
Fast, Transparent
Filesystem Microkernel
Recovery with Ananke

Jing Liu, Yifan Dai,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

Filesystem Microkernels

Filesystems service as a user-space process
• No OS involvement

2

Filesystem

OS

App2App1

Benefits of Filesystem Microkernels

Filesystems service as a user-space process
• Better performance for modern IO devices and CPUs
• Easy to develop and upgrade
• Better fault isolation

3

Filesystem

OS

App2App1

Benefits of Filesystem Microkernels

Filesystems service as a user-space process
• Better performance for modern IO devices and CPUs
• Easy to develop and upgrade
• Better fault isolation

Systems: uFS (SOSP ’21), Hongmeng (OSDI ’23)
4

Filesystem

OS

App2App1

5

A new paradigm of crash recovery
process crash recovery

OS

Kernel Filesystem Failure Full-system Crash

6

OS and all applications crash (i.e., full-system crash)
Applications also lose their progress

Filesystem

App2App1
DISK

RAM

Kernel Filesystem Failure Full-system Crash

7

Filesystem crash is treated the same as power failure
Full-system crash recovery only utilizes
on-disk states

DISKjournal metadata data

DISK

RAM

OS Filesystem

App2App1

8

A new paradigm of crash recovery
process crash recovery

Filesystem

Microkernel Filesystem Failure Process Crash

9

OS

App2App1

A new crash model
• Process crash, not full-system crash

Opportunities to continue
• Monolithic OS and some apps naturally continue

Continue

Continue

DISK

RAM

Filesystem

Microkernel Filesystem Failure Process Crash

10

OS

App2App1

A new crash model
• Process crash, not full-system crash

Opportunities to continue
• Monolithic OS and some apps naturally continue

Continue

Continue

DISK

RAM

Can filesystem applications also continue?

Main Challenge: Recover the State Gap

Filesystems buffer update in memory
State gap
• Difference between on-disk states and application view

11

FilesystemApp2
RAM

op1

state gap

op2op3

DISK

Main Challenge: Recover the State Gap

Filesystems buffer update in memory
State gap
• Difference between on-disk states and application view
• Changes erratically

12

FilesystemApp2
RAM

state gap

DISK

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

13

P-Log: In-memory Data Structure
• Log the operations and other information

OS

Old FS
others

New FSApp1
P-Log

DISK

RAM

state gap

Coordinate &
Replay P-Log

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart

• Lightweight detection of corruption

14

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart

• Lightweight detection of corruption

Implemented in uFS, a state-of-the-art filesystem microkernel
• Add ~4K LoC

15

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Achieved fast and transparent recovery
• Failure transparency
• Over 30,000 fault injection experiments

• Low common-path overhead
• <2% in most cases

• Fast recovery
• <400ms even for challenging workloads

16

Outline

• Introduction
• Challenges
• P-Log and AIM
• Evaluation
• Conclusion

17

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
• Challenges
• Recover State Gap
• Low Overhead
• Robustness of Recovery

18

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
• Challenges

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart
• Lightweight detection of corruption

19

Recover State Gap
Low Overhead

Robustness of Recovery

Ananke: A Filesystem Microkernel that Supports
Process Crash Recovery

Principled process crash recovery
• Challenges

Novel mechanisms
• P-Log and AIM algorithm
• Kernel-coordinated speculative restart
• Lightweight detection of corruption

20

Recover State Gap
Low Overhead

Robustness of Recovery

P-Log: In-memory Log for Process Crash Recovery

21

P-Log
• Log the operations and other information

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4 sync(x)

DISK

P-Log: Challenge to Recover the State Gap

22

P-Log
• Log the operations and other information
• Naively replaying is not sufficient
• An operation’s update may have been durable
• Part of an operation’s update needs to be recovered

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4 sync(x)

DISK

Ignore Partial update

Trade-off: Fast, Transparent Recovery vs.
Low Common-path Overhead

23

Recovery Time

Full-system Crash Recovery

Common-path
Overhead

Incorrect due to the loss of state gap
Manual efforts and long recovery time

P-Log: Challenge to Recover the State Gap

24

P-Log
• Log the operations and other information
• Control the common-path overhead
• Extra flushes can simplify the state gap, but incurs large overhead

P-Log

Exit
Activation

RAMstate gap op1 op2 op3 op4

DISK

Fast, Transparent Recovery AND
Low Common-path Overhead

25

Recovery Time

Common-path
Overhead

Flush every operation
+ Full-system Crash Recovery

Full-system Crash Recovery

Large common-path overhead

Fast, Transparent Recovery AND
Low Common-path Overhead

26

Recovery Time

Common-path
Overhead

Flush every operation
+ Full-system Crash Recovery

Full-system Crash RecoveryAnanke

P-Log and AIM: recover the state gap without incurring extra flushes

Recover the Exact State Gap

• Subsequent operations may remove some (or all) of the
changes from the state gap
• close() removes fd

27

3 = open(f.txt) read(3, buf, 100) read(3, buf, 100) close(3)

remove the fd, and thus updates of several previous operations

1

Recover the Exact State Gap

• Subsequent operations may remove some (or all) of the
changes from the state gap
• close() removes an fd
• fsync()/sync()/background sync

28

1

Recover the Exact State Gap

• Subsequent operations may remove some (or all) of the
changes from the state gap
• Subsequent operations may alter the preconditions

29

open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

Re-execute: open(D/f) cannot find it

2

1

open
3 5

targets: fd,inos [self, parent, dst_self, dst_parent]

op, args
target_status: bit set if the corresponding target is updated

P-Log: In-memory Per-Core Log

30

A P-Log entry contains an array to record possible targets
• file descriptor and involved inodes (inos)

P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, “xx"), fsync(3), close(3)
• (file inode number = 5)

31

open
3 5

targets: fd,inos [self, parent, dst_self, dst_parent]

P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)

32

open
3 5

write
3 5

P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)

33

open
3 5

write
3 5

fsync
3 5

write
3 5

P-Log: In-memory Per-Core Log

Workload
• 3 = open(f), write(3, xxx), fsync(3), close(3)
• (file inode number = 5)

34

open
3 5

write
3 5

fsync
3 5

close
3 5

open
3 5

write
3 5

AIM (Act, Ignore, Modify)

Transform P-Log entries into actions that can be executed by
the original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a

modified form
• E.g., another operation type, different parameters

35

A I M

Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
36

fd

Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
37

fd

inode (leaf file)

Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
38

fd

inode (leaf file)

path inode

Intuition behind P-Log and AIM

Applications change filesystem states upon three abstractions
• Use Filesystem APIs 39

creat

pread
stat

mkdir
rmdir
unlink
rename

truncate
write

open
close
read
lseek

fd

inode (leaf file)

path inode

Intuition behind P-Log and AIM

40

Applications change filesystem states upon three abstractions
• Use Filesystem APIs

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

creat

Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap

41

open
3 5

fd inos [self, parent, dst_self, dst_parent]

op, args

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

Checking the Bit Can Decide:
How Much of an Operation’s Update are in the State Gap

42

open
3 5

fd inos [self, parent, dst_self, dst_parent]

op, args
None bits set: ignore the operation

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

AIM (Act, Ignore, Modify)

Transform p-log into actions that can be executed by the
original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a

modified form

43

A I M

(Checking the bits & Fast in the common path)

Modify: Decide the Resulting Form during Recovery

44

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

Modify: Decide the Resulting Form during Recovery

45

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

fd

inode (leaf file)

path inode

creat

pread
stat

mkdir rmdir
unlink rename

truncate

write

open close
read lseek

pwrite

Modify: Decide the Resulting Form during Recovery

46

AIM (Act, Ignore, Modify)

Transform P-Log entries into actions that can be
executed by the original filesystem implementation
Ignore or not
• Ignore: a logged operation needs to be ignored

Act or Modify
• Act: an operation will be directly replayed
• Modify: needs to take actions for an operation, but in a

modified form

47

A I M

(Checking the bits & Fast in the common path)

(During recovery)

AIM (Act, Ignore, Modify)

48

M: open(D/a)

A
A

I
I

• Subsequent operations may remove some (or all) of the
changes from the state gap
• Subsequent operations may alter the preconditions

open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

A I M

2

1

AIM (Act, Ignore, Modify)

49

M: open(D/a)

A
A

I
I

• Subsequent operations may remove some (or all) of the
changes from the state gap
• Subsequent operations may alter the preconditions

open(D/f)
write(D/f)
close(D/f)

rename(D/f, D/a)
sync(D)

DISK
D/f

D/a

A I M

2

1

Outline

• Introduction
• Challenges
• P-Log and AIM
• Evaluation
• Conclusion

50

Evaluation

Failure transparency
• Over 30,000 fault injection experiments under various

applications, covering different state gap
• Over 3,000 Memory corruption experiments

Fast recovery
Low overhead in common-path
• Performance overhead & memory overhead

51

Empirical Evaluation of Recovering the State Gap

Five real-world applications
• Sort, copy, unzip, SQLite, LevelDB
• Inject a process crash after each operation in sequences

Over 30,000 cases
• Provide failure transparency

52

Fast, Transparent Recovery & Low Overhead During
Normal Execution

53

Workload: LevelDB (load)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)

full-system crash recovery

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Low Overhead in the Common Path

54

Workload: LevelDB (load)

full-system crash recovery full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0 250 500 750 1000 1250 1500
Time (ms)

30K
60K
90K

120K
150K

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Fast, Transparent Recovery

55

full-system crash recovery +
flush every operation

full-system crash recovery +
process crash recovery

(Ananke)

Workload: LevelDB (load)

full-system crash recovery

Conclusion

Ananke: fast, transparent filesystem process crash recovery
• Implemented in uFS—a state-of-the-art filesystem microkernel
• Novel mechanisms:
• P-log and AIM to recover state gap
• Others to improve recovery performance and robustness

• Thorough evaluation: fault injection and overhead analysis

56

Conclusion

Ananke: fast, transparent filesystem process crash recovery
• Implemented in uFS—a state-of-the-art filesystem microkernel
• Novel mechanisms:
• P-log and AIM to recover state gap
• Others to improve recovery performance and robustness

• Thorough evaluation: fault injection and overhead analysis

57

RAMothersP-Log App View
on-disk states

DISKjournal metadata data

Conclusion

Separate process crash recovery from full-system crash recovery
• Filesystem process crash is not the same as power-failure
• Opportunity for transparent recovery

• Improve the guarantee of local filesystem services

58

RAMothersP-Log App View
on-disk states

DISKjournal metadata data

full-system crash recovery process crash recovery

Ananke and Process Crash Recovery

See the paper (or email me: jingliu3@microsoft.com) for:
• Principles and challenges for process crash recovery
• Detailed design of P-log and AIM
• Correctness and performance evaluation under various

applications

Thank you for listening!

59

mailto:jingliu3@microsoft.com

