
Cloud Consensus Protocols with
Optimistic Connectivity

Guanzhou Hu
josehu.com

Dissertation Defense
Computer Sciences

University of Wisconsin – Madison
June 30, 2025

Committee:
Andrea Arpaci-Dusseau (advisor)
Remzi Arpaci-Dusseau (advisor)
Michael Swift
Tej Chajed
Xiangyao Yu
Kassem Fawaz (ECE)

https://josehu.com

Overview
2

Study, design, and implement better Consensus protocols and systems …

… for modern replicated Cloud services …

… using our proposed principle of Optimistic Connectivity …

… and other underpinning contributions to consensus research.

Overview
3

Consensus protocols

enable

strongly-consistent
highly-available

State Machine Replication

which is at the heart of

fault-tolerant cloud services

Modern cloud imposes
“4D” challenges

We present
two protocols

Density

Distance

Diversity

Dynamism

Existing consensus solutions did not consider

Crossword

Bodega

that follow the principle of
Optimistic Connectivity

to tackle composite “4D” challenges
and advance the state-of-the-art in

cloud consensus systems

Overview: Crossword
4

Density Diversity Dynamism+ +

Problem: cloud consensus systems face a dynamic mix of small and large payloads

Approach: adaptive erasure-coded consensus with a shard count – quorum size tradeoff
- for large requests, optimistically choose larger quorum sizes for reduced data transfer
- upon failures, smoothly switch to conservative quorum size configurations
- configuration is tunable per consensus instance, giving adaptivity
- off-the-critical-path gossiping between followers to retain graceful leader failover

Result: over 2x performance of existing protocols, 1.32x throughput in CockroachDB!

Overview: Bodega
5

Distance Diversity Dynamism+ +

Problem: wide-area consensus delivers slow reads, leaving location affinity untapped

Approach: adaptive roster composition of responder nodes that serve reads locally
- per-key tunable selection of responder roles according to client locations & workloads
- novel roster leases algorithm to enable fault-tolerant updates to rosters, always retaining

linearizability and availability with negligible overhead (embedded in heartbeats)
- optimizations: optimistic holding, early accept notifications, smart roster coverage, …

Result: performance on par with sequentially-consistent etcd & ZooKeeper deployments!

Overview
6

Consensus protocols

enable

strongly-consistent
highly-available

State Machine Replication

which is at the heart of

fault-tolerant cloud services

Modern cloud imposes
“4D” challenges

We present
two protocols

Density

Distance

Diversity

Dynamism

Existing consensus solutions did not consider

Crossword

Bodega

that follow the principle of
Optimistic Connectivity

to tackle composite “4D” challenges
and advance the state-of-the-art in

cloud consensus systems
Summerset
KV Testbed

Unified Consistency Levels
Hierarchy & Checker

Formal but Practical TLA+
Specifications

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

7

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

8

Consensus & State Machine Replication

9

The Consensus Problem
Consensus := reaching agreement among message-passing processes despite failures

10

S0

S1

S2

Gordon

Four Lakes

emmm…?

Goal: everyone knows where to meet for dinner
(which one doesn’t matter)

“single-decree”

Multi-decree Consensus
11

Multi-decree consensus := reaching a continual sequence of agreements

S0

S1

S2

Goal: everyone knows where to meet for dinner for every night onwards

Gordon Monday, Four Lakes Tuesday, Rheta’s Wednesday, …

State Machine Replication (SMR)
12

S0

S1

S2

Server Node

(Durable) Log

G: 3
F: 5

State Machine

G-- get G G-- …F--

Messaging
with clients
with peersService

SMR := multi-decree consensus where the sequence is a log of state machine commands
 to be executed in the same order on all nodes

use Gordon, check Gordon balance, use Gordon, use Four Lakes, …

Goal: a fault-tolerant service that tracks meal plan balance, replicated 3 ways

Client

Client

Failure Model
What failures do we handle?

13

S0

S1

S2

Fail-stop node:
- may crash or respond

arbitrarily slowly at any time
- may recover at any time

Asynchronous network:
- message may be lost, duplicated,

or delivered arbitrarily slowly
- messages may be delivered

out-of-order
- network partitioning is covered

What failures do we not handle?
Byzantine failures: malicious nodes, malicious/corrupted messages

- All replicas agree on a single serial order (exception: commutative commands)
- If op1 finished earlier than op2 started, op1 must precede op2 in the order

Consistency & Availability Requirement
Consistency: how “correct” is correct replication?

14

Linearizability => as if an atomic single-node service

Availability: how many concurrent faults to tolerate before blocking progress?

- Measure: counting # of failed nodes, including
- fail-stopped nodes
- nodes that have trouble sending out messages

- Goal: match the availability level of classic consensus protocols

Classic Consensus Protocols

15

Consensus in the Wild
Classic protocols: MultiPaxos & variants [15], Viewstamped Replication [16], Raft [17]

16

Metadata Management Coordination Service

*

Data Storage

Consensus-infused systems across the cloud landscape:

Inherent duality between MultiPaxos and latter ones [2]

Classic Protocol: MultiPaxos
Prepare Phase – some node S steps up as leader and gathers must-know history

17

4 : y 4 : j 4 : g➢ S chooses a higher-than-seen, unique
ballot number b

➢ S broadcasts Prepare(b)
➢ Receiver replies with a “covering-all”

PrepareReply(b, [b’0:v’0, b’1:v’1, …])
containing the highest ballot it has ever
accepted for each slot and its value

➢ S, upon getting >= majority replies, is
effectively “elected” as leader; for each
non-committed slot in order:

if no values found among replies:
can try any value, so wait for client input

otherwise:
immediately do Accept Phase using the
value with the highest ballot among replies

S0

3 : x 6 : kS1

4 : y 5 : hS2

PrepareReply(9, [4:y, 4:j, 4:g, —])

PrepareReply(9, [4:y, –, 5:h, —])

9 : y 9 : k 9 : h

4 : y 5 : h

9 : y 9 : k 9 : h

4 : y 4 : j 4 : g

Classic Protocol: MultiPaxos
18

Accept Phase per slot – leader S establishes agreement of a slot with followers

9 : y 9 : k 4 : g➢ S checks the next slot that’s pending
acceptance, and chooses safe value v
for it according to the last slide

➢ S broadcasts Accept(b, slot, v)

S0

9 : y 9 : k 9 : hS1

9 : y 9 : k 5 : hS2

Accept(9, slot 2, h)

Accept(9, slot 2, h)
➢ Receiver checks if ballot b >= the largest

ballot it has ever seen?
if yes, accept the value:

reply with AcceptReply(b, slot)
otherwise, ignore

➢ S, upon getting >= majority replies, commits the slot and tells followers asynchronously;
the contiguously committed prefix of the log can be scheduled for execution on the SM

MultiPaxos Timeline View
19

S1

S0

S2

Prepare

Accept Accept …

Only the Accept round is needed in failure-free cases without competing leaders

up to infinity

slot 0 slot 1

Cloud-Era Challenges: What Changed?

20

The “4D” Challenges
21

Density

Payload Size Heaviness

Distance

Geo-Scale Distribution

Diversity

Diverse Workloads & Heterogeneous Hardware

Dynamism

Constant Changes over Time

Density
22

Density

Payload Size Heaviness

Raft replication payload size CDF
profiled from 200 warehouses TPC-C

Metadata operations can become MBs in size
as reported [3]

Distance
23

Distance

Geo-Scale Distribution

Clients can be globally distributed too!

[4]

Diversity & Dynamism
24

Diversity

Diverse Workloads & Heterogeneous Hardware

Dynamism

Constant Changes over Time

Workload:
- read/write mix
- object affinity
- location affinity
- rate variance

Hardware:
- network
- storage
- memory
- compute

Workload patterns

Hardware conditions
Failures and recovery

Power draw of an
Azure rack over time
[5]

Existing Consensus Didn’t Consider “4D”
25

rarely express Density and Distance in their designs

offer no runtime adaptability to Diversity and Dynamism

Existing consensus protocols

Crossword and Bodega solve two concrete manifestation of “4D”

Optimistic Connectivity design principle

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

26

Crossword: Adaptive Consensus for
Dynamic Data-Heavy Workloads

27

Problem: Dynamic Data-Heavy Workloads
28

Density Diversity Dynamism+ +

Consensus modules in cloud systems face a dynamic mix of small and large requests

- Cloud databases: CockroachDB, TiDB, ScyllaDB, F1/Spanner, …
- Object storage: Gaios, Amazon S3, Dynamo, …
- Metadata of large-scale systems: Colossus/GFS, Apache Storm, …
- Additional factors: request batching, fluctuations in hardware environment

Raft replication payload size CDF
profiled from 200 warehouses TPC-C

Not in the Design Equation of Classic Protocols
29

MultiPaxos, Raft, … replicate the full command in entirety onto replicas

(majority quorum)

In a cluster of n = 2f + 1 nodes,
tolerates f faults in every attempt

64KB payload

Payload Reduction? Erasure Coding
30

Reed-Solomon Code

d data shards p parity shards

:= an RS codeword

Can recover the original data from any d shards

RSPaxos [9] and CRaft [10] replicate only one shard onto each replica

- Assuming using a configuration of d = m = majority size, p = n-m
- Critical-path data transfer time reduced to 1/m

- RS code computation time is negligible

Failures → Unavailability
31

client
ACKed

< m shards,
unavailable!

- RSPaxos uses fixed quorum size of 4 and tolerates a single failure
- CRaft introduces a (slow) fallback mechanism to full-replication, but still vulnerable to

any concurrent failures during the long fallback job

S0

S1

S2

S3

S4

S0

S1

S2

S3

S4

new leader

Leader Failover → Intense Reconstruction Traffic
32

Leader

Follower

current
commit
index

last
snapshot
index

……

……

committed but
payload partially known,

cannot execute

must fetch shards
from others,

and reconstruct

Leader

Insufficiencies of Previous Work
- Reduced fault-tolerance level

- Not drop-in replacement to classic consensus protocols
- Tolerates 1 failure with a 5-way replication

33

- Ungraceful leader failover behavior
- Followers do not see complete commands, lagging infinitely behind the leader
- Significant reconstruction traffic after leader failover

- Rigid shard assignment scheme
- Always uses disjoint shard assignment, always optimizing for large payloads
- No adaptability with delay-optimized configurations under true dynamic workloads

Goals for Crossword
➢ Integrate RS coding to improve performance for data-heavy workloads

➢ Same fault-tolerance level as classic consensus protocols (f = ⌊n/2⌋)

➢ Flexibility and adaptability to workload sizes and environment changes

➢ Graceful leader failover behavior without long pauses

34

RS Codeword Space
35

Observation: mappings from RS shards to servers need not be disjoint!

Introduce a new per-instance notation, RS codeword space :=

Opens up a new dimension in protocol design: what shard(s) to assign to which server(s)

Shard Assignment Policies
36

“Balanced Round-Robin (RR) assignment policies”

Assign shards [i, i+c) to server i, rounding back

Availability Constraint Boundary
37

There is a trade-off between #shards assigned per server (c) and the quorum size (q)

The correct constraint boundary that retains fault-tolerance = f is:
q + c ≥ n + 1

Crossword is a protocol that operates adaptively
along this boundary line of candidate configurations

Choosing the Best Configuration
Leader maintains a real-time updated simple linear regression model per follower s

ts(v) = ds + 1/bs * v

38

delay bandwidth payload size

For each instance:
chooses the (c, q) pair that minimizes estimated completion time of a q quorum

more sophisticated methods possible

Crossword Protocol in a Nutshell
39

Leader

1. Upon receiving a payload:
1.1. Choose the best configuration
1.2. Broadcast Accept messages to followers,

each carrying (a subset of) shards
2. Upon receiving AcceptReply ← follower:

2.1. Check if safe quorum size reached
2.2. Mark entry committed; notify followers

3. Execute committed entry, reply to clients

Follower

1. Upon receiving Accept message ← leader:
1.1. Store the carried shard(s) durably
1.2. Send back AcceptReply

2. Upon being noticed about new commit:
2.1. Mark entry committed
2.2. (cannot execute right away)

Instance Performance Breakdown
40

64KB payload, symmetrical delay case

What about the leader failover problem?

Follower Gossiping (details omitted in this talk)

Let followers gossip with each other in the background about their missing shards

- Keeps them (almost) up-to-date with committed data → graceful failover
- Happens asynchronously → minimal impact to critical path, can be delayed
- Uses an Round Robin pattern amongst followers → amortized traffic

41

- Introduces a deferral gap to prevent unnecessary queries to latest entries

Crossword Protocol in a Nutshell
42

Leader

1. Upon receiving a payload:
1.1. Choose the best configuration
1.2. Broadcast Accept messages to followers,

each carrying (a subset of) shards
2. Upon receiving AcceptReply ← follower:

2.1. Check if safe quorum size reached
2.2. Mark entry committed; notify followers

3. Execute committed entry, reply to clients

Follower

1. Upon receiving Accept message ← leader:
1.1. Store the carried shard(s) durably
1.2. Send back AcceptReply

2. Upon being noticed about new commit:
2.1. Mark entry committed

3. Periodically, trigger follower gossiping for
committed instances (except a deferral gap at log
tail), fetch shards from adjacent followers
3.1. When payload fully known, execute

Left-out Details
- Modifications to the Prepare phase & failover protocol

- Optimizations to follower gossiping: deferral gap, gossip batching, …

- Support for unbalanced assignment policies
with general-form constraints

- Log storage space saving

- Different cluster sizes, full protocol diagram

43

Evaluation Setup
Implemented on Summerset, evaluated on CloudLab c220g2 machines

- mainly 5 nodes
- 40 CPU threads, 160GB DRAM, S3500 SATA SSD, X520 NIC
- Node-node network bandwidth 1Gbps, delay ~2ms
- Launch 1 server process per machine to form a cluster
- Run closed-loop clients distributed across all machines

44

Critical Path Performance
45

Throughput
(reqs/s)

Latency
(ms)

Small 8B Large 128KB Mixed

Adaptability to Dynamism
46

Leader Failover Behavior
47

TPC-C over CockroachDB
48

Raft module integration
- implemented a Crossword

prototype in the Raft replication
module of CockroachDB

- uses 4KB / 8KB thresholds as
configuration heuristics

TPC-C benchmark
- 200 warehouses
- 400 concurrent workers

Optimistic Connectivity: A Design Principle

49

Patterns Observed

Larger quorum sizes can be good for performance in some cases

- in Crossword’s scenario, enables fewer critical-path data transfer
- but may not always be the best choice
- and may affect the fault tolerance of the protocol

50

Classic protocols are “pessimistic” about failures

- always uses a quorum size that guards against f failures in every attempt

Optimistic Connectivity
51

Optimistic Connectivity :=

be optimistic that a large quorum size configuration can be established if advantageous

BUT, reserve the ability to switch to conservative configurations upon timeout

Effect:
- turns a rigid protocol into an adaptive protocol
- squeezes out performance without losing correctness and availability

Crossword as concrete example:

use a (larger q, smaller c) configuration when payload size is large w.r.t. available bandwidth

BUT, always able to redo with a (smaller q, larger c) configuration upon failures

Analogy with Optimistic Methods about Conflicts
52

Optimistic Connectivity

speculative quorum
config

timeout error ❌

conservative quorum
config

expect 3

expect 2

speculatively execute
while recording versions and
staging updates

read x → v; write y = v;

validation error ❌

x is not v but v’ now

abort/rollback
or retry
or resolve, e.g.:

force y = v’;

Optimistic Methods
about Conflicts OCC

Causal conflict resolution
 Speculative execution

Configuration Space
53

Connectivity Requirement
(for SMR, inverse to severity of failures)

Pe
rf

or
m

an
ce

: Possible Configuration

: Candidate Configuration

Bodega: Wide-Area Consensus with
Always-Local Linearizable Reads

54

Problem: Geo-Scale Linearizable Reads
55

Wide-area (geo-scale) consensus performs poorly

Easily > 500ms latency

- Writes cannot avoid
wide-area latency

- Can we exploit location
affinity for Reads?

Distance Diversity Dynamism+ +

Not in the Design Equation of Classic Protocols
56

MultiPaxos, Raft, … process all requests using leader-initiated majority quorums

slow: client ↔ leader ↔ majority

Leaderless protocols EPaxos [11], PQR [12], … allow near-client quorums

still slow: client ↔ (super-)majority

Atypical quorums Dynamic quorums [13], FPaxos [14], … allow asymmetric quorum sizes

still slow: statically configured (write qsize, read qsize) pair

Local Read? Need Leases
57

We want a replica to serve linearizable reads from nearby clients locally,
 without compromising fault tolerance for writes

=> Requires a “promise” mechanism that is aware of time

Lease := a limited-time, refreshable promise that a grantor makes to a grantee

C’

Renew

E

D’ F’

E’

tlease +tΔ

tlease -tΔ

Invariant: C’ < D’ ⇒ E’ < F’

Grantor

Grantee

- ensures grantor always holds the promise
longer than any grantee

- assumes bounded clock drift between the two
(common in modern cloud hardware)

Leader Leases – Local at Leader Only
How can leases help empower local reads?

58

Leader Leases: establish stable leadership so the leader can safely serve reads locally

promise (periodically) not to step up as
competing leader or vote for other node

- if node S holds >= majority# of leases, it knows no other node is acting as leader
- therefore, S can serve read requests directly with the latest committed write value

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

only local at leader,
not at the nearest
follower at will

Quorum Leases – Write Interference (details omitted in this talk)

Applying the Leader Leases idea to a follower is non-trivial

59

Quorum Leases: grant leases to a follower to allow local reads in the absence of writes

promise (periodically) not to accept any
write to key k, unless actively revoked

- if node S holds >= majority# of leases on key k, AND its latest known value for k is in
committed status, it knows no newer value could have been committed for k

- therefore, S can serve read requests arriving at it directly with that value

S0

S4

S1
S2
S3

W(k)

R(k)

Acc
AccRep

✓

Commit

(Revoke)

R(k)

(Re-grant)

R(k)？ ？

local read interrupted
during any writes to
lease-covered keys

Goals for Bodega
➢ Utilize leases to enable local linearizable reads

➢ Same fault-tolerance level as classic consensus protocols (f = ⌊n/2⌋)

➢ Local read anywhere: at arbitrary replicas

➢ Local read at any time: minimal interference from writes

➢ Configurable assignment of reader replicas for flexible key ranges

60

Roster: A Generalization of Leadership
Observation: leases can protect richer cluster metadata than leadership

61

Leadership := who’s the stable leader

Leader Leases: all-to-one pattern Roster Leases: all-to-all pattern

Roster := who’s the stable leader, and
 for each key, who are responders

 to serve local reads

leader holding >= m means can local read a responder holding >= m means can local read

Optimistic Connectivity
Bodega is a protocol that uses the roster to achieve optimistic quorum composition

- in normal case, expect all the responders of a key are reachable by its writes
 in return for local read capability at these responders (1-node read “quorum”s)

62

- upon failures, leases allow a safe update to the roster, removing unresponsive nodes

- roster can also be updated proactively to adapt to workload changes

Norcal Case Operations
63

write

local read

near S3
hold
until

S0
S1

S4

S3S2

near S1

no

near S4
local
read

Write
Read, assume lease count >= m

- local read successful
- local read with holding
- not a responder

latest value not committed yet:

hold the request until commit
notification received from leader

Roster Leases Embedded in Heartbeats
64

near S1

< 3

near S3

Every unique ballot#
corresponds to a roster

Lease renewals are
piggybacked onto existing
peer-to-peer heartbeats

- virtually zero overhead

S4
#20

x4

S3
#20

x4
S2

#20

x4

S1
#11

x1
S0

#20

x4

#20

One Little Detail: Safety Threshold (details omitted in this talk)

65

S4
#20

x4

S3
#20

x4
S2

#20

x4

S1
#11

x1
S0

#20

x4

#20

near S4

thresh for #20
not reached

Holding >= m leases might not
be enough

- consider a lagged-behind
node becoming a responder

Corner case: when transitioning
to a new roster, cannot start
serving local reads until knowing all
previously majority-accepted slots

- communicated within the first
round of lease messages, again
no overhead

Left-out Details
66

- Full comparison with related work
- Leaderless approaches: Mencius, EPaxos, SwiftPaxos, PQR
- Read leases: Megastore, Quorum Leases
- With external configuration oracle: Hermes, Pando

- Optimizations:
- Optimistic holding
- Early accept notifications
- Smart roster changes
- Lightweight heartbeats

S0

S4

S1
S2
S3

W(k)

✓

Acc AccRep

PreAcc

Acc

AccRep

R(k)

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

AccNote

Evaluation Setup
Implemented on Summerset, evaluated across 5 CloudLab sites

- mainly 5 nodes
- WI-c220g5, UT-xl170, SC-c6320, MA-rs620, APT-r320
- Launch 1 server process per machine to form a cluster
- Run closed-loop clients distributed across all machines

- (emulated global GCP results also available)

67

23

2832

39

402

59

51

60
52

SC

MAWI

UT

APT

Throughput & Read/Write Latency
68

1% writes, 128B payloads; results grouped by client location affinity

Normalized
Throughput

(to Leader Leases)

Read Latency (ms)

Write Latency (ms)

Read Latency CDFs
69

10% writes 1% writes

Write Latency CDF
70

Roster Change Duration
71

lease timeout set to ~2.6 secs

YCSB Macro-benchmark against etcd, ZooKeeper
72

Zipfian distribution of keys, smart roster coverage

Comparable to sequentially-consistent stale etcd, outperforms ZooKeeper!

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

73

Summerset Key-Value Store

74

Summerset Protocol-Generic Key-Value Store
Available at: https://github.com/josehu07/summerset

75

Goals:

- Simple yet expressive replication system framework for implementing and
evaluating consensus protocols; surprisingly, no such ready-to-use codebase found

- Concise coding of consensus protocols that reflect algorithm logic
- Performance and safety utilizing modern concurrent programming techniques

https://github.com/josehu07/summerset

Summerset Server Node Architecture
76

Protocols

API
（to clients)

State
（in memory）

Storage
（persistent） Network

(to peers)

Async Rust: tokio runtime
- user-level green threads (tasks)
- memory safety
- concurrency safety
- testing tooling

Modularized design
- channel-based synchronization
- zero explicit usage of Mutex
- each protocol

== an event-loop module
Synchronization by
(low-cost) communication
(of ownership transfers).

“

”

Current Codebase Status
77

Linearizability Checking

78

Linearizability Checker Implementation
Demo available at: https://github.com/josehu07/linearize

79

Effective and understandable online linearizability checker in Rust
- see Porcupine [6] for Golang
- assumes a known number of clients

https://github.com/josehu07/linearize

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

80

TLA+ Specifications: Formal & Practical

81

Why Formal Modeling?
82

Formalization

Design Implementation

 Testing

Iteration Timeline

How we incorporate formal
methods in consensus research:

Benefits: helps more in the study & design phase than in model checking

- understand the problem context deeply (what do the assumptions really mean)
- forces a careful, thorough protocol design with well-defined steps

- model checking is the “tester” for the design against properties (mostly invariants)
- proof-based verification can further verify the implementation (future work)

Practical SMR-Style Specifications
Existing TLA+ models for consensus protocols tend to be single-decree and very abstract

=> loses the practical benefit of guiding design → implementation transition

83

Practical MultiPaxos Spec on https://github.com/tlaplus/Examples

- Explicit log of commands
- Explicit client requests and messages
- Explicit linearizability and termination condition
- Explicit failure injection

- Asymmetric read/write quorums
- Leader leases and local read
- Commutative cluster of reads
- Crossword & Bodega specs built on top

https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR

Unified Consistency Levels
Hierarchy & Checker

84

Beyond Linearizability: Unified Consistency Hierarchy
No unified model of consistency levels except Viotti & Vukolić [7]

=> hard to comprehend weaker levels and their connection with linearizability

85

Shared Object Pool (SOP) model: common levels made unified and understandable

Multi-Level Consistency Checker
SOP model applied to consistency checking, yielding multi-level results

- Four common levels: linearizability, sequential, causal+, eventual
- Demonstrated with Jepsen framework integration [8]

86

Outline

Problem
Context

Main
Contributions

System
Implementation

Supportive
Contributions

Discussions &
Future Work

Consensus
& SMR

Classic
Protocols

Cloud-Era
Challenges

Optimistic
Connectivity

Protocol:
Crossword

Protocol:
Bodega

KV Testbed:
Summerset

TLA+
Specifications

Consistency
Models Unified

Jepsen Checker

Related Work
Areas

Future WorkLinearizability
Checking

87

Notable Related Work Areas

88

Notable Related Work Areas
89

Consensus Protocols &
Replication Systems

- Erasure-coded consensus
- Keyspace partitioning
- Pipelining / chain structures
- Data dissemination
- Leaderless / multi-leader
- Distributed leases
- Atypical quorum assembly
- Membership management
- Lazy ordering
- Fail-slow tolerance
- Programmability
- Hardware acceleration
- BFT & blockchains
- Relaxed consistency

Optimistic Design Techniques

- Optimistic concurrency control (OCC)
- Conflict resolution mechanisms & CRDT
- Speculative execution

Cloud Studies & Surveys

- Cloud workload studies
- Cloud architecture & technology surveys
- Trace collection & workload generation

Testing & Formal Verification

- Controlled concurrency testing
- Formal modeling & specification tooling
- Formal verification with proofs

Future Work

90

Future Work
Deeper applications of the Optimistic Connectivity principle:

91

- Extending Crossword: asymmetric erasure-coded consensus

- Extending Bodega: general-purpose roster leases

- Optimistic quorums enabled by modern hardware semantics
- Hardware-synchronized clocks
- RDMA
- Smart switches
- Disaggregated, cache-coherent shared memory (CXL)
- …

Future Work
Consensus solutions + advancements in other fields:

- Smart run-time policy making powered by ML
- Formally-proved implementation of modern replication systems
- Formally-verifiable analysis of performance metrics
- Visualization and observability

92

Conclusion
93

We present two
cloud consensus protocols

Crossword

Bodega

that follow the principle of
Optimistic Connectivity

– adaptive erasure-coded consensus for dynamic data-heavy workloads

– local linearizable reads in geo-scale consensus via lease-protected roster

and develop a
dependable infrastructure
for consensus research

Conclusion
94

modern cloud’s
“4D” challenges

Density

Distance

Diversity

Dynamism

We present two
cloud consensus protocols

Crossword

Bodega

that follow the principle of
Optimistic Connectivity

to solve

Summerset
KV testbed

Unified consistency
levels hierarchy

Practical TLA+ Specifications

Acks
95

Jiacheng Yu

Kan
Wu

Jing
Liu

Anthony
Rebello

Kaiwei
Tu

Yifan
Dai

Vinay
Banakar

Yiwei
Chen

Chenhao
Ye

Shawn
Zhong

Tingjia
Cao

Suyan
Qu

Sambhav
Satija

Wenjie
Hu

Xiangpeng
Hao

John
Shawger

Abigail
Matthews

Junxuan
Liao

Jinlang
Wang

Andrea Remzi
Arpaci-Dusseau

Mike
Swift

Xiangyao
Yu

Tej
Chajed

Kassem
Fawaz

Thank you!

96

 Guanzhou Hu
 josehu07
 josehu.com
 guanzhou.hu

Me:

https://josehu.com
https://guanzhou.hu

References
1. Icons in slides: https://www.flaticon.com
2. Zhaoguo Wang et al. On the parallels between paxos and raft, and how to port optimizations. PODC ’19
3. Sanket Chintapalli et al. Pacemaker: When zookeeper arteries get clogged in storm clusters. CLOUD ’16
4. Sarah Tollman et al. EPaxos Revisited. NSDI ’21
5. Jovan Stojkovic et al. SmartOClock: Workload- and Risk-Aware Overclocking in the Cloud. ISCA ’24
6. Porcupine checker: https://github.com/anishathalye/porcupine
7. Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Distributed Storage Systems. CSUR ’16
8. Jepsen framework: https://github.com/jepsen-io/jepsen
9. Shuai Mu et al. When paxos meets erasure code: reduce network and storage cost in state machine replication. HPDC ’14

10. Zizhong Wang et al. CRaft: An Erasure-coding-supported Version of Raft for Reducing Storage and Network Cost. FAST ’20
11. Iulian Moraru et al. There Is More Consensus in Egalitarian Parliaments. SOSP ’13
12. Aleksey Charapko et al. Linearizable Quorum Reads in Paxos. HotStorage ’19
13. Maurice Herlihy. Dynamic quorum adjustment for partitioned data. TODS ’87
14. Heidi Howard et al. Flexible Paxos: Quorum intersection revisited. arXiv ’16
15. Leslie Lamport. Paxos made simple. 2001
16. Brian Oki and Barbara Liskov. Viewstamped Replication: A New Primary Copy Method to Support Highly-Available Distributed

Systems. PODC ’88
17. Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm. ATC ’14

97

https://www.flaticon.com/
https://github.com/anishathalye/porcupine
https://github.com/jepsen-io/jepsen

