Fast, Transparent
Filesystem Microkernel
Recovery with Ananke

Jing Liu,Yifan Dai,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

=F Microsoft @WISCONSIN

Filesystem Microkernels

¥~

Appl App2 Filesystem

383

Filesystems service as a user-space process
* No OS involvement

Benefits of Filesystem Microkernels

¥~

Appl App2 Filesystem

383

Filesystems service as a user-space process
* Better performance for modern IO devices and CPUs
* Easy to develop and upgrade
* Better fault isolation

Benefits of Filesystem Microkernels

¥~

Appl App2 Filesystem

383

Filesystems service as a user-space process
* Better performance for modern IO devices and CPUs
* Easy to develop and upgrade
* Better fault isolation

Systems: uFS (SOSP "21), Hongmeng (OSDI °23)

A new paradigm of crash recovery
process crash recovery

Kernel Filesystem Failure = Full-system Crash

.y | | And RAM
DISK
.’ Filesvstem

OS and all applications crash (i.e., full-system crash)

Applications also lose their progress

Kernel Filesystem Failure = Full-system Crash

. ol | |Ar ‘
.’ Filesvstem

journal| | metadata| |data| DISK

Filesystem crash is treated the same as power failure

Full-system crash recovery only utlllzes-
on-disk states

RAM
DISK

A new paradigm of crash recovery
process crash recovery

Microkernel Filesystem Failure = Process Crash

Continue /—\ A

App2 Filchafem

DISK

Continue
OS /)

A new crash model
* Process crash, not full-system crash

Opportunities to continue
* Monolithic OS and some apps naturally continue

[
va

Microkernel Filesystem Failure = Process Crash

Continue /—\
Appl App2 Filegztem
® Continue

OS /)

A new crash model
* Process crash, not full-system crash

Opportunities to continue
* Monolithic OS and some apps naturally continue

Can filesystem applications also continue?

RAM
DISK

10

Main Challenge: Recover the State Gap

App2

Filesystem

N

v

state gap
DISK

Filesystems buffer update in memory

State gap

* Difference between on-disk states and application view

RAM

Main Challenge: Recover the State Gap

¥~

App2

Filesystem

as

v

state gap
DISK

Filesystems buffer update in memory

State gap

* Difference between on-disk states and application view

* Changes erratically

RAM

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

——— RAM

-
Appl| Cl S New FS DISK

others |

b Coordinate &
ON Replay P-Log

P-Log: In-memory Data Structure
* Log the operations and other information

13

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Novel mechanisms
* P-Log and AIM algorithm
* Kernel-coordinated speculative restart

* Lightweight detection of corruption

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Novel mechanisms
* P-Log and AIM algorithm
* Kernel-coordinated speculative restart

* Lightweight detection of corruption

Implemented in uFS, a state-of-the-art filesystem microkernel
* Add ~4K LoC

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Achieved fast and transparent recovery
* Failure transparency
* Over 30,000 fault injection experiments
* Low common-path overhead
¢ <2% In most cases

* Fast recovery
¢ <400ms even for challenging workloads

Outline

* Introduction

* Challenges

* P-Log and AIM
* Evaluation

* Conclusion

17

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
* Challenges

* Recover State Gap
* Low Overhead
* Robustness of Recovery

18

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
* Challenges

Novel mechanisms
* P-Log and AIM algorithm ~ Recover State Gap
* Kernel-coordinated speculative restart &< Low Overhead
* Lightweight detection of corruption - Robustness of Recovery

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
* Challenges

Novel mechanisms
* P-Log and AIM algorithm ~ Recover State Gap
* Kernel-coordinated speculative restart &< Low Overhead
* Lightweight detection of corruption - Robustness of Recovery

P-Log: In-memory Log for Process Crash Recovery

loplJlop2)lop3J{op4)lsync(x)}] RAM

DISK

state gap

P-Log

* Log the operations and other information

P-Log: Challenge to Recover the State Gap

Ignore Partial update

opl Jlop2)(op3)lop4)lsync(x)

state gap

P-Log
* Log the operations and other information

* Naively replaying is not sufficient
* An operation’s update may have been durable
* Part of an operation’s update needs to be recovered

RAM

DISK

22

Trade-off: Fast, Transparent Recovery vs.
Low Common-path Overhead

Common-path 1
Overhead

Full-system Crash Recovery

Recovery Time

Incorrect due to the loss of state gap
Manual efforts and long recovery time

23

P-Log: Challenge to Recover the State Gap

Mp_ op1){op2](op3](op4]
1111

(L) DISK

P-Log
* Log the operations and other information

* Control the common-path overhead
* Extra flushes can simplify the state gap, but incurs large overhead

24

Fast, Transparent Recovery AND
Low Common-path Overhead

Common-path 1

Overhead Flush every operation

+ Full-system Crash Recovery

Full-system Crash Recovery

Recovery Time

Large common-path overhead

25

Fast, Transparent Recovery AND
Low Common-path Overhead

Common-path 1 .
Overhead Flush every operation
verned + Full-system Crash Recovery
O
Ananke Full-system Crash Recovery
® o

Recovery Time

P-Log and AIM: recover the state gap without incurring extra flushes

26

Recover the Exact State Gap

“Subsequent operations may remove some (or all) of the
changes from the state gap

* close() removes fd

[3 = open(f.txt)] [read(3, buf, IOO)] [read(3, buf, IOO)] [close(3)]

remove the fd, and thus updates of several previous operations

27

Recover the Exact State Gap

0Subsequent operations may remove some (or all) of the
changes from the state gap

* close() removes an fd
* fsync()/sync()/background sync

Recover the Exact State Gap

”Subsequent operations may remove some (or all) of the
changes from the state gap

@Subsequent operations may alter the preconditions

Re-execute: open(D/f) cannot find it

DISK
D/a 29

P-Log: In-memory Per-Core Log

op, args
L > target_status: bit set if the corresponding target is updated

targets: fd,inos [self, parent, dst_self, dst_parent]

A P-Log entry contains an array to record possible targets
* file descriptor and involved inodes (inos)

P-Log: In-memory Per-Core Log

. open
375 T

targets: fd,inos [self, parent, dst_self, dst_parent]

Workload
* 3 = open(f), write(3,“xx"), fsync(3), close(3)
* (file inode number = 5)

P-Log: In-memory Per-Core Log

Workload
* 3 = open(f), write(3, xxx), fsync(3), close(3)
* (file inode number = 5)

32

P-Log: In-memory Per-Core Log

Workload
* 3 = open(f), write(3, xxx), fsync(3), close(3)
* (file inode number = 5)

33

P-Log: In-memory Per-Core Log

i__Qp_e_x# . writgh fsync !
5

Workload
* 3 = open(f), write(3, xxx), fsync(3), close(3)
* (file inode number = 5)

34

AIM (Act, Ignore, Modify) [(a]1]M

Transform P-Log entries into actions that

lgnore or not
* Ighore: a logged operation needs to be ighored

Act or Modify

* Act: an operation will be directly replayed

* Modify: needs to take actions for an operation, but in a
modified form
* E.g., another operation type, different parameters

Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions

Intuition behind P-Log and AIM

=
_

Applications change filesystem states upon three abstractions

37

Intuition behind P-Log and AIM

=

fd pathe=inode

Applications change filesystem states upon three abstractions

38

Intuition behind P-Log and AIM stat
pread

truncate

write
creat
mkdir

rmdir
unlink
rename
open
close

ead
Iseek

fd pathe=inode

Applications change filesystem states upon three abstractions
* Use Filesystem APlIs 39

Intuition behind P-Log and AIM

inode (leaf file)

pread truncate
stat

write

(open) close

read Iseek

mkdir rmdir

unlink rename
pathe=inode

fd

Applications change filesystem states upon three abstractions
* Use Filesystem APlIs 40

Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap

pread ﬁuncate
stat pwrite

write
creat
open close mkdir rmdir
read lIseek unlink rename .
fd pathe=inode

op, args:

fd inos [self, parent, dst_self, dst_parent]

Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap

pread ﬁuncate
stat pwrite

write
creat
open close mkdir rmdir
read lIseek unlink rename .
fd pathe=inode

None bits set: ignore the operation

H_J
fd inos [self, parent, dst_self, dst_parent]

42

AIM (Act, Ignore, Modify) [(a]1]M

Transform p-log into actions that can be executed by the
original filesystem implementation

lgnore or not (Checking the bits & Fast in the common path)
* Ighore: a logged operation needs to be ighored
Act or Modify

* Act: an operation will be directly replayed

* Modify: needs to take actions for an operation, but in a
modified form

43

Modify: Decide the Resulting Form during Recovery

pread ﬁuncate
stat pwrite

write
creat
open close mkdir rmdir
read Iseek unlink rename

fd pathe=inode

44

Modify: Decide the Resulting Form during Recovery

pread ﬁuncate
stat pwrite

write
creat
open close mkdir rmdir
read Iseek unlink rename

fd pathe=inode

45

Modify: Decide the Resulting Form during Recovery

inode (leaf file)

pread ﬁuncate
stat pwrite

write
= creat
open “close mkdir rmdir
read Iseek unlink rename

fd pathe=inode

46

AIM (Act, Ignore, Modify) [(a]1]M

Transform P-Log entries into actions that can be
executed by the original filesystem implementation

lgnore or not (Checking the bits & Fast in the common path)
Act or Modify (During recovery)
* Act: an operation will be directly replayed

* Modify: needs to take actions for an operation, but in a
modified form

47

AIM (Act, Ignore, Modify) [(a]1]M

”Subsequent operations may remove some (or all) of the
changes from the state gap

QSubsequent operations may alter the preconditions

M: open(D/a)
A
A
I
I

DISK

D/a

AIM (Act, Ignore, Modify) [(a]1]M

”Subsequent operations may remove some (or all) of the
changes from the state gap

QSubsequent operations may alter the preconditions

M: open(D/a)
A
A
l
l

DISK

D/a

Outline

* Introduction

* Challenges

* P-Log and AIM
* Evaluation

* Conclusion

50

Evaluation

Failure transparency

* Over 30,000 fault injection experiments under various
applications, covering different state gap

* Over 3,000 Memory corruption experiments
Fast recovery

Low overhead in common-path
* Performance overhead & memory overhead

Empirical Evaluation of Recovering the State Gap

Five real-world applications
* Sort, copy, unzip, SQLite, LevelDB
* Inject a process crash after each operation in sequences

Over 30,000 cases

* Provide failure transparency

Throughput (reqg/sec)

Fast, Transparent Recovery & Low Overhead During
Normal Execution

Workload: LevelDB (load)

150K H §150K— 3 150K
90K - = 90K - = 90K -
o o
60K - 5 60K - 5, 60K -
> -}
30K - 2 380K 2 380K
= -
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Time (ms) Time (ms) Time (ms)
full-system crash recovery full-system crash recovery + full-system crash recovery +
flush every operation process crash recovery

(Ananke)

53

Low Overhead in the Common Path

Workload: LevelDB (load)

S 150K - S 150K - 150K -
2 % 2
= 90K - = 90K - = 90K |
IS a IS
[@)) 60K' [@)) GOK' [@)) 60K'
3 3 3
= 30K 4 = 30K - = 30K 4
= = =
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Time (ms) Time (ms) Time (ms)
full-system crash recovery full-system crash recovery + full-system crash recovery +
flush every operation process crash recovery

(Ananke)

54

ec
o
o
P

|
ec)
o
o
PN

|
ec
a
o
P

|

Throughput (req/s

o O
o

A

I

w

o

A
I

Fast, Transparent Recovery

Workload: LevelDB (load)

n
90K -

A

(o]

o

A
I

W

o

A
I

30K - A
4

0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Time (ms) Time (ms) Time (ms)

o

P

|
Throughput (r

(@)

o

P

|
Throughput (req/

(o))

o

~

|

7

full-system crash recovery full-system crash recovery + full-system crash recovery +

flush every operation process crash recovery
(Ananke)

55

Conclusion

Ananke: fast, transparent filesystem process crash recovery
* Implemented in uFS—a state-of-the-art filesystem microkernel

* Novel mechanismes:
* P-log and AIM to recover state gap
* Others to improve recovery performance and robustness

* Thorough evaluation: fault injection and overhead analysis

Conclusion

Ananke: fast, transparent filesystem process crash recovery
* Implemented in uFS—a state-of-the-art filesystem microkernel
* Novel mechanisms:

* P-log and AIM to recover state gap
* Others to improve recovery performance and robustness

* Thorough evaluation: fault injection and overhead analysis

journal

metadata

data

on-disk states

DISK gp

others

RAM = AppView

57

Conclusion

Separate process crash recovery from full-system crash recovery

* Filesystem process crash is not the same as power-failure

* Opportunity for transparent recovery

* Improve the guarantee of local filesystem services

full-system crash recovery

journal

metadata

data

on-disk states

DISK gp

process crash recovery

others

RAM = AppView

58

Ananke and Process Crash Recovery

See the paper (or email me: jingliu3(@microsoft.com) for:
* Principles and challenges for process crash recovery
* Detailed design of P-log and AIM

* Correctness and performance evaluation under various
applications

Thank you for listening!

mailto:jingliu3@microsoft.com

