
The Storage Hierarchy is Not a Hierarchy:
Optimizing Caching on Modern Devices with Orthus

Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu,
Ramnatthan Alagappan, Rathijit Sen, Kwanghyun Park, Andrea

Arpaci-Dusseau and Remzi Arpaci-Dusseau

 “Ideally one would desire an indefinitely large memory
capacity ... It does not seem possible to achieve such a
capacity. We are therefore forced to recognize the
possibility of constructing a hierarchy of memories ...”

--- “Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument” (1946),
 by Burks, Goldstine, and von Neumann.

Storage Hierarchy

● Long been central to system designs

Storage Hierarchy

● Simplified two-layer hierarchy
○ Performance Device: fast, expensive, small
○ Capacity Device: slow, cheap, large

Caching

● Replicating popular items in Performance
Device

Caching Wisdom: Maximizing Hit Rates

● Strives to direct most accesses to
Performance Device

Caching Wisdom: Maximizing Hit Rates

● Strives to direct most accesses to
Performance Device

● Caching delivers ~Performance Device

speed along with Capacity Device capacity
● Traditionally, very good!

○ Performance: Performance Device >> Capacity device
○ E.g. DRAM vs. HDD (100x differences)

● Insight:
 the assumption (Performance device >> Capacity device) is broken

Problem: Caching is Insufficient
in Modern Storage Hierarchies

● Non-Volatile Memory-based devices are
filling the performance gap

The Modern Storage Hierarchies

● Non-Volatile Memory-based devices are
filling the performance gap

○ NVDIMM (300ns, ~7GB/s)
○ Low-latency SSD (10us, ~3GB/s)

The Modern Storage Hierarchies

New Layers

● Non-Volatile Memory-based devices are
filling the performance gap

○ NVDIMM (300ns, ~7GB/s)
○ Low-latency SSD (10us, ~3GB/s)

● The differences between today’s neighboring layers
are less clear and even overlapping (depending on
workloads)

The Modern Storage Hierarchies

● Non-Volatile Memory-based devices are
filling the performance gap

○ NVDIMM (300ns, ~7GB/s)
○ Low-latency SSD (10us, ~3GB/s)

● The differences between today’s neighboring layers
are less clear and even overlapping (depending on
workloads)

The Modern Storage Hierarchies

2.5x -> 4x
(bandwidth)

0.4x -> 7x
(write bandwidth)

1x -> 7x
(bandwidth)

● Non-Volatile Memory-based devices are
filling the performance gap

○ NVDIMM (300ns, ~7GB/s)
○ Low-latency SSD (10us, ~3GB/s)

● The differences between today’s neighboring layers
are less clear and even overlapping (depending on
workloads)

● E.g., serving reads with high parallelism, Optane
SSD ~ Flash SSD, caching leaves huge
performance available in Flash SSD unexploited

The Modern Storage Hierarchies

2.5x -> 4x
(bandwidth)

0.4x -> 7x
(write bandwidth)

1x -> 7x
(bandwidth)

It’s imperative to rethink how modern
hierarchies should be managed.

Our Approach:
Non-Hierarchical Caching (NHC)
● Insight: we should treat modern hierarchy in a less hierarchical manner

○ The available performance in capacity devices should be exploited

Our Approach:
Non-Hierarchical Caching (NHC)
● Insight: we should treat modern hierarchy in a less hierarchical manner

○ The available performance in capacity devices should be exploited

● Key idea: augmenting caching with dynamic load admission and request
offloading

Augmenting Caching with Dynamic
Load Admission and Request offloading
● Intuition: we should avoid excess load to cache device when it is saturated

Accesses getting
queued

Augmenting Caching with Dynamic
Load Admission and Request offloading
● Intuition: we should avoid excess load to cache device when it is saturated
● Excess load examples:

○ Data admission to further improve hit rate

Augmenting Caching with Dynamic
Load Admission and Request offloading
● Intuition: we should avoid excess load to cache device when it is saturated
● Excess load examples:

○ Data admission to further improve hit rate
○ Too many cache hits

Design: Non-Hierarchical Caching

Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is (data_admit = true, load_admit_ratio = 100%)

Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is (data_admit = true, load_admit_ratio = 100%)

Static

Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is (data_admit = true, load_admit_ratio = 100%)

Static

Dynamic

Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is (data_admit = true, load_admit_ratio = 100%)

Decides read
miss admission

Design: Non-Hierarchical Caching

● Enable offloading: tunable caching behaviors
○ Classic caching is (data_admit = true, load_admit_ratio = 100%)

Decides read
hits offloading

How much load to offload?

● Observation: different hierarchies, different workloads desire different split of
load to devices (for best performance)

● Handle complexities: feedback-based cache scheduler

Design: Non-Hierarchical Caching

● feedback-based cache scheduler
○ Adjust tuning knobs (e.g., data_admit flag, load_admit ratio)

Design: Non-Hierarchical Caching

● feedback-based cache scheduler
○ Optimize a target performance metric
○ Target metric: user/device; throughput/ latency/ tail latency

■ f(X): a function to measure/compute the target metric

Example NHC Scheduling States

Example NHC Scheduling States

● State 1: begin with classic caching

Example NHC Scheduling States

● State 1: begin with classic caching
○ Ends when hit rate becomes “stable”

Cache warmed up

Example NHC Scheduling States

● State 2: adjust load between devices

Example NHC Scheduling States

● State 2: adjust load between devices
○ Turn off data admission for read misses
○ Start to tune load admit ratio (base point 100%)

Example NHC Scheduling States

● State 2: adjust load between devices
○ Turn off data admission for read misses
○ Start to tune load admit ratio (base point 100%)

Example NHC Scheduling States

● State 2: adjust load between devices

Adapt to workload
change

Example NHC Scheduling States

● State 2: adjust load between devices
○ End state 2 when: -> back to State 1 (classic caching)

■ Workload hit rate significantly changed
■ Find 100% load admit rate is always optimal

NHC - Key Properties

● Compatible with all classic caching implementations/ policies
● Require no prior knowledge of devices and workloads
● Robust to dynamic workloads

Implementation

● Implementation (Orthus):
○ Orthus-CAS: block-layer caching kernel module, based on Intel Open CAS framework
○ Orthus-KV: user-level caching layer for Wisckey [FAST’ 16] (a LSM-tree based K/V store)

● Supported target metrics:
○ Throught
○ Avg. latency
○ P99 latency

● Evaluated hierarchies:
○ DRAM/Optane DC PM
○ Optane DC PM/Optane SSD
○ Optane SSD/Flash SSD

Ability to utilize capacity device
performance

latency(us)

Various Hierarchies

Ability to utilize capacity device
performance

latency(us)

Minimum read load to
saturate cache device

Various Hierarchies

Ability to utilize capacity device
performance

latency(us)

Minimum read load to
saturate cache device

Normalized to cache
device read bandwidth

Ability to utilize capacity device
performance

Classic caching is
bounded by cache
device bandwidth

Ability to utilize capacity device
performance

Orthus utilizes
capacity device
performance

54%

Ability to utilize capacity device
performance

Can predict Orthus
potential benefits in
other hierarchies

Other Experiments in the Paper

● Orthus improves with various caching policies
● Orthus optimizes different target metrics (e.g., tail latency)
● Orthus improves YCSB workloads
● Orthus improves dynamic workloads, such as Facebook ZippyDB workloads

[FAST’ 20]
● ...

44

Conclusion

● Evolving storage hierarchies have strong implications for caching
○ Quantitative comparisons across modern storage devices
○ Characterizing caching performance in both classic and modern hierarchies

● Orthus optimizes classic caching, by dynamic load admission and request
offloading

○ Is compatible with all classic caching policies
○ Requires no prior knowledge of devices and workloads
○ Adapts to dynamic workloads

○ Can improve performance (throughput, tail latency) by up to 2X over classic caching in various
storage hierarchies, under a range of realistic workloads

45

Thank you
&

Questions?

Contact: kanwu@cs.wisc.edu

