
Tidying Up The Address Space

Vinay Banakar(1, 2), Suli Yang(2), Kan Wu(2) 
Andrea Arpaci-Dusseau(1), Remzi Arpaci-Dusseau(1), Kimberly Keeton(2)

What a mess!

(1) (2)



Memory is expensive, constrained, and wasted

50% of server costs 

at Azure and Meta[1]

DRAM costs

265% more [2]

$ per bit flatlined

for 10 years [2]

65% used at 

Google [3] and Alibaba [4]  

95-98% 
used at Meta [5]

[1] Pond: CXL-Based Memory Pooling Systems for Cloud Platforms
[2] DRAMeXchange (6 months -Oct 26 2025)

[3] Borg: the Next Generation
[4] Imbalance in the Cloud: an Analysis on Alibaba Cluster Trace

[5] TPP: Transparent Page Placement for CXL Tiered-Memory
[6] HotRing: A Hotspot-Aware In-Memory Key-Value Store
[7] Benchmarking RocksDB KV Workloads at Facebook

50% of accesses touch 

1% data at Alibaba [6]

<3% data touched in 

24 hours at Meta [7]

2



• Real world workloads exhibit highly skewed access patterns

• 90% of requests at Meta [1], Twitter [2], and Alibaba [3] access KV objects <1 KiB in size

• Object (   ) creation order determines their location on the virtual address space

Wasted Memory - Hotness Fragmentation

Page 1 Page 2 Page 3

[1] Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook, ATC 2020
[2] A large scale analysis of hundreds of in-memory cache clusters at Twitter, OSDI 2020
[3] HotRing: A Hotspot-Aware In-Memory Key-Value Store, FAST 2020

Frequently (hot) and infrequently (cold) accessed objects intermingled on the same page

3



Memory is expensive, constrained, and wasted

OS

Object

Semantic gap between application 
and OS memory model

Data is NOT bin-packed based on usage

4

Page



Data is NOT bin-packed based on usage

Increased 
Memory Footprint

Poor Hardware 
Efficiency

Expensive and 
Unsustainable 
Datacenters

5



● New metric (Page Utilization) to quantify hotness fragmentation

● Introduce Address-Space Engineering

Data is bin-packed based on usage

6

Overview



● New metric (Page Utilization) to quantify hotness fragmentation

● Introduce Address-Space Engineering

● A compiler-runtime system that dynamically reorganize the virtual address space for a 
workload (Hierarchically Aware Data structurES)

● HADES increases memory savings of swapping solutions without sacrificing performance

● Demonstrated 70% memory reduction on YCSB workloads across 10 different popular 
highly concurrent data structures 

7

Data is bin-packed based on usage
Overview



Outline

● Page Utilization

● Rewards of Improved Page Utilization

● Address-Space Engineering

● HADES

● Evaluation

8



Page Utilization directly measures the hotness 
fragmentation of an application for a workload

Quantify Hotness Fragmentation

Total Unique Bytes Accessed

Total Unique Pages Accessed x Page Size
Page Utilization  = 

9

Object Object

Page Page

Low Page UtilizationHigh Page Utilization



Poor Page Utilization

Page Utilization for 360s epochs running YCSB-C with Zipfian distribution

● 75% of accessed pages in Redis utilize 3% or less of their capacity
● 95% of pages in MongoDB and Memcached use less than 15%

10



Rewards of Improved Page Utilization

Redis touches ~0.5 MiB of cachelines 
but 1.2 GiB remains resident for YCSB

11

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads



Rewards of Improved Page Utilization

● 11% of CPU cycles at Google spent 
on dTLB load misses [1]

● Applying THP indiscriminately 
increases footprint by 69% [2]

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024
[2] Coordinated and efficient huge page management with ingens, OSDI 2016

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads

12

#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory



#3 Require fewer machines: More cost 
effective and sustainable data centers

● Jobs with small working sets but 
large allocation footprints are 
spread across multiple machines [3]

● DRAM produces 12x more 
emissions per bit than SSDs [4]

Rewards of Improved Page Utilization

#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory

[1] Characterizing a Memory Allocator at Warehouse Scale, ASPLOS 2024
[2] Coordinated and efficient huge page management with ingens, OSDI 2016
[3] Borg: the Next Generation, EuroSys 2020
[4] FairyWREN: A Sustainable Cache for Emerging Write-Read-Erase Flash Interfaces, OSDI 2024

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads

13



Rewards of Improved Page Utilization

#3 Require fewer machines: More cost 
effective and sustainable data centers

#2 Targeted Huge Pages: Saves CPU cycles 
without sacrificing reclaimable memory

#1 Increased Reclaimable Memory: Fewer 
pages needed to serve skewed workloads

14



Address-Space Engineering
Engineer the application’s virtual address space to be 

OS-tiering-friendly, adapting to workload access patterns

15



Address-Space Engineering

16

Principles of workload-optimized address space:

P1.   Decoupling Layout from Reclamation

P2.   Grouping Objects by Access Intensity

P3.   Enabling Object Mobility

Engineer the application’s virtual address space to be 
OS-tiering-friendly, adapting to workload access patterns



Hierarchically Aware Data structurES
A compiler-runtime frontend that dynamically
reorganizes the address space for a workload

P1.   Decoupling Layout from Reclamation
Backend Integration

P2.   Grouping Objects by Access Intensity
Tracking and Grouping Objects
Adaptive Workload Response

P3.   Enabling Object Mobility
Safe Concurrent Migration

17



P1.   Decoupling Layout from Reclamation

Requirements: 

● Complement tiering / swapping solutions like: 
Kswapd, TMO, AutoNuma, Zswap, TPP, etc

● Require no new OS abstractions

● Require no specialized hardware knowledge

Address-Space Engineering

18



P1.   Decoupling Layout from Reclamation

Backend Integration

● Per process user space runtime

● Static analysis for compile time annotations 

● Frontend organizes address space layout and  
backed acts upon it

Hierarchically Aware Data structurES

19



P2.   Grouping Objects by Access Intensity

Requirements:

● Tracking activity at allocation granularity

● Activity tracking must have low overhead

● Static hints at allocation-time is insufficient

Object

PINTool
PEBS
MemProf

PTE Scan
DAMON

Allocation Hot Cold

Address-Space Engineering

20



NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

Adaptive 
Threshold

OC in action every 120s

P2.   Grouping Objects by Access Intensity

Tracking and Grouping Objects

● Tagged pointers to track activity on dereference

● Object Collector (OC) periodically scans managed 
objects to maintain freshness and group to heaps

● Custom Jemalloc ensures different heap regions 
are contiguous

Hierarchically Aware Data structurES

21



Adaptive Workload Response

● Promotion Rate (PR) as performance proxy

● Adaptive policy to reach target promotion rate

● Proactive reclamation using MADV_PAGEOUT

NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

Accessed

P2.   Grouping Objects by Access Intensity
Hierarchically Aware Data structurES

22

Adaptive 
Threshold

Adaptive 
Threshold

DRAM



NEW HOT
MADV_HUGEPAGE

COLD
MADV_COLD

Accessed

COLD
MADV_PAGEOUT

Target PR
reached

AccessedAccessed

P2.   Grouping Objects by Access Intensity
Hierarchically Aware Data structurES

Adaptive Workload Response

● Promotion Rate (PR) as performance proxy

● Adaptive policy to reach target promotion rate

● Proactive reclamation using MADV_PAGEOUT

23

Adaptive 
Threshold

Adaptive 
Threshold

DRAM SSD / CXL



P3.   Enabling Object Mobility

Key Value

       Node (HashTable, SkipList, BTree, etc)

Object Object

Threads

Background and Requirement:

● Unmanaged languages assume object addresses 
are fixed after allocation

● Focus on pointer-based data structures

● Fast but safe in concurrent environments

Address-Space Engineering

24



Copy

   Key

          Node 

Object

Threads

Object
Collector 

Object

ATC   Value ATC

Old Location New Location

P3.   Enabling Object Mobility

Safe Concurrent Migration

● Track objects activity in real-time using Active 
Thread Count (ATC) embedded in unused bits

● Compiler manages ATC through static analysis

● Optimistic Object Migration Protocol

Hierarchically Aware Data structurES

25



Evaluation

● Ten popular pointer based data structures
○ ART, MassTree, BTree, HashTable, etc
○ Used by Redis, LevelDB, NGINX, 

DuckDB, etc

● Six unique concurrency mechanisms 
ranging from global locks to lock-free

● CrestDB with YCSB for consistency

● TLB performance optimization for bulk 
reclaim in linux kernel

CPU Intel(R) Xeon Gold 5218 ( 16 cores)

Memory 2x 16GB @2400MHz DRAM

SSD 512 GB P4800x SSD

OS Ubuntu 22.04

26



10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

Frontend Effectiveness

27



10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

● HADES reduces memory usage by up to 
70% through object-level cold detection 
and heap organization

Frontend Effectiveness

28



Frontend Effectiveness

10M KV pairs with 30B Keys and 1024B values

● HADES increases page utilization by
○ 2x for workload A (50% read 50% write)
○ 3x for workload B (95% read 5% write)
○ 4x for workload C (100% read)

● HADES reduces memory usage by up to 
70% through object-level cold detection 
and heap organization

● HADES tracking overhead lowers average 
throughput by 2.5% and increases P90 
latency by 5%

29



YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

Backend Validation

30



YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

Backend Validation

31

36%

1.7x
3.2x



Backend Validation

32

YCSB-C with ~12 GiB footprint and ~4 GiB actively accessed

Tiering backends:
● Kswapd: Reclaims under memory pressure 
● Cgroup hotset: Cgroup limit set to 4GiB

Standard backends

● Sacrifice performance to save memory 
(cgroup hotset)

● Sacrifice savings to preserve performance 
(kswapd)

HADES achieves max memory savings 
with no performance degradation

3.2x



● Semantic gap between application and OS memory model

● Hotness fragmentation is widespread

● Address-Space Engineering for improving page utilization

● HADES as an approach for Address-Space Engineering

● Achieved higher memory savings across diverse data structures without 
degrading performance

Summary

33



34

● Are there features that we should be adding to managed language to enable easier 
address-space engineering?

Garbage collectors divides memory into lifetime generations and not access generations

● What OS abstractions/interfaces to support dynamically reorganize the address space?

● What future applications can we have with dynamically organized address space?

Address-space engineering could improve multiple aspects of execution: concurrency, isolation, tiering

Open Questions



Limitations

35

● Lack of pointer stability
● Unique Object Ownership
● Incompatibility with pointer arithmetic
● Language support restrictions
● Requirement for explicit annotations



Related Work

36

● Object-Level Management:
○ AIFM and MIRA operate at object granularity but focus exclusively on far-memory 

over RDMA, requiring direct hardware access that limits production adoption
○ Alaska uses handle-based indirection to reduce RSS through heap compaction, 

addressing fragmentation reactively without object hotness classification
● Runtime vs. Allocation-Time Placement: Allocation time hinting approaches 

fail to capture objects transitioning between hot and cold states or distinguish 
between objects from the same allocation site with different access patterns

● Page-Level Optimizations: TPP, HeMEM, TMTS, MEMTIS, etc


