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Memory is expensive, constrained, and wasted

50% of server costs 

at Azure and Meta[1]

DRAM costs

265% more [2]

$ per bit flatlined

for 10 years [2]

65% used at 

Google [3] and Alibaba [4]  

95-98% 
used at Meta [5]

[1] Pond: CXL-Based Memory Pooling Systems for Cloud Platforms
[2] DRAMeXchange (6 months -Oct 26 2025)

[3] Borg: the Next Generation
[4] Imbalance in the Cloud: an Analysis on Alibaba Cluster Trace

[5] TPP: Transparent Page Placement for CXL Tiered-Memory
[6] HotRing: A Hotspot-Aware In-Memory Key-Value Store
[7] Benchmarking RocksDB KV Workloads at Facebook

50% of accesses touch 

1% data at Alibaba [6]

<3% data touched in 

24 hours at Meta [7]

2



• Real world workloads exhibit highly skewed access patterns

• 90% of requests at Meta [1], Twitter [2], and Alibaba [3] access KV objects <1 KiB in size

• Object (   ) creation order determines their location on the virtual address space

Wasted Memory - Hotness Fragmentation

Page 1 Page 2 Page 3

[1] Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook, ATC 2020
[2] A large scale analysis of hundreds of in-memory cache clusters at Twitter, OSDI 2020
[3] HotRing: A Hotspot-Aware In-Memory Key-Value Store, FAST 2020

Frequently (hot) and infrequently (cold) accessed objects intermingled on the same page

3



Memory is expensive, constrained, and wasted

OS

Object

Semantic gap between application 
and OS memory model

Data is NOT bin-packed based on usage
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Data is NOT bin-packed based on usage

Increased 
Memory Footprint

Poor Hardware 
Efficiency

Expensive and 
Unsustainable 
Datacenters
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● New metric (Page Utilization) to quantify hotness fragmentation

● Introduce Address-Space Engineering

Data is bin-packed based on usage
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Overview



● New metric (Page Utilization) to quantify hotness fragmentation

● Introduce Address-Space Engineering

● A compiler-runtime system that dynamically reorganize the virtual address space for a 
workload (Hierarchically Aware Data structurES)

● HADES increases memory savings of swapping solutions without sacrificing performance

● Demonstrated 70% memory reduction on YCSB workloads across 10 different popular 
highly concurrent data structures 
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Data is bin-packed based on usage
Overview



Outline

● Page Utilization

● Rewards of Improved Page Utilization

● Address-Space Engineering

● HADES

● Evaluation
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Page Utilization directly measures the hotness 
fragmentation of an application for a workload

Quantify Hotness Fragmentation

Total Unique Bytes Accessed

Total Unique Pages Accessed x Page Size
Page Utilization  = 
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Object Object

Page Page

Low Page UtilizationHigh Page Utilization



Poor Page Utilization

Page Utilization for 360s epochs running YCSB-C with Zipfian distribution

● 75% of accessed pages in Redis utilize 3% or less of their capacity
● 95% of pages in MongoDB and Memcached use less than 15%
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Rewards of Improved Page Utilization

Redis touches ~0.5 MiB of cachelines 
but 1.2 GiB remains resident for YCSB
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#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads



Rewards of Improved Page Utilization

● 11% of CPU cycles at Google spent 
on dTLB load misses [1]

● Applying THP indiscriminately 
increases footprint by 69% [2]

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024
[2] Coordinated and efficient huge page management with ingens, OSDI 2016

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads
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#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory



#3 Require fewer machines: More cost 
effective and sustainable data centers

● Jobs with small working sets but 
large allocation footprints are 
spread across multiple machines [3]

● DRAM produces 12x more 
emissions per bit than SSDs [4]

Rewards of Improved Page Utilization

#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024
[2] Coordinated and efficient huge page management with ingens, OSDI 2016
[3] Borg: the Next Generation, EuroSys 2020
[4] FairyWREN: A Sustainable Cache for Emerging Write-Read-Erase Flash Interfaces, OSDI 2024

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads
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Rewards of Improved Page Utilization

#3 Require fewer machines: More cost 
effective and sustainable data centers

#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads
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Address-Space Engineering
Engineer the application’s virtual address space to be 

OS-tiering-friendly, adapting to workload access patterns
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Address-Space Engineering
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Principles of workload-optimized address space:

P1.   Decoupling Layout from Reclamation

P2.   Grouping Objects by Access Intensity

P3.   Enabling Object Mobility

Engineer the application’s virtual address space to be 
OS-tiering-friendly, adapting to workload access patterns



Hierarchically Aware Data structurES
A compiler-runtime frontend that dynamically
reorganizes the address space for a workload

P1.   Decoupling Layout from Reclamation
Backend Integration

P2.   Grouping Objects by Access Intensity
Tracking and Grouping Objects
Adaptive Workload Response

P3.   Enabling Object Mobility
Safe Concurrent Migration
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P1.   Decoupling Layout from Reclamation

Requirements: 

● Complement tiering / swapping solutions like: 
Kswapd, TMO, AutoNuma, Zswap, TPP, etc

● Require no new OS abstractions

● Require no specialized hardware knowledge

Address-Space Engineering
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P1.   Decoupling Layout from Reclamation

Backend Integration

● Per process user space runtime

● Static analysis for compile time annotations 

● Frontend organizes address space layout and  
backed acts upon it

Hierarchically Aware Data structurES
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P2.   Grouping Objects by Access Intensity

Requirements:

● Tracking activity at allocation granularity

● Activity tracking must have low overhead

● Static hints at allocation-time is insufficient

Object

PINTool
PEBS
MemProf

PTE Scan
DAMON

Allocation Hot Cold

Address-Space Engineering
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NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

Adaptive 
Threshold

OC in action every 120s

P2.   Grouping Objects by Access Intensity

Tracking and Grouping Objects

● Tagged pointers to track activity on dereference

● Object Collector (OC) periodically scans managed 
objects to maintain freshness and group to heaps

● Custom Jemalloc ensures different heap regions 
are contiguous

Hierarchically Aware Data structurES
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Adaptive Workload Response

● Promotion Rate (PR) as performance proxy

● Adaptive policy to reach target promotion rate

● Proactive reclamation using MADV_PAGEOUT

NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

Accessed

P2.   Grouping Objects by Access Intensity
Hierarchically Aware Data structurES
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Adaptive 
Threshold

Adaptive 
Threshold

DRAM



NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

COLD
MADV_PAGEOUT

Target PR
reached

AccessedAccessed

P2.   Grouping Objects by Access Intensity
Hierarchically Aware Data structurES

Adaptive Workload Response

● Promotion Rate (PR) as performance proxy

● Adaptive policy to reach target promotion rate

● Proactive reclamation using MADV_PAGEOUT
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Adaptive 
Threshold

Adaptive 
Threshold

DRAM SSD / CXL



P3.   Enabling Object Mobility

Key Value

       Node (HashTable, SkipList, BTree, etc)

Object Object

Threads

Background and Requirement:

● Unmanaged languages assume object addresses 
are fixed after allocation

● Focus on pointer-based data structures

● Fast but safe in concurrent environments

Address-Space Engineering
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Copy

   Key

          Node 

Object

Threads

Object
Collector 

Object

ATC   Value ATC

Old Location New Location

P3.   Enabling Object Mobility

Safe Concurrent Migration

● Track objects activity in real-time using Active 
Thread Count (ATC) embedded in unused bits

● Compiler manages ATC through static analysis

● Optimistic Object Migration Protocol

Hierarchically Aware Data structurES
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Evaluation

● Ten popular pointer based data structures
○ ART, MassTree, BTree, HashTable, etc
○ Used by Redis, LevelDB, NGINX, 

DuckDB, etc

● Six unique concurrency mechanisms 
ranging from global locks to lock-free

● CrestDB with YCSB for consistency

● TLB performance optimization for bulk 
reclaim in linux kernel

CPU Intel(R) Xeon Gold 5218 ( 16 cores)

Memory 2x 16GB @2400MHz DRAM

SSD 512 GB P4800x SSD

OS Ubuntu 22.04
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10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

Frontend Effectiveness
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10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

● HADES reduces memory usage by up to 
70% through object-level cold detection 
and heap organization

Frontend Effectiveness
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Frontend Effectiveness

10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

● HADES reduces memory usage by up to 
70% through object-level cold detection 
and heap organization

● HADES tracking overhead lowers average 
throughput by 2.5% and increases P90 
latency by 5%
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YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

Backend Validation

30



YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

Backend Validation
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36%

1.7x
3.2x



Backend Validation
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YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

HADES achieves max memory savings 
with no performance degradation

3.2x



● Semantic gap between application and OS memory model

● Hotness fragmentation is widespread

● Address-Space Engineering for improving page utilization

● HADES as an approach for Address-Space Engineering

● Achieved higher memory savings across diverse data structures without 
degrading performance

Summary
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● Are there features that we should be adding to managed language to enable easier 
address-space engineering?

Garbage collectors divides memory into lifetime generations and not access generations

● What OS abstractions/interfaces to support dynamically reorganize the address space?

● What future applications can we have with dynamically organized address space?

Address-space engineering could improve multiple aspects of execution: concurrency, isolation, tiering

Open Questions



Limitations
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● Lack of pointer stability
● Unique Object Ownership
● Incompatibility with pointer arithmetic
● Language support restrictions
● Requirement for explicit annotations



Related Work
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● Object-Level Management:
○ AIFM and MIRA operate at object granularity but focus exclusively on far-memory 

over RDMA, requiring direct hardware access that limits production adoption
○ Alaska uses handle-based indirection to reduce RSS through heap compaction, 

addressing fragmentation reactively without object hotness classification
● Runtime vs. Allocation-Time Placement: Allocation time hinting approaches 

fail to capture objects transitioning between hot and cold states or distinguish 
between objects from the same allocation site with different access patterns

● Page-Level Optimizations: TPP, HeMEM, TMTS, MEMTIS, etc


