Tidying Up The Address Space

What a mess!

Vinay Banakar‘" 2, Suli Yang?, Kan Wu@
Andrea Arpaci-Dusseau'”, Remzi Arpaci-Dusseau'”, Kimberly Keeton?

™ [\ WISCONSIN > (5o gﬁe

IIIIIIIIIIIIIIIIIIIIIIIIIIII



Memory is expensive, constrained, and wasted

50% of server costs

at Azure and Metay 65% Jsed at 50% of accesses touch

(0) .
Google and Alibaba 1/) data at Alibaba

S per bit flatlined

for 10 yearsp

95'98% <3% data touched in

DRAM costs used at Meta s 24 hours at Metan

2 6 5 A more
[5] TPP: Transparent Page Placement for CXL Tiered-Memory

[1] Pond: CXL-Based Memory Pooling Systems for Cloud Platforms  [3] Borg: the Next Generation . - [6] HotRing: A Hotspot-Aware In-Memory Key-Value Store
[2] DRAMeXchange (6 months -Oct 26 2025) [4] Imbalance in the Cloud: an Analysis on Alibaba Cluster Trace (7] Benchmarking RocksDB KV Workloads at Facebook



Wasted Memory - Hotness Fragmentation

- Object (@) creation order determines their location on the virtual address space

« Real world workloads exhibit highly skewed access patterns

+ 90% of requests at Meta 111, Twitter 23, and Alibaba 31 access KV objects <1 KiB in size

Frequently (hot) and infrequently (cold) accessed objects intermingled on the same page

( ) O O C )OO C e
GBS ) O] ) | )| ( ) ( )
OC/ Page 1 ( ) ( ]Pagez (N Page 3

[1] Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook, ATC 2020
[2] A large scale analysis of hundreds of in-memory cache clusters at Twitter, OSDI 2020
[3] HotRing: A Hotspot-Aware In-Memory Key-Value Store, FAST 2020

)




Memory is expensive, constrained, and wasted

Semantic gap between application
and OS memory model

Object =——t=—pp>{ ] ]

[ ) 0 O
( J | ] Page jeg— 0S

Data is NOT bin-packed based on usage



Data is NOT bin-packed based on usage

2 8

)3}

Increased Poor Hardware Expensive and
Memory Footprint Efficiency Unsustainable
Datacenters



Overview

Data is bin-packed based on usage

e New metric (Page Utilization) to quantify hotness fragmentation

e Introduce Address-Space Engineering



Overview

Data is bin-packed based on usage

New metric (Page Utilization) to quantify hotness fragmentation
Introduce Address-Space Engineering

A compiler-runtime system that dynamically reorganize the virtual address space for a
workload (Hierarchically Aware Data structurES)

HADES increases memory savings of swapping solutions without sacrificing performance

Demonstrated 70% memory reduction on YCSB workloads across 10 different popular
highly concurrent data structures



Outline
e Page Utilization
e Rewards of Improved Page Utilization
e Address-Space Engineering
e HADES

e Evaluation



Quantify Hotness Fragmentation

Total Unique Bytes Accessed
Page Utilization =

Total Unique Pages Accessed x Page Size

Page ) D Page | J ]
G (D [ )
G ) | )
High Page Utilization Low Page Utilization

Page Utilization directly measures the hotness
fragmentation of an application for a workload




Poor Page Utilization

100
80 1
S 6o |
E 404 —— MongoDB
@) S L e A I ELELE Memcached
2018 —-= Redis
0

O 10 20 30 40 50 60 70 80 90 100
Page Utilization (%)

Page Utilization for 360s epochs running YCSB-C with Zipfian distribution

e 75% of accessed pages in Redis utilize 3% or less of their capacity
e 95% of pages in MongoDB and Memcached use less than 15%



Rewards of Improved Page Utilization

#1 Increased Reclaimable Memory: Fewer
pages needed to serve skewed workloads

— RSS
- =+ Touched Pages
— - Touched Cachelines

—_ 3 .
piPpEee e Recamabe e
=
— 102
zn ]Unreclaimable Memory |
o 1
10
S
(3]}
= 10°

10 20 30 40 50 60 70 80 90 100 110
Time (s)

Redis touches ~0.5 MiB of cachelines
but 1.2 GiB remains resident for YCSB

11




Rewards of Improved Page Utilization

600

#1 Increased Reclaimable Memory: Fewer
pages needed to serve skewed workloads 400

Cycles

200

#2 Targeted Huge Pages: Saves CPU cycles
without sacrificing reclaimable memory

TLB Hit TLB Miss

e 11% of CPU cycles at Google spent
on dTLB load misses [1]

e Applying THP indiscriminately
increases footprint by 69% [2]
12

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024
[2] Coordinated and efficient huge page management with ingens, OSDI 2016



Rewards of Improved Page Utilization

#1 Increased Reclaimable Memory: Fewer
pages needed to serve skewed workloads

#2 Targeted Huge Pages: Saves CPU cycles
without sacrificing reclaimable memory

#3 Require fewer machines: More cost
effective and sustainable data centers

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024

[2] Coordinated and efficient huge page management with ingens, OSDI 2016

[3] Borg: the Next Generation, EuroSys 2020

[4] FairyWREN: A Sustainable Cache for Emerging Write-Read-Erase Flash Interfaces, OSDI 2024

Jobs with small working sets but
large allocation footprints are
spread across multiple machines [3]

DRAM produces 12x more
emissions per bit than SSDs [4]

13



Rewards of Improved Page Utilization

#1 Increased Reclaimable Memory: Fewer
pages needed to serve skewed workloads

#2 Targeted Huge Pages: Saves CPU cycles
without sacrificing reclaimable memory

#3 Require fewer machines: More cost
effective and sustainable data centers

14



Address-Space Engineering

Engineer the application’s virtual address space to be
OS-tiering-friendly, adapting to workload access patterns

S —— —— — — — — — — — — — — — — — —— —_ —

| Page HE0E | Hot Page Cold Page

2 oM 1) o BC I I 1

:[ I e )| (C IO J| : [ U )07 | I J |
| |

Hotness Fragmented Virtual Address Space

15



),

][ object ]

Address-Space Engineering

Engineer the application’s virtual address space to be
OS-tiering-friendly, adapting to workload access patterns

—— — — — — —— — ——— — — —_ —_ —_ —_—_ sy

[

i)

Hotness Fragmented Virtual Address Space

Principles of workload-optimized address space:

P1. Decoupling Layout from Reclamation
P2. Grouping Objects by Access Intensity

P3. Enabling Object Mobility

16



P1.

P2.

P3.

Hierarchically Aware Data structurES

A compiler-runtime frontend that dynamically
reorganizes the address space for a workload

Decoupling Layout from Reclamation
Backend Integration

Grouping Objects by Access Intensity
Tracking and Grouping Objects
Adaptive Workload Response

Enabling Object Mobility
Safe Concurrent Migration

17



Address-Space Engineering

P1. Decoupling Layout from Reclamation

S 3% B33

Req uirements: Trees Hash Tables Skip Lists

e Complement tiering / swapping solutions like:
Kswapd, TMO, AutoNuma, Zswap, TPP, etc

e Require no new OS abstractions

[ Page || ) [ pPage || )

e Require no specialized hardware knowledge R — 1 ¢ T N}elmory )

Backend: Page Placement Decisions

18



Hierarchically Aware Data structurES

P1. Decoupling Layout from Reclamation

S 3% BaE

Backend |ntegrati0n Trees Hash Tables Skip Lists
Virtual Address Space

e Per process user space runtime [ oObject I ] ( N obiec N ]
CJC | 4 [ )

e Static analysis for compile time annotations R R —

y p Frontend (HADES): Object Placement Decisions
e Frontend organizes address space layout and (_Page ] [ J (—Page [ ]
backed acts upon it [ J ] L J ]

DRAM SSD/CXL Memory

Backend: Page Placement Decisions

19



Address-Space Engineering

P2. Grouping Objects by Access Intensity

Requirements:

Tracking activity at allocation granularity
Activity tracking must have low overhead

Static hints at allocation-time is insufficient

| ) Il PiNTool
[ ] -4-— PEBS

[ ] [ ] MemProf
PTE Scan

DAMON

© @ O

Allocation Hot Cold

20



Hierarchically Aware Data structurES

P2. Grouping Objects by Access Intensity

OC in action every 120s
Tracking and Grouping Objects

Accessed

— | HOT
e Tagged pointers to track activity on dereference NEW MADV_HUGEPAGE

e Object Collector (OC) periodically scans managed | adaptive
objects to maintain freshness and group to heaps Threshold

COLD
e Custom Jemalloc ensures different heap regions AR EOL)

are contiguous




Hierarchically Aware Data structurES

P2. Grouping Objects by Access Intensity

Adaptive Workload Response

Promotion Rate (PR) as performance proxy
Adaptive policy to reach target promotion rate

Proactive reclamation using MADV_PAGEOUT

Accessed

NEW

———»

Adaptive
Threshold

HOT

MADV_HUGEPAGE

’Accessed

COLD

MADV_COLD

Adaptive
Threshold
-~

22



Hierarchically Aware Data structurES

P2. Grouping Objects by Access Intensity

Adaptive Workload Response

Accessed

e Promotion Rate (PR) as performance proxy MADV_HUGEPAGE
. . . Adaptive
e Adaptive policy to reach target promotion rate Adaptive "‘W Accessed
Threshold
e Proactive reclamation using MADV_PAGEOUT COLD Target PR COLD
MADV_COLD reached MADV_PAGEOUT

SSD / CXL

23



Address-Space Engineering

P3. Enabling Object Mobility

Threads
Background and Requirement:
e Unmanaged languages assume object addresses
are fixed after allocation Node (HashTable, SkipList, BTree, etc)
e Focus on pointer-based data structures Key Value
e Fast but safe in concurrent environments
» y

[ Object ][ Object




Hierarchically Aware Data structurES

P3. Enabling Object Mobility

Threads
Safe Concurrent Migration 8:;""‘:‘;: or
e Track objects activity in real-time using Active
Thread Count (ATC) embedded in unused bits Node
| |
e Compiler manages ATC through static analysis Key 1 ATC | Value, ATC

e Optimistic Object Migration Protocol

N
[ Object ] Copy [ Object ]

Old Location New Location
25



Evaluation

Ten popular pointer based data structures

o ART, MassTrge, BTree, HashTable, etc CPU Intel(R) Xeon Gold 5218 (16 cores)
o Used by Redis, LevelDB, NGINX,
DuckDB, etc Memory  2x 16GB @2400MHz DRAM
. : . SSD 512 GB P4800x SSD
Six unique concurrency mechanisms
ranging from global locks to lock-free oS Ubuntu 22.04

CrestDB with YCSB for consistency

TLB performance optimization for bulk
reclaim in linux kernel

26



Frontend Effectiveness

10M KV pairs with 30B Keys and 1024B values

HADES increases page utilization by

@)
@)
@)

2x for workload A (50% read 50% write)
3x for workload B (95% read 5% write)
4x for workload C (100% read)

Page Utilization (x)

N

N

o

Hashtable Skiplist

B+Tree

809

Harrguon iy er, /’b/j/rasgro’ ase Coerseo Cc %Ssr, ARy
Ce

1A

B B

N C

27




Frontend Effectiveness

10M KV pairs with 30B Keys and 1024B values

e HADES increases page utilization by
o 2x for workload A (50% read 50% write)
o 3x for workload B (95% read 5% write)
o 4x for workload C (100% read)

e HADES reduces memory usage by up to
70% through object-level cold detection
and heap organization

Memory Reduction %

Page Utilization (x)
N

Hashtable Skiplist B+Tree

N

o

N B O 0 O
O O O O O o

Hashtable Skiplist B+Tree

809

Harrguon iy er, /’b/j/rasgro’ ase Coerseo Cc %Ssr, ARy
Ce

=x C

Herr,;f Ughc/*/A,, A er/,'/’;’; asg;)ra Se Coq rSSCC My Ss7; ARy
Ce

28




Frontend Effectiveness

10M KV pairs with 30B Keys and 1024B values

HADES increases page utilization by
o 2x for workload A (50% read 50% write)
o 3x for workload B (95% read 5% write)
o 4x for workload C (100% read)

HADES reduces memory usage by up to
70% through object-level cold detection
and heap organization

HADES tracking overhead lowers average
throughput by 2.5% and increases P90
latency by 5%

Memory Reduction %

Page Utilization (x)
N

Hashtable Skiplist B+Tree

IS

o

100

80 1
60 -
40 1
20 -
0_

809

VA . . .
S
o

Horris oy er, /’bﬁcasgro’ ase Coerseo Cc %Ssr, ARy
Ce

Hashtable Skiplist B+Tree

=x C

Herr,;;o Ughc/*/A,, A er/,'/’;’; asg;)ra Se Coq fsgcc My Ss7; ARy
Ce

29




Backend Validation

YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed -

Tiering backends: Am
e Kswapd: Reclaims under memory pressure G
e Cgroup hotset: Cgroup limit set to 4GiB g °

4

\/
Standard backends ’
0
e Sacrifice performance to save memory -
(cgroup hotset) N~
e Sacrifice savings to preserve performance <
(kswapd) § "
I-E 60

30

Baseline

Kswapd

Cgroup
Hotset

HADES
Kswapd

HADES
Cgroup

30



Backend Validation

YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
e Kswapd: Reclaims under memory pressure
e Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

e Sacrifice performance to save memory
(cgroup hotset)

e Sacrifice savings to preserve performance
(kswapd)

Throughput (K)

RSS (GiB)

12

10

150

|1.7x
3.2x
‘ 36%

Baseline

Kswapd Cgroup
Hotset

HADES
Kswapd

HADES 31
Cgroup



Backend Validation

YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
e Kswapd: Reclaims under memory pressure
e Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

e Sacrifice performance to save memory
(cgroup hotset)

e Sacrifice savings to preserve performance
(kswapd)

HADES achieves max memory savings
with no performance degradation

12

10

RSS (GiB)

150

Throughput (K)
o N
o o

[o)}
o

w
o

N

X

AN

Baseline

Kswapd Cgroup

Hotset

NN

700\

HADES
Kswapd

HADES
Cgroup

32



Summary

e Semantic gap between application and OS memory model

e Hotness fragmentation is widespread

e Address-Space Engineering for improving page utilization

e HADES as an approach for Address-Space Engineering

e Achieved higher memory savings across diverse data structures without

degrading performance

Cold Page

) )| (E21
{ | (o )()| || )

Hotness Organized Virtual Address Space

— e ——— — ———— — — — — — —_ —_ — ey



Open Questions

Are there features that we should be adding to managed language to enable easier
address-space engineering?

Garbage collectors divides memory into lifetime generations and not access generations

What OS abstractions/interfaces to support dynamically reorganize the address space?

What future applications can we have with dynamically organized address space?

Address-space engineering could improve multiple aspects of execution: concurrency, isolation, tiering

34



Limitations

Lack of pointer stability

Unique Object Ownership
Incompatibility with pointer arithmetic
Language support restrictions
Requirement for explicit annotations

35



Related Work

Object-Level Management:
o AIFM and MIRA operate at object granularity but focus exclusively on far-memory
over RDMA, requiring direct hardware access that limits production adoption
o Alaska uses handle-based indirection to reduce RSS through heap compaction,
addressing fragmentation reactively without object hotness classification

Runtime vs. Allocation-Time Placement: Allocation time hinting approaches
fail to capture objects transitioning between hot and cold states or distinguish
between objects from the same allocation site with different access patterns
Page-Level Optimizations: TPP, HeMEM, TMTS, MEMTIS, etc

36



