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Abstract

We present the case for cloud-native system design, fo-

cused on the creation of CNFS, a local file system built

specifically for the cloud era. We first present numerous

storage and CPU design principles that any cloud-native

storage system should consider; we demonstrate the util-

ity of these principles through the design of CNFS.

CNFS is a hierarchical, copy-on-write file system that

migrates data and metadata across cloud storage volumes

to meet user objectives, and harnesses remote CPU work-

ers to perform critical background work such as migra-

tion and compression.

1 Introduction

The landscape of computer system design and imple-

mentation is undergoing a disruptive sea-change. The

advent of cloud computing [4] has transformed the basic

substrate for systems building: instead of a physical in-

frastructure of machines, developers now can implement

services upon a sophisticated virtualized platform [8,18],

utilizing well-tested and heavily used distributed services

to realize their end goals.

The first generation of services and systems built in the

cloud are called cloud-enabled systems. In this version of

the cloud, systems from the pre-cloud world are “ported”

to the cloud, but run quite similarly to their pre-cloud

selves. As a result, these systems do not take advan-

tage of the scalable and robust services provided within

clouds, nor do they take advantage of the fundamental

benefits of copious (rented) compute cycles and storage.

We believe the next generation of services and sys-

tems must take a critical step forward, away from sim-

ply being cloud-enabled to become cloud-native sys-

tems [37]. Cloud-native systems are designed not just

to take advantage of the rentable nature of computing in-

frastructure, but intrinsically utilize now-standard cloud

services to realize their end goals. For example, scal-

able, reliable distributed storage (e.g, Amazon’s S3 [2],

Google’s Cloud Storage [19], Azure’s Blob Storage [27])

is now ubiquitous; these services form a strong stor-

age base upon which to build systems, instead of build-

ing upon simple collections of raw storage resources

(e.g., disk drives [5]). Similarly, new serverless compute

platforms [20, 28] (such as Amazon’s Lambdas [9] and

Google’s Cloud Functions [29]) enable users to launch

small pieces of computation on demand, scaling up or

down readily, all without considering issues such as

server provisioning or maintenance. Cloud-native sys-

tems exploit these basic cloud services to realize new,

more flexible, high-performance, reliable systems and

services more readily than ever before. An excellent

current example is the Snowflake data warehouse [12],

which is realized entirely atop Amazon services while

providing high performance, reliability, security, and

elasticity to clients.

In this paper, we focus our discussion on a specific

type of cloud-native system, the cloud-native local file

system. Currently, when running Linux on a virtualized

instance in the cloud, one normally mounts a standard

file system (such as ext4 or XFS) on a virtual block stor-

age system, such as Amazon’s EBS [35]. Each EBS

volume can be configured, perhaps choosing high per-

formance (e.g., a high-IOPS, costly SSD-backed repli-

cated partition) or low cost (e.g., a low-IOPS, inexpen-

sive disk-backed partition). The file system itself remains

unchanged, unaware that is even running upon a virtual

storage system.

Our goal is simple: to reconsider how such a local

file system should be built, given the presence of virtu-

alized block storage such as provided by Amazon EBS

and Google Persistent Disk. We thus discuss, in Sec-

tion 3, the design of CNFS, a ground-up rethinking of

the local file system which takes a hard dependency on

these cloud services.

The CNFS architecture currently has the following

form. CNFS is a hierarchical, copy-on-write file sys-

tem that uses remote cloud workers to perform back-

ground tasks such as migration and deduplication; back-

ground work on remote machines improves foreground

performance (by offloading it to distant CPUs) and also

can harness multiple CPUs in parallel to perform such

work quickly. CNFS migration is at the heart of the

cost/performance trade-off presented to users; specifi-

cally, CNFS moves data and metadata across differently

configured storage volumes to meet user cost and perfor-

mance goals.

The CNFS design is rooted in numerous cloud-native

principles, which we discuss and present in the next

section. We consider two large classes of principles

(storage and CPU) and one overarching principle (the

cost/performance trade-off). The storage principles, in

short, summarize what is important about building sys-

tems upon modern cloud storage infrastructure, includ-

ing critical aspects such as reliability, capacity, cost,

performance, and hierarchy; the CPU principles fo-

cus on similarly important concerns regarding the com-



putation needed within systems, focusing upon par-

allelism, capacity, scaling, remote work, and hierar-

chy. Finally, the overarching principle centers around

the cost/performance trade-off that cloud-native systems

must make. By taking all such concerns into account,

CNFS can deliver local file system service that meets the

performance, reliability, and cost needs of the client.

In this paper, we present the following, looking both

to spark discussion in the area of cloud-native systems as

well as to solicit feedback on the specifics of CNFS. We

begin by presenting our cloud-native principles in Sec-

tion 2. We follow this with a discussion of CNFS in Sec-

tion 3. Finally, we then present related work in Section 4

and conclude in Section 5.

2 Cloud-Native Principles

We now outline a number of cloud-native principles that

underly this vision, building on early thinking in this

space by Venkataramani [37]. The principles, when ap-

plied correctly, can highlight new points in the systems

design space which are directly enabled by the mod-

ern cloud. We group these principles into three ma-

jor groups: storage principles, CPU principles, and one

overall principle.

2.1 Storage Principles

Our first focus is on storage principles: how should de-

velopers of cloud-enabled systems view the storage ser-

vices offered within the cloud?

Storage reliability principle: Highly replicated, re-

liable, and available storage is widely available. One

obvious principle of cloud-native systems is the ubiquity

of reliable (highly durable) storage (11 “9s” according to

Amazon [3]). Much of the work of creating and man-

aging replicas (for durability) can be pushed down into

the infrastructure; as building replicated storage is chal-

lenging [16], utilizing a stable and widely tested system

instead of rolling one’s own is likely a wise option.

These systems exist in many forms, and thus one

choice that must be made is how best to utilize them. For

example, in some cases an object-based interface, such

as that provided by Amazon S3, will likely be the best

choice; in other cases, using a lower-level block-based

interface such as Amazon’s EBS will be best. In both

cases, taking advantage of the reliability characteristics

provided by these replicated services is key.

Storage cost principle: Storage space is generally

inexpensive. There are two important perspectives that

arise from the low cost of cloud storage. The first, and

perhaps most important, is that storage, for most use

cases, can largely be thought of as “free”. For example,

if one has 1 TB of data, it will cost only $4 per month

to store this in archival storage (Glacier), and only some-

what more to store it in higher performance tiers.

Nearly-free storage has strong implications for higher-

level systems. For example, if making a specific type

of index over data can improve performance, the space

costs of doing so are so low that paying the cost for the

space the index uses is likely well worth it. More gener-

ally, one should consider all the possible places in a sys-

tem’s design where using more space can improve sys-

tem behavior.

The second important point is that, despite nearly free

storage, storage is not absolutely free. Thus, optimiza-

tions to put as much “cold” data into cheaper tiers and

only “hot” data in higher-cost tiers are worth consider-

ing. One can’t simply make thousands of replicas and

associated indexes, put them in the highest-cost SSD tier,

and expect to build a cost-effective system.

Storage capacity principle: Large amounts of stor-

age space are available. In cloud storage, there are

seemingly no limits on how much space users can use.

For example, the S3 website states “The total volume of

data and number of objects you can store are unlimited.”

This principle has strong implications for systems de-

sign. For example, issues such as space amplification

are no longer a central concern: there are plenty of

bytes available. Similarly, extra space presents a perfor-

mance opportunity: more indices, pre-computed answer

caches, and other space-consuming optimizations, can

all be used to speed execution, as stated above. Finally,

there is no need for capacity planning; just use what is

needed when it is needed.

Storage bandwidth/latency principle: Storage ser-

vices provided by cloud providers are generally high

bandwidth; however, they have varying levels of latency.

The cloud substrate does not provide a perfect storage

system, with effectively infinite bandwidth and incredi-

bly low latency. However, bandwidth generally is scal-

able, whereas latency depends on the storage tier.

This principle also has strong implications. Because

bandwidth is generally available, scaling out is rela-

tively easy, and should be realizable wherever needed.

However, realizing low-latency storage requires exten-

sive consideration; placement of metadata/data into dif-

ferent performance tiers (including memory-only storage

layers) may be required to achieve desired latency goals.

Storage bandwidth-cost principle: Access to data is

low cost. This principle once again highlights two points.

The first point is that for most use-cases, bandwidth costs

should not be of primary concern; one should simply ac-

cess data as need be, as the costs are low.

The second point is also important: when data is par-

titioned across tiers, access to “less expensive” capacity

tiers is generally more expensive. This point further sug-

gests the need for careful management across tiers.



Storage hierarchy principle: Storage is available in

many forms, with noticeable differences in performance

and cost across each level. When combining the above

principles, one realizes this hierarchy principle: data

must be managed across levels of the cloud hierarchy,

with more popular data in more expensive but faster stor-

age, and less popular in slower cheaper storage.

Hierarchy management is thus central to cloud-native

storage. Without it, a system will always reside in one

(non-optimal) extreme, either paying too much for con-

sistent high performance, or saving cost while delivering

consistent poor performance.

2.2 CPU Principles

Our next set of principles focus upon computation. With

the cloud-native mindset, systems can take advantage

of the vast fleets of CPUs now available as need be to

achieve their ends. How best to use them, of course, de-

pends upon the system at hand.

CPU parallelism principle (or A · B = B · A): It

should cost roughly the same to execute on A CPUs for

B time units as it does to execute on B CPUs for A units

of time. The ramifications of this principle are clear: if

one can do work in parallel, one generally should, as it

will complete faster and cost roughly the same.

In current clouds, this principle is true down to a cer-

tain time scale. For example, Amazon’s Lambda service

charges in 100ms increments; thus, if one can partition

work into N 100ms (or more) units, one will pay a sim-

ilar amount as running a single, longer running Lambda.

Further, as Lambda services improve, this minimum time

unit will likely decrease, enabling even finer-grained par-

allelism to be achieved.

CPU capacity principle: Large numbers of CPUs

are available. What we saw with storage, we also see

with CPU: there are essentially an unbounded number of

CPUs available for computational tasks. Thus, if they

are needed, they should be used. There is no need for

the cloud-user or cloud-developer to worry excessively

about exhausting CPU resources; that is the worry of the

cloud provider.

The same corollary applies here as well: while CPUs

are nearly free, they are not absolutely free. Thus, a

framework for considering costs versus benefits would

be useful towards making each utilization decision.

CPU scale-up/scale-down principle: One should

only use as many CPUs as needed for a task, and not

more. The parallelism principle suggests doing work in

parallel, to the greatest extent possible; the capacity prin-

ciple makes this possible. However, CPUs are not free.

Thus, while systems should be willing to scale up to get

work done quickly, they must also scale down to avoid

paying for resources that are not needed at the moment.

The implication for system design is clear here as

well. Systems should not take static or simplistic ap-

proaches to parallelism. Rather, careful monitoring of

usage and adaptation is required to best utilize the cloud.

One interesting possibility for scale up is found in “spot”

instances, which are cheap virtual CPUs that can be

quickly recruited, but can be reclaimed by the provider

as needed, thus requiring robust systems design to best

make use of their capabilities.

CPU remote-work principle: When possible, use re-

mote CPU resources to do needed work. With shared

storage, it is easy to perform work over data on remote

machines, as data is available throughout the datacenter.

This separation generally leaves front-end machines free

to focus on serving current workload demands; back-

ground work can be done elsewhere.

CPU hierarchy principle: CPU is available in dif-

ferent forms, with differences in performance, cost, and

reliability across each level. When renting CPU cycles,

different levels of performance are available at differ-

ent costs, thus creating a new knob for systems to tune;

should a service use a few more powerful CPUs, or many

less powerful ones?

2.3 The Overall Principle

As hinted at in both the storage and CPU principles, there

is an underlying driving force behind the creation of truly

native cloud systems, the cost/performance trade-off:

Overall performance/cost principle: Every deci-

sion in cloud-native systems is ultimately driven by a

cost/performance trade-off. A cost/performance trade-

off exists at the heart of many decisions in cloud-native

systems and thus is a first-class concern. Not considering

this factor leads to systems that are either cost-oblivious

or performance-oblivious. In the former, the system may

use excessive resources to get a task done quickly but at

an exorbitant price; in the latter, a system may save pen-

nies but return an answer sluggishly. Ideal cloud-native

systems take both into account.

3 Case Study: Linux CNFS

Current Linux file systems were developed mostly for

hard drives (e.g, ext4, XFS, ZFS) and occasionally for

more modern media such as flash-based SSDs (e.g.,

f2fs). However, there is not yet a file system designed

to operate effectively upon a cloud-based virtual stor-

age platform such as Amazon’s EBS or Google Persis-

tent Disk. We now describe the Linux Cloud-Native File

System (CNFS), a first step in this new direction.



3.1 Underlying Assumptions

The CNFS design presumes the following from the

cloud, and tailors its design towards maximally exploit-

ing this environment. First, it assumes the presence of

block-based virtualized storage such as Amazon’s EBS

or Google’s Persistent Disk (PD), with the option of us-

ing a local scratch SSD or hard drive as needed.

Second, CNFS assumes that not only can a single

client access the virtual volume, but that other machines

in the system can also access the volume (for reasons ex-

plained below). Although Amazon does not allow such

access for EBS, and Google does only in limited (i.e.,

read-only) fashion for PD, we believe there are excellent

reasons to enable remote concurrent volume access, and

thus assume it for the remainder of the discussion.

Third, CNFS assumes that the block store offers

a number of different performance/cost configurations.

Amazon, for example, provides two different SSD vol-

umes and two different HDD volumes, with different per-

formance/cost trade-offs. One CNFS focus will be to

understand and exploit these different configurations to

optimize performance, cost, or both for a given client.

3.2 Basic Design

Our basic design for CNFS derives its design from the

following cloud-native principles:

• The storage hierarchy principle. CNFS inherently

understands that it is built atop virtualized block-

based storage systems, with volumes that can be

configured at different cost/performance levels.

• The CPU remote-work principle. CNFS wishes

to reserve local CPU for foreground performance.

Thus, CNFS itself is structured to push as much file-

system work as possible to the background; CNFS

can then take advantage of remote resources to per-

form the necessary background work.

• The overall performance/cost principle. Because

CNFS is built to run in the cloud, it must intrinsi-

cally understand that decisions it makes have cost

and performance ramifications. Thus, CNFS must

have a cost-performance framework as part of its

algorithmic core, enabling sensible trade-offs based

on user desires; it must also export interfaces to en-

able user control over these features.

While these principles are at the core of CNFS (v1.0),

other principles also underly our work. For example, us-

ing many CPUs to do background work is natural within

CNFS (CPU parallelism), and CNFS presumes reliable

replicated storage as its substrate (Storage reliability).

We thus envision the following design for CNFS.

At its core, CNFS is a copy-on-write (COW) file sys-

tem [7, 24, 25, 30], never over-writing data or metadata

in place but rather always writing data to unused storage.
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Figure 1: CNFS I/O Flows.

COW techniques are critical within CNFS, as they funda-

mentally enable remote work to be done upon read-only

snapshots of the file system, thus obviating the need for

complex synchronization between the foreground client

and background workers.

CNFS is also a hierarchical file system, building upon

classic [14, 26] and more recent [22] work in this area.

CNFS actively moves files and directories across under-

lying storage volumes with different cost/performance

properties, seeking to optimize usage based on user cost

and performance requirements.

In addition, CNFS aggressively performs compres-

sion/deduplication [39] as needed, saving storage space

and cost in some cases, reducing bandwidth demands in

others. This work is performed by remote workers, each

of which can access portions of a read-only snapshot and

transform it into a smaller, compressed format.

3.3 Example I/O Flow

To give a better idea of how CNFS operates, we describe

an example of its possible usage. Figure 1 shows its ba-

sic operation. One the left, a client VM running two ap-

plications mounts CNFS and enables access to a CNFS

virtual volume. Internally, CNFS maps data from this

volume onto two cloud volumes, one a high-performance

SSD (left) and the other a low-cost hard drive (right). All

writes are directed to a current write point (Snapshot 10),

whereas reads may refer to any active snapshot.

CNFS workers run on other machines, utilizing the

parallelism of the cloud to enact background tasks such

as compression or migration between volumes. In the

figure, Snapshot 2 is being promoted to the SSD (be-

cause, perhaps, it has been accessed frequently in the re-

cent past) and Snapshot 5 is being compressed (perhaps

because it has been inactive).



A CNFS manager orchestrates all of this behavior,

communicating with the CNFS file system and remote

workers to ensure proper synchronization. The manager

also serves as a policy engine, utilizing access statistics

and policy goals gathered from CNFS to decide how to

best place data and other related decisions.

3.4 Status and Research Issues

CNFS is in early design phase, and thus we share it to

spark new thoughts in the creation of cloud-native sys-

tems, as well as solicit feedback on its key elements.

While building the core infrastructure, we are currently

focusing upon the following research issues:

• Cost/Performance APIs. CNFS needs to ex-

port new APIs to specify cost/performance goals

at many different granularities. How expressive

should these controls be? What granularity is

needed by higher-level systems and users? How

should such information be tracked within the file

system, and then shared with remote workers?

• Cost and Performance Speculation. CNFS moni-

tors workloads and must make decisions about mi-

gration, compression, and other features, all while

meeting user cost/performance goals. Thus, CNFS

must be able to predict how various changes will

affect future performance. What data must be col-

lected to inform such decisions? What type of inter-

nal simulation and optimization framework should

be built to make the decisions?

• Client and Remote Worker Synchronization. Be-

cause CNFS assumes the presence of cloud workers

as part of its normal operation, correct and efficient

synchronization between a client and workers is es-

sential. How should synchronization be realized?

How are worker faults detected and acted upon?

• Scalable Access Monitoring. CNFS decision-

making, as described above, requires data on file

and directory access. CNFS must thus track such in-

formation effectively and compactly, even for large

file systems. Which information should be tracked?

How often should it be communicated to the exter-

nal manager? How should the manager store and

use such data?

• Synchronous Workload Performance. In some

cases, applications require frequent synchronization

to durable storage for recovery purposes [11]. How-

ever, such workloads do not run well upon copy-on-

write file systems (e.g., ZFS, while utilizing COW

in its basic design, relies upon an intent log [7]).

Does CNFS require logging for high performance?

Can a replicated memory tier be used instead to

provide durability and high performance for these

styles of workloads?

4 Related Work

CNFS builds upon a long line of research. For exam-

ple, numerous block-based systems internally reorga-

nize data layout to improve performance or save space

[1, 6, 17, 21, 34, 38]. An alternative to CNFS would be to

build a smarter block layer, and thus realize similar ben-

efits under an unchanged Linux file system. There are

two primary reasons that adding this functionality at the

file-system level is the better option. First, the file system

has high-level information about semantically meaning-

ful items such as files and directories; thus, providing

fine-grained controls would be challenging (though per-

haps not impossible [31, 32]) at block level. Second, mi-

gration of data at block level requires another layer of the

system to implement crash-consistency machinery, thus

complicating the system further [13]; CNFS provides a

unified, simpler approach to crash consistency by han-

dling such activity itself.

File systems that manage data and metadata across hi-

erarchies have been studied for many years. Many early

works focused upon migration of files from slow tape-

storage systems onto higher-performing hard drives [14,

23, 33]. CNFS builds upon this work but on a modern

substrate of SSD- and HDD-based volumes.

Most recently, Kwon et al. introduced Strata [22], a

system that places data upon NVM, Flash-based SSD,

and hard drive in a unified hierarchical storage system.

CNFS differs in its focus on utilizing cloud resources

(remote workers and a manager) to perform background

tasks, using more extensive analysis to migrate files

across tiers, and its integration with existing cloud stor-

age offerings. It would be an interesting exercise to trans-

form Strata into a cloud-native version of itself.

Others have noted the potential impact of the cloud on

systems design. Notably, Dewitt and Lang speculate that

cloud-based approaches will lead to the end of “shared

nothing” architectures [15].

Finally, industry interest in cloud-native systems is on

the rise. The Snowflake data warehouse [12] is a fully

functional cloud-native data warehouse, serving as a pio-

neering example of what is possible. More recent efforts

include RocksDBCloud [10], which places lower tiers of

the RocksDB LSM tree into Amazon S3 buckets, and

Kasten, a new venture investigating data management for

cloud-native applications [36].

5 Conclude

We have presented CNFS, a first generation cloud-native

file system. While many facets of its design and imple-

mentation are yet to be realized, we hope that its design,

and the principles upon which it is built, can help move

the field forward in this exciting new direction, thus

enabling a new generation of high-performance, cost-

effective storage systems to be realized.
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