
Fast, Transparent Filesystem Microkernel Recovery with Ananke

Jing Liu*, Yifan Dai†, Andrea C. Arpaci-Dusseau†, Remzi H. Arpaci-Dusseau†

Microsoft Research∗, University of Wisconsin–Madison†

Abstract. We introduce Ananke, a high-performance
filesystem microkernel service that provides transparent re-
covery from unexpected filesystem failures. Ananke does
so by leveraging the unique opportunity of the microker-
nels, running a small amount of recovery code coordinated
by the host OS at the moment of a process crash. Ananke can
record key pieces of information not usually available during
full-system crash recovery, enabling fast and transparent re-
covery for applications. Through over 30,000 fault-injection
experiments, we demonstrate that Ananke achieves lossless
recovery; we also show that Ananke recovers quickly, usu-
ally in a few hundred milliseconds. Through real application
workloads, we show that Ananke delivers high performance
in the common case; the extra work needed to detect faults
and prepare for recovery incurs minimal overheads.

1 Introduction
Microkernels have existed for decades [11, 19, 20, 30, 53,
54, 72], finding widespread deployment in millions of de-
vices [9] and usage across a range of domains, including real-
time environments [21], mobile devices [34], secure sys-
tems [30], and desktop computer systems [74]. Recent re-
search has also advocated partial microkernel-style architec-
tures for high-performance datacenter environments, includ-
ing networking [28,41] and storage [36] stacks. In these sys-
tems, a traditional kernel (i.e., Linux) serves as the base OS,
but the subsystem of choice is placed within a separate user
process, with total control over the relevant hardware com-
ponents (e.g., the network card or storage device). These ap-
proaches deliver high performance and scale effectively with
more cores [36, 41].

However, because server software – and underlying hard-
ware – is imperfect, it can fail. Unlike a typical OS crash (a
full system crash, or s-crash for short), which likely brings
down the entire system (and any processes running upon it),
a microkernel server failure can (likely) be contained to the
process itself; client applications running on the system can
(potentially) continue to run.

Ideally, after a server process crash (p-crash), the server
quickly restarts and resumes serving requests from client ap-
plications. However, in a filesystem service, doing so is chal-
lenging: the state of the filesystem, including buffered up-
dates not yet persisted and ephemeral state such as open file
descriptors must be exactly recovered. We refer to the differ-
ence between applications’ expectation for filesystem state
and the state recovered by s-crash recovery (i.e., persisted)
as the state gap.

*Work partially done while at the University of Wisconsin–Madison.

Despite the literature on microkernel recovery [12,33] and
filesystem recovery [10, 39, 63], how to fully realize the po-
tential of a p-crash for microkernel filesystems remains un-
satisfactorily answered. In this paper, we advocate a princi-
pled approach to p-crash recovery, which is complementary
to s-crash recovery and provides a better guarantee of trans-
parent recovery with a realistic fault model.

We do so by examining the challenges of p-crash recov-
ery and leveraging the benefits of the entire machine be-
ing alive – the OS serves as an ideal coordinator, with in-
formation readily available in server memory that can con-
tribute to recovery. We design and implement Ananke, a
high-performance and robust filesystem microkernel service.
Ananke is based on uFS [36], adding mechanisms for trans-
parent recovery after an unexpected fault while maintaining
high performance in the common case.

Central to recovery is an in-memory p-crash log (p-log).
During normal operation, Ananke records information about
ongoing system calls into the p-log. Importantly, as the
workload continues, the p-log always reflects the source of
the state gap, even if the system calls can be persisted in a
non-sequential order. After a p-crash, with OS coordination,
a new process is started, and the p-log and client connections
are properly transferred between the two processes. The new
process can access the p-log – in addition to the on-disk s-
crash recovery logs (e.g., journals) – to restore the filesystem
state precisely. Applications continue running undisturbed,
incurring only a momentary drop in performance.

Ananke includes a range of novel mechanisms. The p-
log with the AIM (Act-Ignore-Modify) algorithm recovers
state gaps without impacting common-path performance.
A kernel-coordinated speculative restart robustly restarts a
new process with clean state and avoids the overhead of
device connection establishment, greatly reducing recovery
time. Finally, lightweight checksums are used to promptly
detect corruptions in the essential in-memory data structures.

We perform a thorough evaluation of Ananke, focusing
on fault handling and performance. We show that Ananke
achieves seamless recovery for applications, including util-
ities (sort, cp, zip) and durability-aware libraries (SQLite,
LevelDB); Ananke achieves transparent recovery in a large
number (30,000+) of controlled and random fault-injection
experiments that emulate both fail-stop p-crashes and mem-
ory corruption. Further, Ananke incurs negligible perfor-
mance overhead (less than 2% in most cases) and memory
overhead (8 MB per core for a replicated p-log and less than
0.01% of workload memory for CRCs). Finally, Ananke re-
covers in an acceptable amount of time (≤400ms).

This paper is organized as follows. We present back-
ground (§2), design (§3), implementation (§4), evaluation
(§5), related work (§6), and conclude (§7).

2 Background and Extended Motivation
We present the crash models and implications of filesystem
failures in monolithic and microkernel systems. We then
highlight the need for separate process crash recovery in mi-
crokernel filesystems.

2.1 Monolithic Kernel Filesystem Failure ⇒
Full-system Crash

A filesystem may encounter an error that causes it to fail,
due to reasons like software bugs [8,23,29,38] and hardware
errors (e.g., CPU or memory) [2,14,22,31,49,59,61,70,73].
The crash model for a monolithic kernel filesystem failure is
that when the filesystem crashes, the entire system, including
the OS kernel, also crashes (i.e., a full-system crash or s-
crash for short), resulting in the loss of all volatile memory
states that have not been saved to disk.

One implication is that a filesystem failure shares the same
crash model as other environmental causes of an s-crash,
such as a power failure or a hard machine reset. Therefore, s-
crash recovery commonly treats a filesystem crash the same
as a power failure.

All modern monolithic kernel filesystems contain mecha-
nisms to recover from an s-crash, relying solely on on-disk
states. For example, Linux ext3/4 filesystems use journal-
ing (a.k.a. write-ahead logging) to record relevant infor-
mation (filesystem metadata and/or user data) about pend-
ing updates into what we term an s-log [67, 68]; if a later
s-crash occurs, the filesystem utilizes the s-log to recover the
filesystem to a consistent state. Of course, other techniques
exist [37, 44, 56], but all share the goal of ensuring on-disk
states are consistent, rather than guaranteeing no data loss.

Another implication is that when the filesystem fails, all
applications running on the system also crash. Traditional s-
crash recovery only ensures that the filesystem is returned
to a consistent state, assuming that applications lose their
progress. Since filesystems buffer updates in memory for
performance [45], many data and metadata updates are not
persisted at any instant, resulting in the loss of recent updates
during an s-crash.

Traditional s-crash recovery can also be slow. Approaches
based on full-disk scans (such as fsck [44]) are prohibitively
slow [40], as they must scan all filesystem metadata to fix
inconsistencies. More modern approaches (e.g., journal-
ing [51,67]) are better, with performance proportional to the
size of the log (rather than the entire filesystem disk space).

2.2 Microkernel Filesystem Failure ⇒ Process Crash
A microkernel filesystem exhibits a different crash model:
the process crash (or p-crash for short). In this case, the
filesystem server goes down after a failure, but the rest of the
system remains up and running.

The first implication is better fault isolation, a well-known
reliability benefit of microkernel design [9], where the OS,
including other system services continue naturally.

The second implication is that applications interacting
with the filesystem have the opportunity to continue, but not
without challenges. The main challenge is the state gap be-
tween the application’s perceived states (i.e., buffered in the
crashed server’s memory) and the on-disk states. Such state
gap covers the semantic states of the filesystem, including
on-disk data structures and file descriptors. Performing s-
crash recovery is insufficient because it ensures that the on-
disk states are consistent, but does not address the state gap.

Consider, for example, an application that issues ten writes
to an empty file and then closes the file descriptor, at which
point the filesystem server crashes. If we restart the filesys-
tem server, and the application opens and reads the file again,
it will see an empty file, since that is its on-disk state. How-
ever, the application’s perceived state is that the file contains
ten writes – a confusing outcome with severe data loss.

The state gap can be much more complex than this simple
example, as discussed later (§3.6). The fundamental issue
is that the in-memory states of the filesystem server can be
updated (and buffered) by a rich set of filesystem APIs. The
state gap may also be altered by partial flushes of the server’s
states to disk, as a result of the out-of-order durability em-
ployed by modern filesystems [42, 50]. As a result, after a
p-crash, opened file descriptors, data writes, and metadata
updates (e.g., creating, unlinking, and renaming files) will
be unexpectedly lost.

2.3 Separate P-crash Recovery from S-crash Recovery
In this work, we advocate for a separate p-crash recovery
mechanism in addition to traditional s-crash recovery. Such
a recovery leverages the opportunity provided by p-crashes:
if the server can quickly restart, recover, and resume serving
requests, availability increases. With fast p-crash recovery,
applications might not notice that the filesystem has crashed.

The benefits of p-crash recovery are manifold. First, ap-
plications can continue running with better correctness guar-
antees than those provided by s-crash recovery, achieving
transparent recovery. A microkernel offers the advantage
that filesystem applications do not lose their progress. For
example, user applications do not need to restart their jobs or
perform manual recoveries, which can be error-prone [50].

Second, filesystem failures and p-crashes occur fre-
quently [38], whereas power failures are relatively rare [16,
24]. While modern cloud environments are designed to han-
dle power failures, these solutions are complex, involving
failover with sophisticated protocols [48]. Delegating a p-
crash to a global failure scenario is not only unnecessary but
also increases the risks of severe issues from failover invoked
by an s-crash [24]. Separating p-crash recovery from s-crash
recovery reduces these complexities and potential risks.

Third, p-crash recovery can take advantage of another
microkernel architecture’s benefit: restarting the filesystem

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

YCSB-C

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

YCSB-C

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 500 1000 1500 2000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

YCSB-A

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

YCSB-A

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 1000 2000 3000 4000
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) uFS

Load

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) uFS

Load

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) uFS-Sync

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) uFS-Sync

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) Ananke

0 250 500 750 1000 1250 1500
Time (ms)

30K

60K

90K

120K

150K

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
) Ananke

Figure 1: Recovery with uFS, uFS-Sync, Ananke for LevelDB. First row (Load): After the p-crash at time 700ms, LevelDB on
uFS is not able to continue without manual intervention. With uFS-Sync, LevelDB continues after the p-crash, but performance
suffers because dirty pages are persisted after every operation. Ananke achieves the best of both: transparent recovery and high
performance. Recovery time with uFS-Sync is 285ms; with Ananke 114ms. Second row (YCSB-A): Recovery with uFS-Sync
310ms; Ananke 171ms. Third row (YCSB-C): Recovery with uFS-Sync 108ms; Ananke 102ms.

Ananke uFS uFS-
Sync

Mem-
brane [63] Rio [10] Other-

world [13] TxIPC [33]

Recover State Gap
Low Perf. Impact

Memory Corruption
Robust Restart

Prompt Detection

Table 1: Qualitative Comparison with Relevant Systems.
Black indicates the best and white the worst. The last three
rows are not applicable to uFS.

server requires less effort, can be fast, and can rely on all
the services coordinated by the host OS (e.g., fork, tmpfs,
pseudo file systems, etc.). In contrast, restarting a kernel
filesystem is challenging and less robust when reusing the
same kernel [63] or slow if using a new kernel instance [13].

Unfortunately, current applications are not able to con-
tinue operating transparently after microkernel filesystem
p-crashes, even when the filesystem, uFS [36], has been
extended to automatically restart and reconnect with ac-
tive clients. The first column of Figure 1 shows that
when LevelDB (with three different workloads) runs on a
restartable/reconnecting version of uFS, a p-crash of the file-
server causes LevelDB to terminate and not be able to con-
tinue without manual intervention to repair data. The funda-
mental problem is that a state gap exists between the filesys-
tem state that LevelDB expects and what is provided by the
microkernel filesystem when it resumes.

2.4 Alternatives for P-Crash Recovery
There are several methods to workaround the challenges of
state gap [12, 58] for p-crash recovery, all with their costs.
One straightforward method to handle a p-crash is to trans-
form it into an s-crash. Specifically, when the fileserver goes
down, either bring down the entire system or the related ap-
plications using the filesystem. However, such an approach

misses the opportunities and benefits of p-crash recovery.
Second, one might consider a client-side recovery mech-

anism, where the client is in charge of the state gap (e.g.,
by retrying). However, this requires the application to track
the state gap, which is complex because the client must be
notified whenever the server persists any of its state (e.g.,
from a background sync). Furthermore, retry during recov-
ery is a fundamentally difficult problem of distributed coor-
dination [6] in the presence of multiple clients.

A final alternative is to eliminate the state gap by avoid-
ing server-side write buffering. By forcing all updates to be
persistent before replying to applications, the server ensures
that the on-disk state is always up-to-date. Thus, s-crash re-
covery is sufficient to restore the system to its most recent
state. Even though such an approach can provide failure
transparency to applications, forcing updates to disk results
in unacceptably poor common-case performance. The sec-
ond column of Figure 1 shows the poor performance when
adopting such an approach in uFS (modified as uFS-Sync);
in this case, LevelDB is able to continue transparently after
the p-crash, but its throughput is unacceptably low on any
workloads with significant writes (i.e., Load and YCSB-A).

By contrast, Ananke is able to deliver the full potential
of separating p-crashes from s-crashes for applications. The
third column of Figure 1 shows that when LevelDB is run
on Ananke, it achieves the same common-case throughput
as it did on the original uFS system before the p-crash, and
continues operating transparently after the p-crash occurs.

2.5 Challenges in Principled P-Crash Recovery
Previous filesystems have made significant steps towards
providing transparent filesystem recovery to applications,
but none have yet delivered the full potential of p-crash

recovery. We examine the limitations of some exist-
ing restartable kernel filesystems (such as Membrane [63],
Rio [10], and Otherworld [13]) and previous microkernel
filesystems (such as TxIPC [33]). Table 1 summarizes how
well these systems, including uFS and uFS-Sync, address the
following challenges for ideal recovery.
C1 Recover state gap. Recovering the exact state gap is the
major challenge for filesystem p-crash recovery and ensures
that applications can continue without knowing the filesys-
tem failed. All of the systems under comparison (except
uFS) address this fundamental challenge.
C2 Low impact on common-path performance. Given
that recoveries are rare, filesystems must incur low memory
and performance overhead in the common-case. While Rio,
Otherworld, and TxIPC have sufficiently prioritized recov-
ering the state gap while maintaining common-case perfor-
mance, Membrane has some similar performance problems
as uFS-Sync, since Membrane must flush all state to disk on
any fsync or create [63]; we measure this overhead in our
evaluation. Ananke recovers the state gap with little impact
on performance by ensuring that updates are not unnecessar-
ily forced to disk.
C3 Handle memory corruption. The comparison systems
are not robust to faults that cause memory corruption, since
they reuse either the entire kernel or process address space
(as in Membrane [63], Otherworld [13], and TxIPC [33]),
or filesystem metadata (as in Rio [10] and Otherworld [13]).
This reuse overlooks the risk that memory may have been
corrupted before the error was detected, potentially causing
further errors during and after recovery. Ananke accesses
well-defined and protected memory regions after an error is
detected, limiting its trust in memory.
C4 Robust restart. Once p-crash recovery begins, it should
be robust and always able to restart the filesystem. However,
if the restarted system reuses some resources from the failed
system, recovery may inadvertently depend on those failed
resources. Membrane [63] and TxIPC [33] perform non-
trivial cleanup through unwinding and then reuse the failed
thread for recovery and to handle future requests. In contrast,
Ananke advocates robust restart with a new process and a
clean address space.
C5 Prompt error detection. Previous systems may not de-
tect errors promptly, potentially causing incorrect results to
be returned to applications or corrupt data to be persisted to
disk. Ananke enhances error detection by selectively check-
ing that important subsets of state – specifically, semantic
states – are not corrupted; these checks are lightweight and
always enabled in the common path.

3 Ananke Design
We discuss the design of Ananke, beginning with goals and
design principles, and then delve into Ananke’s mechanisms,
focusing on the core data structure (the p-crash log, or p-log)
and p-log replay algorithm (AIM).

3.1 Goals for P-Crash Recovery
Ananke is designed with the following goals:
Transparent p-crash recovery. P-crash recovery should be
lossless; applications should not perceive that Ananke has p-
crashed and restarted, should not lose updates, and should
not receive any confusing or incorrect results.
Fast common-path performance. Since faults are rela-
tively rare, any improvements of fault recovery should not
degrade common-path performance.
Realistic fault model. Although prior work often assumes
faults are fail-stop and do not lead to memory corrup-
tion [10,63], Ananke handles a wider range of realistic faults
including transient faults that may cause memory corruption
(e.g., due to hardware or software faults).
Fast p-crash recovery. Since applications may be await-
ing results during p-crash recovery, the system should restart
quickly to minimize disruption.
Few filesystem codebase modifications. Filesystems are
complex pieces of code containing many performance op-
timizations, so recovery should not require onerous changes
to the original codebase.

3.2 Base Architecture
Ananke derives from a high-performance open-source
filesystem microkernel called uFS [36]. uFS is a fully-
functional, POSIX-compliant, multi-threaded user-space
filesystem that directly interacts with high-performance stor-
age devices (via SPDK drivers [60]) and requires minimal
kernel involvement. uFS employs a thread-per-core archi-
tecture for scalability [27, 47], where each thread is called a
worker. The centralized filesystem service is shared among
application processes.

Applications connect to the filesystem server and is-
sue filesystem calls (i.e., operations) through message ring
buffers in shared memory (i.e., App-Worker MsgRing in Fig-
ure 2). uFS has the typical in-memory data structures of a
modern filesystem [4, 42, 62]: a page cache, directory-entry
cache, inode table, and various bitmaps. uFS uses journaling
for s-crash recovery (i.e., s-log).

3.3 Design Principles and Overview
Ananke follows several high-level design principles to
achieve its goals; we label the related challenges that each
principle addresses.
No force flush (C1,C2). In order to ensure that common-
case performance remains fast, Ananke avoids forcing
buffered updates to disk. Ananke uses a P-Crash Log (p-log)
to accurately captures the source of state gap.
Limited trust in memory (C3). Ananke limits the memory
regions used after a failure to only the p-log. To ensure the
p-log can be trusted, it is protected with mechanisms such as
checksums and replication.
Clean restart (C4). To avoid using the failed filesystem pro-
cess resources, Ananke launches a new process with a clean
address space to execute the recovery logic and handle new

Host OS Kernel

Stack

Heap

DMA-Mem

S-log Metadata Data

FDs

Metadata Data

App-Shared

Main FS Process Fresh FS Process

DISK

P-log

FS Semantic StatesApp-Worker MsgRing Trusted Memory Shared
between the FS Processes

control

transfer
notify

reconnect

rescue

Run AIM & Replay

Figure 2: Illustration of P-Crash Recovery in Ananke.
The difference between in-memory semantic states (red
boxes) and the on-disk states after completing a sequence
of operations is the state gap. After an error is detected in
main process, recovery is initialized by the host OS; the OS
also notifies the fresh process to start and consume the p-log.

requests from applications.
Fail fast (C5). To avoid returning incorrect results to ap-
plications or persisting corruption to disk, Ananke detects
errors and memory corruption as early as possible with as-
sertions and checksums over important data structures.

Using these principles, Ananke operates as follows (as
shown in Figure 2).

(1). During normal execution, the Ananke (main) filesys-
tem process services application requests via shared-memory
message ring-buffers, similar to uFS. Ananke differs from
uFS in that, upon completion of each request, Ananke
records the operation into a trusted p-log (replicated and
checksummed). After operations have been persisted (after
either an application calls fsync or Ananke performs an in-
ternal background sync) or when file descriptors are closed,
the relevant entries in the p-log are updated to indicate they
will not need to be exactly replayed during recovery. Ananke
ensures there is sufficient space in the p-log by garbage col-
lecting out-dated entries as needed.

(2). When an error is triggered in the Ananke filesystem
process (e.g., by a software exception from a checksum fail-
ure over important semantic state), the host OS kernel ob-
tains control and invokes a short procedure to rescue the
data pages referenced by the p-log. After a fresh Ananke
filesystem process is created with clean state, the p-log and
shared-memory message ring-buffers are shared with it, and
the failed filesystem process is simply discarded.

(3). The fresh filesystem process completes recovery by
re-initializing the pinned memory regions with the storage
device, performing s-log recovery, transforming entries in
the p-log with the AIM algorithm so operations can be cor-
rectly replayed, and re-attaching message ring-buffers with
applications. During replay, Ananke uses only the explic-
itly rescued memory and the on-disk state of the file system.
Finally, the old p-log memory region is released.

(4). Ananke is now ready to resume serving old and new
applications.

3.4 P-Crash Recovery Mechanisms
We now describe the mechanisms Ananke uses to address
the aforementioned challenges of p-crash recovery.
Trusted P-Crash Log and AIM (C1,C2,C3). Ananke’s
core mechanisms for transparently recovering the state gap
between applications’ views of the filesystem and its actual
durable state are the P-Crash Log (p-log) data structure and
the AIM algorithm. Among memory not shared with clients,
the p-log is the only trusted region after a failure. The p-
log resides in a dedicated memory region that is shared be-
tween the failed process (with write access) and the fresh
process (read-only access). To protect against corruption,
the p-log is safeguarded by checksums and replication. The
p-log records the source of the state gap – the system calls
and arguments that, when replayed properly, can reconstruct
the state gap. Details of the p-log are in Section 3.5.

Recovering the state gap is challenging for two reasons.
First, the updates produced by some (but not all) of the com-
pleted operations may have been made durable, and in a non-
sequential order. Second, other important state, such as file
descriptors, may be affected by later operations such as write
and close, complicating replay. Naively replaying operations
is problematic since operations that do not update state do
not need to be replayed, and subsequent operations may al-
ter the preconditions of previous operations.

To address these complications, Ananke employs the Act-
Ignore-Modify (AIM) algorithm. The input to this algorithm
is the precise set of system calls and their arguments exe-
cuted by the filesystem, as recorded in the p-log. The output
is a new set of system calls that the original filesystem code
can execute to reconstruct the in-memory state perceived by
the applications. In AIM, Act indicates the operation should
be directly replayed; Ignore indicates it can be ignored; and,
Modify means an update must occur that is a modification
of the original operation. AIM is used for both garbage
collection (in the common path) and replay (during recov-
ery). AIM ensures that the p-log is complementary to the
s-log, and together they constitute the up-to-date view of the
filesystem perceived by applications. AIM is described fully
in Section 3.6.
Kernel-coordinated Speculative Restart (C4). We intro-
duce kernel-coordinated speculative restart to enable effi-
cient and robust recovery, following a clean restart of the
Ananke filesystem process. This mechanism addresses two
issues. First, any exit of a failed Ananke filesystem process
is promptly detected by the host OS. If the filesystem process
exits for any reason (e.g., a hardware exception, a software
exception due to a checksum or assertion failure, or a seg-
mentation fault) the OS is notified and takes control; the OS
then coordinates the transition between the failed and fresh
filesystem processes and orchestrates the execution of the re-
covery logic across the two. The coordination ensures that
resources shared between the main filesystem process and
applications (i.e., IPC connections) and the host OS (i.e., per-

open
3 5

Descriptor

syscall_no
args
ret

pid, targets[5], pages[],
op_crc, timestamp, ipc_idx,
targets_status, self_crc

1 2 4

ipc_idx = 03

IPC reply

Op

open
3 5

write
3 5

open
3 5

write
3 5

fsync
3 5

open
3 5

write
3 5

fsync
3 5

close
3 5

targets: fd,ino[self, parent, dst_self, dst_parent]
targets_status

Log on completion

(b)

(a)

Figure 3: P-log Design. (a) A P-log entry. (b) P-log
entries while serving a sequence of open, write, fsync, and
close. Blue arrows: the initial logging of an operation; cir-
cled numbers: the order of writes for atomicity. Green ar-
rows: clearing the targets status field upon fsync and close.

missions and driver connections), are properly established by
the fresh filesystem process.

Second, passing control from the failed process to the
fresh process is fast and efficient. Ananke hides the latency
of starting a fresh filesystem process by creating and initial-
izing this process speculatively, before it is needed. Specifi-
cally, when an Ananke filesystem process starts, a secondary
passive process is also created, which then blocks on notifi-
cation from the OS that the first has failed. Importantly, the
passive process performs costly initialization of device ac-
cess (i.e., several seconds) in parallel with the main process.
Lightweight detection of corruption (C5). To prevent
incorrect results from being returned to applications or per-
sisted to disk, Ananke fails fast when memory is corrupted.
Ananke integrates a lightweight mechanism to enhance fault
detection by adding checksums to all in-memory semantic
structures, such as file descriptors on the heap and metadata
and data in DMA-able memory (i.e., red boxes in Figure 2).

The checksums are verified on each read or write access
and updated on each write. As shown in the evaluation,
this protection is lightweight, adding only a 0.2% memory
overhead and 2.85% performance overhead. Note that these
checksums are not used to determine which data structures
can be trusted during recovery – no memory other than the
replicated p-log is used during recovery; the checksums are
used only to detect that memory has been corrupted and thus
a fault has occurred.

3.5 P-Crash Log (p-log)
The purpose of the p-log is to track client operations whose
effects contribute to the state gap. The p-log is organized
as a circular buffer. Each core has its private p-log, written
only by one worker thread. To be more robust to memory
corruption, the p-log is replicated and pointer-less.

Each p-log entry, as shown in Figure 3(a), contains an
operation (system call, arguments, and return value) and
a p-log-entry descriptor. The descriptor contains the pro-
cess identifier (pid), logical pointers to written data pages
(pages[]), a checksum of the operation (op crc), a comple-
tion timestamp, and a checksum for the descriptor (self crc).
Importantly, the descriptor contains information for track-
ing this operation’s contribution to the state gap: the targets
array which records the involved file descriptor (the first el-
ement) and inodes (the remaining four elements, in order),
and the bitmap targets status where each bit corresponds to
a particular target, indicating whether a target’s change in-
duced by the operation is part of the state gap. Such a p-log
design, combined with AIM (§3.6), allows Ananke to accu-
rately track the state gap while meeting the stringent low-
overhead requirement in the common path.

A p-log entry’s operation is logged upon its completion
with the descriptor filled, as shown in the example in Fig-
ure 3(b). The first operation, open, involves two targets: a
file descriptor (=3) and a file inode (ino=5), as recorded in
targets; the open adds a new file descriptor to the state gap,
so the first bit in targets status is set. The second operation,
write, changes the offset of the file descriptor (=3) and the
contents of the file inode (ino=5), so the first two bits in tar-
gets status are set. The remaining elements in the targets
correspond to the parent, destination, and destination’s par-
ent inodes (e.g., for creat, rename). The bits will be cleared
when subsequent operations cause the client’s view of that
target to match its persistent state – either the file descriptor
is closed or the inode is made durable (e.g., after an fsync
or a background flush). In the example, after the inode is
synced to disk, Ananke finds all the p-log entries referring to
this inode number and clears their corresponding bits in tar-
gets status (the 3rd row); after the close, the fd bit of write
and open are cleared (the 4th row).

Thus, upon a p-crash, a given operation in the p-log may
have some bits cleared while others remain set, indicating
that some targets are still part of the state gap while others
are not. For example, if a p-crash occurs right after the fsync
in Figure 3(b), only the first bit is still set in the p-log entry
of write, indicating that the fd(=3)’s offset is part of the state
gap, while the write to the inode (ino=5) is not. AIM lever-
ages this information to decide how to reconstruct the state
gap during recovery.

Note that the p-log does not contain a copy of any file
data to be written, but instead stores logical pointers to those
pages in the page cache (i.e., offsets of the pages in the
DMA-able region). Given the end-to-end argument, we be-
lieve that applications should handle user data corruption,
while the filesystem protects its own data [57].

3.6 AIM (Act-Ignore-Modify) Algorithm
We now discuss AIM, the core mechanism that leverages the
p-log to track and reconstruct the state gap.

fd

inode (leaf file)

path inode

read

write

lseek

open close
creat

mkdir

truncate

pwrite

unlink rename

stat

pread

rmdir

Figure 4: Intuition behind P-Log and AIM We enu-
merate POSIX APIs and categorize them according to how
filesystem abstractions are updated. Representative ones are
shown for brevity; mmap, chown, and chmod are excluded.

Intuition. Applications change the runtime states of a
filesystem through the lens of APIs and abstractions pro-
vided by the filesystems. We thus categorize the APIs ac-
cording to the abstractions they change in Figure 4: file de-
scriptors (fd), file inodes (inode), and mappings from path-
names to inodes (path↔inode). Essentially, changes to these
abstractions compose the state gap; among them, only fd is
ephemeral while other changes are persistent. Our p-log cap-
tures all of these changes effectively, as we discuss next.

Operations in the green circle of Figure 4 can change
an fd, including its existence (e.g., open and close) and
its values (e.g., offset for read and write). Operations in
the orange circle can change an inode by changing its data
(e.g., write and creat which initialize inodes). Operations in
the purple circle affect path↔inode(e.g., creat and rename).
Other operations, such as pread and stat, do not introduce
changes. The challenge of recovery is that operations can-
not be naively replayed, since subsequent operations could
remove some (or all) of the changes from the state gap made
by earlier operations, or could alter preconditions, such as
the existence of an fd or a path↔inode.

Our p-log design tracks the state gap via the targets and
targets status, which covers all three abstractions: fd is the
first element, inode is the second element, and path↔inode
changes are captured by the parent inodes in the later ele-
ments. For example, a rename maximally involves a source
inode, and a destination inode, and two parent inodes whose
data contents are path↔inodes. As a result, whether or not
an operation contributes to the state gap (i.e., the conditions
to Ignore an operation) can be checked quickly with those
bits, which is crucial for efficient garbage collection of p-log
entries in the common path.

If an operation does contribute to the state gap, the dis-
tinction between Act and Modify as well as the resulting op-
erations of Modify is determined during recovery. Figure 4
helps describe the intuition for Modified operations: if some
of an operation’s effects are no longer part of the state gap,
it degrades to operations that can exert the remaining effects,
visually moving towards a less overlapped region in the di-
agram (e.g., creat to open, write to lseek). In this way, we
leverage existing APIs (and their implementation) to recon-
struct the state gap.

System Call Sequence followed by a P-Crash Consequence
AIM outcome

1 open(f) read(f)
open(f) lseek(f)

BadFd
AM

2 open(f) write(f) close(f)
open(f) write(f) close(f)

DLoss
AAA

3 open(f) write(f) sync(f)
open(f) lseek(f) sync(f)

BadFd
AMI

4 open(f) write(f) sync(f) write(f)
open(f) lseek(f) sync(f) write(f)

BadFd,DLoss
AMIA

5 open(f) write(f) sync(f) close(f)
open(f) write(f) sync(f) close(f)

✓
IIII

6 creat(f) write(f)
creat(f) write(f)

BadFd,FLoss
AA

7 creat(f) write(f) close(f)
creat(f) write(f) close(f)

FLoss
AAA

8 creat(D/f) write(D/f) sync(all)
open(D/f) lseek(D/f) sync(all)

BadFd
MMI

9 creat(D/f) write(D/f) close(D/f) sync(all)
creat(D/f) write(D/f) close(D/f) sync(all)

✓
IIII

10 open(f) write(f) close(f) rname(f,f1)
open(f) write(f) close(f) rname(f,f1) #nlink=0

NRevoke,DLoss
IIIA

11 open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(all)
open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(all)

✓
IIIII

12 open(D/f) write(D/f) close(D/f) rname(D/f,D/f1) sync(D)
open(D/f1) write(D/f1) close(D/f1) rname(D/f,D/f1) sync(D)

DLoss
MAAII

13 creat(D/f1) write(D/f1) sync(D/f1)
CreatReuseDInode(D/f1) lseek(D/f1) sync(D/f1)

BadFd,FLoss
MMI

14 creat(D/f1) write(D/f1) sync(D)
open(D/f1) write(D/f1) sync(D)

BadFd,Garbage
MAI

15 creat(D/f1) write(D/f1) close(D/f1) sync(D/f1)
CreatReuseDInode(D/f1) write(D/f1) close(D/f1) sync(D/f1)

FLoss
MIAI

16 creat(D/f1) write(D/f1) close(D/f1) sync(D)
open(D/f1) write(D/f1) close(D/f1) sync(D)

Garbage
MAAI

Figure 5: Example System-Call Sequences and output of
AIM. The first row of each group shows the system call se-
quence (rname: rename) and the consequence of a restarted
uFS that drops the state gap (DLoss: DataLoss; FLoss:
FileLoss; NRevoke: Rename Revoked; ✓: Successful) after
a single p-crash. The second row shows the system calls per-
formed by Ananke during replay (green operations are mod-
ified; gray operations are ignored) and the AIM outcome.

Finally, to ensure the determined operation type can be ex-
ecuted successfully, we must use proper arguments regard-
less of whether the original form (i.e., Act) is employed.
Specifically, we need to ensure that an fd resolves to the
designated inode; we may need to modify the pathname ar-
gument so that it resolves to the proper inode, even if the
specific path↔inode has been changed (and persisted).

We believe our p-log and AIM mechanisms for p-crash
recovery are applicable to POSIX-compliant filesystems and
filesystems whose API are based on these three abstractions.
The specific number of bits needed for targets status can vary
in each filesystem depending on the number of targets that an
API can change.
Algorithm. We now describe how Act/Ignore/Modify is
determined.

Ignore: an operation can be safely ignored if and only if
all associated file descriptors are closed, and all inode-related
state updates have been made durable. That is, all the bits in
the targets status are cleared.

Act: the operation is replayed in its original form if and
only if the following three conditions are true: 1) If a file de-
scriptor was updated, either the file descriptor is still open or
it is closed but the corresponding inode has not been synced.

2) None of the referenced inodes have been synced. 3) For
any path-based operation, the dependent path↔inode that
was changed by subsequent operations must not have been
persisted; that is, the number of bits set for inodes in the tar-
gets status matches the inode targets (in targets[1:]), and any
dependent path↔inode is still valid on disk.

Modify: if neither Act nor Ignore applies, then a modified
form of the operation must be replayed.

AIM finalizes the pathname argument for a path-based op-
eration during recovery, with the assistance of additional data
structures. AIM scans the p-log entries in order and main-
tains a map of path to operations that depend on them. When
a pathname is changed by subsequent operations (e.g., re-
name), AIM can thus find the previous operations and update
the pathname accordingly.
Examples. Figure 5 shows examples of p-log sequences
where a p-crash occurs after the last operation; the first row
for each example shows the outcome if state gap is not han-
dled after recovery; the second row shows the transforma-
tions performed by AIM. Note that the sync operations can
either be explicit calls from the application or internal back-
ground flushes performed by the filesystem.

Example 1 shows that if recovery does not replay this se-
quence, then subsequent accesses by the application lead to
BadFd errors; AIM replays the open but modifies the read to
lseek since the read data was already returned to the appli-
cation. Example 2 illustrates that operations whose effects
have not been persisted, must be replayed, or data would be
lost; example 3 shows that if a write has been persisted, the
write must be changed to an lseek to still update the file off-
set while not overwriting (potentially changed) existing data.
Example 12 shows that a sync of the directory, including the
effects of a rename, requires the new pathname for open dur-
ing replay. The more complex examples 13 and 15 show how
CreatReuseDInode is used when s-crash recovery does not
sync the directory inode upon an fsync of a newly created
file inode; for a filesystem that proactively syncs the direc-
tory inode (e.g., ext4), AIM works properly since the sync of
the directory is reflected in the log entry, allowing all opera-
tions to be Ignored.
Physical Dependencies. One might wonder how AIM han-
dles physical dependencies across logically independent op-
erations [17, 45]: these dependencies are handled automati-
cally by the p-log’s mechanism for tracking updates to inodes
in combination with the durability protocol of the filesystem.
For instance, consider the dependencies due to a coupled
imap, where logically independent inodes are stored in the
same physical block. When creat(D0/f0) and creat(D1/f1)
depend on the same imap, and sync is called on D0, the file
and directory inodes for both D0 and D1 are synced in one
transaction to maintain on-disk consistency (i.e., in s-log).
When sync(D0) is completed, the p-log entries for both cre-
ate operations are updated to reflect that all four inodes have
been synced. With these p-log entries, as desired, AIM will

not replay the create operations; if the file descriptors have
been closed, AIM will ignore the operations, also as desired.
In summary, tracking updates based on actual changes at the
file descriptor and inode level makes it straight-forward to
follow complex dependencies across operations.
P-log Concurrency. The original filesystem decides which
core handles an operation; Ananke logs an operation on the
core that completes it. Upon a sync that involves multiple
inodes, logged operations related to each inode must clear
the status in the targets status. The completion of a sync
is asynchronously propagated to cores via messages, after
which each core updates its private p-log.1 Ananke borrows
the idea of using an operation’s timestamp as the lineariz-
ability point to form a global order such that each private per-
core log avoids extra inter-core communication in the critical
path [4].
P-log Replay. After the p-log is transformed by AIM, the
fresh process replays the p-log actions to fully restore the
filesystem. The replay actions reuse as much of the existing
filesystem machinery as possible.

Ananke includes several new internal APIs. In the internal
API, create/mkdir can specify an inode number, because the
inode number is visable to applications, as specified in the
POSIX standard. Similarly, open can specify a file descriptor
number. CreatReuseDInode is introduced to accommodate
the situation where, as shown in Figure 4, the effect of creat
initializing an inode is not needed (as the subsequent writes
have been persisted), but the changes to path↔inode and fd
need to be redone.
P-log Garbage Collection. Garbage collection of p-log
entries is important so that the p-log does not consume too
much memory. Garbage collection of the p-log is based sim-
ply on AIM: when an operation is safe to Ignore, the log-
entry can be garbage collected. Unlink and rename are pre-
served until no file descriptor relies on the involved inodes.

4 Implementation
Ananke is based on the open-source repository of uFS [36],
to which we add p-crash detection and recovery mechanisms;
we add approximately 4K LoC.
Basic Flow of Control. In uFS, each operation comes from
an application via IPC in a shared per-client message ring.
The command stays in the message ring until completed, at
which point it is marked; a client can poll on the completion
bit to know the operation is finished and obtain results.

The p-log is realized as a set of per-core logs. For high per-
formance, each worker thread in Ananke has its own private
p-log and thus need not worry about concurrent updates [4].
Entries are added to the p-log after an operation completes,
at which point Ananke allocates an entry and copies the mes-

1uFS handles directory inodes on a single core (primary), and operations
on a given inode are handled exclusively by one core most of the time for
better CPU-core locality and scalability, which helps reduce the complexity
of such protocols.

sage to the p-log. If the filesystem fails while an unlogged
operation is executing, the message ring contains the infor-
mation needed to re-execute the operation. System calls that
do not change in-memory state (e.g., stat) are not logged.
Exactly-Once Semantics. To ensure correct recovery, each
request must update system state exactly once [55]. After
restart, Ananke will replay operations in the p-log and the
remaining in-flight operations in the message ring.

Ananke updates the p-log before replying to ensure that it
does not lose an operation. If Ananke first marked the reply
complete and then logged the operation, it would risk losing
the operation if a p-crash occurred immediately after setting
the completion status. However, updating the p-log first risks
double execution, if the filesystem crashes immediately after
logging and but before setting the status bit.

To avoid double execution, Ananke follows a careful up-
date protocol, as shown in Figure 3 (b). In step 1, the system
call information is written to the p-log; in step 2, other in-
formation about the entry is updated, including a reference
to the message ring entry (i.e., ipc idx). A (low-cost) com-
piler barrier is inserted between these two updates to avoid
compiler reordering [25]; no memory fence is required be-
cause each p-log has a single writer and possible reading of
the p-log during recovery is handled by a single recovery
thread [43]. In step 3, Ananke sets the status bit in the mes-
sage ring, and finally, in step 4, Ananke clears the p-log en-
try’s ipc idx (and atomically updates the self crc to match).
During recovery, when Ananke finds a p-log entry contain-
ing a valid logical offset of ipc idx, it compares it with the
corresponding message (pointed to by ipc idx) to determine
if the on-ring message needs to be discarded.
P-Log Replication. Two copies of the p-log are maintained
to enable recovery given a single p-log corruption. For each
update, Ananke writes first to the primary, and then to the
secondary, with a compiler barrier between. When updat-
ing the status of a p-log entry, a CRC validation is first per-
formed for the primary. If it fails, the replica CRC is vali-
dated and copied into the primary. During recovery, if the
primary is corrupted, the replica is used (if its CRC valida-
tion succeeds). If both are corrupted, recovery aborts.
Checksum. We add checksums (CRC) to each core meta-
data structure to help detect corruption. For inodes, the on-
disk representation has reserved space for padding to the
disk block size, so we embed a one-byte checksum into the
existing representation. For the datablock bitmaps, inode
bitmaps, and dentry blocks, we add a one-byte checksum for
every 32 bytes; calculating checksums for this smaller chunk
(instead of 4KB) reduces the amount of memory touched
per checksum and can leverage modern CPU hardware-
accelerated instructions [26].
Kernel-coordinated Speculative Restart. In our current
implementation, the kernel invokes a signal handler of the
main process, which saves the data pages related to p-log en-
tries. This procedure is invoked in the main process but not

on the worker threads’ stacks (by sigaltstack). The no-
tification to the fresh process is implemented using a mutex
shared between the main and fresh processes with the ro-
bustness attribute set to PTHREAD MUTEX ROBUST [1]. This
attribute synchronizes the termination of the mutex holder to
the fresh process.
Limitations and Assumptions. We assume the logging
code is correct and the stack is intact during a recovery. An-
other assumption is that saving data pages to a known loca-
tion (currently in tmpfs) can be done successfully. We as-
sume that data page corruption is handled by applications;
as such, we do not add protection to, or use redundancy for,
data pages.

Ananke has not been specifically designed to handle mem-
ory corruption of the shared message ring (i.e., App-Worker
MsgRing in Figure 2). Our rationale is that the Message-
Ring is part of the shared state between the applications and
the filesystem, regulated by their security contract. For ex-
ample, a misbehaving application can also corrupt the mes-
sage ring. A corruption protection mechanism ensuring se-
curity would be interesting for future work.

5 Evaluation
We demonstrate: 1) Ananke delivers transparent recovery for
applications without sacrificing common-case performance.
2) Ananke recovers from a large number (30,000+) of con-
trolled and random fault-injections emulating both fail-stop
p-crashes and data corruption 3) Ananke incurs negligible
performance and memory overhead. 4) Ananke recovers in
an acceptable amount of time (≤ 400ms), based on the num-
ber of logged operations.

5.1 Methodology and Comparison Systems
We compare Ananke to the two baseline systems we intro-
duced in Section 2: uFS and uFS-Sync, both of which incor-
porate the restarting mechanism designed for Ananke. uFS
relies solely on s-crash recovery, while uFS-Sync forces up-
dates to be directly flushed to disk, eliminating the state gap.
We also implement Membrane-style replay [63], which only
logs the operations and requires a full sync for each fsync
and operations like create/mkdir to simplify the state gap.

To emulate faults that cause fail-stop p-crashes, we in-
sert null pointer dereferences which cause a SIGSEGV. To
stress the exactly-once semantics ensured by the p-log, we
also inject p-crashes during client operations. We assume
that faults are transient and that the same fault does not re-
occur during replay; handling deterministic errors requires
additional techniques [35, 52]. To emulate faults that lead
to memory corruption, we inject targeted memory corrup-
tion into the filesystem process address space, as the litera-
ture shows that random bitflips often do not manifest as de-
tectable errors [5,13]. We exhaustively corrupt each memory
region (e.g., stack, heap, etc.) by uniformly filling a particu-
lar chunk of memory with a specific value.

Our evaluations are performed on a machine with 128GB

Workload

cl
os

e
cr

ea
te

fs
ta

t
fs

yn
c(

di
r)

fs
yn

c(
fil

e)
ls

ee
k

m
kd

ir
op

en
op

en
di

r
pr

ea
d

pw
ri

te
re

ad
re

na
m

e
st

at
un

lin
k

w
ri

te

Sort ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CpDir ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Unzip ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SQLite ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LevelDB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 6: Operations in Applications. The five applications
use a range of system calls as shown with ✓. Sort is an ex-
ternal gnu sort over 10M data. CpDir and Unzip operate on
a 5-directory tree with depth of 3 and 4 files of sizes 100KB,
110KB, 200KB, and 210KB. SQLite performs a sequential
load with 400 keys, 2 transactions. LevelDB performs a se-
quential load of 2000 keys.
RAM, AMD 2.80GHz CPU, and an NVMe SSD (Samsung
PM173X) with raw device latency around 70us [15]. The
garbage collection threshold for the p-log in Ananke is 4MB.

5.2 Transparent Recovery vs. Performance
We briefly summarize the results from the experiments orig-
inally shown in Figure 1, where we run LevelDB with three
continuous workloads (Load, YCSB-A, YCSB-C), inject a
single p-crash, and report the throughput delivered by Lev-
elDB over time for uFS, uFS-Sync, and Ananke.

With uFS, throughput is high until the p-crash occurs, at
which point, uFS restarts, replays the on-disk journal for s-
crash consistency, and recovers its connections with the Lev-
elDB client. However, on its next interaction with uFS, Lev-
elDB encounters an error and exits, requiring manual inter-
vention to repair the database. In contrast, uFS-Sync trans-
parently recovers from the p-crash, but common-case per-
formance suffers significantly on non-read-only workloads;
in particular, YCSB-Load (sequential writes) and YCSB-A
(1:1 read:write mix) are approximately 5x and 3x slower.

Finally, as desired, Ananke transparently recovers from
the p-crash while still delivering high throughput before and
after the p-crash. We make several observations. First, for
YCSB-Load, the periodic drops in throughput occur due
to compaction threads in LevelDB performing additional
I/O; performance is similar in uFS and Ananke. Second,
for write-intensive workloads (Load), throughput does not
drop after recovery since Ananke re-uses dirty data pages;
for read-only workloads (YCSB-C), performance drops but
increases again, because clean pages are discarded and
refetched to rewarm the page cache. Finally, the recovery
time of Ananke is sometimes slightly faster than that of uFS-
Sync; recovery time is explored in detail below (§5.6).

5.3 Transparent Recovery: Recovering the State Gap
To stress the recovery of the uFS variants on p-crashes, we
inject 30,000+ faults in workloads of real applications and
random p-crashes while running multiple applications.

5.3.1 Real Application Behavior
We evaluate how different system utilities (gnu-sort, cp, un-
zip) and data-intensive applications (SQLite and LevelDB)
react to simple p-crashes and restarts with uFS and Ananke.

Workload #of ops
Fail after each op Fail during an op

uFS Ananke Ananke
S OK F OK F BAD S BAD S OK S OK

Sort 5327 4 0 5322 1 5327 5327
Sort (w/s) 5327 4 0 5322 1 5327 5327

CpDir 82 4 0 77 1 82 82
Cpdir (w/s) 82 6 0 71 5 82 82

Unzip 77 11 6 47 13 77 77
Unzip (w/s) 77 18 6 27 26 77 77

SQLite 154 3 89 62 0 154 154
SQLite (w/s) 154 3 54 97 0 154 154

LevelDB 1997 5 26 1966 0 1997 1997
LevelDB (w/s) 1997 5 28 1964 0 1997 1997

Figure 7: Transparent Recovery of Applications. A single
p-crash is inserted after (or during) each system call of the
five benchmark applications. With uFS, applications may re-
turn the wrong error code (F OK and F BAD) or have the
wrong data (S BAD and F BAD); with Ananke, all applica-
tions are correct.

Figure 6 shows these applications exercise a range of file sys-
tem calls. For each workload, we inject a simple p-crash
both after and during each of the 15,000+ filesystem oper-
ations; such injection attempts to cover more diverse state
gap. Since behavior is dependent on when data is persisted
to disk, we control the timing of flushes performed by uFS
in the background (if an application directly calls fsync, the
flush is performed immediately).

The desired result is for each application to exit with the
same return code and produce the same content as when
there is no p-crash. We characterize the actual results for
each fault-injection experiment as S OK, S BAD, F OK, and
F BAD, where S/F indicates the return code (success or fail-
ure) by the application and OK/BAD indicates whether the
data is identical to an execution with no failures; thus, S OK
is ideal and S BAD is strictly incorrect; F OK and F BAD
may be acceptable, since they indicate an error the applica-
tion could not handle, but require manual intervention.

Figure 7 shows that with uFS, applications are not ro-
bust to p-crashes with many instances of return code fail-
ures (F OK/F BAD) and bad data (S BAD/F BAD). A sin-
gle background sync can change the consequences drasti-
cally. For the utilities (gnu-sort, cp, unzip), most of the cases
are F BAD because the utilities depend on opened file de-
scriptors that are lost. More problematic cases of S BAD
occur because applications are not careful with fsync, ignore
some failed return codes, or simply print error messages.

While simple utilities may not be expected to cor-
rectly retry operations when a filesystem returns an error,
production-quality durability-aware libraries, such as SQLite
and LevelDB, are designed to handle these cases with write-
ahead-logging. With uFS, as desired, SQLite and Lev-
elDB never return success if data was lost or corrupted
(S BAD=0): if there is a problem with the data, SQLite and
LevelDB correctly return an error. However, in many cases,
SQLite and LevelDB exit prematurely with error codes. In
these cases, we reopen the database and try to read back
the inserted keys: F OK indicates the reopening succeeds
and no data is lost; F BAD signifies the reopening fails,
and the database reports corruption or data loss. We have

Region # of Cases
Successful

Restart
Correct

FS Metadata
Correct
FS Data

Stack 15 15 (100%) 15 (100%) 11 (73%)
Heap 2547 2547 (100%) 2547 (100%) 2542 (99.8%)

DMA-mem: Metadata 375 375 (100%) 375 (100%) 375 (100%)
P-log 436 436 (100%) 436 (100%) 436 (100%)

Table 2: Ananke Recovery with Memory Corruption.
The corruption experiments fully enumerate each memory
region and we report the number of cases as where the fault
manifests to detected errors (e.g., filesystem or application
errors). The percentages of cases with detected errors for
each memory region are: 0.71%, 20.4%, 73.5%, and 100%.

verified that offline tools can manually repair a corrupted
database, but not recover lost data; in addition, requiring of-
fline tools reduces system availability and burdens admin-
istrators [50, 69]. Thus, even durability-aware applications
need more support than uFS.

To provide transparent filesystem availability, Ananke
must go beyond merely restarting and rebuilding connections
and instead ensure that all states are recovered properly. Fig-
ure 7 shows Ananke meets this goal: all five applications
proceed successfully for all 30,000+ p-crash points, regard-
less of whether the p-crash occurred after or during a system
call and whether or not a background sync occurred: as de-
sired, the applications return S OK and have identical data
as when no p-crash occurs.

5.3.2 Multiple Processes
Ananke is a shared filesystem service that handles multiple
client applications running concurrently. To demonstrate that
Ananke transparently recovers multiple processes, we simul-
taneously run three applications (LevelDB, Sort, and CpDir)
and inject p-crashes at 300 random points. In all cases, with
Ananke the three applications continue executing correctly
and return S OK.

5.4 Transparent Recovery: Memory Corruption
We demonstrate that Ananke provides transparent p-crash re-
covery in the presence of memory corruption, showing the
benefits of Ananke building from on-disk state and relying
on the well-protected p-log; any corrupted state in memory
is simply discarded.

We inject memory corruption into the four major mem-
ory regions of the filesystem process address space (as de-
picted by Figure 3): stack, heap, filesystem metadata (within
DMA-able memory), and the p-log. After completing the
first half of the workload (i.e., creating directories of files),
the fault injection derives the runtime memory layout from
/proc/self/maps, injects memory corruption in a region
(64B in the stack; 4KB elsewhere), and then Ananke con-
tinues with the rest of the workload. At the end, the cor-
rectness of all filesystem metadata and data is verified. Our
experiments exhaustively cover the corruption of all memory
regions, with a total of 18,100 experiments.

Table 2 reports the 3,373 cases where the faults manifest
into an error; corrupting memory that is not accessed by the
workload does not lead to an error. In all 3,373 cases that

copy ldb-load ldb-a ldb-b ldb-c ldb-d ldb-f
Workload

0

1

2

3

4

5

6

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d

+
2

3
7

.9
0

%

+
1

5
7

.9
0

%

+
1

4
.5

3
%

+
3

.3
3

%

+
2

1
.0

0
% +
1

0
5

.5
1

%

+
2

3
6

.0
0

%

+
3

0
.8

8
%

+
1

4
.9

1
%

+
1

.0
4

%

+
0

.3
0

%

+
0

.9
1

%

+
1

1
.6

2
%

+
3

.7
0

%

+
2

.5
5

%

+
0

.8
0

%

+
0

.2
2

%

+
0

.0
0

%

+
0

.0
6

%

+
0

.8
7

%

+
5

.0
8

%

+
3

.3
7

%

+
1

.0
6

%

+
0

.0
5

%

+
0

.2
2

%

+
0

.3
0

%

+
0

.9
7

%

+
5

.6
0

%

+
5

.4
0

%

+
1

.7
7

%

+
0

.8
2

%

+
0

.3
2

%

+
0

.5
0

%

+
1

.4
0

%

+
7

.0
3

%

+
5

.5
2

%

+
2

.2
8

%

+
0

.8
0

%

+
1

.0
2

%

+
1

.0
0

%

+
2

.1
0

%

uFS-Sync

Membrane

Ananke-NoCrcNoRepl

Ananke-NoCrc

Ananke-NoRepl

Ananke

Figure 8: Performance Overhead of uFS-Sync, Mem-
brane, and Ananke Variants. Ananke-repl writes to 2
CRC’ed p-logs; Ananke-CRC adds CRCs to filesystem in-
memory structures (updated on all writes; checked on all
reads); Ananke-repl-CRC combines replication and CRCs.

lead to errors and subsequent p-crashes, Ananke restarts suc-
cessfully (column three) and has correct metadata (column
four). In a few cases (4 corruptions of the stack and 5 of the
heap), filesystem data is not recovered properly due to lim-
itations in our current implementation: after the OS kernel
monitors the exit of the main filesystem process, the main
process runs a signal handler to rescue the data pages; thus
corrupting these regions in the stack and heap halts the pro-
cedure. We expect to address this limitation by moving the
rescue procedure to read-only kernel space (e.g., with eBPF).

5.5 Common-Case Overheads
While both Ananke and uFS-Sync provide transparent recov-
ery, uFS-Sync provides this with a costly method: persisting
dirty data before returning to the client. In contrast, Ananke
provides transparency efficiently by saving only a small p-
log. We show that Ananke incurs negligible performance
and memory overhead compared to the baseline uFS.

5.5.1 Performance Overhead
Figure 8 shows the performance overheads of uFS-Sync and
Ananke normalized to uFS for a range of data-intensive ap-
plications: copy and LevelDB for Load and five YCSB work-
loads. We use sufficiently long workloads to trigger garbage
collection in Ananke. We separate the sources of overhead
in Ananke by examining variants that do not protect essential
data structures with CRC and/or do not replicate the p-log.

uFS-Sync causes significant slowdown to the applications
(up to 6x slower than uFS); the slowdowns are directly re-
lated to the amount of meta-data and data writes in the work-
load (e.g., LevelDB Load is the most write-intensive and has
the most slowdown; YCSB-B, C, D are read-dominated and
have low overhead; copy and YCSB-A and F have more bal-
anced read/write ratios and intermediate overheads.

We have also implemented Membrane-style replay which
requires an extra full sync of all dirty data and meta-data
in order to handle fsync operations and directory updates
like creat/mkdir [63]. For the copy workload that involves
many directory/file creations, Membrane causes a significant
slowdown (3.4x); it also incurs large overheads for LevelDB

100K 200K 300K 400K 500K
Number of Filesystem Operations

0.0

1.0

2.0

3.0

4.0

p
-l
o
g
 M

e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Workload: Load, YCSB-A, and C.
(a) p-log Memory Usage.

10.07%

87.22%
92.15%

96.33%

Ananke GC: No Sync
Ananke GC: Sync

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
p-log GC threshold (MB)

20K

40K

60K

80K

100K

120K

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

Workload: Load.
(b) p-log Memory Threshold Trade-off

Workload Baseline
Mem (MB)

Crc
dentry blocks

Crc
data bitmap

Crc
I bitmap

Ananke
Overhead (%)

Sort 419.2 64B (2) 384B (12) 32B (1) 0.00011%
CpDir 133.1 7.8KB (251) 19KB (600)32B (1)) 0.01952%

LevelDB (SeqWrite) 102.0 32B (1) 160B (5) 32B (1) 0.00021%
LevelDB (YCSB-A) 115.1 64B (2) 256B (8) 32B (1) 0.00029%
LevelDB (YCSB-B) 93.6 32B (1) 96B (3) 32B (1) 0.00016%
LevelDB (YCSB-C) 49.1 32B (1) 64B (2) 32B (1) 0.00025%
LevelDB (YCSB-D) 43.2 64B (2) 32B (1) 32B (1) 0.00028%
LevelDB (YCSB-F) 100.7 64B (2) 256B (8) 32B (1) 0.00033%

(c) Memory Overhead Summary

Figure 9: Memory Usage (LevelDB). In (c), the amount of Baseline Mem includes: one is the difference between the amount of
memory in the data segment (heap) before and after running each workload; the second is the in-memory file system structures
(corresponding to disk, including data blocks and metadata blocks); Overhead is calculated using the CRC memory added.

Load, YCSB-A, and YCSB-F. Since Membrane only logs
the operations, its overhead is smaller than that of Ananke
for read-intensive workloads (e.g., YCSB-C), but still higher
than Ananke without replication and CRC. The compari-
son with Membrane demonstrates the necessity of “no force
flush” for high common-path performance.

For all workloads, the performance overhead of Ananke is
low: for very write-intensive workloads (copy and LevelDB-
Load) the performance overhead of Ananke with no memory
protection is less than 4%, while adding both p-log replica-
tion and CRC protection to essential data structures raises it
to 7%; for all other workloads, the overhead of Ananke with
full memory protection is below 2%.

5.5.2 Memory Overhead
Ananke adds a small amount of memory overhead to uFS in
two ways: for the p-log (and its replica) and for CRC check-
sums. We demonstrate the memory usage of the p-log over
time as well as the trade-off between the maximum size of
the p-log and performance; we then quantify the memory
overhead for CRC checksums.

The memory usage of the p-log is proportional to the num-
ber of requests that have not been garbage collected. Fig-
ure 9(a) presents the memory used by the p-log when Lev-
elDB consecutively runs the Load, YCSB-A, and YCSB-C
workloads. When the size of the p-log reaches a configurable
threshold (4MB), Ananke performs garbage collection, re-
claiming operations that will not be replayed on a p-crash;
the p-log cannot be shrunk to 0 because some file descriptors
remain open as LevelDB runs. As shown, the write-intensive
Load workload fills the p-log faster than read-write YCSB-
A, which fills the p-log faster than read-only YCSB-C.

Figure 9(b) illustrates the trade-off between the maximum
size allocated to the p-log and performance for LevelDB-
Load. We consider two forms of garbage collection, both of
which are triggered when the p-log reaches a threshold: GC-
NoSync which returns if no p-log entries can be reclaimed;
GC-Sync, which triggers a background sync if no p-log en-
tries were reclaimed. For both types of garbage collection,
LevelDB throughput is unacceptably low if the p-log thresh-
old is too small. GC-Sync enables a smaller p-log to be used
with acceptable performance compared to GC-NoSync (e.g.,
0.65MB instead of 0.85MB), but slightly reduces LevelDB

0 10K 20K 30K 40K
0

200

400

(a) CpDir (no sync)

L
a

te
n

c
y
 (

m
s
)

Ananke
uFS-Sync
uFS

0 10K 20K 30K 40K
0

200

400

(b) CpDir (with sync)

L
a

te
n

c
y
 (

m
s
)

Ananke
uFS-Sync
uFS

0 10K 20K 30K 40K
0

200

400

(c) LevelDB-Load

L
a
te

n
c
y
 (

m
s
)

Ananke
uFS-Sync
uFS

Figure 10: Restart time with uFS, uFS-Sync, and Ananke.
The light blue vertical lines indicate the time where a back-
ground sync occurs; the deep blue (last) vertical lines indi-
cate a checkpoint. X-axis is the timing (# of ops) of a p-crash.

performance when the p-log is sufficiently large (92% of the
baseline instead of 96%) due to more frequent sync oper-
ations. Thus, we use GC-NoSync with a p-log threshold
(4MB) that is more than sufficient for even the most write-
intensive workloads.

Figure 9(c) summarizes CRC memory overhead relative to
the in-memory size of each workload. Each in-memory 4K
block of inode bitmaps, data bitmaps, and directory entries
uses 32 one-byte CRCs; the one-byte CRC for each inode is
embedded within the existing inode structure and therefore
does not require extra memory. Thus, CRC adds minimal
memory overhead (at most 0.02%).

5.6 Recovery Performance
In our final experiments, we show recovery time for uFS,
uFS-Sync, and Ananke in Figure 10. Since recovery time
depends on the state gap, we consider two write-intensive
workloads: CpDir and LevelDB-Load. We inject a p-crash
after every 500 system calls (shown along the x-axis), with
each data point corresponding to a single p-crash (i.e., one
experiment); the y-axis is the time for recovery after that
p-crash point. All approaches recover in less than 400ms,
since kernel-coordinated speculative restart overlaps the 2.9
seconds to rebuild the device connection with running the
workload.

For uFS, recovery time is relatively constant. Note that
even though uFS restarts, the currently-running application
may not be able to usefully continue. uFS sees a jump in
recovery time after a sync is performed (CpDir w/ sync at
20K ops) because more operations exist in the s-log. The
very small increase in recovery time for other workloads as
they make more progress occurs because the kernel must de-

stroy a larger uFS address space. For uFS-Sync, recovery
time increases as the applications run longer because every
operation is persisted to the s-log; the time for recovery is
minimal at the end after uFS-Sync performs an s-log check-
point (marked by the last vertical line).

Finally, the recovery time of Ananke is directly related to
the number of operations in the p-log. The size of the p-log
is reduced when the application calls fsync or a background
sync is performed, as illustrated in CpDir when a background
sync is performed at the first vertical line and in LevelDB-
Load periodically with foreground syncs. While recovery
may be faster in uFS or uFS-Sync, recovery time in Ananke
is bounded by the maximum size of the p-log and remains
less than 400ms even for write-intensive workload with no
fsyncs.

6 Related Work
Hardware and Software Faults. Real-world faults
and studies motivate transparent filesystem recovery and
Ananke. Hardware corruption is real. The study of DRAM
and SRAM faults [61] revealed that hardware-based re-
silience techniques (e.g., ECC) cannot perfectly detect and
repair the hardware faults, resulting in unpredictable unde-
tected errors (e.g., corruptions) for software systems to han-
dle. Unfortunately, users may not adopt DRAM with strong
hardware protections due to cost [73]. More recently, Al-
ibaba [70], Google [22] and Meta [14] reported that CPU
core faults can lead to silent data corruption.

Software bugs are also prevalent, often causing crashes or
memory corruption. Lu et al. [38] found that around 20% of
bugs lead to machine crashes in their study of Linux kernel
filesystem patches. Data corruption accounts for the largest
percentage (40%) of bug consequences, although it is un-
clear how many of these bugs cause in-memory corruption.
Bugs are also common in the Linux memory management
subsystem, resulting in a significant number of crashes [23].
Fault Tolerant Systems. Filesystem fault tolerance can be
improved by enhancing detection to fail fast. Recon [18] and
WAFL [31] both check in-memory filesystem structures to
detect semantic violations when committing updates to disk;
they are complementary to Ananke.

Previous works also attempt to recover from kernel
filesystem crashes. Membrane [63] introduces a restart-
ing framework for kernel filesystems that uses sophisticated
techniques to unwind the threads, unmount the filesystems,
and replay logged operations. Yet, it requires additional
flushing in the common path; it also does not fully leverage a
clean address-space and is vulnerable to memory corruption.

Rio file cache [10] preserves the kernel file cache and en-
ables an automatic warm reboot when the OS kernel crashes;
Rio cannot recover when semantic states in the cache are
corrupted before the crash. Nova-Fortis [71] is a kernel
NVM filesystem that tolerates the corruption of NVM de-
vices, highlighting the problem of memory corruption when

filesystem data is in persistent memory. Sinnce Rio’s file
cache essentially functions as persistent memory used by the
restarted OS, memory corruption cannot be overlooked.

Ananke is also similar to efforts such as microreboot [7]
and Rx [52]. However, microrebooting [7] requires applica-
tions to be designed in a crash-only fashion, where important
state must be saved in a separate data store (e.g., a transac-
tional database). A crash-only filesystem will incur signifi-
cant overhead with large amount of data. Rx [52] makes sev-
eral retrying attempts from a checkpoint by altering various
environmental factors while replaying; whole-system check-
pointing with multiple versions is costly for a filesystem.

Efforts have been made to make operating system kernels
more robust to failures. Nooks [64] and Shadow Driver [65]
were designed to recover the kernel from a component (i.e.,
driver) crash. Recovery Domain [32] provides request-
oriented (e.g., a system call) recovery for the OS kernel, but
assumes that a fault’s influence is limited to a single request
without affecting the rest of the kernel. Otherworld [13] mi-
croreboots the monolithic OS kernel and reuses the applica-
tion’s address space in the new kernel; it risks reusing cor-
rupted memory. Ananke only reuses the trusted p-log.

Some previous work on microkernels adds fault-tolerance
machinery [3, 33, 66]. CuriOS [12] stores service states in
clients’ address spaces with virtual memory based protection
to survive a service crash; however, the memory permissions
and process isolation incur significant overhead. OSIRIS [3]
and TxIPC [33] incorporate instruction-level undo logs to
roll back problematic in-flight requests but cannot handle
bad states (e.g., corruption) that occurred earlier than the in-
flight request. Rust-based microkernels such as Redleaf [46]
and Theseus [5] provide fault recovery, but they are not yet
mature enough to support POSIX-compliant filesystems.

7 Conclusion
We presented the design, implementation, and evaluation of
Ananke. Through thorough experimentation, we demon-
strated that Ananke handles a wide range of faults and recov-
ers transparently underneath running applications. Ananke
does so while providing high performance in the common
case, thus showing that fault tolerance does not need to incur
excessive costs.

8 Acknowledgement
We thank Angela Demke Brown (shepherd) and the anony-
mous reviewers for their comments, which greatly improved
our paper. We thank Swaminathan Sundararaman and Sriram
Subramanian for discussion on Membrane. This material
was supported by funding from NSF grant CNS-2402859,
Microsoft, and Influxdata. Jing Liu was partially supported
by a Meta PhD Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and may not reflect the views of NSF or
other institutions.

References

[1] pthread mutexattr setrobust(3). , 2024.

[2] David F. Bacon. Detection and Prevention of Silent
Data Corruption in an Exabyte-scale Database System.
In The 18th IEEE Workshop on Silicon Errors in Logic
System Effects, 2022.

[3] Koustubha Bhat, Dirk Vogt, Erik van der Kouwe, Ben
Gras, Lionel Sambuc, Andrew S. Tanenbaum, Her-
bert Bos, and Cristiano Giuffrida. Osiris: Efficient
and consistent recovery of compartmentalized operat-
ing systems. In 2016 46th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN), pages 25–36, 2016.

[4] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scaling
a File System to Many Cores Using an Operation Log.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP ’17), Shangai, China,
October 2017.

[5] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an Experiment in Operating System
Structure and State Management. In Proceedings of the
14th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI ’20), Virtual Confer-
ence, November 2020.

[6] Mike Burrows. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of the 7th
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’06), Seattle, WA, November 2006.

[7] George Candea, Shinichi Kawamoto, Yuichi Fujiki,
Greg Friedman, and Armando Fox. Microreboot – A
Technique for Cheap Recovery. In Proceedings of the
6th Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), San Francisco, CA, Decem-
ber 2004.

[8] Dongjie Chen, Yanyan Jiang, Chang Xu, Xiaoxing Ma,
and Jian Lu. Testing file system implementations on
layered models. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, ICSE ’20, Seoul, South Korea, 2020.

[9] Haibo Chen, Xie Miao, Ning Jia, Nan Wang, Yu Li,
Nian Liu, Yutao Liu, Fei Wang, Qiang Huang, Kun
Li, Hongyang Yang, Hui Wang, Jie Yin, Yu Peng, and
Fengwei Xu. Microkernel goes general: Performance
and compatibility in the HongMeng production micro-
kernel. In Proceedings of the 16th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI ’24), Santa Clara, CA, July 2024.

[10] Peter M. Chen, Wee Teck Ng, Subhachandra Chan-
dra, Christopher Aycock, Gurushankar Rajamani, and
David Lowell. The Rio File Cache: Surviving Op-
erating System Crashes. In Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS VII), Cambridge, MA, October 1996.

[11] D. R. Cheriton and W. Zwaenepoel. The distributed V
kernel and its performance for diskless workstations. In
Proceedings of the 9th ACM Symposium on Operating
System Principles (SOSP ’83), pages 129–140, Bretton
Woods, New Hampshire, October 1983.

[12] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle,
and Roy H. Campbell. CuriOS: Improving Reliability
through Operating System Structure. In Proceedings of
the 8th Symposium on Operating Systems Design and
Implementation (OSDI ’08), San Diego, CA, December
2008.

[13] Alex Depoutovitch and Michael Stumm. Otherworld:
Giving applications a chance to survive os kernel
crashes. In Proceedings of the 5th European Con-
ference on Computer Systems (EuroSys ’10), Paris,
France, April 2010.

[14] Harish Dattatraya Dixit, Sneha Pendharkar, Matt
Beadon, Chris Mason, Tejasvi Chakravarthy, Bharath
Muthiah, and Sriram Sankar. Silent Data Corruptions
at Scale. CoRR, abs/2102.11245, 2021.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The
design and operation of CloudLab. In Proceedings of
the USENIX Annual Technical Conference (USENIX
’19), Renton, WA, July 2019.

[16] Daniel Ford, François Labelle, Florentina I. Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Car-
rie Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’10), Vancouver, Canada, December
2010.

[17] Christopher Frost, Mike Mammarella, Eddie Kohler,
Andrew de los Reyes, Shant Hovsepian, Andrew Mat-
suoka, and Lei Zhang. Generalized File System Depen-
dencies. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP ’07), pages 307–
320, Stevenson, WA, October 2007.

[18] Daniel Fryer, Kuei Sun, Rahat Mahmood, Ting-
hao Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying File System
Consistency at Runtime. In Proceedings of the 10th
USENIX Symposium on File and Storage Technologies
(FAST ’12), San Jose, CA, February 2012.

[19] Per Brinch Hansen. The Nucleus of a Multipro-
gramming System. Communications of the ACM,
13(4):238–241, April 1970.

[20] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S. Tanenbaum. Construction of a
Highly Dependable Operating System. In Proceedings
of the 6th European Dependable Computing Confer-
ence, October 2006.

[21] Dan Hildebrand. An architectural overview of qnx. In
USENIX Workshop on Microkernels and Other Kernel
Architectures, pages 113–126. Citeseer, 1992.

[22] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul,
Rama Govindaraju, Parthasarathy Ranganathan,
David E. Culler, and Amin Vahdat. Cores That Don’t
Count. In Proceedings of the Workshop on Hot Topics
in Operating Systems (HOTOS ’21), Ann Arbor,
Michigan, June 2021.

[23] Jian Huang, Moinuddin K. Qureshi, and Karsten
Schwan. An Evolutionary Study of Linux Memory
Management for Fun and Profit. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’16),
Denver, CO, June 2016.

[24] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable Failures in the Wild. In Proceedings
of the 16th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’22), Carlsbad, CA,
July 2022.

[25] Google Inc. Google Benchmark: Preventing Op-
timization. https://github.com/google/
benchmark/blob/main/docs/user_guide.
md#preventing-optimization.

[26] Intel. Intelligent Storage Acceleration Library.
https://github.com/intel/isa-l, 2023.

[27] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Stonebraker Michael,
Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store: A high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow.,
1(2):1496–1499, aug 2008.

[28] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of the EuroSys Conference
(EuroSys ’19), Dresden, Germany, March 2019.

[29] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding Seman-
tic Bugs in File Systems with an Extensible Fuzzing
Framework. In Proceedings of the 26th ACM Sympo-
sium on Operating Systems Principles (SOSP ’19), On-
tario, Canada, October 2019.

[30] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Michael Norrish, Rafal
Kolanski, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles (SOSP ’09), Big Sky, Mon-
tana, October 2009.

[31] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and
Sumith Makam. High performance metadata integrity
protection in the WAFL Copy-on-Write file system. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), Santa Clara, CA,
February 2017.

[32] Andrew Lenharth, Vikram S. Adve, and Samuel T.
King. Recovery Domains: An Organizing Principle
for Recoverable Operating Systems. In Proceedings
of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS XIV), WA, DC, March 2009.

[33] Wentai Li, Jinyu Gu, Nian Liu, and Binyu Zang.
Efficiently recovering stateful system components of
multi-server microkernels. In 2021 IEEE 41st Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 494–505, 2021.

[34] Jochen Liedtke. Improving ipc by kernel design. In
Proceedings of the 14th ACM Symposium on Operat-
ing Systems Principles (SOSP ’93), Asheville, North
Carolina, December 1993.

[35] Jing Liu, Xiangpeng Hao, Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau, and Tej Chajed. Shadow
filesystems: Recovering from filesystem runtime errors
via robust alternative execution. In Proceedings of the
16th ACM Workshop on Hot Topics in Storage and File
Systems, HotStorage ’24, pages 15–22, 2024.

[36] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Scale and Performance in

https://github.com/google/benchmark/blob/main/docs/user_guide.md#preventing-optimization
https://github.com/google/benchmark/blob/main/docs/user_guide.md#preventing-optimization
https://github.com/google/benchmark/blob/main/docs/user_guide.md#preventing-optimization

a Filesystem Semi-Microkernel. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP ’21), Virtual Event, Germany, October 2021.

[37] R. Lorie. Physical Integrity in a Large Segmented
Database. ACM Transactions on Databases, 2(1):91–
104, 1977.

[38] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A Study of Linux File
System Evolution. In Proceedings of the 11th USENIX
Symposium on File and Storage Technologies (FAST
’13), San Jose, CA, February 2013.

[39] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-
Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Physical Disentanglement in a
Container-Based File System. In Proceedings of the
11th Symposium on Operating Systems Design and Im-
plementation (OSDI ’14), Broomfield, CO, October
2014.

[40] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. ffsck: The Fast File System
Checker. In Proceedings of the 11th USENIX Sympo-
sium on File and Storage Technologies (FAST ’13), San
Jose, CA, February 2013.

[41] Michael Marty, Marc de Kruijf, Jacob Adriaens,
Christopher Alfeld, Sean Bauer, Carlo Contavalli,
Mike Dalton, Nandita Dukkipati, William C. Evans,
Steve Gribble, Nicholas Kidd, Roman Kononov, Gau-
tam Kumar, Carl Mauer, Emily Musick, Lena Ol-
son, Mike Ryan, Erik Rubow, Kevin Springborn, Paul
Turner, Valas Valancius, Xi Wang, and Amin Vahdat.
Snap: a Microkernel Approach to Host Networking. In
Proceedings of the 26th ACM Symposium on Operat-
ing Systems Principles (SOSP ’19), Ontario, Canada,
October 2019.

[42] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Alex Tomas Andreas Dilge and, and Laurent
Vivier. The New Ext4 filesystem: Current Status and
Future Plans. In Ottawa Linux Symposium (OLS ’07),
Ottawa, Canada, July 2007.

[43] Paul E. McKenney. Is parallel programming hard, and,
if so, what can you do about it? (release v2023.06.11a),
2023.

[44] Marshall Kirk McKusick, Willian N. Joy, Samuel J.
Leffler, and Robert S. Fabry. Fsck - The UNIX File
System Check Program. Unix System Manager’s Man-
ual - 4.3 BSD Virtual VAX-11 Version, April 1986.

[45] Jeffrey C. Mogul. A Better Update Policy. In Pro-
ceedings of the USENIX Summer Technical Conference
(USENIX Summer ’94), Boston, MA, June 1994.

[46] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and An-
ton Burtsev. RedLeaf: Isolation and Communication
in a Safe Operating System. In Proceedings of the
14th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI ’20), Virtual Confer-
ence, November 2020.

[47] Neha Narula, Cody Cutler, Eddie Kohler, and Robert
Morris. Phase reconciliation for contended In-Memory
transactions. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

[48] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan,
Pavan Kumar, Maxim Khutornenko, Mayank Pundir,
Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
Brendon Daugherty, Apurva Samudra, Prashasti Baid,
James Kneeland, Igor Kabiljo, Dmitry Shchukin, An-
dre Rodrigues, Scott Michelson, Ben Christensen,
Kaushik Veeraraghavan, and Chunqiang Tang. RAS:
Continuously Optimized Region-Wide Datacenter Re-
source Allocation. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP
’21), Virtual Event, Germany, October 2021.

[49] Edmund B. Nightingale, John R. Douceur, and Vince
Orgovan. Cycles, Cells and Platters: An Empirical
Analysis of Hardware Failures on a Million Consumer
PCs. In Proceedings of the EuroSys Conference (Eu-
roSys ’11), Salzburg, Austria, April 2011.

[50] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-
Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-
Consistent Applications. In Proceedings of the 11th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’14), Broomfield, CO, October
2014.

[51] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and Evolution
of Journaling File Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’05),
pages 105–120, Anaheim, CA, April 2005.

[52] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), Brighton, UK, October
2005.

[53] Richard Rashid, Avadis Tevanian, Michael Young,
David Golub, Robert Baron, David Black, William
Bolosky, and Jonathan Chew. Machine-Independent

Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures. In Proceedings of
the 2nd International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS IV), pages 31–39, Palo Alto, CA, 1987.

[54] Richard F. Rashid and George G. Robertson. Accent: A
communication oriented network operating system ker-
nel. In Proceedings of the 8th ACM Symposium on Op-
erating Systems Principles (SOSP ’81), Pacific Grove,
CA, December 1981.

[55] Tom Ridge, David Sheets, Thomas Tuerk, Andrea
Giugliano, Anil Madhavapeddy, and Peter Sewell.
SibylFS: Formal Specification and Oracle-Based Test-
ing for POSIX and Real-World File Systems. In Pro-
ceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP ’15), Monterey, California,
October 2015.

[56] Mendel Rosenblum and John Ousterhout. The Design
and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, 10(1):26–52,
February 1992.

[57] Jerome H Saltzer, David P Reed, and David D Clark.
End-to-end arguments in system design. ACM Trans-
actions on Computer Systems (TOCS), 2(4):277–288,
1984.

[58] Russel Sandberg. The Design and Implementation of
the Sun Network File System. In Proceedings of the
1985 USENIX Summer Technical Conference, pages
119–130, Berkeley, CA, June 1985.

[59] Bianca Schroeder, Eduardo Pinheiro, and Wolf-
Dietrich Weber. DRAM Errors in the Wild: A Large-
scale Field Study. In Proceedings of the Eleventh Inter-
national Joint Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS ’09, Seattle,
WA, USA, 2009.

[60] SPDK Open-source Team. The Storage Performance
Development Kit. https://spdk.io/doc, 2021.

[61] Vilas Sridharan, Nathan DeBardeleben, Sean Blan-
chard, Kurt B. Ferreira, Jon Stearley, John Shalf, and
Sudhanva Gurumurthi. Memory Errors in Modern Sys-
tems: The Good, The Bad, and The Ugly. In Proceed-
ings of the 20th International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’15), Istanbul, Turkey, March
2015.

[62] Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

[63] Swaminathan Sundararaman, Sriram Subramanian,
Abhishek Rajimwale, Andrea C Arpaci-Dusseau,
Remzi H Arpaci-Dusseau, and Michael M Swift. Mem-
brane: Operating System Support for Restartable File
Systems. ACM Transactions on Storage (TOS), 6(3):1–
30, 2010.

[64] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the Reliability of Commodity Oper-
ating Systems. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03),
Bolton Landing, New York, October 2003.

[65] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Recovering device drivers. In Proceedings of the
6th Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), pages 1–16, San Francisco,
CA, December 2004.

[66] Andrew S Tanenbaum, Jorrit N Herder, and Herbert
Bos. Can we make operating systems reliable and se-
cure? Computer, 39(5):44–51, 2006.

[67] Stephen C. Tweedie. Journaling the Linux ext2fs File
System. In The Fourth Annual Linux Expo, Durham,
North Carolina, May 1998.

[68] Stephen C. Tweedie. EXT3, Journaling File System.
olstrans.sourceforge.net/release/
OLS2000-ext3/OLS2000-ext3.html, July
2000.

[69] User Requests Help to Restore Corrupted
Data due to WiredTiger Panic. Corrupt
Collections WT Panic ERROR. https:
//jira.mongodb.org/browse/SERVER-
32795?jql=text%20˜%20%22WT_PANIC%22,
2018.

[70] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang
Wang, Jiesheng Wu, and Qingchao Luo. Understand-
ing Silent Data Corruptions in a Large Production CPU
Population. In Proceedings of the 28th ACM Sym-
posium on Operating Systems Principles (SOSP ’23),
Koblenz, Germany, October 2023.

[71] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. NOVA-Fortis: A
Fault-Tolerant Non-Volatile Main Memory File Sys-
tem. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP ’17), Shangai,
China, October 2017.

[72] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The Duality of Memory and Communication in the Im-
plementation of a Multiprocessor Operating System. In

https://spdk.io/doc
www.sun.com/2004-0914/feature/
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
https://jira.mongodb.org/browse/SERVER-32795?jql=text%20~%20%22WT_PANIC%22
https://jira.mongodb.org/browse/SERVER-32795?jql=text%20~%20%22WT_PANIC%22
https://jira.mongodb.org/browse/SERVER-32795?jql=text%20~%20%22WT_PANIC%22

Proceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP ’87), pages 63–76, Austin,
Texas, November 1987.

[73] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau. End-to-end Data
Integrity for File Systems: A ZFS Case Study. In Pro-
ceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, CA, Febru-
ary 2010.

[74] Asmae Ziani. Understanding the Differences between
Popular Operating Systems. https://medium.
com/@asmaeziani47/understanding-
the-differences-between-popular-
operating-systems-77aec4bdcddc, 2023.

https://medium.com/@asmaeziani47/understanding-the-differences-between-popular-operating-systems-77aec4bdcddc
https://medium.com/@asmaeziani47/understanding-the-differences-between-popular-operating-systems-77aec4bdcddc
https://medium.com/@asmaeziani47/understanding-the-differences-between-popular-operating-systems-77aec4bdcddc
https://medium.com/@asmaeziani47/understanding-the-differences-between-popular-operating-systems-77aec4bdcddc

	Introduction
	Background and Extended Motivation
	Monolithic Kernel Filesystem Failure Full-system Crash
	Microkernel Filesystem Failure Process Crash
	Separate P-crash Recovery from S-crash Recovery
	Alternatives for P-Crash Recovery
	Challenges in Principled P-Crash Recovery

	Ananke Design
	Goals for P-Crash Recovery
	Base Architecture
	Design Principles and Overview
	P-Crash Recovery Mechanisms
	P-Crash Log (p-log)
	AIM (Act-Ignore-Modify) Algorithm

	Implementation
	Evaluation
	Methodology and Comparison Systems
	Transparent Recovery vs. Performance
	Transparent Recovery: Recovering the State Gap
	Real Application Behavior
	Multiple Processes

	Transparent Recovery: Memory Corruption
	Common-Case Overheads
	Performance Overhead
	Memory Overhead

	Recovery Performance

	Related Work
	Conclusion
	Acknowledgement

