
Coerced Cache Eviction and Discreet Mode Journaling:

Dealing with Misbehaving Disks

Abhishek Rajimwale†, Vijay Chidambaram, Deepak Ramamurthi,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

†Data Domain, Inc.

Computer Sciences Department, University of Wisconsin–Madison

abhishek.rajimwale@datadomain.com, {vijayc, scdeepak, andrea, remzi}@cs.wisc.edu

Abstract—We present Coerced Cache Eviction (CCE),
a new method to force writes to disk in the presence
of a disk cache that does not properly obey write-cache
configuration or flush requests. We demonstrate the utility
of CCE by building a new journaling mode within the
Linux ext3 file system. When mounted in this discreet
mode, ext3 uses CCEs to ensure that writes are properly
ordered and thus maintains file system integrity despite
the presence of an improperly behaving disk. We show
that discreet mode journaling operates with acceptable
overheads for most workloads.

Keywords-file systems; disks; journaling; reliability.

I. INTRODUCTION

Fierce competition among vendors and the inexorable

progress of technology have moved the computer indus-

try forward in leaps and bounds over the past decades.

A case in point is found in the disk industry, where

technical feats and cut-throat business practices are

commonplace, resulting in rapid innovation over an

incredibly short period of time [10]. The results of

decades of progress in storage technology are indeed

truly remarkable: terabyte-sized disks capable of deliv-

ering hundreds of megabytes per second are available

for a few hundred dollars or less.

However, progress and competition in storage are

not inculpable: a “dark side” of the relentless pressures

of competition emerges when one examines the disk

industry more closely. Consider disk reliability; in an

industry where “pennies matter” [1], [24], drive vendors

in the low-end disk market routinely cut corners and

reliability features are often the first to go [19]. The

result is almost predictable: drives lose or corrupt blocks

often enough [6], [7], [24] that high-end RAID manu-

facturers must include numerous detection and recovery

mechanisms [11], [23], [35].

One aspect of disks that all modern systems implicitly

rely upon is write ordering. Ordering of writes is an

essential component of any modern file system [13], as

it is required to implement journaling [16], [38], copy-

on-write [28], [18], [8], or soft updates [13], [12].

Should systems trust disks to order writes cor-

rectly? The high complexity of disk caches, combined

with fierce competition among manufacturers, have in-

evitably led to less-than-perfect implementations [35],

[14]. Furthermore, anecdotal evidence from experts both

in the file system industry [2] and disk industry [3]

suggests that some manufacturers, in an effort to boost

performance, explicitly ignore requests to force writes

to disk, keeping blocks in cache and eventually writing

them to disk in the background.
If disk write ordering cannot be trusted, the file

system is now left with the unsavory question: how

can it correctly implement an update protocol such as

journaling or copy-on-write? In this paper, we explore

methods aimed at answering this question.
In particular, we introduce coerced cache eviction

(CCE), a new method to flush writes to the disk surface

despite an untrustworthy disk cache. We have designed

a simple microbenchmark to fingerprint the behavior of

a disk cache; the resulting fingerprint gives the informa-

tion needed for CCE to coerce the disk to flush its cache

both thoroughly and efficiently. We have fingerprinted

the cache behavior of nine SATA disk drives and have

derived the corresponding CCE parameters.
We demonstrate the utility of CCE by implementing

a new journaling mode for the Linux ext3 file system.

Known as discreet mode, when mounted as such the file

system issues the CCE whenever it requires ordering

between groups of writes, and thus ensures that its

write-ahead logging strategy operates as desired. We

show that discreet mode ext3 generally operates with

low overhead; the exception arises when an application

repeatedly calls fsync() to force small amounts of

user data to disk; in this case, we recommend the use

of more efficient “group commit” strategies.
The contributions of this paper are as follows:

• The first exploration of the write-ordering problem,

including how file systems should be built if full

trust in write ordering does not exist (§II).

• The introduction of a new method to help control

write ordering, coerced-cache eviction, even in the

presence of misbehaving disks (§III).

• A study of cache flushing behavior of nine modern

and diverse disks (§III).

• The development of a new journaling mode, dis-

creet journaling, which uses the CCE primitive to

ensure the correct update sequence despite disk

misbehavior (§IV).

• A detailed study of the performance of discreet

journaling, showing it adds low overheads for most

workloads (§V).

We then conclude the paper in §VI.

II. MOTIVATION

In this section, we discuss the problem that some

commercial hard drives do not fully conform to the

interface specification. We first describe what clients

demand of disks, how disks meet the performance de-

mands, and why those performance demands naturally

lead to disks that may not properly order writes.

A. What Do Clients Want From Disks?

An ideal disk tries to deliver two opposing demands

from clients such as file systems and databases. The

first demand is for durability: the ability to make infor-

mation persistent. The second is for high performance:

making disk operations complete as quickly as possible.

Unfortunately, these demands are often at odds.

Durability begins when a block is written to disk; the

client, of course, expects to be able to later read back

the written data even after a power loss. Hence, the

primary usage of disks are for the long-term storage

of information. Related to durability is the notion of

write ordering; methods for updating disks consistently

despite the presence of crashes (e.g., journaling [16],

copy-on-write [8], [18], [28], and soft updates [13])

require that some writes be made durable before others.

Performance expectations from disk drives begin with

the client’s desire to have operations complete quickly.

The largest burden for performance is due to the in-

trinsic nature of storage based on rotating media: it

is simply quite expensive to read or write data from

the disk’s surface. Thus, given the slow nature of the

magnetic drive, how can the drive improve performance

while maintaining durability and write ordering?

B. How Do Disks Improve Performance?

To meet performance demands, disk vendors have

developed a variety of techniques over the years. Mod-

ern drives allow clients to submit multiple requests at

a time, giving the drive the ability to use low-level

internal knowledge of layout and positioning to schedule

requests in a more optimal manner [20], [33]. The

industry has also worked to slowly reduce positioning

and seek times, and for high-end disks, positioning takes

just a few milliseconds.

The most effective method for a drive to appear fast

is not to access the media at all; this is accomplished

Sequential writes

A
vg

 w
rit

e
tim

e
(m

s)

0

10

20

30

40

50

Size of write requests

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

w/o cache
w/ cache

Random writes

A
vg

 w
rit

e
tim

e
(m

s)

0

10

20

30

40

50

Size of write requests

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

w/o cache
w/ cache

Figure 1. Disk performance with and without write caching.
The graph shows the average times in milliseconds taken by
the disk for different sized blocks. The top line shows the times
taken when the drive cache was turned off and the bottom line
shows the times taken when the drive cache was turned on.
Tests performed on a HDS7280S 80GB SATA drive.

via the drive cache. For reads, drive caches are helpful

as the drive can aggressively prefetch an entire track (or

more) in anticipation of future requests.

Drive caches can also greatly improve performance

for writes, as a drive can immediately acknowledge the

write’s completion. To illustrate these benefits Figure 1

compares the average latency of write requests when

caching is enabled versus disabled. For this Hitachi

drive, the average write time of both random and

sequential requests is significantly longer when write

caching is disabled.

Unfortunately, write caching leads to well-known

problems with durability and write ordering. First, im-

mediate durability is no longer guaranteed because the

disk could fail after it has reported that the write com-

pleted, but before the write reached the actual media.

As a result, the write is lost.

Second, and more importantly, with write caching,

control over ordering is lost. When the drive later

destages the cached blocks to the disk media, it may

reorder writes to minimize disk arm movement. Thus,

the ordering desired by the client is lost.

C. How To Control Ordering Despite Caching?

We are left with a problem: how can a client, such

as a file system, control disk write ordering despite the

presence of a write cache? One common approach is

to disable write-back caching. When a write completes,

the file system is guaranteed that the contents of that

write have been permanently written to the disk media.

Ordering is thus achieved by issuing a write, waiting for

its completion, and then issuing the subsequent write.

An alternate approach is to enable the write cache, but

allow clients such as file systems to explicitly flush the

contents of the cache to disk when ordering is required.

For example, the SATA interface specification [37]

contains the “flush cache” command.

D. How Do Misordered Writes Occur?

The increasing complexity of disk caches and the

demanding development schedules of competitive disk

manufactures have led to many bugs in the disk cache

software layer. These bugs have been reported in a

number of industry papers [14], [35], [39].
More insidiously, the performance benefits of write

caching are so high that apparently some manufactur-

ers have decided that write-back caching should be

enabled at all times, despite the entreaties of the file

system above. Although it is challenging to provide

“hard” evidence of this problem, information found

in man pages and user discussions on public forums

suggests that certain commodity disk drives do ignore

flush requests [25], [26], [27]. Evidence from experts

within the industry hints at such issues [2], [3]; even

the fcntl manual page for Mac OSX includes the

following interesting tidbit:
F FULLFSYNC: Does the same thing as fsync(2)

then asks the drive to flush all buffered data to the

permanent storage device (arg is ignored). This is

currently implemented on HFS, MS-DOS (FAT), and

Universal Disk Format (UDF) file systems. ... Certain

FireWire drives have also been known to ignore the

request to flush their buffered data.

Simply put, sometimes disks make mistakes (and thus

accidentally forget to write a block to disk). Worse,

sometimes disks ignore all flush requests and write the

block to disk, but long after acknowledging said write.

E. Are Misbehaving Disks Malicious?

Our model of a misbehaving disk assumes that it may

contain one or both of the following two deficiencies.

The first way in which a disk may misbehave is that

it may simply always cache writes, even when disk

caching has been explicitly disabled. The second way

in which a disk may misbehave is that it may ignore

the command to flush the cache.
It is important to note that these disks are not ma-

licious; that is, they will eventually write data to the

media, just not at the time requested. This could happen

because of two reasons. First, there could be a bug in

the firmware. Firmware code consists of hundreds of

thousands of lines of low-level concurrent code [24]

and thus is prone to errors. Second, there are incentives

for drive manufacturers to increase performance despite

lowered reliability in the face of system crashes. Perfor-

mance sells drives; reliability is much harder to measure

or market. As Kahan famously said about floating-point

units: “The fast drives out the slow, even if the fast is

wrong.” [17].

F. What Are The Consequences of Misordering?

We now discuss the problem of using a disk that

misbehaves with respect to flushing its cache, and its

D D D

MEMORY M M

Disk writes
ordered by FS

C

V
o
la
ti
le

ca
ch
e

P
er
m
an
en
t

m
ed
ia

D
Destage writes
reordered by

disk

D D M M C D D D

M M C

D D M M C D

DISK

Crash

Figure 2. Problems During Journaling. The figure shows
ext3 in ordered journal mode. In the figure, ’D’ denotes
data blocks, ’M’ denotes metablocks, and ’C’ denotes journal
commit blocks. The file system wishes to write data, then
metadata, then a commit block to disk. However, because
of write caching, the disk flushes the blocks to disk in a
different order; thus, when a crash occurs, the commit block
has reached the disk but not all metadata, which can corrupt
the file system and prevent proper recovery.

implication on durability and ordering. When disks mis-

behave, the file system has no guarantee of a particular

ordering of blocks written to the disk media. Even if

the file system waits for writes to complete and issues

barriers to confirm write completion, a misbehaving disk

could continue to cache the blocks and reorder them

during destaging.

Figure 2 shows the problem of re-ordering for a

journaling file system. A crash during background

destaging could lead to unpredictable write ordering of

blocks, which breaks the data consistency and recovery

guarantees provided by the file system. Lack of ordering

control can lead to any number of problems, including

metadata inconsistency (even after recovery), garbage

data in a file, and even unmountable file systems.

Beyond journaling, ordering of writes is required for

any file system that tries to maintain on-disk consistency

as it runs (as opposed to ext2, for example, which writes

data and meta-data to disk in random order, and then

runs fsck to fix some of the problems that arise). A

copy-on-write file system such as Sun’s ZFS [8] first

writes all new metadata and data to a new location on

disk, and then updates the uberblock at the root of the

file system tree to point to all current blocks plus the

new blocks. If the uberblock reaches disk before the

other data, the file system tree will contain inconsistent

metadata or garbage or both. Soft updating file systems

are no different, and indeed are based around the

concept of the careful ordering of writes [13].

It should now be clear: ordering is a requirement if

one wishes to use a modern file system. Unfortunately,

market pressures and the perfect opportunity to imple-

ment a faster but “less correct” disk have led to a reality

where despite their best efforts, file systems are unable

to control how blocks are written to disk.

III. COERCED CACHED EVICTION

In this section, we introduce our technique for deal-

ing with misbehaving disks. Our approach of Coerced

Cached Eviction (CCE) ensures that the cache has

truly been flushed at requested points and thus restores

the desired properties of durability and control over

ordering of requests.

A. General Approach

The basic idea of Coerced Cached Eviction (CCE) is

to generate a flush workload of requests to the disk; this

flush workload is constructed such that it will replace

some set of the current contents of the disk cache,

forcing those items to be written back to the disk surface

as desired. We refer to the particular set of blocks that

the flush workload is attempting to evict from the disk

cache as the target blocks.

With the CCE mechanism, the file system can ensure

that a write request A is durably updated to disk

before another write request B, by first writing A, then

performing a CCE, and then writing request B. In this

way, the file system is assured that request A has reached

the disk surface before request B is issued.

The ideal flush workload has two high-level prop-

erties: it has a high probability of actually flushing

the target request and it induces negligible performance

overhead. As one might expect, a tension exists between

these two goals. In general, with more flush traffic,

the likelihood of evicting the target increases, but the

performance overhead increases as well. Constructing a

flush workload that balances these two goals requires

understanding not only the running workload but the

disk cache algorithm as well.

In the ideal case for performance, the flush traffic is

a part of the original workload itself. For example, if

independent requests C can be found in the workload

that do not depend on the ordering of A or B, then

requests from C can flush A from the disk cache.

However, as a first step in this paper, we consider the

case where artificial new traffic is added to perform the

flush of the target blocks.

Flushing the disk cache with new traffic negatively

impacts performance at two points. First, the flush

workload may cause blocks other than the target blocks

to be evicted from the cache. Second, the flush blocks

must be written to disk when they are replaced by

other items in the cache. To minimize the time to

write those blocks to disk, the flush workload should

be small and spatially close to other traffic to the disk.

Thus, the most appropriate flush workload depends on

a number of factors related to the running workload and

the underlying disk, in particular its cache.

B. Understanding Disk Cache Behavior

While a plethora of micro-benchmarks [31], [32],

[36], [40] and models [22], [29] exist for revealing and

describing the behavior of disks, disk caches are not as

well characterized in the literature [21], [34]. Modern

disk caches are non-trivial and the parameters are not

fully described by manufacturer’s specification sheets.

For example, although manufacturers may report the

size of the disk cache, disk caches are typically par-

titioned into read and write portions. A correct and

efficient implementation of CCE must know the size

of the cache devoted to writes, which is not usually

reported. Modern disk caches are also multi-segmented;

thus, an ideal CCE would generate a flush workload

that only evicts the segments actively containing the

target blocks instead of all segments. Unfortunately,

even basic information such as the size of each segment

and the number of segments is not available, much less

information about the replacement policy. Finally, not

all write requests may be cached, instead being written

through directly to the surface.

Similar in spirit to other fingerprints of the memory

hierarchy [5], [9], [30] we have developed an off-

line micro-benchmark to create an eviction fingerprint

for a particular disk. The eviction fingerprint visually

characterizes how different requests impact the con-

tents of the cache. We also create a corresponding

performance fingerprint that shows the time required to

perform the flush workload. Given this characterization,

one can then determine the flush workload giving the

highest probability of success and the least performance

overhead for a given disk.

Our flush micro-benchmark operates a number of

trials as follows. In a trial, we first perform a write

to our target block: this is a single 512-byte sector

at a random location on the disk. We then generate

a specific flush workload investigating the effect of

three parameters: sequential versus random requests, the

number of write requests, and the total amount of data

in the flush workload; the size of each individual write

is calculated as the total data amount divided by the

number of requests. To finish, we call fsync to ensure

that writes are issued to the disk.

We automatically determine whether or not each

workload evicted the target block by reading back

the target block and measuring the amount of time it

required. We assume that a “fast” response (e.g., less

than a few milliseconds) means the target is still in the

disk cache; a “slow” response means the target has been

written back to the disk media. Before the read, we first

sleep for one second to increase the likelihood that the

disk has completed the preceding write requests and that

the read can be serviced immediately. We then repeat

these steps for all flush workloads for 50 trials.

Capacity Cache
Manufacturer Model (GB) (MB) Price

Hitachi HDS7280SASUN80G 80 8 $43
Hitachi Deskstar OS00163 1024 32 $80
Samsung Spinpoint M7 HM250HI 250 8 $55
Samsung Spinpoint F3 HD253GJ 250 16 $45
Western Digital WD3200AAKS 320 16 $48
Western Digital WD8000AARS 800 64 $70
Seagate Barracuda ST3250318AS 250 8 $40
Seagate Barracuda ST3320613AS 320 16 $50
Seagate Barracuda ST3750528AS 750 32 $65

Table I : SATA Disk Drives. The table shows the nine SATA
disk drives whose caching behavior we have evaluated. The
disks were chosen to cover a variety of manufacturers, disk
capacities, and cache capacities. Cost represents list price as
of April, 2010.

To evaluate the effectiveness of each flush workload,

we calculate the percentage of trials in which the

flush workload successfully evicted the target block. We

measure the time to issue the writes as the performance

of the flush workload.

Our current approach is not without limitations. We

do not investigate the sensitivity of cache evictions to

frequency of accesses. However, if deemed important,

such a modification would not be hard to make.

C. Experimental Results

We have evaluated the effectiveness of various flush

workloads for nine commodity SATA disk drives shown

in Table I. We selected SATA drives since this is the

class of drives reported to most likely misbehave about

flushing cache contents (however, we have no indication

that any of the disks in our sample are problematic).

These disk drives were selected to represent a range of

low-cost disks from different manufacturers and with

different disk cache capacities (from 8 MB to 64 MB).

1) Eviction Fingerprints: The eviction fingerprints

for the nine disk drives are shown in Table II. Each

fingerprint shows, for either sequential or random re-

quests, the likelihood of flushing the target block as a

function of the number of writes and the total amount

of data summed across all writes in the flush workload.

For these disks, the number of write requests is varied

from one request up to 2560 requests; the total amount

of data is varied from 1 MB up to 128 MB.

The dark regions indicate workloads that successfully

flush the cache while light regions indicate workloads

that do not. The high-level purpose of these fingerprints

is to enable us to choose the best flush workload for a

particular disk; however, the fingerprints do also reveal

some more detailed characteristics of the underlying

caches, which we briefly comment on.

First, we note that the cache behavior of disks from

the same manufacturer is qualitatively similar across

their different models. From this, we infer that a

manufacturer is likely to use similar cache structures

and replacement algorithms for disk models that are

related but vary in capacity. For example, the Hitachi

fingerprints have nearly identical structures, but the

scales are different by a factor of four for an 8 MB

cache versus a 32 MB cache.

Second, whether writes are sequential or random

appears to greatly impact the effectiveness of the flush

workload. This difference is most dramatic for the

Seagate disks, in which sequential workloads are com-

pletely ineffectual at flushing the cache regardless of

how much data is written. We believe the Seagate disk

identifies large sequential streams and chooses not to

cache them (and small sequential streams have only a

small chance of evicting the target block).

Third, vertical bands of different shades indicate

that space in the cache is allocated on a per-write

basis; specifically, this hints that the underlying cache is

segmented and that a single write regardless of its size

is allocated to a single segment.

Horizontal bands of different shades indicate that

space in the cache is allocated based on the amount

of data written, regardless of the number of individual

writes. For example, this effect is exhibited by the

Hitachi drives and is most apparent with sequential

writes. For these drives, one can flush the cache with

one relatively large write.

Finally, some of the flush fingerprints have distinct

transition points separating the case where the target

block is extremely unlikely to be flushed and the case

where the target block is extremely likely to be flushed.

For example, for the Hitachi disks with 8 MB caches,

sequential writes of less than 2.3 MB have little chance

of flushing the target block whereas sequential writes

of more than 2.3 MB flush the target block with nearly

100% success. We suspect that these disks use LRU

replacement; with LRU, the target block is evicted as

long as the flush workload writes enough data.

However, other fingerprints appear much more ir-

regular (e.g., Samsung). We suspect that these disks

use a random replacement policy; thus, sometimes the

flush workload is allocated to the target segment and

sometimes not. Increasing the size of the flush workload

increases the chances that one replaces the target block

but never guarantees it. Many writes are thus required

to even probabilistically evict every target block.

2) Performance Fingerprints: The performance fin-

gerprints for the nine disk drives are shown in Table III.

Each fingerprint shows, for either sequential or random

requests, the cost of performing a flush with the stated

number of writes and total amount of data for that par-

ticular disk. The dark regions indicate costly workloads

(taking over 500 ms) while the lightest regions indicate

fast workloads (taking less than 10 ms).

As expected, issuing a random flush workload is

significantly more expensive than a sequential workload

0 512 1024

T
o

ta
l
d

a
ta

(M
B

)

0

2

4

6

8

10

Hitachi 8 MB
Sequential

0 512 1024
0

2

4

6

8

10

Hitachi 8 MB
Random

0 512 1024

0

16

32

48

64

Samsung 8 MB
Sequential

0 512 1024

0

16

32

48

64

Samsung 8 MB
Random

0 512 1024

0

8

16

24

32

Seagate 8 MB
Sequential

0 512 1024

0

8

16

24

32

Seagate 8 MB
Random

0 512 1024

T
o
ta

l d
a
ta

(M
B

)

0

8

16

24

32

Hitachi 32 MB
Sequential

0 512 1024

0

8

16

24

32

Hitachi 32 MB
Random

0 1024 2048

0

8

16

24

32

Samsung 16 MB
Sequential

0 1024 2048

0

32

64

96

128

Samsung 16 MB
Random

0 512 1024

0

8

16

24

32

Seagate 16 MB
Sequential

0 512 1024

0

8

16

24

32

Seagate 16 MB
Random

of writes

0 1024 2048

T
o

ta
l d

a
ta

(M
B

)

0

8

16

24

32

91 +

WD 16 MB
Sequential

Eviction Percent:

of writes

0 1280 2560

0

8

16

24

32

71 − 90

WD 16 MB
Random

of writes

0 512 1024

0

20

40

60

80

51 − 70

WD 64 MB
Sequential

of writes

0 512 1024

0

20

40

60

80

31 − 50

WD 64 MB
Random

of writes

0 512 1024

0

16

32

48

64

11 − 30

Seagate 32 MB
Sequential

of writes

0 512 1024

0

16

32

48

64

0 − 10

Seagate 32 MB
Random

Table II : Eviction Fingerprints. Eviction Fingerprints for SATA Disk drives from different manufacturers.

0 512 1024

T
o

ta
l
d

a
ta

(M
B

)

0

2

4

6

8

10

Hitachi 8 MB
Sequential

0 512 1024
0

2

4

6

8

10

Hitachi 8 MB
Random

0 512 1024

0

16

32

48

64

Samsung 8 MB
Sequential

0 512 1024

0

16

32

48

64

Samsung 8 MB
Random

0 512 1024

0

8

16

24

32

Seagate 8 MB
Sequential

0 512 1024

0

8

16

24

32

Seagate 8 MB
Random

0 512 1024

T
o
ta

l d
a
ta

(M
B

)

0

8

16

24

32

Hitachi 32 MB
Sequential

0 512 1024

0

8

16

24

32

Hitachi 32 MB
Random

0 1024 2048

0

8

16

24

32

Samsung 16 MB
Sequential

0 1024 2048

0

32

64

96

128

Samsung 16 MB
Random

0 512 1024

0

8

16

24

32

Seagate 16 MB
Sequential

0 512 1024

0

8

16

24

32

Seagate 16 MB
Random

of writes

0 1024 2048

T
o

ta
l d

a
ta

(M
B

)

0

8

16

24

32

WD 16 MB
Sequential

Time for flush(ms):

of writes

0 1280 2560

0

8

16

24

32

501 +

WD 16 MB
Random

of writes

0 512 1024

0

20

40

60

80

101 − 500

WD 64 MB
Sequential

of writes

0 512 1024

0

20

40

60

80

51 − 100

WD 64 MB
Random

of writes

0 512 1024

0

16

32

48

64

11 − 50

Seagate 32 MB
Sequential

of writes

0 512 1024

0

16

32

48

64

0 − 10

Seagate 32 MB
Random

Table III : Performance Fingerprints. Performance Fingerprints for SATA disk drives from different manufacturers.

Cache Number Data Time
Manufacturer (MB) Writes (MB) (ms)

Hitachi 8 1 2.38 50
Hitachi 32 1 11 87
SAMSUNG 8 128 49 1328
SAMSUNG 16 512 128 2872
Western Digital 16 1792 19 5107
Western Digital 64 256 1 7705
Seagate 8 256 31 870
Seagate 16 128 17 342
Seagate 32 128 37 396

Table IV : CCE Flush Workloads. The table shows the rec-
ommended flush workloads for each of the nine fingerprinted
disks. We select the flush workload as the one with the best
performance and a 100% probability of success in our micro-
benchmark. The CCE performs the stated number of random
write operations with the stated total amount of data. The last
column shows the time in milliseconds to perform the CCE.

due to the additional disk seeks and rotations incurred

by the random writes. Across graphs, one can also

compare performance across disks.

3) Flush Workloads: From the eviction and perfor-

mance fingerprints, we can determine the best flush

workload for a particular disk drive. The best work-

load is the one that most effectively flushes the target

block from the disk cache with the lowest performance

overhead. We note that there exists a trade-off between

these two goals. In some cases it will be impossible for

the CCE operation to guarantee that a target block has

been evicted from the cache; thus, our goal is only to

significantly increase the likelihood that writes are sent

to the disk media in the correct order in case of a crash.

In general, we search for the flush workload with the

best performance that has a 100% probability of success

in our microbenchmarks.

Table IV shows the flush workload we have derived

by combining the eviction and performance fingerprints.

On the two Hitachi disk drives it is relatively simple and

inexpensive to perform a CCE; one can simply perform

a single write of either 2.3 MB (8 MB cache) or 11 MB

(32 MB cache) requiring either about 50 ms or 87 ms.

Safely flushing the caches of the other disk drives

is more expensive, requiring more random write oper-

ations (at least 128) and often more total data (up to

128 MB). Initiating more random writes has a steep

performance cost, raising the cost of the CCE up to

hundreds of milliseconds for the Seagates, and higher

for the Samsungs and Western Digitals.

D. Summary

The success of the CCE operation depends on the

disk characteristics. For disks with complex replacement

policies in the disk cache, it is difficult to evict a block

with certainty; CCE only increases the probability of

eviction, and the cost of the flush is directly proportional

to the probability of eviction.

IV. JOURNALING IN DISCREET MODE

By using the CCE primitive, existing file systems can

guarantee data consistency and provide crash recovery

even in the presence of misbehaving disks. It can be

incorporated into any file system that requires a specific

ordering of write requests for correctness. For example,

a file system based on soft updates, copy-on-write, or

ordered synchronous writes could be modified to use

this operation.

In this section, we describe our experience incorporat-

ing CCE into a journaling file system, specifically Linux

ext3 for both ordered and data journaling modes. We

call our new extension discreet mode. We recommend

that this mode of ext3 be used when one suspects that

the underlying disk is not entirely trustworthy.

A. Overview

Journaling in discreet mode does what it should do

with hardware that misbehaves – show discretion. That

is, this mode of the file system acts in such a manner

as to protect itself and its interests without blaming the

underlying disk. Journaling in discreet mode does not

rely on the disk’s response to writes or flush commands

to ensure durability of written data; instead it uses CCEs

to coerce the disk to order write requests as required for

journaling transaction semantics.

B. Design

To explain our design of discreet mode for both

ordered and data journaling in ext3, we begin by de-

scribing the standard operation of ordered journaling

mode and what can go wrong if the disk misbehaves.

Figure 3 shows the required ordering of block updates

in a transaction. The updates must be performed in the

following order:

1) Data blocks (D) are written to their in-place

locations on disk

2) Metadata blocks (M), such as inodes and bitmaps,

are written to the journal

3) Journal commit block (C) is written to the journal

4) Metadata blocks are checkpointed and written to

their in-place locations on disk

5) Entries from the journal are freed

If a misbehaving disk violates this ordering due to

overly aggressive caching, then a crash could result in

a variety of problems for the file system and users.

For example, if the misbehaving disk first destages the

journal blocks to the media and a crash occurs before all

of the data blocks have been durably updated (i.e., step

2 before step 1), then recovery will checkpoint metadata

blocks to point to old data; thus, a newly updated file

may contain corrupted or stale contents.

To ensure that the writes to disk are durably per-

formed even for a misbehaving disk, discreet mode

Data block
writes

D
IS
K

T1

D D DM
E
M
O
R
Y

D D D

M M

D D D

M M

Metadata
block writes

C

D D D

M M

Commit block
write

C

T2...Tn

T
1
 C
o
m
m
it
te
d

D D D

M M

CM M T
1
 C
h
ec
k
p
o
in
te
d

D D D

M M

T
1
F
in
is
h
ed

Jo
u
rn
a
l

In
-p
la
ce

Checkpoint
metadata
blocks

Figure 3. Block Ordering in ext3 Ordered Journaling Mode . The figure shows the ordering of blocks in ext3 ordered journaling
mode. Transactions are shown as T1, T2, etc. ’D’ denotes data blocks, ’M’ metablocks, and ’C’ journal commit blocks.

journaling for ordered mode adds CCE operations after

each of the steps one through four. Figure 4 shows

the location of CCE operations (or flushzone writes,

described below). We emphasize that the addition of

CCEs does not affect transaction semantics; CCEs sim-

ply ensure that the semantics are maintained even in the

presence of misbehaving hardware.

We have also implemented discreet mode for data

journaling mode. Data journaling is similar to ordered

journaling, except step one listed above is omitted and

both data and metadata blocks are written to the journal

and checkpointed. For discreet data journaling, CCEs

are added after each of the three remaining steps.

C. Implementation

We have implemented discreet mode journaling in

both Linux 2.6.13 and 2.6.23. We modified the journal-

ing block device (JBD) layer to include CCE operations

at the necessary points described above.

Given a disk, we first analyze it in order to find the

most effective flush to be used in the CCE operation.

As discussed in Section III, we first fingerprint the disk.

We then look for the flush workload that gives the

highest probability of eviction at lowest cost. This flush

workload is then used in the CCE operation.

To prepare ext3 to operate in discreet mode, we

must first allocate space on the disk to which we will

direct the flush workload writes. Therefore we have

modified the mke2fs utility to allocate blocks for the

flushzone, a region of disk space for the flush traffic. The

location of the flush zone has a significant impact on

performance; since the flush zone is written at nearly the

same time as journal writes, mke2fs allocates space for

it right after the journal. Like the journal, the flushzone

is allocated as a file; a flushzone superblock contains

the CCE parameters for the particular disk.

We added functionality in mount which reads the

on-disk flushzone superblock and stores the flushzone

parameters in memory. It notifies the journaling block

device (JBD) to operate in discreet mode and also passes

the flushzone parameters to it.

V. EVALUATION RESULTS

We now present performance results for discreet

mode journaling implemented in ext3. Specifically, we

answer the following questions:

• Is the overhead of discreet mode journaling accept-

able? Are there workloads for which it is not?

• How much does an efficient implementation of

CCE impact workload performance?

A. Methodology

All our experiments were performed on a machine

with a 2.2 GHz Opteron processor, 1 GB RAM, and two

80 GB Hitachi HDS7280SASUN80G disks containing

8 MB of cache. The Hitachi disks were chosen for this

evaluation because they happened to be the first disks

we acquired; they also represent a favorable case for

CCE given their cache-flush cost.

To allow us to generalize our results slightly more

to disks with more expensive implementations of CCE,

we evaluate two implementations of CCE for the Hi-

tachi disks. The first version issues 128 pseudo-random

writes, each of size 12 KB, for a total of 1.5 MB of

data. This workload is designed to flush each of the

segments of the cache. These random writes flush the

cache, but take approximately 170 ms to do so. To

show the benefits of optimizing the performance of the

CCE, the second version issues the recommended single

sequential write of 2.3 MB (see Table IV); this version

takes approximately 50 ms.

B. Basic Performance of Discreet Mode

We begin by evaluating the unoptimized versions of

CCE within discreet mode journaling. For a range of

workloads, we measure three variants of both ordered

journaling and data journaling: discreet mode with the

disk cache enabled, the regular mode with the disk cache

disabled, and the regular (unsafe) mode with disk cache

enabled. In the modes where the disk cache is enabled,

write-back caching is used.

Since we are targeting the scenario where the caching

behavior of a disk is not entirely trusted, we first

MM

MEMORY

Data
writes

V
o
la

ti
le

ca

ch
e

P
er

m
an

en
t

m
ed

ia
D D D F

D
IS

K

F...

D D D

Flushzone
writes

D D D

M M

F F...

F F...

Flushzone
writes

D D DF F...

MM

C

C F F...

D D D

MM

F F...

Flushzone
writes

F F...

C

Metadata
writes

Journal
commit
write

Journal

In-place

M

M

D D D

F F...

Flushzone
writes

F F...

Checkpoint
writes

M

M

MM

T
r
a
n
s
a
c
t
io
n
 C
o
m
m
it
t
e
d

T
r
a
n
s
a
c
t
io
n
 F
in
is
h
e
d

MMC

Figure 4. Ordered journal ext3 in discreet mode. The figure shows ext3 in ordered journal mode operating in discreet mode. The
extra writes issued to the flushzone are used to flush the blocks from the drive cache to the disk media. The crossed-out journal
blocks mean that they are deleted when the blocks are checkpointed to disk.

Journaling mode and cache configuration
Regular Discreet Unsafe

Journal type w/o cache
(costly
flush)

w/ cache

Ordered journal 41.97 42.07 41.47
Data journal 42.02 41.64 41.60

Table V : OpenSSH benchmark runtimes. The table shows the
runtimes of the OpenSSH benchmark on a HITACHI SATA
drive with 8 MB cache. These experiments use the costly
CCE and Linux 2.6.13. Run times are shown for both ordered
and data journal modes and for regular and discreet mode
journaling. For the OpenSSH benchmark, we measure the time
to copy, untar, configure, and make the OpenSSH 4.51 source.

compare discreet mode to the regular mode of journal-

ing (ordered or data) with the drive’s cache disabled.

Disabling the drive’s cache is currently the only method

available for safely updating the file system if one does

not completely trust the disk. We note trying to disable

the cache of a misbehaving disk is not the same thing

as actually disabling it: a misbehaving disk may choose

to disregard this command. Therefore, discreet mode

may still be the only way to ensure a misbehaving disk

performs writes in the required order.

The second comparison is with the unsafe regular

mode of journaling (ordered or data) with the drive’s

cache enabled. This represents the best possible per-

formance for discreet mode journaling and could be

achieved if the disk were completely trusted. The dif-

ference between the unsafe regular mode with the disk

cache enabled and discreet mode is the overhead of not

trusting the disk.

OpenSSH: We begin our comparison with the

OpenSSH benchmark, which performs a copy, untar,

configure, and make of the OpenSSH source code.

Table V shows that the discreet mode of both ordered

and data journaling performs better than the safe base

case of disabling the cache. For this simple workload,

discreet mode performs as well as the unsafe regular

mode with caching.

Filebench Webserver: We continue with a more I/O-

intensive synthetic benchmark that emulates the behav-

ior of a webserver; these results are shown in Figure 5.

As expected, all versions of ordered journaling achieve

Filebench Webserver

Journal type

ordered data

T
h
ro

u
g
h
p
u
t
(m

b
/s

)

0

200

400

600

800

4
1

8

1
8

5

4
8

5

2
2

9

5
2

1

2
4

0

regular w/o cache
discreet (costly flush)
regular w/ cache

Figure 5. Performance measurement with Filebench webserver
benchmark. The graph shows the average throughput in
megabits per second for operations in the filebench webserver
benchmark on the HITACHI drive (8 MB cache). These exper-
iments use the costly CCE and Linux 2.6.13. The parameters
used are: 16 threads, 500 files, and 16KB mean I/O size.

significantly higher throughput than data journaling; this

is expected because data journaling writes each data

block twice: once to the journal and once to its fixed

in-place location on disk.

Within each group, discreet mode again obtains no-

ticeably better throughput than disabling the misbe-

having cache; running without the cache degrades the

throughput of the application by 15 to 20 percent

compared to discreet mode. For this workload, discreet

mode performs comparably to the unsafe regular cases,

causing a modest 4 to 7 percent drop in throughput.

Postmark benchmark: Figure 6 shows the results of

running the Postmark benchmark. Again, as expected,

ordered journaling performs better than data journaling

across all variants. With ordered mode, discreet mode

performs similarly to disabling the cache and about 25%

slower than the regular case that trusts the disk. With

data journaling, discreet mode consistently performs

better than disabling the disk cache; disabling the disk

cache incurs approximately a 10% overhead relative to

discreet mode.

Completely disabling the disk cache for safety rea-

sons is a poor idea if performance is needed. Even

though discreet mode must periodically flush the disk

Ordered journal mode

Postmark transactions

1K 2K 4K 8K

T
im

e
 (

s
e
c
o
n
d
s
)

0

500

1000

1500

2000

1
8
1 2
8
0 5

1
1

1
0
3
2

1
5
9 2
6
7

5
0
9

1
0
7
1

1
3
1

2
1
6 4

0
4

8
4
3

regular w/o cache
discreet (costly flush)
regular w/ cache

Data journal mode

Postmark transactions

1K 2K 4K 8K

T
im

e
 (

s
e
c
o
n
d
s
)

0

500

1000

1500

2000

2
9
0 4
2
6

7
1
1

1
3
3
4

2
4
2 3
6
7

6
4
7

1
2
0
8

2
1
2 3
1
0 5

3
5

1
0
3
8

regular w/o cache
discreet (costly flush)
regular w/ cache

Figure 6. Performance measurement with Postmark benchmark.

The graph shows the average times in seconds taken to run the
postmark benchmark with varying transactions on a HITACHI
drive (8 MB cache). These experiments use the costly CCE and
Linux 2.6.23. Run times are shown for regular and discreet
mode journaling for both ordered and data journal modes.
The parameters: 1000 files (sizes 4KB to 4MB), 1000 to 8000
transactions, and 50/50 read/append and create/delete biases.

cache, it is still able to leverage the cache for write

operations that do not require ordering (e.g., updating

multiple data blocks). We note that all of the perfor-

mance results in this section were obtained with the

costly version of the CCE taking 170 ms. We investigate

the effect of improving the CCE time in our next

workloads.

C. Optimizing the Cache Flush

We now investigate a workload that particularly

stresses discreet mode journaling: Filebench Varmail.

This benchmark repeatedly performs an append oper-

ation to a randomly selected file and then issues an

fsync to ensure that the data is durably updated on

disk before proceeding.

This benchmark represents a difficult case for discreet

mode journaling because every call to fsync causes

the file system to flush the disk cache, leading to four

complete CCEs as shown in Figure 4.

To improve performance we remove one of the

four CCE operations by implementing a transactional

checksum [24] for discreet mode journaling. A second

improvement we implement is to use the optimized CCE

operation for the Hitachi disk requiring only 50 ms

instead of 170 ms. We implemented these optimizations

to offset the effects of frequent fsyncs. In the general

case, discreet mode journaling performs quite well in

the absence of these improvements.

The first graph of Figure 7 shows the throughput

achieved for the eight journaling variants. As expected

for this fsync intensive workload, discreet mode jour-

naling performs very poorly and has lower throughput

than simply disabling the cache.

To improve the situation, we focus on the latency of

the fsync operations in the workload; the latency of

all other operations are comparable across journaling

modes. As stated above, the varmail benchmark calls

16 KB Workload

Journal type

ordered data

T
h

ro
u

g
h

p
u

t
(m

b
/s

)

0

5

10

15

0
.5 0
.9

0
.1 0
.2

0
.1 0
.2

5
.1

1
0

.0

regular w/o cache
discreet (costly flush)
discreet (efficient flush)
regular w/ cache

8 MB Workload

Journal type

ordered data

T
h

ro
u

g
h

p
u

t
(m

b
/s

)

0

10

20

30

40

50

1
6

.7

1
0

.0

9
.6

9
.7

1
8

.9

1
2

.7

3
0

.7

1
9

.9

regular w/o cache
discreet (costly flush)
discreet (efficient flush)
regular w/ cache

Figure 7. Filebench varmail: 16 KB vs 8 MB. The graphs show
the average throughput in megabits per second for operations
in the filebench varmail benchmark on the HITACHI drive with
Linux 2.6.23. The workload in the first graph appends only
16 KB of data before calling fsync, whereas the workload
in the second graph appends 8 MB. The bars illustrate
different journaling modes and implementations of the discreet
mode with costly (170 ms) or efficient (50 ms) flushes. The
benchmark is run with 1 thread and 500 files of 16 KB each.

fsync after every append operation. Applications that

call fsync after small amounts of data perform poorly,

regardless of the type of journaling that is used. If

one wishes to run fsync intensive applications with

reasonable performance, a pragmatic approach is to

slightly alter the application to group more operations

(or larger writes) between calls to fsync [15]. We

have modified varmail so that instead of appending only

16 KB of data before calling fsync, it appends up

to 8 MB of data in a larger transaction group before

invoking fsync.

Figure 8 details the results for the eight journaling

variants as the size of the transaction group is increased.

As expected, the time for fsync grows with the size

of the transaction for all journaling modes; however,

the time grows more slowly for discreet mode than

the others. For regular journaling modes, an fsync

translates to disk traffic equal to the amount of data just

appended; for discreet journaling, an fsync translates

to disk traffic equal to the appended data plus the flush

operations. Thus, for discreet mode, performing larger

transactions within the application amortizes the cost of

flushing the cache over a larger amount of data.

The second graph of Figure 7 shows the benefit of this

simple modification. When the amount of data within

each transaction is increased to 8 MB, the performance

of all journaling modes improves dramatically (note the

difference in the scales across the two graphs). Inter-

estingly, the relative performance of the discreet modes

improves the most: with 8 MB application transactions,

discreet mode journaling obtains better throughput than

disabling the cache for safety. However, it is important

to optimize the CCE operation to flush the disk cache

efficiently; for example, in ordered mode, the efficient

50 ms flush achieves nearly twice the throughput of the

costly 170 ms flush.

Ordered journal mode

Transaction size

16K 64K 256K 1M 4M 8M

F
s
y
n

c
 t

im
e

 (
m

s
e

c
)

0

100

200

300

400

500

600 regular w/o cache
discreet (costly flush)
discreet (efficient flush)
regular w/ cache

Data journal mode

Transaction size

16K 64K 256K 1M 4M 8M

F
s
y
n

c
 t

im
e

 (
m

s
e

c
)

0

100

200

300

400

500

600 regular w/o cache
discreet (costly flush)
discreet (efficient flush)
regular w/ cache

Figure 8. Filebench varmail: Varying Transaction Size. The
graph shows the average time in ms for the fsync operation
within the varmail benchmark. The amount of data within each
transaction is increased from 16 KB to 8 MB. Fsync times are
shown for discreet mode journaling with both the efficient and
the costly flush (CCE) and for both ordered and data journal
modes.

In conclusion, the performance overhead of discreet

mode journaling is highly dependent on the workload.

For most I/O workloads (e.g., OpenSSH, the Filebench

webserver, and Postmark), the performance of discreet

mode journaling (with an unoptimized CCE) is better

than the only other (somewhat) safe alternative of

disabling the cache.

Small synchronous I/Os cause particularly poor per-

formance for discreet mode; however, if the size of

transactions within the application is increased, then

discreet mode journaling performs adequately.

We found that it is essential to use a version of

CCE that has been optimized for the specific disk

cache; using a costly flush requiring 170 ms instead

of an optimized flush requiring 50 ms can degrade

performance by up to a factor of two. We believe

these performance results are favorable enough for us

to recommend discreet mode journaling be used when

disk trustworthiness is suspect.

VI. CONCLUSION

File systems are entrusted with data and are expected

to provide reliability even when there is unreliable

hardware underneath. Unfortunately, disk drives that

misbehave with respect to flush commands can prevent

file systems from maintaining the expected ordering

of durable writes. A disk that misbehaves in order to

improve its performance can cause a trusting file system

to lose or corrupt data and meta-data.

The only recourse that file systems currently have for

coping with misbehaving disks is to disable the disk

cache; however, even this command may be ignored

by a misbehaving disk. Therefore, we have introduced

Coerced Cache Eviction (CCE) to “force” even a mis-

behaving disk to flush writes to the permanent media.

By using the CCE primitive, file systems can ensure

that writes are durably updated in the expected order.

As we increasingly adopt the world of “cloud com-

puting” [4], where users rent computing resources and

run on virtualized platforms, one needs to attribute more

importance to the notion of trust. The host has incentives

to efficiently utilize its infrastructure by batching writes

across users. Can users trust that their data is flushed to

durable media when they are writing to such a virtual

medium? We believe that this kind of misbehavior may

become more commonplace rather than less, making

techniques like CCE more essential.

Acknowledgments
We thank the anonymous reviewers for their feedback

and comments, which have substantially improved the

content and presentation of this paper. We also thank S.

Subramanian, S. Sundaraman, L. Arulraj, M. Saxena,

and S. Panneerselvam for their comments on earlier

drafts of the paper.

This material is based upon work supported by

the National Science Foundation under the following

grants: CCF-0811657, CNS-0834392, CCF-0937959,

CSR-1017518, as well as by generous donations from

NetApp and Google.

Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

National Science Foundation or other institutions.

REFERENCES

[1] D. Anderson, J. Dykes, and E. Riedel. More Than an
Interface: SCSI vs. ATA. In FAST ’03, San Francisco,
CA, April 2003.

[2] Anonymous @ Microsoft. Some SATA disks do not
allow the file system to force writes to disk properly.
Personal Communication.

[3] Anonymous @ Seagate. Some SATA disks (though none
from Seagate) do not allow the file system to force writes
to disk properly. Personal Communication.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.pdf.

[5] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. Stein-
berg, and K. Yelick. Empirical Evaluation of the CRAY-
T3D: A Compiler Perspective. In ISCA ’95, pages 320–
331, Santa Margherita Ligure, Italy, June 1995.

[6] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy,
and J. Schindler. An Analysis of Latent Sector Errors in
Disk Drives. In SIGMETRICS ’07, San Diego, CA, June
2007.

[7] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An
Analysis of Data Corruption in the Storage Stack. In
FAST ’08, pages 223–238, San Jose, California, February
2008.

[8] J. Bonwick and B. Moore. ZFS:
The Last Word in File Systems.
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf,
2007.

[9] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Exploiting Gray-Box Knowledge of
Buffer-Cache Contents. In USENIX ’02, pages 29–44,
Monterey, CA, June 2002.

[10] C. Christensen. The Innovator’s Dilemma. Harper
Collins, 2003.

[11] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-Diagonal Parity for Dou-
ble Disk Failure Correction. In FAST ’04, pages 1–14,
San Francisco, CA, April 2004.

[12] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized
File System Dependencies. In SOSP ’07, Stevenson,
WA, October 2007.

[13] G. R. Ganger and Y. N. Patt. Metadata Update Per-
formance in File Systems. In OSDI ’94, pages 49–60,
Monterey, CA, November 1994.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In SOSP ’03, pages 29–43, Bolton Landing,
NY, October 2003.

[15] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[16] R. Hagmann. Reimplementing the Cedar File System
Using Logging and Group Commit. In SOSP ’87, Austin,
TX, November 1987.

[17] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach, 3rd edition. Morgan-
Kaufmann, 2002.

[18] D. Hitz, J. Lau, and M. Malcolm. File System Design
for an NFS File Server Appliance. In USENIX Winter
’94, San Francisco, CA, January 1994.

[19] G. F. Hughes and J. F. Murray. Reliability and Se-
curity of RAID Storage Systems and D2D Archives
Using SATA Disk Drives. ACM Transactions on Storage,
1(1):95–107, February 2005.

[20] D. M. Jacobson and J. Wilkes. Disk Scheduling Algo-
rithms Based on Rotational Position. Technical Report
HPL-CSP-91-7, Hewlett Packard Laboratories, 1991.

[21] R. Karedla, J. S. Love, and B. G. Wherry. Caching strate-
gies to improve disk system performance. Computer,
27(3):38–46, 1994.

[22] D. Kotz, S. B. Toh, and S. Radhakrishnan. A Detailed
Simulation Model of the HP 97560 Disk Drive. Techni-
cal Report TR94-220, Dartmouth College, 1994.

[23] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson,
K. Srinivasan, R. Thelen, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Parity Lost and Parity Regained.
In FAST ’08, pages 127–141, San Jose, California,
February 2008.

[24] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. IRON File Systems. In SOSP ’05, pages 206–
220, Brighton, UK, October 2005.

[25] Public forum. IDE write cache
and journaling file systems.
http://oss.sgi.com/projects/xfs/mail archive/200204/
msg00220.html, Apr. 2002.

[26] Public forum. SATA and Data Corruption.
http://www.hardwareanalysis.com/content/topic/25671/,
Apr. 2004.

[27] Public forum. Cannot disable write cache on hard
drives. http://www.tomshardware.com/forum/227363-
46-cannot-disable-write-cache-hard-drives, Jan. 2005.

[28] M. Rosenblum and J. Ousterhout. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, 10(1):26–52, Febru-
ary 1992.

[29] C. Ruemmler and J. Wilkes. An Introduction to Disk
Drive Modeling. IEEE Computer, 27(3):17–28, 1994.

[30] R. H. Saavedra and A. J. Smith. Measuring Cache and
TLB Performance and Their Effect on Benchmark Run-
times. IEEE Transactions on Computers, 44(10):1223–
1235, 1995.

[31] J. Schindler and G. R. Ganger. Automated Disk Drive
Characterization. Technical Report CMU-CS-99-176,
Carnegie Mellon University, 1999.

[32] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger.
Track-aligned Extents: Matching Access Patterns to Disk
Drive Characteristics. In FAST ’02, Monterey, CA, Jan-
uary 2002.

[33] M. Seltzer, P. Chen, and J. Ousterhout. Disk Schedul-
ing Revisited. In USENIX Winter ’90, pages 313–324,
Washington, D.C, January 1990.

[34] E. A. M. Shriver, A. Merchant, and J. Wilkes. An An-
alytic Behavior Model for Disk Drives with Readahead
Caches and Request Reordering. In SIGMETRICS ’98,
Madison, WI, June 1998.

[35] R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206tot resiliency.html, February 2006.

[36] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based Extraction of Local and Global
Disk Characteristics. Technical Report CSD-99-1063,
University of California, Berkeley, 1999.

[37] The Serial ATA International Organization. Serial
ATA Revision 3.0 Specification. http://www.sata-
io.org/technology/6Gbdetails.asp, June 2009.

[38] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3
Filesystem. In FREENIX ’02, Monterey, CA, June 2002.

[39] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson.
Reliably erasing data from flash-based solid state drives.
In FAST ’11, San Jose, California, February 2011.

[40] B. L. Worthington, G. R. Ganger, Y. N. Patt, and
J. Wilkes. On-Line Extraction of SCSI Disk Drive Pa-
rameters. In SIGMETRICS ’95, pages 146–156, Ottawa,
Canada, May 1995.

