads, both the normatidailure cases
are reported; failures are injected by causing each initiehd to fail which trig-
gers reconstruction. Each experiment is repeated 60 timesiages and standard
deviations are reported.

6.5.5 Mirroring

For parity protection, we assumed that the parity locati@s \determined when
the file system was created. However, to improve performanceliability, more
sophisticated policies may wish to control the locationeafundant information on
disk. We explore this issue in the context of a policy thatrans user data blocks.
The code for this policy has been presented (Section 6.3jementing it requires
18 statements, as shown in Table 6.3.

We first examine the cost of mirroring during writes. The tedist graph of
Figure 6.11 presents the results of a simple experimentrdpmatedly writes a
small 4 KB block to disk synchronously. Three approachexanepared. The first
approach does not mirror the block (None); the second dobsatsalaces the copy
as near to the original as possible (Near); the third placesbpy as far away as
possible (Far). As one can see, placing the copy nearby idynfeee, whereas
placing the blocks far away exacts a high performance cost€l and a rotation).
However, in terms of reliability, the far strategy is betéer spatial localized faults
could occur.

However, when reading back data from disk, spreading nsiragross the disk
surface can improve performance [71, 148]. The rightmoaplrof the figure
shows an experiment in which a process reads a random bltakately from
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Figure 6.11:Mirroring: Layout and Scheduling. The leftmost graph shows the
average cost of writing a small file (4 KB) synchronously gkdunder three differ-
ent replication strategies. The rightmost graph shows therage cost of reading
arandom 4 KB block alternately from two files. Different iegtion strategies are
used; “None” indicates no replication, “Near” that replicaare placed as close to
the original as possible, and “Far” that replicas are placegbproximately 20 GB
away).

each of two files placed on opposite ends of the disk. Withepligation (None),
performance is poor, incurring high seek costs. With theifdica near its original
(Near), there is also no benefit, as expected. Finally, vagilicas far away, read
performance improves dramatically: the scheduler is foegitk the copy to read
from, reducing access time by nearly a factor of two.

In summary, the best choice for mirror locations is highlyanced and depends
on the workload. As expected, when the workload containgrafsiant percentage
of metadata operations, performance suffers with mirggrimegardless of the mir-
ror location €.g, the PostMark and TPC-B workloads shown in Table 6.4). How-
ever, in other cases, the location does matter. If spatiedigized faults are likely,
or read operations dominate.g, in a transactional workload), the Far replication
strategy is most appropriate; however, if data write pen@nce is more critical
(e.g, in an archival scenario), the Near strategy may be the beste. In any
case, CrookFS can be used to dynamically choose differenk thyouts within a
reliability policy.

6.5.6 Sanity Checks

Our next policy demonstrates that CrookFS allows differefiaibility mechanisms
to be applied to different block types. For example, différganity checks can be
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applied to different block types; we have currently implereel sanity checking of
inodes.

Sanity checking detects whether a data structure has bearptad by com-
paring each field of the data structure to its possible valbes example, to sanity
check an inode, the mode of an inode is compared to all pessibbes and point-
ers to data blocks.e., block numbers) are forced to point within the valid range.
The drawback of sanity checks are that they cannot detecbbiiption that does
not lead to invalid valuese(g, a data block pointer that is shifted by one is consid-
ered valid as long as it points within the valid range).

Table 6.3 shows that sanity checks require only 10 statesradnolicy code,
since the I/O shepherd contains the corresponding prieitho evaluate the per-
formance of inode sanity checking, we constructed two iriotlensive workloads:
the first reads one million inodes sequentially while theosels reads 5000 inodes
in a random order. Our measurements reveal that sanity ofgeakcurs no mea-
surable overhead relative to the baseline Propagate peglitge the sanity checks
are performed at the speed of the CPU and require no additiislaaccesses. As
expected, sanity checks also add no overhead to the thrdéoads presented in
Table 6.4.

In conclusion, given that sanity checking has no perforregmenalty, we be-
lieve all file systems should sanity check data structuresnete that sanity check-
ing can be performed in addition to other mechanisms foratieig corruption,
such as checksumming. Although file systems such as ext3mtaissome san-
ity checks, it is currently done in aad hocmanner and is diffused throughout the
code base. Due to the centralized architecture of I/O shidptge CrookFS can
guarantee that each block is properly sanity checked béfirey accessed.

6.5.7 Multiple Levels of Defense

We next demonstrate the use of multiple data protection am@sms within a sin-
gle policy. Specifically, the multiple levels of defenseippluses checksums and
replication to protect against data corruption. Further,dertain block types, the
policy employs repair routines when a structure does na$ pashecksum match
but looks mostly “OK” €.g, all fields in an inode are valid except time fields).
Finally, if all of these attempts fail to repair metadatadnsistencies, the system
unlocks the block, queues any pending requests, fwtk, and then remounts
and begins running again. As indicated in Table 6.3, theipialtevels of defense
policy is one of the more complex policies, requiring 39 iref code.
Figure 6.12 shows the activity over time in a system emplpyins policy

for four different fault injection scenarios; in each case workload consists of



147

Multiple Levels of Defense

" L L L L
Compare 1 Checksum matches
Checksum Blk
Inode Blk

R%‘ﬂ’{‘;’%ﬁﬁ ] _'Checksum mismatch; fetch replica

Compare A 1
Checksum Blk P
Inode Blk

Repair 1 I - R i
Compare - 1 Replica fails; semantic repair works

Relica'l)BIk B |
Checkaumt Bl¢ 1 '
ecksum
Inode Blk =

25 secs&gsgh ]

1 1 1

| All fails; fsck is run
Compare - | ]
Relica Blk - ]

Compare | ]
Checksum Blk
ihode Bik —
f T
0 0.5

T T T T T T

1 15 2 25 3 35 4
Time (ms)

Figure 6.12: A Multi-Level Policy. The figure shows four different runs of the
multiple lines of defense policy. From top to bottom, eagearment induces a new
fault and the y-axis highlights which action the systemdaRéese experiments use
UML, which impacts absolute timing.

reading a single inode. The topmost part of the timeline shawat happens when
there are no disk faults: the inode and its checksum are memal disk and the
checksums match, as desired. In the next experiment, wa mjgingle disk fault,
corrupting one inode; in this case, when the policy seestti@mtchecksums do
not match, it reads the alternate inode which matches, asdesn the third, we
perform a small corruption of both copies of the inode; héne,policy finds that
neither inode’s calculated checksum matches the storedkstm, but finds that the
inode looks mostly intact and can be repaired simplg{ clears a non-zero dtime
because the inode is in use). In our final experiment, we pblrath copies of the
inode more drastically. In this case, all of these stepstdaflx the problem, and
the policy runs the fulf sck; when this action completes, the file system remounts
and continues serving requests (not shown).

The performance overhead of adding multiple levels of defdar inode blocks
is summarized in Table 6.4. Given no faults, the basic owtheof this policy
are to verify and update the inode checksums and to updatedlde replicas.
Although updating on-disk checksums and replicas is copdlyforming multiple
levels of defense has a smaller performance penalty thae stimer policies since
the checks are applied only to inode blocks.
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Figure 6.13: D-GRAID Availability and Performance. The graphs show the
availability and performance of D-GRAID on a workload creatil000 4-KB files.

On the left, each line varies the number of metadata repliedsle increasing the
number of injected disk failures along the x-axis up to tHesfme of an emulated
10-disk array. The y-axis plots the percentage of files alégl. On the right,

performance on four disks is shown as the number of metadatas increases;
the y-axis shows slowdown compared to a single copy.

6.5.8 D-GRAID

To demonstrate the full flexibility of CrookFS, we considdiree-grained reliabil-
ity policy that enacts different policies for different aiisk data types. We explore
this policy given multiple disks. In this final policy, we ifgment D-GRAID style
replication within the file system [123]. In D-GRAID, dirextes are widely repli-
cated across many disks and a copy of eachifite {ts inode, all data blocks, and
any indirect blocks) is mirrored and isolated within a digikubhdary. This strategy
ensures graceful degradation in that the failure of a digksdwot render all of the
data on the array unavailable.

With shepherding, the D-GRAID policy is straightforwarditaplement. First,
the policy code for important metadata (such as directaoaied the superblock)
specifies a high degree of replication. Second, the policyntade, data, and indi-
rect blocks specifies that a mirror copy of each block shoeldlynamically allo-
cated to a particular disk. As indicated in Table 6.3, the RAID policy requires
79 statements; although this is more than any of the othéies|] it is significantly
less than was required for the original D-GRAID implemeiota{123].

Figure 6.13 presents the availability and performance aio&FS D-GRAID.
The leftmost graph shows the availability benefit: with ahhipgree of metadata
replication, most files remain available even when multitikks fail. The right-
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most graph shows performance overhead; as the amount oflateteeplication is
increased from one to four, the time for a synchronous watel(thus metadata-
intensive) benchmark increases by 25%.

In conclusion, CrookFS is particularly interesting givenltiple disks since it
enables the file system to add reliability features acrassligks without a separate
volume manager (much like ZFS [130]). Due to the ability ob@kFS to enact
different policies for different block types, we are abldrtplement even relatively
complex reliability policies, such as D-GRAID.

6.6 Conclusion

In this paper, we have described a flexible approach to iititiaim file systems. 1/0
Shepherding provides a way to tailor reliability featuredit the needs of applica-
tions and the demands of the environment. Through its basigd, shepherding
makes sophisticated policies simple to describe; throwgkfal integration with
the rest of the system, shepherding implements policieseftiy and correctly.

6.6.1 Porting the Shepherd

Similar to other interfaces internal to the OS [84], we bai¢hat multiple file sys-
tems can leverage the same functionalities we have provwidedr current shep-
herding framework. Hence, 1/0 shepherding can be seen aseaaiéayer of which
all file systems can take advantage.

At this point, we have ported shepherding to Linux ext2 andiglly to Reis-
erFS. The ext2 port has been straightforward, as it is simapipn-journaling ver-
sion of ext3. Thus, we removed all consistency managemelet and embrace the
ext2 philosophy of writing blocks to disk in any order. Rels8 has been more
challenging as it utilizes entirely different on-disk sttures than the ext family.
Thus far, we have successfully built simple policies. Tigtodhis work, we are
slowly gaining confidence about the general applicabilitthe shepherding ap-
proach.

6.6.2 Lessons

Adding reliability through the I/O shepherd was simple inmeoways and chal-
lenging in others. In the process of building the environimere have learned a
number of lessons.



150

Interposition simplifies fault management. One of the most powerful aspects
of I/O Shepherding is its basic design: the shepherd insapon all I/O and
thus can implement a reliability policy consistently andreotly. Expecting
reliability from code that is scattered throughout is utistia.

Block-level interposition can make things difficult. The I/O shepherd inter-
poses on block reads and writes that the file system issuesle Watural
for many policies €.g, replicating blocks of a particular type), block-level
interposition makes some kinds of policies more difficultniplement. For
example, implementing stronger sanity checks on direatontents (which
span many blocks) is awkward at best. Perhaps a higherdawglge system
interface would provide a better interposition target.

Shepherding need not be costly. The shepherd is responsible for the execution
of all I/0 requests in the system. Careful integration withes subsystems
is essential in achieving low overheads, with particuléergton paid to the
concurrency management infrastructure.

Good policies stem from good information. Although not the main focus of
this paper, shaping an appropriate reliability policy dgaequires accurate
data on how the disks the system is using actually fail as agethe nature
of the workloads that run on the system. Fortunately, mota debecoming
available on the true nature of disk faults [13, 115]; syst¢hat deploy 1/O
shepherding may also need to incorporate a fault and watkieanitoring
infrastructure to gather the requisite information.

Fault handling in journaling file systems is challenging. By its nature, write-
ahead logging places intentions on disks; reactive faultlliag by its na-
ture must behave reasonably when these intentions canmoebeChained
transactions help to overcome this inherent difficulty, &uthe cost of com-
plexity (certainly it is the most complex part of our code)teknate simpler
approaches would be welcome.

Fault propagation is important (and yet often buggy). An I/O shepherd can
mask a large number of faults, depending on the exact pghiegied; how-
ever, if a fault is returned, the file system above the sheplseresponsible
for passing the error to the calling application. Unfortiehg we have found
many bugs in error propagation. In the previous chapter, ave Ipresented a
static analysis tool that shows where error-codes are éappfile systems
and storage drivers.
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Chapter 7

Related Work

This chapter discusses various research efforts and retdrag that are related to
this dissertation. We first discuss literature on buildingrenrobust file systems
and then close this chapter with with other efforts in anialgsystem robustness.

7.1 Building Robust File and Storage Systems

This section discusses three classes of approach in kyiidore reliable file and
storage systems: adding some forms of redundaeay, feplication, checksum-
ming), using specification, and redesigning how systemsuite

7.1.1 Adding Redundancy

Our work was partially inspired by work within Google. ThargAcharya suggests
that when using cheap hardware, one should “be paranoidaasame it will fail
often and in unpredictable ways [6]. However, Google (ppshaith good reason)
treats this as an application-level problem, and therdboitels checksumming on
top of the file system; disk-level redundancy is kept acros®s (on different ma-
chines) but not within a drive [46]. With I/O shepherdingesle techniques can
be incorporated into the file system, where all applicaticers benefit from them.
Note that I/O shepherding is complimentary to applicaterel approaches; for
example, if a file systermetadatablock becomes inaccessible, user-level check-
sums and replicas do not enable recovery of the now-comwmkime.

The fail-partial failure model for disks is better undetoby the high-end
storage and high-availability systems communities. Fangxde, Network Appli-
ance introduced “Row-Diagonal” parity, which can tolerat® disk faults and can
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continue to operate, in order to ensure recovery despitprésgence of latent sector
errors [30]. Further, virtually all Network Appliance prodts use checksumming
to detect block corruption [69]. Similarly, systems suchttas Tandem NonStop
kernel [18] include end-to-end checksums, to handle problsuch as misdirected
writes [18].

Sivathanuet al. also embraces more replication within a RAID-5 storage ar-
ray [123]. They find that, in a RAID-5 storage array, if onekdfails before an-
other is repaired, the entire array is corrupted. Until agioonsuming restore
from backup, the entire array remains unavailable, althaugst disks are still op-
erational. Thus, they propose D-GRAID to ensure that moss fivithin the file
system remain available even when an unexpectedly high euoflfaults occur.
This done by replicates naming and system meta-data stesgotd the file system
to a high degree while using standard redundancy techniguetata. Thus, with
a small amount of overhead, excess failures do not rendearitie array unavail-
able. Instead, the entire directory hierarchy can still tagdrsed, and only some
fraction of files will be missing, proportional to the numhmissing disks.

Interestingly, redundancy has been uséithin a single disk in a few instances.
Forexample, FFS uses internal replication in a limited f@sfspecifically by mak-
ing copies of the superblock across different platters efdtive [92]. As we noted
earlier, some commodity file systems have similar provision

Yu et al. suggest making replicas within a disk in a RAID array to rextmta-
tional latency [148]. Hence, although not the primary ititem such copies could
be used for recovery. However, within a storage array, ithdidne difficult to ap-
ply said techniques in a selective mannerg( for metadata). Yiet al's work
also indicates that replication can be useful for improvioogh performance and
fault-tolerance.

Checksumming is also becoming more commonplace to impisters secu-
rity. For example, both Patét al.[100] and Steiret al. [126] suggest, implement,
and evaluate methods for incorporating checksums intoygeess. Both systems
aim to make the corruption of file system data by an attackeerdificult.

Finally, the Sun ZFS is a good example of a file system that UR@$ tech-
niques [23]. ZFS uses checksums to detect block corruptioheanploys redun-
dancy across multiple drives to ensure recoverability.

7.1.2 Using Specification

Specification languages like Alloy [74] and Z [31] are usdfd describing con-
straints of a system and then finding violations of that moBelmsky and Rinard
took this approach for writing a specification for a simplifieginux file system [32].
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For example, they can express consistency constraintsastthe inode bitmap is
consistent with the use of inodes”, “blocks are not sharew/den files or other
disk structures”, and “inode reference counts are cofréairthermore, they took
the specification for automatically repairing file syster@2]{ their automated re-
pair finds the cheapest way to repair the system such thdtsfisa the constraints
again. For example, if two inodes share the same data blbekgheapest repair
could simply remove one of the pointers; however, this maylbeothe desired re-
sult. In fact, there are many ways to solve the problem: tbdenwith the earliest
modification time could release the block [93], the blocklddue cloned (e2fsck’s
way), or the operator could decide. Thus, we believe the baak of their work is
that it does not allow one to naturally express the repaasshould be performed
when violations are discovered.

Specifications are also useful to ensure correct data axeBer example, Si-
vathanuet al. propose the notion of a type-safe disk (TSD) [122], a diskesyshat
has knowledge of the pointer relationships between blogWsh this knowledge,
a TSD can enforce invariants on data access, providingrbddta integrity and
security. For example, it can enforce the invariant thatafdmock to be accessed,
a parent block pointing to this block should have been aecessthe recent past.
With this invariant, it is impossible for a buggy file systemdccess an unallocated
block.

Developers could also use simple specifications to ensureataerror-code
propagation. For example, developers could adopt a singplelseck-use method-
ology [21], i.e., before using a value that was set before, one should check th
corresponding error code. However, it is interesting toteaethis simple practice
has not been applied thoroughly in file systems and storageedérivers. As men-
tioned in Section 5.4, we suspect that there are deependsisaggtcomings behind
poor error-code handling.

7.1.3 Redesigning Systems

Numerous researchers have recently explored the advantdgesing declarative
languages in other domains. DeTreville introduced a chaekdeclarative ap-
proach to system configuration that improves system irtiegrid makes systems
more dependable [34]. With this declarative framework, oar apply a system
model to a set of system parameters to produce a staticalidtyfully configured
system instance. Loet al. implemented P2, a system that uses a declarative logic
language to express overlay networks in a highly compactanshble form [89].
With P2, they can specify Chord [127], a peer-to-peer logbgiocol, in 47 simple
logic rules, versus thousands of lines of code for the MIT idhreference imple-
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mentation.

Aspect-oriented programming [29, 83] addresses the gkisstee that code to
implement certain high-level properties.g, “performance”) isscatteredhrough-
out systems, much as we observed that fault-handling is dfiffused through a
file system. Aspect-oriented programming provides langtlagel assistance in
implementing these “crosscutting concerns,” by allowihg televant code to be
described in a single place and then “weaved” into the codle an aspect com-
piler. Thus, one could consider building I1/O Shepherdinghvaspects; however,
the degree of integration required with OS subsystems amalkie this quite chal-
lenging.

Our work also drew inspiration from both the Congestion MgatdCM) [9, 17]
and Click [95]. CM centralizes information about networkngestion within the
OS, thus enabling multiple network flows to utilize this kdedge and improve
their behavior; in a similar manner, the 1/0O Shepherd cdin&ra both information
and control and thus improves file system reliability. Clisla modular system for
assembling customized routers [95]. We liked the clarityCbEk router configu-
rations from basic elements, and as a result there are glarail our policies and
primitives.

We also note that our chained transactions (Section 6.4el3imilar tocom-
pensating transactions the database literature [85]; both deal with the case eher
committed transactions are treated as irreversible, anthgee is a need to change
them. In databases, this situation commonly arises whervemt external to the
transactional setting occurs.§, a customer returns a purchase); in our case, we
use chained transactions in a much more limited manner,fsadly to handle
unexpected disk failures during checkpointing.

7.2 Robustness Analysis

In this section, we present related work that analyzes systdustness, with a
focus on file systems and storage systems. We first discussigees that use fault
injection, and then formal techniques such as model chgdckind static analysis,
and finally monitoring and modeling techniques.

7.2.1 Fault Injection

The fault-tolerance community has worked for many yearsohniques for inject-
ing faults into a system to determine its robustness [197/24120, 139]. These
techniques differ in various waye.@, the types of faults they can inject, the ease of
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use of the framework, the monitoring capability). Some dateihardware faults
such as processor, memory, and bus faults. For example, Haillt Injection-

based Automated Testing) simulates the occurrence of tzaedarrors by altering
the contents of memory or registers [19]. Others simulatevsoe faults. For ex-
ample, FINE (Fault Injection and moNitoring Environmentjeicts software faults
(e.g, pointer errors) into an operating system and traces theugiom flow of the

kernel [77].

The FTAPE (Fault Tolerance And Performance Evaluator) &aork [139] is
closely related to our work. It consists of a workload get@rand a device-driver-
level disk-fault injector (which injects disk errors, bubtncorruption). FTAPE
injects faults by automatically determining the time anchiiion that will maximize
fault propagation. The authors show that this approachsléadigher errors to
faults ratio, an indication that fault-tolerant mecharssane being well-exercised.
Unlike our approach, the FTAPE fault injector does not ihjgpe-aware faults.
Also, while in our framework a fault is initiated upon an |/@ad/write, they use
stress-based injection techniques to inject faults dunigh workload activities.

Another related fault-injection study is an analysis byw&asek et al. [120]. In
their analysis, they test the dependability of a file sysselibraries by corrupting
file pointers. Unlike our approach to pointer corruptioreytitlo not corrupt pointers
in other metadata structures and do not use type-awareptimmwalues.

Also closely related to our work is Brown and Patterson’skvan RAID fail-
ure analysis [24]. Therein the authors suggest that theehigblicies of RAID
systems are worth understanding, and demonstrate (viaifgettion) that three
different software RAID systems have qualitatively diffat failure-handling and
recovery policies. Specifically, they find that while the Wnversion is paranoid
about transient errors and values application performameereconstruction upon
failure, the Windows and Solaris versions tolerate tramtsegrors better and per-
form reconstruction more aggressively. Similar to theirkyaur goal is also to
discover “failure policy”, but target the file system (not BA, hence requiring a
more complex type-aware approach.

In recent work, Johansson analyzes run-time error propaghtased on inter-
face observations [75]. Specifically, an error is injectetha OS-driver interface
by changing the value of a data parameter. By observing thécagion-OS in-
terface after the error injection, they reveal whether mriaccurring in the OS en-
vironment (device drivers) will propagate through the O8 affect applications.
This run-time technique is complementary to our work, egdlgcto uncover the
eventual bad effects of error-broken channels.
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7.2.2 Formal Techniques

Model checking is a formal technique that has been used begrdars to analyze
a variety of systems [76]. Recently, Bairavasundaggdral. use model checking to
examine data protection in RAID systems [86]. They found sthiemes in many
RAID systems are broken; they do not protect against one oe fadures, leading
to unrecoverable data loss or corrupt data being returnegplications. Yanget
al. also have adapted model checking to analyze real operatsigrs code [96],
and subsequently find bugs in file systems [147]. Their tepres are well-suited
to finding certain classes of bugs, whereas our approacimisdhat the discovery
of file system failure policy. Interestingly, our approadscauncovers some serious
file system bugs that Yargt al. do not. One reason for this may be that our testing
is better under scale; whereas model-checking must beelihbat small file systems
to reduce run-time, our approach can be applied to largeyfdtems.

Static analysis is another formal technique that has beed tasstudy file sys-
tems. For example, Yargf al. uses symbolic execution to automatically find bugs
in file system code that sanity checks on-disk data structal@es [146]. In this
work, they found bugs in ext2, ext3, and JFS. These bugs qmikhtially cause
a kernel panic or allow buffer overflow attacks when a malisiaisk image is
mounted. Meta-level compilation (MC) [39, 40] enables agoamnmer to write
simple, system-specific compiler extensions to automiticheck software for
rule violations. With their work, one can find broken chamsngy specifying a rule
such as “a returned variable must be checked.” Comparecetowtork, our EDP
presents more information on how error propagates and cobitviato graphical
output for ease of analysis and debugging.

Our EDP tool is also similar to Jex [111]. While Jex is a statmalysis tool
that determines exception flow information in Java programus tool determines
the error code flow information within the Linux kernel.

7.2.3 Monitoring and Modeling

Systems can also be stress tested and monitored to undetis&nfailure charac-
teristics. Grayet al. measure the disk error rates in SATA drives by moving several
petabytes of data [51]. They run programs in office-like aathetenter-like setups
that write and read data from large files and compare the cueclof the data look-
ing for uncorrectable read errors. They measure about 30rtewtable bit errors
as seen by the file system and 4 errors at the application level

In a larger-scale study, Bairavasundaranal. analyze data collected from pro-
duction storage systems over 32 months across 1.53 millgks §13]. They ana-
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lyze factors that impact latent sector errors, observedseand explore their impli-
cations on the design of reliability mechanisms in storaggesns. They find that
almost 20% of nearline (SATA) disk drives are afflicted byelatsector errors in 2
years of use, and that latent sector errors show high spatchtemporal locality.

In a subsequent study, Bairavasundaratral. analyze corruption instances
recorded in production storage systems [14]. They find thatenthan 400,000
instances of checksum mismatches over the 41-month pérfea) also find many
interesting trends among these instances including: @)lime disks (and their
adapters) develop checksum mismatches an order of magminade often than
enterprise class disk drives, (i) checksum mismatchehimvithe same disk are
not independent events and they show high spatial and tenlpoality, and (iii)
checksum mismatches across different disks in the samagst@ystem are not
independent.

These statistics and characteristics of failures can bduused for analyt-
ically modeling systems reliability. For example, Gibscevelops an analytical
model of the reliability of redundant disk arrays [48]. Hedalisses four different
models ranging from a simple one that considers indeperdigkfailures, to more
complex models that include spare disks and dependencygdiskunit failures.
The models are validated using software simulation. Inlsimiork, Kari develops
reliability models which includes both sector faults anskdinit faults. However,
he treats sector failures as independent events and doescmint for the spatial
locality in sector errors. [78]. In the world of archiving,aBer et al. model the
reliability of long-term replicated storage systems [1&hey consider correlated
failures that might occur due to spatial locality, assuniirag the correlated failures
are exponentially distributed.
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Chapter 8

Future Work and Conclusions

“We can’'t do anything about an error here”
— A comment in ReiserFS (inode.c, line 75)

Years of research on the design and implementation of loeatyistems has
led to an abundance of innovations, many of which are reglizenodern systems.
For example, many performance enhancements have beerssejgad evaluated
in order to improve read and write performance [92, 94, 1Balability has also
been afocus, with the development of more advanced stescfiB2]. Consistency
management has also received a great deal of attentiomywatthon journaling and
soft updates demonstrating how to safely update on-disktsires [119]. Finally,
search functionality has also been incorporated withinfileesystem [47]. How-
ever, not all salient aspects of file system design and imgfgation have been
as carefully studied. In particular, thailure-handling subsystena modern file
systems have largely been ignored.

Disks are one of the primary causes of failure in modern gmsystems [87],
and the manner in which their failures arise is becoming ncoraplex. The sim-
ple view that disks either work or fail completely no longeslds. The reality
today, disks not only exhibit whole-disk failure [115] bus@ partial and temporal
failures, including latent sector faults [13, 79], blockmugtion [14, 46, 53], and
transient faults [135]. As disk failure modes increase ®irthichness, file system
failure handling comes into sharp focus. Thus, this becaime$ocus of our work.

In this dissertation, we started with our analysis of thed&bility components
present in many modern file systems: the file system checkiurd policy, and
journaling (Chapter 3). Ironically, we found that these stdtems are deficient in
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handling partial disk failures, leading to many serioushpems such as unmount-
able file systems and silent data loss. We note that thesgstabss have been in
active development for more than one decade. The fact thgtdte still problem-
atic hints that dealing with disk failures is not easy. Intfdee developer comment
quoted in the beginning of this chapter indicates that evieenithe developers are
aware of the problems, they do not know how to respond.

The results of our analysis call for novel solutions towasd#ding more reli-
able storage systems. Therefore, we have presented oweaabs to solving the
problems we have found. First, we introduced SQCK, a roblessyistem checker
that employs declarative query language (Chapter 4). Nexthuilt EDP, a static
analysis tool that shows error-codes propagation in fileesgs and storage drivers
(in Chapter 5). Finally, we presented I/O shepherding, akrget powerful way
to build robust and centralized failure policies within & fdystem (Chapter 6).

In this chapter, we first summarize our analysis and solst{@®ction 8.1). We
then list a set of lessons we learned from years of reseaydiénsystem reliability
(Section 8.2). Finally, we outline future directions wherg work can possibly be
extended (Section 8.3).

8.1 Summary

This dissertation is mainly divided in two parts: analysidile system reliability
components and our solutions to the problems we have fourel chWose to fo-
cus on local file systems due to their ubiquitous presencenandchallenges they
present. We summarize each part in turn.

8.1.1 Analysis of File System Reliability Components

The first part of this dissertation is about analyzing hoveg¢hreliability compo-
nents present in many modern file systems react to partikifdilires. First, we
evaluated a popular file system checker, e2fsck, the Lint&ahecker. We injected
corruptions to ext2 on-disk pointers and found that someairefare buggy (mak-
ing the repaired file system more corrupted) and some repegranissing (leaving
some corruptions unattended). We believe these probleisist®cause e2fsck is a
complex piece of code; it performs more than 120 data strecgpairs in in more
than ten thousand lines of low-level C code, which is hardeson about. As a
result, it is difficult for e2fsck to combine the many piecésndormation available
and to ensure that all checks and repairs are done in thectameer. Other than
e2fsck, other checker®.Q, ReiserFS and XFS checkers) are unfortunately writ-
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ten in the same way. Thus, we believe these other checkelt# hge the same
weaknesses as in e2fsck.

Second, we looked into failure policy, the file system cormarrresponsible
for dealing with disk failures. We injected block-level ceand write errors and cor-
ruptions to four commodity file systems (Linux ext3, ReisgrBFS, and Windows
NTFS). Our findings point us to a major problem of diffused dilary; policies
that deal with disk failures are scattered in more than ormedied places across
different sections of the file system code. This diffuseddtiag causes policies to
be inconsistent, buggy, and inflexible to change: differenbvery actions are em-
ployed under similar failure scenarios, error-codes aopged incorrectly leading
to serious silent failures, and changing one simple polkguires modifications in
many places.

Finally, we analyzed how journaling reacts to write failsirVe uncovered that
the current journaling framework cannot perform any chedkpfailure recoveries
that result in metadata changes. We call this a problefaitgfd intentions With
this flaw, even a simple block remapping during a checkpaiiltife cannot be
done at the file system level. As a result, many modern fileegystthat employ
journaling (such as ext3, IBM JFS, and ReiserFS) ignorelghant failure. Thus,
the fact that we cannot recover from a checkpoint failuregprty with the current
journaling scheme is disastrous.

8.1.2 Towards Building Reliable Storage Systems

In the second part of this dissertation, we presented ouroaphes in building
a new generation of robust file systems. First, we re-arctatethe file system
checker by introducing SQCK, a robust file system checkerahgploys declara-
tive query language. By writing hundreds of checks and repaia query language
(e.g, SQL), the high-level intent of the checker can be specifieadlear and com-
pact manner. We showed that SQCK is able to perform the sanwidnality
as e2fsck with surprisingly elegant and compact queriesywate e2fsck in 150
queries in about 1100 lines of SQL statement. We also shohetdSQCK can
improve upon the traditional checks and repairs; SQCK essuorrect ordering
of repairs and enables new repairs to be plugged-in easiYCkKs achieves this
simplicity and completeness with little cost to performandverall, we believe
that the SQCK-style declarative approach will lead to a nemegation of simpler,
more robust, and more complete file system checking andrrepai

Second, we presented Error Detection and Propagation (EDd#®atic analysis
tool that shows how error codes flow through the file systemsdachge drivers.
EDP performs a dataflow analysis by constructing a functialh-graph showing



162

how error codes propagate through return values and funpaoameters. We have
applied EDP analysis to all file systems and 3 major storagie@elrivers (SCSI,
IDE, and Software RAID) implemented in Linux 2.6. We foundttlerror han-
dling is occasionally correct Specifically, we observed that low-level errors are
sometimes lost as they travel through the many layers of ibrage subsystem:
out of the 9022 function calls through which the analyzedrecodes propagate,
we found that 1153 calls (13%) do not correctly save the gyafed error codes.
Our detailed analysis shows that many violations are natarecase mistakes; the
return codes of some functions are consistently ignored. ekample, 1/0 write
operations are more likely to neglect error codes than |/&lreperations. This
makes us suspect that the omissions are intentional, whiin &ints that dealing
with disk failures is not easy.

Finally, we designed, implemented, and evaluated a newatibty infrastruc-
ture for file systems calletlO shepherdind60]. With I/O shepherding, the relia-
bility policies of a file system are well-defined, easy to ustEnd, powerful, and
simple to tailor to environment and workload. The I/O sheghachieves these
ends by interposing on each 1/O that the file system issuessetlting a relia-
bility policy for the given 1/0O. Thus, all disk fault-manageent policies are local-
ized within the shepherd. Also, as part of this framework,imteoducechained
transactions a novel and more powerful transactional model that allownlicigs
to handle unexpected faults during checkpointing and @titisistently update on-
disk structures. We showed that 1/0 shepherding enableglairmpowerful, and
correctly-implemented reliability policies by implemard an increasingly com-
plex set of policies, incorporating data protection tegmis such as retry, parity,
mirrors, checksums, sanity checks, and data structurersgg&en complex poli-
cies can be implemented in less than 100 lines of code.

8.2 Lessons Learned

In this section, we present a list of general lessons we éghwhile working on
this dissertation.

Reliability as a first class citizen: Traditionally, systems have been built with
high performance as the primary goal. As a result, religbifatures are not
designed carefully. For example, we have shown that, in 2feck code, its
subcomponents such as loader, scanner, checker, and aepaitermixed.
We have also observed that, in the file system code, relyalbdatures are
buried deep within the code. These unelegant designs madkethm intent
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and the realization of the approach to reliability diffictdt understand or
evolve.

Furthermore, when reliability is not a first class citizenjlthng new relia-
bility features on top of traditional systems is hard to aghi For example,
regardless of two decades of file system development, mddersystems
still do not have online recovery; in the current state, a aged file system
needs to be taken down to be repaired, which greatly reducekbility.
As Henson states, efficient online recovery is hard to budiddoise file sys-
tem data structures were not designed with “repair-drivarthind [66]. We
believe in the future, when systems are built from scrattilaspects of reli-
ability should be considered in the first place [26, 66, 73].

Complexity is the enemy of reliability: Recovery code is complex and hard to
get right. Current approaches describe recovery in thalsahlines of low-
level C code and it is scattered throughout. Thus, we adeachigher-level
strategy where the logic of reliability policies can be ddsed clearly and
concisely. This way, the completeness and correctnes®gfdficies can be
reasoned about in a straightforward manner.

We believe this lesson can be taken more broadly. The nexrgton soft-
ware will contain many more features than today’s softwiree still write
these systems in low-level system languages such as C cedmligve fail-
ures will not be manageable. Unfortunately, that is theestéitthe-art of how
we build large systems such as file system and operatingnsgst€hus, it
is a truly great challenge to come up with higher-level apptes that can
describe how big and complex systems should operate.

Interfaces to support reliability testing: Related to the first lesson above, we
believe that if a system is built with reliability in mind, ghould provide
suitable interfaces that enable a variety of reliabilitgtirgy. For our case,
interfaces that provide type information would have helgeehtly. In our
experience, to perform our fault-injection experiment® must change a
considerable amount of code. More specifically, we must fgaalit3, the
generic buffer cache layer, and the journaling layer to passantics of the
file system into our block-level fault injection. This is laerse, in the current
framework, file system semantics are lost for all I/0Os issuadhe generic
buffer cache manager and journaling layer.

We also experience a similar ordeal when analyzing e2fsdienne2fsck
reads a block of a particular type from the file system imagginiply uses
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theread() POSIX interface. Hence, the intent of the read is not explic-
itly stated. Ideally, for the purpose of testing, we woukklto have another
wrapper that specifies more explicitly the read inteng(r ead( bl ockType, . .),
which would eventually call the POSIX interface. This wayy desting that
leverages type information can perform fault-injectiomsaaly within this

new layer.

The need for formal specification: With the I/O shepherding framework, we
have the machinery to implement good and complex policieselier we
have not provided a method to reason about the correctnebg gblicies.
For example, one might want to define a property such as “ikere single-
point of failure”; a policy writer that forgets to mirror theirror map will
break the rule because the mirror map is a single-point bfrei

Another example is the severe implication of failed intens during check-
pointing (as described in Section 6.4.1): On a succes$sfuhc, a user is
likely to think that the data is consistent as “guaranteeg’jdurnaling file
systems; however, if checkpoint failure is ignored, thesistency assurance
no longer holds. Ironically, the journaling framework haseh widely de-
ployed for a decade [5, 20, 64, 132, 140], but only recentlyehae found
this major flaw. Furthermore, we unearthed this flaw via ogomus fault-
injection experiment. If only there existed a formal speeifion of journal-
ing that incorporates all possible failure modedsg(, including partial disk
failures), we believe that this flaw could be caught easilgsiBes journal-
ing, some systems use other forms of consistency managéegnshadow
paging [52]), and there are many reliability trade-offs nete approaches
that are not yet well understood. We believe using formati$igation will
be highly useful in these other cases.

The need for longitudinal failure simulation: Measuring data reliability is hard.
Our current method in measuring robustness is to inject aihgré at a time
and observe how the evaluated system behaves. In realitlyefado not hap-
pen at one time and the life-span of data could be of seveeakyeddeally,
what we need is a longitudinal failure simulator that reBdetw systems fail
over a long period of time. This kind of simulator needs toomporate the
failure models of all parts that can fai.Q, partial disk failures, spatial lo-
cality, etc), the corresponding real-world statistics, and also rezkivads
that run over many years. Given such as simulator, we willdde & answer
high-level questions such as: “after two years, is all madail available?”,
“how often are file systems taken down due to disk failuresria gear?”,



165

“after multiple corruptions occur over several months, ¢segk repair the

corruptions?”, and many others. By having the answers teettmégh-level

questions, we believe that the many problems we uncover€tiapter 3 can
be more correlated to real-world scenarios. Fortunatblystorage commu-
nity recently has gathered large-scale statistics of lewelldisk and memory
failures [13, 14, 104, 115, 116]. These statistics will bénaportant founda-

tion in building a longitudinal failure simulator.

8.3 Future Work

In terms of future work, our vision is to build highly-relieband -available systems.
This section outlines various directions for this vision.

8.3.1 Continuous Checker and Repair Utility

Traditionally, file systems rely on an offline checker wilifsck [93], to repair all
inconsistencies caused by corruptions. Unfortunatelthasame suggests, offline
fsck can only work when the file system is not running. Sineedilstem downtime
is usually avoided in reality, offline fsck is run very rard€ly.g, every 30 mounts).
As a result, the occasional runs of offline fsck is risky fdiaeility; corruptions
are not detected early in time, and hence, corrupt data menpally be used by
the file system.

Therefore, to improve file system reliability and availitlil the file system
should be armed with a continuous checker and repair utilitye checker guar-
antees that the file system does not use corrupt data seactwhile the repair
restores the file system consistency without the need todsiwah the file system.
As mentioned in the previous section, unfortunately, mésoday'’s file systems
lack such a utility [60, 66, 106]. To build one, several chajes must be addressed.
Below we present the challenges and sketch our proposal.

First, to detect a corruption, the consistency of each datatsire and all of its
fields needs to be verified. This is an expensive process giraghole file system
must be scanned in order to run the cross-checks. Checksygroan alleviate this
cost, however it is often done at a coarse-grained lexgl Gector- or block-level);
it does not pinpoint which data structures are corrupt witlie block. To detect
a corruption in a fine-grained manner, we recommend the uska@fstructure
checksummingwith which the file system can easily retain non-corrupadstuc-
tures and repair only the corrupt ones.
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After corrupt data structures have been detected, one @amexsting redun-
dancy to repair them on-the-fly. However, the corruptioredgébn and the redun-
dancy could appear at different levels in the storage staak €checksumming at
the file system level, and parity at the RAID-level). Unforditiely, the current stor-
age interface hides low-level information from the uppeels. Thus, we propose
that the storage interface has to suppmbperative repair Specifically, a small
interface is added such that the file system can delegatepla& to the underlying
storage subsystem. Such an interface that exposes morenatfon and control
has been shown to be powerful in operating and networkingesys[12, 59].

Third, since redundancy is not always available, not allongnt metadata can
be repaired. For example, commonly directory names aregpticated. A corrupt
directory name could cause its subdirectories to be unsatée. We suggest the
use of assummary databasehich stores partial redundancy of important file system
metadata. Metadata copies can be added or removed flexiidydiang on the level
of availability needed.

Lastly, when all forms of fast repair cannot fix the corruptia full online fsck
is needed. Designing a full online fsck is tricky becauseoiild unsafely modify
data structures that are being used. If not designed chrefutomplex manage-
ment of in-kernel data-structures is required [66]. Thus, propose a design of
online fsck that follows one important rule: it should notfpem removal of data
structures that are in-use. This rule can be implementediting arepair bit in
each of the file system data structures. The bit is set whendhresponding data
structure is found corrupt.€., the checksum is wrong). This marker guarantees
that the file system can only use non-corrupt data structurke online fsck then
performs all types of repair (update, addition, and remjowaldata structures that
have been marked, but could only perform update and addjtiohnot removal)
on those that can be in-use. Without the repair bit, an orf¢ice cannot distinguish
which data structures are safely repairable on-the-fly.

8.3.2 Solving the Problem of Incorrect Error Propagation

With EDP, we are able to catch incorrect propagation of ecoutes that are stored
and propagated mainly in integer containers. However, filé@ storage systems
also use other specific error codes stored in complex stestuMoreover, we
have not yet provided an elegant solution that preventsldeees from making the
same mistakes. Before laying out our future plan on thesé¢emsatve make two
important observations that shed light on the complexitigwliding a complete and
accurate static error propagation analysis.

The first one is abouerror transformation Each layer uses different error
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codes, thus an error code transforms and its error contaiserchangese(g, the

block layer clears the uptodate bit stored in a buffer stmecto signal 1/O failure,
the VFS layer simply uses generic error code suckladand EROFS). We have
observed a path where an error container changes five timalsiimg four different

type of containers. A complete analysis must recognizeatisformations along
with the variables or containers that hold the errors.

The second observation is abartor channels error codes do not propagate
through function call paths only, but alssynchronous pathdVe briefly describe
two examples of asynchronous paths and their complexit@st, when a lower
layer interrupts an upper one to notify it of the completidrao 1/O, the low-level
I/0 error code is usually stored in a structure located inttbap; the receiver of
the interrupt should grab the structure and check the erroariies, but tracking
this propagation through the heap is not straightforwardother example occurs
during journaling: a journal daemon is woken up somewhetlefi sync() path
and propagates a journal error code via a global journat stat

By taking into account the observations above, there arappooaches we can
take. The first one is to enhance our static analysis into & mm@mplete and sound
analysis by considering error transformation and asynabwe path. However,
without complete error code specification, EDP will obvigusiss violations that
forget to check the unspecified error codes. Thus, each laythie system must
properly declare a set of error codes that it exposes to antdkier [136].

The second approach is to build a new error propagationtasthre that pro-
hibits file system programmers to make the same mistake®, Meradvocate two
approaches. First, we propose building systems wséimantic error codeswith
this approach, the system does not blindly believe in theessor failure signal
reported by an error code but instead performs extra chexk®nfirm whether
the corresponding operation is successful or not. Thisnigcie is similar to dy-
namic verification techniques [43]. Second, we propose tupphe malloc-free
paradigm for error codes [82]. Specifically, once an erratecs generated, it is
treated as immutable and can only be destroyed if it transfaio another error
code or the corresponding failure is handled. If there isanling” error code,
then the system has forgotten to check or handle certaitsfallhis new archi-
tecture ensures that errors do not disappear easily, hedoeing the instances of
silent failure.

8.3.3 Other Data Management Systems

In this dissertation, we have focused on the problems of ahdisns for local file
systems. However, there are other systems that are alsonsbfe for managing
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data, such as distributed file systems and database manaigsystems. These
systems are more complex than local file systems with manye momponents
in their storage stack. As an example, the MySQL databaseageament system
consists of 425,000 lines of code [4]. We believe our analys®d solutions can
directly contribute to these other data management systems

As a first step, in fact, we have examined the effects of ctionpn database
management systems [125]. Through fault injection of th&iz DBMS, we find
that in certain cases, corruption can greatly harm the syskeading to untimely
crashes, data loss, or even incorrect results. Overall46fidjected faults, 110
lead to serious problems. More detailed observations pmitd three deficiencies:
MySQL does not have the capability to detect some corruptidue to lack of
redundant information, does not isolate corruptions fratidvdata, and does not
have a proper framework for corruption handling.

Furthermore, we also find that MySQL offline checker is not poshensive in
the checks it performs, misdiagnosing many corruption adea and missing oth-
ers. Sometimes the checker itself crashes; more omindtsipcorrect checking
can lead to incorrect repairs. Overall, we find that the chedoes not behave cor-
rectly in 18 of 145 injected corruptions, and thus can le&eeDBMS vulnerable
to the problems described above.

We note that these findings are similar to the ones we fountkisystems. We
suspect there are two reasons behind this. First, the ingpaettial disk failures to
data management systems has not been well examined itdreend in practice.
Second, many data management systems also describe geabaefery low-level:
thousands of lines of C code. Therefore, beyond local fileesys, our analyses and
solutions can be of significant contributions for other daenagement systems.

8.3.4 Reuvisiting Failure Management

Finally, we believe that failure management in currentesyst should be revisited.
In this dissertation, we have found a major flaw in currentijaling frameworks,
bugs in error-code propagation, and design problems in giagatorage failures.
In short, failure management is hard. This is more true basedur interactions
with some file system developers (ext4, JFS, and CIFS). Tdmadopers are aware
that failures are not always handled properly, howevey thay still not be able to
fix all the bugs in a straightforward manner; there are ladgmign issues. Guo and
Engler also point out a similar observation; in their stuflgeveloper responses on
bug reports, they report that developers tend to addregstedix bugs and defer
difficult (but possibly critical) bugs [63].

Fortunately, we have published a full report of our errorgagation analy-
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sis [57]. This report pinpoints all places where failures gnored in Linux file
systems, and thus, can be seen as a “database” of problemaeXistep is to per-
form an in-depth study of this database in order to unearthas/ design problems
as possible.

8.4 Closing Words

“The price of reliability is the pursuit of the utmost simgity. “
— C.A.R. Hoare, “The Emperor’s Old Clothes”, Turing Awarddiere (1980)

Data reliability is of utmost importance. As the future wadction suggests,
the journey does not end here; there are still many chalketaface. In this disser-
tation, we have adhered to two important principles thap luslface the challenges
of building more reliable storage systems.

First, reliability should be a first-class storage system concefihe reliabil-
ity principle demands that storage systems anticipate eopepy handle all types
of failures. Hence, it is important to critically analyzevihonodern data manage-
ment systems react to the different types of faults that @ how such faults
propagate through the systems, and the broader-scalesfaiichitecture.

Secondcomplexity is the enemy of reliabilitfRecovery code is complex and
hard to get right. Current approaches describe recoverhangands of lines of
low-level C code and it is scattered throughout differewmtisas of the code. Thus,
we have advocated a higher-level strategy where the logielability policies
can be described clearly and concisely. This strategy silgth what Tony Hoare
said (quoted above), but this does not mean that we are §jinglithe features
of today’'s systems. In fact, we accept the fact that tomog@ystems will be
much larger and complex than current ones. Therefore, theamallenge that
this dissertation has addressed is how we can design latighle systems with
simplicity while still keeping them powerful.
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