
978-1-4673-9211-2/16/$31.00 c©2016 IEEE

Pushing the Limits of Accelerator Efficiency While
Retaining Programmability

Tony Nowatzki∗ Vinay Gangadhar∗ Karthikeyan Sankaralingam∗ Greg Wright†

∗University of Wisconsin-Madison †Qualcomm
{tjn,vinay,karu}@cs.wisc.edu gwright@qti.qualcomm.com

ABSTRACT
The waning benefits of device scaling have caused a push to-
wards domain specific accelerators (DSAs), which sacrifice
programmability for efficiency. While providing huge bene-
fits, DSAs are prone to obsoletion due to domain volatility,
have recurring design and verification costs, and have large
area footprints when multiple DSAs are required in a single
device. Because of the benefits of generality, this work ex-
plores how far a programmable architecture can be pushed,
and whether it can come close to the performance, energy,
and area efficiency of a DSA-based approach.

Our insight is that DSAs employ common specialization
principles for concurrency, computation, communication,
data-reuse and coordination, and that these same principles
can be exploited in a programmable architecture using
a composition of known microarchitectural mechanisms.
Specifically, we propose and study an architecture called
LSSD, which is composed of many low-power and tiny
cores, each having a configurable spatial architecture,
scratchpads, and DMA.

Our results show that a programmable, specialized archi-
tecture can indeed be competitive with a domain-specific
approach. Compared to four prominent and diverse DSAs,
LSSD can match the DSAs’ 10× to 150× speedup over an
OOO core, with only up to 4× more area and power than a
single DSA, while retaining programmability.

1. INTRODUCTION
For many years, general-purpose processor architectures

and micro-architectures took advantage of Dennard scaling
and Moore’s Law, exploiting increased circuit integration to
deliver higher performance and lower energy computation;
as the proverb says, a rising tide raises all boats, and many
diverse application areas benefited. As has been noted [1,
2, 3], those physical trends are slowing, and thus there has
been a recent surge of interest in more narrowly-applicable
architectures in the hope of continuing system improvements
in at least some significant application domains.

A popular approach so far has been domain specific ac-
celerators (DSAs): hardware engines capable of performing
computations in one domain with high performance and
energy efficiency. DSAs have been developed for machine
learning [4, 5], cryptography [6], XML processing [6],
regular expression matching [7, 8], H.264 decoding [9],
databases [10, 11] and many others. Together, these works
have demonstrated that, for many important workloads, ac-
celerators can achieve between 10× to 1000× performance

Competitive?

Lower?

Future Proof?

Programmable SpecializationDomain-Specific Acceleration

Graph
Traversal

Neural
Approx.

Deep
Neural

Linear
Algebra

Stencil

RegExp AI

Sort

Scan

 10 – 1000×

High Overall

Obsoletion-Prone

Deep Neural,
Neural Approx

Graph, AI,
RegExp

Stencil, Scan,
Linear, Sort

Cache

Traditional
Multicore

Cache

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

C
or

e

Cache

C
or

e

C
or

e

C
or

e
Perf., Energy Benefits:

Area Footprint Cost:

Generality/Flexibility:

(specialization
alternatives)

Figure 1: Specialization Paradigms & Tradeoffs

and energy benefits over high performance, power hungry
general purpose processors.

For all of their efficiency benefits, DSAs give up on pro-
grammabiltiy – a high price to pay. First, this makes DSAs
prone to obsoletion – the domains which we need to spe-
cialize, as well as the best algorithms to use, are constantly
evolving with scientific progress and changing user needs.
Moreover, the relevant domains change between device types
(server, mobile, wearable), and creating fundamentally new
designs for each costs both design and validation time. More
subtly, most devices run several different important work-
loads (e.g. mobile SOCs), and therefore multiple DSAs will
be required – this may mean that though each DSA is area-
efficient, a combination of DSAs may not be.

Critically, the alternative to domain specialization is not
necessarily standard general-purpose processors, but rather
programmable and configurable architectures which employ
similar micro-architectural mechanisms for specialization.
The promise of such an architecture is high efficiency and
the ability to be flexible across workloads. Figure 1 depicts
the two specialization paradigms at a high level, leading to
the central question of this work: how far can the efficiency
of programmable architectures be pushed, and can they be
competitive with domain-specific designs?

To this end, this paper first makes the observation that
DSAs, though differing greatly in their design choices, all
employ a similar set of specialization principles:

1. Matching the hardware concurrency to the enormous
parallelism typically present in accelerated algorithms.

2. Problem-specific functional units for computation.

3. Explicit communication of data between units, as
opposed to the arbitrary patterns of communication
implied through shared (register and memory) address
spaces in a general-purpose ISA.

4. Customized structures for data reuse1.
5. Coordination of the control of the other hardware units

using low power, simple hardware.

Our primary insight is that the above principles can be ex-
ploited by composing known programmable and configurable
microarchitectural mechanisms. We explain the rationale of
one such architecture, our proposed design, as follows:

To exploit the enormous concurrency typically present in
specializable algorithms, we argue that the most intuitive
strategy (while retaining programmability) is to use many
tiny, low-power cores. Next, to improve the cores for
handling the commonly high degree of computation in these
workloads, we can add a spatial fabric to each core; the
spatial fabric’s network specializes the operand communi-
cation, and its functional units (FUs) can be specialized
for algorithm-specific computation. Adding scratchpad
memories enables the specialization of data reuse, and
adding a DMA engine to feed these memories specializes
the memory communication. Lastly is the specialization of
the coordination of the various hardware units, for which we
again employ the low-power core. Named after the compo-
nents (Low-power cores, Spatial architecture, Scratchpad,
and DMA), this architecture is called LSSD. While LSSD is
not the first architecture to exploit the above principles, we
are the first to combine its mechanisms in this way to target
today’s technology and application constraints.

In practice, the design and use of such an architecture has
three phases (Figure 2). In the synthesis phase, the chosen
domains’ performance, power, and area constraints are iden-
tified. These properties determine hardware parameters (eg.
FU types and count, scratchpad size). In the programming
phase, standard programming languages with annotations are
used to specify each algorithm. Finally, at run-time, the hard-
ware is reconfigured as required for different workloads.

Though we arrived at this design by taking small cores and
adding hardware for the various specialization principles, its
possible to come to similar and similarly effective designs by
starting from a different baseline architecture (eg. GPUs).
We discuss these possibilities later.

In this paper, we study the tradeoffs of programmable
specialization by comparing LSSD against DSAs from four
workload domains, chosen because of their relevance and
diversity, stressing its potential generality.

Our specific contributions are:
• Identifying the principles of specialization; showing

their application to prominent accelerators. (Section 2)
• Composing a programmable specialization architecture

from known mechanisms. (Sections 3 & 4)
• Demonstrating that LSSD can match DSAs’ perfor-

mance, limiting the overheads of programmability to
1Though sometimes referred to as temporal locality specialization,
reuse is actually most-often the root cause of the locality, i.e. algo-
rithms/data structures are tuned so that reused-data exhibits locality.

 Perf.
App. 1 ..
App. 2 ..
App. 3 ..

Program-
able Arch.

(LSSD)

1: Design Synthesis 2: Programming 3: Runtime

Area: . .
Power: ..

Requirements

Constraints

FU Types,
Spatial
Fabric Size,
Units

For each workload:
- Write Control Program
 (C Prog. + Annotations)
- Write Datapath Program
 (spatial scheduling)

Time

Configure
For App 1.

Run App 1.

Config. App. 2

(etc.)

Figure 2: Phases of LSSD’s Design & Use

2× to 4×, as opposed to the 100× to 1000× ineffi-
ciency of large OOO cores. LSSD’s programmability
and efficiency imply that it could serve as an alterna-
tive, insightful baseline to extract out specialization
benefits in future accelerator research. (Section 6)

• Analysis of potential economic and energy-efficiency
tradeoffs of DSAs versus LSSD. We show that when
LSSD and DSAs have equivalent performance, the po-
tential further system-level energy savings by using a
DSA is marginal. (Section 7)

The remaining sections describe the methodology (Sec-
tion 5) and limitations (Section 8). Section 9 discusses re-
lated work, and Section 10 concludes.

2. COMMON PRINCIPLES OF
ARCHITECTURAL SPECIALIZATION

Domain specific accelerators (DSAs) achieve efficiency
through the employment of five common specialization
principles, which we describe here in detail. We also discuss
how four recent accelerator designs apply these principles.

Broadly, we see this as a counterpart to the insights from
Hameed et al. [9]. While they describe the sources of ineffi-
ciency in a general purpose processor, we explain the sources
of potential efficiency from specialization.

2.1 Defining the Principles of Specialization
Workload Assumptions: Before we define the specializa-
tion principles, we first characterize the types of workloads
to which these principles apply. To do this, we list assumed
workload characteristics, which we claim are typical of work-
loads commonly targeted by DSAs:

1. Workloads have significant parallelism, either at the data
or thread level; 2. They perform some computational work
(ie. not just data-structure traversals); 3. They have coarse
grain units of work; 4. They have mainly regular memory ac-
cess. Without the above characteristics, beneficial hardware
specialization becomes much more challenging.

Below we define the five principles of architectural spe-
cialization and discuss the potential area, power, and perfor-
mance tradeoffs of targeting each.
Concurrency Specialization: The concurrency of a work-
load is the degree to which its operations can be performed si-
multaneously. Specializing for a high degree of concurrency
means organizing the hardware to perform work in parallel
by favoring lower overhead structures. Examples of special-
ization strategies include employing many independent pro-
cessing elements with their own controllers or using a wide
vector model with a single controller.

2

CommunicationCompute Data ReuseConcurrencySpecialization of:

Memory Memory

Stream
Buffers

DMA

Sort

Mult-Add

Weight Buf.
Fifo

Out Buf.

Acc Reg.

SigmoidP
ro

ce
ss

in
g

E

n
gi

n
e

(P
E)

Coordination

PEPE

PE PE

PE PE

PE PE

1D Shift
Reg.

Control Interf.

Cont-
roller

OutIn Synapse Buffer
...

C
o

n
tr

o
l P

ro
c.Temp. Inst.

Sequencer

DMA

Out
Reg. Config.

General Purpose Processor

2D Shift
Register

2D Coeff
Register

Data
Shuffle

Fusion

General Purpose Processor

In
 F

if
o

O
ut

 F
if

o Bus Sched

Map
Units x64...

ALU

C
on

st

Router

Join

C
on

st

Router

Filter

C
on

st

RouterRouter

Per-
Neuron
Lanes

Mult.

Non-linear
Func.

Add,
Avg, Max

 Reduct.
 Tree

...Mult/Sub

Abs/Shft

Add/And/
Shift

b
y

p
a

ss

SIMD(a
)

H
ig

h
 L

e
ve

l
O

rg
an

iz
a

ti
o

n
(b

)
P

ro
ce

ss
in

g
U

n
it

s
Q100 – Database Processing UnitConvolution Engine DianNao – Machine LearningNPU – Neural Proc. Unit

Figure 3: Application of Specialization Principles in Four DSAs.

Applying hardware concurrency increases the perfor-
mance and efficiency of parallel workloads, while increasing
power, at a close-to-linear ratio while parallelism exists.
Computation Specialization: Computations are individual
units of work in an algorithm. The hardware which performs
this work are functional units (FUs) – which typically take
few inputs and produce a single output. Specializing compu-
tation means creating problem-specific FUs. For instance, a
sin FU would much more efficiently compute the sine func-
tion than iterative methods on a general purpose processor2.
Specializing computation improves performance and power
by reducing the total work. We note some computation spe-
cialization can be problem-specific. However, commonality
between and inside domains is almost guaranteed.
Communication Specialization: Communication is the
means of transmission of values between and among storage
and functional units. Specialized communication is simply
the instantiation of communication channels, and potentially
buffering, between hardware units to ultimately facilitate a
faster operand throughput to the FUs. This reduces power
by lessening access to intermediate storage, and potentially
area if the alternative is a general communication network.
One example is a broadcast network for efficiently sending
immediately consumable data to many compute units.
Data Reuse Specialization: Data reuse is an algorithmic
property where intermediate values are consumed multiple
times. The specialization of data reuse means using custom
storage structures for these temporaries3. Specializing reuse
benefits performance and power by avoiding the more expen-
sive access to a larger global memory.

A classic example of reuse specialization is caches. In the
context of accelerators, access patterns are often known a
priori, often meaning that low-ported, wide scratchpads are
most effective (due to caches’ energy spent in tag lookup and
wires). Accelerators also specialize the reuse of constant val-
2It is arguable whether certain FUs can be considered specialized.
There is no set answer here; in this paper we rely on the intuition
that FUs that are not typically found in a general purpose processor
should be considered specialized.
3To be more precise, algorithmic reuse can be exploited by direct
communication when values can be directly communicated from
producer to consumer.

ues, either through read-only memories or FU-specific stor-
age if the constants are specific to one static operation.

Indeed, the relationship between communication, compu-
tation, and reuse specialization is non-trivial. The presence
of better or more computational resources can potentially ob-
viate the need for reuse specialization, and the properties of
specialized communication channels (e.g. width) often must
be co-designed with memory structures for reuse.
Coordination Specialization: Hardware coordination is the
management of hardware units and their timing to perform
work. Instruction sequencing, control flow, signal decod-
ing and address generation are all examples of coordination
tasks. Specializing it usually involves the creation of small
state machines to perform each task, rather than relying on
a general purpose processor and (for example) out-of-order
instruction scheduling. Performing more coordination spe-
cialization typically means less area and power compared to
something more programmable, at the price of generality.

2.2 Relating Specialization Principles to
Accelerator Mechanisms

Figure 3 depicts the block-diagrams of the four DSAs that
we study; colors indicate the types of specialization of each
component. The specialization mechanisms and algorithmic
properties exploited are in Table 1, as explained below:

NPU [12] is a DSA for approximate computing using the
neural network algorithm, integrated to the host core through
a FIFO interface. NPU is designed to exploit the concur-
rency of each level of a neural network, using parallel pro-
cessing entities (PEs) to pipeline the computations of eight
neurons simultaneously. NPU specializes reuse with accu-
mulation registers and per-PE weight buffers. For commu-
nication, NPU employs a broadcast network specializing the
large fan-outs of the neural network, and specializes compu-
tation with sigmoid FUs. A bus scheduler and PE controller
are used to specialize the hardware coordination.

Convolution Engine [13] accelerates stencil-like compu-
tations. The host core uses special instructions to coordi-
nate control of the hardware through a control interface. It
exploits concurrency through both vector and pipeline par-
allelism and relies heavily on reuse specialization by using
custom memories for storing pixels and coefficients. In ad-

3

Principle NPU [12] Conv. Engine [13] Q100 [14] DianNao [4]

Computation Alg. Sigmoid computation Graph fusion Sort, Partition, Join... Transfer functions
HW Special Function Units

Commun-
ication

Alg. All-to-all neuron commu-
nication b/t layers

Wide-vector + reduction Streaming access between
operators

Wide-vector + reduction

HW Broadcast network b/t
processing entities

Wide buses + reduction
network

Buffered inter-operator
routers

Point-to-point links +
reduction network

Data Reuse Alg. Neural weights Reuse of shifted values Constants Synapse accumulation
HW Per-PE weight buffers 1D/2D Shift Registers FU Const. Storage Synapse scratchpads

Coordination Alg. Sequencing of algorithmic steps
HW Bus Sched./PE Ctrl Host + Control Interf. Instruction Sequencer Control Processor

Concurrency Alg. Inter-layer neuron inde-
pendence

Independence of pixels +
stencil computations

Streaming queries + opera-
tor independence

Independent neurons in-
side + across layers

HW Per-neuron Indep. PEs Pipeline + wide-vector Pipeline + FU Array Pipeline + wide-vector

Table 1: Specialization Principles and Mechanisms. Alg: Algorithm insight, HW: Hardware implementation

dition, column and row interfaces provide shifted versions
of intermediate values. These, along with other wide buses,
provide communication specialization. Finally, it specializes
reduction computation using a graph-fusion unit.

Q100 [14] is a DSA for streaming database queries, which
exploits the pipeline concurrency of database operators and
intermediate outputs. To support a streaming model, it uses
stream buffers to prefetch the required database columns.
Q100 specializes the communication by providing dynami-
cally routed channels between FUs to prevent memory spills.
Finally, Q100 relies on custom database FUs like Join, Sort,
and Partition. Reuse specialization happens inside these
FUs when storing constants (ALUs, filters, partitioners) and
reused intermediates (aggregates, joins). The communication
network configuration and stream buffers are coordinated
using an instruction sequencer.

DianNao [4] is a DSA for deep neural networks. It
achieves concurrency by applying a very wide vector
computation model, and uses wide memory structures
(4096-bit wide SRAMs) for reuse specialization of neurons,
accumulated values and synapses. DianNao also relies on
specialized sigmoid FUs. Point-to-point links between FUs,
with little bypassing, specialize the communication. A
specialized control processor is used for coordination.

3. AN ARCHITECTURE FOR
PROGRAMMABLE SPECIALIZATION

Our primary insight is that well-understood mechanisms
can be composed to target the same specialization principles
that domain specific accelerators (DSAs) use, but in a pro-
grammable fashion. In this section we first explain the archi-
tecture of the design that we study, LSSD, highlighting how it
performs specialization using the principles. We then discuss
other possible programmable specialization architectures. Fi-
nally, we describe how to use such a design in practice over
the phases of its life-cycle.

3.1 Design Requirements
To give insight into our design, we outline three intuitive

requirements for a programmable specialization architecture:

1. Is programmable: While some DSAs provide limited
programmability, this is usually applicable only for a
specific domain. A programmable specialization archi-
tecture provides domain-agnostic programmability.

2. Applies specialization principles: For achieving
energy and performance efficiency competitive with
DSAs, they must apply their specialization principles.

3. Design is parameterizable: At design time, we must
allow for customizing the aspects of the design to meet
the combined requirements of the targeted domains.

3.2 LSSD Design
As we will describe, it is possible to construct an archi-

tecture which embodies the specialization principles by se-
lecting a set of architectural mechanisms from well known
techniques. This is not the only possible set of mechanisms,
but they are a simple and effective set.

The most critical principle is exploiting concurrency, of
which there is typically an abundant amount when consider-
ing specializable workloads. The requirement of high con-
currency pushes the design towards simplicity, and the re-
quirement of programmability implies the use of some sort of
programmable core. The natural way to fill these combined
requirements is to use an array of tiny low-power cores which
communicate through memory4. This is a sensible tradeoff
as commonly-specialized workloads exhibit little communi-
cation between the coarse-grained parallel units. Also, us-
ing many units, as opposed to a wide-vector model, has a
flexibility advantage. When memory locality is not possible,
parallelism can still be achieved through multiple execution
threads. The remainder of the design is a straight-forward
application of the remaining specialization principles.

Achieving communication specialization of intermediate
values requires an efficient distribution mechanism for
operands that avoids expensive intermediate storage like

4TLB’s are a source of energy inefficiency in supporting virtual
memory, which DSAs typically sidestep. We imagine that pro-
grammable specialization architectures will support limited virtual
memory through large pages and small TLBs.

4

CommunicationCompute Data ReuseConcurrency

Specialization of:

Memory

Coordination

Scratchpad

D
M

A

Input Interf.

Output Interf.

Low-
power
Core

D$

Spatial Fabric

Scratchpad

D
M

A

Input Interf.

Output Interf.

Low-
power
Core

D$

Spatial Fabric

...

Figure 4: LSSD Architecture

multi-ported register files. Arguably, the best known ap-
proach is an explicit routing network, which is exposed to the
ISA to eliminate the hardware burden of dynamic routing.
This property is what defines spatial architectures (as well as
the early explicit-dataflow machines that inspired them [15]),
and therefore we add a spatial architecture as our first mech-
anism. This serves two additional purposes. First, it is an
appropriate place to instantiate custom functional units, i.e.
computation specialization. Second, it accommodates reuse
of constant values associated with specific computations.

To achieve communication specialization with the global
memory, a natural solution is to add a DMA engine and con-
figurable scratchpad, with a vector interface to the spatial ar-
chitecture. The scratchpad, configured as a DMA buffer, en-
ables the efficient streaming of memory by decoupling mem-
ory access from the spatial architecture. When configured
differently, the scratchpad can act as a reuse buffer. In ei-
ther context, a single-ported scratchpad is enough, as access
patterns are usually simple and known ahead of time.

Finally, we require an efficient mechanism for coordinat-
ing the above hardware units (e.g. configuring the spatial
architecture or synchronizing DMA with the computation).
Again, here we propose relying on the simple core, as this
brings a huge programmability and generality benefit. Fur-
thermore, the cost is low: if the core is low-power enough,
and the spatial architecture is large enough, the overheads of
coordination can be kept low.

To summarize, each unit of our proposed fabric contains
a Low-power core, a Spatial architecture, Scratchpad and
DMA (LSSD) as shown in Figure 4. This architecture
satisfies the aforementioned requirements: programma-
bility, efficiency through the application of specialization
principles, and simple parameterizability.

3.3 Evolution towards
Programmable Specialization

The approach we took in designing LSSD was to start with
a concurrent architecture and evolve it by applying special-
ization principles. Here we explain how perhaps equally ef-
fective (and plausibly similar) designs could be arrived at by
starting with different baseline architectures and applying the
same principles.
Large Cores: One possible path forward is to begin with

traditional, large out-of-order cores, and add mechanisms
to achieve more concurrency and specialized execution.
One example is MorphCore [16], which specializes for
concurrency by adding an inorder SMT mode to an OOO
core. WiDGET [17] is similar in that it decouples execu-
tion resources from threads, allowing it to specialize the
concurrency and coordination of different threads. Another
example is specializing for communication by adding reduc-
tion instructions to SIMD. While a valuable direction, this
style of approach is arguably more difficult as it necessarily
retains some of the overheads of the large core.
General Purpose Graphics Processing Units: GPGPUs are
interesting as they already apply many specialization princi-
ples: concurrency through many independent units, computa-
tion through transcendental functions, and data reuse through
programmable scratchpads. That said, they do not special-
ize for operand communication, instead relying on large reg-
ister files. Some research architectures have even explored
such specialization through the addition of spatial fabrics,
like SGMF [18].

Making a GPGPU more suitable for programmable spe-
cialization would also mean removing or scaling back fea-
tures geared towards more general computation, which are
simply not needed if only targeting commonly accelerated
workloads. Some candidates for simplification may be the
hardware for coalescing memory, as access patterns are usu-
ally known a priori (specializing for communication), or the
hardware that handles diverging control flow (specializing for
coordination). We suspect that a straightforward application
of specialization principles to the GPGPU may lead to a sim-
ilar design as LSSD.
Field Programmable Gate Arrays: FPGAs are an interest-
ing starting point as they already apply all specialization prin-
ciples (DSP slices for computation, configurable networks
for communication, block RAMs for data-reuse, configurable
logic for coordination, and ample LUT resources for con-
currency). They are also programmable, with a spectrum
of language choices spanning HDL design, HLS and even
OpenCL. Furthermore, they allow further specialization of
the coordination using efficient finite state machines rather
than a general purpose core.

However, FPGAs today lack in efficiency (both in fre-
quency and power) because of the mechanisms they rely
on: fine-grained programmability and global routing. Also,
the workloads we specialize require large scratchpad/reuse
buffers; and the small size of block RAMs (2 to 5KB each)
means that many must be composed to support the needed
access patterns, leading to further overheads. Furthermore,
when considering the fact that many operations can occur
in parallel, effectively a multi-ported register file must
be constructed to pass intermediates between DSP slices.
Indeed these challenges can all be addressed by constraining
global routing (eg. innovations in Altera’s 1GHz Stratix
10 [19]), performing physical layout to achieve the benefits
of tiled architectures, and allowing customization of DSP
slices to emerging workload needs. Exploring these is an
alternative avenue for extending the generality and efficiency
of accelerators.

5

Synthesis-Time Run-Time

Concurrency Number of instantiated
LSSD units

Power-gating unused
LSSD units

Computation Spatial architecture
functional unit mix

Scheduling of spatial
architecture and core

Commun-
ication

Spatial datapath &
SRAM interf. widths

Config. of spatial data-
path and ports

Data Reuse Scratchpad (SRAM)
size

Use of Scratchpad as
DMA or reuse buffer

Table 2: Configurable Aspects of LSSD.

3.4 Use of LSSD in Practice
Preparing the LSSD fabric for use occurs in two phases:

1. design synthesis – the selection of hardware parameters to
suit the chosen workload domain(s)5; and 2. programing –
the generation of the program and spatial datapath configura-
tion to carry out the algorithm. Table 2 highlights this distinc-
tion by contrasting synthesis-time and run-time configuration
parameters for the LSSD architecture. We describe each at a
high level below, then give a brief example.
Design Synthesis: For specialized architectures, design syn-
thesis is the process of provisioning an architecture for given
performance, area and power goals. It involves examining
one or more workloads or workload domains, and choos-
ing the appropriate functional units, the datapath size, the
scratchpad sizes and widths, and the degree of concurrency
exploited through multiple core units.

Though many optimization strategies are possible, in
this work, we consider the primary constraint of the pro-
grammable architecture to be performance – i.e. there exists
some throughput target that must be met, and power and
area should be minimized, while still retaining some degree
of generality and programmability. We outline a simple
strategy in Figure 5.

Of course, if multiple workloads should be targeted, then
the superset of the above hardware features should be chosen.
Section 4 discusses the design points chosen to match the
workload domains studied in this paper.
Programming: Programming an LSSD has two major com-
ponents: creation of the coordination code for the low power
core and generation of the configuration data for the spa-
tial datapath to match available resources. Programming for
LSSD in assembly may be reasonable because of the simplic-
ity of both the control and data portions. In practice, using
standard languages with #pragma annotations, or even lan-
guages like OpenCL would likely be effective.

Though we do not implement a compiler in this work
(See Section 5 for our modeling approach), for illustrative
purposes, Figure 6 shows an example annotated code for
computing a neural network layer, along with a provisioned
LSSD. This code computes one neural approximation layer
for NPU. The figure also shows the compilation steps to
map each portion of the code to the architecture. At a high
level, the compiler will use annotations to identify arrays

5Our treatment of synthesis-time configurability is reminiscent of
architectures like Smart Memories [20] and Custom Fit Proces-
sors [21], and we revisit these in the related work.

1. Choose the most general single-output FUs which suit
the algorithm.

2. Determine the total number of FU resources required to
attain the desired throughput.

3. Divide FUs into groups, where each group accesses
a limited amount of data per cycle, excluding per-
instruction constants. We use 64 bytes maximum per-
cycle, resulting in a reasonable scratchpad line usable
by many algorithms. The number of these groups is the
number of LSSD units.

4. If the algorithm has reuse within a small working set,
then size the number of SRAM entries to match.

Figure 5: Procedure for provisioning LSSD

#pragma lssd cores 2
#pragma reuse-scratchpad weights
void nn_layer(int num_in, int num_out,
 const float* weights,
 const float* in, float* out) {
 for (int j = 0; j < num_out; ++j) {
 for (int i = 0; i < num_in; ++i) {
 out[j] += weights[j][i] *in[i];
 }
 out[j] = sigmoid(out[j]);
 }

}

Scratchpad

Input Interf.

Output Interf.

Low-
power
Core

D$

Spatial Fabric

×
× ×

×
×

+ + .Σ.

×
×

+
+ + ++

×

Loop Parallelize, Insert Comm., Modulo Schedule

Resize Computation (Unroll), Extract Computation Subgraph, Spatial Schedule

Insert Data
Transfer

Figure 6: Example Program & Compiler Passes
(Arrows labeled with required compilation passes.)

for use in the SRAM, and how (either as a stream buffer or
scratchpad). In the example, the weights can be loaded into
the scratchpad, and reused across invocations.

Subsequently, the compiler will unroll and create a large-
enough datapath to match the resources present in the spatial
fabric, which could be spatially scheduled using known tech-
niques [22]. Communication instructions would be inserted
into the coordination code, as well as instructions to control
the DMA access for streaming inputs. Finally, the coordina-
tion loop would be modulo scheduled to effectively pipeline
the spatial architecture.

4. DESIGN POINT SELECTION
In this section we describe the design points that we study

in this work, along with their rationale, and how workloads
map to them. We begin by covering basic building blocks,
then detail each design.

4.1 Implementation Building Blocks
We use several existing components, both from the

literature and from available designs, as building blocks
for the LSSD architecture. The spatial architecture we
leverage is the DySER coarse grain reconfigurable architec-
ture (CGRA) [23], which is a lightweight statically-routed
mesh of FUs. Note that we will use CGRA and “spatial
architecture” interchangeably henceforth. It belongs to a
family of similar architectures like CCA [24], BERET [25],
SGMF [18] and others. This choice is a good tradeoff
between efficiency and configuration time. Because of
DySER’s network organization, we use only FUs which have
single-outputs and low area footprints. It also supports a
vector interface with configurable mapping between vector

6

Name Equiv. DSA Concurrency Computation Communication Reuse
LSSDN NPU 24-Tile CGRA (8 Add, 8 Mul, 8

Sigmoid); Single LSSD Unit
2048 x 32bit Sig-
moid Lookup Table

32-bit CGRA; 256-bit
SRAM interface

2048 x 32-bit
Weight Buffer

LSSDC Convolution
Engine

64-Tile CGRA (32 mul/shf, 32
add/logic); Single LSSD Unit

Standard 16-bit
units

16-bit CGRA; 512-bit
SRAM interface

512 x 16-bit SRAM
for image inputs

LSSDQ Q100 32-Tile CGRA (16 ALU, 4Agg, 4
Join); 4 LSSD Units

Join Unit + Filter
Unit

64-bit CGRA; 256-bit
SRAM interface;

SRAMs for buffer-
ing

LSSDD DianNao 64-Tile CGRA (32 Mul, 32 Add); 8
LSSD Units

Piecewise linear
sigmoid FU

16x2-bit CGRA; 512-bit
SRAM interface;

2048 x 16bit
Weight Buffer

LSSDB Balanced 32-Tile CGRA (combination of
above); 8 LSSD Units

Combination of
above FUs

64-bit CGRA; 512-bit
SRAM interface;

4KB SRAM

Table 3: Configuration of LSSD for each domain.

elements and spatial architecture ports, which enables more
efficient irregular memory access patterns.

The processor we leverage is a Tensilica LX3 [26], which
is a simple VLIW design featuring a low-frequency (1GHz)
7-stage pipeline. This is chosen because of its very low area
and power footprint (0.044 mm2 and 14mW at 1GHz, 45nm),
and is capable of running irregular code. An equally viable
candidate is the similarly small Cortex M3 [27].

4.2 LSSD Synthesized Designs and Program
Mapping

Here we describe the synthesized designs for the four do-
mains that we target, and outline how their workloads are
mapped to the provisioned design. For purposes of evalua-
tion, we consider two different design scenarios: 1. domain-
provisioned: programmable architecture’s resources target a
single domain; 2. balanced: programmable architecture re-
sources target many different domains. Both sets of design
points are attained using the procedure in Figure 5 and are
characterized in Table 3. We discuss in detail below.
LSSDN for NPU’s Neural Approximation Domain: We
provision LSSDN for NPU’s performance by including 8 32-
bit multipliers, adders, and sigmoid units. As alluded to in
the neural network layer example (Figure 6), the read-only
weights are stored in scratchpad, and since we need to read
a maximum of 8 32-bit words per cycle, the SRAM line size
becomes 256-bit. For the coordination program, we consider
different implementations of the neural network layer, which
vectorize across either input or output neurons, depending on
which is larger.
LSSDC for Convolution Engine’s Domain: The primary
operation in convolution engine is a map operation (on the
image inputs) followed by reduce, with shifted inputs. We
assume 32 16-bit multipliers/subtractors for the map stage,
and 32 16-bit ALUs for the reduction. The input shift can be
performed internally by the CGRA network, which allows in-
put splitting. To supply these units, we only need 512-bits of
data per cycle, meaning we can use one 512-bit wide SRAM
and a single LSSD unit.
LSSDQ for Q100’s Streaming Database Queries: To target
Q100’s streaming query workloads, we start with some of
the same database query-oriented functional units, like Fil-
ter and Aggregate, for which we include the same number
as the original. However, there are several functional units

which do not fit well into the type of CGRA we propose us-
ing, which we outline next.

First, Q100’s Join unit requires data-dependent data-
consumption, and adding this capability is non-trivial as
it complicates the CGRA itself as well as its communica-
tion with the DMA engine (increasing the CGRA’s area).
Also, Q100’s Partitioner and Sorter, used in tandem for
fast sorting6, do not fit naturally into the paradigm of our
spatial fabric. The Q100-Partitioner produces output-pairs
(destination-bucket,value) and is quite large (0.94mm2 at
32nm [14]). The Q100-Sorter sorts 1024 elements simul-
taneously and also has a large area footprint (0.19mm2).
Therefore, we do not include the above Q100 units, and
instead employ the low-power core for executing the same
algorithm. Unlike for the other domains, the mismatch
in FUs means that we had to size the number of cores
empirically to match Q100, which turned out to be 4.

Programming the Q100 unit in practice would likely be
different than the others as well, as it would need to be in-
tegrated into some database management system (DBMS).
The DBMS will need to generate a query plan which is com-
posed of subgraphs containing streaming operators (or tem-
poral instructions in Q100’s terminology). Each one of these
operator subgraphs can be converted to an LSSD program by
applying standard code-generation techniques.
LSSDD for DianNao’s Deep Learning Domain: DianNao’s
fundamental operation is a parallel multiply-reduce followed
by an optional non-linear function. To match DianNao’s
performance, LSSDD includes 256 16-bit multipliers, 240
adders, and 16 non-linear sigmoid units, which are split
up among 8 cores. Each core includes a 512-bit SRAM,
primarily used for streaming in neural weights, and the
neurons are stored in the core’s cache.
LSSDB Balanced Design: To create a more balanced design
with generality across the above four domains, we consider a
design point which can achieve the same performance goals.
Essentially, we create this design point by taking the largest
design (LSSDD in this case), and distributing the necessary
FUs and storage among the remaining units, creating a homo-
geneous LSSD. This design point enables the study of how
increased programmability affects the area and power.

6We assume Q100 uses a “sample sort”, which first range-partitions
into 1024 size buckets, then sorts each bucket.

7

NPU Layer Topology (# of in/out neurons)
Conv. Image block & stencil size, map/reduce funcs
Q100 Query plans, database column formats/sizes
DianNao Feature map & kernel sizes, tiling params

Table 4: Workload inputs to modeling framework.

5. METHODOLOGY
At a high level, our methodology attempts to fairly assess

LSSD tradeoffs across workloads from four different accel-
erators through pulling data from past works and the origi-
nal authors, applying performance modeling techniques, us-
ing sanity checking against real systems and using standard
area/power models. Where assumptions were necessary, we
made those that favored the benefits of the DSA. The remain-
der of this section provides details.
Workloads: For fair comparisons, we use the same algo-
rithms where possible, and use the workloads from the orig-
inal works. For NPU we use the neural network topologies
from the original work [12]. Our results include the approx-
imate regions only 7. For Convolution Engine, we used the
four basic convolution kernels [13]. As these do not use the
DSA’s graph fusion unit, we do not include it in its area cal-
culation. We use all DianNao topologies [4] for comparison.

For Q100 we use 11 TPCH-queries [28] with the same
TPCH scale factor (0.01) as the original Q100 paper [14]. We
use the same query plan for each, though the LSSD version
sometimes has more phases as its FUs differ (see Section 4).
LSSD Performance Estimation: The insight we use for es-
timating performance is that LSSD is quite simple and the
targeted workloads have straightforward access and computa-
tion patterns, making execution time straightforward to cap-
ture. Our strategy uses a combined trace-simulator (PIN [29])
and application-specific modeling framework to capture the
role of the compiler and the LSSD program. This framework
is parameterizable for different FU types, concurrency pa-
rameters (SIMD width and LSSD unit counts), and reuse and
communication structures.

Our framework considers execution stages, each corre-
sponding to a particular computation or kernel. Kernels in
NPU are individual neural network layers, while Convolution
Engine has scratchpad-load and computation phases. Each
Q100 stage is a compound database operation (a “temporal
instruction”), and DianNao has convolution, classifier and
pooling phases. All of these have significant parallelism,
are generally long running and not-overlapping, and contain
many pipelined computations. The latency of each phase
is either bound by the memory bandwidth, instruction
execution rate (considering FU contention and issue-width),
cache or scratchpad ports, or the critical path latency. Table 4
describes workload-specific inputs.
LSSD Power & Area Estimation: For the LX3 core param-
eters, we rely on published datasheets [26]. For the integer
FUs, we used the estimates from the DianNao work [4], and
for floating point FUs we used estimates from the DySER
implementation [23]. To estimate CGRA-network power,

7If we used LSSD on the non-approximate regions as well, LSSD’s
performance would surpass NPU on several kernels.

we synthesized a router using a 55nm library. SRAMs
for data-reuse and buffering were estimated using CACTI
6.5 [30]. Specialized FU properties were taken from the
original works.
DSA and Baseline Characteristics: Each DSAs’ perfor-
mance, area and power were obtained as follows:

Execution Time Power Area

NPU Authors Provided MCPAT-based estim.
Conv. Authors Provided MCPAT-based estim.
Q100 Optimistic Model In Original Paper
DianNao Optimistic Model In Original Paper

For the performance of the Q100 and DianNao DSAs, we
constructed a model consistent with the LSSD framework,
which is generally optimistic for the DSA. For Q100, we built
a model which takes query-plans as inputs in our own python-
based domain-specific language. We validated this against
execution times provided by the authors, and our model is
always optimistic, at most by a factor of 2×. We use our
model for Q100 because it allowed us to make the same as-
sumptions about the query plans. For DianNao, we used an
optimistic performance model, based on its maximum com-
putation throughput and memory bandwidth.

For NPU power and area, we used CACTI for each inter-
nal structure, since this was similar to the strategy used in the
work itself. Though we did receive the power for Convolu-
tion Engine from the authors, we used our own estimates, as
these were more consistent with our results (using their esti-
mate would have been favorable to LSSD).

All area and power estimates are scaled to 28nm.
Integration of LSSD: LSSDN and LSSDC only required a
single core for achieving the DSA’s performance, meaning
that these architectures could be directly integrated with a
host core. Therefore we do not include the LX3 core’s area
in the estimation for these design points.
Comparison to Baseline OOO: Much of our results use an
OOO core as a baseline, intuitive reference point. We use the
Intel 3770K processor, and estimate the power and area based
on datasheets and die-photos [31]. We scale its frequency
to 2GHz, as this is similar to the baseline used in the other
DSA works [12, 4]. An exception to this is the Q100 results,
where we use their estimated performance of MonetDB (on
a 2.2GHz Intel Xeon E5620), as this proved more consistent
than the version of MonetDB we had available.

6. EVALUATION
Our evaluation is organized around three main questions:

Q1. Can LSSD match the performance of DSAs, and what
are the sources of its performance?

Q2. What is the cost of general programmability in terms of
area and power?

Q3. If multiple workloads are required on-chip, can LSSD
ever surpass the area or power efficiency?

Our primary result is that LSSD is a viable and pro-
grammable alternative for DSAs, matching their perfor-

8

fft
(1

-4
-4

-2
)

in
ve

rs
ek

2j
(2

-8
-2

)

jm
ei

nt
(1

8-
32

-8
-2

)

jp
eg

(6
4-

16
-6

4)

km
ea

ns
(6

-8
-4

-1
)

so
be

l
(9

-8
-1

)

G
eo

m
et

ric
M

ea
n

0
2
4
6
8

10
12
14
16
18

S
pe

ed
up

NPU Workloads

NPU (domain-accel)
LSSDN (+reuse)

Spatial (+commun.)
SIMD (+concur.)
Core+Sig (comp.)

IM
E

D
O

G

E
X

TR
.

FM
E

G
M

ea
n

0

10

20

30

40

50

S
pe

ed
up

Convolution Workloads

Conv-Engine
LSSDC (+reuse)

Spatial (+commun.)
SIMD (+concur.)
Core+FUs (comp.)

q1 q2 q3 q4 q5 q6 q7 q1
0

q1
5

q1
6

q1
7

G
M

0

100

200

300

400

500

S
pe

ed
up

Q100 Workloads

Q100
LSSDQ (+commun.)

SIMD (+concur.)
Multi-core (+concur.)
Core+SFU (comp.)

co
n
v
1

p
o
o
l1

cl
a
ss

1

co
n
v
2

co
n
v
3

p
o
o
l3

cl
a
ss

3

co
n
v
4

co
n
v
5

p
o
o
l5

G
M

e
a
n0

50
100
150
200
250
300
350
400

S
p
e
e
d
u
p

DianNao Workloads
DianNao

LSSDD (+reuse)

Spatial (+commun.)

SIMD (+concur.)

8-Core (+concur.)

Core+Sig (comp.)

Figure 7: LSSD versus DSA Performance Across Four Domains

mance with only modest (max 2× to 4×) power and area
overheads.

6.1 Performance Analysis (Q1)
In this section, we compare the performance of the DSAs

and domain-provisioned LSSD designs in Figure 7, normal-
ized to the OOO core. To elucidate the sources of benefits of
each specialization principle in LSSD, we also include four
additional design points, where each builds on the capabili-
ties of the previous8:

1. Core+SFU The LX3 core with added problem-specific
functional units (computation specialization).

2. Multicore LX3 multicore system (+concurrency).

3. SIMD An LX3 with SIMD, its width corresponding to
LSSD’s memory interface (+concurrency).

4. Spatial An LX3 where the spatial arch. replaces the
SIMD units. (+communication).

5. LSSD Previous design plus scratchpad (+reuse)
Across workload domains, LSSD matches the perfor-

mance of the DSAs, seeing performance improvements over
a modern OOO core between 10× and 150×.
NPU versus LSSDN: NPU’s and LSSD’s organizations dif-
fer greatly: independent processing elements in NPU ver-
sus the core+CGRA of LSSD. However, their performance
is nearly the same. In terms of speedup sources, concur-
rency (SIMD) provides the most benefit: around 4× speedup.
Communication specialization (Spatial) and reuse specializa-
tion (LSSD) together provide only 1.7× speedup.
Convolution Engine versus LSSDC: Though LSSDC per-
forms similarly to the DSA, it has 0.84× the clock-for-clock
performance. This is because the DSA is running at a slower

8These intermediate design points are not area or power-normalized,
their purpose is to demonstrate the sources of performance.

800MHz frequency. For the DOG kernel, LSSD loses per-
formance as the scratchpad size could not fit all of the im-
ages needed for computation. The major performance contri-
bution among specialization principles is from concurrency
(around 31× from SIMD9), and CGRA’s spatial communica-
tion and reuse play a lesser role, 7.3× and 1.3× respectively.
Q100 versus LSSDQ: Though the 4-core LSSDQ performs
similarly with Q100 overall (only 2% difference), perfor-
mance varies across queries. Specifically, Queries 5, 7 and
10 are sort-heavy (and 16 and 17 to a lesser extent), and
Q100 benefits from the specialized Sort/Partition FUs. We
also emphasize here the benefits of both LSSD and Q100
over MonetDB reduce by around a factor of 10 on larger
databases (e.g. TPCH scale factor=1), but we report this
scale factor, as it is what Q100 was optimized for. The major
source of performance is concurrency (3.60× multicore,
2.58× SIMD). Some workloads benefit significantly from
the CGRA, which is helpful when the bandwidth is not
saturated and the workload is not dominated by sorts/joins.

Note that to be consistent with the Q100 work, the base-
line here is an OOO core running MonetDB, while Q100 and
LSSD model manually-optimized queries. This explains why
the LX3 core can outperform the baseline. As an example, we
ran an optimized Q1 (matching the LSSD/Q100 algorithm)
on the OOO core, and it was 35x faster than the MonetDB
version.
DianNao versus LSSDD: Performance is similar on most
workloads. LSSDD has minor instruction overhead (eg.
managing the DMA engine), but gains back some ground on
one of the pooling workloads, because the decoupled design
of LSSD allows it to load neurons at higher bandwidth.
Again, concurrency was most important for performance
(8× multicore, 14.4× SIMD). The CGRA provides an ad-
ditional small benefit by reducing instruction management,
and adding a reuse buffer reduces cache contention; their

9The LX3 Core+FUs bar is below 1, as it is slower than the baseline.

9

0 10 20 30 40

Normalized Area

0

10

20

30

40

50

60

70

N
or

m
al

iz
ed

Po
w

er

LSSDN
1.2× more Area than DSA,
2.0× more Power than DSA

LSSDsimd−only

DSA
NPU Workloads

0 20 40 60 80 100 120 140 160

Normalized Area

0

50

100

150

200

LSSDC
1.7× more Area than DSA,
3.6× more Power than DSA

LSSDsimd−only

DSA

Convolution Workloads

0 1 2 3 4 5 6 7

Normalized Area

0

2

4

6

8

10

LSSDQ
0.5× more Area than DSA,
0.6× more Power than DSA

LSSDsimd−only

DSA

Q100 Workloads

0 5 10 15 20 25

Normalized Area

0

5

10

15

20

25

LSSDD
3.8× more Area than DSA,
4.1× more Power than DSA

LSSDsimd−only

DSA

DianNao Workloads

Figure 8: Area & Power tradeoffs using performance-equivalent designs (Baseline: Core+L1+L2 from I3770K processor)

Area (mm2) LSSDN LSSDC LSSDQ LSSDD

B
re

ak
do

w
n Core+Cache 0.09 0.09

SRAM 0.04 0.02 0.04 0.04
Functional Unit 0.24 0.02 0.09 0.02
CGRA Network 0.09 0.11 0.22 0.11
Unit Total 0.37 0.15 0.44 0.26
LSSD Total Area 0.37 0.15 1.78 2.11

DSA Total Area 0.30 0.08 3.69 0.56

LSSD/DSA Overhead 1.23 1.74 0.48 3.76

Power (mW) LSSDN LSSDC LSSDQ LSSDD

Core+Cache 41 41 41 41
SRAM 9 5 9 5
Functional Unit 65 7 33 7
CGRA Network 34 56 46 56
Unit Total 149 108 130 108
LSSD Total Power 149 108 519 867

DSA Total Power 74 30 870 213

LSSD/DSA Overhead 2.02 3.57 0.60 4.06

Table 5: LSSD Power and Area Breakdown/Comparison (normalized to 28nm).

combined speedup is 1.9×.
Takeaway: LSSD designs have competitive performance

with DSAs. The performance benefits come mostly from con-
currency rather than any other specialization technique.

6.2 LSSD Area/Power Overheads (Q2)
To elucidate the costs of more general programmability,

Figure 8 shows the power and area efficiency for three
performance-equivalent designs, using a single OOO core
as the baseline. We also show the LSSDsimd−only, because
it is a more standard reference point. It does not employ
scratchpads or a CGRA network (but does have specialized
FUs). We do not show the single-core or multi-core only
points, as scaling up their cores to meet the performance
target does not result in practical designs. Table 5 shows the
power and area breakdowns for the LSSD designs.

Overall, LSSD has some, but not excessive overheads: up
to 3.8× area and 4.1× power. Even so, the LSSD designs are
between 6× to 90× less area than a single core, and between
5× and 40× less power. Also, the LSSD designs are gen-
erally better than the performance-normalized SIMD design
point, implying that the spatial fabric and reuse buffers are ef-
fective for reducing overheads. An exception is for LSSDD,
as we discuss next.

In fact, LSSDD has the worst case area and power over-
heads of 3.76× and 4.06× respectively compared to Dian-
Nao. The CGRA network dominates the area and power, be-
cause it supports relatively tiny 16-bit FUs.

LSSDC also has significant overheads of 1.74× area and
3.57× power. Besides the CGRA network overhead, Con-
volution Engine optimizes for a non-standard datapath width
(10-bit versus 16-bit in LSSD), and runs at a lower frequency
(800MHz).

For the NPU workloads, the LSSDN is similar area and
has a 2.02× power overhead. The reason for these relatively
low overheads is the high contribution of floating point and
sigmoid FUs, amortizing the overhead of the LX3 core and
CGRA network in LSSD.

Surprisingly, LSSDQ has 0.48× the area and 0.6× the
power of Q100. One reason for this is that LSSD does not
embed the expensive Sort and Partition units, which did lead
to performance loss on several queries, but was arguably
a reasonable tradeoff overall. LSSD also uses a simple
circuit-switched CGRA, whereas Q100 uses highly-buffered
routers based on the Intel Teraflops chip [32].

Takeaway: With suitable engineering, the overheads of
programmability can be reduced to small factors of 2× to
4×, as opposed to the 100× to 1000× inefficiency of large
OOO cores.

6.3 Supporting Multiple Domains (Q3)
If multiple workload domains require specialization on the

same chip, but do not need to be run simultaneously, it is
possible that LSSD can be more area efficient than a Multi-
DSA design. Figure 9 shows the area and geomean power
tradeoffs for two different workload domain sets, comparing
the Multi-DSA chip to the balanced LSSDB design.

The domain set [NPU/Conv/DianNao] excludes our best
result (Q100 workloads). In this case, LSSDB still has 2.7×
area and 2.4× power overhead. However, with Q100 added,
LSSDB is only 0.6× the area.

Takeaway: If only one domain needs to be supported at a
time, LSSD can become more area efficient than using multi-
ple DSAs.

10

0 2 4 6 8 10 12 14

Normalized Area

0

10

20

30

40

50

60

70

N
or

m
al

iz
ed

Po
w

er

LSSDB
2.7× more Area than DSA,
2.4× more Power than DSA

LSSDsimd−only

Multi-DSA
NPU/Conv/Dian Workloads

0 1 2 3 4 5

Normalized Area

0

10

20

30

40

LSSDB
0.6× more Area than DSA,
2.5× more Power than DSA

LSSDsimd−only

Multi-DSA

All Workloads

Figure 9: Area & Power of Multi-DSA vs LSSDB.
(Baseline: Core+L1+L2 from I3770K processor)

7. SYSTEM-LEVEL TRADEOFFS
While this paper has explored the relative power, area, and

speedup tradeoffs of using a programmable accelerator over a
DSA, it is important to understand how this affects the overall
decision of which architecture to employ. Specifically, while
the speedups of DSAs and LSSD can be similar, an important
question is how much the power and area overheads affect
the energy benefits and economic costs when accelerating a
general purpose chip. We use simple analytical reasoning in
this section to explore the tradeoffs.

7.1 Energy Efficiency Tradeoffs
In this subsection, we will analytically bound the possible

energy efficiency improvement of a general purpose system
accelerated with a DSA versus an LSSD design, by consider-
ing a zero-power DSA.

We first define the overall relative energy, E, for an accel-
erated system in terms of S: the accelerator’s speedup, U : the
accelerator utilization as a fraction of the original execution
time, Pcore: general purpose core power, Psys: system power,
and Pacc: accelerator power. The core power includes compo-
nents which are not used because the accelerator is invoked.
The system power includes chip components that are active
while accelerating, which could include higher level caches
and DRAM, or other SOC components, for example. Total
energy then becomes:

E = Pacc(U/S)+Psys(1−U +U/S)+Pcore(1−U) (1)

The energy efficiency improvement of a DSA versus LSSD
system (Effdsa/lssd), given that their speedups are held equiva-
lent, becomes:

Effdsa/lssd =
Plssd(U/S)+Psys(1−U +U/S)+Pcore(1−U)

Pdsa(U/S)+Psys(1−U +U/S)+Pcore(1−U)
(2)

By setting the DSA power to zero (and rearranging):

Effdsa/lssd <
Plssd(U/S)

Psys(1−U +U/S)+Pcore(1−U)
+1 (3)

The best case for the DSA would be 100% utilization, and
in that case we get the intuitive result that maximum energy
efficiency improvement is Effdsa/lssd < Plssd/Psys + 1. Since
LSSD’s power is usually very low, perhaps a factor of 10 less
than system power, the maximum DSA power savings is less
than 10%, even with a perfect DSA.

0 10 20 30 40 50

Accelerator Speedup

1.00

1.02

1.04

1.06

1.08

1.10

1.12

M
ax

D
S

A
E

ne
rg

y
E

ff.
Im

pr
ov

. (a) Varying Utilization, Plssd = 0.5W

U=1
U=0.95
U=0.9
U=0.75
U=0.5
U=0.25

0 10 20 30 40 50

Accelerator Speedup

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

M
ax

D
S

A
E

ne
rg

y
E

ff.
Im

pr
ov

. (b) Varying LSSD Power, U = 0.5

Plssd=5.0
Plssd=2.5
Plssd=1.0
Plssd=0.5
Plssd=0.25

Figure 10: Energy Benefits of Zero-Power DSA
(Pcore = 5W ,Psys = 5W)

We characterize this tradeoff across different accelerator
utilizations and speedups in Figure 10, using 5W as the core
and system power. Figure 10(a) shows that the maximum
benefits from a DSA reduce both as the utilization goes
down (stressing core power), and when accelerator speedup
increases (stressing both core and system power). For a
reasonable utilization of U=.5 and speedup of S=10, the
maximum energy efficiency gain from a DSA is less than
0.5%. Figure 10(b) shows a similar graph where LSSD’s
power is varied, while utilization is fixed at U=.5. Even
considering an LSSD with power equivalent to the core,
when LSSD has a speedup=10×, there is only 5% potential
energy savings remaining for a DSA to optimize.

Putting the above together, we claim that when an LSSD
can match the performance of a DSA, the further potential
energy benefits of a DSA are usually very small. In other
words, a 4× power overhead for LSSD versus a DSA is gen-
erally inconsequential.

7.2 Economic Tradeoffs
DSAs are a reality today, and without a significant rea-

son to invest in programmable accelerators, its possible that
LSSD would not ever become economically viable. That
said, we argue that there are tangible reasons why an LSSD-
based approach could be economically advantageous.

First, the fixed costs of targeting some domain may indeed
be much lower for LSSD. Once the LSSD hardware is de-
signed, targeting a domain is a matter of hardware param-
eterization and relatively straightforward software develop-
ment. In some cases, LSSD may be able to target new do-
mains without any hardware changes.

11

It is also true that for a given domain, LSSD’s recurring
area costs are factors higher. However, LSSD is relatively
small compared to a modern general purpose multicore, and
when targeting multiple domains, LSSD’s area overheads are
amortized.

8. LIMITATIONS
Accelerator/Workload Generality: In section 3, we made
several assumptions about the type of workloads targeted.
The implication is that there are workload varieties that LSSD
will not be suitable for, as well as at least several existing ac-
celerators which LSSD will not be able to match. One exam-
ple would be packet classification, which would require too
much irregular memory access, but Spitznagel et al. [33] is
able to create effective specialized hardware with extended
TCAMs. Another example is the unsuitable bit-level opti-
mizations that Fowers et al. uses to design an accelerator for
lossless compression on FPGAs [34].

It is possible that, when considering a broader or different
set of workload properties, the specialization principles iden-
tified here may not be the most operative. Even so, an LSSD
reference point could help identify what should be these new
mechanisms, or perhaps even help to expose additional spe-
cialization principles.
Hardware and Compiler Implementations: The design
and implementation of an LSSD compiler would be useful
for understanding exactly what information is required from
the programmer, as well as the difficulty or simplicity of pro-
gramming such an architecture. Existing compilers from the
DySER [35] and SGMF [18] projects could be leveraged as
a starting point. Since we still ultimately envision targeting a
relatively small number of domains, an alternative approach
could be to adapt existing domain-specific languages [36,
37, 38, 39] to target LSSD.

A parameterizable hardware implementation of LSSD
would be equally useful in attaining more accurate design
space characteristics, as well as finding detailed phenomenon
in its design. This is also future work.

9. RELATED WORK
Programmable Specialization Architectures: The litera-
ture contains many examples of flexible and efficient spe-
cialization architectures. Smart Memories [20], which when
configured acts like either a streaming engine or a specula-
tive multiprocessor. One of its primary innovations is mecha-
nisms allowing SRAMs to act as either scratchpads or caches
for reuse. Smart Memories is both more complex and more
general than LSSD, though likely less efficient on the regular
workloads we target.

Another example is Charm [40]: composable hetero-
geneous accelerator-rich microprocessor, which integrates
coarse-grain configurable FU blocks and scratchpads for
reuse specialization. A fundamental difference is in the
decoupling of the compute units, reuse structures, and host
cores, allowing concurrent programs to share blocks in
complex ways. Camel [41] augments this with a fine-grained

configurable fabric. These architectures provide more choice
in mapping computation but are more complex.

The Vector-Thread architecture [42] supports unified
vector+multithreading execution, providing flexibility across
data-parallel and irregularly-parallel workloads.

The most similar design in terms of microarchitecture is
MorphoSys [43]. It also embeds a low power TinyRisc core,
integrated with a CGRA, DMA engine and frame buffer.
Here, the frame buffer is not used for data reuse, and the
CGRA is more loosely coupled with the host core.

There are also a number of related models for exploring
energy tradeoffs in heterogeneous environments [44, 45].
Alternate Approaches: An alternate approach to enable fur-
ther specialization when area is constrained is to reduce the
footprint of DSAs themselves. Lyons et al. explore shar-
ing SRAMs across accelerators [46], and their later work ex-
plores virtualizing computation components in FGPAs [47].

Our work leverages the notion of synthesis-time reconfig-
urability, where architectures can be tuned easily for particu-
lar workloads. A prior example of such an approach is Cus-
tom Fit Processors [21], which tunes the VLIW instruction
organization to a workload set.
Principles of Specialization: As mentioned earlier, the work
by Hameed et al. [9] studies the principles of specialization
from the opposite perspective: in identifying the sources of
inefficiency in a general purpose processor. While both our
paper and their paper argue that the best way forward appears
to be augmenting general purpose systems with specializa-
tion techniques, their proposed methods differ significantly.
In contrast to their work, we argue that large (100-operation)
fixed-function units are not necessary to bridge the perfor-
mance gap between general purpose and ASICs, and that a
specialized programmable architecture can come close.

10. CONCLUSION
This work has proposed a programmable accelerator,

LSSD, that pushes the limits of efficiency while retaining
generality. Its design leverages the observation that a com-
mon set of specialization principles governs DSA designs.
By composing mechanisms for these principles, synthesized
LSSD designs are competitive with DSAs, matching their
performance with at most modest area and power (2× to
4×) overheads. Because of their large speedup over an OOO
core (10× to 150×) and much lower area and power, LSSD
design points could also serve as an alternative baseline for
future accelerator research.

As our evaluation has shown, much of LSSD’s per-
formance comes from exploiting concurrency – in fact,
it is more important than all remaining factors across
domains. This speaks to why a specialization fabric like
LSSD works: As long as a programmable specialization
architecture can be tuned to match the parallelism present
in the algorithm, most of the potential performance will be
achieved. Straightforward mechanisms can reap the modest
further benefits from computation, communication, and
reuse specialization. Finally, when considering total system
energy, LSSD’s performance makes its power-overheads
over a DSA inconsequential.

12

11. REFERENCES
[1] R. Colwell, “The chip design game at the end of Moore’s law,” Hot

Chips, 2013. http://www.hotchips.org/wp-
content/uploads/hc_archives/hc25/HC25.15-keynote1-Chipdesign-
epub/HC25.26.190-Keynote1-ChipDesignGame-Colwell-
DARPA.pdf.

[2] B. Sutherland, “No Moore? a golden rule of microchips appears to be
coming to an end,” The Economist, 2013.
http://www.economist.com/news/21589080-golden-rule-microchips-
appears-be-coming-end-no-moore.

[3] R. Courtland, “The end of the shrink,” Spectrum, IEEE, vol. 50,
pp. 26–29, November 2013.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in ASPLOS, 2014.

[5] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “PuDianNao: A polyvalent machine learning
accelerator,” in ASPLOS, 2015.

[6] J. Brown, S. Woodward, B. Bass, and C. Johnson, “IBM Power Edge
of Network Processor: A wire-speed system on a chip,” IEEE Micro,
2011.

[7] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matching,” in ISCA,
2006.

[8] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in MICRO, 2012.

[9] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA, 2010.

[10] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals for
in-memory databases,” in MICRO, 2013.

[11] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating big data
with high-throughput, energy-efficient data partitioning,” in ISCA,
2013.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in MICRO,
2012.

[13] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency &
flexibility in specialized computing,” in ISCA, 2013.

[14] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
The architecture and design of a database processing unit,” in
ASPLOS, 2014.

[15] Arvind and R. S. Nikhil, “Executing a program on the MIT
Tagged-Token Dataflow Architecture,” IEEE Trans. Comput., 1990.

[16] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt,
“Morphcore: An energy-efficient microarchitecture for high
performance ILP and high throughput TLP,” in MICRO, 2012.

[17] Y. Watanabe, J. D. Davis, and D. A. Wood, “Widget: Wisconsin
decoupled grid execution tiles,” in ISCA, 2010.

[18] D. Voitsechov and Y. Etsion, “Single-graph multiple flows: Energy
efficient design alternative for GPGPUs,” in ISCA, 2014.

[19] “Stratix 10 soc highest performance and most power efficient
processing,” 2015.
https://www.altera.com/products/soc/portfolio/stratix-10-
soc/overview.html.

[20] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: A modular reconfigurable architecture.,” in ISCA,
2000.

[21] J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit processors:
Letting applications define architectures,” in MICRO, 1996.

[22] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam,
C. Estan, and B. Robatmili, “A general constraint-centric scheduling
framework for spatial architectures,” in PLDI, 2013.

[23] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “DySER: Unifying functionality and

parallelism specialization for energy efficient computing,” IEEE
Micro, 2012.

[24] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-specific processing on a general-purpose core via
transparent instruction set customization,” in MICRO, 2004.

[25] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose
processing,” in MICRO, 2011.

[26] “Xtensa LX3 customizable DPU, high performance with lexible
I/Os,” 2010. http://ip.cadence.com/uploads/pdf/LX3.pdf.

[27] J. Yiu, The definitive guide to the ARM Cortex-M3. Newnes, 2009.

[28] Transaction Processing Performance Council, “TPC-H benchmark
specification,” Published at http://www. tcp. org/hspec. html, 2008.

[29] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in PLDI, 2005.

[30] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, 2009.

[31] Intel, “Core i7-3770k processor.”
http://ark.intel.com/products/65719/Intel-Core-i7-3770-Processor-
8M-Cache-up-to-3_90-GHz.

[32] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-tile 1.28TFLOPS network-on-chip
in 65nm CMOS,” in ISSCC, 2007.

[33] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended tcams,” in Network Protocols, 2003. Proceedings. 11th IEEE
International Conference on, 2003.

[34] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, “A scalable
high-bandwidth architecture for lossless compression on fpgas,”

[35] V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Breaking
SIMD shackles with an exposed flexible microarchitecture and the
access execute PDG,” in PACT, 2013.

[36] H. Lee, K. Brown, A. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and
K. Olukotun, “Implementing domain-specific languages for
heterogeneous parallel computing,” IEEE Micro.

[37] N. George, H. Lee, D. Novo, T. Rompf, K. Brown, A. Sujeeth,
M. Odersky, K. Olukotun, and P. Ienne, “Hardware system synthesis
from domain-specific languages,” in FPL, 2014.

[38] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for
domain-specific languages,” in PACT, 2011.

[39] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R.
Atreya, M. Odersky, and K. Olukotun, “Optiml: An implicitly parallel
domain-specific language for machine learning,” in ICML, 2011.

[40] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich
microprocessor,” in ISPLED, 2012.

[41] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and
G. Reinman, “Composable accelerator-rich microprocessor enhanced
for adaptivity and longevity,” in ISLPED, 2013.

[42] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,
J. Casper, and K. Asanovic, “The vector-thread architecture.,” in
ISCA, 2004.

[43] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” Computers,
IEEE Transactions on, 2000.

[44] D. H. Woo and H.-H. S. Lee, “Extending Amdahl’s law for
energy-efficient computing in the many-core era,” Computer, 2008.

[45] A. Morad, T. Morad, Y. Leonid, R. Ginosar, and U. Weiser,
“Generalized MultiAmdahl: Optimization of heterogeneous
multi-accelerator soc,” Computer Architecture Letters, 2014.

[46] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The
accelerator store: A shared memory framework for accelerator-based
systems,” ACM Trans. Archit. Code Optim., 2012.

[47] M. Lyons, G.-Y. Wei, and D. Brooks, “Shrink-fit: A framework for
flexible accelerator sizing,” IEEE Comput. Archit. Lett., 2013.

13

