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Abstract

Modern applications, capable of running on a range of devices from servers
to smartphones, require persistent data storage to maintain state across
restarts, power loss, or crashes. Applications rely on system calls provided
by the operating system, particularly the file system, to achieve this. How-
ever, with devices running various operating systems and file systems,
developers aim for portability, writing code that can run across multiple
platforms without modification.

While compilers do a great deal for user-space code, translating it effi-
ciently for different processors, they offer little when it comes to system
calls, typically performing a basic one-to-one translation. Subtle differ-
ences in internal system behavior, especially during failures, can affect the
system’s state and lead to incorrect outcomes, potentially causing data
loss or other critical issues. These inconsistencies also introduce variations
in performance across platforms. As a result, applications may experience
critical failures or data loss when assumptions about system behavior are
incorrect, and may also run inefficiently due to performance variations.

In this dissertation, we aim to bring the benefits that compilers provide
to user-space applications—such as ensuring that optimizations preserve
semantic correctness while selecting the most efficient instructions for
different processors—to interactions between applications and the file
system. We begin by challenging the assumption that system calls behave
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consistently across platforms. Through a detailed study of fsync failures,
we demonstrate that incorrect assumptions can result in data loss and
show the necessity for file-system-specific error handling.

Next, we examine application interactions with file systems, discover-
ing common patterns, which we refer to as intentions. Finally, leveraging
these insights, we develop HSL (The High-Level System Language), a
declarative language that allows developers to express these intentions.
HSL handles failures at a per-file-system level to prevent data loss and en-
sure correctness. Additionally, it selects the most appropriate system calls
based on runtime information, such as the target file system, to achieve
optimal performance across diverse platforms.
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1
Introduction

The applications we interact with on a daily basis do not run directly
on hardware. Devices such as servers, desktops, laptops, tablets, and
phones host multiple applications that require access to resources like
the processor, memory, storage, and network. To manage this resource
sharing, an underlying system is needed. This is where the operating
system comes in, serving as a mediator between the applications and the
hardware [4]. Applications interact with the operating system through
system calls [59, 60], which allow them to request the resources they need.

Many applications require their data to be persisted, allowing recovery
after a crash or power loss. This process involves accessing storage media
like hard drives or SD cards, where the operating system plays a crucial
role. A specific subcomponent of the operating system, known as the file
system, is responsible for managing the storage of data. The file system
exposes the abstraction of files and directories, enabling applications to
organize and persist their data. Applications interact with the file system
through system calls, requesting the reading and writing of files on the
storage media.

Operating systems often support multiple file systems, each with its
own characteristics and features. For example, a single operating system
might support file systems like ext4, XFS, or Btrfs [72, 98, 113]; the Linux
kernel documents over 20 different file systems [58]. These file systems
may differ in durability, how they handle failures, and performance, but all
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provide the same basic abstraction of files and directories for applications
to interact with.

A web browser provides a common example of an application that inter-
acts with the file system [47]. While primarily used for browsing, browsers
also save state—such as cookies, bookmarks, and browsing history—so
users can pick up where they left off. Browsers write state to disk during
operation and read it upon startup. Additionally, when users download
files, browsers write them to disk. Some browsers are designed for specific
operating systems (e.g., Safari for macOS), while others (e.g., Firefox,
Chrome) are cross-platform and designed for portability across different
operating systems.

Beyond web browsers, many other applications (e.g., databases, spread-
sheets, word processors) are designed to run on multiple platforms. Some
of these applications, including browsers, may rely on embedded databases
to manage their stored data. For developers aiming to reach as wide an
audience as possible, writing portable software is essential, ensuring their
applications and dependencies run seamlessly on different systems.

In modern software development, compilers play a crucial role in en-
suring portability. Developers write code in high-level languages, and the
compiler translates this code into machine instructions for specific systems.
Compilers guarantee semantic correctness and provide numerous opti-
mizations, ensuring that even poorly written code can perform efficiently.
However, compilers are limited when it comes to handling system calls,
which are necessary for interacting with the underlying operating system.

Different operating systems expose different system call interfaces
for tasks such as file reading. The Portable Operating System Interface
(POSIX) [64] standardizes these interfaces, enabling developers to write
portable code. While POSIX guarantees certain functionalities, it hides the
internal workings of the operating system and their numerous file systems,
preventing fine-tuned optimizations. As a result, a portable implemen-
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tation might not perform as well as one tailored to a specific operating
system and file system. Moreover, without insight into the underlying
details, developers might be unaware of potential failure modes, further
complicating debugging and reliability.

For some applications, the performance trade-offs introduced by porta-
bility are negligible. However, applications that frequently interact with
the file system, especially those concerned with durability (e.g., financial
systems), cannot afford data loss. While losing a downloaded file is an
inconvenience, losing a bank transaction is a serious issue. Furthermore,
such applications often require high performance to process large volumes
of transactions quickly. Unfortunately, compiled code doesn’t account for
the specifics of the file system it will run on, meaning developers face a
dilemma: prioritize correctness and performance by tailoring the appli-
cation to a specific system or opt for portability. By choosing portability,
developers may sacrifice efficiency and, more critically, risk compromising
durability and reliability, as it’s difficult to anticipate how different systems
handle critical operations like data persistence.

This dissertation explores how to bring the advantages compilers offer
for user-space code to the realm of system calls and file-system interactions.
We pose the question: Can a declarative language for file-system interactions
improve the correctness and performance of portable applications? We answer in
the affirmative through HSL, the High-Level System Language. HSL captures
the intent behind an application’s file-system interactions in a declarative
way. Unlike traditional compilers, HSL performs its transformations at
runtime, when it has knowledge of the exact file system it will operate
on. While traditional compilers ensure that code transformations main-
tain semantic correctness, HSL goes further by optimizing system calls
for reliability, ensuring data loss prevention, and then for efficiency, by
understanding the underlying file-system behavior and the developer’s
intent.
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This dissertation is structured around three key parts. The first part
focuses on understanding the systems on which applications run. To
generate efficient system calls, we must first explore the behavior of the
underlying file systems. While processors have well-documented spec-
ifications that allow compilers to optimize code, file systems lack this
transparency. Standards, such as POSIX, do not account for all scenarios,
particularly around durability and failure handling. In this part, we study
these systems, with a focus on durability issues relating to fsync failures.

The second part of this dissertation examines how applications in-
teract with the file system. By analyzing these interactions, we identify
recurring patterns, much like how compilers detect opportunities for op-
timization in user-space code. We categorize these patterns into what
we call “intentions”—high-level tasks that applications perform, such as
ensuring durability (e.g., using redo logs) or carrying out operations that
span multiple system calls to achieve a larger goal (e.g., reading multiple
parts of a file). Understanding these intentions allows us to develop strate-
gies for optimizing file system interactions, ensuring both correctness and
efficiency in the execution of these tasks.

The final part presents the design, implementation, and evaluation
of HSL, the High-Level System Language. This section builds on the in-
sights from both the first and second parts, using the knowledge gained
about file system behavior to ensure correct handling of durability-related
intentions, while also incorporating the patterns of system interaction
identified earlier. HSL is constructed to express these high-level intentions
using a declarative language model. Middleware optimizations are ap-
plied to these intentions, and the runtime system selects the most efficient
sequence of system calls based on the specific file system in use. This
part also details the benchmarking and testing processes that validate
HSL’s reliability and efficiency across different systems, ensuring both
correctness and performance in real-world scenarios.
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We now introduce each of these three parts in turn.

1.1 Understanding fsync() Behavior

Applications that care about data must care about how data is written to
stable storage. Issuing a series of write system calls is insufficient. A write
call only transfers data from application memory into the operating system;
the OS usually writes this data to disk lazily, improving performance via
batching, scheduling, and other techniques [4, 74, 105, 107].

To update persistent data correctly in the presence of failures, the
order and timing of flushes to stable storage must be controlled by the
application. Such control is usually made available to applications in the
form of calls to fsync [36, 82], which forces unwritten (“dirty”) data to
disk before returning control to the application. Most update protocols,
such as write-ahead logging or copy-on-write, rely on forcing data to disk
in particular orders for correctness [15, 17, 41, 50, 81, 126].

Unfortunately, recent work has shown that the behavior of fsync dur-
ing failure events is ill-defined [124] and error prone. Some systems, for
example, mark the relevant pages clean upon fsync failure, even though
the dirty pages have not yet been written properly to disk. Simple ap-
plication responses, such as retrying the failed fsync, will not work as
expected, leading to potential data corruption or loss.

In this chapter, we ask and answer two questions related to this critical
problem. The first question relates to the file system itself: why does fsync
sometimes fail, and what is the effect on file-system state after failure?

To answer this first question, we run carefully-crafted micro-workloads
on important and popular Linux file systems (ext4 [73], XFS [114], and
Btrfs [99]) and inject targeted block failures in the I/O stream using
dm-loki—our custom built device-mapper target for deterministic fault
injection. We then use blockviz—a block trace visualization tool that
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enriches block access patterns with file-system specific information, to
examine the results. We provide the traces generated by blockviz to serve
as reference for current file system error-handling behavior.

Our findings show commonalities across file systems as well as differ-
ences. For example, all three file systems mark pages clean after fsync
fails, rendering techniques such as application-level retry ineffective. How-
ever, the content in said clean pages varies depending on the file system;
ext4 and XFS contain the latest copy in memory while Btrfs reverts to the
previous consistent state. Failure reporting is varied across file systems;
for example, ext4 data mode does not report an fsync failure immediately
in some cases, instead (oddly) failing the subsequent call. Failed updates
to some structures (e.g., journal blocks) during fsync reliably lead to
file-system unavailability. And finally, other potentially useful behaviors
are missing; for example, none of the file systems alert the user to run a
file-system checker after the failure.

The second question we ask is: how do important data-intensive appli-
cations react to fsync failures? To answer this question, we build CuttleFS,
a FUSE file system that can emulate different file system fsync failures.
CuttleFS maintains its own page cache in user-space memory, separate
from the kernel page cache, allowing application developers to perform
durability tests against characteristics of different file systems, without
interference from the underlying file system and kernel.

With this test infrastructure, we examine the behavior of five widely-
used data-management applications: Redis [94], LMDB [85], LevelDB [68],
SQLite [117] (in both RollBack [109] and WAL modes [110]), and Post-
greSQL [85] (in default and DirectIO modes). Our findings, once again,
contain both specifics per system, as well as general results true across
some or all. Some applications (Redis) are surprisingly careless with
fsync, not even checking its return code before returning success to the
application-level update; the result is a database with old, corrupt, or
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missing keys. Other applications (LMDB) exhibit false-failure reporting,
returning an error to users even though on-disk state is correct. Many
applications (Redis, LMDB, LevelDB, SQLite) exhibit data corruptions; for
example, SQLite fails to write data to its rollback journal and corrupts in-
memory state by reading from said journal when a transaction needs to be
rolled back. While corruptions can cause some applications to reject newly
inserted records (Redis, LevelDB, SQLite), both new and old data can
be lost on updates (PostgreSQL). Finally, applications (LevelDB, SQLite,
PostgreSQL) sometimes seemingly work correctly as long as the relevant
data remains in the file-system cache; when said data is purged from the
cache (due to cache pressure or OS restart), however, the application then
returns stale data (as retrieved from disk).

We also draw high-level conclusions that take both file-system and
application behavior into account. We find that applications expect file
systems on an OS platform (e.g., Linux) to behave similarly, and yet file
systems exhibit nuanced and important differences. We also find that
applications employ numerous different techniques for handling fsync
failures, and yet none are (as of today) sufficient; even after the Post-
greSQL fsync problem was reported [124], no application yet handles
its failure perfectly. We also determine that application recovery tech-
niques often rely upon the file-system page cache, which does not reflect
the persistent state of the system and can lead to data loss or corruption;
applications should ensure recovery protocols only use existing persistent
(on-disk) state to recover. Finally, in comparing ext4 and XFS (journaling
file systems) with Btrfs (copy-on-write file system), we find that the copy-
on-write strategy seems to be more robust against corruptions, reverting
to older states when needed.
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1.2 Intentions in the Wild

File systems play a critical role in managing the storage and retrieval of
data in modern applications. However, applications often rely on a com-
plex set of system calls to achieve higher-level operations, which makes
it challenging to directly express their intentions to the underlying sys-
tem. This chapter explores how applications interact with file systems,
analyzing patterns and extracting key insights from observed behaviors.

While studying the challenges of ensuring data durability in the face of
fsync failures (the previous section), it was made clear that existing system
calls are not always sufficient to meet the full intentions of applications.
Many tasks require the orchestration of multiple system calls, sometimes
with intricate ordering to enforce atomicity or durability [82]. In this
study, we expand on these observations by asking: what are the common
dialogues between applications and the file system?

To conduct this study, we developed Ikhnaie, a specialized tool de-
signed to assist in tracing and visualizing application behaviors in relation
to file-system interactions. While Ikhnaie focuses on capturing system
call sequences alongside their user-space counterparts (ordinary function
calls), it does not automatically identify higher-level patterns or dialogues.
Instead, Ikhnaie provides valuable insights that make the process of source-
code inspection and documentation review easier, allowing us to manually
categorize and analyze patterns that represent the application’s intentions.

Our analysis spans a wide range of applications, including key-value
stores, databases, version control systems, build systems, and command-
line utilities. By selecting multiple applications from each domain, we
aimed to uncover domain-specific interaction patterns. Additionally, we
focused on applications that have been widely studied in the systems
research community, providing a comprehensive view of how diverse
workloads interact with the file system.

We observe that applications often engage in a “dialogue” with the
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underlying file system, where multiple system calls are required to ac-
complish a higher-level task. When these dialogues are observed across
different applications, they can be generalized into what we term “inten-
tions”. These intentions represent common patterns of operations, such as
single-file reads (according to some access pattern), multi-chunk writes,
and multi-file operations. Additionally, we identify the filtering operation,
where applications read data but only process relevant parts, which be-
comes especially useful when working with remote systems; performing
filtering closer to remote storage reduces data transfer costs.

The chapter also sheds light on the intentions behind more complex
operations like Manifests and Redo Logs. Manifests provide an atomic
view of a set of files, ensuring consistency across files, while Redo Logs are
crucial for maintaining durability and atomicity during updates. However,
implementing some of the intentions we’ve found pose challenges, as
there are multiple ways to achieve them, which can lead to confusion in
selecting the best approach. Addressing these challenges requires careful
consideration of performance trade-offs and system-specific optimizations;
a cognitive burden for the developer.

This study demonstrates that many common file system operations
require complex system call sequences that are not directly supported by
current file system interfaces. By categorizing and understanding these
intentions, we hope to inform the design of future file systems and system
call interfaces. These insights can also serve as a guide for developers to
write more efficient and correct file system interactions, ultimately leading
to more robust and high-performing applications.

1.3 HSL

Our findings from both the study of intentions and the impact of fsync
failures provide not only insights for improving future file systems or
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exposing new interfaces but also the foundation for an innovative inter-
mediate system: HSL, the High-Level System Language. HSL is designed to
bridge the gap between applications and file systems by addressing the
durability challenges revealed by fsync failures for the relevant intentions,
while also optimizing all operations for efficiency. Drawing from these
two areas, HSL offers a more reliable and efficient way for applications to
interact with file systems.

In the final part of this dissertation, we describe the design and imple-
mentation of HSL, followed by an evaluation of its durability claims, its
individual features, and its application in real-world scenarios. Similar to
how compilers for high-level programming languages enable portable and
efficient user-space code, HSL leverages a declarative language approach
to generate portable, robust file-system interactions. Developers can sub-
stitute some or all file-system-related system calls with HSL scripts, which
resemble the execution of SQL queries. These scripts use verbs, informed
by our intention study, and collections, a uniform method for providing
arguments to verbs.

Internally, HSL scripts (the front-end) undergo transformations (the
middle-end) and are ultimately executed through the most efficient se-
quence of system calls (the back-end). In the context of durability, we
introduce dedicated verbs for physical redo logging and manifest files.
Fault-injection testing demonstrates that our implementations handle file
system errors robustly, avoiding the failures that applications without
HSL face, and addressing all issues highlighted in the fsync study; in tests
using HSL, we did not observe any invalid states, such as data corruption,
data loss, or false failures.

From a performance perspective, we benchmark various implemen-
tations of intentions across different workloads to determine the opti-
mal system calls for each scenario. For example, we find that copy_file
_range() [19] is the preferred method for copying large contiguous file
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sections, while copying scattered smaller portions is more nuanced, de-
pending on whether the data resides in the page cache. When data is
cached, sendfile() [106] proves significantly faster, particularly on XFS
and Btrfs.

We also introduce the concept of transports, separating what functional-
ity is required from the file system from how that functionality is requested.
While conventional system calls remain the default, newer asynchronous
interfaces such as io_uring [7] offer alternative ways to interact with the
system. Through benchmarking, we identify performance crossover points
and incorporate heuristics, allowing HSL to choose the best transport at
runtime based on the workload, ensuring efficient execution.

Finally, we evaluate HSL’s application in real-world scenarios through
five case studies, highlighting both benefits and limitations:

1 Copying a file using coreutils cp to an ext4 file system is 1.36x faster
with HSL, while performance matches existing solutions in all other cases.

2 Trimming audio WAV files shows significant benefits from HSL’s COPY
intention, with performance greatly improved after modifying the appli-
cation design to ensure copies align with a 4KB block boundary.

3 Generating Merkle proofs, commonly used in blockchains, is up to 2x
faster with HSL due to its seamless transition to the io_uring transport.

4 HSL matches the current performance of LMDB, ensuring compati-
bility with existing systems and future adaptability. While there are no
faster alternatives for writing to the page cache, HSL allows for future
optimizations without requiring changes to LMDB.

5 SELECT queries in SQLite that involve index lookups achieve up to a
5.5x speedup with HSL. Although integrating HSL required modifications
to SQLite to support batched read operations, these changes resulted in
significant query performance improvements.
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1.4 Contributions

Here, we list the main contributions of this dissertation.

• dm-loki and CuttleFS. We provide two tools for fault injection: dm-loki,
a loadable kernel module device-mapper target for deterministic fault
injection at the block layer (targeting specific blocks or sectors), and
CuttleFS, a FUSE file system for deterministic fault injection at the file
layer (targeting specific file offsets). Together, these tools enable con-
trolled testing of block- and file-level failures.

• Revealing File System Behavior Under fsync Failures with blockviz
Traces. Using dm-loki to inject block and sector-level faults, we analyze
the behavior of three file systems (ext4, XFS, and Btrfs) under fsync fail-
ures. Our contribution includes detailed visualizations of their responses
as block traces, both under normal conditions and with injected faults,
offering insight into their recovery and failure-handling mechanisms.

• Analyzing Application Strategies and Failures in Response to fsync
Errors. Using CuttleFS, we inject faults into files used by applications and
emulate file system behaviors to study how applications respond to fsync
errors on ext4, XFS, and Btrfs. We report findings of data loss, corruption,
and false failures (where applications incorrectly report failures despite
successful file-system states).

• Ikhnaie: Tracing File System and Application Dialogues, and Clas-
sifying Intentions. We design and implement Ikhnaie, a tracing tool
with moderate overhead that captures both user-space function calls and
system calls to study interactions between applications and file systems.
Our contribution includes a detailed classification of common application
intentions, along with example code listings, providing insight into how
applications structure their system call sequences to achieve higher-level
operations.
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• HSL. We design and implement HSL, a declarative language that trans-
lates developer-specified intentions into optimized sequences of system
calls, using runtime information to choose the best execution path. We
provide reference implementations for two durability-related intentions:
redo logs and manifests, demonstrating through fault-injection testing
that HSL’s use of file-system-specific error handling prevents data loss.
Additionally, we present the results of benchmarking various implemen-
tations of intentions, showing where each excels and where alternative
approaches perform better; HSL automatically selects the best approach
at runtime. Finally, we evaluate HSL through real-world case studies,
highlighting both its benefits and limitations.

1.5 Overview

We briefly describe the structure of the contents following this chapter.

Background and Motivation. Chapter 2 provides relevant background
on system calls and current approaches to achieving portability. We then
explore how misunderstanding fsync() has lead to data loss, the limita-
tions of file system portability, and the importance of utilizing runtime
information.

Understanding fsync() Failures. Chapter 3 presents our study on how
file systems react to device failures during fsync, and how applications
respond to these failures.

Intentions in the Wild. Chapter 4 explains our methodology for identi-
fying interactions between applications and file systems, and presents our
findings through a classification of common intentions.



14

HSL: A declarative language for File System Intentions. Chapter 5 de-
tails the overall design of HSL, including implementation specifics for its
verbs and optimizations.

Evaluation. Chapter 6 extends the previous chapter by evaluating HSL’s
correctness and performance. We provide fault-injection results that test
HSL’s durability (for physical redo logs and manifests), along with bench-
marking results across various workloads to demonstrate the advantages
of HSL’s features. Real-world case studies are also presented.

Related Work. In Chapter 7, we discuss prior research relevant to this
dissertation, including crash testing, fault injection studies, system call
studies, and efforts to enhance system call performance.

Conclusions and Future Work. Chapter 8 summarizes the dissertation
on a per-chapter basis, outlines key lessons learned, and suggests possible
directions for future work.
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2
Background and Motivation

Computing environments (desktops, laptops, tablets, phones) today are
designed to run multiple applications simultaneously, each performing
their functions without worry of interference from other applications,
despite sharing the same resources: memory, the cpu, network interfaces
for the internet, or local storage. This is achieved through the help of an
underlying system that has full control of these resources—the operating
system. In this chapter, we provide background on how an application
interacts with the operating system specifically in the context of storage.
We provide details on what happens when an application reads or writes a
file, and how developers ensure the application works on multiple systems
(portability). We show that persisting data is hard to get right, portability
makes it difficult to do so correctly and efficiently, and motivate the need
to use runtime information.

2.1 Application and File System Interaction

Instead of checking each and every instruction an application wishes to
execute on the processor—a performance issue—the operating system
runs in a “system-space” or “kernel-space” which can execute instructions
such as using the network card to communicate with the internet or issue
i/o to a disk. The applications we run today such as web browsers, music
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players, file explores, and even databases that power other applications
on top of them, all run in a lower privilege mode—“user-space” where
executing the above instructions is prohibited directly by the hardware.
Applications can therefore execute all other instructions on the processor
directly (limited direct execution).

When an application needs to perform an operation that requires access
to hardware resources, such as reading from a disk, writing to a file, or
accessing the network, it cannot do so directly. Instead, applications request
the operating system to perform the task on their behalf through system
calls. On system call invocation, the application moves into “kernel-space”
where the operating system executes the right function depending on
the arguments passed, and then transitions back to “user-space” when
returning the result to the application. While there are many system calls
(over 300 in Linux), we focus on those interacting with storage devices.

Applications that interact with storage media do not do so directly.
First, they rely on the operating system to perform these actions through
system calls as mentioned earlier. Second, applications use the operating
system’s file abstraction instead of interacting with the raw storage as
binary data. The operating system provides a view of files and directories,
allowing the application to perform operations such as listing all files in
a directory and retrieving or storing content from or to a particular file,
instead of manually retrieving bytes at certain locations on the disk and
interpreting them.

In addition to providing a file abstraction, the operating system contains
and supports various file systems, each having its own way of organizing
and interpreting the on-disk contents. Different file systems are designed
and optimized with different goals, such as performance, security, or
compatibility. Examples include ext4, XFS, Btrfs, exFAT, and FAT32. We
now cover how an application interacts with file systems to read or write
files, specifically on Linux.
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Reading and Writing Files. Applications that wish to read or write file
contents use system calls to do so. However, given the variety of file
systems, Linux provides a uniform interface through VFS—the virtual file
system, allowing applications to interact with files without worrying about
the underlying file system type. Additionally, POSIX (Portable Operating
System Interface) provides a set of standardized APIs to ensure consistency
across different operating systems and file systems. By adhering to POSIX
standards, developers can interact with files and directories in a uniform
manner, regardless of the underlying file system. File systems however
can have non-portable functionality which we cover later when discussing
portability(§2.2). We now discuss how an application uses standard POSIX
interfaces to read and write files, and the path taken from system call to
the disk.

An application that wishes to read or write to a file must first obtain
a descriptor for the file using the open() system call1. If the application
has the required permissions to read or write the file, or even to create
the file in a particular directory, a file descriptor is returned; otherwise,
the system call fails and the return value is set accordingly. With the file
descriptor, the application can then read or write to the file.

The anatomy of a read system call. When an application wants to read
data from a file, it uses the read() system call or its variants. While every
read system call transitions into the kernel, not all of them require i/o
to the disk. The operating system maintains a cache of frequently or
most-recently accessed file contents. Every file is divided into equal sized
segments called “pages” which are typically 4KB in size. These pages are
cached in the operating system’s page cache.

On read(), the VFS first checks if the requested file region is in the page
cache. If present, no i/o with the disk is required, and the data is copied to
the application’s user-space buffer. If some or all of the requested region is

1The application can list all files in a directory with the readdir() system call.
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not in the cache, VFS passes the request down to the underlying file system.
Similar to files, disks divide their capacity into equal sized segments called
“sectors” and “blocks”, typically 512B and 4KB respectively; we cover their
guarantees when discussing writes. The file system consults its internal
state to identify the blocks for the requested region (a block-to-offset
mapping), and issues an i/o read request for the same. The data is then
stored in the page cache and copied to the application’s user-space buffer.

As an optimization, VFS may detect a certain access pattern such as
reading a file sequentially and may request more than what the appli-
cation actually needs (readahead logic). Therefore, more data is stored
in the page cache for future use by the application, but only the region
requested is copied to the application’s buffer. Applications also use sim-
ilar techniques in user space, reading more than necessary to minimize
system calls. The C standard i/o library exposes functions (fopen,fread)
and maintains an internal buffer to read more than actually requested.
However, we focus mainly on the interactions between user-space and
kernel-space, not between applications and their user-space libraries.

The anatomy of a write system call. When an application wants to write
data to a file, it uses the write() system call or its variants. We first
cover the common case of writes to the page cache (buffered writes), and
discuss the other methods later. Unlike reads, as write operations can
modify metadata that is file-system specific, VFS always routes the write
operation to the underlying file system. When writes are less than a page,
the page must first be read if it is not already in the page cache. In cases
where an entire page is modified, no i/o is necessary. The file system
updates the contents for the file, but only in the page cache. If no offset-
to-block mapping exists, depending on the file system (or configuration
options) the block is allocated immediately or later just before issuing an
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i/o write request2. Applications that read the file will have access to the
updated contents served through the page cache. However, there is now a
mismatch between the data in memory (page cache) and on the device. A
system crash or power loss can result in the data not actually reaching the
disk.

Ensuring writes reach the disk. Linux maintains a write-back page cache
where buffered writes are stored in the cache; future reads return data
from the cached pages. The previously written pages are later written to
disk. Linux identifies these pages by marking them “dirty” when a write
modifies them. Periodically, a flusher thread writes the dirty pages to disk
and marks them clean.

As disks can fail (§2.2.1), it is possible that only some of the blocks
are written to disk. Modern disks however provide some guarantees,
specifically sector atomicity. Disk manufacturers ensure that writes to a
sector either contain the old value or the new value, and not something
in between. However, blocks or pages that are larger than a sector do not
have such guarantees. Additionally, the file system maintains its own data
structures that span multiple blocks. To attain the same atomicity guaran-
tees but over multiple blocks, file systems implement crash consistency
techniques such as journaling [87].

When a write request reaches the disk, it may still not be considered
stable to survive power loss. Disks may have a volatile write cache to
absorb write requests faster. To force the write request to be written to
non-volatile storage, a FLUSH i/o request must be sent. Alternatively, the
write request can set the Force Unit Access (FUA) flag which instructs the
device to by-pass the volatile cache for that request. File systems use these
commands as part of crash consistency strategies. One such strategy is to

2As some files are only temporarily written and soon deleted, file systems developed
an optimization called delayed allocation—delaying the allocation of a block until it needs
to be written out to disk.
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issue a FLUSH so that all data blocks in the volatile write cache are written
out. Then another FLUSH is issued after metadata is written to the journal
for similar reasons. Finally, a sector indicating end of journal entry is
written with the FUA flag set. Any crash during the operation results in
discarding the entire journal entry (ignored during recovery). However,
a crash after the operation completes successfully can be recovered by
reading the journal entry. To prevent the journal from growing too large,
the entries written out periodically during a checkpoint operation and
removed from the journal (described further in relevant chapters).

Applications that have strict durability requirements and wish to per-
sist data immediately cannot wait for the periodic activities of the operating
system. Instead, they use the fsync() system call which writes the dirty
pages only for the file they provide as argument while ensuring the same
crash consistency guarantees.

As mentioned previously, not all writes behave as described. A file
opened with O_SYNC or on a file system mounted with synchronous writes
(-o sync) will ensure each write is written to non-volatile storage, ensur-
ing crash-consistency as mentioned previously. An application can avoid
fsync() in such cases, but makes the trade off of every write inducing i/o
requests. A file opened with O_DIRECT bypasses the page cache (for both
reads and writes), but without O_SYNC the written data may reside in the
device’s volatile write cache. Even if there are no dirty pages (as in the
O_DIRECT case), an fsync() issues a FLUSH i/o request on devices with a
volatile write cache.

Techniques that minimize system calls. System calls are not the only
way to read and write files. Applications may do so either with the help
of the kernel, or by taking control of the device entirely. In the former,
they use the mmap() system call to map the file (or portions of it) into user-
space memory which they can modify directly. In the latter, applications
use kernel-bypass techniques where the kernel is initially involved to
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grant access to the device and the application uses user-space drivers
to communicate directly with the hardware; typically with a library file
system that provides equivalent file abstractions. We do not expand further
on these as they are not in the scope of this dissertation.

2.2 Portability in Cross-Platform Applications

Most software developed today is available for download as ready-to-use
packages or installers for various platforms. Additionally, open-source
software enables end users to download and build the application from
source code. As there are multiple operating systems and many more
file systems for each, applications rely on standards like POSIX to make
cross-platform code easier to write and maintain. However, POSIX does
not eliminate all challenges in portability. In this section, we provide an
overview of how portability is currently achieved.

Cross-platform software can be categorized depending on whether it
runs directly (native binary) or indirectly. For the latter, it is an interme-
diate form that runs atop another system (e.g., the Java Runtime Engine)
which handles portability and runs directly. In both categories, we focus
on the portions that run directly.

Modern compilers handle most of the heavy lifting by converting
source code in high-level languages to executable binaries. While the
code goes through multiple optimization passes resulting in efficient bina-
ries, the gains relate to transformation of user-space code or selecting the
most efficient assembly instructions for the same. Compilers can generate
efficient user-space code but translate system calls as is. The onus is on
the developer to choose the correct supported system call or use a library
that does so.

As mentioned previously, portability for system interaction through
system calls is commonly achieved with the help of interface standard-
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ization. However, operating systems (and file systems) are sometimes
only partially compliant or compliant but also provide faster interfaces.
In other words, they aim to provide compatibility which does not always
guarantee efficiency.

Due to versioning and backwards compatibility, an newer version
of Linux may have better system calls; both are POSIX compatible but
using the better system calls can be faster. Applications that intend to
support both versions typically use conditional compilation. In C and C++,
conditional compilation is achieved by checking for certain definitions
through #ifdef and its variants; the definitions are made available before
compilation with a configure script. For example, the configure script tests
for the availability of the pread() system call. If present, it uses the same
instead of the lseek() and read() combination. Similar checks are done
for all system call variants that it wishes to use.

Conditional compilation is also used when compiling for different op-
erating systems. For example, fsync() on macOS behaves differently
than on Linux. To ensure the data is moved to non-volatile storage,
ioctl(F_FULLSYNC)() must be called on macOS. Through conditional
compilation, the developer can choose the correct strategy; they do have
to be aware of them though.

Unfortunately, while conditional compilation helps choose system calls
for different operating systems, it does little for file systems. The code
compiled for a given operating system can be run on any file system the
operating system supports. Some file systems may support all modern
system calls while others only support the basic ones. Applications may
take a try-by-failure approach to discover them as the unsupported ones
return an ENOTSUPP error.

The more difficult task is when they are supported, but we don’t under-
stand them completely. As previously described, correct usage of fsync()
on multiple operating systems requires knowledge of what macOS does
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on fsync(). Achieving correctness on multiple file systems may be even
harder.

2.2.1 Misunderstanding fsync() Causes Data Loss.

Applications that manage data must ensure that they can handle and re-
cover from any fault that occurs in the storage stack. Recently, a PostgreSQL
user encountered data corruption after a storage error and PostgreSQL
played a part in that corruption [38]. Because of the importance and
complexity of this error, we describe the situation in detail.

PostgreSQL is an RDBMS that stores tables in separate files and uses
a write-ahead log (wal) to ensure data integrity [86]. On a transaction
commit, the entry is written to the log and the user is notified of the success.
To ensure that the log does not grow too large (as it increases startup time
to replay all entries in the log), PostgreSQL periodically runs a checkpoint
operation to flush all changes from the log to the different files on disk.
After an fsync() is called on each of the files, and PostgreSQL is notified
that everything was persisted successfully, the log is truncated.

Of course, operations on persistent storage do not always complete
successfully. Storage devices can exhibit many different types of partial and
transient failures, such as latent sector errors [10, 57, 103], corruptions [9],
and misdirected writes [65]. These device faults are propagated through
the file system to applications in a variety of ways [54, 89], often causing
system calls such as read(), write(), and fsync() to fail with a simple
return code.

When PostgreSQL was notified that fsync() failed, it retried the failed
fsync(). Unfortunately, the semantics for what should happen when
a failed fsync() is retried are not well defined. While POSIX aims to
standardize behavior, it only states that outstanding IO operations are
not guaranteed to have been completed in the event of failures during
fsync() [84]. As we shall see, on many Linux file systems, data pages
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that fail to be written, are simply marked clean in the page cache when
fsync() is called and fails. As a result, when PostgreSQL retried the
fsync() a second time, there were no dirty pages for the file system to
write, resulting in the second fsync() succeeding without actually writing
data to disk. PostgreSQL assumed that the second fsync() persisted
data and continued to truncate the write-ahead log, thereby losing data.
PostgreSQL had been using fsync() incorrectly for 20 years [124].

After identifying this intricate problem, developers changed Post-
greSQL to respond to the fsync() error by crashing and restarting without
retrying the fsync(). Thus, on restart, PostgreSQL rebuilds state by read-
ing from the wal and retrying the entire checkpoint process. The hope
and intention is that this crash and restart approach will not lose data.
Many other applications like WiredTiger/MongoDB [76] and MySQL [78]
followed suit in fixing their fsync() retry logic.

This experience leads us to ask a number of questions. As applica-
tion developers are not certain about the underlying file-system state on
fsync() failure, we study what happens when fsync() fails. How do file
systems behave after they report that an fsync() has failed? Do different
Linux file systems behave in the same way? What can application devel-
opers assume about the state of their data after an fsync() fails? Thus,
we perform an in-depth study into the fsync() operation for multiple file
systems (§3.1).

We then study how data-intensive applications react to fsync() fail-
ures (§3.2). Does the PostgreSQL solution indeed work under all circum-
stances and on all file systems? How do other data-intensive applications
react to fsync() failures? For example, do they retry a failed fsync(),
avoid relying on the page cache, crash and restart, or employ a different
failure-handling technique? Overall, how well do applications handle
fsync() failures across diverse file systems?

Studying file-system fsync() behavior highlights the non-standardized
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post-failure characteristics. File systems are not bound to any one specific
strategy as POSIX does not place restrictions on what state must be af-
ter the failure. Like with macOS, developers must now understand how
fsync() behaves not just on different operating systems but on different
file systems as well. However, as described previously, conditional com-
pilation is insufficient in such scenarios as different file systems may be
used after the application is compiled.

2.2.2 Limitations in Conditional Compilation

As described previously, portability (on operating systems and file sys-
tems) makes correctness hard to get right. And even when applications
achieve correctness, portability—through conditional compilation—makes
it difficult to extract all the performance a file system has to offer. While
conditional compilation helps choose an available interface, it need not
be the best interface. Some cases like pread() are always better than their
individual counterparts, but the same cannot be said for all interfaces.

Within an operating system such as Linux, the same compiled ap-
plication may run on different file systems and each may have differ-
ent performance profiles for the available interfaces. In some cases like
copy_file_range(), the interface may exist but not be supported by all
file systems. Applications like cp employ the try-by-failure approach, first
attempting to use the faster copy_file_range() before falling back to an
available albeit slower interface. The choice of system calls is fixed after
compilation; an implicit assumption of a performance hierarchy among
the interfaces.

Unfortunately, the above approaches limit performance in applications
that frequently interact with file systems. Unless developers constrain
usage to specific file systems, the assumption of a clear performance hier-
archy breaks. For example, using io_uring for writes to the page cache
can be faster on XFS but hurts performance on ext4 [100, 101].
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The assumption breaks even on the same file system as the type of
workload can change the performance hierarchy of interfaces. We profiled
a workload that copies random 4KB pages between two files on XFS using
two implementations for the copy: (1) read+write (2) copy_file_range.
The former does far better when the files are cached and the latter when
they aren’t. Furthermore, there may exist file systems with alternative
faster interfaces that are overlooked.

These observations lead us to survey how popular applications com-
monly interact with the file system, both for durability and general func-
tionality (§4).

2.3 A Case for Runtime Information

Armed with the knowledge of what applications want from the file system,
and how those file systems behave, we ask the question: Can applications
achieve portable correctness and efficiency? Answering it requires know-
ing the file system we run on at run time.

The previously mentioned limitations can be overcome by deferring the
choice of system call from compile-time to runtime, where we know the
exact underlying environment. An application can query runtime informa-
tion such as the file system and its mount options to select the right system
call, or even use non-standard interfaces for custom file systems. However,
such an approach requires developers to have in-depth knowledge of all
file systems they wish to support. We explore an alternative approach: a
layer of indirection that makes the right choice for the developer.

While indirection through a library addresses the above mentioned
limitations, optimizations are confined to within a single library call3 over-
looking benefits across library calls. Instead, a domain-specific language

3One could employ static analysis techniques and transform code through custom
compiler passes to merge library calls.
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approach allows the intermediate layer to analyze a larger context and
provides benefits similar to modern compilers—portability and a repos-
itory of ever-growing optimizations. While domain-specific languages
can be external (with an independent interpreter/compiler) or internal
(using functions and syntax of the host language), both forms constitute a
language with the ability to transform multiple equivalent library calls,
similar to multi-query optimizations [104]. Furthermore, new compound
operations optimized for systems in the future would require modifica-
tions to use a new library function; language approaches need only update
the compiler.

Thus, we aim to answer this question of achieving portable correctness
and efficiency by building a system that uses runtime information with
a language that decides how to best perform common tasks (§5), and
evaluate its effectiveness towards the same (§6).
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3
Understanding Fsync Failures

In recent years, misunderstandings surrounding the fsync() system call
have led to data loss (§2.2.1), highlighting the need for a deeper exploration
of its failure modes and their implications.

In this chapter, we address two critical questions to improve our un-
derstanding of fsync: First, why does fsync fail, and what impact does
such a failure have on file-system state (§3.1)? Second, how do popular
data-intensive applications react when fsync fails (§3.2)?

By exploring these questions, we aim to determine whether applica-
tions can take proactive measures to handle fsync failures effectively.

This chapter is based on the paper, Can Applications Recover from fsync
Failures?, published in ACM Transactions on Storage [93].

3.1 File System Study

Our first study explores how file systems behave after reporting that an
fsync call has failed. We begin with our methodology for the study, fol-
lowed by our findings for three Linux file systems (ext4, XFS, and Btrfs).

3.1.1 Methodology

To understand how file systems should behave after reporting an fsync
failure, we begin with the available documentation. The fsync man



29

pages [36] report that fsync may fail for many reasons: the underlying
storage medium has insufficient space (ENOSPC or EDQUOT), the file
descriptor is not valid (EBADF), or the file descriptor is bound to a file
that does not support synchronization (EINVAL). Since these errors can
be discovered by validating input and metadata before initiating write
operations, we do not investigate them further.

We focus on errors that are encountered only after the file system starts
synchronizing dirty pages to disk; in this case, fsync signals an EIO error.
EIO errors are difficult to handle because the file system may have already
begun an operation (or changed state) that it may or may not be able to
revert.

To trigger EIO errors, we consider single, transient, write faults in line
with the fail-partial failure model [88, 89]. When the file system sends a
write request to the storage device, we inject a fault for a single sector or
block within the request. Specifically, we build a kernel module device-
mapper target called dm-loki that intercepts block-device requests from
the file system and fails a particular write request to a particular sector or
block while letting all other requests succeed; this allows us to observe the
impact on an unmodified file system.

3.1.1.1 Workloads

To exercise the fsync path, we create three simple workloads that are rep-
resentative of common write patterns seen in data-intensive applications.

Single Block Update (wsu): open an existing file containing three
pages (12KB) and modify the middle page. This workload resembles
many applications that modify the contents of existing files: LMDB always
modifies the first two metadata pages of its database file; PostgreSQL
stores tables as files on disk and modifies them in-place. Specifically, wsu

issues system calls in the following sequence: open, lseek(4K), write(4K),
fsync , fsync , sleep(40), close. The first fsync forces the dirty page
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to disk. While one fsync is sufficient in the absence of failures, we are
interested in the impact of fsync retries after a failure; therefore, wsu

includes a second fsync. Finally, since ext4, XFS, and Btrfs write out
metadata and checkpoint the journal periodically, wsu includes a sleep for
40 seconds.

Multi Block Append (wma): open a file in append mode and write a
page followed by an fsync; writing and fsyncing is repeated after sleeping.
This workload resembles many applications that periodically write to a
log file: Redis writes every operation that modifies its in-memory data
structures to an append only file; LevelDB, PostgreSQL, and SQLite write
to a write-ahead-log and fsync the file after the write. wma repeats these
operations after a delay to allow checkpointing to occur; this is realistic as
clients do not always write continuously and checkpointing may occur in
those gaps. Specifically, wma issues system calls in the following sequence:
open (in append mode), write(4K), fsync , sleep(40), write(4K), fsync ,
sleep(40), close.

Multi File Create (wdir): create a new file within a directory and
then fsync both the file and the directory. This workload resembles file
creation in many applications that care about durability. The ALICE
framework [82] analyzes multiple applications and lists vulnerabilities
that arise from not issuing an fsync on the parent directory after creating
and calling fsync on a file. wdir repeats these operations after a delay
to allow checkpointing to occur; a realistic scenario as applications often
create files periodically. Specifically, wdir issues system calls in the fol-
lowing sequence: open(dir), creat(file1)1, fsync(file1), fsync(dir),
sleep(40), creat(file2), fsync(file2), fsync(dir), sleep(40),
close(file1,file2,dir).

1We use the notation creat for conciseness but we actually use the open system call
with flags O_WRONLY | O_CREAT.
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3.1.1.2 dm-loki

To study file system behavior on fsync failure, we require a tool that injects
failures deterministically. For example, always failing the ith write to a
particular sector or block. Additionally, as file systems may overwrite a
block multiple times, capturing disk state before and after an experiment is
insufficient. We require the content of each read or write request. We built
dm-loki [25], a loadable kernel module device-mapper target to satisfy
both requirements.

Contrast with current fault injection device-mapper targets like dm-error
and dm-flakey [24], dm-loki can change its fault injection configuration
dynamically via messages through the dmsetup message [26] interface. A
user may start dm-loki without any failure points and then send a message
to the target to start failing certain sectors or blocks. Fault injection for a
particular block is expressed as character sequences where the index in
the sequence is incremented every time the block is written to. dm-loki
decides to fail a particular access if the character at the current index indi-
cates failure. For example, the sequence string wwxxw describes a pattern
where the first two writes succeed, the third and fourth fail, and all writes
after succeed. For a specific block or sector failure sequence, the lowercase
letters w and x at an index i decide whether the ith request is sent to the
underlying device or failed. For accesses greater than the string length,
we refer the last character to decide.

A user may also enable or disable request logging using the dmsetup
message interface. dm-loki logs all read and write requests with associ-
ated data and flags to a file. Additionally, a user may inject “tags” via
messages which are also logged. Injecting tags with a system call name
and arguments right before its invocation allows us to identify the origin of
each request. For example, all requests immediately preceded by a thirty
second sleep tag implied that the requests were generated periodically for
checkpointing.
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3.1.1.3 blockviz

File systems need not treat all block write failures equally. Data block write
failures may not be treated the same way as metadata block write failures.
Additionally, file systems may treat different types of metadata differently.
While dm-loki provides the functionality to inject a failure and log all BIO
requests, it has no file-system level context about the specific sector or
block. We build blockviz, an interactive jupyter notebook [61] widget in
python that takes BIO requests logged by dm-loki as input and enriches
them with file-system specific information. We describe blockviz’s main
features that help us in characterizing file-system behavior.

dm-loki’s ability to inject “tags” into the logs make it easier to visualize
requests with blockviz. In our workloads, before issuing a system call,
we inject a “tag” to dm-loki, specifying the system call and its arguments.
blockviz visualizes the traces with tags, making it easier to identify the
origin of every BIO request. Furthermore, as an interactive widget, clicking
a particular request provides more file system specific information. Using
a combination of existing tools such as debugfs and xfs_db, and custom
code to parse metadata blocks (such as XFS headers and Btrfs tree nodes),
blockviz provides more information about every block in the trace.

As a particular block may be read from or written to multiple times,
blockviz allows a user to compare different blocks in the trace. Since
dm-loki logs all data read or written, blockviz creates checksums of
the data for fast searches; a useful feature when trying to match content
written in a journal block to content written to a metadata block during
checkpointing. blockviz also allows metadata specific comparisons such
as highlighting differences between two inode table entries in ext4 or
identifying bitmap differences.
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Figure 3.1 shows two sample traces from blockviz for ext4 ordered
mode running wsu. We provide interpretations for these traces as they
are used frequently in our findings (§3.1.2).
Figure 3.1a can be read as follows:

1 open(/f1) triggers a read request for the root directory data block.
2 There are no BIO requests during write.
3 On fsync, the data block for /f1 is written to disk and the inode

table is journaled.
4 There are no BIO requests during the second fsync.
5 During sleep, the journaled inode table is written to its actual loca-

tion.
6 There are no BIO requests during close.

Figure 3.1b can be read as follows:

1-2 Same as Figure 3.1a.
3 On fsync, the data block write for /f1 fails and nothing is journaled.

The user is notified of the failure through a syslog entry and fsync
returns -1 with errno set to EIO.

4 The second fsync writes the inode table to the journal.
5-6 Same as Figure 3.1a.

BIO request traces from blockviz contain too much low-level infor-
mation. For instance, journaling in ext4 ordered mode involves writing
a journal descriptor block that describes the following blocks, the actual
block data to be journaled, a BIO flush request, and finally, a journal com-
mit block with the Force Unit Access (FUA) flag set. For simplicity and
conciseness, our traces in this paper do not include the flush requests and
BIO flags. For ext4 specifically, we also omit the journal descriptor and
commit blocks from the traces.
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3.1.1.4 Experiment Overview

We run the workloads on three different file systems: ext4, XFS, and
Btrfs, with default mkfs and mount options. We evaluate both ext4 with
metadata ordered journaling (data=ordered) and full data journaling
(data=journal). We use an Ubuntu OS with Linux kernel version 5.2.11.

We run mkfs on loop devices. Since our workloads are small, the loop
devices are backed by files of size 1GB (images). The images are created
using the dd if=/dev/zero command to ensure a clean initial zero state.
The 1GB size ensures that the block size of the file systems is 4KB by
default2. Since workloads wsu and wma require an existing file to operate
on, we mount the file system, create an existing file of required size, and
unmount. The images are now considered ready for the workloads.

For each file system and workload, we conduct experiments as follows:
We create a loop device (say loop0) from the prepared image using the

losetup [70] command. Then, using the dmsetup command, we setup a
device-mapper device /dev/dm/lokidev that forwards all requests to the
dm-loki target. We then run the workload with no fault points configured.

For each file system and workload, we first trace the block write access
pattern. We then repeat the workload multiple times, each time configur-
ing the fault injector to fail the ith write access to a given sector or block.
We only fail a single block or sector within the block in each iteration. We
use blockviz to analyze the traces and SystemTap [115] to examine the
state of relevant buffer heads and pages associated with data or metadata
in the file system.

2A smaller file size can change the block size to 1KB on ext4.
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3.1.1.5 Behavior Inference

We answer the following questions for each file system:
Basics of fsync Failures:

Q1 Which block (data, metadata, journal) failures lead to fsync failures?
Q2 Is metadata persisted if a data block fails?
Q3 Does the file system retry failed block writes?
Q4 Are failed data blocks marked clean or dirty in memory?
Q5 Does in-memory page content match what is on disk?

Failure Reporting:

Q6 Which future fsync will report a write failure?
Q7 Is a write failure logged in the syslog?

After Effects of fsync Failure:

Q8 Which block failures lead to file-system unavailability?
Q9 How does unavailability manifest? Does the file system shutdown,

crash, or remount in read-only mode?
Q10 Does the file suffer from holes or block overwrite failures? If so, in

which parts of a file can they occur?3

Recovery:

Q11 If there is any inconsistency introduced due to fsync failure, can fsck
detect and fix it?

3In file-system terminology, a hole is a region in a file for which there is no block
allocated. If a block is allocated but not overwritten with the new data, we consider the
file to have a non-overwritten block and suffer from block overwrite failure.
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3.1.2 Findings

We now describe our findings for the three file systems we have charac-
terized: ext4, XFS, and Btrfs. Our answers to our posed questions are
summarized in Table 3.1.

3.1.2.1 Ext4

The ext4 file system is a commonly-used journaling file system on Linux.
The two most common options when mounting this file system are
data=ordered and data=journal which enable ext4 ordered mode and ext4
data mode, respectively. Ext4 ordered mode writes metadata to the journal
whereas ext4 data mode writes both data and metadata to the journal.
Ext4 ordered mode: We give an overview of ext4 ordered mode by de-
scribing how it behaves for our three representative workloads when no
failures occur.

Single Block Update (wsu). When no fault is injected and fsync is
successful, ext4 ordered mode behaves as follows. During the write (Step
1), ext4 updates the page in the page cache with the new contents and
marks the page dirty. On fsync, the page is written to a data block; after
the data-block write completes successfully, the metadata (i.e., the inode
with a new modification time) is written to the journal, and fsync returns 0
indicating success (Step 2). After the fsync, the dirty page is marked clean
and contains the newly written data. On the second fsync, as there are no
dirty pages, no block writes occur, and as there are no errors, fsync returns
0 (Step 3). During sleep, the metadata in the journal is checkpointed to
its final in-place block location (Step 4). No writes or changes in page
state occur during the close (Step 5). The trace for this experiment can
be seen in Figure 3.2a.

If fsync fails (i.e., returns -1 with errno set to EIO), a variety of write
problems could have occurred. For example, the data-block write could
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1 2 3 4 5

O/f1 Dir/ W F D/f1 JIT F S IT Ca)

Dir/O/f1 W F D/f1
EIO

SYS

F JIT S IT Cb)

O/f1 Dir/ W F D/f1 JIT
EIO

SYS
ReadOnly
Journalc)

Figure 3.2: Blockviz traces for wsu on ext4 ordered mode:
The figure shows three traces corresponding to different fault injection
configurations of dm-loki.

a) when no faults are injected: open(/f1) triggers a read request for the
directory data block /. On fsync, the data block for /f1 is written to
disk and the Inode Table (IT) is written to the Journal (JIT). During
sleep, the Inode Table is checkpointed.

b) dm-loki configured to fail the data block write: On data block write
failure, the error is logged to syslog (ISYS) and fsync fails with
errno=EIO (IEIO).

c) dm-loki configured to fail the journal block write: On journal block
write failure, in addition to the syslog and EIO notifications, ext4
aborts the journal (qJournal) and remounts in read-only mode
(ºReadOnly).

The figure is also annotated with steps (the first horizontal row with lines
and numbers) that are referred to in the main text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

have failed (trace in Figure 3.2b); if this happens, ext4 does not write the
metadata to the journal. However, the updated page is still marked clean
and contains the newly written data from Step 1, causing a discrepancy
with the contents on disk. Furthermore, even though the inode table was
not written to the journal at the time of the data fault, the inode table
containing the updated modification time is written to the journal on the
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second fsync in Step 3. Steps 4 and 5 are the same as above, and thus the
inode table is checkpointed.

Thus, applications that read this data block while the page remains
in the page cache (i.e., the page has not been evicted and the OS has not
been rebooted) will see the new contents of the data; however, when the
page is no longer in memory and must be read from disk, applications
will see the old contents.

Alternatively, if fsync failed, it could be because a write to one of
the journal blocks failed (trace in Figure 3.2c). In this case, ext4 aborts
the journal transaction and remounts the file system in read-only mode,
causing all future writes to fail.

Multi Block Append (wma). This next workload exercises additional
cases in the fsync error path. If there are no errors and all fsyncs are
successful (trace in Figure 3.3a), the multi-block append workload on
ext4 behaves as follows. First, during write, ext4 creates a new page
with the new contents and marks it dirty (Step 1). On fsync, the page
is written to a newly allocated on-disk data block; after the data-block
write completes successfully, the relevant metadata (i.e., both the inode
table and the block bitmap) are written to the journal, and fsync returns
success (Step 2). As in wsu, the page is marked clean and contains the
newly written data. During sleep, the metadata is checkpointed to disk
(Step 3); specifically, the inode contains the new modification time and a
link to the newly allocated block, and the block bitmap now indicates that
the newly allocated block is in use. The pattern is repeated for the second
write (Step 4), fsync (Step 5), and sleep (Step 6). As in wsu, there are
no write requests or changes in page state during close (Step 7).

An fsync failure could again indicate numerous problems. First, a
write to a data block could have failed in Step 2 (trace in Figure 3.3b). If this
is the case, the fsync fails and the page is marked clean; as in wsu, the page
cache contains the newly written data, differing from the on-disk block
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that contains the original block contents. The inode table and block bitmap
are first journaled and then written to disk in Step 3; thus, even though
the data itself has not been written, the inode is modified to reference
this block and the corresponding bit is set in the block bitmap. When
the workload writes another 4KB of data in Step 4, this write continues
oblivious of the previous fault and Steps 5, 6, and 7 proceed as usual.

Thus, with a data-block failure, the on-disk file contains a non-overwritten
block where it was supposed to contain the data from Step 1. A similar
possibility is that the write to a data block in Step 5 fails; in this case, the
file has a non-overwritten block at the end instead of somewhere in the
middle. Again, an application that reads any of these failed data blocks
while they remain in the page cache will see the newly appended contents;
however, when any of those pages are no longer in memory and must be
read from disk, applications will read the original block contents.

An fsync failure could also indicate that a write to a journal-block
failed. In this case, as in wsu, the fsync returns an error and the following
write fails since ext4 has been remounted in read-only mode.

Because this workload contains an fsync after the metadata has been
checkpointed in Step 3, it also illustrates the impact of faults when check-
pointing the inode table and block bitmap. We find that ext4 reacts differ-
ently to block bitmap and inode table write failures (traces in Figure 3.3 c
and d). In both cases, the failure is only logged to syslog, checkpointing
proceeds to write other metadata, and the following fsync does not return
an error. However, when ext4 fails to write the block bitmap, it marks
the associated buffer head !uptodate, indicating that a future read must
first retrieve the on-disk contents. On fsync in Step 5 (or write in Step
4 if there is no delayed allocation), ext4 must query the block bitmap
to allocate a new block, reloading the stale on-disk block bitmap. With
no more write failures, the fsync in Step 5 succeeds and checkpointing
proceeds to write the new block bitmap - a version where only the bit for
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the second block in the file is set. The filesystem is now in an inconsistent
state, with an inode pointing to a block whose bit is not set in the bitmap.
While fsck can fix this inconsistency, it has to run in force mode (fsck
-f) as ext4 incorrectly marks the filesystem clean on unmount.

We do not observe such inconsistencies with inode table write failures
as ext4 ignores the !uptodate flag on inode table buffer heads. Despite
being !uptodate, ext4 continues to read and write to the latest in-memory
inode table. Future successful writes to the on-disk inode table are guar-
anteed to have all the changes.

We note that for none of these fsync and metadata checkpoint failures
does ext4 ordered mode recommend running the file system checker;
furthermore, running the checker does not identify or repair any of the
preceding problems. Finally, future calls to fsync never retry previous
data writes that may have failed; neither are failed metadata writes during
checkpointing. These results for ext4 ordered mode are all summarized in
Table 3.1.

The ext4 file system also offers functionality to abort the journal if
an error occurs in a file data buffer (mount option data_err=abort) and
remount the file system in read-only mode on an error (mount option
errors=remount-ro). However, we observe that the results are identical
with and without the mount options. 4

Multi File Create (wdir). While wsu and wma address data-block,
inode-table, and data-block-bitmap failures, wdir exercises failures related
to directory data blocks and inode bitmap blocks (trace in Figure 3.4a).
If there are no errors and all fsyncs are successful, the multi-file create
workload on ext4 behaves as follows. First, during open(dir), the direc-
tory data block is read from disk if not already cached (Step 1). Next, on
creat(file1), to allocate a new inode, ext4 reads the corresponding inode
bitmap block from disk if not already cached (Step 2). Ext4 proceeds to

4We verified our observations by reproducing them using standard Linux tools and
have filed a bug report for the same [80].
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modify the following data structures and marks them dirty: inode bitmap
for file1’s inode, inode table entry for file1 and dir, dir’s directory data
block that contains file1’s name-to-inode mapping. On fsync(file1),
the dirtied metadata is written to the journal and fsync(file1) returns
success (Step 3). Ext4 treats directory data blocks as metadata, so unlike
wsu and wma, this workload does not write data blocks to disk during
an fsync. On fsync(dir), we observe no read or write requests as dir is
already synced during fsync(file1) (Step 4). During sleep, the meta-
data is checkpointed to disk (Step 5); specifically, the inode bitmap has a
previously cleared bit set, the inode table entry for the directory has a new
modification time and updated size, the inode table entry for the file is
initialized, and the directory data block has a new name-to-inode mapping.
The pattern is repeated for creat(file2) (Step 6), fsync(file2) (Step
7), fsync(dir), and sleep. As in the previous two workloads, we observe
no bio requests during close.

As fsync in Step 3 and Step 7 only involve journal-block writes, similar
to wsu and wma, a block write failure during fsync in wdir will always
return an error and trigger a remount in read-only mode.

Because this workload contains a sleep in Step 5, it also illustrates the
impact of faults when checkpointing the inode table, inode bitmap, and
directory data block. Inode table failures behave exactly as described for
wma. Similar to block bitmap write failures, inode bitmap and directory
data block write failures both mark the associated buffer heads !uptodate
and trigger a read of the stale on-disk version during creat(file2) in
Step 6. However, directory data block failures are problematic while inode
bitmap failures are benign.

We find that files may disappear from directories even while the file
system is running. After a directory data block write failure during check-
pointing (trace in Figure 3.4b), because of the !uptodate flag, ext4 reads
and modifies a stale version during create(file2); the in-memory name-
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to-inode mapping for file1 is lost and the inode for file1 is an orphaned
inode5. Future calls to readdir(dir) either directly or through the ls com-
mand will not contain file1. Although ext4 does not prompt us to run a
checker, running fsck -f can detect orphaned inodes and place them in
the lost+found directory. However, applications that encode information
in the filename still suffer data loss.

Since ext4 must refer to both the inode bitmap and inode table when
allocating a new inode, it detects the inconsistency and fails the system
call. Additionally, to prevent further errors on creat, ext4 locks the entire
group described by the inode bitmap and recommends running fsck to
set the bit and unlock the group. This trace can be found in Figure 3.4c.
Ext4 Data Mode: Ext4 data mode differs from ordered mode in that data
blocks are first written to the journal and then later checkpointed to their
final in-place block locations.

As shown in Table 3.1, the behavior of fsync in ext4 data mode is
similar to that in ext4 ordered mode for most cases: for example, on a
write error, pages may be marked clean even if they were not written out
to disk, the file system is remounted in read-only mode on journal failures,
meta-data failures are not reported by fsync, and files can end up with
non-overwritten blocks in the middle or end.

However, the behavior of ext4 data mode differs in one important
scenario. Because data blocks are first written to the journal and later to
their actual block locations during checkpointing, the first fsync after a
write may succeed even if a data block will not be successfully written to
its permanent in-place location. As a result, a data-block fault causes the
second fsync to fail instead of the first; in other words, the error reporting
by fsync is delayed due to a failed intention [48]. This trace can be seen in
Figure 3.5.

5Orphaned inodes are inodes that can never be accessed as no directory points to
them.
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3.1.2.2 XFS

XFS is a journaling file system that uses B-trees. Instead of performing
physical journaling like ext4, XFS journals logical entries for changes in
metadata.

Figure 3.6a shows a trace of XFS without any failures for wsu. As shown
in Table 3.1, from the perspective of error reporting and fsync behavior,
XFS is similar to that of ext4 ordered mode. Specifically, failing to write
data blocks (trace in Figure 3.6b) leads to fsync failure and the faulty data
pages are marked clean even though they contain new data that has not
been propagated to disk; as a result, applications that read this faulty data
will see the new data only until the page has been evicted from the page
cache. Similarly, failing to write a journal block will cause fsync failure
(trace in Figure 3.6c), while failing to write a metadata block will not. XFS
remains available for reads and writes after data-block faults.

XFS handles fsync failures in a few ways that are different than ext4
ordered mode. First, on a journal-block fault, XFS shuts down the file
system entirely (Figure 3.6c) instead of merely remounting in read-only
mode; thus, all subsequent read and write operations fail. Second, XFS
retries metadata writes when it encounters a fault during checkpointing;
the retry limit is determined by a value in
/sys/fs/xfs/*/error/metadata/*/max_retries; its value is infinite by
default. If the retry limit is exceeded, XFS again shuts down the file system.
We provide traces for wma in Figure 3.7 to highlight the retries.

The multi-block append workload illustrates how XFS handles meta-
data when writes to related data blocks fail. If the write to the first data
block fails, XFS writes no metadata to the journal and fails the fsync im-
mediately. When later data blocks are successfully appended to this file,
the metadata is updated which creates a non-overwritten block in the
file corresponding to the first write. However, if no new data blocks are
successfully appended, the on-disk metadata is not updated to reflect
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O/f1 IN W F D/f1 J F S IN Ca)

O/f1 IN W F D/f1
EIO

SYS

F J S IN Cb)

O/f1 IN W F D/f1 J EIO

SYS
XFSc)

Figure 3.6: Blockviz traces for wsu on XFS:
The figure shows three traces corresponding to different fault injection
configurations of dm-loki.

a) when no faults are injected: On open, XFS reads inode information from
disk if not already cached (IN); it includes directory entries. On fsync,
like ext4, XFS writes the data block and then journals metadata related
to the changes. During a checkpoint, the inode information (IN) with
updated mtime is written to disk.

b) dm-loki configured to fail the data block write: XFS immediately fails
the fsync after a data block failure. However, the updated mtime is
journaled in the second fsync and checkpointed during the sleep.

c) dm-loki configured to fail the journal block write: On journal block
failure, XFS fails the fsync and shuts down the file system ( XFS).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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any of these last writes (i.e., the size of the file is not increased). 6 Thus,
while in ext4 a failed write always causes a non-overwritten block, in XFS,
non-overwritten blocks cannot exist at the end of a file. However, for either
file system, if the failed blocks remain in the page cache, applications can
read those blocks regardless of whether they are in the middle or the end
of a file.

During checkpointing, since XFS either shuts down or retries writes on
metadata failures, we do not observe the same inconsistencies as described
for ext4 when running the multi-file create workload wdir.

3.1.2.3 Btrfs

Btrfs is a copy-on-write file system that avoids writing to the same block
twice except for the superblock which contains root-node information.
Figure 3.8a provides a trace of wsu without any failures along with a
description of Btrfs’s data structures. At a high level, some of the actions
in Btrfs are similar to those in a journaling file system: instead of writing
to a journal, Btrfs writes to a log tree to record changes when an fsync is
performed; instead of checkpointing to fixed in-place locations, Btrfs writes
to new locations and updates the roots in its superblock. However, since
Btrfs is based on copy-on-write, it has a number of interesting differences
in how it handles fsync failures compared to ext4 and XFS, as shown in
Table 3.1.

Like ext4 ordered mode and XFS, Btrfs fails fsync when it encounters
data-block faults (trace in Figure 3.8b). However, unlike ext4 and XFS,
Btrfs effectively reverts the contents of the data block (and any related
metadata) back to its old state (and marks the page clean). Thus, if an
application reads the data after this failure, it will never see the failed

6To be precise, the mtime and ctime of the file are updated, but not the size of the file.
Additional experiments removed for space confirm this behavior.



52

operation as a temporary state. As in the other file systems, Btrfs remains
available after this data-block fault.

Similar to faults to the journal in the other file systems, faults to Btrfs’s
log tree can result in a failed fsync and a remount in read-only mode.
However, as seen in Figure 3.8c, Btrfs can recover from log-tree failures by
attempting a full-tree commit immediately after the failure (as opposed
to periodically during checkpointing). If the full-tree commit succeeds,
Btrfs ignores the log-tree failure and returns success for fsync. However,
if there were another failure during the full-tree commit, Btrfs would
fail the fsync and remount in read-only mode. As Btrfs also performs a
full-tree commit periodically during checkpointing, unlike ext4 and XFS,
faults during checkpointing (trace in Figure 3.8d) result in a remount in
read-only mode.

The multi-block append workload illustrates interesting behavior in
Btrfs block allocation. If the first append fails, the state of the file system,
including the B-tree that tracks all free blocks, is reverted. However, the
next append will continue to write at the (incorrectly) updated offset
stored in the file descriptor, creating a hole in the file. Since the state of
the B-tree was reverted, the deterministic block allocator will choose to
allocate the same block again for the next append operation. Thus, if the
fault to that particular block was transient, the next write and fsync will
succeed and there will simply be a one block hole in the file. If the fault
to that particular block occurs multiple times, future writes will continue
to fail; as a result, Btrfs may cause more holes within a file than ext4 and
XFS. However, unlike ext4 and XFS, the file does not have block overwrite
failures.

During checkpointing, since Btrfs remounts in read-only mode on
metadata write failures, we do not observe the same inconsistencies as
described for ext4 when running the multi-file create workload wdir.
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O/f1 W F D/f1 LT SB F S FTC SB Ca)

O/f1 W F D/f1
EIO

SYS

F S FTC SB Cb)

O/f1 W F D/f1 LT SYS FTC SB F S Cc)

O/f1 W F D/f1 LT SB F S FTC SYS

ReadOnly
d)

Figure 3.8: Blockviz traces for wsu on btrfs:
The figure shows four traces corresponding to different fault injection configurations of
dm-loki.
a) when no faults are injected: In a copy-on-write file system like btrfs, any modification

to data or metadata involves creating a copy of the modified nodes in the tree. To
avoid too much redundant I/O by forcing repeated copy-on-write for modified parts
of the trees, Btrfs journals fsync-triggered copy-on-writes to a log tree (LT). The super
block (SB) is also updated as it contains a reference to the updated log tree root.
During sleep, btrfs checkpoints state by performing a full tree commit (FTC) which
involves writing all modified trees and deleting items from the log tree, followed by a
write to the superblock which contains references to all the tree roots.

b) dm-loki configured to fail the data block write: On data block failure, btrfs fails the
fsync and reverts state. Unlike ext4 and XFS, we observe no write requests during
the second fsync. However, the modification and reversal trigger an unnecessary full
tree commit during sleep.

c) dm-loki configured to fail a block write in the log tree: When btrfs encounters a log
tree write failure, it logs the error to syslog and starts a full tree commit. Since we
only fail one particular block, the full tree commit succeeds and fsync does not fail.
As there are no changes after the last full tree commit, there are no write requests
during sleep.

d) dm-loki configured to fail a block write during a full tree commit: If btrfs encounters
a write failure during a full tree commit, it logs the error to syslog and remounts in
read-only mode (ºReadOnly). We observe this behavior for any full tree commit,
both periodically (in wsu, wma, wdir during sleep) and triggered on log tree failures
as seen in subfigure c. When triggered due to log tree failures, the fsync fails with
errno set to EIO.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3.1.2.4 File System Summary

We now present a set of observations for the file systems based on the
questions from Section §3.1.1.5.

File System Behavior to fsync Failures. On all the three file systems,
only data and journal-block failures lead to fsync failures (Q1). Metadata-
block failures do not result in fsync failures as metadata blocks are written
to the journal during an fsync. However, during a checkpoint, any meta-
data failure on XFS and Btrfs lead to unavailability (Q8) while ext4 logs
the error and continues.7

On both modes of ext4 and XFS, metadata is persisted even after the
file system encounters a data-block failure (Q2); timestamps are always
updated in both file systems. Additionally, ext4 appends a new block to
the file and updates the file size while XFS does so only when followed by
a future successful fsync. As a result, we find non-overwritten blocks in
both the middle and end of files for ext4, but in only the middle for XFS
(Q10). Btrfs does not persist metadata after a data-block failure. However,
because the process file-descriptor offset is incremented, future writes
and fsyncs cause a hole in the middle of the file (Q10).

Among the three, XFS is the only file system that retries metadata-block
writes. However, none of them retry data or journal-block writes (Q3).

All the file systems mark the page clean even after fsync fails (Q4). In
both modes of ext4 and XFS, the page contains the latest write while Btrfs
reverts the in-memory state to be consistent with what is on disk (Q5).

We note that even though all the file systems mark the page clean, this
is not due to any behavior inherited from the VFS layer. Each file sys-
tem registers its own handlers to write pages to disk (ext4_writepages,
xfs_vm_writepages, and btrfs_writepages). However, each of these han-
dlers call clear_page_dirty_for_io before submitting the bio request and

7Ext4’s error handling behavior for metadata has unintended side-effects but we omit
the results as the rest of the paper focuses on data-block failures.
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do not set the dirty bit in case of failure in order to avoid memory leaks8,
replicating the problem independently.

Failure Reporting. While all file systems report data-block failures by
failing fsync, ext4 ordered mode, XFS, and Btrfs fail the immediate fsync.
As ext4 data mode puts data in the journal, the first fsync succeeds and
the next fsync fails. (Q6). All block write failures, irrespective of block
type are logged in the syslog (Q7).

After Effects. Journal block failures always lead to file-system unavail-
ability. On XFS and Btrfs, metadata-block failures do so as well (Q8).
While ext4 and Btrfs remount in read-only mode, XFS shuts down the file
system (Q9). Holes and non-overwritten blocks (Q10) have been covered
previously as part of Q2.

Recovery. None of the file systems alert the user to run a file-system
checker. However, as Btrfs records intentionally created holes as zero-
byte extents, holes created through fsync failures (as seen in wma) can be
detected by btrfsck due to missing zero-byte extent information (Q11).

While file systems may differ in how they handle failures, it is important
that they all have bit-to-state consistency. If the content in memory does not
match the disk, then the dirty bit must be set. Additionally, if a file system
acknowledges that data is committed with a successful return code, it must
never change that decision with a later operation (e.g., checkpointing).

3.2 Application Study

We now focus on how applications are affected by fsync failures. In this
section, we first describe our fault model with CuttleFS, followed by a
description of the workloads, execution environment, and the errors we

8Ext4 focuses on the common case of users removing USB sticks while still in use.
Dirty pages that can never be written to the removed USB stick have to be marked clean
to unmount the file system and reclaim memory [23].
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look for. Then, we present our findings for five widely used applications:
Redis (v5.0.7), LMDB (v0.9.24), LevelDB (v1.22), SQLite (v3.30.1), and
PostgreSQL (v12.0).

3.2.1 CuttleFS

We limit our study to how applications are affected by data-block failures
as journal-block failures lead to unavailability and metadata-block failures
do not result in fsync failures (§3.1.2). Our fault model is simple: when
an application writes data, we inject a single fault to a data block or a
sector within it.

We build CuttleFS9 [20] - a FUSE [53] file system to emulate the differ-
ent file-system reactions to failures defined by our fault model. Instead of
using the kernel’s page cache, CuttleFS maintains its own page cache in
user-space memory. Write operations modify user-space pages and mark
them dirty while read operations serve data from these pages. When an
application issues an fsync system call, CuttleFS synchronizes data with
the underlying file system.

CuttleFS has two modes of operation: trace mode and fault mode.
In trace mode, CuttleFS tracks writes and identifies which blocks are
eventually written to disk. This is different from just tracing a write system
call as an application may write to a specific portion of a file multiple times
before it is actually flushed to disk.

In fail mode, CuttleFS can be configured to fail the ith write to a sector
or block associated with a particular file. On fsync failure, as CuttleFS uses
in-memory buffers, it can be directed to mark a page clean or dirty, keep
the latest content, or revert the file to the previous state. Error reporting
behavior can be configured to report failures immediately or on the next

9Cuttlefish are sometimes referred to as the “chameleons of the sea” because of their
ability to rapidly alter their skin color within a second. CuttleFS can change characteristics
much faster.
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fsync call. In short, CuttleFS can react to fsync failures in any of the ways
mentioned in Table 3.1 (Q4,5,6). Additionally, CuttleFS accepts commands
to evict all or specific clean pages.

We configure CuttleFS to emulate the failure reactions of the file sys-
tems studied in Section 3.1.2. For example, in order to emulate ext4 ordered
mode and XFS (as they both have similar failure reactions), we configure
CuttleFS to mark the page clean, keep the latest content, and report the
error immediately. Henceforth, when presenting our findings and refer-
ring to characteristics emulated by CuttleFS, we use CuttleFSext4o,xfs for
the above configuration. When the page is marked clean, has the latest
content, but the error is reported on the next fsync, we use CuttleFSext4d.
When the page is marked clean, the content matches what is on disk, and
the error is reported immediately, we refer to it as CuttleFSbtrfs.

3.2.2 Workloads and Execution Environment

We run CuttleFS in trace mode and identify which blocks are written to
by an application. For each application, we choose a simple workload
that inserts a single key-value pair, a commonly used operation in many
applications. We perform experiments both with an existing key (update)
as well as a new key (insert). The keys can be of size 2B or 1KB.10 The values
can be of size 2B or 12KB. We run experiments for all four combinations.
The large keys allow for the possibility of failing a single sector within the
key and large values for pages within a value. Since SQLite and PostgreSQL
are relational database management systems, we create a single table with
two columns: keys and values.

Using the trace, we generate multiple failure sequences for each of the
identified blocks and sectors within them. We then repeat the experiment
multiple times with CuttleFS in fault mode, each time with a different

10As LMDB limits key sizes to 511B, we use key sizes of 2B and 511B for LMDB
experiments.
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failure sequence and file-system reaction. In order to observe the effects
after a fault, we dump all key-value pairs before and after the workload.

We look for the following types of errors when performing the experi-
ments:

• OldValue (OV): The system returns the new value for a while but then
reverts to an old value, or the system conveys a successful response but
returns the old value later on.

• FalseFailure (FF): The system informs the user that the operation failed
but returns the new value in the future.

• KeyCorruptions (KC) and ValueCorruptions (VC): Corrupted keys
or values are obliviously returned.

• KeyNotFound (KNF): The system informs the user that it has success-
fully inserted a key but it cannot be found later on, or the system fails
to update a key to a new value but the old key-value pair disappears as
well.

We also identify the factors within the execution environment that
cause all these errors to be manifested. If an application maintains its
own in-memory data structures, some errors may occur only when an
application restarts and rebuilds in-memory state from the file system. Al-
ternatively, the manifestation of these errors may depend on state changes
external to the application, such as a single page eviction or a full page
cache flush. We encode these different scenarios as:

• App=KeepGoing: The application continues without restarting.

• App=Restart: The application restarts either after a crash or a graceful
shutdown. This forces the application to rebuild in-memory state from
disk.
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• BufferCache=Keep: No evictions take place.

• BufferCache=Evict: One or more clean pages are evicted.

Note that BufferCache=Evict can manifest by clearing the entire page
cache, restarting the file system, or just evicting clean pages due to memory
pressure. A full system restart would be the combination of App=Restart
and BufferCache=Evict, which causes a loss of both clean and dirty pages
in memory while also forcing the application to restart and rebuild state
from disk.

Configuring CuttleFS to fail a certain block and react according to
one of the file-system reactions while the application runs only addresses
App=KeepGoing and BufferCache=Keep. The remaining three scenarios
are addressed as follows. To simulate App=Restart and BufferCache=Keep,
we restart the application and dump all key-value pairs, ensuring that
no page in CuttleFS is evicted. To address the remaining two scenarios,
we instruct CuttleFS to evict clean pages for both App=KeepGoing and
App=Restart.

3.2.3 Findings

We configured all five applications to run in the form that offers most dura-
bility and describe them in their respective sections. Table 3.2 summarizes
the per-application results across different failure characteristics.

Note that these results are only for the simple workload that inserts
a single key-value pair. A complex workload may exhibit more errors or
mask the ones we observe.

Redis: Redis is an in-memory data-structure store, used as a database,
cache, and message broker. By default, it periodically snapshots in-memory
state to disk. However, for better durability guarantees, it provides options
for writing every operation that modifies the store to an append-only file
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(aof) [95] and how often to fsync the aof. In the event of a crash or restart,
Redis rebuilds in-memory state by reading the contents of the aof.

We configure Redis to fsync the file for every operation, providing
strong durability. Thus, whenever Redis receives a request like an insert
operation that modifies state, it writes the request to the aof and calls
fsync. However, Redis trusts the file system to successfully persist the
data and does not check the fsync return code. Regardless of whether
fsync fails or not, Redis returns a successful response to the client.

As Redis returns a successful response to the client irrespective of fsync
failure, FalseFailures do not occur. Since Redis reads from disk only when
rebuilding in-memory state, errors may occur only during App=Restart.

On CuttleFSext4o,xfs and CuttleFSext4d, Redis exhibits OldValue, KeyCor-
ruption, ValueCorruption, and KeyNotFound errors. However, as seen in
Table 3.2, these errors occur only on BufferCache=Evict and App=Restart.
On BufferCache=Keep, the page contains the latest write which allows
Redis to rebuild the latest state. However, when the page is evicted, future
reads will force a read from disk, causing Redis to read whatever is on that
block. OldValue and KeyNotFound errors manifest when a fault corrupts
the aof format. When Redis restarts, it either ignores these entries when
scanning the aof, or recommends running the aof checker which truncates
the file to the last non-corrupted entry. A KeyCorruption and ValueCor-
ruption manifest when the fault is within the key or value portion of the
entry.

On CuttleFSbtrfs, Redis exhibits OldValue and KeyNotFound errors.
These errors occur on App=Restart, regardless of buffer-cache state. When
Redis restarts, the entries are missing from the aof as the file was reverted,
and thus, the insert or update operation is not applied.

LMDB: Lightning Memory-Mapped Database (LMDB) is an embedded
key-value store which uses B+Tree data structures whose nodes reside
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in a single file. The first two pages of the file are metadata pages, each of
which contain a transaction ID and the location of the root node. Readers
always use the metadata page with the latest transaction ID while writers
make changes and update the older metadata page.

LMDB uses a copy-on-write bottom-up strategy [69] for committing
write transactions. All new nodes from leaf to root are written to unused
or new pages in the file, followed by an fsync. An fsync failure terminates
the operation without updating the metadata page and notifies the user.
If fsync succeeds, LMDB proceeds to update the old metadata page with
the new root location and transaction ID, followed by another fsync.11 If
fsync fails, LMDB writes an old transaction ID to the metadata page in
memory, preventing future readers from reading it.

On CuttleFSext4o,xfs, LMDB exhibits FalseFailures. When LMDB writes
the metadata page, it only cares about the transaction ID and new root
location, both of which are contained in a single sector. Thus, even though
the sector is persisted to disk, failures in the seven other sectors of the
metadata page can cause an fsync failure.12 As mentioned earlier, LMDB
writes an old transaction ID (say ID1) to the metadata page in memory
and reports a failure to the user. However, on BufferCache=Evict and
App=Restart (such as a machine crash and restart), ID1 is lost as it was
only written to memory and not persisted. Thus, readers read from the
latest transaction ID which is the previously failed transaction.

LMDB does not exhibit FalseFailures in CuttleFSext4d as the imme-
diate successful fsync results in a success to the client. Instead, Val-
ueCorruptions and OldValue errors occur on BufferCache=Evict, regard-
less of whether the application restarts or not. ValueCorruptions oc-
cur when a block containing a part of the value experiences a fault. As

11To be precise, LMDB does not do a write followed by an fsync for metadata page
updates. Instead, it uses a file descriptor that is opened in O_SYNC mode. On a write,
only the metadata page is flushed to disk. On failure, it uses a normal file descriptor.

12CuttleFS can fail the ith write to a sector or block(§3.2.1). We observed FalseFailures
in LMDB when CuttleFS was configured to fail writes to sectors in the metadata pages.
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LMDB mmaps() the file and reads directly from the page cache, Buffer-
Cache=Evict such as a page eviction leads to reading the value of the
faulted block from disk. OldVersion errors occur when the metadata page
experiences a fault. The file system responds with a successful fsync
initially (as data is successfully stored in the ext4 journal). For a short
time, the metadata page has the latest transaction ID. However, when the
page is evicted, the metadata page reverts to the old transaction ID on
disk, resulting in readers reading the old value. KeyCorruptions do not
occur as the maximum allowed key size is 511B.

As CuttleFSbtrfs reports errors immediately, it does not face the prob-
lems seen in CuttleFSext4d. FalseFailures do not occur as the file is reverted
to its previous consistent state. We observe this same pattern in many
of the applications and omit them from the rest of the discussion unless
relevant.

LevelDB: LevelDB is a widely used key-value store based on LSM trees.
It stores data internally using MemTables and SSTables [33]. Additionally,
LevelDB writes operations to a log file before updating the MemTable.
When a MemTable reaches a certain size, it becomes immutable and is
written to a new file as an SSTable. SSTables are always created and never
modified in place. On a restart, if a log file exists, LevelDB creates an
SSTable from its contents.

We configure LevelDB to fsync the log after every write, for stronger
durability guarantees. If fsync fails, the MemTable is not updated and the
user is notified about the failure. If fsync fails during SSTable creation,
the operation is cancelled and the SSTable is left unused.

On CuttleFSext4o,xfs, as seen in Table 3.2, LevelDB exhibits FalseFailures
only on App=Restart with BufferCache=Keep. When LevelDB is notified
of fsync failure to the log file, the user is notified of the failure. However,
on restart, since the log entry is in the page cache, LevelDB includes it
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while creating an SSTable from the log file. Read operations from this
point forward return the new value, reflecting FalseFailures. FalseFailures
do not occur on BufferCache=Evict as LevelDB is able to detect invalid
entries through CRC checksums [33]. Faults in the SSTable are detected
immediately and do not cause any errors as the newly generated SSTable
is not used by LevelDB in case of a failure.

On CuttleFSext4d, LevelDB exhibits KeyNotFound and OldVersion er-
rors when faults occur in the log file. When inserting a key-value pair,
fsync returns successfully, allowing future read operations to return the
new value. However, on BufferCache=Evict and App=Restart, LevelDB
rejects the corrupted log entry and returns the old value for future read
operations. Depending on whether we insert a new or existing key, we
observe KeyNotFound or OldVersion errors when the log entry is re-
jected. Additionally, LevelDB exhibits KeyCorruption, ValueCorruption,
and KeyNotFound errors for faults that occur in the SSTables. Ext4 data
mode may only place the data in the journal and return a successful fsync.
Later, during checkpointing, the SSTable is corrupted due to the fault.
These errors manifest only on BufferCache=Evict, either while the appli-
cation is running or on restart, depending on when the SSTable is read
from disk.

SQLite: SQLite is an embedded RDBMS that uses BTree data structures.
A separate BTree is used for each table and index but all BTrees are stored
in a single file on disk, called the “main database file” (maindb). During a
transaction, SQLite stores additional information in a second file called the
“rollback journal” (rj) or the “write-ahead log” (wal) depending on which
mode it is operating in. In the event of a crash or restart, SQLite uses these
files to ensure that committed or rolled-back transactions are reflected
in the maindb. Once a transaction completes, these files are deleted. We
perform experiments for both modes.
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SQLite RollBack: In rollback journal mode, before SQLite modifies
its user-space buffers, it writes the original contents to the rj. On commit,
the rj is fsyncd. If it succeeds, SQLite writes a header to the rj and fsyncs
again (2 fsyncs on the rj). If a fault occurs at this point, only the state in
the user-space buffers need to be reverted. If not, SQLite proceeds to write
to the maindb so that it reflects the state of the user-space buffers. maindb is
then fsyncd. If the fsync fails, SQLite needs to rewrite the old contents to
the maindb from the rj and revert the state in its user-space buffers. After
reverting the contents, the rj is deleted.

On CuttleFSext4o,xfs, SQLite Rollback exhibits FalseFailures and Val-
ueCorruptions on BufferCache=Evict, regardless of whether the applica-
tion restarts or not. When faults occur in the rj, SQLite chooses to revert
in-memory state using the rj itself as it contains just enough information for
a rollback of the user-space buffers. This approach works well as long as
the latest contents are in the page cache. However, on BufferCache=Evict,
when SQLite reads the rj to rollback in-memory state, the rj does not
contain the latest write. As a result, SQLite’s user-space buffers can still
have the new contents (FalseFailure) or a corrupted value, depending on
where the fault occurs.

SQLite Rollback exhibits FalseFailures in CuttleFSext4d for the same
reasons mentioned above as the fsync failure is caught on the second
fsync to the rj. Additionally, due to the late error reporting in CuttleFSext4d,
SQLite Rollback exhibits ValueCorruption and KeyNotFound errors when
faults occur in the maindb. SQLite sees a successful fsync after writing
data to the maindb and proceeds to delete the rj. However, on App=Restart
and BufferCache=Evict, the above mentioned errors manifest depending
on where the fault occurs.

On CuttleFSbtrfs, SQLite Rollback exhibits FalseFailures for the same
reasons mentioned above. However, they occur irrespective of whether
buffer-cache state changes due to the fact that the contents in the rj are
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reverted. As there is no data in the rj to recover from, SQLite leaves
the user-space buffers untouched. ValueCorruptions cannot occur as no
attempt is made to revert the in-memory content.

SQLite WAL: Unlike SQLite Rollback, changes are written to a write-
ahead log (wal) on a transaction commit. SQLite calls fsync on the wal and
proceeds to change in-memory state. If fsync fails, SQLite immediately
returns a failure to the user. If SQLite has to restart, it rebuilds state from
the maindb first and then changes state according to the entries in the wal.
To ensure that the wal does not grow too large, SQLite periodically runs a
Checkpoint Operation to modify maindb with the contents from the wal.

On CuttleFSext4o,xfs, as seen in Table 3.2, SQLite WAL exhibits FalseFail-
ures only on App=Restart with BufferCache=Keep, for reasons similar to
LevelDB. It reads valid log entries from the page cache even though they
might be invalid due to faults on disk.

On CuttleFSext4d, SQLite WAL exhibits ValueCorruption and KeyNot-
Found Errors when there are faults in the maindb during a Checkpoint
Operation for the same reasons mentioned in SQLite Rollback.

PostgreSQL: PostgreSQL is an object-relational database system that
maintains one file per database table. On startup, it reads the on-disk tables
and populates user-space buffers. Similar to SQLite WAL, PostgreSQL
reads entries from the write-ahead log (wal) and modifies user-space
buffers accordingly. Similar to SQLite WAL, PostgreSQL runs a checkpoint
operation, ensuring that the wal does not grow too large. We evaluate two
configurations of PostgreSQL: the default configuration and a DirectIO
configuration.

PostgreSQL Default: In the default mode, PostgreSQL treats the wal
like any other file, using the page cache for reads and writes. PostgreSQL
notifies the user of a successful commit operation only after an fsync on the
wal succeeds. During a checkpoint, PostgreSQL writes data from its user-
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space buffers into the table and calls fsync. If the fsync fails, PostgreSQL,
aware of the problems with fsync [39], chooses to crash. Doing so avoids
truncating the wal and ensures that checkpointing can be retried later.

On CuttleFSext4o,xfs, PostgreSQL exhibits FalseFailures for reasons sim-
ilar to LevelDB. While App=Restart is necessary to read the entry from
the log, BufferCache=Evict is not. Further, the application restart cannot
be avoided as PostgreSQL intentionally crashes on an fsync failure. On
BufferCache=Keep, PostgreSQL reads a valid log entry in the page cache.
On BufferCache=Evict, depending on which block experiences the fault,
PostgreSQL either accepts or rejects the log entry. FalseFailures manifest
when PostgreSQL accepts the log entry. However, if the file system were
to also crash and restart, the page cache would match the on-disk state,
causing PostgreSQL to reject the log entry. Unfortunately, ext4 currently
does not behave as expected with mount options data_err=abort and
errors=remount-ro (§3.1.2.1).

Due to the late error reporting in CuttleFSext4d, as seen in Table 3.2, Post-
greSQL exhibits OldVersion and KeyNotFound Errors when faults occur
in the database table files. As PostgreSQL maintains user-space buffers,
these errors manifest only on BufferCache=Evict with App=Restart. Dur-
ing a checkpoint operation, PostgreSQL writes the user-space buffers to
the table. As the fault is not yet reported, the operation succeeds and
the wal is truncated. If the page corresponding to the fault is evicted and
PostgreSQL restarts, it will rebuild its user-space buffers using an incorrect
on-disk table file. The errors are exhibited depending on where the fault
occurs. While KeyNotFound errors occur in other applications when a
new key is inserted, PostgreSQL loses existing keys on updates as it modifies
the table file in-place.

PostgreSQL DIO: In the DirectIO mode, PostgreSQL bypasses the page
cache and writes to the wal using DirectIO. The sequence of operations
during a transaction commit and a checkpoint are exactly the same as the
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default mode.
FalseFailures do not occur as the page cache is bypassed. However,

OldVersion and KeyNotFound errors still occur in CuttleFSext4d for the
same reasons mentioned above as writes to the database table files do not
use DirectIO.

3.3 Discussion

We now present a set of observations and lessons for handling fsync
failures across file systems and applications.

#1: Existing file systems do not handle fsync failures uniformly. In an
effort to hide cross-platform differences, POSIX is intentionally vague on
how failures are handled. Thus, different file systems behave differently
after an fsync failure (as seen in Table 3.1), leading to non-deterministic
outcomes for applications that treat all file systems equally. We believe that
the POSIX specification for fsync needs to be clarified and the expected failure
behavior described in more detail.

#2: Copy-on-Write file systems such as Btrfs handle fsync failures better
than existing journaling file systems like ext4 and XFS. Btrfs uses new or
unused blocks when writing data to disk; the entire file system moves from
one state to another on success and no in-between states are permitted.
Such a strategy defends against corruptions when only some blocks contain
newly written data. File systems that use copy-on-write may be more generally
robust to fsync failures than journaling file systems.

#3: Ext4 data mode provides a false sense of durability. Application de-
velopers sometimes choose to use a data journaling file system despite its
lower performance because they believe data mode is more durable [30].
Ext4 data mode does ensure data and metadata are in a “consistent state”,
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but only from the perspective of the file system. As seen in Table 3.2,
application-level inconsistencies are still possible. Furthermore, applica-
tions cannot determine whether an error received from fsync pertains to
the most recent operation or an operation sometime in the past. When
failed intentions are a possibility, applications need a stronger contract with the
file system, notifying them of relevant context such as data in the journal and
which blocks were not successfully written.

#4: Existing file-system fault-injection tests are devoid of workloads that
continue to run post failure. While all file systems perform fault-injection
tests, they are mainly to ensure that the file system is consistent after
encountering a failure. Such tests involve shutting down the file system
soon after a fault and checking if the file system recovers correctly when
restarted. We believe that file-system developers should also test workloads that
continue to run post failure, and see if the effects are as intended. Such effects
should then be documented. File-system developers can also quickly
test the effect on certain characteristics by running those workloads on
CuttleFS before changing the actual file system.

#5: Application developers write OS-specific code, but are not aware
of all OS-differences. The FreeBSD VFS layer chooses to re-dirty pages
when there is a failure (except when the device is removed) [34] while
Linux hands over the failure handling responsibility to the individual file
systems below the VFS layer (§3.1.2.4). We hope that the Linux file-system
maintainers will adopt a similar approach in an effort to handle fsync failures
uniformly across file systems. Note that it is also important to think about
when to classify whether a device has been removed. For example, while
storage devices connected over a network aren’t really as permanent as
local hard disks, they are more permanent than removable USB sticks.
Temporary disconnects over a network need not be perceived as device
removal and re-attachment; pages associated with such a device can be
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re-dirtied on write failure.

#6: Application developers do not target specific file systems. We ob-
serve that data-intensive applications configure their durability and error-
handling strategies according to the OS they are running on, but treat all
file systems on a specific operating system equally. Thus, as seen in Table
3.2, a single application can manifest different errors depending on the file
system. If the POSIX standard is not refined, applications may wish to handle
fsync failures on different file systems differently. Alternatively, applications
may choose to code against failure handling characteristics as opposed to
specific file systems, but this requires file systems to expose some interface
to query characteristics such as “Post Failure Page State/Content” and
“Immediate/Delayed Error Reporting”.

#7: Applications employ a variety of strategies when fsync fails, but
none are sufficient. As seen in Section 3.2.3, Redis chooses to trust the file
system and does not even check fsync return codes, LMDB, LevelDB, and
SQLite revert in-memory state and report the error to the application while
PostgreSQL chooses to crash. We have seen that none of the applications
retry fsync on failure; application developers appear to be aware that
pages are marked clean on fsync failure and another fsync will not flush
additional data to disk. Despite the fact that applications take great care
to handle a range of errors from the storage stack (e.g., LevelDB writes
CRC Checksums to detect invalid log entries and SQLite updates the
header of the rollback journal only after the data is persisted to it), data
durability cannot be guaranteed as long as fsync errors are not handled
correctly. While no one strategy is always effective, the approach currently
taken by PostgreSQL to use direct IO may best handle fsync failures. If file
systems do choose to report failure handling characteristics in a standard
format, applications may be able to employ better strategies. For example,
applications can choose to keep track of dirtied pages and re-dirty them by
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reading and writing back a single byte if they know that the page content is
not reverted on failure (ext4, XFS). On Btrfs, one would have to keep track
of the page as well as its content. For applications that access multiple
files, it is important to note that the files can exist on different file systems.

#8: Applications run recovery logic that accesses incorrect data in the page
cache. Applications that depend on the page cache for faster recovery are
susceptible to FalseFailures. As seen in LevelDB, SQLite, and PostgreSQL,
when the wal incurs an fsync failure, the applications fail the operation
and notify the user; In these cases, while the on-disk state may be corrupt,
the entry in the page cache is valid; thus, an application that recovers state
from the wal might read partially valid entries from the page cache and
incorrectly update on-disk state. Applications should read the on-disk content
of files when performing recovery.

#9: Application recovery logic is not tested with low level block faults.
Applications test recovery logic and possibilities of data loss by either
mocking system call return codes or emulating crash-restart scenarios,
limiting interaction with the underlying file system. As a result, failure
handling logic by the file system is not exercised. Applications should test
recovery logic using low-level block injectors that force underlying file-system
error handling. Alternatively, they could use a fault injector like CuttleFS
that mimics different file-system error-handling characteristics.
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4
Intentions in the Wild

In the previous chapter (§3), we studied the effects of fsync() failures
on real-world applications. In doing so, we observed that the fsync()
system call is necessary but not sufficient for what the application in-
tended to do. Applications use fsync() as a way to persist modifications
made previously through other system calls. These applications devise
update protocols with the strategic use of fsync() both as a persistence
mechanism and as a barrier before future writes to guarantee—albeit
not completely effectively—durability. Additionally, data is read from
persisted files in a specific way to achieve similar goals.

The reason for specific protocols with careful ordering and barriers is
due to the lack of specific file-system interfaces to accomplish the same
task. Due to the fine-grained nature of system calls, applications realize
complex operations through a dialogue with the underlying system. While
observed in §3.2 for five applications, prior work has documented similar
behavior in 7 additional systems [82]. In this chapter, we ask the question:
How do applications commonly interact with the underlying file system?
Specifically, what other dialogues do applications have with the file system,
requiring multiple system calls.

We begin with a study of a variety of systems, involving the examina-
tion of source code and documents. We describe Ikhnaie, a tool to aid in
tracing and visualizing dialogues in applications. We then summarize our
findings after categorizing commonly observed dialogues which we term
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as intentions; operations an application intends to perform but is spread
out over multiple system calls.

4.1 Hunting for Application Dialogues

We choose applications from a diverse set of domains: key-value stores,
relational databases, embedded and client-server architectures, version
control systems, build systems, and classic command-line utilities. In order
to discover domain-specific patterns, we study mode than one application
per domain. We prioritize candidate applications that have been studied
or evaluated against in the past by the systems research community.

As some applications are too large to manually inspect all their source
code, we build a tracing and visualization tool—Ikhnaie—to help narrow
our focus. We first describe the motivation for ikhnaie, due to limita-
tions with existing tools, and then describe its design and implementation
details.

Ikhnaie does not automatically discover dialogues, but provides the
tools that help us explore applications. As ikhnaie only helps to make
our inspection of applications easier, we do not perform any evaluation of
the tool. Instead, we explain how we use ikhnaie to find application dia-
logues (§4.2) and then generalize common dialogues into intentions (§4.3).

4.1.1 Why Ikhnaie?

To identify dialogues with the underlying file system, we absolutely require
system call traces for every application we study. While it is possible to
identify patterns solely through system call traces, what the application
does in user-space can provide more helpful context. For example, a
repeated read() may be due to a function that wishes to read data from
multiple locations, or due to a caller making repeated calls to the callee that
issues the system call. The extra context from user-space functions helps
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set boundaries over system call sequences to help us gauge what might
be part of a dialogue and what is the beginning of an entirely different
dialogue.

We considered both strace and gcc’s -finstrument-functions to get
both system calls and user-space information; neither were sufficient. The
system call tracing tool—strace—is capable of printing the user stack
trace1; i.e., the user space functions that led to the system call. However,
examining only stack traces makes it impossible to differentiate between
multiple system calls from the same user function from multiple invoca-
tions of the user function. The GCC flag -finstrument-functions allows
developers to provide a custom function definition which will be called
on every other function entry and exit. While a function definition could
be provided to log entry/exit events, profile functions, and dump the call
stack, it cannot reliably identify the location of the call site (the location
within the parent/caller function). Call-site information such as locus,
basic-block, and scope can provide additional details to differentiate be-
tween two identical function call stacks. We build Ikhnaie, to handle the
capturing of system calls and sufficient user-space function trace events to
distinguish between multiple identical call stacks.

4.1.2 Ikhnaie: Design & Implementation

We now describe Ikhnaie2 - a collection of tools built to acquire rich trace
information from applications. The main goal of Ikhnaie is to make it
easier to study the file-system interactions of complex applications with
large code bases. Specifically, we built and designed Ikhnaie with the
following goals:

1The command strace -k prints the execution stack trace of the traced process after
every system call.

2Ichnaea (Ikhnaie) the goddess of tracing and tracking. Her name was derived from
the Greek verb ichneuô meaning “to trace” or “to track”.
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Correctness. As a tracing tool, Ikhnaie must only provide visibility and
not alter the behavior of the application under trace. Applications that
are traced with Ikhnaie must also pass any test suites coupled with the
application. Additionally, the tracer must avoid emitting records generated
due to tracer logic. For example, a tracer using the write() system call
to persist trace records must ensure that the write is not part of the final
records to be analyzed.
Acceptable performance. Although Ikhnaie is a tracing tool and need
not have a low overhead as long as application behavior is not altered, we
do require an acceptable level of performance; not for evaluation but to
complete our study on real workloads at a reasonable pace. A previous
implementation of Ikhnaie automated gdb catchpoints and breakpoints.
Apart from the loss of call-site information, there was a performance
overhead due to ptrace involvement. A YCSB-A workload on LMDB for
1 million records suffered a throughput reduction from 60kops/sec to
150ops/sec. The absolute time taken to acquire traces was 1.8 hours while
the actual benchmark took 16 seconds. Such problems cannot be alleviated
by scaling down the workload as certain paths are executed only after
certain data limits are reached. For example, applications like LevelDB and
SQLite trigger compaction and write-ahead-log checkpointing respectively
at certain thresholds3.

Ikhnaie consists mainly of four components: ikgimple.so during com-
pile time, libiklog.so and iksys.bpf during run time, and ikanalyze.py for
post processing and analysis. We describe each of them in the remainder
of this section.

3Such thresholds can be changed and workloads can be scaled down on a case-by-case
basis but limit our ability to study system call behavior at different levels of scale and
void our claim of real-world representative workloads.



76

4.1.3 Compile-time changes with ikgimple.so

ikgimple.so is a GCC compiler plugin [43] that injects event-emitting
logic when the application is compiled. Specifically, ikgimple.so registers
with GCC as a compiler pass right after the control-flow graph is created,
operates on each function, and iterates over the basic blocks in GCC’s inter-
nal representation—GIMPLE. Unlike -finstrument-functions, ikgimple.so
injects instructions (explained below) at both the call site and function en-
try/exit site. For every instruction injected, ikgimple.so creates a unique
identifier (an integer) and associates locus information (file, line number,
column number, etc), basic-block membership, and scope membership
within the function. It stores this information in a database that can be
looked up during post processing by ikanalyze.py.

The injected function calls are of four types: FunctionEnter, Function
Exit, CallsiteEnter, and CallsiteExit, which are defined elsewhere in
a shared library—libiklog.so. All four function definitions must accept
a single integer parameter—the unique identifier mentioned earlier.

While built for GCC, ikgimple.so can be ported to LLVM [67]. Addi-
tionally, applications that use languages that have frontends for the above
two compilers (such as C, C++, Objective C, Go) [42] should be traceable.
However, we currently restrict scope to applications that use C and C++.

The application’s build configuration is modified to include ikgimple.so
as a plugin. Once compiled with gcc, the output binary will contain code
that invokes functions defined in libiklog.so.

4.1.4 Run-time tracing with libiklog.so and iksys.bpf

As described above, ikgimple.so injects function calls at function and
call-site boundaries which are invoked by the application during runtime.
The definitions for these functions reside in libiklog.so.

The libiklog.so library is responsible for efficient event storage. A
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call to one of the injected functions results in an event that needs to be
stored. To avoid the overhead of a system call per event, libiklog.so
memory-maps a newly created tracefile and writes events to the buffer. On
possible buffer overflow, the file is unmapped, extended, and remapped.
Using thread-local storage(TLS [44, 120]), libiklog.so maintains a file
and buffer for every thread. While system call usage can also be minimized
using buffered IO with fopen,fwrite, such an approach leads to extra
occasional write() calls internally that are harder to ignore from trace
results.

As ikgimple.so can only inject code in files that are compiled, it misses
internal library calls; e.g., the occasional write() from fwrite() when the
buffer is full. However, unlike -finstrumentfunctions, we emit events
at the call site indicating that fwrite() is called. Rather than the exact
callstack within a library, we focus on the system calls that emanate from
the library function. To do so, we also run iksys.bpf—an eBPF application
that emits system call events.

Both libiklog.so and iksys.bpf emit timestamps with events, ensur-
ing correct reassembly from the two sources. Specifically, we require a
monotonically increasing counter shared by both user and kernel space.
On x86 architectures, the RDTSC instruction is an ideal candidate. As
accurate time measurements are unnecessary, the generally associated in-
structions to avoid reordering and pipeline flushing such as CPUID, fences,
or RDTSCP are unnecessary as well. Unfortunately, the current Linux ker-
nel’s BPF virtual machine is its own architecture separate from x86. We
rely on the BPF helper function bpf_ktime_get_ns() to get nanosecond
timestamps in the kernel and clock_gettime with CLOCK_MONOTONIC in
user space; both appear to use the same internal clock source and work as
expected, albeit slower than RDTSC.

The minimal system calls generated by libiklog.so on file creation,
mapping, and extension are preceded by instructions to iksys.bpf to ig-
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nore them. Rather than complicating in-kernel BPF logic, iksys.bpf emits
“ignore markers” which is understood by the post-processing library—
ikanalyze.py.

The recording of events does add overhead in both additional function
calls and periodic writes of the buffer to disk. The same YCSB-A LMDB
workload took 30 seconds to trace, nearly double of the original time.
However, waiting 30 seconds was acceptable for us, and far better than
the wait with gdb.

4.1.5 Post-processing and analysis with ikanalyze.py

After an application finishes running a workload, all the trace files and
compiler generated output need to be processed. Specifically, during
compilation ikgimple.so generates a database of locus information, i.e., a
mapping from function call site id to the function name, file name, and
position within the file. And during run time, libiklog.so and iksys.bpf
generate the call-site events and system call trace files for each thread.
ikanalyze.py examines the files containing function and call-site events,
system call events, and markers indicating events to ignore. It enriches
these traces with the locus information generated during compilation by
ikgimple.so.

Additionally, ikanalyze.py prunes unnecessary events generated by
libiklog.so that never lead to system calls. Pruning is necessary to re-
duce the data we analyze. We could not perform this step at compile
time as certain application designs utilize callback functions in libraries;
code execution through callback functions or function pointers cannot be
easily detected during compilation. As performance overhead is minimal
and storage is plenty, ikgimple.so injects function and call-site boundary
events on every function available to it, leaving pruning for later.

We analyze the pruned traces using scripts and functions that are part
of ikanalyze.py. Written in Python, with Numpy and Pandas, ikanalyze.py
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contains functions to gather statistics, search for patterns we input, and
generate visualizations that can help narrow our examination of source
code.

4.2 Finding Dialogues with Ikhnaie

As described previously, we choose applications from a diverse set of do-
mains (§4.1). In this chapter, we explain our process of finding dialogues
in those applications and how Ikhnaie fits in.

Choosing workloads for a given application.
While simple command-line utilities have a specific task (cp to copy a file),
larger complex applications tend to behave differently depending on the
given workload. The different behavior can result in a different set or num-
ber of system calls, affecting the survey. We choose standard workloads
that are frequently used by the research community. For example, the
TPC-H and TPC-DS benchmarks for relational databases, and YCSB for
key-value stores. For applications that do not have standard benchmarks,
we study behavior on a range of workloads representative of common use
cases. For example, when copying a file with cp, using arguments where
the destination file exists or where both files are on the same or different
file system.

Using Ikhnaie.
We first modify the application build process to include ikgimple.so during
compilation. Then, we run the application with a workload, which loads
libiklog.so at runtime. Simultaneously, we start iksys.bpf to capture system
call traces.

Once the workload completes, we are left with the user-space function
traces and system call traces. We use ikanalyze.py to prune the user level
traces. Now, we launch a jupyter notebook environment to programmati-
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cally (but not automatically) explore both traces using helper functions in
ikanalyze.py.

First, we focus on the system call traces. We run the workload at
different scales and compare the system call traces for each. Varying the
scale allows us to identify system calls that are constant, proportional,
or occasional. It is important to note that some system calls may exhibit
characteristics belonging to more than one of these categories. However,
this initial categorization provides a general overview of system behavior,
which serves as a foundation for more in-depth analysis.

Having identified some system calls to analyze further, we use ikan-
alyze.py to find all functions that lead to all or a subset of those system
calls. While main() is one of those functions, we sort functions by their
depth in the call stack to find the nearest common functions that contain
those subset of system calls; we also visualize the same as flamegraphs.

We then take a look at each of the above common functions found, one
at a time. Sometimes, the function name makes it easy to identify what
it does and we look at the source code directly to confirm its behavior.
For others, we dig deeper by using ikanalyze.py to generate a graphviz
visualization of function and system calls stemming from a specific call
site invoking one of those common functions.

The graphviz visualization provides us with a tree whose leaves are
system calls. The intermediate nodes are function call sites. The edges are
annotated with a range of how many times a particular invocation happens
which could indicate a loop. Each node also embeds the location in source
code to make it easier for us to navigate and read the related source code.
The following are two examples that walk through our workflow.

Example #1: LMDB.
Figure 4.1 is a graphviz rendering of a callsite within the LMDB applica-
tion with YCSB workloads. We had noticed that pwrite64(), lseek(),
and writev() all scale with changing the scale of the workload. We
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Figure 4.1: Visualizing portions of LMDB with Ikhnaie: We start with
an observation of repeated pwrite64 syscalls and ask Ikhnaie to give us a
visualization of that region. Ikhnaie first focuses on that region to identify
the system calls and functions, and then scans the entire log to provide
information on that region for the entire workload. In the above call-graph
visualization, the leaves (colored) correspond to system calls. Every other
node is a call site, i.e., a function name and a position within the function.
In this figure, all three system calls are invoked by the same function
(mdb_page_flush) at different call sites: cs{1}, {2}, and {4}. The figure
also shows that cs{1} is invoked multiple times (3–5 times), followed by
one lseek and one writev. All three call sites are invoked as part of a single
execution of the mdb_txn_commit function. The image gives us context to
decide whether we need to dig further. While not depicted, each of the
nodes in the call graph are hyperlinked to the source location, allowing
us to immediately take a look at the source code. In this specific case,
LMDB maintains a list of dirty pages (pages that are modified during a
transaction) that need to be flushed to disk. As LMDB keeps track of dirty
pages in sorted order, sometimes the dirty pages are contiguous, leading
to an lseek() and a single writev(). In other cases, each non-contiguous
page can be written out with a pwrite(). Upon source-code inspection, we
also notice pre-processor macros that depend on compile time flags. For
example, building with MDB_USE_PWRITEV changes the pattern to always
have one leaf pwritev() repeated multiple times.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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dug deeper using ikanalyze.py and identified a single call site within
the mdb_txn_commit function—the function used to commit a transaction.
The visualization helped us confirm that this is a pattern that scales with
the number of transaction commits and is worth inspecting further.

Looking at the source code, we found compile-time preprocessor direc-
tives that could be used to change the system call LMDB uses. The lseek()
and writev() could be changed to a pwritev() if MDB_USE_PWRITEV is pro-
vided as a compile-time definition. More importantly, we were able to
identify that mdb_page_flush writes one or more dirty pages to disk inside
a loop. Each page is located at different memory locations and all pages
to be written need not be contiguous. We term this operation a scattered
write (described later), and look for the same in other applications.

Example #2: SQLite.
Figure 4.2 is the graphviz rendering of a callsite in SQLite. We followed
a process similar to LMDB but running a TPC-H workload. As seen in
the figure, SQLite has many more abstraction layers than LMDB: seekAn-
dRead, unixRead, sqlite3OsRead, readDbPage, and getPageNormal. Like
LMDB, a USE_PREAD definition changes seekAndRead to use pread() in-
stead. Internally, when SQLite needs to read a specific page in the database
(when navigating its B-Tree nodes), it calls the getPageNormal function.
The left sub-tree in the figure was not originally visible. We modified ikan-
alyze.py to also use the unpruned data to show us more context—SQLite
first checks if the page is in its own application cache.

The visualization was helpful in identifying key functions to study
further. With documentation and source code, we concluded that SQLite
operates on a row-by-row bases. The sqlite3BtreeNext function moves to
the next row, which sometimes requires moving to another leaf node in
the B-Tree at which point a page needs to be read. SQLite uses its pager
to read the page (sqlite3PagerGet), which internally checks its cache or
issues a system call to fetch the data.
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Figure 4.2: Visualizing portions of SQLite with Ikhnaie: We observed
repeated patterns of lseek() followed by read() when running SQLite. At first,
we were unsure whether multiple lseek-read pairs appear together or one at a
time. With Ikhnaie, the visualization tells us that every pair appears one at a time
and is the result of a sqlite3BtreeNext function call. As observed in the figure,
the system calls are hidden under a layer of one-to-one portability abstractions:
sqlite3OsRead, unixRead, followed by seekAndRead. With the help of Ikhnaie,
SQLite design documents, and source code, we learn the following: SQLite uses
B-Tree data structures whose nodes are called “pages”, and rows in a database
table reside in B-Tree leaf pages. SQLite uses sqlite3BtreeNext to move to the
next row, which may be on the same page or on a different page. If the new
page is in the page cache (left subtree in the figure), no file-system interaction is
necessary. If the page has to be read from disk, the code takes the right subtree
path resulting in a single lseek() and read() to the target page. As with LMDB
in Figure 4.1, a compile-time flag (USE_PREAD) changes this behavior to use a
single pread() instead.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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If we were to only look at the read() system calls, we would conclude
they were scattered reads (similar to LMDB scattered writes). However,
further inspection revealed that it operates one-by-one and those pages
cannot be read in bulk. An intermediate page must be read to determine
the offset of the leaf page—a pointer chasing workload.

4.3 Findings

We repeat the process described previously (§4.2) on multiple applications.
We referred to source code and documentation for all of them; but not all
required Ikhnaie. After using Ikhnaie for a few, we knew what to look
for in other applications, and searched for their existence. We created
categories for our observations and now present them here.

We selected applications from multiple domains: key-value stores (Re-
dis, LMDB, LevelDB, RocksDB), relational databases (SQLite, PostgreSQL,
MySQL), build systems (make, ninja), version control systems (git), and
common command-line applications (cp, cat, ls, tac, tar, vim). While
we also observed metadata interactions (readdir(), stat()) for some
applications (ls, make, ninja, git), we focus on and categorize interactions
related to retrieving or storing data.

The data being retrieved or stored may be on a single file or spread
across multiple files. When storing, applications may overwrite (update)
existing data, or write new data. These applications may require the stored
data to only be made visible as a whole (no partial reads), and ensure
it survives power failures. We describe these categories in detail below,
providing examples for each. Table 4.1 and 4.2 are a summary of single
and multi-file intentions.
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1 // Implementation 1
2 lseek(fd,offset ,SEEK_SET );
3 read(fd ,buffer ,size);
4 // Implementation 2
5 pread(fd,buffer ,size ,offset );

Listing 4.1: Two implementations of a single contiguous read into a single
buffer

1 struct iovec iov [2] = {
2 {. iov_base=buffer1 ,. iov_len=size1},
3 {. iov_base=buffer2 ,. iov_len=size2},
4 }
5 // Implementation 1
6 lseek(fd,offset ,SEEK_SET );
7 readv(fd,iov ,2);
8 // Implementation 2
9 preadv(fd ,iov ,2,offset );

Listing 4.2: Two implementations of a single contiguous read into multiple
buffers

4.3.1 Single File Reads

4.3.1.1 A Single Contiguous Read

When reading data from a single file, some applications only require a
single contiguous portion or the entire file. For example, the ninja build
tool reads the entire dependency file into a single string, and git reads the
entire HEAD file whose contents refer to the name of the currently active
branch (or commit).

Listing 4.1 demonstrates a single contiguous read into a single buffer
(e.g., a string in ninja). It contains two implementations of the same inten-
tion; they differ due to interface availability. When pread() is available,
the second implementation is used.

Listing 4.2 also demonstrates a single contiguous read. However, unlike
Listing 4.1, while the bytes read from the file is contiguous, the memory
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buffers are not. For example, an image processing application that pro-
cesses different strips of an image in parallel may want them read into
different buffers. The intention of what is being read from the file remains
the same, but there is an application design difference in where it should
be stored. Listing 4.2 also contains two implementations depending on
the existence of preadv().

Throughout this section, we will see intentions that are realized using
different interfaces. Within each of the previous listings, the differences
are implementation differences. However, while both listings perform the
single contiguous read of a file, they have application design differences.

4.3.1.2 Multi-Chunk Reads

Applications that read data from multiple different locations in a file typi-
cally read more than one byte from each location; they read a contiguous
portion from each location—a chunk. Applications either know the ex-
act locations of each chunk beforehand (content-independent traversals),
or must read one or more chunks to identify subsequent ones (content-
dependent traversals)—application design differences.
Content-independent traversals have more application design differences
based on the access pattern of the traversal. The most common forms are
Forward Sequential, Reverse Sequential, Strided, and Scattered.

Forward Sequential. Listing 4.3 provides two implementations of
Forward Sequential reads, where the future reads are always the next
chunk sequentially. Common examples include grep, cat, and recovery
logic (§4.3.3.1) that reads a log (Redis, LevelDB).

Reverse Sequential. Listing 4.4 provides one implementation of Re-
verse Sequential reads, where the future read is the previous chunk in the
sequence. It can also be implemented with lseek() and read() instead
of pread() but omitted from the listing. Common examples include tac,
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1 // Implementation 1
2 lseek(fd ,0,SEEK_SET );
3 do {
4 ret = read(fd ,buffer ,bufsize );
5 if (ret < 0) // error
6 if (ret == 0) break; // EOF
7 // process buffer
8 } while (1);
9

10 // Implementation 2
11 offset = 0;
12 do {
13 ret = pread(fd ,buffer ,bufsize ,offset );
14 ...
15 // process buffer
16 offset += ret;
17 } while (1);
Listing 4.3: Two implementations of a Multi-Chunk Forward Sequential
Read

1 offset = lseek(fd ,-1*bufsize ,SEEK_END );
2 // Or use stat () and set offset accordingly
3 do {
4 ret = pread(fd ,buffer ,bufsize ,offset );
5 ...
6 // process buffer
7 offset -= bufsize;
8 } while (offset >= 0);

Listing 4.4: Multi-Chunk Reverse Sequential Reads

and some uses of ORDER BY DESC in relational databases (SQLite) where
many B-Tree leaf pages happen to be contiguous.

While both the above sequential accesses can be expressed as a single
contiguous read, there are application design differences; the application
wants to minimize memory usage and operate in chunks.

Strided. Listing 4.5 provides one implementation of Strided reads,
where the future read is some fixed distance away from the current chunk.
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1 do {
2 ret = pread(fd ,buffer ,bufsize ,offset );
3 ...
4 // process buffer
5 offset += stridelength;
6 } while (ret > 0);

Listing 4.5: Multi-Chunk Strided Reads

1 for (ptr=page_list_head; ptr!=NULL; ptr=ptr ->next) {
2 offset = ptr ->page_no * page_size;
3 pread(fd, ptr ->buffer , page_size , offset );
4 }

Listing 4.6: Multi-Chunk Scattered Reads

While not observed in the applications listed above, it is a category of
traversal that is used when working with multi-dimensional on-disk arrays.
The atmospheric and oceanographic communities use workloads that
access only particular fields in netCDF or HDF5 formats which requires
skipping over other fixed-length fields; NASDAQ also exports fixed-width
text files of stock exchange data.

While sequential accesses can fall into single contiguous or multi-chunk
reads depending on application design, strided accesses (even though
sequential with gaps) are always multi-chunk reads requiring multiple
system calls. This is due to a limitation in current interfaces. The scatter-
gather interfaces (readv(), preadv(), preadv2()) require that all IOV
arrays be filled; the skipped-over regions between strides must be read
into some memory region. Applications avoid reading between strides
through multiple system calls.

Scattered. Listing 4.6 provides one implementation of Scattered reads,
where chunks are scattered across the file with no observable pattern. In
the listing, an application treats the file as an on-disk list of “pages” or
“chunks”. It constructs a linked list of the pages it wishes to read and then
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1 node = get_root_node(btree);
2 do {
3 pread(btree ->on_disk_fd ,node ->buf ,
4 /* buffer size */ btree ->nodesize ,
5 /* offset */ node ->pgno * btree ->nodesize );
6 if (is_leaf(node)) break;
7 // intermediate node , find next level node
8 node = get_child(node , key);
9 } while (node != NULL);

Listing 4.7: Content-Dependent Reads: B-Tree Traversal

loops over the list issuing a read for each page.
SQLite and LMDB maintain B-Tree data structures where each node is

a page or a chunk in the file. As LMDB uses mmap() for reads, we focus
on SQLite as an example, where tables and indices are represented as
B-Trees. Any workload that performs a breadth first traversal over a tree
(e.g., gathering statistics about data distribution in an index) examines
nodes level by level. Since intermediate nodes contain pointers to all their
immediate child nodes, reading nodes of the next level are a content-
independent scattered read.
Content-dependent traversals require inspecting the content of the previ-
ous chunk to identify the next chunk to be read. Listing 4.7 provides one
implementation of content-dependent traversals—a depth-first search to
identify a key in a leaf of an on-disk B-Tree. Applications like SQLite store
tables as B-Trees and accessing a row involves traversing the intermediate
nodes from the root of the tree to the leaf node containing the row. How-
ever, the exact path to each node can only be determined by inspecting
the contents of the previous node—a pointer chasing workload.

Applications have come up with techniques to improve overall perfor-
mance in some multi-chunk reads. For content-independent traversals,
applications ask the file system to prefetch the chunks using fadvise()
or readahead() system calls.
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1 while !EOF
2 read(fd , chunk , chunksize );
3 for line in get_lines(chunk , chunksize ):
4 if keyword not in line:
5 continue
6 // process line

Listing 4.8: Filtering reads with a specific keyword

For content-dependent traversals, an application must change its de-
sign to perform some content-independent traversals. For example, ap-
plications designed for fast data retrieval often construct an index over
their data. Therefore, they can first iterate over the index in a content-
dependent manner, identifying all the locations of the chunks they wish to
retrieve. Then, they can perform a scattered read over the locations iden-
tified. Concretely, SQLite can perform a content-dependent traversal to
identify specific leaf nodes and later use a content-independent scattered
read for those leaf nodes. Unfortunately, there is currently no benefit in
doing so because scattered reads are not a primitive that applications can
use; they stick to full content-dependent traversals.

4.3.1.3 Filtered Reads

Applications do not always require all the data they read. Some utility
applications (grep, csplit) scan through data sequentially to find records
matching certain criteria. Another class of applications that perform fil-
tering are log file analysis tools (e.g., logstash) that search for specific
keywords in logs for further analysis. However, as the file system is un-
aware of this criteria (e.g., a keyword, or the record delimiter format),
all the data must be transferred to the user-space application which then
discards bytes that don’t fit the criteria. Reading unfiltered data can be
costlier, especially if the underlying file system is not local.

Consider the pseudocode example in Listing 4.8 that behaves similar
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1 int fd = open("/path/to/file", O_WRONLY|O_APPEND );
2 // Implementation 1 (a single contiguous buffer )
3 write(fd, buffer , bufsize );
4
5 // Implementation 2 ( multiple scattered buffers )
6 struct iovec iov [2] = {
7 {. iov_base=buffer1 ,. iov_len=size1},
8 {. iov_base=buffer2 ,. iov_len=size2},
9 }

10 writev(fd , iov , 2)
Listing 4.9: Two implementations of appending data to a file

to grep. An entire chunk is first copied into a userspace buffer and lines
that do not have a keyword are discarded. While inexpensive on a local
file system, the application can be run on FUSE file systems backed by
remote storage. Cloud storage providers like AWS and Google provide
FUSE endpoints but also charge for network egress costs. While users may
not notice runtime differences (modern network speeds), the discarded
lines increase costs. When the underlying system has compute capabilities
(AWS Lambda, Google Cloud Functions), the application can perform the
filtering closer to storage and only transfer relevant lines4.

Row-order databases like SQLite and PostgreSQL place all columns of
a row together; SQL SELECT queries over a few columns result in reading
all columns. However, as these applications maintain a user-space cache,
future queries over the same rows are served by the cache and therefore
not an immediate problem.

4.3.2 Single File Writes

4.3.2.1 Adding New Data

While new data can be added either to the beginning (prepends), the mid-
4The cost to executing lambdas may be far lesser than network costs if the keyword

occurrences are rare, e.g. searching for errors in logs.



94

dle (inserts), or end of the file (appends)5, applications most commonly
append data as it is less restrictive (Listing 4.9).

Prepending and inserting data is costly as existing data must be pushed
downwards to make space for the incoming data. Popular file systems
like ext4 and XFS do offer mechanisms to do so “punching a hole” in the
file; but such techniques only work if the incoming data occupies a full
block (commonly 4KB) and is being inserted at a block boundary. We did
not see evidence of their usage but mention them for completeness (more
details in §4.4.2).

Listing 4.9 provides two common forms of appending to files differing
in application design. The first uses a single contiguous buffer in memory
while the second uses multiple different buffers. Appends are commonly
seen in applications that write to a log either for auditing or recovery
purposes (e.g., Redis, SQLite, LevelDB).

4.3.3 Overwriting Existing Data

Regardless of whether chunks are content-dependent or not when read,
the application performing writes has access to the content and file off-
sets before issuing them, i.e., writes are content-independent. Single
chunk updates or multi-chunk updates following sequential patterns can
be achieved with a single system call: write(), writev(), or pwritev().
Multi-chunk strided and scattered updates require multiple system calls.

While strided updates are not as common as their read counterparts,
scattered updates are frequently observed. Applications like LMDB using
a copy-on-write B-Tree structure must update all nodes in the tree all the
way to the root for a single leaf node update. These nodes (especially
the intermediate nodes) are scattered across the file, requiring multiple
system calls to complete the update.

5For simplicity, we do not cover sparse files. However, some applications do make
use of sparse files, adding data to existing gaps (holes) within a file.
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1 // sorted order to reduce write syscalls
2 Page page = sorted_dirty_pages ->head;
3
4 int iovcnt = 0;
5 struct iovec iov[MAX_IOV ];
6 iov[iovcnt ]. iov_base = page ->buffer;
7 iov[iovcnt ]. iov_len = page_size;
8 ++ iovcnt;
9

10 Page startpage = previous_page = page;
11 page = page ->next;
12 for(; page!=NULL; page=page ->next) {
13 bool not_contiguous =
14 (page ->pgno != previous_page ->pgno + 1);
15 bool limit_reached = (iovcnt == MAX_IOV );
16 bool do_write = not_contiguous || limit_reached;
17
18 if (do_write) {
19 offset = startpage ->pgno * page_size;
20 pwritev(fd , iov , iovcnt , offset );
21 iovcnt = 0;
22 startpage = page;
23 }
24
25 iov[iovcnt ]. iov_base = page ->buffer;
26 iov[iovcnt ]. iov_len = page_size;
27 ++ iovcnt;
28 previous_page = page;
29 }
30 // ... write remaining iov
Listing 4.10: Overwriting Existing Data: Scattered Writes of LMDB dirty
pages with an optimization for contiguous pages

Listing 4.10 describes the scattered write performed by LMDB. LMDB
keeps track of the pages it needs to write in a linked list sorted by page
number. The sorted order allows LMDB to perform an optimization: when
a contiguous sequence of pages is found, a single pwritev() system call
can be used, reducing the total system calls used to write all pages.
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4.3.3.1 Atomicity and Durability

Applications face two additional challenges when writing to files:

1. Ensuring new and existing readers see either the old or new data
during normal operation (atomicity)

2. Ensuring new readers see the last successfully committed data after
recovering from a crash (durability)

Atomicity. While contiguous writes using a single writev() are atomic,
the underlying file (or operating) system imposes limits on the maximum
number of scattered memory buffers (IOV_MAX, often 1024). Larger writes
require multiple system calls which are not guaranteed to be atomic.

Although earlier versions of Linux (pre 5.14) supported mandatory
locks, they have since been removed. All file locks are now advisory
and cannot force atomic views across write system calls. In the absence
of underlying OS support, applications that wish to provide atomicity
“globally” do so by updating a copy of the file and renaming it (e.g., vim
and LevelDB). Existing readers (accessing via open file descriptors) would
read an old consistent copy while new readers resolve the path to the newly
modified file.

Alternatively, developers may choose to follow a specific access proto-
col under the assumption that only multiple instances of their application
may be used—no guarantees are made with respect to accesses by other
applications. We term such expectations as “app-local write atomicity”.

App-local write atomicity can be achieved in multiple ways. Some are
heavily integrated into the application’s design (like LMDB) while others
are generic (SQLite, vim, gedit). Additionally, when limited to a single
process, user-space reader/writer locks are sufficient.
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Durability. Providing atomicity guarantees when data must be written to
disk is much more difficult. Devices can fail at any moment either entirely
or partially, and transient errors disappear after a while.

In some cases, the failure causes an entire system crash. In cases where
it does not, applications running on the system may or may not be notified
of write failures. In all such scenarios, applications that intend to provide
durability guarantees must have mechanisms to ensure proper recovery
from states that break previously-mentioned atomic states. To do so,
applications build on top of the fsync() system call, writing data in a
particular order, injecting fsync() strategically so that recovery to valid
states is possible.
To satisfy both atomicity and durability requirements, some applications
(e.g., LMDB, Redis, LevelDB) use techniques that are integrated with
their internal data structures, unique to their design. Others (e.g., SQLite,
PostgreSQL) use a more generic design (called physical redo logging) but
implement them independently. In both cases however, fsync() is a key
component and misunderstanding post-failure behavior has led to data
loss (§3). We first describe application specific approaches followed by
the generic intention.
Application-specific approaches. LMDB achieves atomicity by maintain-
ing two B-Tree root pointers, one for all readers and one for a single writer.
The readers always use the last modified root. During a transaction, the
writer—using a copy-on-write approach—constructs a new tree consisting
of new nodes for the modified nodes, and links to unmodified nodes in
the readers’ tree. The transaction is committed when the writer’s root
pointer is updated to point to the new tree. Therefore, existing readers can
continue reading from the old reader root while new ones use the new
root. This approach also simplifies durability—all modified nodes are first
written and then synced to disk with fsync() before the root pointer is
written and synced.
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Unlike LMDB which uses a single file, Redis and LevelDB record all
operations that modify state to a separate file—a log. An fsync() is called
on the log to ensure the operations are persisted. When the application
restarts, the log is examined to recreate state before the crash. As the entries
record logical operations, applications replay each entry in the same order
they were written to the log. In doing so, they modify their internal data
structures to re-attain their state before the crash. This approach—termed
logical redo logging—is specific to each application as only the application
knows how to interpret each entry in the log and modify its data structures
appropriately.

4.3.3.2 Physical Redo Logging

We now describe a more generic approach to app-local atomicity and
durability—the physical redo log intention used by SQLite and Post-
greSQL. Similar to logical redo logging, changes are written to the log
and fsync() is called. However, instead of logical changes, applications
record the actual bytes that would go into the original file and the location
of where they should go—physical changes.

The original file—termed a backing file—is divided into fixed-size
chunks6. An operation that results in the application modifying chunks
leads to those chunks being written to the log; the backing file is left
untouched. Over time, as some chunks reside in the log, the application
maintains a data structure to determine where to read the latest persisted
chunk from. During recovery, the application examines the log to identify
which chunks are present so that they are used for reads instead of the
ones in the backing file.

To restrict a log from growing too large, the application periodically
updates the backing file with all the changes from the log—conventionally

6Applications like SQLite and PostgreSQL use the term “pages” instead of chunks.
These pages are often configured to have the same size as each page in the page cache.
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called checkpointing. To prevent invalid non-atomic states for readers
while checkpointing takes place, applications use locks in user space,
on entire files, or on regions of files. For example, SQLite acquires an
exclusive file lock (either through flock(),fcntl(), or lockf()) during
checkpointing while readers acquire a shared lock.

Like previously described intentions, every application re-implements
its own version. Some differ in the layout of chunks and their location in
the log, and what bookkeeping data structures are used. However, the
intentions are the same—chunks are written and synced to the log, reads
are served either from the log or backing file, and a backing file is updated
with content from the log. More importantly, they each fail to implement
it correctly, leading to data loss (§3.2.3).

4.3.4 Multiple Files

Operations on multiple files can be categorized as homogenous or het-
erogenous, depending on whether they perform the same operation on
all files or not.

4.3.4.1 Homogenous Operations

In addition to the operations on a single file, some applications read data
across multiple files. Many applications know the files they wish to read
from in advance, e.g., grep using the command-line parameters; others
are content-dependent. For example, LevelDB maintains a manifest file
containing the paths of all other files it reads, and PostgreSQL stores each
table and index in separate files. Either way, an application that wishes to
read data from multiple files is currently forced to make multiple system
calls with a file-descriptor for each file separately.

The same limitation holds true when writing data across files, often
when generating new data according to a specific format. For example,
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exporting multiple dataframes in python to their own csv files. Addition-
ally, the atomicity and durability challenges with single files also apply to
multiple files.

4.3.4.2 Heterogenous Operations

Applications that perform both reads and writes on multiple files com-
monly do so to copy data. While data that is read can be processed (e.g.,
encryption, compression) before writing, there are many that only require
copying. Sometimes, the file that data is being copied from is deleted
(unlink()) after the copy, indicating a move. However, move opera-
tions are always implemented as a copy-and-delete. We expand on them
later (§4.4.2).

We observe the copy operation in two distinct workloads: few large
contiguous copies or many small scattered copies. Large contiguous copies
are most commonly seen by copying files in their entirety (e.g., coreutils
cp), or growing existing files (e.g., coreutils tar, binutils ar). Partial yet
large and contiguous copies are also a frequent occurrence especially in
the media post-processing industry, to trim or crop audio.

Small scattered copies are frequently seen in applications that use
physical redo logging. To prevent the redo log from growing too large,
the contents from the log must be written to the main file periodically.
Conventionally called a checkpoint operation, applications read the redo
log and write the physical chunks to their target locations in the main file,
and then reset the redo log (a move).

4.3.4.3 Atomicity and Durability

The atomicity and durability challenges faced by applications writing to a
single file also extends to multiple files. We identify two distinct workloads
requiring atomicity and durability guarantees involving multiple files:
updating multiple existing files, and creating a set of new files.
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Relational database servers like PostgreSQL store each database table
and index as a separate file. User queries that modify multiple tables
as part of a transaction must atomically change rows in all the involved
tables—atomically change multiple files. These applications implement
a version of physical redo logging described earlier (§4.3.3.2). Instead of
a single backing file, the log contains chunks for multiple files. Every
chunk’s associated location contains both the name of the backing file and
its position within that file.

Unlike PostgreSQL, LSM key-value stores (LevelDB and RocksDB)
maintain a set of immutable SST files for each level. Modifications to the
store result in new SST files, and a compaction operation generates a new
set of SST files. The individual SST files are never modified, but some
may be reused as part of the newly compacted set. Existing readers must
continue to have access to the old SST files, while new readers obtain
the new set. Although they utilize app-specific logical redo logging for
the updates themselves, the approach to changing the set of SST files
after compaction is generic—applications maintain MANIFEST files that
describe an entire set.

4.3.4.4 MANIFEST Operations

To the file system, a MANIFEST is a regular file whose contents do not
hold special meaning. However, to the application, a manifest points to
many existing files; a dependency not under the protection domain of
crash-consistent file systems. Therefore, applications construct careful
update protocols to change manifests.

After creating the new SSTs, LevelDB also creates a new manifest file
to reflect the new set. To ensure that the entire set is updated atomically,
LevelDB maintains a pointer (a file containing the path) to the latest man-
ifest called CURRENT. LevelDB creates a new pointer (CURRENT.tmp)
that points to the new manifest, and then renames it to CURRENT. The
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atomic rename allows new readers to obtain the new manifest when read-
ing CURRENT. After the rename, unused SST files and old manifests are
unlinked to reclaim storage space.

Despite proper use of fsync() to ensure SSTs are persisted, as observed
in Chapter 3, the directory entries themselves can disappear on ext4 result-
ing in data loss. We evaluate the effects of disappearing directory entries
on LevelDB’s manifest files in Chapter 5.

Like physical redo logging, every application implements its own ver-
sion of manifests. As the files a manifest links to are application specific,
each application has a custom format to encode the information associated
with each file. However, a more generic manifest (designed and imple-
mented in Chapter 5) can use a generic key-value format where the key is
the application-specific information and the value is the file reference.

4.4 Challenges in Implementing Intentions

Based on the findings mentioned above, we now describe what a developer
takes into account to ensure correctness or performance when implement-
ing these intentions.

4.4.1 Correctness

Ensuring atomicity and durability when modifying one or more files
requires understanding of the guarantees of the underlying system. As
atomicity guarantees at the primitive level do not translate to a sequence of
primitives (a single write vs multiple writes), developers use techniques
like clone-modify-rename or force mutual exclusion through file locks to
achieve the same.

Developers carefully insert fsync() operations both as persistent points
and ordering barriers to ensure correct recovery on failure. However,
proper fsync() usage requires understanding fsync() behavior on the
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target file system. Currently, developers who are aware of certain fsync()
issues (such as syncing the parent directory as well), take a lowest com-
mon denominator approach. Using the same example, an fsync() to the
parent directory is issued even if the file system guaranteed directory entry
persistence when the inode was fsync()ed.

Unfortunately, even having a mechanism to detect and code for the
target file system does not eliminate the need to be aware of each file
system’s idiosyncrasies. As newer features are developed, existing file
systems may acquire better (or worse) guarantees, or newer file systems
may offer different ones as tradeoffs for performance; a cognitive burden
for the developer.

While many applications share the same intention (using redo logs or
manifests), they all implement the intention independently. As shown in
Chapter 3, even modern widely-used applications written by experienced
developers have data loss.

Developers of new applications currently do not have concrete refer-
ence implementations that implement these intentions correctly.

4.4.2 Performance: Designing Around Expensive
Operations

As mentioned previously, certain intentions (prepends, inserts, and moves)
are conspicuously absent. We do not observe them in applications we study
and conclude that they are rarely, if ever, used directly. The underlying
reason for this absence is due to well known facts about the costs associated
with these operations.

Attempting to perform a prepend or insert would necessitate shifting
all subsequent data within a file to accommodate new data. The hole-
punching technique mentioned previously lacks widespread awareness
and even then, has strict block alignment and size constraints.
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Move operations are most commonly performed as a data copy fol-
lowed by a delete—the most portable form of a move. When data moves
across file systems or even across devices, a copy must be performed. As
the files an application works with may not all reside on the same file sys-
tem, the copy-and-delete technique offers a simple (and efficient enough)
strategy.

If the move is indeed on the same file system, there should also be a
faster copy on the same file system. For example, remote file systems (e.g.,
NFS) allow copying at the server without multiple round trips to the client.
Therefore, costly data operations are minimized by the copy leaving just a
metadata operation to remove the source file. While some file systems like
ext4 have a method to swap extents (commonly used by defragmentation
tools), they too have strict block alignment and size constraints.

These limitations are well understood by developers and system ar-
chitects. As a result, application design inherently avoids such costly
operations. This preemptive adaptation results in the absence of evidence
for these operations in practice. The knowledge of their costliness is so
ingrained that applications are designed to work around these limitations
from the very beginning.

4.4.3 Performance: Implementing Intentions

Many of the intentions described previously have no unique implemen-
tation. Consequently, a developer is faced with multiple questions when
choosing how to implement them, such as:

1. What primitives does the underlying system support?
Different operating systems support different primitives, and file
systems within an operating system may have special purpose prim-
itives for the task. A developer must be aware of their existence in
order to use them. These are often done after the fact in open source
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code when someone realizes an interface exists and opens an issue
to ask to support it.

2. What sequences of primitives are faster, when multiple exist to per-
form the same task?
Given two implementations that perform the same task, one may not
always be better than the other. Different implementations may work
better on different file systems and may depend on workload charac-
teristics such as page cache occupancy or data alignment. Identifying
the best implementation requires profiling.

3. How to execute the sequence of primitives?
Most primitives supported by file systems are conventionally ex-
posed as system calls. Some file-system specific primitives are mul-
tiplexed over a single ioctl system call. Modern systems support
alternate ways to execute primitives through asynchronous or batch-
ing interfaces. We term such methods of execution as transports—
communicating what primitive needs to execute to the underlying
system.
Transports like io_uring use system calls to enter the kernel but the
primitives themselves are prepared beforehand in user space and
executed within the kernel without repeated user-kernel bound-
ary crossings. However, the overheads of using this transport may
outweigh the benefits depending on the workload. Currently, de-
velopers adopt a use-one-transport approach inside an application
instead of choosing the best transport per task. Identifying the best
transport for a task requires profiling.

4. Can context be provided to help the underlying system accelerate
the operation?
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Applications that understand their workload characteristics may
have additional data that can help the underlying system do a better
job. Developers often use fadvise() to hint at sequential access or
mark cold regions of a file whose page cache contents can be evicted.

Future improvements to file systems can introduce more primitives or
change the dynamics of performance between existing ones. It is challeng-
ing for developers to keep track of these contributions and modify their
applications to take advantage of them.
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5
HSL: A declarative language for File

System Intentions

In the previous chapter (§4), we observed that applications make multiple
system calls to the underlying file system for one specific high-level task—
an intention. Often times, there are multiple interfaces that can be used to
implement the intention, and developers are required to select the most
efficient interfaces. In some cases, a developer prioritizes durability above
performance, and must know the inner workings of the interfaces to ensure
correct crash-recovery behavior.

While selecting the most efficient interface is already challenging for
a single underlying system, the complexity increases significantly when
considering portability across different file systems and operating systems.
Ensuring that the intention is correctly implemented with the desired
performance and durability characteristics on various platforms requires
in-depth knowledge of each system’s nuances and behavior.

From Chapter 3, we concluded that durability is hard to get right. De-
spite adhering to POSIX standards, different file systems behave differently
when fsync() fails. Unless the developer knows (1) the file system the
application is being run on, and (2) understands its failure characteris-
tics, there may be cases of data loss. In this chapter, we describe HSL,
a language with runtime features which does precisely that—detect the
underlying file system at runtime and handle durability correctly.
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However, HSL is not only for getting durability correct. Despite sharing
the same system call interface, file systems vary in how well they perform
for different workloads; some even have special purpose non-standard in-
terfaces. As HSL can detect the underlying file system, it can also improve
performance by choosing the most efficient system calls for that system.

In this chapter, we show how applications can use HSL for those inten-
tions to minimize data loss and improve performance. We start with the
design of HSL (§5.1) followed by implementation details (§5.2).

5.1 Design

The goals of HSL are modeled around the benefits developers obtain by
using high-level languages and their compilers. The compiler generates se-
mantically equivalent correct code for every target architecture it supports
and contains a growing repertoire of optimizations, making it easy to gen-
erate efficient code. HSL attempts to bring those benefits to applications
that frequently interact with the underlying storage system. Specifically,
we design HSL with the following goals in mind:

Reduce Cognitive Burden. HSL should make it easy for developers to
express intent without having to know non-standard details about every
file system they wish to support.

Portable Efficiency. As a portability layer, HSL must use the correct oper-
ations on systems. However, it must also choose the most efficient operation,
which may differ across systems or versions for the same system.

Incremental Integration. Developers should not have to migrate an entire
application to reap the benefits of HSL. HSL should co-exist with existing
functionality in applications that are partially modified.
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Standalone Sufficiency. While capable of being used alongside regular
system calls in existing applications (incremental integration), developers
should also be able to completely switch over to HSL without the need to
use system calls at all.

Extensibility. Developers should be able to easily extend HSL to support
their own specialized file systems with non-standard interfaces.

The remainder of this section describes the design of HSL.

5.1.1 Design Overview

HSL is composed of three main parts: a front, middle, and back end; simi-
lar to modern compiler design [67]. First, applications describe system
interaction in a declarative language (HSL Script) to the HSL Frontend
which performs syntax checks and converts the user-specified script into an
intermediate representation (HSL Bytecode)1. Next, the HSL Middle-end
performs a series of transformations over HSL Bytecode, adding instruc-
tions for correctness and combining multiple instructions for performance.
Lastly, the HSL Backend selects the most efficient mechanism to execute
each instruction. We describe each of the three parts below.

5.1.2 The HSL Frontend

The HSL Frontend consists of a few library functions that allow applica-
tions to interact with HSL, and the declarative language (HSL Script) that
captures system interaction at a high level. The library functions are de-
signed to resemble the APIs of popular SQL relational databases [77, 116].
In C for example, a SQLite [117] developer defines a SQL query and

1HSL Script is meant to be programmer friendly while HSL Bytecode is middle-end
friendly. Performing optimization passes on HSL script would require complex regular
expressions.
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stores it in a string (const char *) variable. The developer then calls
sqlite3_prepare which compiles the string query into SQLite’s internal
representation and returns a reference to it. Note that this compilation
is done at runtime and not when the application is compiled. If the SQL
query requires access to application data stored in variables, the developer
calls sqlite3_bind. Finally, the developer calls sqlite3_step with the
prepared reference as argument, to execute the query and read results.
The HSL frontend provides similar functions: HSL_compile, HSL_bind,
and HSL_execute.

As HSL is intended to be an interface to the underlying system, we
choose to make HSL Script an external domain-specific language (DSL),
independent from any one particular programming language. Applica-
tions that wish to use an embedded or internal DSL can do so through
bindings that internally construct the script similar to object-relational
mappers for SQL. An application provides a string in HSL Script format
to HSL_compile, uses HSL_bind to provide arguments that are used in the
script, and calls HSL_execute to run the script.

While the current version of HSL requires the use of HSL_bind at run-
time, future versions can utilize compiler plugins to auto generate the
boilerplate code and check HSL syntax when the application is being com-
piled. Listing 5.1 describes both versions with a simple example of reading
4096 bytes into a buffer. While HSL can be used as demonstrated, we
intend to use it in situations that require multiple system calls; simple one-
off system calls can still be used natively alongside HSL. The remainder
of this subsection focuses on the HSL Script language and future listings
will use the concise version without boilerplate code.

The HSL Script language is designed to capture system interaction in an
easy to read high-level format. It consists of verbs, collections, statements,
hints, and directives. Verbs declare the action required and may be ac-
companied with arguments (e.g., read, write, copy). When arguments are



111

1 void read_4K(int fd , char *buf) {
2 const char *str = "READ fd, buf , 4096;";
3 HSL_script_t script = HSL_compile(str);
4 HSL_bind(script , "fd", &fd);
5 HSL_bind(script , "buf", buf);
6 HSL_execute(script );
7 }
8
9 // When using compiler plugins to autogenerate

10 // boilerplate code equivalent to the above.
11 void read_4K(int fd , char *buf) {
12 HSL_script_t script(
13 "READ fd, buf , 4096;"
14 );
15 HSL_execute(script );
16 }

Listing 5.1: Using HSL in an application

required, simple forms may use direct arguments as Listing 5.1. However,
as seen in §4, many intentions use the same action but are required to use
different system calls due to the nature of their parameters (e.g., pread(),
preadv()). We introduce collections as a way of decoupling actions from
arguments. A statement combines verbs with their arguments. Hints and
directives allow applications to provide domain-specific knowledge that
cannot be inferred but help in triggering certain optimizations.

Table 5.1 is a summary of HSL’s frontend features. We expand on each
component below, providing examples of what a HSL script looks like for
intentions described in §4.

5.1.2.1 Verbs and Collections

HSL verbs declare the intended action and are named as such. Simple
actions such as reading and writing may share the same names as system
calls but may not necessarily call that exact system call. For example, read,
pread, readv, preadv, and preadv2 all use the same verb—READ.
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HSL Feature Description
Collections { } @ name Use an unordered collection

[ ] @ name Use an ordered collection
Verbs READ Read from one or more files

WRITE Write to one or more files
APPEND Append to one or more files
FSYNC Call fsync on one or more files

COPY Copy entire files or
regions within files

REDOLOG_* Redo Logging Operations: Open,
Read, Append, Sync, Apply

MANIFEST_* Manifest File Operations: Open,
Add, Remove, Commit, Keys, Read

Hints .expect Inform of future read access
or access pattern

Directives .filter Filter a read buffer according
to delimiter and keyword

.filter_endpoint
Like .filter but perform compute closer
to storage
e.g. AWS Lambda closer to S3.

Table 5.1: Summary of HSL Frontend Features: The table provides a
description for each frontend feature. The verbs that work on one or more
arguments use collections to do so.
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1 // A simple single contiguous read.
2 // No collections necessary .
3 READ fd , buf , 4096;
4
5 // Reading contiguous pages of size 4K into
6 // different buffers ( instead of one or more readv ).
7 // ‘records ’ is the name of the collection .
8 READ fd , [buf , 4096] @records;
9

10 // Reading scattered pages instead of
11 // multiple preadv system calls.
12 READ fd , {buf , offset , 4096} @pages;

Listing 5.2: Using collections with verbs: Reading from files.

1 // Appending records to a file
2 APPEND fd , [buf ,sz]@records;
3 // Performing scattered writes to a file
4 WRITE fd, {buf , offset , bufsz}@pages;
5 // Syncing a file
6 FSYNC fd;

Listing 5.3: Writing to files.

1 // Reading 4KB from many different files
2 READ {fd , buf , 4096} @fileset;

Listing 5.4: Homogenous operations on multiple files.

1 // Copying entire files
2 COPY src_fd , dst_fd;
3 // Copying a single range
4 COPY src_fd , dst_fd , src_offset , dst_offset , size;
5 // Copying multiple ranges
6 COPY src_fd , dst_fd ,
7 {src_offset , dst_offset , size}@ranges;

Listing 5.5: Copying data.
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The exact set of system calls eventually used is determined by both the
verb and the arguments. When arguments are enclosed in curly ({}) or
square ([]) brackets, they represent an unordered or ordered collection
respectively. After the closing brace is an @ followed by a name for the
collection, so that applications can bind vectors or arrays as arguments.
Ordered collections have to execute each entry in the order provided, while
unordered collections can be executed in any order. When appending
to a file, the buffers may have to be written in a specific order, requiring
the use of ordered collections. However, when performing a multi-chunk
scattered read (§4.3.1.2), the application may not care about the order
so long as all buffers are filled before it proceeds. In such cases, the
unordered collection would be more appropriate as the absence of an
ordering constraint could increase opportunities for optimization by the
HSL middle-end and backend. Listing 5.2 demonstrates the use of verbs
and collections.

The separation of action from argument aligns with HSL’s goal to re-
duce cognitive burden for developers. By providing all arguments for a
single verb, the developer need not reorganize code for the underlying
system’s limitations. For example, scatter-gather interfaces like readv()
can only accept a maximum of IOV_MAX entries at a time, requiring special
handling for bigger entries. The same listing (Listing 5.2) also demon-
strates how single contiguous reads and multi-chunk scattered reads can
be expressed in HSL. Listing 5.3 demonstrates the use of verbs and collec-
tions towards single file writes, both adding data and overwriting data.
The scattered write is equivalent to LMDB’s implementation of writing
dirty pages from Listing 4.10), where optimizations for contiguous pages
are handled internally by HSL. Additionally, developers can use FSYNC
to sync file data. Unlike the fsync() system call, the HSL middle and
backend will be responsible for proper implementation of file syncing
and providing consistent behavior semantics to the user regardless of the
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1 // Open log for basefile and chunksize
2 // store handle in variable rfd
3 REDOLOG_OPEN rfd , basefile , chunksize;
4 // Read latest stable chunks through rfd
5 // Provide chunk_id and buffer through collections
6 REDOLOG_READ rfd , {id , buffer}@chunks;
7 // Append modified chunks to the log
8 REDOLOG_APPEND rfd , {id , buffer}@chunks;
9 // Sync the log

10 REDOLOG_SYNC rfd;
11 // Apply all updates from log to basefile
12 REDOLOG_APPLY rfd;

Listing 5.6: Using redo logs.

1 // Open a manifest file at the desired path
2 MANIFEST_OPEN mfd , path;
3 // Add file reference with an associated key
4 MANIFEST_ADD mfd , key , path/to/file;
5 // Remove a key (and its file reference )
6 MANIFEST_REMOVE mfd , key;
7 // Persist changes as a new immutable set
8 MANIFEST_COMMIT mfd;
9 // Returns a list of all keys in the set

10 MANIFEST_KEYS mfd , num_keys , keys;
11 // Obtain a file descriptor to read the
12 // file associated with key
13 MANIFEST_READ mfd , key , fd;

Listing 5.7: Using manifest files.

underlying file system. Homogenous operations on multiple files are also
captured through collections (Listing 5.4). Heterogenous intentions such
as copying (Listing 5.5) has its own verb. However, the exact copy work-
load (few large ranges vs many small ranges) is detected and handled
internally by HSL.

HSL is designed to be extensible, allowing developers to add their own
dedicated custom verbs for intentions not covered by us. While intentions
can be inferred through middle-end and backend passes, some intentions
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1 READ fd , buffer , size;
2 .expect SEQ
3 .expect RSEQ
4 .expect STRIDE length

Listing 5.8: Expecting sequential or strided reads.

such as those relating to atomicity and durability require finer control. We
provide dedicated verbs for redo logs (Listing 5.6) and manifests (Listing
5.7). These verbs also reduce a developer’s cognitive burden, offering a
simple failure model that hides the failure characteristics of independent
file systems. Section 5.2 provides details on their internals.

5.1.2.2 Statements, Hints, and Directives

Statements are verbs followed by arguments (which could be collections),
terminating with a semicolon. While the HSL middle and backend can
pick the most efficient system calls for statements based on action and
argument, awareness of how scripts are executed by the application can
lead to better optimizations. Hints and constraints allow applications to
convey such information to HSL. Applications can also introduce new
middle-end passes and backend implementations for custom hints and
directives, allowing for domain-specific transformations.

Both hints and constraints start with a period followed by an identifier
and is associated with the previous statement. The key difference between
hints and constraints is optionality. Transformation passes may use hints
to perform better optimizations, which when absent may result in lower
performance. However, directives are restrictions that the transformation
passes must not violate to ensure desired behavior.

Expect Hint for Better Read-Ahead. While developers prioritize using
data structures that yield sequential access patterns, they cannot entirely
eliminate non-sequential accesses. Traditionally, applications that wish
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1 READ fd , buffer , size , offset;
2 .expect next_offset

Listing 5.9: Expecting scattered reads.

1 READ fd , chunk , chunksz;
2 .filter \n, keyword , callback_fn , SEQ|RSEQ
3 .filter_endpoint s3fs http:// url/to/aws/ lambda

Listing 5.10: Filtered reads.

to inform the kernel of these access pattern use fadvise(). The expect
hint allows developers to do so similarly through HSL. However, unlike
fadvise(), HSL chooses to communicate access patterns only if doing so
is beneficial. Listings 5.8 and 5.9 demonstrate the use of the expect hint in
different multi-chunk reads (§4.3.1.2).

Filter Directive. As described in §4.3.1.3, some applications read data
into their user-space buffers and perform filtering logic, discarding records
that don’t meet some criteria. HSL provides the filter directive to ac-
complish the same, where users can bind criteria and a callback function
to be called for every record matching the criteria; the callback return
value controls future iterations. Additionally, users specify the direction
of traversal–sequential or reverse sequential. The filter directive exposes
a uniform interface, which is beneficial when applications are deployed in
many different environments. While running on a native Linux file system
may see no benefits, remote file systems may offer methods to move com-
pute closer to storage. The filter directive also accepts filter_endpoints
which can execute filtering logic on the remote file system. Developers
can therefore use the same interface and need only add endpoints when
they are available. Listing 5.10 demonstrates the use of the filter directive
with an AWS Lambda function when the underlying store is AWS S3.
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5.1.2.3 Preparing for the next phase

In addition to reducing cognitive burden and being extensible, applica-
tions control the execution of HSL Scripts through HSL_execute. This
allows applications to run existing code with system calls alongside HSL,
satisfying our goal of incremental integration. Additionally, HSL could
provide standalone sufficiency by implementing all existing system calls
following the same action argument separation philosophy.

The frontend converts a HSL script which is a sequence of characters
into a binary representation to avoid transformations through string match-
ing. Additionally, it performs syntax checks and organizes the binary data
such that each statement and following hints and directives are associated.
The binary representation is then passed to the middle-end which can
perform transformations which are then executed by the backend. This
indirection (contrast with directly executing system calls) through HSL
Scripts allows HSL to achieve portable efficiency.

5.1.3 The HSL Middle-end

As the backend operates on each verb independently, the middle-end is
where bytecode is transformed with larger context (multiple verbs). The
HSL Middle-end exists to perform correctness and performance transfor-
mations over the frontend generated bytecode. While the initial bytecode
is a single basic block, transformations that rely on runtime information
inject control-flow instructions to execute other basic blocks. We first de-
scribe how runtime information can be accessed, followed by two example
peephole optimizations.

5.1.3.1 Accessing Runtime Information

The transformations performed by the middle-end currently rely on run-
time information that is in one of two categories: file-system traits or
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file-descriptor traits. The design can be extended in the future to utilize
device traits.

File-system traits. The middle-end can transform bytecode differently
depending on the underlying file system. For example, POSIX makes no
mention of whether directory entries must be persisted when fsync() is
called on a newly created file. While the safest solution is for applications
to always include an fsync to the parent directory, it is unnecessary (added
cost2) on file systems like ext4, XFS, and btrfs. One possible method of
conditionally executing the parent directory fsync is to check the file-
system name or type against a known set at runtime. However, such a
method requires updates to the middle-end pass whenever a new file-
system with similar characteristics is identified. Additionally, file systems
can change their behavior depending on the options provided to them
when mounted. To address these issues, middle-end transformations
check if the underlying file system possesses specific characteristics (traits).
For the same example, the middle-end transformation does not need to
know what the file system is but whether it persists the directory entry
–a trait we call “safe-file-flush”. We require that file systems only change
their traits on remount, or to forcefully close all open file descriptors before
doing so, minimizing frequent querying of traits. However, traits must be
queried on every open system call as even two files in the same directory
can reside on different file systems through softlinks.

File-descriptor traits. While most transformations rely on file-system
traits, there are some that also require information specific to the descriptor.
Using the previously mentioned example, knowing the safe-file-flush file-
system trait is insufficient. Files opened with O_CREAT are not always
created; they may already exist. The transformation should insert an
fsync to the parent directory only if the file is newly created and the file
system does not support the safe-file-flush trait. Other traits include flags

2For devices with volatile caches, some file systems always issue a device cache flush
on fsync() even when there are no dirty pages [37].
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used to open the file descriptor. For example, knowing that a file was
opened with O_SYNC can allow transformations to ignore the fsync that
follows a write.

We identify traits through an ioctl() to a custom kernel module,
which are then cached to minimize lookups.

5.1.3.2 Peephole Optimizations for Standard Verbs

In a one-to-one mapping of verb to backend execution, there is an added
responsibility on the developer to choose the right verbs. For example, the
developer must use the COPY verb instead of a read followed by a write.
However, one of the goals in HSL is to provide optimizations similar to
what modern compilers do for poorly written user-space code. We in-
troduce a copy-verb-combiner pass that looks for read and write verbs
that use the same buffers and replace them with the copy verb. The back-
end can then decide the best way to perform the copy. More such passes
can be added to the middle-end, building a repository of optimizations
incrementally like those found in modern compilers.

5.1.3.3 Peephole Optimizations for User-Defined Verbs

Applications with specific patterns of system calls may build special un-
derlying file systems (or modify existing ones) to support them. These
niche operations are only applicable when on a specific system and do not
require dedicated verbs until a majority of systems decide to support it.
Developers who wish to use such operations can introduce a backend im-
plementation for the verb as well as a middle-end pass to replace relevant
bytecode. Later, we expand on one such optimization—concatenation—in
§5.2.3.2.
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5.1.4 The HSL Backend

The HSL backend is responsible for executing bytecode generated by the
middle-end. It consists of two parts: a fixed interpreter and backend mod-
ules. The interpreter iterates over the bytecode, calling the right backend
module to execute a verb, and handles control flow operations generated
by the middle-end based on runtime parameters. The backend modules
choose the best way to execute a verb when assumptions match the runtime
parameters. While we currently use an interpreter to execute bytecode,
the design supports implementations that transpile and compile or JIT
compile bytecode. Execution through a backend module involves choosing
the right operation supported by the underlying system (Instruction Se-
lection), and the right way of communicating with the underlying system
(Transport Selection). We describe both below.

5.1.4.1 Instruction Selection

A given bytecode operation maps one-to-one to code to be executed. An
optimization must be limited to just that operation and any optimizations
that were to be done across operations should have been done in the
middle-end. Using previous examples, a READ verb could use read() or its
variants, and similarly for WRITE. When ordered collections are involved,
the default implementation would try to reduce the number of system calls
if offsets are contiguous and use the Scatter-Gather variants; unordered
collections sort offsets before applying the same optimization.

Instruction selection for a COPY is more involved, requiring inspection
of arguments at runtime to decide the instructions based on the workload.
Additionally, the implementation uses runtime information such as the
file system being used and page cache occupancy. We provide details on
how COPY is implemented in §5.2.3.1. Similarly, custom verbs for niche
optimizations are also implemented in backend modules.
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5.1.4.2 Transport Selection

A transport is the mechanism through which we execute operations on the
underlying system. While the prevalent transport is POSIX system calls
for portability, HSL is designed to work with different transports. As new
transports are developed, upgrading HSL to one that uses the transport
(or developing your own) allows all HSL code to use the new transport.

An example transport that exists only on recent Linux kernels (since
v5.1) is io_uring [7]. HSL applications can choose to always use io_uring
or let the backend decide when it is beneficial, choosing the best among
multiple transports with runtime information.

Another example transport is through shared memory. Kernel-bypass
file systems as user-space processes use shared-memory ring buffers and
provide a client library for applications to communicate in the designed
protocol. HSL-enabled applications can easily use kernel-bypass file sys-
tems by defining the protocol for communicating verbs in the backend.

We implement the standard system call transport and the io_uring
transport (details in §5.2.3.5).

5.2 Implementation

We implement HSL primarily in C++, using ANTLR to parse the HSL
Frontend. The middle-end and backend are implemented purely in C++,
while the kernel module for trait detection is implemented in C.

We now describe the implementation details of the intentions them-
selves. We first describe two high-level intentions catering to correctly
persisting data: redo logging and manifests. We then focus on details
relating to performance.
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5.2.1 Redo Logs in HSL

As described in §4.3.3.1, some applications require that updates to files
be performed atomically and guarantee that the update survives a power
failure. If implemented correctly, a redo log satisfies these requirements.
While there is no guarantee of arbitrary applications interacting with the
data, threads or processes owned by the application will always follow
the same protocol; redo logs satisfy app-local atomicity and durability.

We start with a description of the semantic guarantees redo logs must
provide, followed by the API HSL exposes. We then discuss the internal
implementation details and strategies for handling different file systems.
Semantic Guarantees
When an operation modifies application state, the application first writes
the modification to the log. The modification must be persisted to the log
before an acknowledgement to the user so that it can be read again in case
of a crash or restart. On restart, the state before a shutdown or crash is
reconstructed by replaying items from the log. As logical redo logs are
application specific, we provide custom HSL verbs for a generic physical
redo log.

Applications that use physical redo logs typically write data to files
in chunks. For example, relational databases like SQLite and PostgreSQL
store B-Trees as files on disk. These databases divide a file into fixed size
chunks (also called pages) which represent B-Tree nodes; this file is called
the base or backing file. An operation that modifies state here translates to
a modification of one or more of these chunks; the modified chunks are
written to the log. Later, for read operations, the newly written content in
the log must be used instead of the chunks in the backing file.

All chunks that are written to the log file as part of an update operation
must be written atomically. Doing so avoids invalid states that occur by
reading old state for some of the chunks from the backing file and new
state for the rest from the log file. As applications may wish to perform
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more than one update as part of a transaction, all chunks modified for all
the updates within that transaction must be written atomically.

If the redo log reports a successful persistence of the chunks, then
future reads of those chunks must serve the new content present in the
log. A corollary is that if the redo log indicates it couldn’t persist the
chunks, then future reads must serve the old content for all chunks as part
of that transaction. Additionally, until the redo log reports a successful
persistence, all previous reads must serve the old content.

Over time, as the redo log grows, future updates may write chunks
that are already present and persisted. The above guarantee of serving old
content now corresponds to the previous persisted chunk in the log, not
the backing file. Generically, we use the term “stable chunk” for chunks
that have been persisted. Initially, the stable chunks are in the backing file.
After successful log persistence, the stable chunk is in the redo log. The
redo log must always serve the latest stable chunks.
HSL API for Physical Redo Logging
Listing 5.6 demonstrates the use of physical redo logs through HSL Verbs.
With REDOLOG_OPEN, a log is opened/created referencing a backing file
(e.g., the main B-Tree file). When chunks from the backing file are to
be modified, they are appended to the log with REDOLOG_APPEND. When
appending one or more chunks, the data must be accompanied by chunk
identifiers. Since the backing file is divided into fixed sized chunks, the
identifiers are the indices of these chunks in the backing file. If chunk 0
is the first chunk starting at offset 0, chunk n starts at n*chunksize. As
the redo log guarantees atomicity, all chunks can be passed via unordered
collections ({}) instead of ordered collections ([]).

While a single update involving multiple chunks can be appended with
collections, as mentioned earlier, the application may wish to issue multiple
such appends (multiple updates in a transaction) before guaranteeing
persistence. We provide a separate command REDOLOG_SYNC to persist the
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log after all appends have been made with REDOLOG_APPEND.
Over time, modified chunks will have their latest versions in the log

and unmodified ones in the backing file; applications will have to read
the latest versions. REDOLOG_READ provides a single interface that returns
the latest stable data for one or more chunks. In line with the semantic
guarantees, chunks that are being written to the log with REDOLOG_APPEND
are not yet considered stable. These chunks will not be served to future
reads through REDOLOG_READ unless they have been first made stable with
a successful REDOLOG_SYNC.

After a HSL script finishes executing, like system calls, it returns an
error code (0 for success). A non-zero code indicates an error. When the
application receives a return code 0 for a script containing REDOLOG_SYNC,
it can assume that the log is persisted in line with semantic guarantees.
We use the REDOLOG_SYNC in its own script to guarantee that the error (if
any) is specific to syncing.

While not part of the semantic guarantees, we provide REDOLOG_APPLY
for practical reasons—to prevent the log from growing unbounded. As
the application receives more and more updates, the log will tend to
have multiple versions of stable chunks; the log may eventually grow
much larger than the backing file itself. The REDOLOG_APPLY is meant to
mitigate this issue by overwriting the chunks in the backing file with
the latest stable content in the log. Doing so makes the backing file the
latest stable reference allowing the log to be truncated—a checkpointing
operation. Regardless of whether checkpointing succeeds or fails, the
semantic guarantees mentioned previously must still hold.
Internals
In the following paragraphs, we describe one backend implementation of
physical redo logging. However, like all HSL verbs, more backends can
be implemented in the future. We begin with a description of the on-disk
layout of our redo log implementation followed by details for each verb.
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The on-disk layout of the redo log starts with a main header, which
contains a unique identifier to this redo log implementation, allowing for
future work to dynamically change the redo log implementation based on
runtime statistics. It also includes information about the chunk size and
the backing file to which it belongs.

Following the main header, the log consists of one or more chunk
groups and each group begins with a chunk group descriptor. To ensure
atomicity, the size of the chunk group descriptor is limited to the atomic
sector size of the underlying storage device, which is typically either 512
bytes or 4096 bytes. The descriptor is structured as an array of 64-bit inte-
gers, with each integer encoding both a chunk ID and an epoch. The chunk
ID and epoch for the ith in the group can be obtained from descriptor[i].
After the chunk group descriptor, the actual content of all the chunks
listed in the descriptor is stored sequentially.
On REDOLOG_READ, HSL searches an in-memory index for each chunk to be
read. If present in the index, we read the chunk from the log. If absent, we
read the chunk from the backing file. On application restart, HSL rebuilds
the in-memory index by reading the chunk group descriptors.
On REDOLOG_APPEND, the next free entry from the descriptor is selected and
marked in use by setting the chunk id and epoch. The chunk id identifies
the chunk in the backing file while the epoch helps identify an atomic
set of chunks; epochs are only incremented on REDOLOG_SYNC. While the
chunk data is written to the log file, the descriptor is only modified within
the application’s user-space memory. An internal index that maintains the
location of latest chunks in the log is not updated yet, so that REDOLOG_READ
operations still read content from previous epochs.
On REDOLOG_SYNC, we first persist the log, which involves fsync(). A
failure here results in a failure reported to the application. However, we
still maintain semantic guarantees. Any failure to persist chunk data is easy
to recover from as the descriptors are only modified in the application’s
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memory. However, as applications can continue operating (instead of
using a crash-on-failure strategy), we also reset the in-memory descriptors.

Once the chunk data is successfully persisted, the descriptors must
be written and persisted so that any future recovery logic can identify
the chunks and their epochs. If all chunks are in a single chunk group,
atomicity is guaranteed as the descriptor occupies a single sector.

If the chunks span multiple chunk groups, multiple descriptors need
to be persisted atomically to prevent breaking semantic guarantees. To do
so, we write the descriptors in reverse, i.e., starting with the last chunk
group descriptor and persist them one by one.

Any persistence failure when writing descriptors also results in report-
ing failure to the application. Writing descriptors in reverse ensure a gap
in the redo log as the most immediate descriptor after the last sync is not
persisted yet. Recovery logic that builds state for future REDOLOG_READs
stops at the gap, discarding content that was reported to the application
as a failure.

In the absence of any failures, the epoch is updated (for future REDOLOG
_APPENDs), the internal index for chunks is updated, and error code 0 is
returned. Any future REDOLOG_READs for chunks that were part of this
REDOLOG_SYNC are now served with this latest content as pointed to by the
internal index.
On REDOLOG_APPLY, the latest chunk data from the log is copied to the
backing file. The backing file is first persisted and any failure terminates
the operation with a non-zero return code. Even if the backing file contains
partial overwrites, semantic guarantees still hold as the log is still available
with the latest data. In the absence of failure, the log is truncated, the
internal index erased (so all reads are served from the backing file), and
the epoch reset to 0.
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Handling Different File-System Characteristics
When persisting any files as part of REDOLOG_SYNC or REDOLOG_APPLY, HSL
takes into account the file system the log resides on. Using runtime infor-
mation (on REDOLOG_OPEN), HSL records the file system for the log and
the backing file. These files are usually on the same file system but we
also handle the case where they are not.

On ext4 data mode, when an fsync() has to be issued, we issue a
second fsync() to avoid failed intentions and detect failures correctly; a
workaround for ext4 data mode delayed error reporting.

If fsync() fails when persisting chunk data, nothing more needs to be
done as our implementation has not yet written the descriptors. However,
if fsync() fails when persisting chunk descriptors, we must perform cor-
rections. For chunks that span multiple descriptors, all descriptors and
groups except the first to be modified are truncated.

For the first descriptor, we revert the page cache contents on ext4 and
XFS as the contents do not match what is on disk. We maintain a previous
“stable” version of the descriptor that is rewritten to revert the contents.
An alternate implementation can open the file with O_DIRECT and read
the sector again.

5.2.2 Manifests in HSL

As described in §4.3.4.4, applications like LevelDB work on a set of im-
mutable files. Any changes to the set (adding new files or removing/re-
placing existing ones) must happen atomically, allowing existing readers
to continue reading an old consistent set of files while new readers start
using the new set. Manifest files—regular files whose data contains the
names of files in the set—are the standard method of doing so. Here, we
describe the semantic guarantees of manifest files, followed by the API
HSL offers. We then discuss internals and file-system specific strategies.
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Semantic Guarantees
We start with an initial set of files and a manifest that contains references
to those files. While some applications may treat the manifest as a set of
files, there may be cases where applications wish to associate some more
information with each file. They could encode that information in the file
name, but doing so makes it difficult to generically identify whether a new
file must remove an existing file or be added as a new entry. Instead, we
associate a key with each file and treat the manifest as a key-value map
where keys are strings and values are filenames (also strings).

The set of files referenced by the manifest are assumed to be immutable.
At any given time, the values (references to files) in the map must exist.
When an application wishes to update the set of files it updates the manifest
either by removing, inserting, or replacing a key-value pair.

Any existing readers of the manifest must not be affected by the update.
For example, if a reader is currently iterating over all files in the manifest
and reading them, it must not read any newly inserted pairs made by a
recent writer. The set of files a reader accesses is determined and fixed
at the time the reader opens the manifest. Therefore, when removing
key-value pairs or replacing files, the files should not be deleted by the
application as a reader of an old manifest version may be using it.

While a writer can update the manifest with one or more modifications,
these updates must not be visible to other readers. However, the writer
itself should be able to see those changes. Once all changes are made, the
writer should be allowed to persist those changes so that they are visible
to future readers. If the writer receives a successful return code for the
persistence, future readers must read from the new version. A corollary is
that failures during persistence must ensure future readers read the old
existing version.
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HSL API for Manifests
Listing 5.7 demonstrates the use of Manifests through HSL. With MANIFEST
_OPEN, a manifest is opened or created at the given path. In the case
of LevelDB, this would be the path to CURRENT; the entry point to its
manifest (expanded on later).

As manifest files contain key-value pairs, MANIFEST_ADD and MANIFEST
_REMOVE add or remove these pairs. As all modifications are only visible
to the writer, replacing a value for a particular key is a remove followed
by an add. The MANIFEST_KEYS verb allows the application to obtain a set
of all keys in the manifest.

Using MANIFEST_READ, applications can obtain a read-only file descrip-
tor for the file referenced by a given key. We initially provided a MANIFEST
_GET verb to obtain the path to the file but removed it as opening of files
and deletions of old files are handled by HSL.

With MANIFEST_COMMIT, all modifications to the set are written and
persisted such that new readers with MANIFEST_OPEN view an updated set.
Internals
In the following paragraphs, we describe one backend implementation of
manifests. We begin with a description of the on-disk layout followed by
any implementation-specific details for each verb.
On-disk layout. The path provided to MANIFEST_OPEN is the root file. It
does not contain they key-value pairs with file references. Rather, like
LevelDB’s CURRENT, it contains information about where readers can
find the key-value pairs.

Like HSL Redo Logs, the root file begins with an implementation iden-
tifier (a 64-bit magic number) to identify this manifest backend implemen-
tation. Followed by the identifier is a list of 64-bit integers representing a
timestamp since some standardized epoch (we use the unix 1970 epoch).
We ensure that the root file is no larger than a single sector for the atomic
sector write property.
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The latest manifest file is obtained by selecting the latest timestamp
and the filename is a combination of magic number and timestamp. Every
manifest file is an on-disk hashmap representation where both keys and
values are strings. The keys are user-provided keys, and the values are
the file references.
On MANIFEST_OPEN, the root file is read to identify the latest manifest file.
Then, the manifest file is read to construct an in-memory hashmap. We
then iterate over all file references and keep open file descriptors to all of
them, allowing us to read any files in the set even if later deleted by other
applications. The entire process is wrapped in a critical section using an
advisory shared file lock on the root file. Additionally, we keep a copy
of the root file (a sector worth of memory) in application memory and
remove any timestamps from it that do not exist as manifest files.
On MANIFEST_READ, we refer to the in-memory hashmap and duplicate
the file descriptor previously opened.
On MANFEST_ADD and MANIFEST_REMOVE, only the in-memory hashmap is
updated.
On MANIFEST_COMMIT, a new manifest file is created with the current
timestamp. The in-memory hashmap is serialized to the manifest file
and persisted. Any failure to persist returns a non-zero error code to the
application. We remove the newly generated manifest file to avoid wasting
space; keeping it does not break semantic guarantees.

Unlike LevelDB, we do not rely on atomically renaming the root file
with a different root file. Instead, after the manifest file is successfully
persisted, we proceed to update the root file in place. We acquire an advi-
sory exclusive file lock on the root file and then add the newly generated
timestamp to its contents. We then persist the root file while still holding
the lock. On successful persistence, we remove obsolete files: file refer-
ences that were removed and the old manifest file. Finally, we release the
lock. Future readers on MANIFEST_OPEN will read the updated root file and
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obtain the new set. We cover persistence failures later.
Note, we do not remove timestamps or rewrite the root file again. In-

stead, as mentioned earlier, MANIFEST_OPEN will remove the timestamps in
its copy of the root file which will be persisted on the next MANIFEST_COMMIT.
While the root file is the size of a sector and can accommodate 63 times-
tamps (assuming 512B sector and first 8 bytes for the magic number),
regular usage will limit timestamps to two.

After all changes are complete, the application persists the changes
with MANIFEST_COMMIT. During this operation, with the current timestamp
a new manifest file is created and the hashmap is serialized to disk.
Handling Different File-System Characteristics
Like REDO_LOGs, persistence of individual files is handled with correct use
of fsync()—double on ext4 data mode.

We handle the case where directory entries on ext4 can silently dis-
appear (§3.1.2.1). To ensure correct behavior on ext4, we first force a
checkpoint operation in MANIFEST_COMMIT, before acquiring the exclusive
lock and updating the root file. When running on Linux 5.14 or later,
we use ioctl(EXT4_IOC_CHECKPOINT) to trigger the checkpoint from user
space. Unfortunately, on older versions, apart from writing a custom ker-
nel module to trigger checkpoints, we must wait 30 seconds on a default
mounted ext4 file system for the metadata (directory data blocks) to be
written to disk. Once the checkpoint has completed, we re-read the direc-
tory entries. Only after we confirm that the manifest file and all entries it
references are not missing, we proceed to update the root file.

Since updating the root file does not change directory entries (unlike
LevelDB atomically renaming CURRENT), we need only ensure correct
fsync handling. Like REDO_LOGs, when on ext4 and XFS, we revert the
root file’s contents in the page cache if fsync() fails, while holding the
exclusive lock. As the root file is always less than a sector, the on-disk state
is guaranteed to be the old state and does not need special handling.
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5.2.3 HSL Features for Performance

5.2.3.1 Instruction Selection with COPY

As described in §5.1.2, HSL provides a COPY verb for direct use and also
has a peephole optimization pass to transform existing code that it detects
to be a copy. As there are multiple ways to copy data from one file to
another, we first describe them and then explain how HSL chooses the
right implementation.

The simplest (and oldest most portable) method to copy data is a
read()+write(). Data is first read from the source file into a buffer and
the buffer is then written to the destination. To avoid unnecessary copies,
sendfile() accepts both the source and destination file descriptors and
writes a given number of bytes from source to destination3. To take
advantage of copy-acceleration techniques such as copy-on-write extent
sharing or server-side copying, copy_file_range() was introduced in
Linux 4.5 but majorly revised in Linux 5.3.

Deciding which of the above three approaches to choose can depend on
whether the files are on the same file system. As copy_file_range() is un-
supported on different file systems4, we default to sendfile() as it avoids
multiple copies and user-kernel transitions. When on the same file system,
the type of workload matters. As mentioned in §4.3.4.2, we observe two
distinct workloads: few large range copies and many small range copies.
Through benchmarking (shown in §6.2.2.1 when evaluating COPY), we
observe copy_file_range() outperforms the rest for large range copies.
However, for many small range copies, it depends on the file system
and page-cache occupancy. As ext4 does not perform such acceleration,
we default to copy_file_range(). XFS and Btrfs perform copy accelera-

3Early versions of Linux only allowed the destination descriptor to refer to a socket.
As of Linux 2.6.33, file descriptors can be used as well.

4As of Linux 5.19, file system copies can be achieved on different file systems provided
that they are of the same type. However, acceleration is limited as they may not reside
on the same underlying device.
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tion through copy-on-write extent sharing, previously available through
ioctl_ficlonerange(), internally, always using remap_file_range() for
the copy. As our benchmarks show that remap_file_range() performs
worse for small range copies if the data is in the page cache, we add
heuristics to choose between copy_file_range() and sendfile(), using
cachestat()5 to guage cache occupancy.

5.2.3.2 CONCAT: A User-Defined Verb

As HSL is designed to allow user-defined verbs which replace existing
verb sequences through peephole optimizations (§5.1.3.3), we provide
an example of its usage for concatenating files. The concatenation of
files—commonly performed by the coreutils cat utility—reads data from
multiple files and appends them to a destination file in a given order. In
terms of a copy workload, the concatenation belongs to the few large range
copies category.

The existing coreutils cat utility tries to use copy_file_range(), a
try-by-failure approach that falls back to read()+write(). However,
copy_file_range() has a restriction that the destination file descriptor
cannot be opened with the O_APPEND flag. While HSL applications can
benefit from using the COPY verb as described previously, some file systems
may support faster methods of concatenation. The operation itself is not
as widespread to necessitate a new verb; too many verbs can increase
cognitive burden. Instead, such niche optimizations can be performed
internally by transforming the COPY verbs into a CONCAT verb in the middle-
end for file systems that have such interfaces. Currently, we inject code
in the middle-end to test whether the file-system matches some known
file systems that can execute the CONCAT verb. An alternate method for
the future would be to define it as a trait—concatenation acceleration. We

5Available since Linux 6.5
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now describe how CONCAT is implemented in the backend, focussing on
two FUSE file systems: s3fs and gcsfs.

Cloud object storage such as S3 and GCS provide FUSE file-systems:
s3fs and gcsfs respectively. While FUSE support for copy_file_range()
has been available since 2018, s3fs and gcsfs do not support it yet. Both S3
and GCS could implement an efficient copy_file_range() which creates
a multipart upload that references the source objects. However, until s3fs
and gcsfs officially support the implementation, one could modify the file
system and use copy_file_range(), or directly implement the multipart
upload in the HSL backend. Furthermore, multipart uploads require that
the parts be greater than 5MB; small files will have to be downloaded,
concatenated, and re-uploaded. Although concatenation for S3 cannot
be further optimized, GCS has a dedicated concatenation interface: the
compose() API.

GCS supports compose() that takes between 1 and 32 objects and cre-
ates a new composite object. Additionally, it does not have the 5MB con-
straint seen with multipart uploads. Unfortunately, despite GCS support-
ing compose(), the FUSE file-system gcsfs does not. When using gcsfs,
the HSL backend directly issues the compose() request to GCS bypassing
gcsfs. Future implementations can modify gcsfs to accept an ioctl() for
compose and have the HSL backend invoke the ioctl instead. Internally, if
the number of files exceed 32, HSL uses intermediate files and finally calls
compose() on the intermediate files—a reduce operation.

5.2.3.3 The .expect Hint

Conventionally, when an application wants to tell the kernel how it expects
to use a file handle, it uses the fadvise() system call so that the kernel can
employ an appropriate readahead and caching techniques. Among the
fadvise() flags, FADV_SEQUENTIAL is used for forward-sequential accesses
and FADV_WILLNEED (also used by readahead()) is used for arbitrary ac-
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cess. We do not focus on the other flags as they either disable readahead
or evict pages. Our current implementation focuses on ensuring future
reads are already in the page cache, using the EXPECT hint in HSL.

As described in §5.1.2.2, hints unlike directives in HSL can be ignored.
We ignore hints when the underlying system already performs the reada-
head by default. Sometimes, arbitrary accesses happen to be sequential
or strided within the thresholds of the default readahead logic. In such
situations, an fadvise() is unnecessary.

Additionally, hints are only helpful if the next expected read request
appears after sufficient time for the system to complete the expected reada-
head. If the time between reads is significantly lower than the time required
to read from disk, the fadvise() is wasteful, adding an extra system call
overhead. Since measuring time since the last fadvise() or querying the
cache with cachestat() before every read adds overhead, we use non-
blocking reads. The preadv2() with RWF_NOWAIT sets errno to EAGAIN if it
has to read data from backing storage, a signal that the fadvise() was not
effective. The backend then switches to an implementation that ignores
the hint, which can periodically switch back to see if things change.

5.2.3.4 The .filter Directive

As described in §4.3.1.3, applications do not always require all the data
they read. As shown in Listing 4.8, they make multiple system calls, filling
up a buffer, only to discard records that don’t meet some criteria. The HSL
FILTER directive is an alternative way to accomplish the same in HSL.

When the HSL backend detects a FILTER directive associated with a
READ verb, it executes the callback function. Additionally, we also use the
same logic associated with the EXPECT hint, calling fadvise() with the
necessary flags depending on the access pattern provided. A forward-
sequential pattern uses FADV_SEQUENTIAL and the reverse uses FADV_WILL
NEED calculating the offset based on buffer size.
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As some filtering workloads are performed over objects stored in the
cloud exposed via FUSE (s3fs, gcsfs), reading extra data increases network
egress costs and—depending on network bandwidth—runtime. If a filter
endpoint is provided, the backend first checks if the file is cached locally to
use the local approach mentioned above. If the data must be fetched over
the network, the provided endpoint is used to run the filtering logic at the
source before returning the filtered items, minimizing network traffic.

We currently implement support for AWS Lambda functions as end-
points. For our filtering workload, we deploy a function written in Python
that minimally accepts the object name, offset, direction of scan, target
buffer size, delimiter, and keyword. While the function is limited in the
number of bytes it returns after filtering (the target buffer size), it can read
much more before filtering. For example, if a given word only occurs on
the first and last line of a file, a single lambda invocation would suffice
provided both lines fit within the buffer.

However, we identify two limitations with AWS Lambda as endpoints.
First, the functions are expected to run within a certain time limit (up to
15 minutes [66]). Second, the function output must be less than a given
limit (6MB or 20MB depending on whether requests are synchronous or
not). Therefore, the size of buffers used by AWS Lambda endpoints share
these limitations. While we demonstrate the effectiveness of filters with
AWS, other cloud providers or even self-hosted object storage (e.g., ceph)
may not have these limitations. When provided with a large buffer, the
backend will issue multiple requests that satisfy the limits.

While network egress costs are a factor, applications that optimize
for latency might still perform faster if they have a fast network connec-
tion. The current implementation always uses the available endpoint if
data needs to be fetched. However, a future backend can implement a
dynamic selection between local and endpoint versions depending on user
requirements.



138

5.2.3.5 Using the io_uring Transport on Collections

As described in §4.3.1.2, multi-chunk reads, writes, and operations on
multiple files involve multiple system calls. The scatter-gather interfaces
(*readv(),*writev()) are also limited to a maximum of IOV_MAX entries
(1024). Collections in HSL allow us to capture all the arguments necessary
to perform these operations irrespective of the underlying system’s limi-
tations. The HSL backend can then choose the appropriate transport to
execute the verb associated with the collection. We currently implement
two transports: the default system call transport and io_uring.

When deciding whether or not to use io_uring, the HSL backend cur-
rently considers the size of the collection, target file system, and whether
write operations are involved. We do not use cache occupancy as the
cachestat() system call works on contiguous ranges; scattered reads
or writes would require multiple calls to determine cache occupancy in-
creasing overheads especially for cached operations. As using io_uring
requires one extra system call, the collection has to be larger than one
entry. While there is no limit on the size of a collection, io_uring has a
limit of 32K entries. HSL initializes the ring with 32K entries and operates
on larger collections in chunks. Additionally, the ring uses registered file
descriptors to avoid descriptor lookups for every operation.

For read operations, we always prefer the io_uring backend if the
number of chunks is greater than or equal to 8. While uncached reads can
still benefit from device parallelism even if the number of chunks is less
than 8, it would hurt applications that perform few small cached reads.
The speedup is more meaningful for larger number of chunks.

Regular writes that do not bypass the page cache through DIRECT_IO
always write to the page cache, without any device io. However, the same
logic we applied for reads does not apply entirely here. We benchmarked
buffered writes through io_uring and found them to always be slower
than individual system calls for each entry for ext4. Even though system
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call transitions and descriptor lookups are minimized, writes to ext4 are
processed through io workers and not executed on the ring inline. These
writes are offloaded to a task queue—a large and unnecessary overhead.
Future versions of io_uring may support flags to force inline execution.
However, until then, we avoid using io_uring for writes to ext4.

Using the same benchmark, we observed that XFS and Btrfs can benefit
from io_uring but only for small chunk sizes (4K or less) and a large
number of chunks. Using io_uring on XFS is only beneficial if the number
of chunks are greater than 1024; 16K for Btrfs. Additionally, the io_uring
operations must be chained (ordered) and XFS requires a ring with the
SINGLE_ISSUER and DEFERRED_TASK flags to avoid slowdowns. We main-
tain two separate rings: one with the flags for XFS and the other for Btrfs
and read operations.
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6
Evaluation

We now evaluate the benefits of using HSL. Specifically, attaining our
design goal of portable efficiency—generating correct and efficient code
for a given system.

We begin with a correctness evaluation (§6.1) to test if HSL takes into
account the individual failure characteristics of each file system, thereby
minimizing cases of data loss and corruption. We then proceed to evaluate
the performance aspects of HSL (§6.2) to see if it uses the best available
implementation for different file systems; especially when there is no
single fast solution for all systems.

6.1 Correctness Evaluation

In this section, we focus on the atomicity and durability guarantees pro-
vided by the applications using the REDO_LOG and MANIFEST verbs. We
begin with a description of a general methodology we follow when evalu-
ating both classes of applications, followed by specifics and findings for
each.

6.1.1 General Fault-Injection Methodology

As the majority of this section deals with correctness in the presence
of failures, we describe the common fault-injection method used in our
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experiments; specifics are mentioned in individual experiments. We run
our experiments on Ubuntu 18.04 with Linux Kernel version 5.2.111.

For any application (using HSL or applications we compare against),
we construct a pre-workload, workload, and post-workload script. The
pre-workload script initializes state for the application workload; it may
involve running the application to do so (e.g., creating a database table
and populating some rows). The workload script performs the actual
operations we wish to evaluate. For example, modifying a few entries. The
post-workload script inspects the application state. In the same example,
reading all rows and comparing against initialized state. The details of
each script are mentioned in their respective experiment.

Our goal is to inject failures at the block or sector level of storage
devices. However, using a fault-injection tool such as dm-loki (§3.1.1.2) is
insufficient for deterministic fault injection. While applications may write
the same content to the same files as per the pre-workload and workload
scripts, the blocks allocated by the file system may be different. Similarly,
the directory entries for the files an application creates may not reside on
the same directory data blocks. Instead, we use CuttleFS (§3.2.1)—a FUSE
file system designed to inject faults deterministically.

CuttleFS can be configured to fail the ith write to a device block or
sector associated with 1) a specific offset of a file or 2) a directory entry.
CuttleFS can also be configured to emulate the behavior of specific file
systems after a device block or sector write failure. The exact behavior
and file systems are described in each experiment.

We start by mounting CuttleFS in trace mode, to log all modifications
and accesses by the application. We run the three workload scripts, collect
a trace of all device writes (and associated file offsets or directory entries)
during the workload phase, and verify that the trace output is determinis-
tic. We then repeat the experiment multiple times, each time failing the

1While kernel version should not make a difference when emulating behavior, the
behavior we emulate was studied on systems belonging to that version.
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ith device write. To do so, each experiment first runs the pre-workload
script and then changes CuttleFS to fault mode with a specific file-system
behavior, configuring it to fail the ith device write (given as a file offset
or directory entry). We then run the workload script in this fault mode.
Finally, we disable fault mode and run the post-workload script. As there
may be changes in the execution environment such as pages being evicted
from the page cache, we repeat the same set of experiments to account
for such behavior. The exact changes in the execution environment are
experiment specific and described in their respective sections.

If the application is notified of the failure, it may choose to ignore
it, handle it by attempting to fix and continue, or crash. Irrespective of
the decision, if the workload receives a successful return code from the
application, the post-workload must see the new state. If the workload
receives a failure return code, the post-workload must see the old state.
The above two scenarios are the only valid outcomes; the rest are invalid
outcomes that can be categorized as follows:

Old Value. When the workload receives a successful return code but post-
workload sees the old state (data loss).

False Failure. The workload receives a failure return code but the post-
workload sees new state. While seemingly innocuous, applications that do
not perform idempotent operations and choose to retry failed operations
can work incorrectly. For example, decrementing a particular value can
result in a double decrement.

Corruption. Irrespective of the return code, if the post-workload does not
see new state or old state, we term it as a corruption. This could be due to
missing keys, missing values, newly found keys or values that were never
part of the pre-workload and workload scripts, or the inability to access
the database altogether.
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6.1.2 Evaluating REDO_LOG

In this section, we evaluate physical redo logging. We ask the question:
Does HSL’s REDO_LOG lead to invalid outcomes? We build our own ap-
plication that uses REDO_LOG and compare against two applications that
use physical redo logging: SQLite configured in write-ahead-log (WAL)
mode, and PostgreSQL’s default configuration.

Methodology
We focus on injecting data-block failures when applications append to the
log2. We configure CuttleFS to emulate ext4 (ordered and data mode),
XFS, and Btrfs. Their reactions to data-block write failures are as follows:

Ext4 in ordered mode and XFS behave the same. They both mark the
dirty pages clean but the content in the page cache differs from what is
on disk; the page cache contains the latest write. Both file systems also
respond to the failure immediately by returning a failed fsync() return
code to the caller.

Ext4 in data mode works similarly in terms of marking the page clean
and containing the latest write in the page cache. However, as the file
system puts data into the journal first (and we do not inject journal block
failures), the first fsync() succeeds but the next one fails.

Btrfs also marks the page clean but reverts the page cache contents so
that it matches the disk. It also responds to the failure immediately by
returning a failed fsync() return code to the caller.

After a fault, we emulate two execution environments. The first evicts
clean pages from the page cache while the second retains them.

Applications and Workloads. For SQLite and PostgreSQL, we initialize
the database and create a single two-column table (for keys and values)

2Other block failures include journal and metadata block failures. However, journal
failures lead to file-system unavailability and metadata failures do not result in fsync()
failures (§3.1.2).
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and populate a few rows in the pre-workload script. We run two sets
of experiments corresponding to two different workload scripts; the first
inserts a new key and value, while the second updates an existing key’s
value. The post-workload script dumps all keys and values. Using the
workload return code and post-workload output, we classify the outcome
as valid or invalid using the previously mentioned categories.

To evaluate HSL’s REDO_LOG, we create an application (Hslog) that uses
HSL to update N chunks of a file within a single transaction. While not
a database, Hslog exercises a fundamental building block in databases—
atomically updating a file. Applications like SQLite and PostgreSQL use
data structures such as on-disk B-Trees for each table. Updating or insert-
ing rows involves modifying multiple B-Tree nodes and failure to persist
all nodes can result in invalid outcomes. Like B-Tree nodes, our application
updates chunks in a file. In SQLite and PostgreSQL, failure to persist all
nodes can result in invalid outcomes, specifically the ones a post-workload
cares about—ensuring keys and values are as intended. There could be
cases where a B-Tree node failure did not result in an invalid outcome be-
cause of how the application interprets the data (e.g., redundancy). Hslog
has a stronger constraint—every chunk (B-Tree node) must be persisted
or every chunk must be reverted depending on success or failure.

For Hslog, the pre-workload script initializes a file with a few chunks.
We run four different sets of experiments corresponding to different work-
loads that differ in number of transactions and failure handling. The first
two workloads attempt to update N chunks in a single transaction and
can either retry or crash on transaction failure. The next two workloads
attempt two transactions, i.e., updating the same N chunks again in a
different transaction and also differ in failure handling like above. The
post-workload script examines the values of each chunk.
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Findings
We run each application according to the workload scripts on CuttleFS

and present our findings across different file-system post-failure behaviors
in Table 6.1. For all applications, we observe no invalid outcomes on Btrfs
as it reverts page cache contents and reports the error immediately. For the
rest, we go through the failures on a per-application basis. The findings
for SQLite and PostgreSQL are taken from Section 3.2.3 and Table 3.2, but
described here again.
SQLite when configured in wal mode writes the modified b-tree pages to
its write-ahead log. On ext4 ordered mode and XFS, it exhibits False Fail-
ures on App=Restart with BufferCache=Keep; i.e. when SQLite restarts
but the page cache contents are not evicted. On block failure, SQLite is
notified of the fsync() failure and returns a failure to the user (expected).
But when SQLite restarts, it recovers from the log which has the new
contents in the page cache, resulting in the new state; an invalid outcome.

On ext4 data mode, there is no false failure as the fsync() failure is not
reported immediately. However, during a checkpoint operation, SQLite
writes the contents from its write-ahead log to the main database. As data-
block failure is not reported immediately, SQLite proceeds to truncate the
log. When the pages are evicted from the cache and SQLite restarts, the
latest content is lost which leads to corruption.
PostgreSQL in default configuration also uses a write-ahead log like
SQLite. On ext4 ordered mode and XFS, it exhibits False Failures for
the same reasons as SQLite. Additionally, it also exhibits False Failures
when pages are evicted (BufferCache=Evict). As mentioned previously,
not all data-block failures can lead to invalid outcomes. Depending on
which block experiences the fault, PostgreSQL either accepts or rejects the
log entry.

On ext4 data mode, PostgreSQL exhibits Old Value and Corruption
errors. As PostgreSQL maintains user-space buffers, these errors man-
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ifest only on BufferCache=Evict with App=Restart. Similar to SQLite,
PostgreSQL’s checkpoint operation assumes successful fsync() due to de-
layed error reporting and the log is truncated. When PostgreSQL restarts,
it rebuilds its user-space buffers from the on-disk database which con-
tain the old contents (as latest content has been evicted). Unlike SQLite,
sometimes a value can occupy a whole page leading to the Old Value error.
Hslog does not have any invalid outcomes. When run on ext4 data mode,
Hslog issues two fsync() system calls to force data blocks to be written to
their eventual location, thereby also providing immediate error notification.
In all file systems except Btrfs, as the page cache contains the latest contents
even after failure, Hslog reverts the content of specific blocks—the chunk
descriptors (§5.2.1), ensuring stable data is used to proceed further or on
recovery. As the descriptor blocks are never greater than the underlying
device’s sector that provides atomicity, we do not encounter False Failures.

Table 6.2 provides more details on experiments with Hslog. We run a
total of 648 experiments divided based on workload (number of transac-
tions and error handling strategy) and file-system failure characteristics.
In all cases, we only observe valid outcomes where a successful run results
in latest state, and a failed run results in old (or previously stable) state.
We describe them below.

On tx=1 and a error handling strategy to crash, Hslog immediately
crashes upon receiving the failed returncode from HSL. The only valid
outcomes with new value are those where no faults were injected. The
multiple runs (4) were for different configurations deciding whether or
not and when to evict the page cache. The remaining valid outcomes,
where faults are injected, all result in a failure and retain old state. With a
retry error handling strategy, the number of valid new value states increase
as the retry succeeds (when the faulty block is no longer faulty). There
are a few (8) valid old value states however, due to reaching a maximum
retry limit (when the faulty block remains faulty). We observe the same
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Implementation #Writer
States

#Reader
States #Total #Valid #Invalid

HSL Manifests v1 9 8 24310 9285 15025
HSL Manifests v2 8 7 6435 6435 0

Table 6.3: Findings for Evaluating Atomicity on HSL Manifest: The table
shows the number of valid and invalid outcomes for two HSL MANIFEST
implementation versions.

trends for tx=2, but with more experiments due to the increased data
block writes for two transactions.

To conclude, Hslog uses runtime knowledge of file-system characteris-
tics to avoid the invalid outcomes observed in SQLite and PostgreSQL.

6.1.3 Evaluating MANIFEST

In this section, we evaluate the atomicity and durability guarantees of
MANIFEST implementations. We ask the question: can HSL’s MANIFEST lead
to invalid outcomes? We perform two sets of experiments. The first an-
swers the above question in the absence of any failures, to identify and cor-
rect invalid outcomes with simultaneous readers and writers. The second
answers the same question in the presence of directory data-block failures
which cause directory entries to silently disappear on ext4 (§3.1.2.1).

6.1.3.1 Evaluating MANIFEST Atomicity

In the absence of failures, but with simultaneous readers and writers, our
implementation of MANIFEST must provide the user with an atomic set of
files (and their contents) as per the contents of the MANIFEST. In this section
we evaluate whether the above characteristic holds true on an application
that uses HSL’s MANIFEST implementation. As part of this evaluation, we
identified issues with HSL’s implementation and fixed them, resulting in
two versions; we evaluate each of them.



150

Methodology
While no faults are injected, we reuse some of the common methodology
described previously; specifically, the use of pre-workload, workload, and
the terminology of valid and invalid outcomes.

The pre-workload script creates an initial set of files and a manifest.
The workload script runs a reader and writer application concurrently.
The reader application opens the MANIFEST, and then reads each file it
refers to. The writer updates the MANIFEST to include an additional entry,
and also replaces an existing entry. The reader within the workload script
replaces post-workload as it dumps the contents it reads which is then
analyzed to classify the outcome.

To exhaustively explore all possible concurrency issues, we inject custom
breakpoints at locations inside the reader and writer applications, and inside
HSL’s MANIFEST implementation. We limit the breakpoints to locations
that interact with HSL or with the underlying file system as those are the
places where changes become visible. We first run the experiment in trace
mode where readers and writers print the location of the breakpoint and
continue.

From the given breakpoint traces, we generate all valid interspersed
reader-writer combinations. We then recompile readers and writers to
pause themselves by raising a SIGSTOP at the breakpoint. We build an
orchestrator script that issues SIGCONT to the right process based on the
given combination.

We re-run the experiment multiple times, with the workload script
using one of the reader-writer combinations each time. We then analyze
the output of the reader to identify if it read a partial or consistent view of
the manifest.

Findings
We created readers and writers for both versions of HSL’s MANIFEST imple-
mentation and present our findings in Table 6.3. In the first version, the
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Valid Outcome Invalid Outcome
Inode

Dealloc. Total rc=0
New

rc=-1
Old

rc=0
Old

rc=0
Corruption

LevelDB
Manifests

Immediate 1728 96 0 96 1536
Delayed 2816 640 0 640 1536

HSL
Manifests

Immediate 448 56 392 0 0
Delayed 448 56 392 0 0

Table 6.4: Findings for Evaluating Durability on HSL Manifest: The
table shows the number of valid and invalid outcomes on two applications
exercising the use of MANIFEST files: LevelDB and Hslmanifest. For each
application we provide two results depending on whether an unlinked
inode is deallocated immediately or later. We group columns based on
valid and invalid outcomes as described in 6.1.1.

number of breakpoints in writers and readers were 9 and 8, resulting in
24310 possible combinations out of which only 9285 were valid outcomes.
The remaining 15025 were invalid due to a single issue: the reader tries to
read a file that does not exist any more.

We fixed the above problem by ensuring the reader always keeps open
file descriptors to each of the files the manifest refers to. The reader does
so inside a critical section when reading the manifest itself (§5.2.2).

In the second (fixed) version, the number of breakpoints reduce by one
in both readers and writers as they now appear within the critical sections.
In the resulting 6435 combinations, we observe no invalid outcomes.

6.1.3.2 Evaluating MANIFEST Durability

Our file-system study showed that directory entries can disappear on
ext4 (§3.1.2.1). In this section, we evaluate whether HSL’s MANIFEST im-
plementation (the second version without any invalid atomicity outcomes
from the previous section) is resilient to directory data block failures. As
we did not study the repercussions of missing directory entries on appli-
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cations earlier, we also provide an evaluation of LevelDB under the same
failures.

Methodology
We focus on injecting block failures in directory data-blocks, i.e., blocks
belonging to a directory that contains the name-to-inode mapping. To
recapitulate, ext4 writes directory data blocks during periodic checkpoint
operations. If the directory data-block write fails, ext4 marks the page as
!uptodate which causes the stale block to be re-read from disk; the stale
contents do not have the new entry. We configure CuttleFS to emulate
this behavior. In trace mode, CuttleFS logs all directory entry updates i.e.,
adding new files, removing existing files, and replacing (renaming) files.
In fault mode, during checkpointing, CuttleFS skips one or more of the
updates.

As checkpointing happens periodically, we run multiple experiments
triggering a checkpoint at different locations of the workloads. In addi-
tion to checkpointing, we emulate two execution environments. The first
deallocates inodes immediately, representing behavior for files that do not
have any open file descriptors or other hard links. The second delays inode
deallocation as one of the above conditions may hold true. For example,
an external process may snapshot the system (increasing the hard links of
many files), or even just invoke ls -l at that instance which results in an
open file descriptor.

We now describe the pre-workload, workload, and post-workload
scripts for both applications: LevelDB and Hslmanifest.
LevelDB. The pre-workload script initializes a LevelDB database with a
few (1000) key-value pairs. The workload script updates some (100) key-
value pairs, followed by a compaction. The post-workload script re-opens
the database and dumps all key-value pairs.
Hslmanifest. To evaluate HSL’s MANIFEST, we create an application (Hslman-
ifest) that uses HSL’s MANIFEST verbs to read and update a manifest. While
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not a key-value store like LevelDB, Hslmanifest exercises the properties
LevelDB requires from manifests—viewing a consistent set of immutable
files.

The pre-workload script creates a set of files and initializes a MANIFEST
with references to them. As described in Section 5.2.2, applications asso-
ciate some key with the file reference. For example, LevelDB lists the set
of Sorted String Table files (SSTs) that make up each level. In Hslmanifest,
a key such as L3IDX5 could refer to the fifth table in level 3. The pre-
workload script initializes the manifest with three references: k1:file1,
k2:file2, and k3:file3.

The workload script updates the MANIFEST by replacing a file for an ex-
isting reference (k1:file1→k1:file100), adding a new reference (+k20:
file20), and removing an existing reference (-k2:file2).

The post-workload script reads the MANIFEST and the files it references.
Using the above examples, a successful update by the workload script
should result in a MANIFEST with references: k1:file100, k3:file3, and
k20:file20. Additionally, we ensure the contents of each file are unique,
allowing us to verify that the data corresponds to the correct file.

Similar to evaluation of REDO_LOGs, Hslmanifest has a strong constraint.
While LevelDB identifies valid and invalid outcomes by analyzing key-
value outputs, the post-workload in Hslmanifest examines the MANIFEST
and its references directly.

Findings
We run both applications according to the workload scripts on CuttleFS
and present our findings in Table 6.4. For both applications, we provide
two sets of results corresponding to whether inodes were deallocated
immediately or not. We walk through the results for both, starting with
LevelDB.
LevelDB. For both immediate and delayed inode allocations, we observe
some (96 and 640) valid outcomes, some (96 and 640) invalid outcomes as
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old values, and many (1536) invalid outcomes as corruptions. As the fault
is never detected and reported, LevelDB is never aware of any error and
exits successfully. Therefore, there are no valid outcomes where LevelDB
fails (rc=-1) and reverts to the old state.

The number of valid and invalid old value outcomes jump from 96 to
640 due to the change in environment, i.e., delaying inode deallocation that
leads to more experiments. The old value errors stem from how LevelDB
updates its MANIFEST file. It maintains a text file named CURRENT that
contains the filename of the latest MANIFEST (similar to a softlink but
implemented as a regular file). When the manifest has to be updated,
LevelDB does not modify either of the files. It creates a new MANIFEST.1
and a new CURRENT.1 that contains the filename MANIFEST.1. Finally, it
renames the CURRENT.1 to CURRENT, so new readers atomically view a new
manifest. Unfortunately, if the rename fails (as caught by our experiment),
it leads to invalid outcomes as old values.

Regardless of the change in environment for inode deallocation, the
number of corruptions are the same (1536). LevelDB failed to open the
database in the post-workload script, logging the error: “CURRENT points
to a non-existent file”. The errors arise from two situations, explained
using the same example above as follows:

1. The rename of CURRENT.1 to CURRENT succeeded, but the directory
entry MANIFEST.1 disappeared.

2. The rename of CURRENT.1 failed (i.e., CURRENT.1 directory entry dis-
appeared) but the previous MANIFEST was successfully deleted while
cleaning up old files.

Hslmanifest. We do not observe any invalid outcomes in Hslmanifest.
Out of 448 experiments, 392 fail and revert to old state, and a small amount
(56) succeed—both valid outcomes.
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HSL accomplishes this by forcing a checkpoint as part of the MANIFEST
update protocol and re-reading directory entries to ensure they are present
before the final update. Any missing directory entries are detected and
reported as errors immediately. In such situations (rc=-1), Hslmanifest
reverts back to the old state—a valid outcome. Additionally, the final
update is not a rename like LevelDB does with CURRENT and CURRENT.1.
Hslmanifest performs an in-place write to its equivalent of CURRENT within
a critical section and if required, reverts page cache contents on fsync
failure similar to REDO_LOG.

To conclude, while Hslmanifest has strict constraints and fails due to
injected faults, it ensures that—unlike LevelDB—any reported success
truly contains the new state.

6.2 Performance Evaluation

In this section we evaluate the performance benefits of HSL. As HSL is
responsible for choosing the best underlying interface for performing
a task, we first run experiments to showcase the benefits of each HSL
feature (§6.2.2). Next, we perform case studies on real applications that
interact with the file system (§6.2.3), describing the steps to modify them
and the performance implications of using HSL.

6.2.1 Methodology and Experimental Setup

To showcase the benefits of each HSL feature, we have at least two imple-
mentations: one using the HSL feature and another that represents the
usual method. When there are multiple solutions, we add them to the
implementations we evaluate. As each HSL feature shines in different
workloads, we construct different workloads to evaluate them indepen-
dently; they are described when presenting findings for the feature. Our
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goal when evaluating HSL features is to highlight sensitivity to the runtime
environment, and show that HSL takes advantage of that sensitivity.

When performing case studies on applications, we evaluate the unmod-
ified application against a version that uses HSL. We evaluate the coreutils
cp utility, a WAV file audio trimmer, a Merkle proof generator, LMDB (a
key-value store), and SQLite (a relational database). Similar to above, due
to differences in domain, we construct and describe the workloads in their
respective sections. Our goal in evaluating these applications is to assess
the performance benefits to real-world applications and the effort it takes
to use HSL in them.
Experimental Setup: We run our experiments on Cloudlab [28] c220g2
machines running Linux v6.5.7 with hyperthreading disabled and use the
performance cpu governor. For workloads that run natively, we evaluate
against the ext4, XFS, and Btrfs file systems with their default mount
options [72, 98, 113]. For experiments that involve cloud providers, we
use s3fs for Amazon AWS S3 [52, 102], and gcsfuse for Google Cloud
Storage [45, 46].

6.2.2 Evaluating HSL Features

To showcase the benefits of each HSL feature, we run experiments that
answer the following questions:

§6.2.2.1 Does HSL always choose the fastest copy interface?
§6.2.2.2 Can HSL improve performance of file concatenation for remote
file systems?
§6.2.2.3 Are there any (and does HSL avoid) cases where prefetching
(fadvise()) harms performance?
§6.2.2.4 Is using HSL’s filter directive abstraction beneficial to applica-
tions?
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§6.2.2.5 Are there any benefits to using modern transports like io_uring,
and having HSL decide when to use it?

6.2.2.1 COPY Verb

As described in §5.1.4.1, HSL provides a COPY verb to copy data between
regular files using the fastest among available interfaces. Here, we run
experiments to see whether HSL always chooses the best interface. We ask
and answer two questions: 1) If there is always a single best interface, does
HSL use it? and 2) If the interface depends on runtime parameters, what
are those parameters, and does HSL choose the right interface accordingly?

We use two distinct copy workloads as described previously (§4.3.4.2):
a large single-range copy and small multi-range copies. In both cases, we
focus on copies where source and destination files are on the same file
system3. We run our experiments on three different file systems (ext4,
XFS, and Btrfs) and vary the length of the contiguous portion. We repeat
the same experiment in two settings: where files are cached or not. We now
describe experiment details and our findings for each workload separately
below.
Large Single-Range Copy
In addition to common experiment details above, we add another param-
eter: whether the destination file exists or not. We create applications
that perform the single-range copy using existing interfaces: read+write,
sendfile, and copy_file_range. As read+write requires reading into a
buffer and writing that buffer, we vary the buffer sizes being used. We
compare these three interfaces against an application that uses HSL to
perform the copy.
Findings. We run experiments varying the read+write buffer from 4KB to
1MB, and the range length from 128KB to 100MB, and measure the latency

3The case study of coreutils cp evaluates copy performance on different file systems.
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Figure 6.1: Evaluating implementations to copy 1MB to an existing file on
different file systems: The figure shows the per page latency in microsec-
onds (y-axis) for different local file systems (x-axis) performing a copy
with different implementations. The two graphs correspond to whether
the files were in the page cache (right: cached) or not (left: uncached).

in microseconds to perform the copy. Figures 6.1 and 6.4 document our
findings.

As observed in Figure 6.1, when copying 1MB to a destination file that
exists, copy_file_range and HSL (which always uses copy_file_range
for large single-range copies) always have the lowest latency regardless of
whether the files are cached or not.

Figure 6.2 presents our findings on XFS as a heatmap for all range
lengths, both when destination exists or not, and when files are cached or
not. Every cell in the heatmap represents the speedup of that implementa-
tion (column) over read+write with a 4KB buffer. The read+write with
larger buffer sizes show slight speedups due to a increased buffers that
reduce number of system calls. The sendfile shows slight speedup due
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Figure 6.2: Evaluating implementations of large single-range copies on
XFS: The figure shows the speedups of each copy implementation (four
columns) relative to the read+write implementation using a 4KB buffer.
The fourth column represents both copy_file_range and HSL. The two
rows correspond to whether the files are uncached (top) or cached (bot-
tom). Inside each heatmap, the y-axis represents whether the destination
file exists or not (dstexists and !dstexists). The x-axis varies the length of
the range being copied.

to avoiding copies to user-space buffers. However, the copy_file_range
and HSL implementations always have the highest speedups.

We observe the same trend on ext4 and Btrfs. When copying a large
single range, the copy_file_range system call performs a copy-on-write
of the extents on XFS and Btrfs, minimizing data copy. On ext4, the
performance matches sendfile.

For large single-range copies, there is indeed a single best interface:
copy_file_range, and HSL uses it to perform the copy.
Small Multi-Range Copy
In addition to common experiment details, as the copy involves multi-
ple ranges we vary the number of ranges involved in the copy. We limit
experiments to source and destination offsets that exist in both files as
most applications use this pattern to overwrite ranges, or grow the des-
tination file to the maximum range before performing the copy. Simi-
lar to single-range copy, we compare HSL against read+write, sendfile,
and copy_file_range. Unlike single-range copy, the read+write appli-
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Figure 6.3: Evaluating implementations to copy 1000 4KB pages on dif-
ferent file systems: The figure shows the per page latency in microseconds
(y-axis) for different local file systems (x-axis) performing a copy with
different implementations. The two graphs correspond to whether the
files were in the page cache (right: cached) or not (left: uncached).

cation always uses a buffer equal to the size of the range, requiring one
read+write per range.
Findings. We run experiments varying the range length from 4KB to
64KB, the number of ranges from 100 to 1000, and measure the latency
in microseconds to perform the copy. Figures 6.3 and 6.4 document our
findings.

In Figure 6.3, we compare the performance of all the implementa-
tions across the three file systems in copying a 1000 4KB ranges. While
read+write and sendfile behave similarly in both the uncached and
cached settings (all file systems), copy_file_range does not (XFS, Btrfs).
In the uncached setting, copy_file_range is much faster for XFS and Btrfs
as it uses copy-on-write on the extents. However, in the cached setting, it
is much faster to copy the bytes from pages already in the cache than to
modify the extent trees. This difference in performance does not occur on
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Figure 6.4: Evaluating implementations of small multi-range copies
on XFS: The figure shows the speedups of each copy implementation
(three columns) relative to the read+write implementation. The two rows
correspond to whether the files are uncached (top) or cached (bottom).
Inside each heatmap, the y-axis represents the number of ranges in the
copy and the x-axis the length of each range being copied.

ext4 as copy_file_range is internally implemented similar to sendfile.
HSL matches copy_file_range performance in the uncached setting,

and nearly matches sendfile in the cached setting with a minor overhead
due to the extra cachestat() system call to gauge cache occupancy.

Figure 6.4 presents our findings on XFS as a heatmap for all range
lengths and number of ranges, in both cached and uncached settings.
Every cell represents the speedup of the implementation over read+write.
As observed, copy_file_range has high speedups in the uncached setting
but performs poorly in the cached setting. HSL obtains similar speedups
in the uncached setting but avoids the slowdowns in the cached setting.

We observe the same trend on Btrfs but not on ext4. As ext4 uses
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a sendfile equivalent implementation for copy_file_range, there is no
difference in the cached and uncached settings.

For small multi-range copies, there is no single best interface on XFS
and Btrfs. Depending on whether files are cached or not, HSL chooses
the right interface on these file systems, obtaining speedups and avoiding
slowdowns.

6.2.2.2 Niche Middle-end Optimizations: Concatenation

While not part of the standard set of verbs, HSL allows custom verbs that can
have niche optimizations for specific file systems (§5.1.3.3). Concatenation
is one such example, implemented on HSL with the CONCAT verb (§5.2.3.2)
specifically for the remote file systems: s3fs and gcsfs. Here, we evaluate
the performance benefits of using non-portable interfaces through HSL’s
CONCAT implementation over the standard cat command-line utility.

We construct a workload that concatenates three equal sized files—all
uncached—into one new file. We use the cat utility—unmodified—as
one method of performing the concatenation. We also build our own
concatenation command line utility using HSL (hslcat).

We store the three equal sized files in an AWS S3 bucket and a Google
Cloud Storage bucket. We then mount FUSE file systems for these object
stores: s3fs and gcsfs respectively, and run both applications on each.
Findings. We run experiments varying the size of the input files and
measure the time taken and network usage for the concatenation. Figure
6.5 documents our findings.

For small files (10MB) the difference between applications is negligible.
However, as the file size increases, the runtime of the cat application
grows; ~75 seconds to concatenate 3 500MB files on s3fs and ~58 seconds
on gcsfs. This increase in runtime is due to the extra network traffic to
perform the concatenation. As seen in the lower graph, 1.5GB (3x500MB)
is transferred to concatenate the three existing files. While not shown in
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Figure 6.5: Evaluating file concatenation on remote object storage: The
figure shows the time taken to concatenate three equal sized files into one
on S3 and GCS, using cat and HSL. We vary file size on the x-axis, measure
runtime in seconds (top y-axis), and measure bytes transferred (bottom
y-axis).

the figure, as the files are not cached, 1.5GB (3x500MB) is also received
over the network.

As seen in the figure, hslcat matches and soon exceeds the perfor-
mance cat; ~29 seconds to concatenate 3 500MB files on s3fs and ~1.5 sec-
onds on gcsfs. The lower graph explains the reason: on both file systems,
less than 35KB is transferred or received. HSL identifies the file system
and issues network requests to the remote object store directly (§5.2.3.2) as
the current FUSE implementations do not support any faster non-standard
interfaces. The runtime on gcsfs does not grow as Google Cloud Storage
offers a single compose API for concatenation. Unfortunately, despite fewer
network transfers, multiple network requests (which grow with file size)
are made on AWS S3 leading to the increase in run time.

To conclude, implementing CONCAT in HSL to detect and use non-
portable interfaces significantly reduces runtime and network costs.
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6.2.2.3 Hints: Expecting Future Reads

As described in §5.1.2.2, HSL users can provide a .expect hint specifying
the access pattern (sequential or reverse sequential) or arbitrary offsets.
Here, we evaluate how beneficial the use of HSL’s .expect is over applica-
tions that accomplish the same outside of HSL with the fadvise() system
call. As .expect internally uses fadvise() selectively, we ask the question:
Are there instances where using fadvise() hurts performance, and does
HSL avoid them?

We construct a workload that repeatedly reads 4KB from a file and
then performs computation for a specific duration of time. The file is not
present in the page cache. The offset in the file to be read changes based
on one of four access patterns: sequential, strided, reverse sequential, and
scattered (§4.3.1.2). In sequential and reverse sequential, we increment
(or decrement) the offset by 4KB. In strided, we increment the offset by a
given stride length (greater than 4KB). In scattered, we select a random
(4KB aligned) offset in the file.

We build two applications that can run the above workload. The first al-
ways uses fadvise(); sequential uses FADV_SEQUENTIAL before beginning
the read-and-compute loop. The remaining use FADV_WILLNEED inside the
loop right before the computation, giving the system some time to perform
the prefetch before the read. The second application uses HSL with the
.expect hint.
Findings. We run the workload with different access patterns on the
two applications, varying the compute time between reads from 1us to
10ms, and measure the the throughput. We also vary the stride length in
the strided access pattern from 8KB to 128KB. Figure 6.6 documents our
findings. As computation time increases, the bytes read per second from
the file decrease, leading to lower throughput.

We divide the figure into two halves: the top presents results for all
the access patterns except small strides of 8KB and 16KB. We observe no
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Figure 6.6: Comparing HSL .expect hint with always issuing fadvise():
The figure shows two graphs divided based on access pattern. In both
graphs, the color identifies the application being used: always fadvise, or
.expect with hsl. The markers represent access patterns. The top graph
contains results for sequential, reverse sequential, scattered, and large
strided (more than 16KB strides) access patterns. Sequential uses the
square marker while the remaining three have the same results denoted by
the star marker. The bottom graph contains results for small strided access
patterns (8KB or 16KB) denoted by a circle marker. The y-axis (different
for top and bottom) measures the throughput, and the x-axis (shared)
varies the compute time between reads.
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difference between the two applications. For lower compute time, the
sequential access pattern has higher throughput as the device can service
those requests faster compared to the other access patterns. At higher
compute times, device request latency becomes less significant; the data is
present in the page cache before the next read.

The bottom half presents results for small stride (8KB and 16KB) ac-
cess. At lower compute times, the fadvise() implementation has half the
throughput of the HSL implementation; ~40 and ~80 MB/s respectively.
As HSL does not issue an fadvise() for small strides (because the under-
lying system readahead logic handles this case), it does not interfere or
cancel the readahead, leading to higher throughput. As compute time
increases, the differences disappear for the same reason stated above.

To conclude, using HSL’s .expect hint is beneficial when there is small
compute between reads. It selectively issues fadvise(), avoiding cases
which can cause performance degradation.

6.2.2.4 Directives: Filtering

As described in §5.1.2.2, HSL users can perform filtering operations with
the .filter directive, exposing a uniform interface to applications that
perform filtering and choosing a more efficient implementation under
the hood. Here, we evaluate whether there is any overhead to using this
abstraction and whether there are any benefits to it. We evaluate both of
HSL’s .filter and .filter_endpoint directives to identify situations in
which they are beneficial.

We construct a large text file of \n delimitted records containing key-
words that occur at various frequencies throughout the file. We run a
workload to find the first N occurrences of a given keyword, starting ei-
ther at the beginning or end of the file. By changing the keyword in the
workload, we change the frequency of matches in the file. An infrequent
keyword would require scanning more of the file while a frequent key-
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Figure 6.7: Comparing .filter and .filter_endpoint against a traditional
filter workload: The figure shows four graphs divided into two columns
based on access pattern (left:sequential and right:reverse sequential), and
into two rows based on metric captured (top: runtime in seconds, bottom:
bytes received over the network in MB). The colors of each line represent
different applications: filtering without hsl (nohsl), filtering with hsl lo-
cally (hsl), filtering with remote compute through aws lambda (hsl_s3).
All graphs use the same x-axis which denotes the frequency of the key-
word used for the filter workload. The y-axis denotes the metric captured
(top:runtime, and bottom: bytes received).

word will have matches immediately. We upload the large text file to AWS
S3 and mount the bucket to a directory using s3fs.

We build three applications: nohsl, hsl, and hsl_s3. The first (nohsl)
performs the filtering like a regular application that does not use HSL.
The second (hsl) uses HSL’s .filter directive to do the same. The third
(hsl_s3) uses .filter_endpoint that points to an AWS Lambda function.
All three applications share the same command line interface: they take
the path to the file and a keyword as input.
Findings. We run the workload on the three applications for both sequen-
tial and reverse sequential access patterns. We vary the keyword used (a
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frequency from 1 to 40%), and measure the total runtime to obtain the N
matches as well as bytes received over the network. Figure 6.7 documents
our findings.

In all three applications and both access patterns, runtime and network
usage reduce with increased keyword frequency as the first N occurrences
are found earlier in the file. Additionally, both hsl and nohsl download
the same amount of data as they make the same accesses to s3fs. However,
hsl does perform slightly faster than nohsl for smaller frequencies due
to HSL using fadvise internally. Unfortunately, the speedup is not that
significant case as s3fs downloads data in large chunks (50MB)

The hsl_s3 application performs worse than the other two in the sequen-
tial case because downloading the file sequentially4is faster than invoking
multiple lambdas. However, hsl_s3 downloads fewer than 10MB of data
as opposed to the other two, because it only downloads the lines that
contain the keyword. Performance may be better on custom object-storage
deployments like Ceph clusters with serverless capabilities as they do not
share the same restrictions as AWS Lambda.

For lower keyword frequencies and reverse-sequential accesses, hsl_s3
outperforms the other two as the cost of invoking a lambda that can filter
a larger portion closer to storage is faster than downloading and filtering.
Similar to the sequential case, it downloads fewer than 10MB, minimizing
network egress costs.

To conclude, the .filter directive matches performance of existing
filtering approaches. The abstraction is beneficial as it allows applications
to preserve the same interface but use a different underlying implemen-
tation. While .filter_endpoint does not always outperform the rest in
performance, it always minimizes network traffic which could be a factor
for certain users.

4Cloudlab has fast network bandwidth.
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6.2.2.5 Collections: Scattered Reads and Writes

Collections in HSL (§5.2.3.5) allow applications to provide all arguments
that share the same verb—vectored calls, which would otherwise have to
be split across multiple system calls. By providing all arguments at once,
HSL can choose between the io_uring and native system call transport.
Here, we evaluate the advantages of letting HSL determine the transport as
opposed to applications fixing to one at compile time. We ask and answer
two questions: 1) if there is one superior transport that must always be
preferred, does HSL use it? and 2) if it depends on operations and runtime
parameters, does HSL change accordingly?

We construct two workloads: scattered reads and scattered writes,
where multiple blocks of a file are read or written to. In both cases, we
vary the number of blocks being read or written, and the size of each block.
The blocks within each scattered read or write operation are selected at
random. As reads can be served from the page cache, we run experiments
both when the file is in the cache and when it is not.

For scattered writes to files opened in O_SYNC() mode, each write is
handled synchronously by the device in both cases leading to the same
performance regardless of transport. Instead, we focus on buffered writes
that go directly to the page cache and only run experiments where the file is
cached. As we are aware of poor write performance on io_uring depending
on the flags that are passed, we use the flags that yield best performance:
default flags for Btrfs, and SINGLE_ISSUER | DEFERRED_TASK for XFS. HSL
does the same internally (§5.2.3.5).

We build three applications: syscall, io_uring, and hsl. The first two
always use the transport they name; syscalls always uses traditional sys-
tem calls (pread() and pwrite()) for scattered operations, and io_uring
always uses the io_uring API. The last—hsl—uses HSL’s READ and WRITE
verbs with unordered collections for scattered reads and writes respec-
tively. We run the workload on all three applications and on three file
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Figure 6.8: Evaluating scattered uncached reads on ext4: The figure
shows the speedup obtained by two implementations over using tradi-
tional pread() system calls to perform scattered reads on a file that is
not in the page cache. On the left is an implementation that always uses
io_uring, while the right uses HSL which selectively uses io_uring. In each
graph, the x-axis represents the size of every chunk (Block Size) in the
scattered read while the y-axis represents the number of chunks (Num
Blocks) in the scattered read. The color of each cell represents the speedup
(greens and blues) or slowdown (oranges and reds) over the system call
implementation. We annotate the boundaries with the difference to the
system call implementation: the speedups (positive) or slowdowns (nega-
tive) are in microseconds for fewer chunks while in milliseconds for larger
number of chunks.

systems: ext4, XFS, and Btrfs.
Scattered Read Findings. We run the scattered read workload on all three
applications, varying the number of blocks, the size of each block, the file
system, and whether the file is in the page cache. We show the results in
terms of speedup relative to the syscall application. Figures 6.8 and 6.9
document our findings.

Figure 6.8 shows the speedup obtained over syscall on ext4, when the
file is not cached. We observe similar trends on XFS and Btrfs. On the left,
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EXT4 XFS

Figure 6.9: Evaluating scattered cached reads on ext4 and XFS: The fig-
ure shows four heatmaps that identify speedups and slowdowns of two
scattered read implementations over traditional pread() system calls over
a file that is fully in the page cache. Each half represents a different file
system: ext4 and XFS respectively, and can be interpreted similar to Figure
6.8. As HSL is aware of poor cached read performance through io_uring,
it uses the system call implementation for the smaller number of chunks.

always using io_uring is beneficial if the number of blocks is greater than
one as the device’s i/o parallelism is exploited. We observe a nearly 7x
speedup for small block sizes (512B and 4KB) when the number of blocks
exceed 128. Using io_uring for a single block is slower than using system
calls due to the overhead of ring execution and no need for i/o parallelism.

Figure 6.9 shows the speedup obtained over syscall on ext4 and XFS,
when the file is cached. We observe similar trends on Btrfs. Unlike the
uncached case, using io_uring to read cached data is slow as there is no de-
vice i/o paralellism to exploit. Smaller benefits such as minimizing system
calls (the user-kernel-user boundary crossings), and file-descriptor lookup
add up only as the number of blocks increase. We increase the number
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of blocks in the experiment from 128 to 2048 to observe the speedup. As
block sizes increase, the speedup over system calls reduces as more time
is spent in the copy.

In the uncached case, HSL achieves the same speedups as io_uring
when the number of blocks are greater than or equal to 8; io_uring outper-
forms HSL for fewer number of blocks. However, the same setting allows
HSL to avoid the slowdowns io_uring faces in the cached setting. HSL
cannot determine cache occupancy to change runtime behavior as calling
cachestat() adds overhead; instead, HSL uses a threshold of 8.

The threshold was chosen such that we minimize slowdowns for small
cached operations, but maximize speedups if uncached. When system
calls outperform HSL (cached reads of 8-64 blocks), the slowdowns are in
microseconds. But in the uncached case, the speedups are in milliseconds.
We expect the threshold to change on different systems, and HSL will
discover and use those thresholds as part of installation.
Scattered Write Findings. Similar to scattered reads, we run the scattered
write workload on all three applications, varying the number of blocks,
size of each block, and the file system being run on. We show the results
in terms of speedup relative to the syscall application. We omit results
on ext4 as io_uring always performs worse than syscall; HSL always uses
system calls on ext4 (§5.2.3.5). Figure 6.10 documents our findings for
XFS and Btrfs.

Unlike scattered reads, io_uring performs poorly for fewer blocks
on XFS and Btrfs. Additionally, the performance crossover point where
io_uring outperforms syscalls is different on the two file systems. As seen
in the figure, XFS performs better when the number of blocks exceed 1K,
but Btrfs reaches that stage at 16K. For larger block sizes (greater than 4K),
io_uring never outperforms system calls. As both block size and number
of blocks increase, differences between transports diminish as most time
is spent in copying bytes.
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Figure 6.10: Evaluating scattered writes on XFS and btrfs: The figure
shows four heatmaps similar to figure 6.9, but for scattered writes on
XFS and btrfs. As HSL is aware of the performance equilibrium between
io_uring and system call implementations for writes on XFS and btrfs, it
sets different thresholds accordingly. HSL uses system calls for fewer than
1024 scattered reads in XFS but 16384 scattered reads in Btrfs. For larger
chunk sizes (32K or more), HSL always uses system calls as the cost of
copying data becomes the bottleneck.

HSL outperforms io_uring for fewer blocks and smaller block sizes as
it uses system calls. As seen in the figure, HSL switches to io_uring at
each file systems performance crossover points. Similar to scattered reads,
we believe the crossover points will change on different systems (and
versions), and will have to be discovered as part of installation through
profiling.

To conclude, both io_uring and system call transports have their bene-
fits and sticking to one specific transport can cause performance degra-
dation on certain workloads. Through profiling, HSL identifies when
to switch between the two, obtaining speedups (upto 7x for uncached
scattered reads but less than 1.4x for writes) while minimizing slowdowns.
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6.2.3 Application Case Study

In this section, we study five applications to evaluate HSL’s ease of integra-
tion and the performance benefits it provides. We run experiments that
answer the following questions:

§6.2.3.1 Can HSL be easily integrated into the coreutils cp utility, and does
it make copies faster?
§6.2.3.2 Can HSL handle alignment issues when copying portions of files,
as seen in audio trimming workloads?
§6.2.3.3 Can HSL reduce the merkle proof generation time on full nodes
in blockchains?
§6.2.3.4 Can HSL be easily integrated into LMDB, and does it increase
write throughput?
§6.2.3.5 Can HSL be easily integrated into SQLite, and does it speed up
SELECT queries?

6.2.3.1 Coreutils cp

We begin our case studies with the coreutils cp command line utility; a
simple but commonly used program. In addition to it being used on the
command line terminal, applications also launch the utility as a process
(e.g., inside a bash script, using system() in c/c++, or subprocess() in
python). Here, we ask the question: how easy is it to modify cp to use HSL,
and does using HSL provide any performance improvements? We begin
by describing the modifications to cp, followed by experiment details to
compare performance against the unmodified cp.
Modifying cp
We begin with an unmodified version of coreutils v9.4. Modifying cp
to work with HSL was a simple modification of the src/copy.c file and
modifying the Makefile to include the HSL library. We introduce changes
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Figure 6.11: Evaluating coreutils cp on different file systems: The figure
shows the speedup obtained by using a modifed version of coreutils cp
that uses HSL over the unmodified version, when the source file is cached.
On the x-axis, we vary the size of the file. On the y-axis, we vary source
and destination file systems. Each cell is colored according to the speedup
and is also annotated accordingly on the first line. The second line in
each cell is the time taken by the unmodified version (in microseconds) to
perform the copy.

to use the COPY verb in the copy_reg function: the function cp uses inter-
nally to copy regular files after it has processed command-line flags and
checked that the existing files point to regular files.
Experiment Details and Workload
We build two versions of cp: an unmodified version and the one modified
to use HSL. We then generate source files of different sizes and place
them on three different file systems: ext4, XFS, and Btrfs. We run the ./cp
<src> <dst> command and measure the time for the process to finish.
Findings
We run the workload on both applications, with different src dst com-
binations to account for copies on same and different file systems. We
repeat each combination twice to account for whether src is cached or not.
Figure 6.11 reports our findings as a speedup using HSL relative to the
unmodified cp application, when the source file is cached.
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We only report results on different file systems where the destination
is ext4 because all other combinations (and the uncached case) show
no differences. As explained in §6.2.2.1, copying a file resembles a large
single-range copy and therefore, copy_file_range() is the best strategy.
For all cases where the source and destination are on the same file system,
copy_file_range() is used both by the unmodified and HSL versions,
resulting in similar results both in the cached and uncached cases.

When the source and destination are on different file systems, the un-
modified version first attempts to use copy_file_range() before falling
back to read() + write() (a try-by-failure strategy), while HSL uses
sendfile(). For the uncached case, the time spent in disk i/o far out-
weighs any performance benefits provided by minimizing system calls
and buffer copies with sendfile(), leading to similar results.

For the cached case, when the destination file resides on XFS or Btrfs,
the common code to read or write pages used by sendfile(), read(), and
write() tends to dominate, leading to similar results. But we do observe
performance improvements (up to 1.36x) when the destination file resides
on ext4.

Modifying cp to use HSL was incredibly simple but the performance
improvements are observed in very few instances. However, as more
file systems improve their read and write logic in the future, we may
see similar performance improvements as observed with ext4. While the
absolute improvement in speedups is only close to a millisecond (1.36x
leads to a 907us difference from the unmodified version), applications like
bash scripts tend to launch the cp application serially in loops; even small
gains from HSL can accumulate significantly depending on the loop.

6.2.3.2 Audio Trimming

We now look at an application of partial copies—audio trimming, where a
new file is created with new headers followed by a portion of the original
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file. As we do not control the offset from where the copy begins, depending
on user needs, the copy may or may not begin at a 4K (file-system block
alignment) boundary. Here, we ask the question: Are there performance
differences in copying aligned and unaligned data, and does HSL help
increase performance? We begin with a brief background about audio
trimming, followed by a description of the application and workloads, and
then discuss our findings.
Background on WAV audio trimming
Data processing in the media industry often involves audio editing in post
production such as adding effects, background music, or cropping raw
audio recordings. Despite its large size footprint, the WAV format is
widely used by audio engineers due to its high quality [1, 125]. We focus
on WAV audio trimming which is used to select a portion of audio from a
long recording.

An audio trim operation is the removal of audio from either end of a
recording, resulting in a new file; raw recordings are never overwritten.
Depending on the duration of audio we wish to keep (after the trim), the
bytes to be copied increase. Stereo recordings at a 44.1 KHz sampling rate
produce approximately 5MB of data for 30 seconds of audio, and 1 GB for
2 hours of audio—both valid workloads depending on the project.

The WAV audio format is a lossless, uncompressed format that orga-
nizes audio data into frames or chunks. It stores this data sequentially on
disk, making it easy to read and write, and uses the Resource Interchange
File Format (RIFF) structure for organization. It begins with a main header
(the RIFF header) followed by chunk headers and their associated data.
For WAV files, it is typically a single chunk header that contains audio
metadata, followed by the audio bits in the chunk data portion.

To perform audio trimming such as “removing the first N seconds”, the
application needs to calculate how many bytes to skip from the chunk data
portion. To do so, it needs three key pieces of information: the sampling
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rate, the bits per sample, and the number of channels (mono or stereo)—
all present in the chunk header. The product of these parameters with
N provides the number of bits to skip. The application can then create a
new file with a new RIFF and chunk header (as chunk metadata reflects a
different chunk data size), and then begin copying chunk data from the
calculated offset.
Applications that perform WAV Trimming
We use three applications to perform WAV trimming: ffmpeg, hsl_unaligned,
and hsl_aligned. The first, ffmpeg, is a well-known swiss-army knife
for multimedia processing. We use it unmodified, both as a performance
comparison and to ensure the implementations we build generate the
correct output.

The second, hsl_unaligned, is a custom C++ application which imple-
ments WAV trimming as described in the background, using HSL’s COPY
verb. However, depending on the N seconds to skip from the beginning,
the offset in the chunk data (and the whole file) may or may not be aligned
to the underlying file-system’s block boundary (typically 4KB).

The third, hsl_aligned, is an improvement over the unaligned version.
Although commonly 4KB, we create and use a HSL API which internally
uses stat() to find the blocksize. The WAV format supports adding junk
chunks [97, 125] which were originally meant to align chunks to certain
boundaries for CD-ROMs and ignored by media players. We first write
a junk chunk to the destination file such that the junk chunk, headers,
and audio data before the next aligned block sum up to two blocks. For
example, given a 4K block size, if the starting offset for the audio was
the 96th byte in a block, we ensure that the junk chunk, headers, and first
4000 bytes of audio data occupy 8KB. We then proceed with copying the
remaining data.
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Workload
We run a workload that only trims from the beginning of the file; audio
editors routinely remove audio before the “take”5. Trimming the end of
the file reduces the number of bytes to copy but does not have any impact
on the alignment characteristic we wish to evaluate.
Findings
We run the audio trimming workload for all three applications, removing
the first 5 seconds of audio for uncached files of varying sizes (4MB to
1GB). Figure 6.12 documents our findings on three different file systems
(ext4, XFS, and Btrfs).

On ext4, all three applications have similar performance, growing with
increasing file size as the amount of data to copy increases. Both our
applications perform slightly better than ffmpeg as they are only geared
towards WAV trimming unlike ffmpeg that has layers of abstractions to
handle many other multimedia editing workloads.

On XFS and Btrfs, ffmpeg and hsl_unaligned perform similarly as de-
scribed for ext4. However, hsl_aligned completes significantly faster (8ms)
even for large files due to the extent sharing through copy_file_range().
Although copy_file_range() is used by HSL in both applications, the file
system only performs extent sharing when both source and destination
file offsets begin at extent boundaries. As hsl_unaligned does not ensure
copies start at the extent boundary, XFS and Btrfs internally use the slower
data copy path.

To conclude, there are significant performance differences in copying
aligned and unaligned data. Unfortunately, as seen in hsl_unaligned, HSL
cannot provide these performance benefits directly as forcing alignment
transparently changes application semantics. Instead, applications that
can adjust alignment, can query HSL to find the extent boundaries.

5The segment of the recording where the actual content begins, following commands
like “take” and “action” is often referred to as the Slate or Clapperboard moment.
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6.2.3.3 Merkle Proofs

Here, we cover a real world application of uncached scattered reads—
merkle proofs, where the application knows exactly which pages (tree
nodes) to read from a file. While Section 6.2.2.5 showed significant speedups
(7x) for uncached scattered reads as part of microbenchmarking, we cover
a realistic workload that depends on the height of merkle trees here.

We ask the question: How much of a speedup can HSL provide for a
realistic merkle proof workload? We begin with a brief background on
merkle proofs, followed by experiment details and our findings.
Background on Merkle Proofs
A merkle proof is used to validate membership in a set. It utilizes merkle
trees where leaf nodes are hashes of the set members. While they are used
in ZFS, BitTorrent, and IPFS, we focus on their use in Blockchains [56].

Merchants or vendors on the blockchain often use lightweight clients
to verify whether payments have been made (transaction membership
in a block). Lightweight clients, lacking the complete blockchain except
for the headers, query full nodes for the necessary merkle proofs. The
full node cannot simply return a binary response as untrusted nodes can
participate in the blockchain; the lightweight client needs a stronger proof
to trust the full node’s response.

To provide a strong proof of transaction inclusion, the full node uses
a merkle tree, where each leaf node represents a transaction hash (the
set members) and each non-leaf node is a hash of its children. The node
constructs the merkle proof by sending the transaction hash and a set of
sibling hashes needed to reconstruct the path to the merkle root.

The lightweight client uses these hashes to verify the transaction by
hashing them together and comparing the result to the trusted merkle
root in the block header. If the computed root matches the block header’s
root, the transaction’s inclusion is verified. A malicious node cannot fake
transaction inclusion, as generating the proof without the correct set of



182

hashes would result in a different merkle root, and attempting to create a
valid merkle root without the actual data is computationally infeasible.

As most transactions are verified once (for confirmation before ren-
dering service), it is highly unlikely to be a previously seen transaction
(unlikely to be cached). However, full nodes do maintain indices on trans-
actions to quickly identify their location in the blockchain on disk. A key
observation in merkle proofs is that the path is predetermined if you have
the leaf location of a transaction and the number of transactions, both
of which are available to full nodes that index transactions, making the
operation an uncached scattered read.
Applications and Workloads
We build two applications, implementing the merkle proof component
performed by full nodes as described above, both with and without HSL.
As the height of a merkle tree depends on the number of elements in the
set (the leaf nodes), the height of a merkle tree in a blockchain grows
with the number of transactions in a block. Depending on the size of a
transaction, the number of active transactions happening on the block
chain, and the maximum size of a block, the number of transactions in
each block can change. We vary the tree height 3 to 20 accounting for 4 to
~500K transactions within a block.
Findings
We run both merkle proof applications on an uncached file containing the
merkle tree of transactions on three different file systems (ext4, XFS, and
Btrfs) and vary the tree height as described above. With increasing tree
height, more non-leaf nodes (from leaf to root) must be read from disk to
generate the proof. Figure 6.13 documents our findings.

Without the use of HSL (the unmodified application), the time taken
to generate the proof grows with tree height on all three file systems. This
is due to the use of traditional preadv() system calls, where the required
non-leaf nodes to compute the hash are read one-by-one in a blocking
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Figure 6.13: Evaluating merkle proofs: The figure shows the time taken in
milliseconds (y-axis) to validate a merkle proof on merkle trees of different
depths (x-axis). We compare two implementations, with and without
HSL differentiated by color. We run the workload on ext4, XFS, and btrfs
differentiated by line styles.

fashion. The version that uses HSL outperforms the unmodified ver-
sion as the io_uring transport exploits device i/o parallelism for scattered
reads (§6.2.2.5), growing at a slower rate compared to the unmodified
version. For a merkle tree height of 20, the unmodified version takes ~4ms
while HSL takes ~2ms.

While HSL can provide a 2x speedup on merkle proofs and maybe even
more for larger merkle trees, it is impractical to expect 500K transactions
in a block. While popular blockchains can have 500K active transactions
per second, they limit the size of each block. On Bitcoin, blocks are limited
to a 1MB size, allowing a maximum of 4K transactions (provided all
transactions are small). Even so, proofs for merkle trees corresponding
to 4K transactions (a height of 12) are still faster with HSL (2ms) than
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without (3.2ms).
Although the absolute difference in performance between the two im-

plementations is small (1.2ms), a full node receives requests from multiple
lightweight clients as there are more lightweight clients than there are full
nodes. Faster merkle-proof generation by a full node leads to faster trans-
action confirmations by lightweight clients and prevents queue buildup.
As blockchain full nodes run on many different systems, HSL can help by
performing scattered reads more efficiently on those that support io_uring.

6.2.3.4 LMDB

We now cover a real world application of scattered writes—updating an
LMDB database. The Lightning Memory-Mapped Database Manager
(LMDB [18]) is an embedded key-value store that uses B-Tree data struc-
tures whose nodes reside in a single file—the database. Here, we ask the
question: can LMDB benefit from using HSL? and if so, we quantify those
benefits. We begin by describing our modifications to LMDB, followed by
experiment details and findings.
Modifying LMDB
We begin with an unmodified version of LMDB v0.9.31. As the entire
database is exposed as a memory-mapped file, fetching data from the
underlying file system through read() and its variants (or even through
HSL) is unnecessary. Instead, we modify the write path.

While LMDB does have the option of also writing to the memory map
(MDB_WRITEMAP), applications lose the ability to perform nested trans-
actions and protection from bugs such as wild pointer writes. Therefore,
we modify the write path when MDB_WRITEMAP is not used—where
LMDB uses pwritev().

When a new key is inserted or an existing key-value pair is updated,
LMDB modifies one of its B-Trees using a copy-on-write approach. The
B-Tree node (page) containing the new or existing key and all its ancestors
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up to the root are copied and modified to create a new version of the B-Tree
(due to the new root). LMDB keeps track of these modified (“dirty”) pages
as a linked list, sorted by page number (which is a one-to-one mapping
to the on-disk file offset). On transaction commit (which can include
multiple updates like the one described here), the linked list of dirty pages
is flushed to disk.

Modifying LMDB to work with HSL was a simple modification of the
mdb.c file, replacing the loop that used pwritev() over the dirty pages
to construct a collection that is executed with the WRITE verb. We then
modify the Makefile to link it with the HSL library.
Workload
As our modifications affect the write path, we perform a 100% update
operation on an LMDB database containing ~1.8 Million entries of 32B
keys and 256B values. We update records randomly, and vary the number
of keys updated in a transaction as larger transactions can have more dirty
pages. The workload continuously selects and updates key-value pairs
for the given transaction size and reports the throughput per second. We
run the workload with the MDB_NOSYNC flag to evaluate applications that
use such an optimization to avoid flushing file system buffers (through
fsync()) on transaction commit; they allow loss of recent transactions
but avoid corruptions. Not using the flag would force disk i/o for every
transaction, leading to equivalent results in both implementations as time
spent in i/o would dominate any optimizations (§6.2.2.5).
Findings
We run the workload on both the unmodified and HSL versions on three
different file systems (ext4, XFS, and Btrfs), vary the number of updates
in each transaction, and report our findings in Figure 6.14.

We observe no significant difference in throughput between the two
different implementations. This is due to having few dirty pages to be
written out per transaction. While increasing transaction size increases
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Figure 6.14: Evaluating update operations to LMDB: The figure shows
the throughput measured in MB/s (y-axis) for a 100% update workload.
We vary the number of update operations within a transaction (x-axis).
We compare two implementations: LMDB with HSL, and an unmodified
LDMB differentiated by color. We run LMDB on three file systems: ext4,
xfs, and btrfs as indicated above each graph.

the number of dirty pages to be written out, even with a transaction size of
1000, the number of dirty pages do not exceed 2000. As each key-value pair
is less than a single page size, even the worst case of each key in a different
page would lead to a 1000 dirty pages for the actual leaf nodes containing
the key-value entries. The remaining 1000 dirty pages are intermediate
nodes that may be shared across the leaf nodes being modified.

On ext4, HSL avoids io_uring altogether, using a similar implementa-
tion (pwritev()) as the unmodified version. On Btrfs, HSL avoids io_uring
as there are too few pages to be written out; Btrfs requires atleast 16K
scattered writes (§6.2.2.2). On XFS, HSL does use io_uring but the per-
formance (although not degraded as it would if used with Btrfs) is still
similar to pwritev().

To conclude, while easy to modify LMDB to use HSL for scattered
writes, realistic workloads that perform small sized transactions do not
gain any performance benefits by using HSL. However, as HSL matches
the unmodified application’s performance, LMDB can still benefit from
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future optimizations. As io_uring is relatively new, kernel development
has been focused on getting it to work with other subsystems, not getting
it to work well. Future updates to the kernel can change the performance
crossover points, and if that happens, HSL can take advantage of it without
any further changes to LMDB.

6.2.3.5 SQLite

In our final application study, we revisit scattered reads with a relational
database—SQLite, an embedded RDBMS that uses B-Tree data structures
for its tables and indices, all within a single file [117].

Unlike Merkle Proofs (6.2.3.3), SQLite does not know all the pages
it needs to read in advance. And the pages it intends to read may be
in the page cache. Additionally, SQLite is more complex than the other
applications we studied—it generates query plan that determines when
and how rows of the database are read.

Here, we ask the question: How easy is it to integrate SQLite with HSL,
and are there any benefits to doing so? We focus on the SELECT clause—
most frequently used to query structured data. As modifying SQLite to
use HSL was not trivial, we first describe relevant SQLite internals and
our changes before proceeding with the workload and findings.

SQLite Internals
Internally, a SQL query is first translated into bytecode that is executed by
the SQLite Virtual DataBase Engine (vdbe) [118]. The SELECT query is
converted into bytecode to perform a scan over the table6. The bytecode
generated is executed by SQLite’s virtual machine which opens a B-Tree
cursor on the table, iterates over all rows, and picks those that match any
WHERE criteria either to be used in aggregation or as output records.

6Users can view bytecode by prefixing queries with EXPLAIN
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The presence of indices can transform the above scan operation into
fewer random reads of the necessary rows, providing the same output
efficiently. When SQLite’s query planner identifies an index associated
with the table, it generates bytecode to open another B-Tree cursor for the
index and iterates on the index to find the id of the rows matching the
criteria. For each row id found, it walks the B-Tree of the table (from root
to the page containing the row), and adds the row to its aggregation or as
an output record. The iteration is a sequence of bytecode operations that
resembles the following:

1. Move index cursor to the first match location.
2. Go to step 7 if index is at a non matching location.
3. Move table cursor to the row index cursor points to.
4. Read required columns from row the table cursor points to.
5. Generate output record or internally update the aggregate7 value.
6. Increment index cursor to next location and go back to step 2.
7. Return any requested aggregate and stop.

In step 4, SQLite generates bytecode to read matching rows one-by-
one inside the loop. Assuming the cursor is not already at the required
location, the table B-Tree is walked from root to the leaf page containing
the required row.
SQLite Modifications
As the read operation in SQLite is meant to read one row at a time, HSL’s
collections are of little use. Before introducing HSL, we first modify
SQLite to perform the leaf page reads in bulk.

To do so, we alter the generated bytecode to perform steps 2 and 3, and
store the required row ids in a buffer. Unfortunately, identifying the page
holding a row (for one of the row ids) requires walking the table B-Tree

7For queries such as SELECT sum(column) FROM table.
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from the root—a pointer chasing workload. We repeatedly walk the B-Tree
and identify the leaf pages, incurring immediate reads for intermediate
pages. However, we stop at the penultimate node, i.e., the leaf parent, and
do not read the leaf page. Instead, we store the page number of each leaf
page.

Once all leaf page numbers are collected, we can then perform a one-
to-one mapping from page number to offset. As multiple rows can exist
in the same leaf page, we remove duplicates from the collection. We then
read all the pages into SQLite’s application page cache using the same
primitives SQLite internally uses to read the page. Finally, we execute the
above original steps, with step 4 reading the columns from a page that is
in SQLite’s cache.

We perform the alterations to the bytecode after it has been generated.
We focus on rewriting bytecode for SELECT queries with WHERE clauses,
which are frequently used by SQL users. Expanding scope to more complex
queries such as GROUP BY would require time consuming modifications to
the query planner to generate the desired bytecode (instead of altering it),
a task better suited for SQLite’s authors/maintainers.

After ensuring that this modified version works correctly, we use HSL
instead of SQLite’s primitives to read the pages. Instead of a loop reading
pages one-by-one, we construct a collection of the leaf pages and issue a
READ to HSL.
Workload
We generate a database for the TPC-H suite and run query 6 which operates
on the lineitem table—the largest table in the database, to which we add
an index for this experiment. The query performs an aggregate over two
columns sum(columnX * columnY) over rows that match the WHERE clause.

As some pages may be present in the page cache, we first run the
workload to identify all pages that would be accessed. We clear the page
cache and then read some pages from those identified, to account for cases
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Figure 6.15: Evaluating TPC-H query 6 with SQLite on ext4: The figure
shows the time taken in seconds (left y-axis) to execute the query on a
database that has some pages in the cache (x-axis). We compare two
implementations: unmodified SQLite and SQLite with HSL, differentiated
by color. The right y-axis shows the speedup obtained when using SQLite
with HSL. At x=0, all pages are in the cache, and the two implementations
are nearly identical; the unmodified version is slightly faster. However,
with even 5% uncached pages, HSL outperforms the unmodified version.

where a portion is in the kernel’s page cache. Finally, we execute the query
and measure the time taken to obtain the aggregate result.
Findings
We run the workload on an unmodified SQLite, and on SQLite with HSL,
on databases scaled to different sizes (.1x, 1x, and 10x), and on different
file systems. We also vary the proportion of pages in the kernel’s page
cache, and document our findings for ext4 using the original size (1x) in
Figure 6.15; we report both runtime and the speedup obtained by using
SQLite with HSL.

When all pages are in the page cache (x=0), both versions perform
similarly. As all pages are in the page cache, the difference in scattered
read performance is in the order of milliseconds (6.2.2.5). The unmodified
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version is faster than SQLite with HSL (the speedup is below the 1x dashed
line, 0.89x).

As page cache occupancy decreases, the number of pages requiring i/o
increases, leading to increased runtime for the unmodified version. While
our version of SQLite with HSL must also perform i/o, it issues a scattered
read in bulk, exploiting device i/o parallelism. This leads to speedups
very early on, even if just 5% of the pages (1.13x).At the extreme when
no page is in the page cache, SQLite with HSL performs 5.4x faster.We
observe similar results for XFS and Btrfs, and on smaller (0.1x) and larger
(10x) scales.

To conclude, integrating HSL into SQLite was difficult even when
opting for the easy way of rewriting bytecode instead of modifying the
logic that generates it. SQLite did not have an easy existing abstraction to
perform vector operations.

However, using SQLite with HSL is worth the effort given the speedups
(up to 5.4x). The one instance where unmodified SQLite outperforms
SQLite with HSL is when all pages are already cached. But the absolute
difference in that situation is 300ms, compared to the speedups HSL pro-
vides in all other situations (~15s); these numbers scale approximately on
smaller or larger databases.
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7
Related Work

In this chapter, we discuss how prior work relates to this dissertation. In
line with the organization of our chapters, we start with works that involve
crash testing and fault injection (§7.1). Next, we mention works that study
system calls made by applications (§7.2). Finally, we discuss works that
aim to improve application performance by minimizing system calls (§7.3)
and using domain specific languages (§7.4).

7.1 Crash Testing and Fault Injection Studies

As Chapter 3 involved studying file-system reactions to fsync() failures
and their impact on applications, this section discusses how our work
builds upon and differs from past studies in key ways. We include works
that study file systems through fault injection, error handling in file sys-
tems, and the impact of file-system faults on applications.

Our study on how file systems react to failures is related to work done
by Prabhakaran et al. with IRON file systems [89] and a more recent study
conducted by Jaffer et al. [54]. Other works study specific file systems
such as NTFS [11] and ZFS [130]. All these studies inject failures beneath
the file system and analyze if and how file systems detect and recover from
them. These studies use system-call workloads (e.g., writes and reads)
that make the file system interact with the underlying device.
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While prior studies do exercise some portions of the fsync path through
single system-call operations, they do not exercise the checkpoint path.
More importantly, in contrast to these past efforts, our work focuses specif-
ically on the in-memory state of a file system and the effects of future opera-
tions on a file system that has encountered a write fault. Specifically, in our
work, we choose workloads that continue after a fault has been introduced.
Such workloads help in understanding the after-effects of failures during
fsync such as masking of errors by future operations, fixing the fault, or
exacerbating it.

CrashMonkey and Ace [75] utilize the bounded black-box crash testing
approach to exhaustively generate workloads and discover many crash-
consistency bugs by simulating power failures at different persistence
points. In the context of non-volatile memory (NVM) file systems, Vin-
ter [55] traces NVM accesses through dynamic binary translation and
generates crash states to detect crash-consistency violations. Our work
focuses on transient failures that may not necessarily cause a file system
to crash and the effect on applications even though a file system may be
consistent. Additionally, we inject faults in the middle of an fsync as
opposed to after a successful fsync (persistence point).

Gunawi et al. describe the problem of failed intentions [48] in journal-
ing file systems and suggest chained transactions to handle such faults
during checkpointing. Another work develops a static-analysis technique
named Error Detection and Propagation [49] and conclude that file sys-
tems neglect many write errors. Even though the Linux kernel has im-
proved its block-layer error handling [71], file systems may still neglect
write errors. Verma et al. highlight the problem of consistent modification
of application durable data (CMADD) [122]—evolving application data
that needs to be persisted atomically in the presence of failures when
file systems only guarantee crash-consistency, not application data consis-
tency. Verma et al. [122] add failure-atomic updates to HP’s Advanced File
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System, and introduce syncv to atomically update multiple files, similar
to Windows Vista TxF [79] and TxOS [83]. Our fsync-study results are
purely based on injecting errors in bio requests that the file system can
detect. We circumvent the impact of failed intentions on applications by
forcing a checkpoint operation before proceeding (§5.2.2). Additionally,
as the implementation choice is delayed to run time, redo log and manifest
implementations can utilize the failure-atomic update interfaces on the
appropriate systems.

As the file systems themselves can have bugs in their failure-atomic
update mechanisms, EnvyFS [12] utilizes N-version programming [6] to
multiplex file-system operations across multiple file systems, and deter-
mines a majority result. The existence of a majority implies there may be a
minority with a different result, in line with our findings of non-uniform
file system error handling characteristics. SubSIST, a component in EnvyFS
to reduce time and space overheads coalesces data blocks. Therefore, an
implementation of EnvyFS with data-block writes to the journal would
also be written to eventual locations in other file systems (ext4 ordered
mode). When multiplexing on a majority of non-data-journaling file sys-
tems, error reporting would be timely, allowing applications to guard
against ext4 data mode failed intentions. However, as the implementation
was on different file systems than the ones we studied, we cannot know
for sure.

SibylFS [96], motivated by varied behavior of file systems, is a mathe-
matically rigorous model that specifies the range of allowed behaviors of
file systems. It is useful to identify POSIX violations and platform conven-
tion violations. However, they do not cover the fsync system call. More
importantly, none of the file systems we studied are in violation of POSIX’s
definition of fsync; they are different realizations of a standard that is
silent on state after failure.

Vondra describes how certain assumptions about fsync behavior led
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to data loss in PostgreSQL [124]. The data loss behavior was reproduced
using a device mapper with the dm-error target which inspired us to build
our own fault injector (dm-loki [25]) atop the device mapper, similar to
dm-inject [54]. Additionally, the FSQA suite (xfstests) [127] emulates
write errors using the dm-flakey target [24]. While dm-flakey is useful
for fault-injection testing, faults are injected based on current time; the
device is available for x seconds and then exhibits unreliable behavior
for y seconds (x and y being configurable). Furthermore, any change in
configuration requires suspending the device. To increase determinism
and avoid relying on time, dm-loki injects faults based on access patterns
(e.g., fail the 2nd and 4th write to block 20) and is capable of accepting
configuration changes without device suspension.

LazyFS [92] is a fault-injection tool, similar to CuttleFS, to debug and
reproduce durability bugs in application storage systems. Like CuttleFS,
LazyFS maintains its own page cache. However, LazyFS injects different
faults (lost or torn writes) and does not emulate different post-failure
file-system characteristics (such as differing in page cache content).

Recent work has shifted the focus to study the effects of file-system
faults in distributed storage systems [40] and high-performance parallel
systems [13]. Similarly, our work focuses on understanding how file
systems and applications running on top of them behave in the presence
of failures.

7.2 System Call Studies

In Chapter 4, we performed a survey of applications to study how they
commonly interact with the underlying file system. In this section, we
discuss prior related studies.

Bagherzadeh et al. [8] conduct an empirical study of system-call re-
lated source-code changes in the Linux kernel and identify the type of
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changes such as bug fixes, new additions, security enhancements, and
more. Tsai et al. [121] study Linux API usage across all applications and
libraries in the Ubuntu Linux 15.04 distribution, suggesting metrics for the
importance of different APIs (including system calls), offering insights
into the most important system calls to support. Dubeyko et al. [27] ex-
plore dependencies between system calls and hardware under everyday
use-cases (compilation, installation, web browsing) and publish reports
on system call frequency distribution noting a strong performance depen-
dency on CPU architecture. Kodirov et al. [62] highlight the existence of
system-call bloat in gedit using a combination of source code analysis and
dynamic tracing with DTrace on Solaris. Harter et al. [51] focus specif-
ically on the i/o behavior of home-user applications in Apple software:
iWork(Pages, Numbers, Keynote) and iLife(iPhoto, iTunes, and iMovie),
concluding that future storage systems should bridge the gap between
application needs and existing low-level features. Didona et al. [21] study
modern storage APIs such as io_uring and SPDK, concluding that the
Linux Kernel’s io_uring interface can compete with SPDK but only with
careful understanding and tuning.

Libtrack [5] performs dynamic and static analysis of POSIX use in
applications, finding that applications tend to not use POSIX directly but
through platform-specific frameworks and libraries. Additionally, the
authors mention that new abstractions are arising but are not converging,
leading to non-standard accesses on different operating systems. Libtrack
focuses on abstractions needed for graphics and networking workloads.
File systems are not covered at the same depth. Instead, the authors note
that applications use higher-level storage abstractions through SQLite.

Our work focuses on applications that interact with storage, relying on
the underlying file system. The tools we use (Ikhnaie 4.1.2) are not meant
to automatically discover patterns but to direct our attention to source
code responsible for repeated system calls. We manually inspect source
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code and documents to construct a set of intentions—high level operations
to be executed using the best low-level features. Like Ikhnaie, DIO [29]
intercepts system calls, enriches the traces with additional kernel context
(process name, operations on files vs directories), and provides visualiza-
tions to simplify exploration of traces. Unlike Ikhnaie, DIO does not trace
user-space functions responsible for those system calls. However, Ikhnaie
could benefit from the syscall analysis algorithms and visualizations used
in DIO.

7.3 System Call Performance Efforts

While prior works create more efficient system calls or reduce the over-
heads in existing ones, none are motivated by the need to choose the right
system call for a given underlying file system. However, HSL’s design
allows it to be effectively combined with the rest, incorporating all their
benefits. We categorize prior works in two ways: those requiring active
integration by the developer and those that are transparent/seamless; HSL
belongs to the former. We cover both categories below.

7.3.1 Performance through Seamless Integration

Among works that require no change by application developers, Cassy-
opia [91] applies compiler optimization techniques to reduce the number
of kernel boundary crossings in system calls. Through runtime profiling,
system calls are clustered and the binary is rewritten to use a multi-call[90],
a mechanism also found in hypervisors. Userspace Bypass (UB) [132]
transparently pulls user-space code into the kernel, reducing boundary
crossings for consecutive system calls. FlexSC [108] converts conventional
system calls transparently into their exception-less counterparts, a new
mechanism for interacting with the OS that is most effective on multi-
core processors. HSL can utilize compiler optimization techniques in its



198

middle-end and use multi-call and FlexSC as backend transports; UB may
not be necessary if the backend creates a single multi-call.

CFFS [129] attempts to speed up reads to multiple files, by combin-
ing them into a composite file transparently. Composite file creation is
performed either on an entire directory, based on file references within
file contents, or by analyzing accesses. Because composite files contain
metadata for the entire set within a single file, applications benefit from
fewer accesses to random blocks containing metadata for different files.
Depending on the layout of composite files, read accesses can also benefit
from native prefetching. HSL intention implementations that deal with
multiple files can instruct the exact membership and layout of composite
files to CCFS.

KML [2] is a prototype Machine Learning (ML) architecture within the
OS aimed to replace manual heuristics used to optimize storage systems.
KML applied to file-system readahead logic and NFS’s rsize (which de-
cides the chunk size of data transferred by client or server) shows promis-
ing results on mixed workloads. As HSL also has its own heuristics and
values calculated through profiling, HSL’s execution may not be effective
on a KML system as the heuristics captured during profiling may not hold
true due to KML’s dynamic behavior. However, as KML runs identically
in user or kernel mode, HSL can utilize KML for workload-dependent
heuristics (e.g., how much to read with the HSL’s .expect hint).

7.3.2 Performance through Active Integration

Many works have introduced new primitives that developers can use
instead of existing system calls, some step-based and some semantic. Step-
based primitives are combinations of frequently seen system call sequences
and named similarly. Semantic primitives have a higher-level name to
describe the operation. In both cases, middle-end passes in HSL can
replace patterns with user-defined verbs.
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Step-based: Vincente et al. introduce compound system calls [123] that
developers must actively use instead of common system call sequences.
FusionFS [128] aggregates I/O operations into CISCOps but requires the
use of a library file system.

Semantic: Kokoszka et al. implement search() [63] to find path names
within a list of directories matching a pattern (file metadata). Search
on file data has been accelerated through Dynamic Sets [111] where the
OS chooses the order of processing of files, prioritizing those that are
cached or faster to retrieve. vNFS [14]—a client for NFSv4 which supports
compounding—exposes a vector API to minimize round trips.

Some works identify fsync performing dual roles: ordering and dura-
bility. OptFS [16] decouples fsync with new primitives osync and dsync.
Featherstitch patches [35] in user space allow applications to specify their
precise consistency requirements to the underlying file system which can
then reorder writes safely. HSL can be modified to include directives that
(if unable to infer) indicate the same.

Lastly, XRP [131] allows user-defined BPF programs to be offloaded to
the storage driver, speeding up pointer-chasing workloads by issuing new
I/O requests without jumping back to user space. XRP endpoints can be
defined in HSL similar to the AWS Lambda endpoints used for filtering.

7.4 Domain Specific Languages

We believe that HSL (chapters 5 and 6) is the first work to apply a declara-
tive language as the indirection layer for file-system related system calls.
However, there have been Domain Specific Languages (DSLs) in other
domains, as well as in the context of filestores—structured collections of
data files housed in a conventional file system. We cover them below.
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Triton [119], like HSL, is a DSL to efficiently use the GPU instead of the
file system. Like file systems, some GPU’s may have efficient operations but
using them requires expert knowledge and is often not portable. Instead,
developers can express computation in Triton which internally performs
optimization passes and instruction selection to generate efficient GPU
kernels.

Ziria [112] is a DSL in the wireless systems programming space. While
the implementations of wireless protocols on existing software-defined
radio (SDR) platforms involves the use of optimized digital signal process-
ing (DSP) algorithms, they also require efficient and correct expression
of reconfiguration when system state changes. Ziria provides domain-
specific abstractions for programming wireless SDRs with reconfigurable
pipelines, aggressively performs optimization transformations, and uti-
lizes the most efficient DSP algorithms for the task.

In the storage domain, PADS [32] is a declarative data description lan-
guage for ad hoc data—non-structured data in multiple text and binary
formats. PADS generates C libraries and tools to manipulate the data, elim-
inating the need to write parsing and serialization routines. Forest [31] is
an embedded Haskell DSL for describing and managing filestores (simi-
lar to ad hoc data)—collections of data files housed in conventional file
systems. Forest highlights the challenges in using filestores (lack of docu-
mentation, incorrect data loading or storing, and incorrect error detection)
and explores solutions using principles of typed programming languages;
TxForest [22] builds on Forest and addresses limitations in concurrent
accesses to filestores. While all the above are related to storage, they are
concerned with correctly and conveniently manipulating or accessing the
contents within filestores. HSL operates at a lower level, addressing dura-
bility correctly (as file systems can behave differently) and choosing the
most efficient system calls; the above works can utilize HSL internally.
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8
Conclusions and Future Work

In this chapter, we summarize our work and what we learned from each
part individually (§8.1). Then, we discuss lessons learned across the
dissertation as a whole (§8.2). We then offer directions on how each part
can be extended in the future (§8.3).

8.1 Summary

This dissertation is comprised of three parts. In the first part, we per-
formed an in-depth study of fsync() failures from the perspective of file
systems and applications. With fault injection, we showed that neither
file systems nor applications handle failures uniformly, and current strate-
gies are insufficient to guard against data loss. In the second part, we
performed an explorative study of how applications interact with the file
system. We found multiple instances of fine-grained system calls being
used towards higher-level tasks—intentions. In the third part, we de-
signed, implemented, and evaluated HSL: a declarative language that uses
runtime information to execute a correct and efficient intention. We now
summarize each of these parts individually.
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8.1.1 Understanding fsync() Failures

We first performed a study on how three file systems (ext4, XFS, and Btrfs)
react to disk failures that result in fsync() failures. We considered disk
failures that can fail a single sector write while allowing writes to other
sectors (a fail-partial failure model), and transient failures where a failed
sector may accept writes later. We built dm-loki, a loadable kernel module
device-mapper target to perform deterministic fault injection using the
above failure model and log all writes to the device. We built blockviz to
visualize experiments with dm-loki, that generated traces to help analyze
file-system behavior. We asked and answered 11 questions (§3.1.1.5)
pertaining to fsync failure behavior. While all file systems marked the dirty
pages clean, ext4 and XFS retain the latest content in the page cache while
Btrfs reverted to match on-disk content. We found additional problems
with ext4: directory data block failures could cause a silent loss of directory
entries, and fsync failures in ext4 data mode are not reported immediately.

We then shifted focus to applications and their fsync() error-handling
strategies. We built CuttleFS: a FUSE file system that can inject failures
deterministically at the file level rather than the block level (dm-loki), and
emulate the reactions of previously studied file systems. Additionally, we
emulated environmental behavior such as system restarts and page-cache
evictions. We studied five applications: Redis, LMDB, LevelDB, SQLite,
and PostgreSQL, and found invalid outcomes. In addition to data loss
and invalid outcomes, we discovered and termed another class of invalid
outcomes: false failures—instances where a failure is reported but the
application state is identical to success; a problem for non-idempotent
operations. With the exeception of Redis (which did not check the return
code of fsync), all other applications perform some error handling by
either reverting state or crashing immediately. While none of them retry
fsync—as the issues with doing so became well known—none of their
other strategies worked well across all file systems either.
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While neither file systems nor applications follow a uniform error-
handling strategy, there are valuable insights to be gained from their
varying behaviors. Copy-on-write techniques have shown promising re-
sults in mitigating fsync failures, both at the file system level (e.g., Btrfs)
and the application level (e.g., LMDB). However, applications like SQLite
and PostgreSQL, which use redo logging for durability, often seek faster
write throughput—something that can be challenging on copy-on-write
file systems like Btrfs.

If an application requires more performance than copy-on-write file
systems can offer, it will need to account for the specific failure character-
istics of the underlying file system. Moreover, for portable applications,
error handling should not be treated uniformly across file systems, as they
exhibit different behaviors. Error handling must be tailored to each file
system, rather than relying on a single approach or assuming uniformity
across operating systems.

8.1.2 Discovering and Categorizing Intentions

In the second part of this dissertation, we explored application and file-
system interactions through system calls. We built Ikhnaie—a tool to
trace and visualize those interactions. Using Ikhnaie, documentation, and
manual inspection of source code, we explored applications across multi-
ple domains and classified commonly seen interactions after identifying
what the applications were trying to do; we termed these interactions as
intentions. We focused on read and write intentions.

Among single-file operations, applications can perform read operations
either in a content-dependent or content-independent manner; with one
of four access patterns for the latter. We identified filtered reads as a
common task where data that does not match the filter criteria is copied
unnecessarily.

For write operations, most applications append new data sequentially,
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while overwriting occurs in a scattered access pattern. Applications con-
cerned with atomicity or durability use either custom update protocols
(e.g., LMDB, Redis) or general approaches like copy-modify-replace or
physical redo logging. The copy-modify-replace technique, used in ap-
plications like vim and LevelDB, is similar to copy-on-write: effective,
but less efficient, and therefore typically avoided in an application’s hot
path. Physical redo logging, as seen in SQLite, is more commonly used for
durability in the hot path, though its implementation is not flawless (§3).

We divided multi-file operations into homogenous (all reads or all
writes) and heterogeneous operations (such as copies), identifying two
distinct types of copy workloads. Some applications perform a few large,
contiguous copies (e.g., cp, tar), while others handle multiple small, scat-
tered copies (e.g., checkpointing redo logs). Similar to single-file writes,
applications concerned with atomicity or durability across multiple files
use physical redo logging (e.g., PostgreSQL) to track changes to exist-
ing files, and manifests (e.g., LevelDB, RocksDB) to track changes to an
immutable set of files.

We discussed the challenges developers face when implementing these
operations. Often, they adopt a lowest-common-denominator approach
for correctness, designing to defend against the weakest file system. This
can lead to redundant and costly protections on more robust file sys-
tems. On the other hand, trying to account for each file system’s unique
behaviors adds a significant cognitive burden. From a performance per-
spective, we highlighted the key considerations developers must evaluate
when choosing an efficient implementation for these operations: selecting
the right primitives, determining when to provide the file system with
additional context, and deciding whether to use modern interfaces like
io_uring. We also identified other operations—such as prepends, inserts,
and moves—that complete our classification but are rarely used in practice
due to their well-known limitations.
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In many cases, applications make repeated system calls to achieve
a higher-level goal, or intention, due to the fine-grained nature of these
calls. Identifying and understanding these intentions can lead to improved
performance, a trend Linux has followed over the years by introducing
new system calls. Offering reference implementations for common inten-
tions like atomicity and durability, such as redo logs, can help developers
prevent data loss when building newer applications.

8.1.3 Declarative System Calls with HSL

In the final part of this dissertation, we presented HSL: The High Level
System Language, a declarative language for file-system interaction. HSL
replaced system calls with verbs—words that convey intent rather than
implementation—and introduced dedicated verbs for physical redo logs
and manifests. We incorporated collections to allow verbs to handle mul-
tiple arguments (e.g., reading multiple scattered locations) and added
hints to provide extra context to the underlying system, such as fadvise.

Additionally, we introduced a filter directive to offer a uniform inter-
face for filtering, facilitating easy switching of implementations based
on whether a file system is local or remote. With HSL’s middle-end, we
demonstrated that peephole optimization passes could leverage niche effi-
cient interfaces in certain file systems, such as the Google Cloud Storage
compose API for file concatenation. The HSL backend utilizes runtime
information—including the file system type, mount options, page cache
proportions, and collection sizes—to determine the optimal execution
strategy for specific intentions. Furthermore, we introduced the concept
of transports, which separates system call functionality from invocation
methods, including io_uring as an alternative transport mechanism.

We conducted fault-injection experiments on applications utilizing
the redo log and manifest verbs, revealing no invalid outcomes. HSL
effectively managed file-system-specific errors without imposing addi-
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tional cognitive burdens on developers. Performance evaluations of HSL’s
features demonstrated significant improvements in operations such as
copying, concatenation, and using io_uring for scattered reads. Specifi-
cally, the .filter_endpoint directive excelled in scenarios involving rare
matches (e.g., searching for errors in a log file) by consistently minimizing
network costs. Additionally, the .expect hint was effective in avoiding
unnecessary fadvise system calls, which can degrade performance during
small strided reads. However, we observed no significant performance
enhancements when using HSL for scattered writes.

We performed case studies on various applications to assess the ease of
integrating HSL and the associated performance benefits. Integration with
HSL was straightforward for all applications except SQLite. Performance
improvements were observed across all case studies except for LMDB,
which utilizes scattered writes—a scenario where HSL did not yield bene-
fits. In the context of audio trimming, HSL achieved better performance
only after modifying the application design to ensure alignment with the
file system’s block boundary (4KB), highlighting the necessity for certain
application-level adjustments to fully leverage HSL’s capabilities.

Our implementation of HSL successfully achieved all its design goals
(§5.1), with the exception of Standalone Sufficiency—currently, appli-
cations must still utilize system calls since HSL does not yet support all
existing system calls. Through various case studies, we demonstrated that:
Incremental Integration: HSL remains effective even when used partially.
Portable Efficiency: HSL selects the appropriate interface based on the
underlying file system.
Reduce Cognitive Burden: Utilizing the redo log and manifest verbs
eliminates the need for developers to manage file system-specific error
handling strategies.
Extensibility: Although not a dedicated verb, HSL allows the addition of
implementations for specific tasks, such as concatenation, for file systems
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that offer dedicated APIs.
Despite its advantages, HSL does not universally guarantee perfor-

mance improvements. For instance, in the audio trimming evaluation,
HSL was unable to align data for the application without compromising
semantic guarantees. Although data alignment can boost performance,
it necessitates that applications are designed accordingly. Furthermore,
integrating HSL is not always straightforward, as evidenced by challenges
encountered with SQLite. Applications lacking batching or vector opera-
tion support may require significant refactoring to fully utilize HSL.

HSL may offer limited advantages in data center environments where
workloads are well-defined and the systems running applications are
controlled or standardized. In contrast, HSL is particularly beneficial for
developers deploying applications across diverse systems with varying
environments. In such scenarios, where developers may not have full con-
trol over the deployment environment, HSL helps ensure both efficiency
and correctness without requiring environment-specific optimizations.

Currently, HSL is in its early developmental stages. It does not yet
possess the maturity of modern compilers, which benefit from extensive
optimization capabilities. Additionally, HSL lacks a feature to lock in
specific implementation paths, complicating efforts to ensure that the
code tested during development precisely matches what will execute in
production environments.

8.2 Lessons Learned

Here, we present a few important lessons we learned while working on
this dissertation.

#1: Characterize, then construct
We began this dissertation by characterizing the behavior of fsync() across
both applications and file systems. From there, we expanded our analysis



208

to other interactions between applications and file systems. Once we
identified areas for improvement, we proceeded to construct HSL. Even
during the construction of HSL, we adhered to the same method in terms
of performance: “Measure, Then Build” [3]. Building HSL required a
thorough understanding of the performance characteristics of existing
interfaces. Only after measuring the performance of sendfile() and
copy_file_range() under various workloads and environments could
we design the most efficient copy operation. This two-step approach—
first characterizing existing systems, then building new tools or making
incremental improvements—has proven to be an effective strategy.

#2: Inject failures below your abstraction layer
In this dissertation, we have evaluated real-world applications that struggle
with durability, even when that is their intended goal. Injecting failures
at the device level, using tools like dm-loki, is a standard practice for file
systems in testing, and we extended this approach to examine the state
further. Since the kernel supports multiple file systems, performing tests
at a lower layer allows us to evaluate durability across them all. However,
the same is not true for applications, which do not coexist in the same way
and are not developed to share infrastructure.

When it comes to fault injection, there are multiple levels to consider:
at the same level as the application, or at lower levels. Injecting faults at the
same level through mocking only captures the application’s response to
the failure and doesn’t reflect the true state of the underlying system. This
can give a false sense of reliability, as retries or crash-recovery mechanisms
may appear to resolve the issue during tests but could still lead to data
loss in production.

We advocate for injecting faults at the immediate lower level from
the application. This approach allows us to enforce deterministic fail-
ures, ensuring more accurate and repeatable testing. While using dm-loki
would allow failure injection at the block device level, the inherent non-
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determinism of file-system block allocation makes it difficult to reproduce
specific failure scenarios reliably. Modifying multiple file systems to inject
failures is also impractical. Instead, we chose to emulate a well-defined
state using a FUSE file system (CuttleFS), a layer directly below the appli-
cation. This allows us to think critically about the system state, while still
maintaining deterministic control over failure injection.

#3: Standards ensure interoperability, not uniform behavior
While studying different system calls, we observed that although various
file systems accept the same arguments and generally produce the same re-
sults (when successful), they are not identical. This allows for innovation,
as different file systems are free to experiment with diverse designs and
optimize for different workloads. However, applications require porta-
bility. Standards ensure that applications can run on these systems and,
in most cases, function correctly. Yet, differences in implementation and
design lead to varied behavior across file systems.

We observed this variability with fsync, especially when failures occur.
This is primarily because standards do not mandate specific actions in
the event of a failure. Another example is the fadvise system call, where
providing unnecessary advice can negatively affect performance for small
strided reads on some systems, though this may not be the case on others.

Even within an operating system like Linux, system calls can give the
impression of uniformity, though they are not always standardized. For
instance, sendfile and copy_file_range can be used for copying data.
While not POSIX-compliant, the expectation is that they will work correctly
on Linux across all file systems—and they do. However, they do not always
exhibit the same performance characteristics.

It is important to remember that standards only guarantee that your
application will work, but not necessarily that it will perform well. And
when a standard is silent on failure behavior, extra caution is warranted.
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#4: Granular system calls fall short, plan for transformations
In our exploration of system calls and our implementation of HSL, we
examined many system calls and their historical context. Newer system
calls were introduced as Linux responded to the needs of applications. For
instance, the pread and pwrite system calls were introduced in Linux 2.1
to avoid the need for lseek. Later, in Linux 2.6, the scatter-gather interfaces
readv, writev, preadv, and pwritev were added. More recently, Linux
introduced preadv2 and pwritev2, which allow flags to modify behavior
on a per-call basis, without requiring changes to the file descriptor itself.
These additions are driven by application demand, but Linux cannot
remove the older system calls due to the need for backward compatibility.
As a result, applications must consciously decide when to adopt the newer
interfaces.

History suggests that we may never have a perfect set of system calls.
There will likely always be cases where patterns emerge that could be
optimized if the underlying system had more context. For example, Linux
introduced sendfile and copy_file_range to accelerate common copy
operations. Similarly, if an unlink often follows a copy, this could be
optimized into a single move operation. Thus, we believe that relying
solely on a static set of system calls is insufficient. An intermediate layer
that can rewrite and transform sequences, adapting to new patterns and
performance optimizations, is a better approach. The kernel can only offer
an ever-expanding list of system calls, but it cannot dynamically make
these transformations for us.

#5: System calls are not “local” anymore
System calls were originally designed to request functionality from the
operating system, which traditionally resided locally on the same device.
However, the landscape has changed. Today, system calls can be routed
elsewhere than handled entirely within the local operating system. This
shift can occur with remote or FUSE file systems, where the OS may
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reroute the system call to a different subsystem outside its direct control.
For example, a local FUSE file system might interact with cloud storage,
or a local file system may interact with a network block device.

A system call that is fast on a local device can take significantly longer
when executed over a network. Additionally, because these remote systems
operate outside the traditional OS boundaries, they may offer additional
interfaces not constrained by the OS’s system call interface. While they
provide an interface for interoperability, they might also offer more efficient
methods of communication or data transfer.

Developers must carefully consider the environments in which their
applications will run. If the application operates in an architecture where
system calls are not always local, it becomes crucial to abstract high-level
intentions to ensure optimal performance. In such cases, using a tool like
HSL enables the system to select the best path, optimizing for the specific
constraints of the environment.

8.3 Future Work

In this section, we discuss ways to extend the work done in this dissertation.

8.3.1 Extending the fsync() Study

While using dm-loki and Cuttlefs was beneficial in performing failure
injection, we noticed their drawbacks when revisiting durability errors on
redo logs and manifests during the HSL development process.

At the time of creating these tools, the latest Linux kernel was version
5.2. By the time HSL was being evaluated, the kernel had reached version
6.5. The dm-loki kernel module was not compatible with the later kernel
version, presenting challenges in evaluating whether the same durabil-
ity issues persisted. Although FUSE also underwent changes, updating
CuttleFS was relatively straightforward.
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It would be beneficial to develop tools that can automatically charac-
terize the fsync() behavior across different file systems, or even across
different versions of the same file system. Such tools would provide valu-
able documentation for developers that is not readily available from POSIX.
While the kernel maintains backward compatibility for applications, al-
lowing them to run without breaking user space, anything internal to the
kernel—especially kernel modules outside of the mainline kernel—can
break between versions. One alternative strategy would be to perform
fault injection using a network block device. This would still operate at
the kernel layer, injecting faults, but the network protocol would remain
stable over time, avoiding the challenges of evolving kernel versions.

The fsync() system call is one where the file system must update
its internal state, and failures during this process require proper error
handling and state cleanup. Future work could extend this by identifying
other system calls that modify internal state and exhibit non-uniform
failure handling. A parallel approach could involve a detailed examination
of POSIX itself to identify potential deficiencies in its specifications. Are
there other interfaces in POSIX that allow for significant differences in
implementation behavior? Understanding these gaps could inform more
consistent and reliable system call implementations in future versions of
file systems.

8.3.2 Expanding and Detecting Application Intentions

In this work, many application intentions were discovered, i.e., what an
application truly aims to accomplish when it makes multiple system calls
to the underlying file system, by studying the interactions between appli-
cations and the file system. There are three directions in which this work
can be extended.

First, now that these intentions have been identified and are better
understood, tools could be created to automatically detect them. Such
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tools could inform developers that these intentions can be abstracted, and
a language like HSL could be used to streamline their implementation.

Second, the study primarily focused on read and write intentions.
However, another class of intentions—metadata intentions—was observed.
Applications like Make rely heavily on querying metadata, such as the
creation or modification times of files. The underlying requirement of
these applications is to obtain the subset of files that have been modified
since a specific point in time. Further work could explore how applications
use and modify metadata, and the reasons behind those actions. This could
provide opportunities to optimize systems for metadata operations, as
current systems primarily optimize the data path. There might even be
room for specialized storage systems tailored to build tools that depend
heavily on metadata.

Third, there are intentions that were not observed but which logi-
cally complete the set of potential intentions. These were absent because
their limitations are well known to application developers. For example,
prepending data is generally avoided due to the inefficiencies caused by
shifting the remainder of the data. However, if such operations were
made more efficient, it could simplify the development of certain types
of applications. Additionally, exploring whether there are applications
that would benefit from such functionality, but have been intentionally
designed otherwise due to current limitations, could open new avenues
for optimization.

8.3.3 Extending HSL: Overcoming Limitations and
Optimizing Performance

In this section, we discuss how to extend HSL, a declarative language
designed to understand and execute intentions in the most efficient manner
across different systems.
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The first way to extend HSL is to address its current limitations. Bor-
rowing from compiler design, additional optimization passes could be
added that go beyond basic peephole optimizations. For example, dead
code elimination could be applied by avoiding issuing fsync() on direc-
tories when the mount options already handle that. Over time, these
transformations would allow novice users to write code that interacts
with the system much like user-space code does, while still generating
the most efficient set of system calls. Another limitation to address is
the need for production systems to ensure that the paths tested during
development are identical to those taken in production. Just as compilers
generate code tailored to a specific platform, HSL needs the capability to
take input, such as the target platform and assumed workloads, ensuring it
adheres to a consistent strategy. This would prevent unexpected behavior
in production environments compared to the test scenarios.

The second way to extend HSL is to broaden the scope of runtime
information. Further studies are needed to determine what additional
runtime information could be useful and how it can be exposed to HSL. For
instance, our current implementation can only gather cache statistics over
large contiguous regions because finer granularity incurs significant costs.
Exposing this information at the level of individual reads, such as revealing
how much of a read was served from the cache, could optimize future
operations in HSL. Similarly, exposing device-specific characteristics could
provide further optimizations. Some devices support offloading specific
compute tasks to smart devices, which can accelerate filtering operations,
while specifications like NVMe’s SGL Bit Bucket Descriptor allow for
skipping blocks in a single I/O request, potentially making strided reads
more efficient.

The third extension involves designing dynamic switching of intention
implementations. Currently, HSL switches certain implementations based
on runtime information such as collection size and file system characteris-
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tics. However, for redo logs and manifests, decisions are made solely based
on file system characteristics. A key observation is that once a checkpoint
or commit operation is complete, it may no longer be necessary to stay
with a particular implementation. The on-disk structure already contains
a magic number corresponding to the implementation in use, allowing
for flexibility. By leveraging runtime statistics, different implementations
could be selected for better performance. For instance, if all blocks in a
redo log are block-aligned, file systems like XFS and Btrfs could offer faster
checkpointing due to quicker copying to the base file. Currently, only one
correct implementation is provided, but as with system calls, multiple
implementations may exist, with some being more efficient on different
file systems.

8.4 Closing Words

Most applications do not have unrestricted access to hardware; they rely
on operating systems and file systems to manage reading and writing to
storage. These applications are typically designed to run across a variety
of systems, allowing developers to write portable code without knowing
the exact environment in which it will be executed.

Designing applications for portability, however, presents significant
challenges in achieving both correctness and performance. This complexity
also makes it more difficult for systems engineers to contribute effectively.
Our work aimed to reduce these challenges, much like how compilers
have simplified development for user-space applications.

We posed the question: Can a declarative language for file-system
interactions improve the correctness and performance of portable applica-
tions? Our research showed that achieving correctness is difficult without
a deep understanding of the systems on which the application will run.
Additionally, systems are often underutilized due to the absence of a
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clear performance hierarchy among standardized interfaces for certain
intentions.

By introducing a declarative interface like HSL, we addressed these
concerns, providing a more efficient way to handle system interactions.
Although HSL represents an early step, it has already shown promising
results in improving both durability and performance.
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A
The HSL Specification

Here, we describe HSL’s specification for each verb. Note that the specifi-
cation differs slightly from the design (§5.1) to reflect the current imple-
mentation.

A note on return values: Currently, when .execute() on the script com-
pletes, an integer is returned—the return code. A return code of 0 indicates
success while 1 indicates a failure. The specification needs to be improved
to handle accurate identification and bubbling up of errors with respect
to collections. One solution is to have two layers of return codes for er-
rors. The first layer is a single return code for quick checks of success.
The second layer is return codes for each collection item which can be
accessed either by binding a vector to HSL, or querying HSL to report
more information (such as the errno) for a particular index in the collec-
tion. On failure, the first layer would return a non-zero error code (not
simply 1), indicating the first element in the collection that faced an error.
Additionally, to handle the case of incomplete reads or writes (which may
occur even in the absence of failures), users can query HSL for the bytes
read or written for a collection. HSL will treat incomplete reads or writes
as errors with a HSL::EINCOMPLETE error code.
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A.1 READ

The READ verb is used to read data from one or more files using file descrip-
tors; for multiple files, the file descriptor argument must be a collection.
The data to be read may be specified as a single contiguous range with a
starting offset and a length, or a collection of offsets.

(1) READ fd, buf, size;

Reads from a file descriptor fd, using the internal offset within the kernel
for the file descriptor, similar to read(). The above reads a single con-
tiguous range of size bytes into memory buffer buf. All three identifiers
require binding at runtime.

(2) READ fd, buf, 4096;

Unlike fd and buf, a constant size (e.g., 4096) can be written as is without
requiring runtime binding.

(3) READ fd, buf, size, offset;

Similar to (1) and (2), reads data but from a specific offset (like pread()).
Additionally, like size, offset can be a constant.

(4) READ fd, [buf, size]@records;

Reads a contiguous range from disk into multiple buffers, similar to
readv(); a gathered read. As the internal offset is used (like (1)), each
read must happen in order for the application to know which read is in
which buffer; i.e., only ordered collections are supported.

A note on collections: the name “records” is only an identifier used for
binding. Any other name can be used in its place. During binding, HSL re-
quires that records binds to an integer indicating the size of the collection,
records.buf binds to a vector of buffers (pointers), and records.size
binds to a vector of integers if size is not a constant like 4096. The size
of records.buf and records.size must be at least the size of the collec-
tion, and each entry in records.buf must be a valid allocated memory
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buffer. Moreover, records.buf[0] must have enough memory to hold
records.size[0] bytes.

(5) READ fd, [buf, size]@records, offset;

Similar to (4), but starts from the given offset instead of the internal one
(like preadv()).

(6) READ fd, {buf, size, offset}@pages;

Reads arbitrary ranges from disk into multiple buffers; a scattered read
which would require a looping with preadv(). We use an unordered
collection as the user specifies the exact offsets for each buffer and the size
of each buffer. Like (4), the collection named “pages” requires pages.buf
and pages.size. Unlike (4), it also requires pages.offset where data at
pages.offset[i] of length pages.size[i] will be read into pages.buf[i].
Unlike the size identifier, pages.offset must be a vector of integers (con-
trast to (3) where both size and offset can be constants).

(7) READ fd, [buf, size, offset]@records;

Similar to (6) but forces an ordered read operation. We don’t have a
genuine use case for it but support it regardless.

(8) READ {fd, buf, size, offset}@fileset;

Perform a multi-file scattered read operation given a collection named
“fileset”. In addition to collection details mentioned in (6), fileset.fd is
a vector of file descriptors where fileset.fd[i] is the descriptor to be
used for the operation.

A.1.1 Using .expect Hints

An .expect hint must always be preceded by a READ.

(1) .expect SEQ;

Issues an fadvise() system call for sequential access on the file descriptor
of the preceding READ.
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(2) .expect RSEQ;

Performs a readahead (either through readahead() or fadvise() with
FADV_WILLNEED) on the previous chunk for the file descriptor of the pre-
ceding READ. The chunk size is the same as the bytes to be read by the
preceding READ.

(3) .expect STRIDE length;

Performs a readahead (similar to (2)) on the chunk after the given stride
length.

(4) .expect next_offset;

Performs a readahead (similar to (2)) on the given offset.

A.1.2 Using .filter Directives

Like .expect, a filter directive must also be preceded by a READ; specifically,
single contiguous reads.

(1) .filter \n, keyword, callback_fn, ctx, SEQ|RSEQ;

Consider a single contiguous READ that stores the data in a single buffer
named BUF. In the absence of the filter directive, a user that wishes to
filter records in BUF must inspect each record. Records are differentiated
based on a delimiter (e.g., line records use the \n delimiter). The user
then loops over records in BUF and checks if the record contains a keyword.
Every matched record can then undergo further processing. The process
is then repeated on new data that is read into BUF, which can be the next
(sequential) or previous (reverse sequential) chunk.

With the .filter directive, the user specifies the delimiter as the first
argument followed by the keyword. Internally, HSL performs the filtering
over BUF. To support the use case of “further processing” of matched
records, the user specifies a callback function (callback_fn) which is
invoked on every matched record. Currently, the callback function has the
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signature bool fn(char ∗buf, size_t len, void ∗ctx); which accepts the
matched record and the size of the record. The context variable ctx is user-
specified context which is also bound to HSL as seen in fourth parameter.
Finally, the fifth parameter determines the direction in which the process
repeats (SEQ or RSEQ). If the callback function returns true, HSL repeats
the process; on false HSL stops execution. If a callback function always
returns true, HSL runs until the end (or beginning) of the file depending
on access direction.

(2) .filter_endpoint s3fs http://url/to/aws/lambda

In addition to (1), a user may also specify a filter endpoint so that if the
filter workload is running on the file system matching the first argument
(s3fs here), the endpoint can be invoked. For s3fs, we assume a http
endpoint to a lambda function but the HSL backend can be extended to
run any custom function that takes the second argument as a parameter.
The lambda must be configured to accept the delimitter and keyword
similar to (1). Unlike (1), it must also accept a starting offset and the size
of BUF (the amount of data to transfer). As the lambda endpoint returns
all matching records up until BUF is full and discards any non-matching
records, it also returns the next offset that it should resume reading from.
HSL, with BUF full of matching records, calls the callback function on each
record.

A.2 WRITE

HSL’s WRITE verb follows the same format as READ except that there are no
hints or directives currently associated with writes.

A.3 APPEND

Similar to WRITE, HSL also contains a dedicated APPEND verb.
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(1) APPEND fd, [buf, sz]@records;

As appends follow a particular order, they are only allowed with ordered
collections.

A.4 FSYNC

(1) FSYNC fd;

Invokes fsync() on the file descriptor. When running on file systems that
do not have a safe file flush (e.g., fsync on a newly created file does not
flush directory entries), the backend must also call fsync on the parent
directory.

(2) FSYNC [fd]@fileset;

Invokes fsync on multiple file descriptors in the given order as specified
by the ordered collection. Each fsync is handled similar to (1).

(3) FSYNC {fd}@fileset;

Invokes fsync on multiple file descriptors without concern for ordering.
Each fsync is handled similar to (1).

A.5 COPY

(1) COPY src_fd, dst_fd;

Performs a full file copy from a given source to destination; a single large
contiguous range.

(2) COPY src_fd, dst_fd, src_offset, dst_offset, size;

Copies size bytes from the source file at the source offset (src_offset)
to the destination file at its destination offset (dst_offset); a single large
contiguous range.
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(3) COPY src_fd, dst_fd, {src_offset, dst_offset, size}@ranges;

Performs many scattered copies from source file to destination file given the
unordered collection named “ranges”. HSL copies ranges.size[i] bytes
from ranges.src_offset[i] in the source file to ranges.dst_offset[i]
in the destination file.

A.6 REDOLOG

Our implementation of redo logs involves two files, a redo log and the
base file on which multi-chunk updates must be performed atomically.
As our implementation of redo logs is for physical redo logging, existing
applications that use physical redo logging need only change the way they
append, read, and checkpoint their write-ahead logs without any complex
changes to on-disk layout.

We describe each verb related to redo logs and how they may change
when dealing with multiple basefiles (for multi-file and multi-chunk
atomic updates).

(1) REDOLOG_OPEN rfd, basefile, chunksize;

If a redo log does not already exist, HSL creates a new redo log and writes
metadata headers to remember which basefile it is associated with and the
size of the chunks. HSL stores a “redolog file descriptor” in rfd, which
is not a conventional Linux file descriptor but an opaque HSL id that
represents the redo log abstraction.

To handle multiple files, a collection of basefiles and basefile ids can be
passed; we still assume a fixed chunk size. The basefile ids are required so
that future operations on chunks use chunk ids and basefile ids to identify
the file and location within the file instead of using the basefile path. The
internal metadata headers must be modified to remember all basefiles and
their ids. HSL will still return a single opaque HSL id which is stored in
rfd.
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(2) REDOLOG_READ rfd, {id, buffer}@chunks;

Reads an unordered collection of chunks, preferring latest stable data from
the redo log. The data for chunks.id[i] will be stored in chunks.buffer[i].

For multiple files, the collection will also include a file id.

(3) REDOLOG_APPEND rfd, {id, buffer}@chunks;

Appends an unordered collection of chunks to the redo log. The collection
can be ordered but it is unnecessary due to the atomicity guarantees HSL
provides over the entire collection.

Similar to (2), the collection will also include a file id for multiple files.

(4) REDOLOG_SYNC rfd;

Attempts to make all appended chunks stable using an update protocol
that involves fsync(). On success, future REDOLOG_READs must always
return the latest content. On failure, future REDOLOG_READs must never
return any content that was part of the appends before the sync and must
continue to return the stable content before the sync.

The redo log internally knows the basefile or basefiles it refers to. No
changes are necessary to support multiple basefiles here.

(5) REDOLOG_APPLY rfd;

Performs the equivalent of checkpointing for the redo log, writing the
latest stable chunks to their location in the basefiles. Regardless of success
or failure, this operation must ensure the guarantees of (4) still hold.

Similar to (4), no changes are necessary to support multiple basefiles
as the metadata contains the required information.

A.7 MANIFEST

Unlike redo logs, our implementation of manifests cannot be drop-in
replacements in applications that use manifests. Applications like LevelDB
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and RocksDB have custom on-disk formats for manifest files. LevelDB
manifest files map a level to an ordered list of sst files.

As HSL manifests use a generic map container of string keys and string
values, a LevelDB manifest with 3 files in a level would have 3 keys for
that level in HSL. For example, instead of Level 3:a.sst,b.sst,c.sst,
LevelDB would need to insert 3 key-value pairs: L3i0:a.sst, L3i1:b.sst,
and L3i2:c.sst.

(1) MANIFEST_OPEN mfd, path;

Opens or creates a new manifest at the location path. Similar to redo
logs, stores an opaque HSL id in mfd, the manifest file descriptor. Like
LevelDB’s CURRENT file, path is the root pointer to a manifest file (an
on-disk mapping of keys to values). Unlike LevelDB, it can have any name
the user wishes to provide.

(2) MANIFEST_ADD mfd, key, path;

Looks up the given mfd and updates the manifest’s map with the given
key and path. The path need not exist just yet but must exist on commit.

(3) MANIFEST_REMOVE mfd, key;

Similar to (2), but removes the key from the map and therefore does not
require a path.

(4) MANIFEST_COMMIT mfd;

Performs the update protocol to safely persist a modified in-memory man-
ifest map to disk. On success, future readers must always use the new
manifest map. On failure, future readers must never read any of the
content from the new manifest and must continue to access the previous
content before the commit.

(5) MANIFEST_KEYS mfd, num_keys, keys;

Stores the number of keys present in the manifest in num_keys, and the
keys themselves in keys which must be a vector of strings.
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(6) MANIFEST_READ mfd, key, fd;

Stores a read-only file descriptor for the file associated with the given key
into fd. Users can then use HSL or their own custom logic to read data
from fd.
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B
Evolving and Extending HSL

The current implementation of HSL is approximately 4500 lines of C/C++
code excluding tests and build tool configurations. HSL currently focuses
on the characteristics of three local file systems (ext4, XFS, and Btrfs) and
two remote file systems (s3fs and gcsfs), and provides a single imple-
mentation for physical redo logging and manifest files. Additionally, the
performance crossover points for different interfaces may differ when HSL
is run on different hardware, operating systems, or versions of the same
operating system.

Here, we discuss the steps to take in evolving HSL for different hard-
ware and versions, and also in extending HSL to support new file systems
or custom intentions.

B.1 Evolving HSL

The primary concern when running HSL on unsupported file systems is
the confidence in redo logging or manifests adhering to their correctness
semantics. The implementations of REDOLOG and MANIFEST issue
warnings when running on unsupported file systems so users are aware
of the risks. However, they do fall back to regular conventional methods
so users can still run them as they do today with the risk of data loss. For
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example, we do not issue a double fsync as we do not know if the file
system requires it; maybe it requires three fsync calls.

A secondary concern when running HSL on supported file systems but
on different OS versions or hardware is whether portable efficiency is still
guaranteed. The current performance crossover points were measured
on Linux v6.5.7 on a Cloudlab c220g2 machine using an SSD. During
installation, HSL has some defaults from the above configuration as a base.
However, we plan to provide another tool HSL-profile which can be run
at any time post installation to identify properties of the current system.
The same experiments we run to identify the performance crossover points
will be packaged as workloads to be profiled as part of HSL-profile.

Additionally, similar to profile-guided optimization, the HSL Runtime
in each HSL-enabled application can log activity which can be used by
HSL-profile to determine which file systems and underlying devices need
to be profiled. While not yet implemented, the results can be stored as part
of a configuration that HSL reads when the runtime within an application
is initialized.

B.2 Extending HSL for New File Systems

While HSL officially supports the three file systems we studied, the default
system call backend will work for existing POSIX compliant or compatible
file systems. However, like with applications that do not use HSL, using
unsupported file systems can cause data loss or limit performance. Sup-
porting a new file system requires adding a backend implementation for
each existing verb minimally in the syscall transport.

Similar to the Linux Kernel’s virtual file system layer (vfs), a devel-
oper (who is hopefully an owner or maintainer of the file system) also
writes a HSL backend. An example file system (exfs) would have a file
exfs-hsl-syscall.cc that internally registers the handlers for each verb,
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similar to how vfs has handlers for certain operations; any verb that does
not have a registered handler will use the default POSIX compliant system
call. If the developer wishes to support the iouring transport, another
file—exfs-hsl-iouring.cc—must be provided. Similarly, kernel-bypass
file systems that use shared memory can create exfs-hsl-shm.cc.

When initializing a transport, the developer has the option of making
it private or public. For example, a public iouring transport can be used
when verbs operate on other file systems within the application. However,
a private shm transport is specific to a file system (not just in type but the
instance mount point).

Note that the developer does not need to decide between multiple
existing transports, the HSL profiler will discover performance related
switches if multiple are available. However, the developer must decide on
which is the best system calls to execute the verb and its arguments. As
the backend is executed at runtime, the code can query properties from
HSL runtime as well as the size of collections or cache properties to decide
the right system calls. While not yet implemented, we plan to provide a
library with helper functions to access HSL runtime information.

While the above addresses portable efficiency, it does not handle cor-
rectness. To avoid re-implementations of redo logs and manifest files,
each file system must provide “traits” at run time similar to the behavior
inferences studied in Chapter 3; e.g., whether a page is clean or dirty after
fsync failure, and whether error reporting is immediate or delayed. HSL
will query traits at run time for a given file descriptor as the same file
system may have different behavior depending on its mount options (e.g.,
ext4 ordered and data mode). The implementations of complex intentions
such as redo logs and manifest files will use traits to decide post-failure
behavior. If a file system does not expose the traits required by a verb, and
if an application uses that verb on the file system, HSL will issue warnings
so users are aware of the risks.
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In addition to backend implementations for HSL verbs, the developer
must also register handlers for certain bookkeeping operations such as
“checkpointing” so that HSL can trigger a checkpoint if required (e.g., for
manifest files if directory entries can disappear). As more intentions are
added, there may be more bookkeeping operations to be registered as
handlers. If a verb requires a handler that is missing and is required for
correctness, HSL will issue warnings so users are aware of the risks.

B.3 Extending HSL for Custom Operations

One of the benefits of HSL as a language instead of a library is the ability
to identify intentions retrospectively and add new operations without
modifying existing application code. The choice of making a new verb
public or ephemeral (only within HSL’s middle-end and backend) is left
to the developer or organization. A general guideline is to avoid making
new verbs public, unless they apply to multiple file systems or is a new
correctness related update protocol. If a verb is required for a very spe-
cific performance optimization, it does not need to pollute the frontend
requiring developers to learn about a new “keyword”.

A public verb has an additional initial step which we cover first before
describing with the remaining common procedure. To introduce a new
verb, the HSL frontend language must be updated to detect the letters as
a verb. Similar to registering a backend, the verb is registered with the
HSL frontend using HSL::Frontend::RegisterVerb. The function takes
the new verb as a string as well as a callback function and stores them in
a map. Internally, when HSL detects a non-standard verb, it checks the
map and calls the callback function. The callback function must accept
a single parameter that represents a parsed argument list. Internally, the
callback function can query the number of arguments and the type of each
argument and return a success code if everything is as intended. A failure
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return code fails the frontend parsing of a HSL script, similar to compiler
syntax errors. In addition to the success code, the function also returns
the handler functions to execute the verb in the backend (similar to file
systems registering handlers for verbs).

Even if a verb is public, unmodified applications can benefit from it
if the developer writes a middle-end pass that transforms a sequence of
existing verbs. The developer can register a new pass that operates on
basic blocks within HSL scripts. If a sequence of HSL statements (verbs
and their arguments) match certain criteria, the developer can replace
them with a public verb or an ephemeral one. For ephemeral verbs, the
handler functions should be provided here; public verbs would have done
so in the frontend. As the transformation is performed using HSL helper
functions, HSL remembers the existing statements that comprise the new
verb which can be used as a fallback if a backend implementation does
not exist. Alternatively, the developer can inject runtime predicates (e.g.,
if file system for fd matches a specific file system), and then apply the
transformation, leading to two new basic blocks.

The final part in introducing a verb is to provide an implementation
for it which is passed to HSL either at the frontend or middle-end as
mentioned above. If no implementation is provided, ephemeral verbs fall
back to the pre-transformed version. Note that HSL does not have to revert
transformations. As passes and implementations are registered during
initialization before a script is executed, HSL simply does not apply the
transformation.

To avoid having all other file systems also support the custom verb
in the backend, the developer should provide a generic implementation.
Internally, by querying runtime information, the implementation can write
file-system specific code to use special custom interfaces when possible.
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