
Emergent Properties
in Modular Storage

Tyler Harter

A Study of Apple Desktop Applications,
Facebook Messages, and Docker Containers

How are complex applications built?  
(for example, Facebook Messages)

Machine 1 Machine 3Machine 2

We have many machines with many disks.
How should we use them to store messages?

Machine 1 Machine 3Machine 2

One option: use machines and disks directly.

Messages

Machine 1 Machine 3Machine 2

One option: use machines and disks directly.
Very specialized, but very high development cost.

Messages

Machine 1 Machine 3Machine 2
Messages

Messages
HBase

Machine 1 Machine 3Machine 2

Use HBase for K/V logic

Worker
Hadoop File System

Messages
HBase

Worker Worker
Machine 1 Machine 3Machine 2

Use HBase for K/V logic
Use HDFS for replication

Worker
Hadoop File System

Messages
HBase

Worker Worker
Machine 1 Machine 3Machine 2

FSFSFSFSFSFSFSFSFSFSFSFS

Use HBase for K/V logic
Use HDFS for replication
Use Local FS for allocation

Block Device

Local FS

HDFS

HBase

FB Messages (application logic)

(database logic)

(replication logic)

(allocation logic)

(scheduling logic)

Modules Divide Work

Block Device

Local FS

HDFS

MapReduce

Hive

HBase

FB Messages

Modularity Enables Reuse

Local FS

HDFS

MR

Hive

HBase

Msgs

Block Device

Modularity Enables Reuse

Local FS

HDFS

MR

Hive

HBase

Msgs

Block Device

Cocoa SQLite

iTunes Pages

Desktop Applications

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Docker Sandboxes

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

RabbitMQ

Microservices

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

Microservices

How are complex applications built?  
(for example, Facebook Messages)

How are complex applications built?  
(for example, Facebook Messages)

Answer: by gluing together
existing components

Conceptual Integrity

Conceptual integrity “dictates that the design must proceed
from one mind, or from a very small number of agreeing
resonant minds.”

~ Frederick Brooks, The Mythical Man-Month

Conceptual Integrity

Conceptual integrity “dictates that the design must proceed
from one mind, or from a very small number of agreeing
resonant minds.”

~ Frederick Brooks, The Mythical Man-Month

Premise: modern applications and storage systems
are patched together and lack conceptual integrity.

Emergent Properties

Emergent Properties: “properties that are not evident in the
individual components, but they show up when combining
those components”

~ Saltzer and Kaashoek, Principles of Computer System Design

“they might also be called surprises”

Summarizing Modern Storage

Storage systems benefit from modular
• Modules divide work
• Modules enable reuse

But these systems lack conceptual integrity

Questions
• What are the storage needs of modern applications?
• What impact does modularity have on I/O patterns?
• How can we better modularize storage systems?

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

Many Types of Reuse

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

Many Types of Reuse

libraries

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

Many Types of Reuse

libraries

layers

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

Many Types of Reuse

libraries

layers

microservices

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

This Dissertation

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

This Dissertation
iLife and iWork study

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

This Dissertation

Facebook
Messages

study

iLife and iWork study

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

AUFS

Docker

Django

AppRabbitMQ

This Dissertation

Facebook
Messages

study

iLife and iWork study

startup
study

Local FS

HDFS

MR

Hive

Cocoa SQLite

iTunes Pages

HBase

Msgs

Block Device

Slacker

Docker

Django

AppRabbitMQ

This Dissertation

Facebook
Messages

study

iLife and iWork study

startup
study

VMstore

lazy
storage
driver

Publications
SOSP ’11: A File is Not a File: Understanding the I/O Behavior of Apple Desktop
Applications. Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau.

TOCS ’12: A File is Not a File: Understanding the I/O Behavior of Apple Desktop
Applications. Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau.  

FAST ’14: Analysis of HDFS Under HBase: A Facebook Messages Case Study.
Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea
C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau  
 
;login ’14: Analysis of HDFS Under HBase: A Facebook Messages Case Study.
Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea
C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

FAST ’16: Slacker: Fast Distribution with Lazy Docker Containers. Tyler Harter,
Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

In 1974:

“No large ‘access method’ routines are required to insulate the
programmer from the system calls; in fact, all user programs either
call the system directly or use a small library program, only tens of
instructions long…”

~ Ritchie and Thompson. The UNIX Time-Sharing System.

Modern Desktop Applications and Libraries

In the past, applications:
• Used the file-system API directly
• Performed simple tasks well
• Chained together for more complex actions File System

Application

Modern Desktop Applications and Libraries

In the past, applications:
• Used the file-system API directly
• Performed simple tasks well
• Chained together for more complex actions

Today, we see:
• Applications are graphically rich,  

multifunctional monoliths
• “#include <Cocoa/Cocoa.h>  

reads 112,047 lines from 689 files” 
~ Rob Pike ‘10

• They rely heavily on I/O libraries

Cocoa, Carbon,
and other frameworks

File System

Developer’s Code

Modern Desktop Applications and Libraries

File System

Application

• iLife suite (multimedia)

• iPhoto 8.1.1

• iTunes 9.0.3

• iMovie 8.0.5

• iWork (like MS Office)

• Pages 4.0.3  
(Word)

• Numbers 2.0.3 
(Excel)

• Keynote 5.0.3 
(PowerPoint)

Our Study
Measure 34 tasks from popular home-user applications

Goal: understand I/O patterns and impact of libraries

• iLife suite (multimedia)

• iPhoto 8.1.1

• iTunes 9.0.3

• iMovie 8.0.5

• iWork (like MS Office)

• Pages 4.0.3  
(Word)

• Numbers 2.0.3 
(Excel)

• Keynote 5.0.3 
(PowerPoint)

Our Study
Measure 34 tasks from popular home-user applications

This talk: look at one task from Pages in detail as case study

A Case Study: Saving a Document
Application: Pages 4.0.3

• From Apple’s iWork suite
• Document processor (like Microsoft Word)

One simple task (from user’s perspective):
1. Create a new document
2. Insert 15 JPEG images (each ~2.5MB)
3. Save to the Microsoft DOC format

Trace I/O System Calls
• Instrument with DTrace, record user-space stack traces
• Relatively little paging from mmap I/O

Fi
le

s

small I/O

big I/O

Fi
le

s

small I/O

big I/O

Fi
le

s

small I/O

big I/O

Case Study Observations

• Auxiliary files dominate
• Task’s purpose: create 1 file; observed I/O: 385 files are touched
• 218 KV store files + 2 SQLite files:

• Personalized behavior (recently used lists, settings, etc)
• 118 multimedia files:

• Rich graphical experience
• 25 Strings files:

• Language localization
• 17 Other files:

• Auto-save file and others

Fi
le

s

small I/O

big I/O

ThreadsFi
le

s

small I/O

big I/O

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O

• Interactive programs must avoid blocking

small I/O

big I/O

Fi
le

s
Threads

fsync

Fi
le

s
Threads

small I/O

big I/O

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced

• KV-store + SQLite durability
• Auto-save file

Fi
le

s
Threads

fsync

small I/O

big I/O

rename

Fi
le

s
Threads

fsync

small I/O

big I/O

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular

• Often used for key-value store
• Makes updates atomic

Fi
le

s
Threads

rename

fsync

small I/O

big I/O

read

write

Writing the
DOC file

read

write

Writing the
DOC file

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular
• A file is not a file

• DOC format is modeled after a FAT file system
• Multiple “sub-files”
• Application manages space allocation

read

write

Writing the
DOC file

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular
• A file is not a file
• Sequential access is not sequential

• Multiple sequential runs in a complex file => random accesses

read

write

Writing the
DOC file

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular
• A file is not a file
• Sequential access is not sequential
• Frameworks influence I/O

• Example: update value in page function
• Cocoa, Carbon are a substantial part of application

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular
• A file is not a file
• Sequential access is not sequential
• Frameworks influence I/O

all findings are general trends across multiple tasks
(more details in dissertation)

Case Study Observations

• Auxiliary files dominate
• Multiple threads perform I/O
• Writes are often forced
• Renaming is popular
• A file is not a file
• Sequential access is not sequential
• Frameworks influence I/O

all findings are general trends across multiple tasks
(more details in dissertation)

Noted Effects of Modularity

Described in dissertation:
• Mismatch between .doc page size and STDIO block size
• Repeated read-copy-update to same page
• Open flags are meaningless (O_RDWR overused)
• Preallocation hints not meaningful
• Copy abstraction prevents combined use of source
• Coarse-grained exclusion make fine-grained locks useless
• Atomicity/durability required for unimportant data

Noted Effects of Modularity

Described in dissertation:
• Mismatch between .doc page size and STDIO block size
• Repeated read-copy-update to same page
• Open flags are meaningless (O_RDWR overused)
• Preallocation hints not meaningful
• Copy abstraction prevents combined use of source
• Coarse-grained exclusion make fine-grained locks useless
• Atomicity/durability required for unimportant data

Use of Fsync
Older studies
• Baker et al.: 16% of data flushed by app. request (1991)
• Vogels: “In 1.4% of file opens that had write operations

posted to them, caching was disabled at open time. Of the
files that were opened with write caching enabled, 4% actively
controlled their caching by using the flush requests.” (1999)

Newer study
• Kim et al.: SQLite write traffic itself is quite random with plenty

of synchronous overwrites … apps use the Android interfaces
oblivious to performance. A particularly striking example is the
heavy-handed management of application caches through
SQLite.” (2012)

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Represents HBase over HDFS
▪ Common backend at Facebook

and other companies
▪ Similar stack used at Google  

(BigTable over GFS)

Why Study Facebook Messages?
Represents an important type of
application. Universal backend for:
▪ Cellphone texts
▪ Chats
▪ Emails

Represents HBase over HDFS
▪ Common backend at Facebook

and other companies
▪ Similar stack used at Google  

(BigTable over GFS)

Represents layered storage

Methodology

Messages
HBase

HDFS
Local FS

Actual stack

Methodology
New tracing layer
▪ Hadoop Trace FS (HTFS)
▪ Collects request details
▪ Reads/writes, offsets, sizes
▪ Not contents

Trace results
▪ 9 shadow machines
▪ Production requests mirrored
▪ 8.3 days
▪ 71TB of HDFS I/O

Messages
HBase

HDFS
Local FS

HDFS Traces

Actual stack

Methodology

Messages
HBase

HDFS
Local FS

HDFS Traces

MapReduce Analysis Pipeline

Workload Analysis

Actual stack

Methodology

Messages
HBase

HDFS
Local FS

HDFS Traces

MapReduce Analysis Pipeline

Workload Analysis

HBase+HDFS
Actual stack Simulated stack

Local Traces
(inferred)

what -ifs

Local Storage
what -ifs

Simulation Results

Methodology

Messages
HBase

HDFS
Local FS

HDFS Traces

Actual stack

Methodology

Messages
HBase

HDFS
Local FS

HDFS Traces

Actual stack

Background: how does HBase use HDFS?

HBase’s HDFS Files
Four activities do HDFS I/O:

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

HBase receives a put()

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

After many put’s, buffer fills

LOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

Flush to sorted file

DATALOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

DATALOG

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

Files accumulate after
many flushes

DATALOG
DATA
DATA
DATA

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

DATALOG
DATA
DATA
DATA

get’s may check many files

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

DATALOG
DATA
DATA
DATA

get’s may check many files

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

DATALOG
DATA
DATA
DATA

merge sort these

DATA

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction

H
D

FS
 F

ile
s

H
Ba

se
 M

em
or

y MemTable

LOG DATA

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction

Baseline I/O:
▪ Flushing and foreground reads are always required

HBase’s HDFS Files
Four activities do HDFS I/O:
▪ Logging
▪ Flushing
▪ Foreground reads
▪ Compaction

Baseline I/O:
▪ Flushing and foreground reads are always required

HBase overheads:
▪ Logging: useful for crash recovery (not normal operation)
▪ Compaction: useful for performance (not correctness)

Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion

Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?

Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?

Cross-layer R/W Ratios

Baseline HDFS I/O:

0 20 40 60 80 100
I/O (TB)

cache
misses

1% writes

reads writes

Cross-layer R/W Ratios

Baseline HDFS I/O:

compact LO
G

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

1% writes

21%

Cross-layer R/W Ratios

Baseline HDFS I/O:

compact LO
G

R1 R2 R3

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

Local FS:

1% writes

21%

45%

replicas

Cross-layer R/W Ratios

Baseline HDFS I/O:

compact LO
G

R1 R2 R3

0 20 40 60 80 100
I/O (TB)

cache
misses

0 20 40 60 80 100
I/O (TB)

cache
misses

All HDFS I/O:

Local FS:

Disk:

1% writes

64%

21%

45%

Layers amplify writes: 1% => 64%
◆ Logging, compaction, and replication increase writes
◆ Caching decreases reads

Workload Analysis Conclusions

Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?

Created Files: Size Distribution

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

Created Files: Size Distribution

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

50% of files are <750KB

Created Files: Size Distribution

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B
25

6M
B

51
2M

B
1G

B0%

25%

50%

75%

100%

File Size

Pe
rc

en
t o

f F
ile

s

90% of files are <6.3MB

Layers amplify writes: 1% => 64%
Files are very small: 90% smaller than 6.3MB

Workload Analysis Conclusions

Workload Analysis Questions

At each layer, what activities read or write?
How large are created files?
How sequential is I/O?

Reads: Run Size

Reads: Run Size

50% of runs (weighted by I/O) <130KB

Reads: Run Size

80% of files are <256KB

Layers amplify writes: 1% => 64%
Files are very small: 90% smaller than 6.3MB
Fairly random I/O: 130KB median read run

Workload Analysis Conclusions

Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion

Software Architecture: Workload Implications

Writes are amplified
▪ 1% at HDFS (w/o overheads) to 64% at disk (30GB RAM)
▪ We should optimize writes

61% of writes are for compaction

36% of writes are for logging

Replication Overview

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Problem: Network I/O (red lines)

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Solution: Ship Computation to Data

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

In Our Case, do Local Compaction

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

do compactdo compact

In Our Case, do Local Compaction

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

compaction compactioncompaction

Local Compaction

Normally 3.5TB of network I/O

Re
ad

 I/
O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

Local Compaction

Normally 3.5TB of network I/O

Local comp: 62% reduction

Re
ad

 I/
O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)

2.2

Local Compaction

Normally 3.5TB of network I/O

Local comp: 62% reduction

Re
ad

 I/
O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)
disk (normal)2.2

Local Compaction

Normally 3.5TB of network I/O

Local comp: 62% reduction

Network I/O becomes disk I/O
▪ 9% overhead (30GB cache)
▪ Compaction reads are  

(a) usually misses, 
(b) pollute cache

▪ Disk I/O is much cheaper

Re
ad

 I/
O

 (T
B)

0 100 200 300 400
0

2

4

6

8

10

Cache size (GB)

net (normal)

net (local)
disk (normal)

disk (local)

2.4

2.2

Related Work: Salus

Wang et al. built Salus, an implementation of the HBase
interface that replicates DB compute as well as storage
▪ Side effect: compaction work is replicated, so Salus does

local compaction

Finding: “Salus often outperforms HBase, especially
when disk bandwidth is plentiful compared to network
bandwidth.”

Replication Overview

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Replication Overview

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

Typical HDFS Worker Receives Logs from 3

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

LOG LOG LOG

Disks

Problem: Extra Seeks for Logging

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

LOG LOG LOG

Disks

Solution: Combine Logs (New HDFS API)

HBase
Worker

HDFS
Worker

Machine 2

HBase
Worker

HDFS
Worker

Machine 1

HBase
Worker

HDFS
Worker

Machine 3

LOG LOG LOG

Combined Logging
La

te
nc

y
(m

s)

10 15 20 25
0

4

8

12

16

20

Disks

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

Compaction 12% faster
▪ Less competition with logs

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

12%

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

Compaction 12% faster
▪ Less competition with logs

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

12%

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

Compaction 12% faster
▪ Less competition with logs

Foreground reads 3% faster

La
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

3%

12%

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Combined Logging

Log writes 6x faster (15 disks)

Compaction 12% faster
▪ Less competition with logs

Foreground reads 3% faster

Puts do not block currently
▪ Very useful if put()’s were

to block until logs on diskLa
te

nc
y

(m
s)

10 15 20 25
0

4

8

12

16

20

Disks

3%

12%

6x

foreground
compaction
logging

foreground (combine)
compaction (combine)
logging (combine)

Facebook Messages Outline

Background
Workload Analysis
▪ I/O causes
▪ File size
▪ Sequentiality

Layer Integration
▪ Local compaction
▪ Combined logging

Discussion

Conclusion 1: New Workload on an Old Stack

Original GFS paper:
▪ “high sustained bandwidth is more important than low latency”
▪ “multi-GB files are the common case”

We find files are small and reads are random
▪ 50% of files <750KB
▪ 50% of read runs <130KB

Comparison to previous findings:
▪ Chen et al. found HDFS files to be 23 GB at 90th percentile
▪ We find HDFS files to be 6.3 MB at the 90th percentile

Conclusion 2: Layering is not Free

Layering “proved to be vital for the verification and logical soundness”
of the THE operating system ~ Dijkstra

Layering is not free
▪ Over half of network I/O for replication is unnecessary

Layers can amplify writes, multiplicatively
▪ Logging overhead (10x) with replication (3x) => 30x write amp

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

Container Popularity

spoon.net

What is a Container?
Goal: provide lightweight virtualization (compared to VMs)

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:
• file system mounts
• network
• host names
• IPC queues
• process IDs
• user IDs

What is a Container?
Goal: provide lightweight virtualization (compared to VMs)

Operating systems have long virtualized CPU and memory

But many resources have not been historically virtualized:
• file system mounts
• network
• host names
• IPC queues
• process IDs
• user IDs

New namespaces are collectively called “containers”
• lightweight, like virtual memory
• old idea rebranded (Plan 9 OS)

OS-Level Virtualization

Proc A Proc B

CPU RAM

OS-Level Virtualization

Proc A Proc B

CPU RAM

scheduler
(CPU)

OS-Level Virtualization

Proc A Proc B

CPU RAM

scheduler
(CPU)

PT PT
namespace
(memory)

OS-Level Virtualization

Proc A Proc B

CPU RAM

PT PT

ports

map map

100 200

80 80

Implications for Microservices
Decomposing applications is an old technique.

How fine grained should the components be?

Implications for Microservices

coarse if sandboxes are expensive 
(e.g., virtual machines are used)

Decomposing applications is an old technique.

How fine grained should the components be?

Implications for Microservices
Decomposing applications is an old technique.

How fine grained should the components be?

fine if sandboxes are cheap 
(e.g., containers are used)

Implications for Microservices
Decomposing applications is an old technique.

How fine grained should the components be?

each microservice must
be initialized first

Implications for Microservices
Decomposing applications is an old technique.

How fine grained should the components be?

FS

file system provisioning is
an interesting problem

Resource Initialization

OS
container

CPU
core page /bin/…

/usr/…
compute memory storage

Resource Initialization

OS
container

CPU
core page /bin/…

/usr/…
compute memory storage
(minimal init) (zeroing) (100’s of MBs)

Theory and Practice

Theory: containers are lightweight
• just like starting a process!

Theory and Practice

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight
• just like starting a process!

Practice: container startup is slow
• Large-scale cluster management at Google with Borg [1]
• 25 second median startup
• 80% of time spent on package installation
• contention for disk a bottleneck
• this problem “has received and continues to receive significant attention"

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory and Practice

[1] Large-scale cluster management at Google with Borg.
 http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Theory: containers are lightweight
• just like starting a process!

Practice: container startup is slow
• Large-scale cluster management at Google with Borg [1]
• 25 second median startup
• 80% of time spent on package installation
• contention for disk a bottleneck
• this problem “has received and continues to receive significant attention"

Startup time matters
• flash crowds
• load balance
• interactive development

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

Docker Outline

Container and Microservice Background

Docker Background

HelloBench Workload

Analysis
• Data distribution across layers
• Access patterns

Docker Background

Deployment tool built on containers

An application is defined by a file-system image
• application binary
• shared libraries
• etc.

Version-control model
• extend images by committing additional files
• deploy applications by pushing/pulling images

Containers as Repos

LAMP stack example
• commit 1: Linux packages (e.g., Ubuntu)
• commit 2: Apache
• commit 3: MySQL
• commit 4: PHP

Docker “layer”
• commit
• container scratch space

Central registries
• Docker HUB
• private registries

Push, Pull, Run
registry

worker workerworker

registry

worker workerworker

push

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

registry

worker workerworker

pull pull

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

registry

worker workerworker

Push, Pull, Run

CC C
run runrun

registry

worker workerworker

Push, Pull, Run

CC C

need a new benchmark
to measure Docker push,
pull, and run operations.

run runrun

Docker Outline

Container and Microservice Background

Docker Background

HelloBench Workload

Analysis
• Data distribution across layers
• Access patterns

HelloBench

Goal: stress container startup
• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run

HelloBench

Goal: stress container startup
• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run

HelloBench

Goal: stress container startup
• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

push pull run
ready

HelloBench

Goal: stress container startup
• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

Development cycle
• distributed programming/testing

push pull run
ready

development cycle

HelloBench

Goal: stress container startup
• including push/pull
• 57 container images from Docker HUB
• run simple “hello world”-like task
• wait until it’s done/ready

Development cycle
• distributed programming/testing

Deployment cycle
• flash crowds, rebalance

push pull run
ready

deployment cycle

Workload Categories
Linux Distro
alpine
busybox
centos
cirros
crux
debian
fedora
mageia
opensuse
oraclelinux
ubuntu
ubuntu-
debootstrap
ubuntu-upstart

Database
cassandra
crate
elasticsearch
mariadb
mongo
mysql
percona
postgres
redis
rethinkdb

Web Framework
django
iojs
node
rails

Language
clojure
gcc
golang
haskell
hylang
java
jruby
julia
mono
perl
php
pypy
python
r-base
rakudo-star
ruby
thrift

Web Server
glassfish
httpd
jetty
nginx
php-
zendserver
tomcat

Other
drupal
ghost
hello-world
jenkins
rabbitmq
registry
sonarqube

Docker Outline

Container and Microservice Background

Docker Background

HelloBench Workload

Analysis
• Data distribution across layers
• Access patterns

Analysis Questions

How is data distributed across Docker layers?

How much image data is needed for container startup?

Analysis Questions

How is data distributed across Docker layers?

How much image data is needed for container startup?

HelloBench images
• circle: commit
• red: image

Image Data Depth

half of data is at depth 9+

Image Data Depth

Analysis Questions

How is data distributed across Docker layers?
• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?

Analysis Questions

How is data distributed across Docker layers?
• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?

Container Amplification

Container Amplification

Container Amplification

only 6.4% of data needed during startup

Analysis Questions

How is data distributed across Docker layers?
• half of data is at depth 9+
• design implication: flatten layers at runtime

How much image data is needed for container startup?
• 6.4% of data is needed
• design implication: lazily fetch data

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

Slacker Outline

AUFS Storage Driver Background

Slacker Design

Evaluation

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

Operations
• push
• pull
• run

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

layers:

…

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

directories:

…

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C
…

PUSH
directories:

A B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B Ctar.gz

PUSH

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B Ctar.gz

PUSH

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

PULL

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

tar.gz

PULL

…

directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Ztar.gz

PULL
directories:

A B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

PULL
directories:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
directories:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN scratch dir:

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

root FS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read B

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read B

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read X

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

read X

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z
copy

A B CA B C

X Y Z

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

append Z

Z’

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

AUFS Storage Driver

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

AUFS Driver

A B C

X Y Z

RUN
AUFS

Z’

X Y Z

A B CA B CA B C

Uses AUFS file system (Another Union FS)
• stores data in an underlying FS (e.g., ext4)
• layer ⇒ directory in underlying FS
• root FS ⇒ union of layer directories

HelloBench with AUFS

HelloBench with AUFS

76% of deployment cycle spent on pull

AUFS Problems
Uses AUFS file system (Another Union FS)

• stores data in an underlying FS (e.g., ext4)
• each Docker layer is a directory in underlying FS
• union these directories to create complete view of FS

Deployment problem: lots of copying
• Caused by push+pull
• Compute costs: compression
• Network costs: transferring tar.gz files
• Storage I/O costs: installing packages
• Pull+run = 26 seconds

Execution problem: coarse-grained COW
• Iterate over directories on lookup
• Large copies for small writes
• more in dissertation

Slacker Outline

AUFS Storage Driver Background

Slacker Design

Evaluation

images and
containers

Slacker Driver

Goals
• make push+pull very fast
• create drop-in replacement; don’t change Docker framework itself

Design
• lazily pull image data (like Nicolae et al. do for VMs)
• utilize COW primitives of Tintri VMstore backend (block level)

images and
containers

Prefetch vs. Lazy Fetch

registry

images

worker

containers

registry worker

Docker Slacker

images and
containers

Prefetch vs. Lazy Fetch

registry

images

worker

containers

registry worker

Docker Slacker

significant copying
• over network
• to/from disk

centralized storage
• easy sharing

Prefetch vs. Lazy Fetch

registry

images

worker

containers

Docker

images and
containers

registry worker

Slacker

Prefetch vs. Lazy Fetch

images and
containers

registry

Slacker

loopback
ext4

container

NFS File

loopback
ext4

container

Prefetch vs. Lazy Fetch

Slacker
registry

NFS File

loopback
ext4

container

Prefetch vs. Lazy Fetch

Slacker
registry

NFS File

VMstore abstractions…

VMstore Abstractions

Copy-on-Write
• VMstore provides snapshot() and clone()

snapshot(nfs_path)
• create read-only copy of NFS file
• return snapshot ID

clone(snapshot_id)
• create r/w NFS file from snapshot

Slacker Usage
• NFS files ⇒ container storage
• snapshots ⇒ image storage
• clone() ⇒ provision container from image
• snapshot() ⇒ create image from container

Lazy Allocation

Tintri VMstore

worker A

container

NFS file

Lazy Allocation

Tintri VMstore

worker A

NFS file

snapshot

Worker A: push

Lazy Allocation

Tintri VMstore

worker A

NFS file

snapshot

snap NCOW

Worker A: push

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

Worker A: push

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker A: push

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker A: push

img

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Note: registry is only a name server.
Maps layer metadata ⇒ snapshot ID

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B
NN

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

clone N

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

clone N

COW NFS file

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file

N

snap N

registry

Worker B: pull and run

worker B

NFS file

N

snap N

Nimg

Lazy Allocation

Tintri VMstore

worker A

NFS file snap N

registry

Worker B: pull and run

worker B

NFS file

container

snap N

img

Indirection Discussion

ext4
dir dir dir dir

copy-on-write ext4
NFS NFS NFS NFS

copy-on-write

ext4 ext4 ext4

AUFS Slacker

namespace

block

File namespace level
• flatten layers
• if B is child of A, then “copy” A to B to start. Don’t make B empty

Block level
• do COW+dedup beneath NFS files, inside VMstore

Indirection Discussion

File namespace level
• flatten layers
• if B is child of A, then “copy” A to B to start. Don’t make B empty

Block level
• do COW+dedup beneath NFS files, inside VMstore

ext4
A B C D

copy-on-write ext4
A AB ABC ABCD

copy-on-write

ext4 ext4 ext4

AUFS Slacker

namespace

block

Challenge: Framework Assumptions

Assumed Layout Actual Layout

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 runnable

runnable

Challenge: Framework Assumptions

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 pull pull

Assumed Layout Actual Layout

Challenge: Framework Assumptions

 D

 C

 B

 A

La
ye

rs

 A B C D

 A B C

 A B

 A
La

ye
rs

 optimize

Strategy: lazy cloning. Don’t clone non-top
layers until Docker tries to mount them.

Assumed Layout Actual Layout

Slacker Outline

AUFS Storage Driver Background

Slacker Design

Evaluation

Questions

What are deployment and development speedups?

How is long-term performance?

Questions

What are deployment and development speedups?

How is long-term performance?

HelloBench Performance

deployment: pull+run
development: push+pull+run

Questions

What are deployment and development speedups?
• 5x and 20x faster respectively (median speedup)

How is long-term performance?

Questions

What are deployment and development speedups?
• 5x and 20x faster respectively (median speedup)

How is long-term performance?

Server Benchmarks

Databases and web servers
• PostgreSQL
• Redis
• Apache web server (static)
• io.js Javascript server (dynamic)

Experiment
• measure throughput (after startup)
• run 5 minutes

Server Benchmarks

Databases and web servers
• PostgreSQL
• Redis
• Apache web server (static)
• io.js Javascript server (dynamic)

Experiment
• measure throughput (after startup)
• run 5 minutes

Result: Slacker is always at least as fast as AUFS

Questions

What are deployment and development speedups?
• 5x and 20x faster respectively (median speedup)

How is long-term performance?
• there is no long-term penalty for being lazy

Slacker Conclusion

Containers are inherently lightweight
• but existing frameworks are not

COW between workers is necessary for fast startup
• use shared storage
• utilize VMstore snapshot and clone

Slacker driver
• 5x deployment speedup
• 20x development speedup

Outline

Motivation: Modularity in Modern Storage

Overview: Types of Modularity

Library Study: Apple Desktop Applications

Layer Study: Facebook Messages

Microservice Study: Docker Containers

Slacker: a Lazy Docker Storage Driver

Conclusions

Modularity Often Causes Unnecessary I/O

Measurement exposed undesirable emergent properties

Libraries cause iBench applications to excessively flush

Layers cause Facebook Messages to waste network I/O

Microservice provisioning unnecessary copying

Layers Mask Costs

Apple desktop
• Key/value layer causes excessive fsync/rename
• SQLite use caused excessive fine-grained locking, rendered

unnecessary by higher-level exclusion

Facebook Messages
• composition of layers amplifies writes from 1% to 64% of total I/O

Docker containers
• AUFS access surprisingly expensive to deep data

Simple Integration Surprisingly Useful

Measurement-driven optimizations are surprisingly
effective at mitigating the cost of modularity

Local compaction
• reduces network I/O by 2.7x

Combined logging
• reduces log latency by 6x

Lazy propagation
• reduces container startup latency by 5x

Thank you!

