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Abstract
We analyze how modern distributed storage systems be-
have in the presence of file-system faults such as data
corruption and read and write errors. We characterize
eight popular distributed storage systems and uncover
numerous bugs related to file-system fault tolerance. We
find that modern distributed systems do not consistently
use redundancy to recover from file-system faults: a
single file-system fault can cause catastrophic outcomes
such as data loss, corruption, and unavailability. Our re-
sults have implications for the design of next generation
fault-tolerant distributed and cloud storage systems.

1 Introduction
Cloud-based applications such as Internet search, photo
and video services [19, 65, 67], social network-
ing [90, 93], transportation services [91, 92], and e-
commerce [52] depend on modern distributed storage
systems to manage their data. This important class of
systems includes key-value stores (e.g., Redis), config-
uration stores (e.g., ZooKeeper), document stores (e.g.,
MongoDB), column stores (e.g., Cassandra), messaging
queues (e.g., Kafka), and databases (e.g., RethinkDB).

Modern distributed storage systems store data in a
replicated fashion for improved reliability. Each replica
works atop a commodity local file system on commod-
ity hardware, to store and manage critical user data. In
most cases, replication can mask failures such as system
crashes, power failures, and disk or network failures [22,
24, 30, 31, 40, 80]. Unfortunately, storage devices such
as disks and flash drives exhibit a more complex failure
model in which certain blocks of data can become inac-
cessible (read and write errors) [7, 9, 48, 54, 79, 81] or
worse, data can be silently corrupted [8, 60, 85]. These
complex failures are known as partial storage faults [63].

Previous studies [10, 63, 98] have shown how partial
storage faults are handled by file systems such as ext3,
NTFS, and ZFS. File systems, in some cases, simply
propagate the faults as-is to applications; for example,
ext4 returns corrupted data as-is to applications if the un-
derlying device block is corrupted. In other cases, file
systems react to the fault and transform it into a different
one before passing onto applications; for example, btrfs
transforms an underlying block corruption into a read er-
ror. In either case, we refer to the faults thrown by the
file system to its applications as file-system faults.

The behavior of modern distributed storage systems in
response to file-system faults is critical and strongly af-
fects cloud-based services. Despite this importance, little
is known about how modern distributed storage systems
react to file-system faults.

A common and widespread expectation is that redun-
dancy in higher layers (i.e., across replicas) enables re-
covery from local file-system faults [12, 22, 35, 41, 81].
For example, an inaccessible block of data in one node
of a distributed storage system would ideally not result in
a user-visible data loss because the same data is redun-
dantly stored on many nodes. Given this expectation, in
this paper, we answer the following questions: How do
modern distributed storage systems behave in the pres-
ence of local file-system faults? Do they use redundancy
to recover from a single file-system fault?

To study how modern distributed storage systems re-
act to local file-system faults, we build a fault injec-
tion framework called CORDS which includes the fol-
lowing key pieces: errfs, a user-level FUSE file sys-
tem that systematically injects file-system faults, and
errbench, a suite of system-specific workloads which
drives systems to interact with their local storage. For
each injected fault, CORDS automatically observes re-
sultant system behavior. We studied eight widely used
systems using CORDS: Redis [66], ZooKeeper [6], Cas-
sandra [4], Kafka [5], RethinkDB [70], MongoDB [51],
LogCabin [45], and CockroachDB [14].

The most important overarching lesson from our study
is this: a single file-system fault can induce catastrophic
outcomes in most modern distributed storage systems.
Despite the presence of checksums, redundancy, and
other resiliency methods prevalent in distributed storage,
a single untimely file-system fault can lead to data loss,
corruption, unavailability, and, in some cases, the spread
of corruption to other intact replicas.

The benefits of our systematic study are twofold. First,
our study has helped us characterize file-system fault
handling behaviors of eight systems and also uncover nu-
merous bugs in these widely used systems. We find that
these systems can silently return corrupted data to users,
lose data, propagate corrupted data to intact replicas,
become unavailable, or return an unexpected error on
queries. For example, a single write error during log ini-
tialization can cause write unavailability in ZooKeeper.
Similarly, corrupted data in one node in Redis and Cas-
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sandra can be propagated to other intact replicas. In
Kafka and RethinkDB, corruption in one node can cause
a user-visible data loss.

Second, our study has enabled us to make several ob-
servations across all systems concerning file-system fault
handling. Specifically, we first have found that systems
employ diverse data-integrity strategies; while some sys-
tems carefully use checksums, others completely trust
lower layers in the stack to detect and handle corruption.
Second, faults are often undetected locally, and even if
detected, crashing is the most common reaction; unde-
tected faults on one node can lead to harmful global ef-
fects such as user-visible data corruption. Third, as men-
tioned above, a single fault can have disastrous cluster-
wide effects. Although distributed storage systems repli-
cate data and functionality across many nodes, a single
file-system fault on a single node can result in harm-
ful cluster-wide effects; surprisingly, many distributed
storage systems do not consistently use redundancy as
a source of recovery. Fourth, crash and corruption han-
dling are entangled; systems often conflate recovering
from a crash with recovering from corruption, acciden-
tally invoking the wrong recovery subsystem to handle
the fault, and ultimately leading to poor outcomes. Fi-
nally, nuances in commonly used distributed protocols
can spread corruption or data loss; for example, we
find that subtleties in the implementation of distributed
protocols such as leader election, read-repair, and re-
synchronization can propagate corruption or data loss.

This paper contains three major contributions. First,
we build a fault injection framework (CORDS) to care-
fully inject file-system faults into applications (§3). Sec-
ond, we present a behavioral study of eight widely used
modern distributed storage systems on how they react
to file-system faults and also uncover numerous bugs in
these storage systems(§4.1). We have contacted develop-
ers of seven systems and five of them have acknowledged
the problems we found. While a few problems can be
tolerated by implementation-level fixes, tolerating many
others require fundamental design changes. Third, we
derive a set of observations across all systems showing
some of the common data integrity and error handling
problems (§4.2). Our testing framework and bugs we re-
ported are publicly available [1]. We hope that our results
will lead to discussions and future research to improve
the resiliency of next generation cloud storage systems.

The rest of the paper is organized as follows. First,
we provide a background on file-system faults and mo-
tivate why file-system faults are important in the context
of modern distributed storage systems (§2). Then, we
describe our fault model and how our framework injects
faults and observes behaviors (§3). Next, we present our
behavior analysis and observations across systems (§4).
Finally, we discuss related work (§5) and conclude (§6).

2 Background and Motivation
We first provide background on why applications run-
ning atop file systems can encounter faults during op-
erations such as read and write. Next, we motivate why
such file-system faults are important in the context of dis-
tributed storage systems and the necessity of end-to-end
data integrity and error handling for these systems.

2.1 File-System Faults
The layers in a storage stack beneath the file system
consist of many complex hardware and software com-
ponents [2]. At the bottom of the stack is the media (a
disk or a flash device). The firmware above the media
controls functionalities of the media. Commands to the
firmware are submitted by the device driver. File systems
can encounter faults for a variety of underlying causes
including media errors, mechanical and electrical prob-
lems in the disk, bugs in firmware, and problems in the
bus controller [8, 9, 48, 54, 63, 79, 81]. Sometimes, cor-
ruptions can arise due to software bugs in other parts of
the operating system [13], device drivers [88], and some-
times even due to bugs in file systems themselves [26].

Due to these reasons, two problems arise for file sys-
tems: block errors, where certain blocks are inaccessible
(also called latent sector errors) and block corruptions,
where certain blocks do not contain the expected data.

File systems can observe block errors when the disk
returns an explicit error upon detecting some problem
with the block being accessed (such as in-disk ECC com-
plaining that the block has a bit rot) [9, 79]. A previous
study [9] of over 1 million disk drives over a period of 32
months has shown that 8.5% of near-line disks and about
1.9% of enterprise class disks developed one or more la-
tent sector errors. More recent results show similar errors
arise in flash-based SSDs [48, 54, 81].

File systems can receive corrupted data due to a mis-
directed or a lost write caused by bugs in drive firmware
[8, 60] or if the in-disk ECC does not detect a bit rot.
Block corruptions are insidious because blocks become
corrupt in a way not detectable by the disk itself. File
systems, in many cases, obliviously access such cor-
rupted blocks and silently return them to applications.
Bairavasundaram et al., in a study of 1.53 million disk
drives over 41 months, showed that more than 400,000
blocks had checksum mismatches [8]. Anecdotal ev-
idence has shown the prevalence of storage errors and
corruptions [18, 37, 75]. Given the frequency of storage
corruptions and errors, there is a non-negligible proba-
bility for file systems to encounter such faults.

In many cases, when the file system encounters a fault
from its underlying layers, it simply passes it as-is onto
the applications [63]. For example, the default Linux file
system, ext4, simply returns errors or corrupted data to
applications when the underlying block is not accessi-
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ble or is corrupted, respectively. In a few other cases,
the file system may transform the underlying fault into a
different one. For example, btrfs and ZFS transform an
underlying corruption into an error – when an underly-
ing corrupted disk block is accessed, the application will
receive an error instead of corrupted data [98]. In either
case, we refer to these faults thrown by the file system to
its applications as file-system faults.

2.2 Why Distributed Storage Systems?
Given that local file systems can return corrupted
data or errors, the responsibility of data integrity and
proper error handling falls to applications, as they care
about safely storing and managing critical user data.
Most single-machine applications such as stand-alone
databases and non-replicated key-value storage systems
solely rely on local file systems to reliably store user
data; they rarely have ways to recover from local file-
system faults. For example, on a read, if the local file
system returns an error or corrupted data, applications
have no way of recovering that piece of data. Their best
possible course of action is to reliably detect such faults
and deliver appropriate error messages to users.

Modern distributed storage systems, much like single-
machine applications, also rely on the local file system to
safely manage critical user data. However, unlike single-
machine applications, distributed storage systems inher-
ently store data in a replicated fashion. A carefully de-
signed distributed storage system can potentially use re-
dundancy to recover from errors and corruptions, irre-
spective of the support provided by its local file system.
Ideally, even if one replica is corrupted, the distributed
storage system as whole should not be affected as other
intact copies of the same data exist on other replicas.
Similarly, errors in one node should not affect the global
availability of the system given that the functionality (ap-
plication code) is also replicated across many nodes.

The case for end-to-end data integrity and error han-
dling can be found in the classical end-to-end arguments
in system design [78]. Ghemawat et al. also describe
the need for such end-to-end checksum-based detection
and recovery in the Google File System as the under-
lying cheap IDE disks would often corrupt data in the
chunk servers [29]. Similarly, lessons from Google [22]
in building large-scale Internet services emphasize how
higher layer software should provide reliability. Given
the possibility of end-to-end data integrity and error han-
dling for distributed systems, we examine if and how
well modern distributed storage systems employ end-to-
end techniques to recover from local file-system faults.

3 Testing Distributed Systems
As we discussed in the previous section, file systems can
throw errors or return corrupted data to applications run-

Type of Fault Op Example Causes

Corruption zeros,
junk Read misdirected and lost writes in ext

and XFS

Error

I/O error
(EIO)

Read latent sector errors in all file sys-
tems, disk corruptions in ZFS, btrfs

Write file system mounted read-only, on-
disk corruptions in btrfs

Space error
(ENOSPC,
EDQUOT)

Write disk full, quota exceeded in all file
systems

Table 1: Possible Faults and Example Causes. The
table shows file-systems faults captured by our model and example root
causes that lead to a particular fault during read and write operations.

ning atop them; robust applications need to be able to
handle such file-system faults. In this section, we first
discuss our file-system fault model. Then, we describe
our methodology to inject faults defined by our model
and observe the effects of the injected faults.

3.1 Fault Model
Our fault model defines what file-system fault conditions
an application can encounter. The goal of our model is
to inject faults that are representative of fault conditions
in current and future file systems and to drive distributed
storage systems into error cases that are rarely tested.

Our fault model has two important characteristics.
First, our model considers injecting exactly a single fault
to a single file-system block in a single node at a time.
While correlated file-system faults [8, 9] are interesting,
we focus on the most basic case of injecting a single fault
in a single node because our fault model intends to give
maximum recovery leeway for applications. Correlated
faults, on the other hand, might preclude such leeway.

Second, our model injects faults only into application-
level on-disk structures and not file-system meta-
data. File systems may be able to guard their own
(meta)data [27]; however, if user data becomes corrupt
or inaccessible, the application will either receive a cor-
rupted block or perhaps receive an error (if the file sys-
tem has checksums for user data). Thus, it is essential
for applications to handle such cases.

Table 1 shows faults that are possible in our model
during read and write operations and some examples of
root causes in most commonly used file systems that can
cause a particular fault. For all further discussion, we use
the term block to mean a file-system block.

It is possible for applications to read a block that is
corrupted (with zeros or junk) if a previous write to that
block was lost or some unrelated write was misdirected
to that block. For example, in the ext family of file sys-
tems and XFS, there are no checksums for user data and
so it is possible for applications to read such corrupted
data, without any errors. Our model captures such cases
by corrupting a block with zeros or junk on reads.

Even on file systems such as btrfs and ZFS where user
data is checksummed, detection of corruption may be
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possible but not recovery (unless mounted with special
options such as copies=2 in ZFS). Although user data
checksums employed by btrfs and ZFS prevent applica-
tions from accessing corrupted data, they return errors
when applications access corrupted blocks. Our model
captures such cases by returning similar errors on reads.
Also, applications can receive EIO on reads when there is
an underlying latent sector error associated with the data
being read. This condition is possible on all commonly
used file systems including ext4, XFS, ZFS, and btrfs.

Applications can receive EIO on writes from the file
system if the underlying disk sector is not writable and
the disk does not remap sectors, if the file system is
mounted in read-only mode, or if the file being written
is already corrupted in btrfs. On writes that require ad-
ditional space (for instance, append of new blocks to a
file), if the underlying disk is full or if the user’s block
quota is exhausted, applications can receive ENOSPC and
EDQUOT, respectively, on any file system.

Our fault model injects faults in what we believe is a
realistic manner. For example, if a block marked for cor-
ruption is written, subsequent reads of that block will see
the last written data instead of corrupted data. Similarly,
when a block is marked for read or write error and if the
file is deleted and recreated (with a possible allocation of
new data blocks), we do not return errors for subsequent
reads or writes of that block. Similarly, when a space
error is returned, all subsequent operations that require
additional space will encounter the same space error.

3.2 Methodology
We now describe our methodology to study how dis-
tributed systems react to local file-system faults. We built
CORDS, a fault injection framework that consists of errfs,
a FUSE [28] file system, and errbench, a set of work-
loads and a behavior-inference script for each system.

3.2.1 System Workloads
To study how a distributed storage system reacts to local
file-system faults, we need to exercise its code paths that
lead to interaction with its local file system. We crafted
a workload suite, errbench, for this purpose; our suite
consists of two workloads per system: read an existing
data item, and insert or update a data item.

3.2.2 Fault Injection
We initialize the system under study to a known state
by inserting a few data items and ensuring that they
are safely replicated and persisted on disk. Our work-
loads either read or update the items inserted as part
of the initialization. Next, we configure the application
to run atop errfs by specifying its mount point as the
data-directory of the application. Thus, all reads
and writes performed by the application flow through

errfs which can then inject faults. We run the applica-
tion workload multiple times, each time injecting a sin-
gle fault for a single file-system block through errfs.

errfs can inject two types of corruptions: corrupted
with zeros or junk. For corruptions, errfs performs the
read and changes the contents of the block that is marked
for corruption, before returning to the application. errfs
can inject three types of errors: EIO on reads (read
errors), EIO on writes (write errors) or ENOSPC and
EDQUOT on writes that require additional space (space
errors). To emulate errors, errfs does not perform the
operation but simply returns an appropriate error code.

3.2.3 Behavior Inference
For each run of the workload where a single fault is in-
jected, we observe how the system behaves. Our system-
specific behavior-inference scripts glean system behav-
ior from the system’s log files and client-visible outputs
such as server status, return codes, errors (stderr), and
output messages (stdout). Once the system behavior
for an injected fault is known, we compare the observed
behavior against expected behaviors. The following are
the expected behaviors we test for:

• Committed data should not be lost
• Queries should not silently return corrupted data
• Cluster should be available for reads and writes
• Queries should not fail after retries

We believe our expectations are reasonable since a sin-
gle fault in a single node of a distributed system should
ideally not result in any undesirable behavior. If we find
that an observed behavior does not match expectations,
we flag that particular run (a combination of the work-
load and the fault injected) as erroneous, analyze relevant
application code, contact developers, and file bugs.
Local Behavior and Global Effect. In a distributed sys-
tem, multiple nodes work with their local file system to
store user data. When a fault is injected in a node, we
need to observe two things: local behavior of the node
where the fault is injected and global effect of the fault.

In most cases, a node locally reacts to an injected fault.
As shown in the legend of Figure 1, a node can crash
or partially crash (only a few threads of the process are
killed) due to an injected fault. In some cases, the node
can fix the problem by retrying any failed operation or
by using internally redundant data (cases where the same
data is redundant across files within a replica). Alterna-
tively, the node can detect and ignore the corrupted data
or just log an error message. Finally, the node may not
even detect or take any measure against a fault.

The global effect of a fault is the result that is exter-
nally visible. The global effect is determined by how
distributed protocols (such as leader election, consensus,
recovery, repair) react in response to the local behavior of
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the faulty node. For example, even though a node can lo-
cally ignore corrupted data and lose it, the global recov-
ery protocol can potentially fix the problem, leading to a
correct externally observable behavior. Sometimes, be-
cause of how distributed protocols react, a global corrup-
tion, data loss, read-unavailability, write-unavailability,
unavailability, or query failure might be possible. When
a node simply crashes as a local reaction, the system runs
with reduced redundancy until manual intervention.

These local behaviors and global effects for a given
workload and a fault might vary depending on the role
played (leader or follower) by the node where the fault
is injected. For simplicity, we uniformly use the terms
leader and follower instead of master and slave.

We note here that our workload suite and model are
not complete. First, our suite consists only of simple read
and write workloads while more complex workloads may
yield additional insights. Second, our model does not in-
ject all possible file-system faults; rather, it injects only
a subset of faults such as corruptions, read, write, and
space errors. However, even our simple workloads and
fault model drive systems into corner cases, leading to
interesting behaviors. Our framework can be extended
to incorporate more complex faults and our workload
suite can be augmented with more complex workloads;
we leave this as an avenue for future work.

4 Results and Observations
We studied eight widely used distributed storage sys-
tems: Redis (v3.0.4), ZooKeeper (v3.4.8), Cassandra
(v3.7), Kafka (v0.9), RethinkDB (v2.3.4), MongoDB
(v3.2.0), LogCabin (v1.0), and CockroachDB (beta-
20160714). We configured all systems to provide the
highest safety guarantees possible; we enabled check-
sums, synchronous replication, and synchronous disk
writes. We configured all systems to form a cluster of
three nodes and set the replication factor as three.

We present our results in four parts. First, we present
our detailed behavioral analysis and a qualitative sum-
mary for each system (§4.1). Second, we derive and
present a set of observations related to data integrity and
error handling across all eight systems (§4.2). Next, we
discuss features of current file systems that can impact
the problems we found (§4.3). Finally, we discuss why
modern distributed storage systems are not tolerant of
single file-system faults and describe our experience in-
teracting with developers (§4.4).

4.1 System Behavior Analysis
Figure 1 shows the behaviors for all systems when faults
are injected into different on-disk structures. The on-
disk structure names shown on the right take the form:
file name.logical entity. We derive the logical entity
name from our understanding of the on-disk format of

the file. If a file can be contained in a single file-system
block, we do not show the logical entity name.
Interpreting Figure 1: We guide the reader to relevant
portions of the figure for a few structures for one system
(Redis). When there are corruptions in metadata struc-
tures in the appendonly file or errors in accessing the
same, the node simply crashes (first row of local behavior
boxes for both workloads in Redis). If the leader crashes,
then the cluster becomes unavailable and if the follow-
ers crash, the cluster runs with reduced redundancy (first
row of global effect for both workloads). Corruptions in
user data in the appendonly file are undetected (second
row of local behavior for both workloads). If the leader
is corrupted, it leads to a global user-visible corruption,
and if the followers are corrupted, there is no harmful
global effect (second row of global effect for read work-
load). In contrast, errors in appendonly file user data
lead to crashes (second row of local behavior for both
workloads); crashes of leader and followers lead to clus-
ter unavailability and reduced redundancy, respectively
(second row of global effect for both workloads).

We next qualitatively summarize the results in Fig-
ure 1 for each system.

4.1.1 Redis
Redis is a popular data structure store, used as database,
cache, and message broker. Redis uses a simple appen-
donly file (aof ) to log user data. Periodic snapshots are
taken from the aof to create a redis database file (rdb).
During startup, the followers re-synchronize the rdb file
from the leader. Redis does not elect a leader automati-
cally when the current leader fails.
Summary and Bugs: Redis does not use checksums
for aof user data; thus, it does not detect corruptions.
Figure 2(a) shows how the re-synchronization protocol
propagates corrupted user data in aof from the leader to
the followers leading to a global user-visible corruption.
If the followers are corrupted, the same protocol uninten-
tionally fixes the corruption by fetching the data from the
leader. Corruptions in metadata structures in aof and er-
rors in aof in leader causes it to crash, making the cluster
unavailable. Since the leader sends the rdb file during re-
synchronization, corruption in the same causes both the
followers to crash. These crashes ultimately make the
cluster unavailable for writes.

4.1.2 ZooKeeper
ZooKeeper is a popular service for storing configuration
information, naming, and distributed synchronization. It
uses log files to append user data; the first block of the
log contains a header, the second contains the transac-
tion body, and the third contains the transaction tail along
with ACLs and other information.
Summary and Bugs: ZooKeeper can detect corruptions
in the log using checksums but reacts by simply crash-
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Figure 1: System Behaviors. The figure shows system behaviors when corruptions (corrupted with either junk or zeros), read errors,
write errors, and space errors are injected in various on-disk logical structures. The leftmost label shows the system name. Within each system
workload (read and update), there are two boxes – first, local behavior of the node where the fault is injected and second, cluster-wide global
effect of the injected fault. The rightmost annotation shows the on-disk logical structure in which the fault is injected. It takes the following form:
file name.logical entity. If a file can be contained in a single file-system block, we do not show the logical entity name. Annotations on the bottom
show where a particular fault is injected (L - leader/master, F - follower/slave). A gray box for a fault and a logical structure combination indicates
that the fault is not applicable for that logical structure. For example, write errors are not applicable for the epoch structure in ZooKeeper as it is
not written and hence shown as a gray box.
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Figure 2: Example Bugs. The figure depicts some of the bugs we discovered in Redis, ZooKeeper, Cassandra, Kafka, and RethinkDB. Time
flows downwards as shown on the left. The black portions denote corruption.

ing. Similarly, it crashes in most error cases, leading to
reduced redundancy. In all crash scenarios, ZooKeeper
can reliably elect a new leader, thus ensuring availabil-
ity. ZooKeeper ignores a transaction locally when its tail
is corrupted; the leader election protocol prevents that
node from becoming the leader, avoiding undesirable be-
haviors. Eventually, the corrupted node repairs its log by
contacting the leader, leading to correct behavior.

Unfortunately, ZooKeeper does not recover from write
errors to the transaction head and log tail (Figure 1 – rows
four and eight in ZooKeeper). Figure 2(b) depicts this
scenario. On write errors during log initialization, the er-
ror handling code tries to gracefully shutdown the node
but kills only the transaction processing threads; the quo-
rum thread remains alive (partial crash). Consequently,
other nodes believe that the leader is healthy and do not
elect a new leader. However, since the leader has par-
tially crashed, it cannot propose any transactions, leading
to an indefinite write unavailability.

4.1.3 Cassandra
Cassandra is a Dynamo-like [23] NoSQL store.
Both user data tables (tablesst) and system schema
(schemasst) are stored using a variation of Log Struc-
tured Merge Trees [59]. Unlike other systems we study,
Cassandra does not have a leader and followers; instead,
the nodes form a ring. Hence, we show its behaviors sep-
arately in Figure 3.
Summary and Bugs: Cassandra enables checksum ver-
ification on user data only as a side effect of enabling
compression. When compression is turned off, corrup-
tions are not detected on user data (tablesst data). On
a read query, a coordinator node collects and compares
digests (hash) of the data from R replicas [20]. If the di-
gests mismatch, conflicts in the values are resolved using
a latest timestamp wins policy. If there is a tie between
timestamps, the lexically greatest value is chosen and in-

stalled on other replicas [38]. As shown in Figure 2(c),
on R = 3, if the corrupted value is lexically greater than
the original value, the corrupted value is returned to the
user and the corruption is propagated to other intact repli-
cas. On the other hand, if the corrupted value is lexically
lesser, it fixes the corrupted node. Reads to a corrupted
node with R = 1 always return corrupted data.

Faults in tablesst index cause query failures. Faults in
schema data and schema index cause the node to crash,
making it unavailable for reads and writes with R= 3 and
W = 3, respectively. Faults in other schema files result in
query failure. In most cases, user-visible problems that
are observed in R = 1 configuration are not fixed even
when run with R = 3.

4.1.4 Kafka
Kafka is a distributed persistent message queue in which
clients can publish and subscribe for messages. It uses
a log to append new messages and each message is
checksummed. It maintains an index file which indexes
messages to byte offsets within the log. The replica-
tion checkpoint and recovery checkpoint indicate how
many messages are replicated to followers so far and how
many messages are flushed to disk so far, respectively.
Summary and Bugs: On read and write errors, Kafka
mostly crashes. Figure 2(d) shows the scenario where
Kafka can lose data and become unavailable for writes.
When a log entry is corrupted on the leader (Figure 1 –
rows one and two in Kafka), it locally ignores that entry
and all subsequent entries in the log. The leader then in-
structs the followers to do the same. On receiving this
instruction, the followers hit a fatal assertion and simply
crash. Once the followers crash, the cluster becomes un-
available for writes and the data is also lost. Corruption
in index is fixed using internal redundancy. Faults in the
replication checkpoint of the leader results in a data loss
as the leader is unable to record the replication offsets
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Figure 3: System Behavior: Cassandra. The figure shows system behaviors when corruptions (corrupted with either junk (cj) or
zeros(cz)), read errors (re), write errors (we), and space errors (se) are injected in various on-disk logical structures for Cassandra. The legend for
local behaviors and global effects is the same as shown in Figure 1.

of the followers. Kafka becomes unavailable when the
leader cannot read or write replication checkpoint and
replication checkpoint tmp, respectively.

4.1.5 RethinkDB
RethinkDB is a distributed database suited for pushing
query results to real-time web applications. It uses a per-
sistent B-tree to store all data. metablocks in the B-tree
point to the data blocks that constitute the current and
the previous version of the database. During an update,
new data blocks are carefully first written and then the
metablock with checksums is updated to point to the new
blocks, thus enabling atomic updates.
Summary and Bugs: On any fault in database header
and internal B-tree nodes, RethinkDB simply crashes. If
the leader crashes, a new leader is automatically elected.
RethinkDB relies on the file system to ensure the in-
tegrity of data blocks; hence, it does not detect corrup-
tions in transaction body and tail (Figure 1 – rows five
and six in RethinkDB). When these blocks of the leader
are corrupted, RethinkDB silently returns corrupted data.

Figure 2(e) depicts how data is silently lost when the
transaction head or the metablock pointing to the trans-
action is corrupted on the leader. Even though there are
intact copies of the same data on the followers, the leader
does not fix its corrupted or lost data, even when we per-
form the reads with majority option. When the followers
are corrupted, they are not fixed by contacting the leader.
Although this does not lead to an immediate user-visible
corruption or loss (because the leader’s data is the one
finally returned), it does so when the corrupted follower
becomes the leader in the future.

4.1.6 MongoDB
MongoDB is a popular replicated document store that
uses WiredTiger [53] underneath for storage. When an
item is inserted or updated, it is added to the journal first;
then, it is checkpointed to the collections file.
Summary and Bugs: MongoDB simply crashes on most
errors, leading to reduced redundancy. A new leader is

automatically elected if the current leader crashes. Mon-
goDB employs checksums for all files; corruption in any
block of any file causes a checksum mismatch and an
eventual crash. One exception to the above is when
blocks other than journal header are corrupted (Figure 1
– the sixth row in MongoDB). In this case, MongoDB
detects and ignores the corrupted blocks; then, the cor-
rupted node truncates its corrupted journal, descends to
become a follower, and finally repairs its journal by con-
tacting the leader. In a corner case where there are space
errors while appending to the journal, queries fail.

4.1.7 LogCabin
LogCabin uses the Raft consensus protocol [56] to pro-
vide a replicated and consistent data store for other
systems to store their core metadata. It implements a
segmented-log [77] and each segment is a file on the file
system. When the current open segment is fully utilized,
it is closed and a new segment is opened. Two pointer
files point to the latest two versions of the log. They are
updated alternately; when a pointer file is partially up-
dated, LogCabin uses the other pointer file that points to
a slightly older but consistent version of the log.
Summary and Bugs: LogCabin crashes on all read,
write, and space errors. Similarly, if an open segment
file header or blocks in a closed segment are corrupted,
LogCabin simply crashes. LogCabin recognizes corrup-
tion in any other blocks in an open segment using check-
sums, and reacts by simply discarding and ignoring the
corrupted entry and all subsequent entries in that segment
(Figure 1 – second row in LogCabin). If a log pointer file
is corrupted, LogCabin ignores that pointer file and uses
the other pointer file.

In the above two scenarios, the leader election proto-
col ensures that the corrupted node does not become the
leader; the corrupted node becomes a follower and fixes
its log by contacting the new leader. This ensures that in
any fault scenario, LogCabin would not globally corrupt
or lose user data.
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P
√ √√

Data Checksums P
√a√$√ √ √√

Background Scrubbing
√

External Repair Tools
√ √ √ √

Snapshot Redundancy P∗ P∗ P∗

P - applicable only for some on-disk structures; a - Adler32 checksum
∗ - only for certain amount of time; $ - unused when compression is off

Table 2: Data Integrity Strategies. The table shows tech-
niques employed by modern systems to ensure data integrity of user-
level application data.

4.1.8 CockroachDB
CockroachDB is a SQL database built to survive disk,
machine, and data-center failures. It uses a tuned version
of RocksDB underneath for storage; the storage engine
is an LSM tree that appends incoming data to a persistent
log; the in-memory data is then periodically compacted
to create the sst files. The manifest and the current files
point to the current version of the database.
Summary and Bugs: Most of the time, CockroachDB
simply crashes on corruptions and errors on any data
structure, resulting in reduced redundancy. Faults in the
log file on the leader can sometimes lead to total cluster
unavailability as some followers also crash following the
crash of the leader. Corruptions and errors in a few other
log metadata can cause a data loss where CockroachDB
silently returns zero rows. Corruptions in sst files and
few blocks of log metadata cause queries to fail with er-
ror messages such as table does not exist or db does not
exist. Overall, we found that CockroachDB has many
problems in fault handling. However, the reliability may
improve in future since CockroachDB is still under ac-
tive development.

4.2 Observations across Systems
We now present a set of observations with respect to data
integrity and error handling across all eight systems.
#1: Systems employ diverse data integrity strategies.
Table 2 shows different strategies employed by modern
distributed storage systems to ensure data integrity. As
shown, systems employ an array of techniques to de-
tect and recover from corruption. The table also shows
the diversity across systems. On one end of the spec-
trum, there are systems that try to protect against data
corruption in the storage stack by using checksums (e.g.,
ZooKeeper, MongoDB, CockroachDB) while the other
end of spectrum includes systems that completely trust
and rely upon the lower layers in the storage stack to han-
dle data integrity problems (e.g., RethinkDB and Redis).
Despite employing numerous data integrity strategies, all
systems exhibit undesired behaviors.

Sometimes, seemingly unrelated configuration set-
tings affect data integrity. For example, in Cassandra,
checksums are verified only as a side effect of enabling
compression. Due to this behavior, corruptions are not
detected or fixed when compression is turned off, lead-
ing to user-visible silent corruption.

We also find that a few systems use inappropriate
checksum algorithms. For example, ZooKeeper uses
Adler32 which is suited only for error detection after
decompression and can have collisions for very short
strings [47]. In our experiments, we were able to in-
ject corruptions that caused checksum collisions, driving
ZooKeeper to serve corrupted data. We believe that it
is not unusual to expect metadata stores like ZooKeeper
to store small entities such as configuration settings reli-
ably. In general, we believe that more care is needed to
understand the robustness of possible checksum choices.
#2: Local Behavior: Faults are often undetected; even
if detected, crashing is the most common local reaction.
We find that faults are often locally undetected. Some-
times, this leads to an immediate harmful global effect.
For instance, in Redis, corruptions in the appendonly file
of the leader are undetected, leading to global silent cor-
ruption. Also, corruptions in the rdb of the leader are
also undetected and, when sent to followers, causes them
to crash, leading to unavailability. Similarly, in Cas-
sandra, corruption of tablesst data is undetected which
leads to returning corrupted data to users and sometimes
propagating it to intact replicas. Likewise, RethinkDB
does not detect corruptions in the transaction head on the
leader which leads to a global user-visible data loss. Sim-
ilarly, corruption in the transaction body is undetected
leading to global silent corruption. The same faults are
undetected also on the followers; a global data loss or
corruption is possible if a corrupted follower becomes
the leader in future.

While some systems detect and react to faults purpose-
fully, some react to faults only as a side effect. For in-
stance, ZooKeeper, MongoDB, and LogCabin carefully
detect and react to corruptions. On the other hand, Redis,
Kafka, and RethinkDB sometimes react to a corruption
only as a side effect of a failed deserialization.

We observe that crashing is the most common local
reaction to faults. When systems detect corruption or
encounter an error, they simply crash, as is evident from
the abundance of crash symbols in local behaviors of Fig-
ure 1. Although crashing of a single node does not im-
mediately affect cluster availability, total unavailability
becomes imminent as other nodes also can fail subse-
quently. Also, workloads that require writing to or read-
ing from all replicas will not succeed even if one node
crashes. After a crash, simply restarting does not help if
the fault is sticky; the node would repeatedly crash un-
til manual intervention fixes the underlying problem. We
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Structures Fault Injected Scope
Affected

Redis:
appendonlyfile.metadata any All#

appendonlyfile.userdata read, write errors All#

Cassandra:
tablesst data.block 0 corruptions (junk) First Entry$

tablesst index corruptions SSTable#

schemasst compressioninfo corruptions, read error Table#

schemasst filter corruptions, read error Table#

schemasst statistics.0 corruptions, read error Table#

Kafka:
log.header corruptions Entire Log$

log.other corruptions, read error Entire Log$*

replication checkpoint corruptions, read error All$

replication checkpoint tmp write errors All#

RethinkDB:
db.transaction head corruptions Transaction$

db.metablock corruptions Transaction$

$- data loss # -inaccessible *- starting from corrupted entry
Table 3: Scope Affected. The table shows the scope of data (third
column) that becomes lost or inaccessible when only a small portion of
data (first column) is faulty.

also observe that nodes are more prone to crashes on er-
rors than corruptions.

We observe that failed operations are rarely retried.
While retries help in several cases where they are used,
we observe that sometimes indefinitely retrying opera-
tions may lead to more problems. For instance, when
ZooKeeper is unable to write new epoch information (to
epoch tmp) due to space errors, it deletes and creates
a new file keeping the old file descriptor open. Since
ZooKeeper blindly retries this sequence and given that
space errors are sticky, the node soon runs out of descrip-
tors and crashes, reducing availability.
#3: Redundancy is underutilized: A single fault can
have disastrous cluster-wide effects. Contrary to the
widespread expectation that redundancy in distributed
systems can help recover from single faults, we ob-
serve that even a single error or corruption can cause ad-
verse cluster-wide problems such as total unavailability,
silent corruption, and loss or inaccessibility of inordinate
amount of data. Almost all systems in many cases do
not use redundancy as a source of recovery and miss op-
portunities of using other intact replicas for recovering.
Notice that all the bugs and undesirable behaviors that
we discover in our study are due to injecting only a sin-
gle fault in a single node at a time. Given that the data
and functionality are replicated, ideally, none of the un-
desirable behaviors should manifest.

A few systems (MongoDB and LogCabin) automat-
ically recover from some (not all) data corruptions by
utilizing other replicas. This recovery involves synergy
between the local and the distributed recovery actions.
Specifically, on encountering a corrupted entry, these
systems locally ignore faulty data (local recovery pol-
icy). Then, the leader election algorithm ensures that the

node where a data item has been corrupted and hence ig-
nored does not become the leader (global recovery pol-
icy). As a result, the corrupted node eventually recovers
the corrupted data by fetching it from the current leader.
In many situations, even these systems do not automati-
cally recover by utilizing redundancy. For instance, Log-
Cabin and MongoDB simply crash when closed segment
or collections are corrupted, respectively.

We also find that an inordinate amount of data can
be affected when only a small portion of data is faulty.
Table 3 shows different scopes that are affected when a
small portion of the data is faulty. The affected portions
can be silently lost or become inaccessible. For example,
in Redis, all of user data can become inaccessible when
metadata in the appendonly file is faulty or when there
are read and write errors in appendonly file data. Simi-
larly, in Cassandra, an entire table can become inacces-
sible when small portions of data are faulty. Kafka can
sometimes lose an entire log or all entries starting from
the corrupted entry until the end of the log. RethinkDB
loses all the data updated as part of a transaction when
a small portion of it is corrupted or when the metablock
pointing to that transaction is corrupted.

In summary, we find that redundancy is not effectively
used as a source of recovery and the general expectation
that redundancy can help availability of functionality and
data is not a reality.
#4: Crash and corruption handling are entangled. We
find that detection and recovery code of many systems
often inadvertently try to detect and fix two fundamen-
tally distinct problems: crashes and data corruption.

Storage systems implement crash-consistent update
protocols (i.e., even in the presence of crashes during an
update, data should always be recoverable and should not
be corrupt or lost) [7, 61, 62]. To do this, systems care-
fully order writes and use checksums to detect partially
updated data or corruptions that can occur due to crashes.
On detecting a checksum mismatch due to corruption, all
systems invariably run the crash recovery code (even if
the corruption was not actually due to crash but rather
due to a real corruption in the storage stack), ultimately
leading to undesirable effects such as data loss.

One typical example of this problem is RethinkDB.
RethinkDB does not use application-level checksums to
handle corruption. However, it does use checksums for
its metablocks to recover from crashes. Whenever a
metablock is corrupted, RethinkDB detects the mismatch
in metablock checksum and invokes its crash recovery
code. The crash recovery code believes that the sys-
tem crashed when the last transaction was committing.
Consequently, it rolls back the committed and already-
acknowledged transaction, leading to a data loss. Sim-
ilarly, when the log is corrupted in Kafka, the recovery
code treats the corruption as a signal of a crash; hence, it
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truncates and loses all further data in the log instead of
fixing only the corrupted entry. The underlying reason
for this problem is the inability to differentiate corrup-
tions due to crashes from real storage stack corruptions.

LogCabin tries to distinguish crashes from corruption
using the following logic: If a block in a closed segment
(a segment that is full) is corrupted, it correctly flags that
problem as a corruption and reacts by simply crashing.
On the other hand, if a block in an open segment (still
in use to persist transactions) is corrupted, it detects it as
a crash and invokes its usual crash recovery procedure.
MongoDB also differentiates corruptions in collections
from journal corruptions in a similar fashion. Even sys-
tems that attempt to discern crashes from corruption do
not always do so correctly.

There is an important consequence of entanglement of
detection and recovery of crashes and corruptions. Dur-
ing corruption (crash) recovery, some systems fetch in-
ordinate amount of data to fix the problem. For instance,
when a log entry is corrupted in LogCabin and Mon-
goDB, they can fix the corrupted log by contacting other
replicas. Unfortunately, they do so by ignoring the cor-
rupted entry and all subsequent entries until the end of
the log and subsequently fetching all the ignored data, in-
stead of simply fetching only the corrupted entry. Since a
corruption is identified as a crash during the last commit-
ting transaction, these systems assume that the corrupted
entry is the last entry in the log. Similarly, Kafka follow-
ers also fetch additional data from the leader instead of
only the corrupted entry.
#5: Nuances in commonly used distributed proto-
cols can spread corruption or data loss. We find
that subtleties in the implementation of commonly
used distributed protocols such as leader election, read-
repair [23], and re-synchronization can propagate cor-
ruption or data loss.

For instance, in Kafka, a local data loss in one node
can lead to a global data loss due to the subtleties in
its leader election protocol. Kafka maintains a set of in-
sync-replicas (ISR) and any node in this set can become
the leader. When a log entry is corrupted on a Kafka
node, it ignores the current and all subsequent entries in
the log and truncates the log until the last correct entry.
Logically, now this node should not be part of the ISR
as it has lost some log entries. However, this node is
not removed from the ISR and so eventually can still be-
come the leader and silently lose data. This behavior is
in contrast with leader election protocols of ZooKeeper,
MongoDB, and LogCabin where a node that has ignored
log entries do not become the leader.

Read-repair protocols are used in Dynamo-style quo-
rum systems to fix any replica that has stale data. On
a read request, the coordinator collects the digest of the
data being read from a configured number of replicas. If

all digests match, then the local data from the coordinator
is simply returned. If the digests do not match, an inter-
nal conflict resolution policy is applied, and the resolved
value is installed on replicas. In Cassandra, which im-
plements read-repair, the conflict resolution resolves to
the lexically greater value; if the injected corrupted bytes
are lexically greater than the original value, the corrupted
value is propagated to all other intact replicas.

Similarly, in Redis, when a data item is corrupted
on the leader, it is not detected. Subsequently, the re-
synchronization protocol propagates the corrupted data
to the followers from the leader, overriding the correct
version of data present on the followers.

4.3 File System Implications
All the bugs that we find can occur on XFS and all ext
file systems including ext4, the default Linux file sys-
tem. Given that these file systems are commonly used
as local file systems in replicas of large distributed stor-
age deployments and recommended by developers [50,
55, 64, 76], our findings have important implications for
such real-world deployments.

File systems such as btrfs and ZFS employ check-
sums for user data; on detecting a corruption, they re-
turn an error instead of letting applications silently ac-
cess corrupted data. Hence, bugs that occur due to an
injected block corruption will not manifest on these file
systems. We also find that applications that use end-to-
end checksums when deployed on such file systems, sur-
prisingly, lead to poor interactions. Specifically, appli-
cations crash more often due to errors than corruptions.
In the case of corruption, a few applications (e.g., Log-
Cabin, ZooKeeper) can use checksums and redundancy
to recover, leading to a correct behavior; however, when
the corruption is transformed into an error, these applica-
tions crash, resulting in reduced availability.

4.4 Discussion
We now consider why distributed storage systems are not
tolerant of single file-system faults. In a few systems
(e.g., RethinkDB and Redis), we find that the primary
reason is that they expect the underlying storage stack
layers to reliably store data. As more deployments move
to the cloud where reliable storage hardware, firmware,
and software might not be the reality, storage systems
need to start employing end-to-end integrity strategies.

Next, we believe that recovery code in distributed sys-
tems is not rigorously tested, contributing to undesirable
behaviors. Although many systems employ checksums
and other techniques, recovery code that exercises such
machinery is not carefully tested. We advocate future
distributed systems need to rigorously test failure recov-
ery code using fault injection frameworks such as ours.

Third, although a body of research work [25, 79, 83,
84, 94] and enterprise storage systems [49, 57, 58] pro-
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vide software guidelines to tackle partial faults, such wis-
dom has not filtered down to commodity distributed stor-
age systems. Our findings provide motivation for dis-
tributed systems to build on existing research work to
practically tolerate faults other than crashes [17, 44, 97].

Finally, although redundancy is effectively used to
provide improved availability, it remains underutilized
as a source of recovery from file-system and other par-
tial faults. To effectively use redundancy, first, the on-
disk data structures have to be carefully designed so that
corrupted or inaccessible parts of data can be identified.
Next, corruption recovery has to be decoupled from crash
recovery to fix only the corrupted or inaccessible por-
tions of data. Sometimes, recovering the corrupted data
might be impossible if the intact replicas are not reach-
able. In such cases, the outcome should be defined by
design rather than left as an implementation detail.

We contacted developers of the systems regarding
the behaviors we found. RethinkDB and Redis rely
on the underlying storage layers to ensure data in-
tegrity [68, 69]. RethinkDB intends to change the de-
sign to include application-level checksums in the future
and updated the documentation to reflect the bugs we re-
ported [71, 72] until this is fixed. They also confirmed
the entanglement in corruption and crash handling [73].

The write unavailability bug in ZooKeeper discovered
by CORDS was encountered by real-world users and has
been fixed recently [99, 101]. ZooKeeper developers
mentioned that crashing on detecting corruption was not
a conscious design decision [100]. LogCabin developers
also confirmed the entanglement in corruption and crash
handling in open segments; they added that it is hard to
distinguish a partial write from corruption in open seg-
ments [46]. Developers of CockroachDB and Kafka have
also responded to our bug reports [15, 16, 39].

5 Related Work
Our work builds on four bodies of related work.
Corruptions and errors in storage stack: As discussed
in §2, detailed studies on storage errors and corrup-
tions [8, 9, 48, 54, 79, 81] motivated our work.
Fault injection: Our work is related to efforts that in-
ject faults into systems and test their robustness [11, 32,
82, 89]. Several efforts have built generic fault injectors
for distributed systems [21, 36, 86]. A few studies have
shown how file systems [10, 63, 98] and applications
running atop them [87, 97] react specifically to storage
and memory faults. Our work draws from both bodies
of work but is unique in its focus on testing behaviors
of distributed systems to storage faults. We believe our
work is the first to comprehensively examine the effects
of storage faults across many distributed storage systems.
Testing Distributed Systems: Several distributed model
checkers have succeeded in uncovering bugs in dis-

tributed systems [34, 43, 95]. CORDS exposes bugs that
cannot be discovered by model checkers. Model check-
ers typically reorder network messages and inject crashes
to find bugs; they do not inject storage-related faults.
Similar to model checkers, tools such as Jepsen [42] that
test distributed systems under faulty networks are com-
plementary to CORDS. Our previous work [3] studies
how file-system crash behaviors affect distributed sys-
tems. However, these faults occur only on a crash unlike
block corruption and errors introduced by CORDS.
Bug Studies: A few recent bug studies [33, 96] have
given insights into common problems found in dis-
tributed systems. Yuan et al. show that 34% of catas-
trophic failures in their study are due to unanticipated
error conditions. Our results also show that systems do
not handle read and write errors well; this poor error han-
dling leads to harmful global effects in many cases. We
believe that bug studies and fault injection studies are
complementary to each other; while bug studies suggest
constructing test cases by examining sequences of events
that have led to bugs encountered in the wild, fault injec-
tion studies like ours concentrate on injecting one type of
fault and uncovering new bugs and design flaws.

6 Conclusions
We show that tolerance to file-system faults is not in-
grained in modern distributed storage systems. These
systems are not equipped to effectively use redundancy
across replicas to recover from local file-system faults;
user-visible problems such as data loss, corruption, and
unavailability can manifest due to a single local file-
system fault. As distributed storage systems are emerg-
ing as the primary choice for storing critical user data,
carefully testing them for all types of faults is important.
Our study is a step in this direction and we hope our work
will lead to more work on building next generation fault-
resilient distributed systems.
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