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Overview
2

Study, design, and implement better Consensus protocols and systems …

… for modern replicated Cloud services …

… using our proposed principle of Optimistic Connectivity …

… and other underpinning contributions to consensus research.



Overview
3

Consensus protocols

enable

strongly-consistent 
highly-available

State Machine Replication

which is at the heart of

fault-tolerant cloud services

Modern cloud imposes
“4D” challenges

We present
two protocols

Density

Distance

Diversity

Dynamism

Existing consensus solutions did not consider

Crossword

Bodega

that follow the principle of 
Optimistic Connectivity

to tackle composite “4D” challenges 
and advance the state-of-the-art in 

cloud consensus systems



Overview: Crossword
4

Density Diversity Dynamism+ +

Problem:  cloud consensus systems face a dynamic mix of small and large payloads

Approach:  adaptive erasure-coded consensus with a shard count – quorum size tradeoff
- for large requests, optimistically choose larger quorum sizes for reduced data transfer
- upon failures, smoothly switch to conservative quorum size configurations
- configuration is tunable per consensus instance, giving adaptivity
- off-the-critical-path gossiping between followers to retain graceful leader failover

Result:  over 2x performance of existing protocols, 1.32x throughput in CockroachDB!



Overview: Bodega
5

Distance Diversity Dynamism+ +

Problem:  wide-area consensus delivers slow reads, leaving location affinity untapped

Approach:  adaptive roster composition of responder nodes that serve reads locally
- per-key tunable selection of responder roles according to client locations & workloads
- novel roster leases algorithm to enable fault-tolerant updates to rosters, always retaining 

linearizability and availability with negligible overhead (embedded in heartbeats)
- optimizations: optimistic holding, early accept notifications, smart roster coverage, …

Result:  performance on par with sequentially-consistent etcd & ZooKeeper deployments!
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Consensus protocols

enable

strongly-consistent 
highly-available

State Machine Replication

which is at the heart of

fault-tolerant cloud services

Modern cloud imposes
“4D” challenges

We present
two protocols

Density

Distance

Diversity

Dynamism

Existing consensus solutions did not consider

Crossword

Bodega

that follow the principle of 
Optimistic Connectivity

to tackle composite “4D” challenges 
and advance the state-of-the-art in 

cloud consensus systems
Summerset
KV Testbed

Unified Consistency Levels 
Hierarchy & Checker

Formal but Practical TLA+ 
Specifications
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Consensus & State Machine Replication

9



The Consensus Problem
Consensus :=  reaching agreement among message-passing processes despite failures

10

S0

S1

S2

Gordon

Four Lakes

emmm…?

Goal: everyone knows where to meet for dinner
(which one doesn’t matter)

“single-decree”



Multi-decree Consensus
11

Multi-decree consensus :=  reaching a continual sequence of agreements

S0

S1

S2

Goal: everyone knows where to meet for dinner for every night onwards

Gordon Monday, Four Lakes Tuesday, Rheta’s Wednesday, …



State Machine Replication (SMR)
12

S0

S1

S2

Server Node

(Durable) Log

G: 3
F: 5

State Machine

G-- get G G-- …F--

Messaging
with clients
with peersService

SMR :=  multi-decree consensus where the sequence is a log of state machine commands
              to be executed in the same order on all nodes

use Gordon, check Gordon balance, use Gordon, use Four Lakes, …

Goal: a fault-tolerant service that tracks meal plan balance, replicated 3 ways

Client

Client



Failure Model
What failures do we handle?

13

S0

S1

S2

Fail-stop node:
- may crash or respond 

arbitrarily slowly at any time
- may recover at any time

Asynchronous network:
- message may be lost, duplicated, 

or delivered arbitrarily slowly
- messages may be delivered 

out-of-order
- network partitioning is covered

What failures do we not handle?
Byzantine failures:  malicious nodes,  malicious/corrupted messages



- All replicas agree on a single serial order    (exception: commutative commands) 
- If op1 finished earlier than op2 started, op1 must precede op2 in the order

Consistency & Availability Requirement
Consistency:  how “correct” is correct replication?

14

Linearizability  =>  as if an atomic single-node service

Availability:  how many concurrent faults to tolerate before blocking progress?

- Measure: counting # of failed nodes, including
- fail-stopped nodes
- nodes that have trouble sending out messages

- Goal: match the availability level of classic consensus protocols



Classic Consensus Protocols

15



Consensus in the Wild
Classic protocols:  MultiPaxos & variants [15], Viewstamped Replication [16], Raft [17]

16

Metadata Management Coordination Service

*

Data Storage

Consensus-infused systems across the cloud landscape:

Inherent duality between MultiPaxos and latter ones [2]



Classic Protocol: MultiPaxos
Prepare Phase – some node S steps up as leader and gathers must-know history

17

4 : y 4 : j 4 : g➢ S chooses a higher-than-seen, unique 
ballot number b

➢ S broadcasts Prepare(b)
➢ Receiver replies with a “covering-all” 

PrepareReply(b, [b’0:v’0, b’1:v’1, …]) 
containing the highest ballot it has ever 
accepted for each slot and its value

➢ S, upon getting >= majority replies, is 
effectively “elected” as leader; for each 
non-committed slot in order:

if no values found among replies:
can try any value, so wait for client input

otherwise:
immediately do Accept Phase using the 
value with the highest ballot among replies

S0

3 : x 6 : kS1

4 : y 5 : hS2

PrepareReply(9, [4:y, 4:j, 4:g, —])

PrepareReply(9, [4:y, –, 5:h, —])

9 : y 9 : k 9 : h



4 : y 5 : h

9 : y 9 : k 9 : h

4 : y 4 : j 4 : g

Classic Protocol: MultiPaxos
18

Accept Phase per slot – leader S establishes agreement of a slot with followers

9 : y 9 : k 4 : g➢ S checks the next slot that’s pending 
acceptance, and chooses safe value v 
for it according to the last slide

➢ S broadcasts Accept(b, slot, v)

S0

9 : y 9 : k 9 : hS1

9 : y 9 : k 5 : hS2

Accept(9, slot 2, h)

Accept(9, slot 2, h)
➢ Receiver checks if ballot b >= the largest 

ballot it has ever seen?
if yes, accept the value:

reply with AcceptReply(b, slot)
otherwise, ignore

➢ S, upon getting >= majority replies, commits the slot and tells followers asynchronously;
the contiguously committed prefix of the log can be scheduled for execution on the SM



MultiPaxos Timeline View
19

S1

S0

S2

Prepare

Accept Accept …

Only the Accept round is needed in failure-free cases without competing leaders

up to infinity

slot 0 slot 1



Cloud-Era Challenges: What Changed?

20



The “4D” Challenges
21

Density

Payload Size Heaviness

Distance

Geo-Scale Distribution

Diversity

Diverse Workloads & Heterogeneous Hardware

Dynamism

Constant Changes over Time



Density
22

Density

Payload Size Heaviness

Raft replication payload size CDF
profiled from 200 warehouses TPC-C

Metadata operations can become MBs in size
as reported [3]



Distance
23

Distance

Geo-Scale Distribution

Clients can be globally distributed too!

[4]



Diversity & Dynamism
24

Diversity

Diverse Workloads & Heterogeneous Hardware

Dynamism

Constant Changes over Time

Workload:
- read/write mix
- object affinity
- location affinity
- rate variance

Hardware:
- network
- storage
- memory
- compute

Workload patterns

Hardware conditions
Failures and recovery

Power draw of an 
Azure rack over time
[5]



Existing Consensus Didn’t Consider “4D”
25

rarely express Density and Distance in their designs

offer no runtime adaptability to Diversity and Dynamism

Existing consensus protocols

Crossword and Bodega solve two concrete manifestation of “4D”

Optimistic Connectivity design principle
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Crossword: Adaptive Consensus for 
Dynamic Data-Heavy Workloads

27



Problem: Dynamic Data-Heavy Workloads
28

Density Diversity Dynamism+ +

Consensus modules in cloud systems face a dynamic mix of small and large requests

- Cloud databases:  CockroachDB,  TiDB,  ScyllaDB,  F1/Spanner, …
- Object storage:  Gaios,  Amazon S3,  Dynamo, …
- Metadata of large-scale systems:  Colossus/GFS,  Apache Storm, …
- Additional factors:  request batching,  fluctuations in hardware environment

Raft replication payload size CDF
profiled from 200 warehouses TPC-C



Not in the Design Equation of Classic Protocols
29

MultiPaxos, Raft, … replicate the full command in entirety onto replicas

(majority quorum)

In a cluster of  n = 2f + 1  nodes, 
tolerates  f  faults in every attempt

64KB payload



Payload Reduction?  Erasure Coding
30

Reed-Solomon Code

d data shards p parity shards

:=  an RS codeword

Can recover the original data from any d shards

RSPaxos [9] and CRaft [10] replicate only one shard onto each replica

- Assuming using a configuration of  d = m = majority size,  p = n-m
- Critical-path data transfer time reduced to  1/m

- RS code computation time is negligible



Failures → Unavailability
31

client
ACKed

< m shards,
unavailable!

- RSPaxos uses fixed quorum size of 4 and tolerates a single failure
- CRaft introduces a (slow) fallback mechanism to full-replication, but still vulnerable to 

any concurrent failures during the long fallback job

S0

S1

S2

S3

S4

S0

S1

S2

S3

S4

new leader



Leader Failover → Intense Reconstruction Traffic
32

Leader

Follower

current
commit
index

last 
snapshot
index

……

……

committed but
payload partially known,

cannot execute

must fetch shards
from others,

and reconstruct

Leader



Insufficiencies of Previous Work
- Reduced fault-tolerance level

- Not drop-in replacement to classic consensus protocols
- Tolerates 1 failure with a 5-way replication

33

- Ungraceful leader failover behavior
- Followers do not see complete commands, lagging infinitely behind the leader
- Significant reconstruction traffic after leader failover

- Rigid shard assignment scheme
- Always uses disjoint shard assignment, always optimizing for large payloads
- No adaptability with delay-optimized configurations under true dynamic workloads



Goals for Crossword
➢ Integrate RS coding to improve performance for data-heavy workloads

➢ Same fault-tolerance level as classic consensus protocols (f = ⌊n/2⌋)

➢ Flexibility and adaptability to workload sizes and environment changes

➢ Graceful leader failover behavior without long pauses

34



RS Codeword Space
35

Observation:  mappings from RS shards to servers need not be disjoint!

Introduce a new per-instance notation,  RS codeword space :=

Opens up a new dimension in protocol design:  what shard(s) to assign to which server(s)



Shard Assignment Policies
36

“Balanced Round-Robin (RR) assignment policies”

Assign shards [i, i+c) to server i, rounding back



Availability Constraint Boundary
37

There is a trade-off between #shards assigned per server (c) and the quorum size (q)

The correct constraint boundary that retains fault-tolerance = f  is:
q + c  ≥  n + 1

Crossword is a protocol that operates adaptively 
along this boundary line of candidate configurations



Choosing the Best Configuration
Leader maintains a real-time updated simple linear regression model per follower s

ts(v) = ds + 1/bs * v

38

delay bandwidth payload size

For each instance:
chooses the (c, q) pair that minimizes estimated completion time of a q quorum

more sophisticated methods possible



Crossword Protocol in a Nutshell
39

Leader

1. Upon receiving a payload:
1.1. Choose the best configuration
1.2. Broadcast Accept messages to followers, 

each carrying (a subset of) shards
2. Upon receiving AcceptReply ← follower:

2.1. Check if safe quorum size reached
2.2. Mark entry committed; notify followers

3. Execute committed entry, reply to clients

Follower

1. Upon receiving Accept message ← leader:
1.1. Store the carried shard(s) durably
1.2. Send back AcceptReply

2. Upon being noticed about new commit:
2.1. Mark entry committed
2.2. (cannot execute right away)



Instance Performance Breakdown
40

64KB payload,  symmetrical delay case

What about the leader failover problem?



Follower Gossiping (details omitted in this talk)

Let followers gossip with each other in the background about their missing shards

- Keeps them (almost) up-to-date with committed data  →  graceful failover
- Happens asynchronously  →  minimal impact to critical path, can be delayed
- Uses an Round Robin pattern amongst followers →  amortized traffic

41

- Introduces a deferral gap to prevent unnecessary queries to latest entries



Crossword Protocol in a Nutshell
42

Leader

1. Upon receiving a payload:
1.1. Choose the best configuration
1.2. Broadcast Accept messages to followers, 

each carrying (a subset of) shards
2. Upon receiving AcceptReply ← follower:

2.1. Check if safe quorum size reached
2.2. Mark entry committed; notify followers

3. Execute committed entry, reply to clients

Follower

1. Upon receiving Accept message ← leader:
1.1. Store the carried shard(s) durably
1.2. Send back AcceptReply

2. Upon being noticed about new commit:
2.1. Mark entry committed

3. Periodically, trigger follower gossiping for 
committed instances (except a deferral gap at log 
tail), fetch shards from adjacent followers
3.1. When payload fully known, execute



Left-out Details
- Modifications to the Prepare phase & failover protocol

- Optimizations to follower gossiping: deferral gap, gossip batching, …

- Support for unbalanced assignment policies
with general-form constraints

- Log storage space saving

- Different cluster sizes, full protocol diagram

43



Evaluation Setup
Implemented on Summerset, evaluated on CloudLab c220g2 machines

- mainly 5 nodes
- 40 CPU threads,  160GB DRAM,  S3500 SATA SSD,  X520 NIC
- Node-node network bandwidth 1Gbps,  delay ~2ms
- Launch 1 server process per machine to form a cluster
- Run closed-loop clients distributed across all machines

44



Critical Path Performance
45

Throughput
(reqs/s)

Latency
(ms)

Small 8B Large 128KB Mixed



Adaptability to Dynamism
46



Leader Failover Behavior
47



TPC-C over CockroachDB
48

Raft module integration
- implemented a Crossword 

prototype in the Raft replication 
module of CockroachDB

- uses 4KB / 8KB thresholds as 
configuration heuristics

TPC-C benchmark
- 200 warehouses
- 400 concurrent workers



Optimistic Connectivity: A Design Principle

49



Patterns Observed

Larger quorum sizes can be good for performance in some cases

- in Crossword’s scenario, enables fewer critical-path data transfer
- but may not always be the best choice
- and may affect the fault tolerance of the protocol

50

Classic protocols are “pessimistic” about failures

- always uses a quorum size that guards against  f  failures in every attempt



Optimistic Connectivity
51

Optimistic Connectivity          :=

be optimistic that a large quorum size configuration can be established if advantageous

BUT, reserve the ability to switch to conservative configurations upon timeout

Effect:
- turns a rigid protocol into an adaptive protocol
- squeezes out performance without losing correctness and availability

Crossword as concrete example:

use a (larger q, smaller c) configuration when payload size is large w.r.t. available bandwidth

BUT, always able to redo with a (smaller q, larger c) configuration upon failures



Analogy with Optimistic Methods about Conflicts
52

Optimistic Connectivity

speculative quorum
config

timeout error ❌

conservative quorum
config

expect 3

expect 2

speculatively execute
while recording versions and 
staging updates

read x → v;  write y = v;

validation error ❌

x is not v but v’ now

abort/rollback
or retry
or resolve, e.g.:

force y = v’;

Optimistic Methods
about Conflicts OCC

Causal conflict resolution
 Speculative execution



Configuration Space
53

Connectivity Requirement
(for SMR, inverse to severity of failures)

Pe
rf

or
m

an
ce

: Possible Configuration

: Candidate Configuration



Bodega: Wide-Area Consensus with 
Always-Local Linearizable Reads

54



Problem: Geo-Scale Linearizable Reads
55

Wide-area (geo-scale) consensus performs poorly

Easily > 500ms latency

- Writes cannot avoid 
wide-area latency

- Can we exploit location 
affinity for Reads?

Distance Diversity Dynamism+ +



Not in the Design Equation of Classic Protocols
56

MultiPaxos, Raft, … process all requests using leader-initiated majority quorums

slow:  client ↔ leader ↔ majority 

Leaderless protocols  EPaxos [11], PQR [12], … allow near-client quorums

still slow:  client ↔ (super-)majority 

Atypical quorums  Dynamic quorums [13], FPaxos [14], … allow asymmetric quorum sizes

still slow: statically configured (write qsize, read qsize) pair



Local Read?  Need Leases
57

We want a replica to serve linearizable reads from nearby clients locally,
   without compromising fault tolerance for writes

=>  Requires a “promise” mechanism that is aware of time

Lease  :=  a limited-time, refreshable promise that a grantor makes to a grantee

C’

Renew

E

D’ F’

E’

tlease +tΔ

tlease -tΔ

Invariant:  C’ < D’ ⇒ E’ < F’

Grantor

Grantee

- ensures grantor always holds the promise 
longer than any grantee

- assumes bounded clock drift between the two 
(common in modern cloud hardware)



Leader Leases – Local at Leader Only
How can leases help empower local reads?

58

Leader Leases:  establish stable leadership so the leader can safely serve reads locally

promise (periodically) not to step up as 
competing leader or vote for other node

- if node S holds >= majority# of leases, it knows no other node is acting as leader
- therefore, S can serve read requests directly with the latest committed write value

S0

S4

S1
S2
S3

W(k)

R(k) 

Acc AccRep

✓

only local at leader, 
not at the nearest 
follower at will



Quorum Leases – Write Interference (details omitted in this talk)

Applying the Leader Leases idea to a follower is non-trivial

59

Quorum Leases:  grant leases to a follower to allow local reads in the absence of writes

promise (periodically) not to accept any 
write to key k, unless actively revoked

- if node S holds >= majority# of leases on key k, AND its latest known value for k is in 
committed status, it knows no newer value could have been committed for k

- therefore, S can serve read requests arriving at it directly with that value

S0

S4

S1
S2
S3

W(k)

R(k)

Acc
AccRep

✓

Commit

(Revoke)

R(k)

(Re-grant)

R(k)？ ？

local read interrupted 
during any writes to 
lease-covered keys



Goals for Bodega
➢ Utilize leases to enable local linearizable reads

➢ Same fault-tolerance level as classic consensus protocols (f = ⌊n/2⌋)

➢ Local read anywhere:  at arbitrary replicas

➢ Local read at any time:  minimal interference from writes

➢ Configurable assignment of reader replicas for flexible key ranges

60



Roster: A Generalization of Leadership
Observation:  leases can protect richer cluster metadata than leadership

61

Leadership  :=  who’s the stable leader

Leader Leases:  all-to-one pattern Roster Leases:  all-to-all pattern

Roster :=     who’s the stable leader, and
      for each key, who are responders

           to serve local reads
                                                                                                

leader holding >= m means can local read a responder holding >= m means can local read



Optimistic Connectivity
Bodega is a protocol that uses the roster to achieve optimistic quorum composition

- in normal case, expect all the responders of a key are reachable by its writes
       in return for local read capability at these responders (1-node read “quorum”s)

62

- upon failures, leases allow a safe update to the roster, removing unresponsive nodes

- roster can also be updated proactively to adapt to workload changes



Norcal Case Operations
63

write

local read

near S3
hold
until 

S0
S1

S4

S3S2

near S1

no

near S4
local
read

Write
Read, assume lease count >= m

- local read successful
- local read with holding
- not a responder

latest value not committed yet:

hold the request until commit 
notification received from leader



Roster Leases Embedded in Heartbeats
64

near S1

< 3

near S3

Every unique ballot# 
corresponds to a roster

Lease renewals are 
piggybacked onto existing 
peer-to-peer heartbeats

- virtually zero overhead

S4
#20

x4

S3
#20

x4
S2

#20

x4

S1
#11

x1
S0

#20

x4

#20



One Little Detail: Safety Threshold (details omitted in this talk)

65

S4
#20

x4

S3
#20

x4
S2

#20

x4

S1
#11

x1
S0

#20

x4

#20

near S4

thresh for #20
not reached

Holding >= m leases might not 
be enough

- consider a lagged-behind 
node becoming a responder

Corner case: when transitioning 
to a new roster, cannot start 
serving local reads until knowing all 
previously majority-accepted slots

- communicated within the first 
round of lease messages, again 
no overhead



Left-out Details
66

- Full comparison with related work
- Leaderless approaches:  Mencius, EPaxos, SwiftPaxos, PQR
- Read leases:  Megastore, Quorum Leases
- With external configuration oracle:  Hermes, Pando

- Optimizations:
- Optimistic holding
- Early accept notifications
- Smart roster changes
- Lightweight heartbeats

S0

S4

S1
S2
S3

W(k)

✓

Acc AccRep

PreAcc

Acc

AccRep

R(k) 

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

AccNote



Evaluation Setup
Implemented on Summerset, evaluated across 5 CloudLab sites

- mainly 5 nodes
- WI-c220g5, UT-xl170, SC-c6320, MA-rs620, APT-r320
- Launch 1 server process per machine to form a cluster
- Run closed-loop clients distributed across all machines

- (emulated global GCP results also available)

67

23

2832

39

402

59

51

60
52

SC

MAWI

UT

APT



Throughput & Read/Write Latency
68

1% writes, 128B payloads;   results grouped by client location affinity

Normalized
Throughput

(to Leader Leases)

Read Latency (ms)

Write Latency (ms)



Read Latency CDFs
69

10% writes 1% writes



Write Latency CDF
70



Roster Change Duration
71

lease timeout set to ~2.6 secs



YCSB Macro-benchmark against etcd, ZooKeeper
72

Zipfian distribution of keys, smart roster coverage

Comparable to sequentially-consistent stale etcd, outperforms ZooKeeper!
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Summerset Key-Value Store

74



Summerset Protocol-Generic Key-Value Store
Available at: https://github.com/josehu07/summerset

75

Goals:

- Simple yet expressive replication system framework for implementing and 
evaluating consensus protocols; surprisingly, no such ready-to-use codebase found

- Concise coding of consensus protocols that reflect algorithm logic
- Performance and safety utilizing modern concurrent programming techniques

https://github.com/josehu07/summerset


Summerset Server Node Architecture
76

Protocols

API
（to clients)

State
（in memory）

Storage
（persistent） Network

(to peers)

Async Rust: tokio runtime
- user-level green threads (tasks)
- memory safety
- concurrency safety
- testing tooling

Modularized design
- channel-based synchronization
- zero explicit usage of Mutex
- each protocol

== an event-loop module
Synchronization by
(low-cost) communication
(of ownership transfers).

“

”



Current Codebase Status
77



Linearizability Checking

78



Linearizability Checker Implementation
Demo available at: https://github.com/josehu07/linearize

79

Effective and understandable online linearizability checker in Rust
- see Porcupine [6] for Golang
- assumes a known number of clients

https://github.com/josehu07/linearize
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TLA+ Specifications: Formal & Practical

81



Why Formal Modeling?
82

Formalization

Design Implementation

    Testing

Iteration Timeline

How we incorporate formal 
methods in consensus research:

Benefits:  helps more in the study & design phase than in model checking

- understand the problem context deeply (what do the assumptions really mean)
- forces a careful, thorough protocol design with well-defined steps

- model checking is the “tester” for the design against properties (mostly invariants)
- proof-based verification can further verify the implementation (future work)



Practical SMR-Style Specifications
Existing TLA+ models for consensus protocols tend to be single-decree and very abstract

=>  loses the practical benefit of guiding design → implementation transition

83

Practical MultiPaxos Spec  on  https://github.com/tlaplus/Examples

- Explicit log of commands
- Explicit client requests and messages
- Explicit linearizability and termination condition
- Explicit failure injection

- Asymmetric read/write quorums
- Leader leases and local read
- Commutative cluster of reads
- Crossword & Bodega specs built on top

https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR


Unified Consistency Levels
Hierarchy & Checker
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Beyond Linearizability: Unified Consistency Hierarchy
No unified model of consistency levels except Viotti & Vukolić [7]

=>  hard to comprehend weaker levels and their connection with linearizability
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Shared Object Pool (SOP) model:  common levels made unified and understandable



Multi-Level Consistency Checker
SOP model applied to consistency checking, yielding multi-level results

- Four common levels:  linearizability,  sequential,  causal+,  eventual
- Demonstrated with Jepsen framework integration [8]
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Notable Related Work Areas
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Notable Related Work Areas
89

Consensus Protocols & 
Replication Systems

- Erasure-coded consensus
- Keyspace partitioning
- Pipelining / chain structures
- Data dissemination
- Leaderless / multi-leader
- Distributed leases
- Atypical quorum assembly
- Membership management
- Lazy ordering
- Fail-slow tolerance
- Programmability
- Hardware acceleration
- BFT & blockchains
- Relaxed consistency

Optimistic Design Techniques

- Optimistic concurrency control (OCC)
- Conflict resolution mechanisms & CRDT
- Speculative execution

Cloud Studies & Surveys

- Cloud workload studies
- Cloud architecture & technology surveys
- Trace collection & workload generation

Testing & Formal Verification

- Controlled concurrency testing
- Formal modeling & specification tooling
- Formal verification with proofs



Future Work
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Future Work
Deeper applications of the Optimistic Connectivity principle:
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- Extending Crossword: asymmetric erasure-coded consensus

- Extending Bodega: general-purpose roster leases

- Optimistic quorums enabled by modern hardware semantics
- Hardware-synchronized clocks
- RDMA
- Smart switches
- Disaggregated, cache-coherent shared memory (CXL)
- …



Future Work
Consensus solutions + advancements in other fields:

- Smart run-time policy making powered by ML
- Formally-proved implementation of modern replication systems
- Formally-verifiable analysis of performance metrics
- Visualization and observability
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Conclusion
93

We present two
cloud consensus protocols

Crossword

Bodega

that follow the principle of 
Optimistic Connectivity

–  adaptive erasure-coded consensus for dynamic data-heavy workloads

–  local linearizable reads in geo-scale consensus via lease-protected roster



and develop a
dependable infrastructure
for consensus research

Conclusion
94

modern cloud’s
“4D” challenges

Density

Distance

Diversity

Dynamism

We present two
cloud consensus protocols

Crossword

Bodega

that follow the principle of 
Optimistic Connectivity

to solve

Summerset
KV testbed

Unified consistency
levels hierarchy

Practical TLA+ Specifications



Acks
95

Jiacheng Yu

Kan
Wu

Jing
Liu

Anthony
Rebello

Kaiwei
Tu

Yifan
Dai

Vinay 
Banakar

Yiwei
Chen

Chenhao
Ye

Shawn 
Zhong

Tingjia
Cao

Suyan
Qu

Sambhav
Satija

Wenjie
Hu

Xiangpeng
Hao

John
Shawger

Abigail
Matthews

Junxuan
Liao

Jinlang 
Wang

Andrea        Remzi
Arpaci-Dusseau

Mike
Swift

Xiangyao
Yu

Tej
Chajed

Kassem
Fawaz



Thank you!
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