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Filesystem Microkernels

Filesystems service as a user-space process
• No OS involvement
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Benefits of Filesystem Microkernels

Filesystems service as a user-space process
• Better performance for modern IO devices and CPUs
• Easy to develop and upgrade
• Better fault isolation

3

Filesystem

OS

App2App1



Benefits of Filesystem Microkernels

Filesystems service as a user-space process
• Better performance for modern IO devices and CPUs
• Easy to develop and upgrade
• Better fault isolation

Systems: uFS (SOSP ’21), Hongmeng (OSDI ’23)
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A new paradigm of crash recovery 
process crash recovery



OS

Kernel Filesystem Failure     Full-system Crash
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OS and all applications crash (i.e., full-system crash)
Applications also lose their progress

Filesystem

App2App1
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Kernel Filesystem Failure     Full-system Crash
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Filesystem crash is treated the same as power failure
Full-system crash recovery only utilizes 
on-disk states

DISKjournal metadata data
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RAM

OS Filesystem
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A new paradigm of crash recovery 
process crash recovery



Filesystem

Microkernel Filesystem Failure Process Crash
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A new crash model
• Process crash, not full-system crash

Opportunities to continue
• Monolithic OS and some apps naturally continue

Continue

Continue

DISK

RAM



Filesystem

Microkernel Filesystem Failure Process Crash
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OS

App2App1

A new crash model
• Process crash, not full-system crash

Opportunities to continue
• Monolithic OS and some apps naturally continue

Continue

Continue

DISK

RAM

Can filesystem applications also continue?



Main Challenge: Recover the State Gap 

Filesystems buffer update in memory
State gap
• Difference between on-disk states and application view
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Main Challenge: Recover the State Gap 

Filesystems buffer update in memory
State gap
• Difference between on-disk states and application view
• Changes erratically
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

13

P-Log: In-memory Data Structure
• Log the operations and other information

OS

Old FS
others

New FSApp1
P-Log

DISK

RAM

state gap

Coordinate &
Replay P-Log



Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart

• Lightweight detection of corruption
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart

• Lightweight detection of corruption

Implemented in uFS, a state-of-the-art filesystem microkernel
• Add ~4K LoC
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Achieved fast and transparent recovery
• Failure transparency
• Over 30,000 fault injection experiments

• Low common-path overhead
• <2% in most cases

• Fast recovery
• <400ms even for challenging workloads
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Outline

• Introduction
• Challenges
• P-Log and AIM
• Evaluation
• Conclusion
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Principled process crash recovery
• Challenges
• Recover State Gap
• Low Overhead
• Robustness of Recovery
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Principled process crash recovery
• Challenges

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart
• Lightweight detection of corruption
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Ananke: A Filesystem Microkernel that Supports 
Process Crash Recovery

Principled process crash recovery
• Challenges

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart
• Lightweight detection of corruption
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Recover State Gap
Low Overhead

Robustness of Recovery



P-Log: In-memory Log for Process Crash Recovery
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P-Log
• Log the operations and other information

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4 sync(x)

DISK



P-Log: Challenge to Recover the State Gap
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P-Log
• Log the operations and other information
• Naively replaying is not sufficient
• An operation’s update may have been durable
• Part of an operation’s update needs to be recovered

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4 sync(x)

DISK

Ignore Partial update



Trade-off: Fast, Transparent Recovery vs. 
Low Common-path Overhead

23

Recovery Time

Full-system Crash Recovery

Common-path 
Overhead

Incorrect due to the loss of state gap
Manual efforts and long recovery time



P-Log: Challenge to Recover the State Gap
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P-Log
• Log the operations and other information
• Control the common-path overhead
• Extra flushes can simplify the state gap, but incurs large overhead

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4

DISK



Fast, Transparent Recovery AND
Low Common-path Overhead
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Recovery Time

Common-path 
Overhead

Flush every operation 
+ Full-system Crash Recovery

Full-system Crash Recovery

Large common-path overhead



Fast, Transparent Recovery AND
Low Common-path Overhead
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Recovery Time

Common-path 
Overhead

Flush every operation 
+ Full-system Crash Recovery

Full-system Crash RecoveryAnanke

P-Log and AIM: recover the state gap without incurring extra flushes



Recover the Exact State Gap 

• Subsequent operations may remove some (or all) of the 
changes from the state gap
• close() removes fd
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3 = open(f.txt) read(3, buf, 100) read(3, buf, 100) close(3)

remove the fd, and thus updates of several previous operations

1



Recover the Exact State Gap 

• Subsequent operations may remove some (or all) of the 
changes from the state gap
• close() removes an fd
• fsync()/sync()/background sync

28

1



Recover the Exact State Gap 

• Subsequent operations may remove some (or all) of the 
changes from the state gap
• Subsequent operations may alter the preconditions
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open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

Re-execute: open(D/f) cannot find it

2
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open
3 5

targets: fd,inos [self, parent, dst_self, dst_parent]

op, args
target_status: bit set if the corresponding target is updated

P-Log: In-memory Per-Core Log

30

A P-Log entry contains an array to record possible targets
• file descriptor and involved inodes (inos)



P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, “xx"), fsync(3), close(3)
• (file inode number = 5)
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open
3 5

targets: fd,inos [self, parent, dst_self, dst_parent]



P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)
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P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)
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P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)
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open
3 5

write
3 5

fsync
3 5

close
3 5

open
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write
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AIM (Act, Ignore, Modify)

Transform P-Log entries into actions that can be executed by 
the original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a 

modified form
• E.g., another operation type, different parameters
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Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
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Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
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inode (leaf file)



Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
38

fd

inode (leaf file)

path inode



Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
• Use Filesystem APIs 39
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Intuition behind P-Log and AIM
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Applications change filesystem states upon three abstractions
• Use Filesystem APIs

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

creat



Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap
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open
3 5

fd inos [self, parent, dst_self, dst_parent]

op, args

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite



Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap
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open
3 5

fd inos [self, parent, dst_self, dst_parent]

op, args
None bits set: ignore the operation

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite



AIM (Act, Ignore, Modify)

Transform p-log into actions that can be executed by the 
original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a 

modified form
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A I M

(Checking the bits & Fast in the common path)



Modify: Decide the Resulting Form during Recovery
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Modify: Decide the Resulting Form during Recovery
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fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

Modify: Decide the Resulting Form during Recovery
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AIM (Act, Ignore, Modify)

Transform P-Log entries into actions that can be 
executed by the original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a 

modified form
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A I M

(Checking the bits & Fast in the common path)

(During recovery)



AIM (Act, Ignore, Modify)

48

M: open(D/a)

A
A

I
I

• Subsequent operations may remove some (or all) of the 
changes from the state gap
• Subsequent operations may alter the preconditions

open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

A I M
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AIM (Act, Ignore, Modify)
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M: open(D/a)

A
A

I
I

• Subsequent operations may remove some (or all) of the 
changes from the state gap
• Subsequent operations may alter the preconditions

open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

A I M
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Outline

• Introduction
• Challenges
• P-Log and AIM
• Evaluation
• Conclusion
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Evaluation

Failure transparency
• Over 30,000 fault injection experiments under various 

applications, covering different state gap
• Over 3,000 Memory corruption experiments

Fast recovery
Low overhead in common-path
• Performance overhead & memory overhead
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Empirical Evaluation of Recovering the State Gap

Five real-world applications
• Sort, copy, unzip, SQLite, LevelDB
• Inject a process crash after each operation in sequences

Over 30,000 cases
• Provide failure transparency
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Fast, Transparent Recovery & Low Overhead During 
Normal Execution
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Workload: LevelDB (load)
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full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)

full-system crash recovery
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Low Overhead in the Common Path
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Workload: LevelDB (load)

full-system crash recovery full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)
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Fast, Transparent Recovery
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full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)

Workload: LevelDB (load)

full-system crash recovery



Conclusion

Ananke: fast, transparent filesystem process crash recovery
• Implemented in uFS—a state-of-the-art filesystem microkernel
• Novel mechanisms:
• P-log and AIM to recover state gap
• Others to improve recovery performance and robustness

• Thorough evaluation: fault injection and overhead analysis
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Conclusion

Ananke: fast, transparent filesystem process crash recovery
• Implemented in uFS—a state-of-the-art filesystem microkernel
• Novel mechanisms:
• P-log and AIM to recover state gap
• Others to improve recovery performance and robustness

• Thorough evaluation: fault injection and overhead analysis
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RAMothersP-Log App View
on-disk states

DISKjournal metadata data



Conclusion

Separate process crash recovery from full-system crash recovery
• Filesystem process crash is not the same as power-failure
• Opportunity for transparent recovery

• Improve the guarantee of local filesystem services
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RAMothersP-Log App View
on-disk states

DISKjournal metadata data

full-system crash recovery process crash recovery



Ananke and Process Crash Recovery

See the paper (or email me: jingliu3@microsoft.com) for:
• Principles and challenges for process crash recovery
• Detailed design of P-log and AIM
• Correctness and performance evaluation under various 

applications

Thank you for listening!
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