Programmable Hardware Acceleration

Vinay Gangadhar

PhD Final Examination
Thursday, Nov 16th, 2017

Advisor: Karu Sankaralingam

Committee: Mark Hill, Mikko Lipasti, David Wood, Dimitris Papailiopoulos
Computing Trends

Moore’s Law is Dead. Now What?

Device scaling slowdown (or dead) & Dark silicon problem

Emerging applications driving computing with new demands

The Big-Data Future Has Arrived

11/16/2017

Dissertation Talk
Era of Specialization

Traditional Multicore

- Application domain specialization

Domain Specific Acceleration

- High Efficiency

Fixed-function Accelerators for specific domain:

+ Domain Specific Accelerators (DSAs)

Performance/Area

10x-1000x Performance/Power

Movidius Myriad VPU

NVIDIA DGX-1 AI Accelerator & NVDLA Architecture

Google TPU

Dissertation Talk

11/16/2017

three orders of magnitude less energy than a state of the art software DBMS, while the performance-oriented design outperforms the same DBMS by 70X. The accelerator is 117X faster, and it can reduce the total energy by 21X. The accelerator characteristics are obtained after layout at 65nm. Such a high throughput in...
Caveats of Domain-Specific Accelerators (DSAs)

- Minimally programmable/Not Re-configurable
- Obsoletion prone
- Domains targeting each device type
- Architecture, design, verification and fabrication cost
- Multi-DSA chip for “N” application domains → Area and cost inefficient

Source: Malitel Consulting
The Universal Accelerator Dream...

Convert 100+ Accelerators

1 Programmable Accelerator Fabric

A generic programmable hardware accelerator matching the efficiency of Domain Specific Accelerators (DSAs) with an efficient hardware-software interface

Deep Neural
Image Processing
Automated Driving
Compression
Regex Matching
Query Processing

Standard programming and threading interface

Source: Malitel Consulting

11/16/2017 Dissertation Talk
Specialization Paradigms

Traditional Multicore

Domain-Specific Acceleration
- Cache
- Core
- Core
- Core

(specialization alternatives)

Programmable Hardware Acceleration
- Cache
- Core
- Core
- Core

- Deep Neural, Neural Approx
- Graph, AI, RegExp
- Stencil, Scan, Linear, Sort

Perf., Energy Benefits: 10 – 1000x
Area Footprint Cost: High Overall
Generality/Flexibility: Obsolescence-Prone

Competitive?
Lower?
Future Proof?
Research Overview

Domain-Specific Accelerators (DSAs)

Commonality in DSAs?

Specialization Principles

Micro-Architectural Mechanisms

Programmable Hardware Accelerator Architecture
Research Overview

Generality

- ASIC/DSA
- GPGPU
- FPGA
- DSP
- SIMD
- GPP

Efficiency

- (energy efficient computing)

Programmability / Re-configurability Features

- Specialization Principles
- General Set of Micro-Architectural Mechanisms
- Architecture with Flexible Hardware-Software Programming Interface

Programmable Re-configurable Specialized Architecture

- Efficiency close to DSAs/ASICs
- Retain programmability

Trivial adaptation of new algorithms/applications

11/16/2017 Dissertation Talk
Dissertation Research Goal

Programmable Hardware Acceleration

1. Explore the commonality in the way the DSAs specialize – *Specialization Principles*

2. **General Mechanisms** for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient **accelerator hardware-software (ISA) interface**

4. **Easy adaptation** of new acceleratable algorithms in a domain-agnostic way
Dissertation Statement

Programmable Hardware Acceleration

A **programmable hardware accelerator** nearing the efficiency of a domain-specific accelerator (DSA) is feasible to build by:

- **Identifying the common principles of architectural specialization**
- **Applying general set of micro-architectural mechanisms for the identified principles**
- **Having an efficient hardware-software interface to be able to express any typical accelerator application**
Contributions

Modeling Programmable Hardware Acceleration

• Exploring the common principles of architectural specialization

• Modeling a general set of mechanisms to exploit the specialization principles – GenAccel Model

• Quantitative evaluation of GenAccel Model with four DSAs

• System-Level Tradeoffs of GenAccel Model vs. DSAs

Architectural Realization with Stream-Dataflow Acceleration

• Stream-Dataflow programmable accelerator architecture with:
 □ Programming abstractions and execution model
 □ ISA interface

• Detailed micro-architecture with an efficient architectural realization of stream-dataflow accelerator – Softbrain

• Quantitative evaluation of Softbrain with state-of-the-art DSA solutions
Modeling Programmable Hardware Acceleration*

*Published in HPCA 2016, IEEE Micro Top Picks 2017
Outline

• Principles of architectural specialization
 □ Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)

• Evaluation of GenAccel with 4 DSAs (Performance, power & area)

• System-level energy efficiency tradeoffs with GenAccel and DSA
Key Insight: Commonality in DSAs’ Specialization Principles

Most DSAs employ 5 common Specialization Principles:
- Concurrency
- Computation
- Communication
- Data Reuse
- Coordination
Principles of Architectural Specialization

- Match hardware **concurrency** to that of algorithm
- Problem-specific **computation** units
- Explicit **communication** as opposed to implicit communication
- Customized structures for **data reuse**
- Hardware **coordination** using simple low-power control logic
5 Specialization Principles

Concurrency
Computation
Communication
Data Reuse
Coordination

How do DSAs embody these principles in a domain specific way?

Neural Approx.
Stencil
NPU
Convolution Engine
AI
Deep Neural
Reg Expr.
Scan
Graph Traversal
Linear Algebra
Database
Sort
DianNao
Q100
Most DSAs employ Five Common Specialization Principles

Concurrency Computation Communication Data Reuse Coordination
Outline

• Principles of architectural specialization
 □ Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)

• Evaluation of GenAccel with 4 DSAs (Performance, power & area)

• System-level energy efficiency tradeoffs with GenAccel and DSA
Implementation of Principles in a General Way

Composition of simple micro-architectural mechanisms

- **Concurrency:** Multiple tiles (Tile – hardware for coarse grain unit of work)
- **Computation:** Special FUs in spatial fabric
- **Communication:** Dataflow + spatial fabric
- **Data Reuse:** Scratchpad (SRAMs)
- **Coordination:** Low-power simple core

Each Tile
Modeling the Generic Programmable Accelerator Design
Instantiating GenAccel

Programmable hardware template for specialization

GenAccel Fabric

Provisioned for
one single application domain

Provisioned for
multiple application domains

GenAccel Usage, Design point selection & Synthesis etc.
More details in backup.....
Outline

• Principles of architectural specialization
 □ Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)

• Evaluation of GenAccel with 4 DSAs (Performance, power & area)

• System-level energy efficiency tradeoffs with GenAccel and DSA
Methodology

• Modeling framework for GenAccel
 - Performance: Trace driven simulator + application specific modeling
 - Power & Area: Synthesized modules, CACTI and McPAT

• Compared to four DSAs (published perf., area & power)

• Four parameterized GenAccels

 - \(\text{GAn} \) 1 Unit
 - \(\text{GAc} \) 1 Unit
 - \(\text{GAd} \) 8 Units
 - \(\text{GAq} \) 4 Units

• Provisioned to match performance of DSAs
 - Other tradeoffs possible (power, area, energy etc.)
Performance Analysis
GenAccel vs DSAs

Baseline – 4 wide OOO core (Intel 3770K)

Domain Provisioned GenAccels

Performance: GenAccel able to match DSA

Main contributor to speedup: Concurrency
Domain Provisioned GenAccels

GenAccel area & power compared to a single DSA?
Domain Provisioned GenAccels
Area and Power Analysis

Area Comparison

Power Comparison

Domain provisioned GenAccel overhead

1x – 4x worse in Area

2x – 4x worse in Power

*Detailed area breakdown in backup

11/16/2017
Balanced GenAccel design

Area and power of GenAccel Balanced design, when multiple domains mapped*?

* Still provisioned to match the performance of each DSA
GenAccel Balanced Design
Area-Power Analysis

Balance GenAccel design overheads

Area efficient than multiple DSAs

2.5x worse in Power than multiple DSAs
Outline

• Introduction

• Principles of architectural specialization
 □ Embodiment of principles in DSAs

• Modeling mechanisms exploiting specialization principles for a generic programmable accelerator (GenAccel Model)

• Evaluation of GenAccel with 4 DSAs (Performance, power & area)

• System-level energy efficiency tradeoffs with GenAccel and DSA
Conclusion – Modeling Programmable Hardware Acceleration

- 5 common principles for architectural specialization

- Modeled the mechanisms embodying the specialization principles – Design of a Generic Programmable accelerator (GenAccel Model)

 5 stage pipelined processor (ISCA’87)

 GenAccel model competitive with DSA performance and overheads of only up to 4x in area and power

- Power overhead inconsequential when system-level energy tradeoffs considered

- GenAccel Model as a baseline for future accelerator research
Dissertation Research Goal

Programmable Hardware Acceleration

1. Explore the commonality in the way the DSAs specialize – *Specialization Principles*

2. **General Mechanisms** for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient *accelerator hardware-software (ISA) interface*

4. **Easy adaptation** of new acceleratable algorithms in a domain-agnostic way
Contributions

Modeling Programmable Hardware Acceleration
- Exploring the common principles of architectural specialization
- Modeling a general set of mechanisms to exploit the specialization principles – GenAccel Model
- Quantitative evaluation of GenAccel Model with four DSAs
- System-Level Tradeoffs of GenAccel Model vs. DSAs

Architectural Realization with Stream-Dataflow Acceleration
- Stream-Dataflow programmable accelerator architecture with:
 - Programming abstractions and execution model
 - ISA interface
- Detailed micro-architecture with an efficient architectural realization of stream-dataflow accelerator – Softbrain
- Quantitative evaluation of Softbrain with state-of-the-art DSA solutions

11/16/2017
Stream-Dataflow Acceleration*

*Published in ISCA 2017, Submitted to IEEE Micro Top-Picks 2018
Architectural Realization of Programmable Hardware Acceleration

• Workloads characteristics:
 • Regular streaming memory accesses with straightforward patterns
 • Computationally intensive with long execution phases
 • Ample data-level parallelism with large datapath
 • Small instruction footprints with simple control flow

• Accelerator architecture to accelerate data-streaming applications
 • Instantiates the hardware primitives from GenAccel model
 • Exploit all the five specialization principles
 • Stream-Dataflow high-performance compute substrate with Dataflow and Stream specialization components
 • Exposes a novel stream-dataflow ISA interface for programming the accelerator
Stream-Dataflow Acceleration

Exploit common accelerator application behavior:

Dataflow Computation
- Stream-Dataflow Execution model – Abstracts typical accelerator computation phases

Stream Patterns and Interface
- Stream-Dataflow ISA encoding and Hardware-Software interface – Exposes parallelism available in these phases

Synchronization Primitives
- Barrier commands to facilitate data coordination and data consistency
Stream-Dataflow Acceleration

Stream-Dataflow Model

From Memory

Local storage

Reuse Stream

Memory Stream

Recurrence Stream

Dataflow Graph (DFG)

To Memory

Programmable Stream-Dataflow Accelerator

Memory/Cache Hierarchy

Memory Interface

Input Data Streams

Output Data Streams

... Input Data Streams

... Output Data Streams

Local Storage (Programmable Scratchpad)

Re-configurable Computation Fabric

• Data-parallel program kernels streaming data from memory
• Dataflow computation fabric operates on data streams iteratively
• Computed output streams stored back to memory
Outline

• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable Hardware Accelerator

• Stream-Dataflow Accelerator Architecture and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results
Stream-Dataflow Execution Model

Architectural Abstractions for Stream-Dataflow Model

- **Computation abstraction** – Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** – Streams of data fetched from memory and stored back to memory
- **Reuse abstraction** – Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- **Communication abstraction** – Stream-Dataflow data movement commands and barriers

![Diagram of Stream-Dataflow Execution Model]

- **Source**
 - Memory Address
 - Local Storage Address
 - DFG Port
- **Destination**
 - Memory Address
 - Local Storage Address
 - DFG Port

11/16/2017
Stream-Dataflow Execution Model

Programmer Abstractions for Stream-Dataflow Model

- **Computation abstraction** – Dataflow Graph (DFG) with input/output vector ports
- **Data abstraction** – Streams of data fetched
- **Reuse abstraction** – Streams of data fetched once from memory, stored in local storage (programmable scratchpad) and reused again
- **Communication abstraction** – Stream-Dataflow data movement commands and barriers

- Separates the data-movement from computation
- Achieves high-concurrency through the execution of coarser-grained data streams alongside dataflow computation
Outline

• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable Hardware Accelerator

• Stream-Dataflow Accelerator Architecture and Example program

• Stream-Dataflow Micro-Architecture – *Softbrain*

• Evaluation and Results
Can the specialized programs be adapted in a domain-agnostic way with this interface?
Stream-Dataflow ISA Interface

Express any data-stream pattern of accelerator applications using simple, flexible and yet efficient encoding scheme
Stream-Dataflow ISA

• **Set-up Interface:**

 SD_Config – Configuration data stream for dataflow computation fabric (CGRA)

• **Control Interface:**

 SD_Barrier_Scratch_Rd, SD_Barrier_Scratch_Wr, SD_Barrier_All

• **Stream Interface** → **SD_[source]_[dest]**

 Source/Dest Parameters: Address (memory or local_storage), DFG Port number

 Pattern Parameters: access_size, stride_size, num_strides
Stream-Dataflow Programming Interface

Source: Memory, Local Storage, DFG Port

Access Pattern:
- Start Address
- Stride
- Access Size
- Number of Strides

Destination: Memory, Local Storage, DFG Port

Example Access Patterns:
- Linear
- Strided
- Overlapped
- Repeating
- Offset-Indirect

Example Access Patterns:
- mem_addr = 0xA
- access_size = 4
- num_strides
- memory_stride = 8

2D Direct Streams

2D Indirect Streams
Stream-Dataflow ISA Encoding

Stream:

for i = 1 to 100:
... = a[2*i];
... = b[i];
c[b[i]] = ...

Dataflow:

Stream Encoding

<address, access_size, stride_size, length>

Eg: <a, 1, 2, 100>

<b, 1, 1, 100>

IND<[prev], c, 100>

<stream_start, offset_address>

Dataflow Graph

Specified in a Domain Specific Language (DSL)
Example Pseudo-Code: Dot Product

Original Program

```java
for(int i = 0 to N) {
    c += a[i] * b[i];
}
```

Stream ISA Encoding

- Put a[0: N] \rightarrow P1
- Put b[0: N] \rightarrow P2
- Recur P3, N - 1
- Get P3 \rightarrow c

Dataflow Encoding

1. Merge P1 and P2
2. Multiply the result
3. Add the result to P3

Dissertation Talk

11/16/2017
New ISA Class for Programmable Hardware Acceleration

Stream-Dataflow ISA
- Expresses long memory streams and access patterns efficiently
 – Address generation hardware becomes much simpler
- Decouples access and execute phases
- Reduces instruction overheads
- Dependences are explicitly encoded
- Reduces cache requests and pressure by encoding alias-free memory requests
 – Implicit coalescing for concurrent memory accesses
- Separates architecture abstractions from the implementation details

A New ISA Paradigm for Acceleration
- Need to embody common accelerator principles and execution model
- Need to represent programs without requiring complex micro-architecture techniques for performance
 – VLIW, SIMT and SIMD have their own drawbacks for accelerators
- Micro-Architecture for C-programmable ASICs
 – Enables ‘hardened’ ASIC compute substrate implementation
 – Separates the memory interface primitives and interaction
Outline

• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable Hardware Accelerator

• Stream-Dataflow Accelerator Architecture and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results
Requirements for Stream-Dataflow Accelerator Architecture

1. Should employ the common specialization principles and hardware mechanisms explored in GenAccel model
 (*IEEE Micro Top-Picks 2017: Domain Specialization is Generally Unnecessary for Accelerators)

2. Programmability features without the inefficiencies of existing data-parallel architectures (with less power, area and control overheads)
Inefficiencies in Data-Parallel Architectures

- **Vector architectures** – Efficient parallel memory interface
- **Spatial Architectures** – Efficient parallel computation interface
- **Application/Domain Specific Architectures** – Efficient datapath for pipelined concurrent execution

| Irregular execution support | Inefficient general pipeline | Warp divergence hardware support | Re-convergence for diverged vector threads | - |
Stream-Dataflow Accelerator Architecture Opportunities

- Reduce address generation & duplication overheads
- Distributed control to boost pipelined concurrent execution
- High utilization of execution resources w/o massive multi-threading, reducing cache pressure or using multi-ported scratchpad
- Decouple access and execute phases of programs
- Simplest hardware fallback mechanism for irregular memory access support
- Able to be easily customizable/configurable for new application domain
Stream-Dataflow Accelerator Architecture

Dataflow:
- Coarse grained reconfigurable architecture (CGRA) for data parallel execution
- Direct vector port interface into and out of CGRA for vector execution
- Programmable scratchpad and supporting stream-engine for data locality and data-reuse
- Memory stream-engine to facilitate data streaming in and out of the accelerator
- Recurrence stream-engine to support recurrent data streams
- Indirect vector port interface for streaming addresses (indirect load/stores)
Stream-Dataflow Accelerator Architecture

Stream ISA Encoding

- Stream command interface exposed to a general purpose programmable core
- Non-intrusive accelerator design

Tiny In-order core

- Put \(a[0: N] \rightarrow P1 \)
- Put \(b[0: N] \rightarrow P2 \)
- Recur \(P3, N - 1 \)
- Get \(P3 \rightarrow c \)

512b - 64b Stream Command

Stream Command Dispatcher

CGRA Spatial Fabric

- Coarse-grained Stream commands issued by core through a command queue

Input Vector Port Interface

Scratchpad Stream Engine

Scratchpad

Memory Stream Engine

Indirect Vector Port Interface

Output Vector Port Interface

Reurrence Stream Engine

To/from memory hierarchy

Dissertation Talk 11/16/2017
• Each tile is connected to higher-L2 cache interface

• Need a simple scheduler logic to schedule the offloaded stream-dataflow kernels to each tile
Programming Stream-Dataflow Accelerator

1. Specify Datapath for the CGRA
 - Simple Dataflow Language for DFG

2. Orchestrate the parallel execution of hardware components
 - Coarse-grained stream commands using the stream-interface
#define Ni 8
#define Nn 8

// synapse and neurons – 2 bytes
uint16_t synapse[Nn][Ni];
uint16_t neuron_i[Ni];
uint16_t neuron_n[Nn];

for (n = 0; n < Nn; n++) {
 sum = 0;
 for (i = 0; i < Ni; i++) {
 sum += synapse[n][i] * neuron_i[i];
 }
 neuron_n[n] = sigmoid(sum);
}

Input Neurons (Ni)

Output Neurons (Nn)

Synapses (Nn x Ni)
Dataflow Graph (DFG) for CGRA: Classifier Kernel

Computation DFG for

\[
\text{sum} += \text{synapse}[n][i] \times \text{neuron}_i[i];
\]

\[
\text{neuron}_n[n] = \text{sigmoid}(\text{sum});
\]

Input: \(\text{do}_\text{sig}\)
Input: \(\text{acc}\)
Input: \(N\)
Input: \(S\)

\[
M = \text{Mul16x4}(N, S)
\]

\[
R = \text{Red16x4}(M, \text{acc})
\]

\[
\text{out} = \text{Sig16}(R, \text{do}_\text{sig})
\]

Output: \(\text{out}\)

Input Ports:
- \(\text{do}_\text{sig}\)
- \(\text{acc}\)
- \(N\)
- \(S\)

CGRA Instructions
- \(\text{M:Mul16x4}\)
- \(\text{R:Red16x4}\)

Output Ports:
- \(\text{out}\)

N – Input neuron (Ni) port
S – Synapses (synapse) port
do_sig – Input sigmoid predicate port
acc – Input accumulate port
out – Output neurons (Nn) port

Compilation + Spatial scheduling

(class_cfg)

(Configuration data for CGRA)
// Configure the CGRA
SD_CONFIG(class_cfg, sizeof(class_cfg));

// Stream the data from memory to ports
SD_MEM_PORT(synapse, 8, 8, Ni * Nn/4, Port_S);
SD_MEM_PORT(neuron_i, 8, 8, Ni/4, Port_N);

for (n = 0; n < Nn/nthreads; n++) {
 // Stream the constant values to constant ports
 SD_CONST(Port_acc, 0, 1);
 SD_CONST(Port_do_sig, 0, Ni - 1);

 // Recur the computed data back for accumulation
 SD_PORT_PORT(Port_out, N - 1, Port_acc);

 // Sigmoid computation and output neuron written
 SD_CONST(Port_do_sig, 1, 1);
 SD_PORT_MEM(Port_out, 2, 2, 1, &neuron_n[n]);
}

SD_BARRIER_ALL();
Performance Considerations

• **Goal:** Fully pipeline the largest dataflow graph
 – Increase performance \[\text{CGRA Instructions / Cycle}\]
 – Increase throughput \[\text{Graph computation instances per cycle}\]

• Primary Bottlenecks:
 – Computations per Size of Dataflow Graph
 Increase through Loop Unrolling/Vectorization
 – General Core (for Issuing Streams)
 Increase “length” of streams
 – Memory/Cache Bandwidth
 Use Scratchpad for data-reuse
 – Recurrence Serialization Overhead
 Increase Parallel Computations (tiling)
Outline

• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable Hardware Accelerator

• Stream-Dataflow Accelerator Architecture and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results
Micro-Architecture Design Principles

1. Low-overhead control structures

2. Efficient execution of concurrent stream commands with simple resource dependency tracking

3. Not introduce power hungry or large CAM-like structures

4. Parameterizable design
Micro-Architecture of Stream-Dataflow Accelerator – Softbrain
Stream-Dispatcher of Softbrain

- Issues the stream commands to stream-engines

- Resource dependency tracking
 - Simple vector-port to stream-engine scoreboard mechanism

- Barriers – Enforces the explicit stream-barriers for data-consistency in scratchpad as well as memory state

- Interfaces to the low-power core using a simple queue-based custom accelerator logic
Micro-Architecture of Stream-Dataflow Accelerator – *Softbrain*

![Diagram of Softbrain architecture](image)

11/16/2017

Dissertation Talk
Stream-Engine of Softbrain

- Arbitration of multiple stream command requests
- Responsible for address generation for various data-stream access patterns
- Manages concurrent accesses to vector ports, scratchpad and the cache/memory hierarchy
- Dynamic switching of streams to account for L2 cache misses and maintain the high-bandwidth memory accesses

Memory Stream-Engine (MSE)
Scratchpad Stream-Engine (SSE)
Softbrain Stream-Engine Controller

Request Pipeline

Stream-Engine Controller

- Responsible for address generation for both direct and indirect data-streams
- Priority based selection among multiple queued data-streams
- Direct streams – Affine Address Generation Unit (AGU) generates memory addresses
- Indirect Streams – Non-affine AGU gets addresses, offsets from indirect vector ports

Stream Request Pipeline

- Stream Command Decode
- Arbitration for Streams
- Stream Selection
- Source / Destination Request Access and Dependency Check
- Address Mask Generation (Affine and Non-Affine)
- Data Packaging and Response Packet to Source / Destination
Micro-Architecture Flow of Softbrain

Cache/ Memory Heirarchy

Scratchpad
- Scratch Stream Engine (SSE) for Writes
- Scratch Stream Engine (SSE) for Reads

Memory Interface
- Memory Stream Engine (MSE) for Writes
- Memory Stream Engine (MSE) for Reads

Legend:
- BLACK → Data Line
- GREEN → Control/Commands

RISCV Rocket Core

Stream Dispatcher
- VP Scoreboard
- Resource Status Checker
- Stream Cmd. Queue
- Tag Invalidate
- SD, CMD

SCR to MSE writes

MSE Write Cmd
MSE Read Cmd

CGRA
- Input Data VPs
- Output Data VPs

Indirect Load/Store VPs

To SSE
To MSE
From MSE
From SSE

11/16/2017 Dissertation Talk
Outline

• Overview

• Stream-Dataflow Execution Model

• Hardware-Software (ISA) Interface for Programmable Hardware Accelerator

• Stream-Dataflow Accelerator Architecture and Example program

• Stream-Dataflow Micro-Architecture – Softbrain

• Evaluation and Results
Stream-Dataflow Implementation: **Softbrain**

Software Stack

- Stream-Dataflow Code (C/C++)
- DFG File
- DFG Compiler (ILP Solver)
- DFG.h
- RISCV GCC
- RISCV ISA Accelerator Cycle-level Simulator

Hardware

- Accelerator Model Configuration
- Chisel Parameterizable Accelerator Implementation
- Softbrain RTL
- Chisel-generated Verilog Synthesis + Synopsis DC

Evaluation

- RISCV Binary
- Softbrain Config.

11/16/2017
Dissertation Talk
Evaluation Methodology

• Workloads
 - Deep Neural Networks (DNN) – For domain provisioned comparison
 - Machsuite Accelerator Workloads – For comparison with application specific accelerators

• Comparison
 - Domain Provisioned Softbrain vs. DianNao DSA
 - Broadly provisioned Softbrain vs. ASIC design points – Aladdin* generated performance, power and area

• Area and Power of Softbrain
 - Synthesized area, power estimates
 - CACTI for cache and SRAM estimates

*Sophia, Shao et al. – Aladdin: a Pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures
Domain-Specific Comparison (Softbrain vs DianNao DSA)

Speedup Relative to OOO4 (DNN Workloads)

- **SPEEDUP**
 - class1p
 - class3p
 - pool1p
 - pool3p
 - pool5p
 - conv1p
 - conv2p
 - conv3p
 - conv4p
 - conv5p
 - GM

- **Dissertation Talk**

- **298** SoftBrain vs **191** DianNao

11/16/2017
Area-Power Estimates of Domain Provisioned Softbrain Components

<table>
<thead>
<tr>
<th>Components</th>
<th>Area (mm²) @ 28nm</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocket Core</td>
<td>0.16</td>
<td>39.1</td>
</tr>
<tr>
<td>CGRA</td>
<td>0.12</td>
<td>31.2</td>
</tr>
<tr>
<td>FUs (5 x 4)</td>
<td>0.04</td>
<td>24.4</td>
</tr>
<tr>
<td>Total CGRA</td>
<td>0.16</td>
<td>55.6</td>
</tr>
<tr>
<td>5 x Stream Engines</td>
<td>0.02</td>
<td>18.3</td>
</tr>
<tr>
<td>Scratchpad (4KB)</td>
<td>0.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Vector Ports (Input & Output)</td>
<td>0.03</td>
<td>1 Softbrain Unit</td>
</tr>
<tr>
<td>8 Softbrain Units</td>
<td></td>
<td>3.76</td>
</tr>
<tr>
<td>DianNao DSA</td>
<td></td>
<td>2.16</td>
</tr>
<tr>
<td>Softbrain / DianNao Overhead</td>
<td>1.74</td>
<td>2.28</td>
</tr>
</tbody>
</table>

Softbrain vs Diannao (DNN DSA)

- **Perf.** – Able to match the performance
- **Area** – $1.74 \times$ Overhead
- **Power** – $2.28 \times$ Overhead

11/16/2017
Broadly Provisioned Softbrain vs ASIC Performance Comparison

Aladdin* generated ASIC design points – Resources constrained to be in ~15% of Softbrain Perf. to do iso-performance analysis

*Aladdin: A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space Exploration of Customized Architectures. Sophia Shao, et. al

11/16/2017
Broadly Provisioned Softbrain vs ASIC Area & Power Comparison

<table>
<thead>
<tr>
<th>Power Efficiency Relative to OOO4 (GM)</th>
<th>Energy Efficiency Relative to OOO4 (GM)</th>
<th>ASIC Area Relative to Softbrain (GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softbrain vs ASIC designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Perf. – Able to match the performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power – 1.6x overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Energy – 1.5x overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Area – 8x overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All 8 ASICs combined → 2.15x more area than Softbrain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion – Stream-Dataflow Acceleration

- Stream-Dataflow Acceleration
 - Stream-Dataflow Execution Model – Abstracts typical accelerator computation phases using a dataflow graph
 - Stream-Dataflow ISA Encoding and Hardware-Software Interface – Exposes parallelism available in these phases

- Stream-Dataflow Accelerator Architecture
 - CGRA and vector ports for pipelined vector-dataflow computation
 - Highly parallel stream-engines for low-power stream communication

- Stream-Dataflow Prototype & Implementation – Softbrain
 - Matches performance of domain provisioned accelerator (DianNao DSA) with ~2x overheads in area and power
 - Compared to application specific designs (ASICs), Softbrain has ~2x overheads in power and ~8x in area
Dissertation Research Goal

Programmable Hardware Acceleration

1. Explore the commonality in the way the DSAs specialize – Specialization Principles

2. General Mechanisms for the design of a generic programmable hardware accelerator matching the efficiency of DSAs

3. A programmable/re-configurable accelerator architecture with an efficient accelerator hardware-software (ISA) interface

4. Easy adaptation of new acceleratable algorithms in a domain-agnostic way
Conclusion – *Programmable Hardware Acceleration*

- New acceleration paradigm in specialization era
 - Programmable Hardware Acceleration breaking the limits of acceleration

- Foundational specialization principles abstracting the acceleration primitives

- Enables programmable accelerators instantiation in IoT, embedded, cloud environment to support Edge Computing

- A new accelerator ISA paradigm for an efficient programmable accelerator hardware implementation

- Reduce the orders of magnitude overheads of programmability and generality compared to ASICs

- Drives future accelerator research and innovation

Getting There !!

* A good enabler for exploring general purpose programmable hardware acceleration*
Future Work

• Multiple DFG executions
 - Configuration cache for CGRA to switch between DFGs

• Further distribute the control into vector ports
 - Dynamic deadlock detection for buffer overflow
 - Concurrent execution of different set of streams (of different DFGs)

• Low-power dynamic credit-based CGRA schedule
 - Allow vector ports to run out-of-order reducing the overall latency

• 3D support for streams in ISA

• Partitioned scratchpad to support data dependent address generation

• Support for fine-grained configuration through FPGA slices (along with SRAM mats) next to CGRA for memory-dependent algorithm acceleration
Related Work

• Programmable specialization architectures:
 ▶ Smart memories, Charm, Camel, Mosphosys, XLOOPS, Maven-VT

• Principles of Specialization
 ▶ GPPs inefficient and need specialization – Hameed. et. Al
 ▶ Trace processing – Beret
 ▶ Transparent Specialization – CCA, CRIB etc,

• Heterogeneous Cores – GPP + Specialized engines
 ▶ Composite cores, DySER, Cambricon

• Streaming Engines:
 ▶ RSVP arch, Imagine, Triggered instructions, MAD, CoRAM++
Other Works

• Open Source GPGPU – MIAOW
 - Lead developer and contributor to open source hardware GPGPU – MIAOW
 - AMD Southern Island based RTL implementation of GPGPU able to execute unmodified AMDAPP OpenCL kernels
 - Published in [ACM TACO 2015, HOTCHIPS’ 2015, COOLCHIPS’ 2015, HiPEAC’ 2016]

• Von-Neumann/Dataflow Hybrid Architecture
 - A hybrid architecture aimed to exploit ILP in irregular applications
 - Lead developer of the micro-architecture of the dataflow offload engine – Specialized Engine for Explicit Dataflow (SEED)
 - Published in [ISCA’ 2015, IEEE MICRO Top Picks 2016]

• Open-source Hardware: Opportunities and Challenges
 - A position article on the advantages of open-source hardware for hardware innovation
 - Huge believer in open-source hardware and contribution
 - To be published in IEEE Computer’ 17
Back Up
Programmable Hardware Acceleration

Idea 1: Specialization principles can be exploited in a *general way*

Idea 2: Composition of known *Micro-Architectural mechanisms* embodying the specialization principles

GenAccel as a programmable hardware design template to map **one or many** application domains

- Domain provisioned GenAccel
- Balanced GenAccel
- Stencil, Sort, Scan, AI
- Deep Neural
Principles in DSAs

NPU – Neural Proc. Unit

- Match hardware *concurrency* to that of algorithm
- Problem-specific *computation* units
- Explicit *communication* as opposed to implicit communication
- Customized structures for *data reuse*
- Hardware *coordination* using simple low-power control logic
Accelerator Workloads

1. Ample Parallelism
2. Regular Memory
3. Large Datapath
4. Computation Heavy

Dissertation Talk

11/16/2017
GenAccel Modeling Strategy

• Phase 1. Model Single-Core with PIN + Gem5 based trace simulation
 - The algorithm to specialize in the form of c-code/binary
 - Potential Core Types, CGRA sizes, any specialized instructions
 - Degree of memory customization (which memory accesses to be specialized, either with DMA or scratchpad)
 - Output: single-core perf./energy for “Pareto-optimal” designs

• Phase 2. Model coarse-grained parallelism
 - Use profiling information to determine parallel portion of the algorithm (or tell user to indicate or estimate)
 - Use simple Amdahl's law to get performance estimate
 - Use execution time, single-core energy estimate, and static power estimate to get overall energy estimate
GenAccel in Practice

1. Design Synthesis
 - Performance Requirements
 - App. 1: ...
 - App. 2: ...
 - App. 3: ...
 - Perf.
 - Area goal: ...
 - Power goal: ...
 - Hardware Constraints
 - FU Types
 - No. of FUs
 - Spatial fabric size
 - No. of GenAccel tiles
 - Design decisions
 - Synthesis
 - Programmable Accelerator (GenAccel)

2. Programming
 - Write Control Program (C Program + Annotations)
 - Write Datapath Program (spatial scheduling)

3. Runtime
 - Runtime configuration (Serial)
 - Configure for App. 1
 - Run App. 1
 - Configure for App. 2 (etc.)
 - Runtime configuration (Parallel)
 - Configure for App. 1
 - Run App. 1
 - Configure for App. 2
 - Run App. 2
 - Configure for App. 3
 - Run App. 3
Programming GenAccel

```c
void nn_layer(int num_in, int num_out,
              const float* weights, const float* in,
              const float* out )
{
    for (int j = 0; j < num_out; ++j)
    {
        for (int i = 0; i < num_in; ++i)
        {
            out[j] += weights[j][i] *in[i];
        }
        out[j] = sigmoid(out[j]);
    }
}
```

Pragmas

- `#pragma genaccel cores 2`
- `#pragma reuse-scratchpad weights`

LSSD

- **Memory**
- **Input Interface**
- **Low-power Core**
- **DMA**
- **Scratchpad**

Spatial Fabric

- **Insert data transfer**
- **Loop Parallelize, Insert Communication, Modulo Schedule**
- **Resize Computation (Unroll), Extract Computation Subgraph, Spatial Schedule**

11/16/2017 Dissertation Talk
GenAccel Design Point Selection

<table>
<thead>
<tr>
<th>Design</th>
<th>Concurrency</th>
<th>Computation</th>
<th>Communication</th>
<th>Data Reuse</th>
<th>No. of GenAccel Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA_N</td>
<td>24-tile CGRA (8 Mul, 8 Add, 1 Sigmoid)</td>
<td>2k x 32b sigmoid lookup table</td>
<td>32b CGRA; 256b SRAM interface</td>
<td>2k x 32b weight buffer</td>
<td>1</td>
</tr>
<tr>
<td>GA_C</td>
<td>64-tile CGRA (32 Mul/Shift, 32 Add/logic)</td>
<td>Standard 16b FUs</td>
<td>16b CGRA; 512b SRAM interface</td>
<td>512 x 16b SRAM for inputs</td>
<td>1</td>
</tr>
<tr>
<td>GA_D</td>
<td>64-tile CGRA (32 Mul, 32 Add, 2 Sigmoid)</td>
<td>Piecewise linear sigmoid unit</td>
<td>32b CGRA; 512b SRAM interface</td>
<td>2k x 16b SRAMs for inputs</td>
<td>8</td>
</tr>
<tr>
<td>GA_Q</td>
<td>32-tile CGRA (16 ALU, 4 Agg, 4 Join)</td>
<td>Join + Filter units</td>
<td>64b CGRA; 256b SRAM interface</td>
<td>SRAMs for buffering</td>
<td>4</td>
</tr>
<tr>
<td>GA_B</td>
<td>32-tile CGRA (Combination of above)</td>
<td>Combination of above FUs</td>
<td>64b CGRA; 512b SRAM interface</td>
<td>4KB SRAM</td>
<td>8</td>
</tr>
</tbody>
</table>

Mul: Multiplier, **Add**: Adder
Design-Time vs. Runtime Decisions

<table>
<thead>
<tr>
<th></th>
<th>Synthesis – Time</th>
<th>Run – Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrency</td>
<td>No. of GenAccel Units</td>
<td>Power-gating unused GenAccel Units</td>
</tr>
<tr>
<td>Computation</td>
<td>Spatial fabric FU mix</td>
<td>Scheduling of spatial fabric and core</td>
</tr>
<tr>
<td>Communication</td>
<td>Enabling spatial datapath elements, & SRAM interface widths</td>
<td>Configuration of spatial datapath, switches and ports, memory access pattern</td>
</tr>
<tr>
<td>Data Reuse</td>
<td>Scratchpad (SRAM) size</td>
<td>Scratchpad used as DMA/reuse buffer</td>
</tr>
</tbody>
</table>
Performance Analysis (1)

GA_N vs. NPU

Baseline – 4 wide OOO core (Intel 3770K)
Massive benefits from straightforward algorithm parallelization.
Some benefit from vector and bit specialization.
Massive benefit from optimizing the algorithm to avoid data copying.
Significant benefit from algorithmic modifications to improve concurrency.
Some benefit from specialized weight buffer and inter-layer broadcast.
Some benefit for optimizing algorithm to expose concurrency/reuse.
Some benefit from specialized shift registers and graph fusion unit.

Overall, specialization of the hardware is never the sole factor, and rarely the larger factor.
Performance Analysis (2)

GA\textsubscript{c} vs. Conv.
(1 Tile)

GA\textsubscript{D} vs. DianNao
(8 Tiles)

GA\textsubscript{Q} vs. Q100
(4 Tiles)

Baseline – 4 wide OOO core (Intel 3770K)
GenAccel Area & Power Numbers

<table>
<thead>
<tr>
<th></th>
<th>Area (mm²)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Approx.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_A_N</td>
<td>0.37</td>
<td>149</td>
</tr>
<tr>
<td>NPU</td>
<td>0.30</td>
<td>74</td>
</tr>
<tr>
<td>Stencil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_A_C</td>
<td>0.15</td>
<td>108</td>
</tr>
<tr>
<td>Conv. Engine</td>
<td>0.08</td>
<td>30</td>
</tr>
<tr>
<td>Deep Neural.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_A_D</td>
<td>2.11</td>
<td>867</td>
</tr>
<tr>
<td>DianNao</td>
<td>0.56</td>
<td>213</td>
</tr>
<tr>
<td>Database Streaming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_A_Q</td>
<td>1.78</td>
<td>519</td>
</tr>
<tr>
<td>Q100</td>
<td>3.69</td>
<td>870</td>
</tr>
<tr>
<td>$G_A_{Balanaced}$</td>
<td>2.74</td>
<td>352</td>
</tr>
</tbody>
</table>

*Intel Ivybridge 3770K CPU 1 core Area – **12.9mm²** | Power – **4.95W**

*Intel Ivybridge 3770K iGPU 1 execution lane Area – **5.75mm²**

+AMD Kaveri APU Tahiti based GPU 1CU Area – **5.02mm²**

Source: http://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-review/3

Estimated from die-photo analysis and block diagrams from wccftech.com
Power & Area Analysis (1)

GAₙ
- NPU Workloads
- **GAₙ** 1.2× more Area than DSA, 2.0× more Power than DSA
- **GAₛⁱᵐᵈ−𝐨𝐧𝐥𝒚**

GAᶜ
- Convolution Workloads
- **GAᶜ** 1.7× more Area than DSA, 3.6× more Power than DSA
- **GAₛⁱᵐᵈ−𝐨𝐧𝐥𝐲**

1.2× more Area than DSA
2× more Power than DSA
1.7× more Area than DSA
3.6× more Power than DSA
Power & Area Analysis (2)

GA_Q

Q100 Workloads

GA_Q

0.5x more Area than DSA,
0.6x more Power than DSA

DSA

GA_{simd-only}

GA_D

DianNao Workloads

GA_D

3.8x more Area than DSA,
4.1x more Power than DSA

DSA

GA_{simd-only}

0.5x more Area than DSA
0.6x more Power than DSA
Power & Area Analysis (3)

LSSD_B → Balanced LSSD design

- **NPU/Conv/Dian Workloads**
 - **Multi-DSA**
 - 2.7x more Area than DSAs
 - 2.4x more Power than DSAs

- **All Workloads**
 - **GA_B**
 - 0.6x more Area than DSA
 - 2.5x more Power than DSA

- **GA_{simd-only}**

11/16/2017

Dissertation Talk
Unsuitable Workloads for GenAccel /Stream-Dataflow

- Memory-dominated workloads
- Specifically small-memory footprint, but “irregular”
- Heavily serialized data dependent address generation
- Memory compression for example
 - A Scalable High-Bandwidth Architecture for Lossless Compression on FPGAs, Fower et. al
- Other examples:
 - IBM PowerEN Regular Expression
 - DFA based codes
GenAccel vs. FPGA

<table>
<thead>
<tr>
<th>Domain Kernel</th>
<th>Number of States</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPU</td>
<td>17</td>
</tr>
<tr>
<td>Convolution Engine</td>
<td>14</td>
</tr>
<tr>
<td>Diannao</td>
<td>86</td>
</tr>
</tbody>
</table>

- FPGAs are much lower frequency (global-routing and too fine-grained)
- BlockRAMs too small to gang-up
- Logical Multi-ported Register File needed to pass values between DSP slices to match high operand-level concurrency
- Altera’s Stratix 10 seems headed exactly this direction
GenAccel’s power overhead of 2x - 4x matter in a system with accelerator?

In what scenarios you want to build DSA over GenAccel?
Energy Efficiency Tradeoffs

Overall energy of the computation executed on system

\[E = P_{acc} \times (U/S) \times t + P_{sys} \times (1 - U + U/S) \times t + P_{core} \times (1 - U) \times t \]

Accel. energy System energy Core energy

t: execution time
P_{core}: 5W Core power
P_{sys}: 5W System power
P_{acc}: 0.1 – 5W Accelerator power

S: accelerator’s speedup
U: accelerator utilization

Power numbers are example representation
Energy Efficiency Gains of GenAccel & DSA over OOO core

Speedup\textsubscript{ga} = Speedup\textsubscript{dsa} (Speedup w.r.t OOO)

\[P_{dsa} \approx 0.0W \quad 500mW (5x) \text{Power overhead} \quad P_{ga} = 0.5W \]

Efficiency gains of both GenAccel and DSA are almost similar &
At higher speedups both get “capped” due to large system power
GenAccel’s power overhead of 2x - 4x matter in a system with accelerator?

When $P_{\text{sys}} >> P_{\text{ga}}$, 2x - 4x power overheads of GenAccel become inconsequential
Energy Efficiency Gains of DSA over GenAccel

Speedup\textsubscript{\text{ga}} = Speedup\textsubscript{\text{dsa}} \quad (\text{Speedup w.r.t OOO})

\[
\frac{\text{Eff}_{\text{dsa}}}{\text{Eff}_{\text{ga}}} = \frac{\frac{1}{\text{DSA energy}}}{\frac{1}{\text{GenAccel energy}}} = \frac{\text{GenAccel energy}}{\text{DSA energy}}
\]

At high speedups, DSA's energy efficiency gains is no more than 10% even at 100% utilization.

At lower speedups, DSA's energy efficiency gains are 6-10%.

At higher speedups, benefits of DSA are less than 5% on energy efficiency.
In what scenarios you want to build DSA over GenAccel?

Only when application speedups are small & small energy efficiency gains too important
When does accelerator power or DSA matter?

• GenAccel cannot match DSA for performance
• Accelerator is a “vertically-integrated” accelerator
 – Logic attached to memory or IO, that P_{sys} is affected
 – ShiDianNao for example (DNN attached to image sensor)
• Speedups are “small” and 10% energy difference is “valuable”
Energy Efficiency Gains of DianNao over GenAccel

\[\text{Speedup}_{GA} = \text{Speedup}_{DianNao} \] (Speedup w.r.t OOO)

![Graph showing the energy efficiency of DianNao over GenAccel. The x-axis represents the accelerator speedup w.r.t OOO, and the y-axis represents the energy efficiency of DianNao over GenAccel. The graph includes lines for different values of U: U = 1, U = 0.95, U = 0.9, and U = 0.75.]
Does Accelerator power matter?

- At Speedups > 10x, DSA eff. is around 5%, when accelerator power == core power

- At smaller speedups, makes a bigger difference, up to 35%
Detailed Example of Stream-Dataflow Execution Model

Legend:
- Enqueued
- Dispatched
- Resource idle
- Barrier
- Dependency
- Iter. boundary

Stream-Dataflow Accelerator Potential

1. *Dataflow based pipelined concurrent execution*

2. *High Computation Activity Ratio:* Number of Computations/Stream Commands
Example Code: Dot Product (Instruction Comparisons)

Original Program

```c
for(int i = 0 to N) {
    dot_prod += a[i] * b[i]
}
```

Computation Graph:

Scalar

```c
for(i = 0 to N) {
    Send a[i] -> P1
    Send b[i] -> P2
} Get P3 -> result
```

~2N Instructions

Vector

```c
for(i = 0 to N, i+=vec_len) {
    Send a[i:i+vec_len] -> P1
    Send b[i:i+vec_len] -> P2
} Get P3 -> result
```

~2N/vec_len Instructions

Stream-Dataflow

```c
Send a[i:i+N] -> P1
Send b[i:i+N] -> P2
Get P3 -> result
```

~3 Instructions

Scalar Vector Stream-Dataflow

~2N Instructions ~2N/vec_len Instructions ~3 Instructions
Google TPU ISA

• Design goal of TPU ISA
 – To be a programmable ISA with less instruction overheads

• Restricted to neural networks domain only → More of programmable ISA for NN domain

• CISC principle to run complex tasks → To run fast multiple-add accumulations

• Uses matrix as a primitive instead of vector or scalar
 – Huge performance benefit for neural network applications
 – Reduced latency for inference [< 7ms]
 – ISA restricted heavily for certain type of computations
 \[[\text{Read_Host_Memory, Read_Weights, MatrixMultiply/Convolve, Activate, Write_Host_Memory}]\]

• Heavily relies on host processor to send the instructions. Host software will be a bottleneck

• Does not decouple the memory and computation phases
TPU Compute Capability

- 700 Mhz target frequency with 40W TDP. External accelerator and PCIe based interconnect to host – 12.5GB/s effective bandwidth

- An inference chip for MLPs, CNN and LSTM → **Matrix-Matrix** multiplication support – 65K operations per cycle using a 256 x 256 systolic array 2D pipeline

- Quantization helps performance to operate on 8-bit integers only
Potential Performance Bottlenecks

1. Computations Per CGRA Instance
2. General Core Instructions
3. Cache \rightarrow GRA Bandwidth
4. Initialization/Draining Latency (Memory & CGRA)
5. Length of Recurrence through CGRA
1. Computations Per CGRA Instance

Principle: Few instructions control many computation instances

HINT: This usually involves unrolling a loop – but not necessarily the inner loop.
2. General Core Instructions

- **Principle**: Few core instructions control many computation instances
 - Use as **long** streams as possible
 - Computation Instances > 2 * Number of Commands

```c
for(int i = 0; i < 128; ++i) {
    SB_MEM_PORT(array[i], stride_size, acc_size, num_times, Port);
    ...
}
```

```c
for(int i = 0; i < 128; i+=2) {
    SB_MEM_PORT(array[i], stride_size, acc_size, num_times*2, Port);
    ...
}
```

```c
SB_MEM_PORT(array[0], stride_size, acc_size, num_times*128, Port);
for(int i = 0; i < 128; ++i) {
    ...
}
3. Cache $\rightarrow$ CGRA Bandwidth (1)

- **Principle 1:** Only 64-bytes per cycle can come from memory
  - Can feed One 8-wide port, Two 4-wide ports, Four 2-wide ports
  - Use scratch streams to supplement memory streams
3. Cache $\rightarrow$ CGRA Bandwidth (2)

- **Principle 2**: Not-accessed elements within a 64-byte cache line **COUNT** towards bandwidth

Stream:
- access\_size = 16 bytes
- stride\_size = 24 bytes

Address Pattern: 16 8 16 8 8

Cache Line Size: 64

**HINT 1**: Don’t use access patterns with “gaps” smaller than the cache line size.

**HINT 2**: Try to align accesses with cache line boundaries
Optimizing Classifier Layer

SD_Config(classifier_cfg, sizeof(cfg));

SD_Mem_Port(synapse, 8,
8, Ni * Nn/4, Port_S);

SD_Mem_Scratch(neuron_i, Ni * 2,
Ni * 2, 1, 0);
SD_Barrier_Scratch_Wr();
SD_Scratch_Port(0, Ni * 2,
Ni * 2, 1, Port_N);

for (n = 0; n < Nn; n++) {
    SD_Const_Port(0, 1, Port_acc);
    SD_Const_Port(0, Ni/4 - 1, Port_do_sig);
    SD_Const_Port(1, 1, Port_do_sig);
    SD_Port_Port(Port_out, Ni/4 - 1, Port_acc);
    SD_Port_Mem(Port_out, 1, &neuron_n[i])
}

SD_Barrier_All;

Optimization: Scratch for Memory B/W

Optimization: Size of DFG
6. Initialization/Draining Latency (Memory & CGRA)

- **Principle:** Hide memory latency by having “longer pipelined phases”
7. Length of Recurrence through CGRA

- **Principle:** Number of independent instances should be > the length of the longest recurrence.

Latency = 15 Cycles

Instances / Cycle = 1 / 15
7. Length of Recurrence through CGRA (2)

Dot Product of arrays B and A

Latency = 15 Cycles

Instances / Cycle = 2 / 15
Recurrence Serialization Overhead

Maximum Computation Rate = 
# Pipelinable Instances / Recurrence Length

Recurrence Length = 12 Cycles

Max. Computation Rate = 1 / 12 Cycles
Pipelining Classifier Layer

SD_Config(classifier_cfg)
SD_Mem_Scratch(neuron_i, 0,Ni*2,1, 0)
SD_Barrier_Scratch_Write(

for (n = 0; n < Nn; n+=tile_h) {
    SD_Constant(0, tile height, Port_acc)
    for(i = 0; i < Ni; i+=tile_w) {
        if(not last_iter) {
            SD_Constant(0, tile_h,P_do_sig)
            SD_Port_Port(P_out, tile_h,P_acc)
        } else {
            SD_Constant(0, tile_h,P_do_sig)
            SD_Port_Mem(Port_out, 1, &neuron_n[i])
        }
        SD_Scratch_Port(i*2, 0, 8*tile_w, 1,
                        Port_N)
        SD_Mem_Port(&synapse[n][i],
                    2*Ni, 8*tile_w, tile_h, Port_S)
    }
}
SD_Barrier_All();
2D Stencil Example

\[
\text{for } (r=0; \ r<\text{row\_size}-2; \ r++) \{ \\
\hspace{1em} \text{for } (c=0; \ c<\text{col\_size}-2; \ c++) \{ \\
\hspace{2em} \text{temp } = \text{(TYPE)0}; \\
\hspace{2em} \text{for } (k1=0; \ k1<3; \ k1++) \{ \text{ //Row access} \\
\hspace{3em} \text{for } (k2=0; \ k2<3; \ k2++) \{ \text{ //column access} \\
\hspace{4em} \text{mul } = \text{filter}[k1*3 + k2] \ast \text{orig}[(r+k1)\ast\text{col\_size} + c+k2]; \\
\hspace{4em} \text{temp } += \text{mul}; \\
\hspace{3em}\} \\
\hspace{2em}\} \\
\hspace{1em}\} \\
\text{sol}[(r\ast\text{col\_size}) + c] = \text{temp}; \\
\} \\
\} 
\]
“Easy” Approach

for (r = 0; r < row_size - 2; r++) {
    for (c = 0; c < col_size - 2; c++) {
        SD_Constant(P_stencil_sb_carry, 1, 1);
        for (k1 = 0; k1 < 3; k1++) {
            SD_Mem_Port((orig + (r + k1) * col_size + c),
                         sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_I);
            SD_Mem_Port(filter + (k1 * 3),
                         sizeof(TYPE), sizeof(TYPE), 4, P_stencil_sb_F);
        }
        SD_port_Port(P_stencil_sb_R, P_stencil_sb_carry, 2);
        SB_Port_Mem(P_stencil_sb_R, sizeof(TYPE),
                     sizeof(TYPE), 1, sol + (r * col_size) + c);
    }
}
SB_Barrier_All();
Easy Approach’s Bottlenecks

1. Computations Per CGRA Instance (only 3 mults!)
2. General Core Instructions (core insts == CGRA insts)
3. Cache $\rightarrow$ CGRA Bandwidth (wasted b/c of acc_size)
4. Initialization/Draining Latency
5. Length of Recurrence through CGRA
   (no independent computations through CGRA)
Better Approach (probably not best)

Input Array

Stencil Array

Output Array

×

Σ
Better Approach (probably not best)

\[
\text{Input Array} \times \text{Stencil Array} \sum \text{Output Array}
\]
Better Approach (probably not best)

Input Array

Stencil Array

Output Array

×

∑
Better Approach (probably not best)

\[
\begin{align*}
\text{Input Array} & \quad \times \quad \text{Stencil Array} \\
& \quad \sum \quad \text{Output Array}
\end{align*}
\]

```c
for (r=0; r<row_size-2; r++) {
 for (c=0; c<col_size-2; c++) {
 temp = (TYPE)0;
 for (k1=0; k1<3; k1++) { //Row access
 for (k2=0; k2<3; k2++) { //Column access
 mul = filter[k1*3 + k2] * orig[(r+k1)*col_size + c+k2];
 temp += mul;
 }
 }
 sol[(r*col_size) + c] = temp;
 }
}
```
Better Approach’s Bottlenecks

1. Computations Per CGRA Instance (up to 8 mults!)
2. General Core Instructions (core insts << CGRA insts)
3. Cache $\rightarrow$ CGRA Bandwidth (acc_size > cache_size)
4. Scratchpad $\rightarrow$ CGRA Bandwidth
5. Memory $\rightarrow$ Cache Bandwidth
6. Initialization/Draining Latency
7. Length of Recurrence through CGRA (if you stripmine the c-loop past the DFG width, you can stream multiple independent computations through the CGRA!)
Programming Restrictions

• CGRA Instruction Types & Data-width
• Shape of the stream (strided)
• Width of input/output ports
• Number of simultaneous streams
• Issue to free-port (data always balanced)
Pipelining Classifier Layer

SD_Config(classifier_cfg, sizeof(cfg))

SD_Mem_Scratch(neuron_i, Ni * 2,
    Ni * 2, 1, 0);

SB_BARRIER_SCRATCH_WR();

for (n = 0; n < Nn; n += tile_h) {
    SD_Const_Port(0, tile_h, Port_acc);
    for(i = 0; i < Ni; i += tile_w) {
        if(not last_iter) {
            SD_Const_Port(0, tile_h, Port_do_sig);
            SD_Port_Port(P_out, tile_h, Port_acc);
        } else {
            SD_Const_Port(0, tile_h, Port_do_sig);
            SD_Port_Mem(Port_out, 1, &neuron_n[i]);
        }
        SB_Scratch_Port(i * 2, 8 * tile_w,
            8 * tile_w, 1, Port_N);
        SB_Mem_Port(&synapse[n][i], 2 * Ni,
            8 * tile_w, tile_h, Port_S);
    }
}

SD_BARRIER_ALL;
Vector Offsets →

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

4 Entry Vector Port (512b or 64B wide) – Each element 8B or 64b)

- Vector ports facilitate “vector/SIMD execution and can store entire cache-line in a cycle (8 wide)

- Vector ports’ offsets are connected to CGRA input links – Mapping done by hardware architects recorded as **Softbrain Hardware Parameter Model**

- Hardware parameter model is passed to scheduler/compiler for mapping software DFG ports to hardware vector ports

- Enable flexible hardware-software interface for variable width SIMD-execution

Example vector port to CGRA links mapping:

[VPORT_Num]: [Offset]: [CGRA Link Num]

VPORT_IN 0: 0:2, 1:5, 2:8, 3:11, 4:17, 5:20, 6:23, 7:26
VPORT_IN 1: 0:4, 1:7, 2:10, 3:16, 4:19, 5:22, 6:25, 7:31
VPORT_OUT 0: 0:1, 1:3, 2:5, 3:6, 4:8, 5:9, 6:11, 7:12
## Workload Characterization for Application Specific Softbrain

<table>
<thead>
<tr>
<th>Implemented Codes</th>
<th>Stream Patterns</th>
<th>Datapath</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfs</td>
<td>Indirect Loads/Stores, Recurrence</td>
<td>Compare/Increment</td>
</tr>
<tr>
<td>gemm</td>
<td>Affine, Recurrence</td>
<td>8-Way Multiply-Accumulate</td>
</tr>
<tr>
<td>md-knn</td>
<td>Indirect Loads, Recurrence</td>
<td>Large Irregular Datapath</td>
</tr>
<tr>
<td>spmv-crs</td>
<td>Indirect, Linear</td>
<td>Single Multiply-Accumulate</td>
</tr>
<tr>
<td>spmv-ellpack</td>
<td>Indirect, Linear, Recurrence</td>
<td>4-Way Multiply-Accumulate</td>
</tr>
<tr>
<td>stencil2d</td>
<td>Affine, Recurrence</td>
<td>8-Way Multiply-Accumulate</td>
</tr>
<tr>
<td>stencil3d</td>
<td>Affine</td>
<td>6-1 Reduce and Multiplier Tree</td>
</tr>
<tr>
<td>viterbi</td>
<td>Recurrence, Linear</td>
<td>4-Way Add-Minimize Tree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsuitable Codes</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>aes</td>
<td>Byte-level data manipulation</td>
</tr>
<tr>
<td>kmp</td>
<td>Multi-level indirect pointer access</td>
</tr>
<tr>
<td>merge-sort</td>
<td>Fine-grain data-dependent loads/control</td>
</tr>
<tr>
<td>radix-sort</td>
<td>Concurrent reads/writes to same address</td>
</tr>
</tbody>
</table>
Softbrain vs. DianNao vs. GPU

1

10

100

1000

class1p  class3p  pool1p  pool3p  pool5p  conv1p  conv2p  conv3p  conv4p  conv5p  GM

SoftBrain  DianNao  GPU

11/16/2017  Dissertation Talk
ASIC Area Relative to Softbrain

The diagram shows the ASIC area relative to Softbrain for various benchmarks. The x-axis represents different benchmarks: bfs, spmv, ellpack, stencil, stencil3d, gemm, md, viterbi, and GM. The y-axis represents the ASIC area ranging from 0 to 0.8. The benchmark 'stencil3d' has the highest area, followed by 'gemm' and 'md'. The other benchmarks have much lower areas.
Softbrain vs. ASIC
Power Efficiency Comparison

Power Efficiency Relative to OOO4

- bfs, spmv, ellpack, stencil, stencil3d, gemm, md, viterbi, GM

- Softbrain vs. ASIC
Softbrain vs. ASIC
Energy Efficiency Comparison

Energy Efficiency Relative to O004

- bfs
- spmv
- ellpack
- stencil
- stencil3d
- gemm
- md
- viterbi
- GM
Design Space Exploration for ASIC Comparison

(a) Total Cycles of bfs ASIC for Various Area Optimized Design Points

(b) Total Cycles of bfs ASIC for Various Power Optimized Design Points
DSA Architectures

NPU

Convolution Engine

Q100

DianNao
Convolutional Neural Network

[Diagram showing the architecture of a convolutional neural network with layers for input, feature extraction, and classification.]
Rocket Core RoCC Interface
Recurrent Neural Network
Specialization Spectrum

More gains the lower you go

- Code specialization
  - 10x
- Logic specialization
  - 100x
- Circuit specialization
  - 1000x
- Device specialization
  - 10000x

Source: Bob Broderson, Berkeley Wireless group

Source: ISSCC Proceedings

11/16/2017