
Cross-Architecture Performance Prediction (XAPP)
Using CPU Code to Predict GPU Performance

Newsha Ardalani Clint Lestourgeon Karthikeyan Sankaralingam Xiaojin Zhu
University of Wisconsin-Madison

{newsha, clint, karu, jerryzhu}@cs.wisc.edu

ABSTRACT
GPUs have become prevalent and more general pur-
pose, but GPU programming remains challenging and
time consuming for the majority of programmers. In
addition, it is not always clear which codes will ben-
efit from getting ported to GPU. Therefore, having a
tool to estimate GPU performance for a piece of code
before writing a GPU implementation is highly desir-
able. To this end, we propose Cross-Architecture Per-
formance Prediction (XAPP), a machine-learning based
technique that uses only single-threaded CPU imple-
mentation to predict GPU performance.

Our paper is built on the two following insights: i)
Execution time on GPU is a function of program prop-
erties and hardware characteristics. ii) By examining a
vast array of previously implemented GPU codes along
with their CPU counterparts, we can use established
machine learning techniques to learn this correlation
between program properties, hardware characteristics
and GPU execution time. We use an adaptive two-level
machine learning solution. Our results show that our
tool is robust and accurate: we achieve 26.9% average
error on a set of 24 real-world kernels. We also discuss
practical usage scenarios for XAPP.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques;
I.3.1 [Hardware Architecture]: Graphics processors

Keywords
GPU, Cross-platform Prediction, Performance Model-
ing, Machine Learning

1. INTRODUCTION
Although GPUs are becoming more general purpose,

GPU programming is still challenging and time-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MICRO-48, December 05-09, 2015 Waikiki, HI, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4034-2/15/12.̇.$15.00.
DOI: http://dx.doi.org/10.1145/2830772.2830780.

consuming. For programmers, the difficulties of GPU
programming include having to think about which
algorithm is suitable, how to structure the parallelism,
how to explicitly manage the memory hierarchy, and
various other intricate details of how program behavior
and the GPU hardware interact. In many cases, only
after spending much time does a programmer know the
performance capability of a piece of code. These chal-
lenges span four broad code development scenarios: i)
starting from scratch with no prior CPU or GPU code
and complete algorithm freedom; ii) case-(i) with an
algorithm provided; iii) working with a large code base
of CPU code with the problem of determining what
pieces (if any) are profitable to port to a GPU; and
iv) determining whether or not a well-defined piece of
CPU code can be ported over to GPU directly without
algorithm redesign/change. In many environments the
above four scenarios get intermingled. This paper is
relevant for all four of these scenarios and develops a
framework to estimate GPU performance before having
to write the GPU code. We define this problem as
CPU-based GPU performance prediction.

We discuss below how CPU-based GPU performance
prediction helps in all four scenarios. (i) and (ii) Start-
ing with a clean slate: Since CPU programming is much
easier than GPU programming, programmers can im-
plement different algorithms for the CPU and use the
CPU-based GPU performance prediction tool to get
speedup estimations for different algorithms which can
then guide them into porting the right algorithm. (iii)
Factoring a large code base (either one large applica-
tion or multiple applications): When programmers start
with a huge CPU code with hundreds of thousands of
lines, CPU-based GPU performance prediction tool can
help to identify the portions of code that are well-suited
for GPUs, and prioritize porting of different regions in
terms of speedup (we demonstrate a concrete end-to-
end usage scenario in Section 6). (iv) Worthwhile to
port a region of CPU code: In some cases, algorithm
change (sometime radical) is required to get high perfor-
mance and some GPU gurus assert that the CPU code
is useless. However, accurate CPU-based GPU predic-
tion can inform the programmer whether algorithmic
change is indeed required when tasked with porting a
region of CPU code.

In summary, CPU-based GPU performance predic-

CPU→GPU
Prediction
[1, 2, 3]

GPU→GPU
Prediction
[8]

Auto-Compile
[4, 5, 6]
[7, 9]

XAPP

Accuracy Low Medium High High
Usability Medium Low Medium High
App Generality High Low Low High
HW Generality High Low High High
Speed High High High High

Table 1: A comparison among the state-of-the-art.

tion has value in many code development scenarios and
with the growing adoption of GPUs will likely be an im-
portant problem. To the best of our knowledge, there
is no known solution for the problem formulated as
single-threaded CPU-based GPU performance predic-
tion, without the GPU code.

An ideal GPU performance prediction framework
should have several key properties: accuracy – the
degree to which the actual and predicted performance
matches; application-generality – being able to model
a wide variety of applications; hardware generality –
being easily extendable for various GPU hardware
platforms; speed – being able to predict performance
quickly; and programmer usability – having low
programmer involvement in the estimation process.

The literature on GPU performance prediction from
GPU code, sketches, and other algorithmically special-
ized models can be repurposed for our problem state-
ment and evaluated using our five metrics [1, 2, 3, 4,
5, 6, 7]. Table 1 categorizes them according to these
five metrics. As shown in the Table, no existing work
can achieve all five properties. We further elaborate on
these works in Section 7.

To satisfy all five properties, we introduce and
evaluate XAPP (GPU Performance eStimator), an au-
tomated performance prediction tool that can provide
highly accurate estimates of GPU performance, when
provided a piece of CPU code prior to developing the
GPU code. We anticipate programmers will use this
tool early in the software development process. Note
that our tool does not predict how to port a code to
GPU, but how much speedup is achievable if ported
into an optimized version.

Our paper is built on the two following insights:
i) GPU performance varies between different pro-
grams and different GPU platforms. Each program
can be characterized by a set of micro-architecture-
independent and architecture-independent properties
that are inherent to the algorithm, such as the mix of
arithmetic operations. These algorithmic properties
can be collected from CPU implementation to gain
insight into GPU performance. ii) By examining a vast
array of previously implemented GPU codes along with
their CPU counterparts, we can use machine learning
(ML) to learn the non-linear relationship between
quantified program features1 collected from the CPU
implementation and GPU execution time measured
from the GPU implementation.

1Program property, program feature or program character-
istic are terms used interchangeably in this paper.

Machine
Learning

tool

F1 F2 .. Fp GPU execution time
Progam0

Progam1

Progamn

Model
f()

Features

F1 F2 .. Fp

New program

Predicted
GPU

execution
time

Training data

Figure 1: XAPP overall flow.

Based on the above observations, we build XAPP,
which is a machine learning tool that predicts GPU ex-
ecution time based on quantitative program properties
derivable from the CPU code. Figure 1 shows the over-
all flow of XAPP. During a one-time training phase (per
GPU platform), it uses a corpus of training data, com-
prising program features and measured GPU execution
time, to learn a function that maps program proper-
ties to GPU execution time. To predict GPU execu-
tion time for a new program, one measures its features
and applies the function to obtain GPU execution time.
XAPP repurposes commonly available binary instru-
mentation tools to quantitatively measure program fea-
tures. We evaluated XAPP using a set of 24 real-world
kernels and compared our speedup prediction2 with the
actual speedup measured on two different GPU plat-
forms. These kernels represent a wide range of appli-
cation behaviors (speedup range of 0.8× to 109×) and
these platforms represent very different GPU cards with
different micro-architectures. Our results show that we
can achieve an average error of 26.9%, on a Maxwell
GPU and 36.0% on a Kepler GPU.

Contributions This paper has two contributions.
The primary contribution of this paper is the observa-
tion that for any GPU platform, GPU execution time
can be formulated in terms of program properties as
variables and GPU hardware characteristics as coeffi-
cients. A variable changes from one application to an-
other, while a coefficient is fixed for all applications
and needs to be captured once for each platform. Here
we define program property as a feature that is inher-
ent to the program or algorithm and is independent
of what hardware the program runs on. For exam-
ple, the mix of arithmetic operations, the working set
size of the data and the number of concurrent opera-
tions are all examples of program properties which can
be quantified and measured in various ways regardless
of what type of machine the program is running on.
Hoste and Eeckhout provide an elaborate treatment and
measurement of such program properties, calling them
microarchitecture-independent characteristics [10]. The
second contribution is a set of engineering techniques to
demonstrate that our tool is effective.

The rest of this paper is organized as follows. Sec-
tion 2 outlines the foundations of our work. Section 3
explains the program properties that correlate with

2We convert our execution time prediction into speedup pre-
diction using measured CPU time.

GPU execution time. Section 4 describes our machine
learning technique. Section 5 and Section 6 present
quantitative evaluation. Section 7 discusses related
work and Section 8 concludes.

2. GPU EXECUTION TIME IS CORRE-
LATED WITH PROGRAM BEHAVIOR

Main Observation: Considering some GPU plat-
form x, our observation is that some mathematical func-
tion maps program properties (features) to GPU exe-
cution time. Considering features f0, f1, f2, ..., mathe-
matically our observation is that there exists an Fx such
that: GPU Execution Time = Fx(f0, f1, f2, ...), where
the only inputs to the function are program properties
and all the other platform-dependent properties are em-
bedded in the function as constants. This observation
is the key novel contribution of our work.

In mathematical terms, our observation is indeed sim-
ple. However, it enables us to collect program proper-
ties from any implementation, including the CPU imple-
mentation, GPU implementation or algorithm. Given
this observation, we take the following steps:

1. Feature definition (Section 3) The first step
toward learning this function is defining the set
(ideally the exhaustive set) of features that are in-
puts to this function.

2. Function discovery (Section 4) With the
above step completed, mechanistic models, ma-
chine learning, simulated annealing, deep neural
networks, or various other modeling, optimization,
or learning techniques, can be used to learn this
function. It is presumed that learning the exact
function is practically impossible and hence some
analysis is required on the learned function.

3. Analysis (Section 5,6) Once this function is
learned, one can analyze the function to test if
it is meaningful given human understanding of
programs and how they actually interact with
hardware, measure the accuracy on some real
meaningful test cases, and consider other metrics.

Given the main observation, performing the above
steps is quite straight-forward engineering. These steps
are however necessary to demonstrate that the problem,
as formulated, is solvable (the function can be discov-
ered) in a meaningful manner, which is the focus of the
rest of this paper.

We conclude with a comment on the role of GPU x.
Observe that we defined that a unique function exists
for each GPU platform. Implicitly, this captures the
role of the hardware. We could have defined a broader
problem that characterizes GPU x with its own fea-
tures x0, x1, .. to discover a single universal function G,
which can predict execution time for any GPU plat-
form, and any application: GPU Execution Time =
G(x0, x1, x2, ..., f0, f1, f2, ...). Undoubtedly discovering
G is significantly more useful than having to discover
Fx for each GPU platform. Intuitively discovering G
seems very hard, and we instead seek to discover Fx().

3. DEFINING PLAUSIBLE PROGRAM
FEATURES

Determining the set of features that are required
for defining Fx(f0, f1, f2, ...) involves two difficult
challenges: discovering the explanatory features and
formulating them in quantifiable ways. There is also
a subtle connection between feature definition and
function discovery. If a function discovery technique
can automatically learn what are the important
features, then one can be aggressive and include
features that may ultimately not be necessary. There
is no algorithmic way to define a list of features. We
started with a list of features that have been used in
previous workload characterizations, and defined a
few additional features that seem plausibly related to
GPU performance. GPU execution time is dictated
strongly by the memory access pattern and how well
it is coalescable, branching behavior and how it causes
warp divergence, how well shared memory can be used
to conserve bandwidth, and even somewhat esoteric
phenomenon like bank conflicts. This intuition on
GPU hardware serves as the guide to determining a set
of good explanatory features.

Table 2 lists the set of all program properties we have
used in our model construction, and how each feature
is correlated with performance on GPU hardware. Sec-
tion 4.4 describes the tools we use to measures these
properties on applications. Below we describe a few ex-
ample features to outline how we arrived at some of the
non straight-forward features.

shMemBW and noConflict Bank conflicts in
shared memory are known to have negative impact
on GPU performance and it is more likely to happen
for certain memory access patterns. For example,
applications with regular memory access patterns,
where the strides of accesses are either 2-word, 4-word,
8-word, 16-word or 32-word will get a 2-way, 4-way,
8-way, 16-way or 32-way bank conflict, respectively.
In absence of any bank conflict, 32 (16) words can be
read from 32 (16) banks every clock cycle for GPU
platforms with compute capability>3.X (compute ca-
pability<3.X), but an X-way bank conflict reduces the
bank effectiveness by 1/X. Therefore, we will estimate

bank-effectiveness (shMemBW) by
∑5

i=0
MWr[2

i]
2i ,

where MW is a window of 32 consecutive memory
operations generated by the same PC, and MWr is a
MW window with constant stride. MWr[2i] represents
the number of MWr windows with stride = 2i, normal-
ized to the number of windows across the application
runtime. noConflict, specifically captures the case
where the stride is an odd number.

gMemBW and coalesced Non-coalesced memory
accesses are also known to hurt GPU performance. At
every load/store operation, if a warp can coalesce its
memory accesses into one single memory transaction,
it achieves 100% memory transaction utilization. If a
warp coalesces all of its memory accesses into two mem-
ory transactions, it achieves 50% memory transaction
utilization. If a warp coalesces all of its memory accesses

Feature Range Description Relevance for GPU speedup

ilp.(25, 28, 211, 216) 1-Window
Size

Avg num. of independent operations in a window
IW, where IW of sizes (25, 28, 211, 216) are examined.

Captures the potential for paral-
lelism.

mem/ctrl/int 0 -1 Fraction of the number of operations that are mem-
ory/control/integer arithmetic operations.

coldRef 0 - 1 Fraction of memory references that are cold misses,
assuming a block size of 128 B.

Captures cache effectiveness.

reuseDist2 0 - 1 Fraction of memory references that have a reuse dis-
tance of less than 2.

Captures cache effectiveness.

ninst 0 - inf Total number of instructions
fp/dp 0 -1 Fraction of single-/double-precision floating-point

arithmetic operations.
stride0 0 - 1 Group every 32 consecutive instances of a static

load/store into a window, calculate the fraction of
windows in which all instances access the same mem-
ory address.

Captures suitability for constant
memory.

noConflict 0 - 1 See Section 3 Captures bank conflicts in shared
memory.

coalesced 0 - 1 See Section 3 Captures global memory coalescing.
shMemBW 0 - 1 See Section 3 Captures shared memory bank-

effectiveness.
gMemBW 0 - 1 See Section 3 Captures memory throughput.
blocks/pages 0 - #blocks Avg. number of memory accesses into a block of 128

B/4KB granularity.
Captures locality & cache effective-
ness.

ilpRate 1 - 16384 ILP growth rate when window size changes from 32
to 16384.

Captures amenability to GPU’s
many-threaded model.

mulf/divf 0 - 1 Fraction of single-precision floating-point operations
that are multiplication/division operations.

Captures the effect of a GPU’s
abundant mul/div units.

sqrtf/expf/sincosf 0 - 1 Fraction of single-precision floating-point operations
that are square root/ exponential or logarithmic/
sine or cosine functions.

Captures the effect of SFU.

Lbdiv.(24 − 210) 0 - 1 See Section 3 Captures the branching pattern.

Table 2: List of program properties used as input features.

into three memory transactions, it achieves 33% mem-
ory transaction utilization. In the worst case scenario,
a warp generates 32 different memory transactions for
every load/store operation. This reduces the utilization
by 1/32. We estimate effective memory transaction uti-

lization (gMemBW) by
∑32

i=1
MWt[i]

i , where MWt[i] is
the number of MW windows which coalesce into i mem-
ory transactions, normalized to the number of windows
across the application runtime. coalesced specifically
captures the case where i is one.

Lbdiv Another program feature that could degrade
performance is branch divergence. Consider the local
branch history per branch instruction, divided into con-
secutive windows of X decisions, WX . We estimate
branch divergence (LbdivX) as the fraction of the num-
ber of WX windows where branches within them are not
going in the same direction.

ILPRate GPUs follow the SIMT execution model
that requires the program (algorithm) to be partition-
able into somewhat coarse-grained regions that can ex-
ecute concurrently. We define ILPRate as the ratio of
the ILP in a large window (16384) to the ILP in a small
window (32) to capture the potential for coarse-grain
parallelism.

4. MACHINE LEARNING MODEL
After defining program properties (input features in

machine learning terminology), the next step is to dis-
cover the function that captures the correlation between

GPU execution time and CPU program properties. In
our work we use machine-learning (specifically an en-
semble of regression learners for which we include a
short primer in the Appendix). This section explains
our machine learning (ML) technique choice and its con-
struction in detail. We emphasize there is nothing novel
in our ML technique, and it is a straight-forward ap-
plication of established ML techniques. We define the
term data point first. A data point is a pair consisting of
single-threaded CPU code and the corresponding GPU
code. The CPU code is characterized in the form of a
vector – where its program properties are the elements
of the vector – and the GPU code is characterized by
its execution time.

4.1 Overview
We employ an adaptive, two-level machine learning

technique. We begin with regression as our base
learner for the following reasons: (1) Regression is a
mature, widely-used ML technique, that can capture
non-linearity using derived features, such as pairwise
interaction and higher-order polynomials. (2) It is a
natural fit for problems with real-valued features and
real-valued outputs.

We then combine the predictions of multiple learners
to make the final prediction. This second level is critical
in our technique as different applications require differ-
ent sets of features to explain their execution time, and
we do not have enough training data to allow all features

Outlier removal engine

0 1 2 3 4 5 6 7 .. m
Training set

0 1 2 .. n 70 1 2 .. n 70 1 2 .. n 7

Bootstrap sets
Set 0 Set 1 Set 2

0 1 2 .. n
Set p

Ensemble predictor

Learner 0

Prediction

Test set

Learner 1 Learner 2 Learner p

Figure 2: Model construction overview.

appear in one model without the risk of overfitting. In-
stead, we construct smaller models and automatically
decide which models are likely to explain the execution
time better. The decision on which models to pick is
simple - we select 60% of the most similar models in
terms of the output. This technique is known as en-
semble prediction, and theoretical and empirical results
show that it improves the base learner accuracy [11, 12,
13]. In Subsection 5.3, we discuss the analyses we made
that ultimately lead us to use an ensemble solution.

4.2 Implementation Details
We employ an adaptive two-level machine learning

technique. We explain our model construction proce-
dure, which entails the details of the regression model
at the first level and the ensemble algorithm at the secod
level.

Level 1: Regression We use forward feature selec-
tion stepwise regression [14] as our base learner. What
this means is that every model starts with with zero fea-
tures, then we evaluate all the models with one feature,
and add the feature that yields the best performance
(the highest adjusted R2) to the model. Next, we eval-
uate all models with an extra feature and add the one
that yields the best performance to the previous model.
As we add new features, we also consider the interac-
tion terms with existing features in the model, and add
them only if the performance improvement is above a
threshold, θ1. We repeat this process until the improve-
ment from the new feature is less than a threshold, θ2.
Empirically, we found θ1 = 0.0095 and θ2 = 0 gener-
ates good accuracy models. Table 3 shows an example
byproduct of this stage. To reduce the space search,
we use our expert knowledge and enforce the number
of instructions (ninst) as a multiplicative term before
the model construction starts. Jia et. al. elaborate this
technique in detail [15].

Level 2: Ensemble Prediction Figure 2 gives an
overview of our ensemble prediction technique. We
begin by randomly partitioning our dataset into two
mutually-exclusive sets of train and test, where the
test set is put aside for evaluation in the end. We then
generate p new training sets, each of which is generated
by sampling m training examples drawn randomly
with replacement from the original training set of m
items. Such a sample is called a bootsrtap sets, and the

technique is called bootstrap aggregating (or bagging).
By sampling with replacement, we mean that examples
can appear multiple times in each bootstrap set. On
average, each set contains 63.2% unique examples of
the original training set, that is n ≈ 0.63m [13]. We
then construct p individual models3 for p bootstrap
replicates. For any new program, we would have p
execution time predictions, from which we filter out
the outliers, and then get the arithmetic mean of the
result. Our outlier removal technique is simple - sort
all the predictions in numerical order, find the median
point and only pick the 30% of prediction instances
above and below that point. Finally, we turn GPU
execution time prediction into speedup prediction using
measured CPU time.

4.3 Training Data and Test Data
We examined many prevalent benchmarks suites,

namely Lonestar [16], Parsec subset [17], Parboil [18],
Rodinia [19], NAS subset [20, 21] and some in-house
benchmarks based on the throughput kernels [22]. We
also looked at various source code repositories like
https://hpcforge.org/. Across benchmarks, we
consider each kernel as a piece of training data, since
kernels within a benchmark could have very different
behavior. The criteria for something to serve as train
data was the following: i) It must contain correspond-
ing CPU source code written in C or C++; ii) The
algorithm used in the GPU and CPU case should be
similar. We consider two algorithms to be similar as
long as the computational complexity matches. That
is, common optimizations (such as loop reordering, loop
blocking and overlapped tiling) that change the order
of memory accesses, but do not change the number
of memory operations, are not algorithmic mismatch
and can be used in our dataset. To give an example,
matrix multiplication implementation on GPU requires
data layout transformation to make the best use of
shared memory. We consider these modifications
non-algorithmic and can serve as a valid candidate in
our training set. iii) The CPU source code should have
well defined regions that map to kernels on the GPU
- to avoid human error we discarded programs where
this was not obvious or clear.

We also developed our own low-speedup microbench-
marks to include some obviously ill-suited code for GPU
in our dataset. At this stage, we obtained a total of 42
kernels (original kernels).

We managed to increase the number of datapoints by
80 using a combination of input modification and code
modification (derived kernels). (1) Modifying the input
parameters of a program generally changes its speedup
and feature vector, and hence it can be considered as a
new data point. (2) Based on reading the description
of the Lonestar kernels, we defined related problems.
We then manually developed alternate CPU and GPU
implementations, ensuring the above three criteria were

3In this paper, we use base learner and individual model in-
terchangably, the latter being an informal but more intuitive
term.

https://hpcforge.org/

Model ninst*(Lbdiv32 +mem +gMemBW +gMemBW:Lbdiv32 +pages +pages:Lbdiv32 +stride0 +stride0:pages +dp +blocks

Coefficient 0.0290038 0.0126532 -0.0228180 -0.0070995 -0.0380114 0.1076867 -0.0027127 -0.0196313 -0.0045341 0.0968233

Adjusted R2 0.1781 0.2704 0.3173 0.3685 0.4697 0.5061 0.5412 0.5649 0.5776

Model +blocks:pages +shMemBW +shMemBW:mem +ilp256 +ilp256:stride0 +arith +div +div:mem +coalesced +coldRef)

Coefficient 0.0010343 -0.0036923 -0.0072603 -0.0014900 -0.0036693 -0.0016565 -0.0057103 -0.0064187 0.0130530 0.0017546

Adjusted R2 0.596 0.6024 0.6634 0.6678 0.6915 0.6969 0.699 0.7152 0.7162 0.717

Table 3: An instance of a regression model generated at first level.

Platform 1 Platform 2

Microarchitecture Maxwell Kepler
GPU model GTX 750 GTX 660 Ti
SMs 7 14
cores per SM 192 192
Core freq. 1.32 GHz 0.98 GHz
Memory freq. 2.5 GHz 3 GHz

CPU model: Intel Xeon Processor E3-1241 v3
(8M Cache, 3.50 GHz)

Table 4: Hardware platforms pecifications.

adhered to. The point of interest here is that this pro-
vides data points with different speedup and different
features. For example, XORing an existing conditional
statement with random values can change the code’s
branching behavior.

Our final dataset contains 122 datapoints, which are
well spread across the speedup range as follows: 24 in
(1-4], 22 in (4-10], 25 in (10,25], 36 in (25-100], and 16
in (100-∞). This shows we have representative data
points for the interesting parts of the speedup space.

To evaluate the accuracy of our model in the end,
we need a test set which is not used during model con-
struction. The criteria for something to serve as a test
set was the following; i) It should not appear in the
train set. ii) It should be a real-world benchmark from
the publicly-available benchmark suite. We made an
exception on low-speedup benchmarks and allow our
microbenchmarks appear in the test set, since there are
few low-speedup kernels in available benchmark suites.
iii) It should be unique in that it does not have a mod-
ified input or modified kernel counterpart in the train
set. Only 24 kernels satisfy these conditions. We refer
to this subset as QFT (Qualified for Test). The speedup
span for QFT is 0.8 to 109. We always select our test
set (10 datapoints) randomly from QFT .

4.4 Hardware Platforms and Software Infras-
tructure

To demonstrate robustness, we considered two dif-
ferent hardware platforms (summarized in Table 4) for
which we automatically predict speedups. All the ex-
planations in this paper are for Platform-1, and we use
Platform-2 to test the HW generality property. We used
MICA [10] and Pin [23] to obtain program properties.
The tools that we wrote for Lbdiv and others (high-
lighted in grey in Table 2) are fairly straightforward
and are hence not described in further detail. We manu-
ally examined each benchmark, identified the CPU code
that corresponds to each GPU kernel in an applica-
tion and added instrumentation hooks to collect data
only for those regions. For implementing the regression

Kernel Suite Actual Predicted Relative
Speedup Speedup Error%

µ3 µbench 1.30 1.29 0.5
srad1 4 rodinia 3.70 3.63 1.9
ftv6 nas 6.20 6.63 7.0
bkprp2 rodinia 10.0 9.43 5.7
ftv2 nas 10.4 14.7 41
cfd2 rodinia 23.3 28.4 21.9
srad1 3 rodinia 34.4 15.6 54.6
nn1 rodinia 39.7 23.3 41.4
srad1 1 rodinia 108 76.4 29.8
srad1 5 rodinia 109 87.3 20.0
Average 22.4
Gmean 11.6

Table 5: Accuracy of a representative ensemble model.

model itself, we used the R package [24]. To obtain the
program properties i.e. features, we executed MICA or
PIN on the training and test data. To obtain the ex-
ecution time or speedup, i.e. the output response, we
measured execution time using performance counters.

5. RESULTS AND ANALYSIS
Recall that we are using an ensemble technique. Our

ensemble is a set of 100 individual models trained on
100 different subsets of the training set, whose individ-
ual predictions are aggregated into one prediction. The
aggregation process selects 60 of the most similar pre-
dictions and get their average.

In the next Subsections, we first show the accuracy of
our model on one test set. We then show our model is
robust by presenting its accuracy on 100 different test
sets. This is done by going back to our 122-datapoint
original dataset, randomly selecting 10 datapoints from
QFT , and using the rest for training, and repeat this
process 100 times. We also present the accuracy of our
technique for low-speedup applications. In the next
Subsection, we discuss why we need to use ensemble
solution. We then try to provide insight into our en-
semble result. We then compare our solution against
existing solutions, in terms of the metrics introduced in
Section 1. Finally, we list the limitations and extensions
of our tool.

5.1 Accuracy
Summary: Table 5 shows the accuracy of our tool for

10 kernels randomly selected from QFT. The average
and geometric mean of the absolute values of the relative
errors is 22.4% and 11.6%, respectively; Overall, XAPP
is accurate.

To study the accuracy of a model, the common prac-
tice is to use the model to predict the output for a

0 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
7

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9

Test sets

0%

10%

20%

30%

40%

50%

60%
P
e
rc

e
n
ta

g
e
 E

rr
o
r

CV_error=26.9%

Figure 3: Ensemble technique accuracy across 100 different sets of test and train.
set of diverse datapoints that never appeared in the
training process, measure the prediction accuracy for
each datapoint and report the average accuracy across
these datapoints as the model accuracy. We use the
absolute value of the relative error ((abs(Measured −
Predicted)/Measured) ∗ 100) to evaluate the accuracy
for each datapoint.

Table 5 shows the accuracy of our model on a set of 10
datapoints (programs), randomly selected from QFT .
We can see that our model is able to predict speedup ac-
curately for a diverse set of applications (speedup span
of 1.3 to 109), and achieve an average accuracy (rela-
tive error) of 22.4% and geometric mean of 11.6%, with
minimum error of 0.5% and maximum error of 54.6%.

5.2 Robustness
Summary: Figure 3 shows the accuracy of our ensem-

ble technique for 100 different test sets. Across these
test sets, it maintains an average error (CVerror) of
26.9%. Overall XAPP is very robust.

A machine learning technique is robust, if any given
set of test or train generates similar models with similar
accuracy [25]. To evaluate the robustness of our tech-
nique, we draw 100 different pairs of test and train, and
construct 100 different ensemble models4 , as outlined in
Subsection 4.2. Figure 3 shows the average, minimum
and maximum accuracy (relative error) of each ensem-
ble model evaluated on its test set (of 10 datapoints
each). The models are sorted along the X-axis based on
their average error. Across 100 different test sets, the
minimum, average and maximum relative error is 15%,
26.9%, and 46%. If we allow non-QFT datapoints to
appear in the test set, accuracy would be even higher -
minimum, average and maximum error of 10%, 23.5%,
and 36%.The average error across 100 different test sets
is referred to as cross-validation error (CVerror). This
figure also shows that in the majority of test sets, there
is at least one datapoint which has a prediction error of
above 50%. These are usually low-speedup applications
with high sensitivity to small error. An example would
be predicting µ1 as 1.25, when the actual speedup was
0.8, as this will be regarded as 56% relative error, but is
still a reasonable estimation of low-speedup. Next, we
show our accuracy for all low-speedup applications that
appeared across different test sets.

4It is a coincidence that the number of ensemble models is
the same as the number of individual models within each
ensemble.

btre
e2

sra
d1_4 4 2 pf1 3 5 1

Benchmark

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

G
PU

 s
pe

ed
up Actual speedup

Predicted speedup

Figure 4: Low-speedup prediction accuracy.

sra
d1_5

sra
d1_1 nn1

sra
d1_3

euler3d2
bfs2

euler3d1
ftv

20

backp
rop2

ftv
24 sc1

sra
d2_2

ftv
26
btre

e1
ftv

27

euler3d4
btre

e2

sra
d1_4 4 2 pf1 3 5 1

Benchmark

1.0

10.0

100.0

G
PU

 s
pe

ed
up

Actual speedup
Predicted speedup

Figure 5: Accuracy results across all QFT kernels.

Low-Speedup Applications Users are often inter-
ested in knowing whether it is worthwhile to port their
code into another architecture, given the time cost and
performance benefits. We consider applications with a
GPU speedup of less than 4 against a single-threaded
CPU implementation to be low-speedup, that is, not
worth the porting effort. Being able to classify appli-
cations into low and high speedups is perhaps the most
important facet of the model. Figure 4 shows the ac-
tual and predicted speedup for all of the low-speedup
kernels in QFT . As shown, we always predict the range
correctly, and are often close to the actual value.

QFT Applications Figure 5 shows the average ac-
curacy results for each QFT datapoint that appeared
across the test sets of all 100 ensemble models. As
shown, we always predict the range correctly, and are
often close to the actual value.

5.3 Why Adaptive Ensemble Solution?
Summary: There are many good individual models as

well as many bad individual models. Half of the models
that are considered good for one application are usually
bad for another application. We need an adaptive so-
lution to automatically separate good individual models
from bad individual models, per application.

Recall that one ensemble model is a collection of 100
individual models trained on 100 different subsets of

10 1 39 47 53 55 57 6 63 11 70 66 24 49 16 51 77 97 80 41 15 61 69 43 84 60 29 27 18 93 59 74 99 64 67 50 36 22 79 72 82 62 42 76 19 58 2 12 14 73 38 32 78 94 21 88 26 81 28 35 37 71 52 34 44 98 91 96 30 89 68 23 92 4 75 48 8 54 95 17 65 20 90 87 85 86 10
0 3 7 13 40 56 46 45 83 31 5 25 9 33

0
10
20
30
40

Actual Speedup=10.0
(a) bkprp2

20 2 23 24 27 30 39 41 44 49 59 60 6 61 64 65 68 69 70 71 72 73 81 82 85 87 90 9 98 22 28 18 16 95 7 58 32 80 99 40 66 42 57 3 15 11 62 67 51 10
0 89 19 83 79 37 74 29 26 54 91 96 97 53 5 46 92 47 12 56 35 93 36 75 55 78 14 52 38 33 77 63 84 17 34 1 43 31 25 50 86 8 48 76 13 21 45 88 4 94 10

Models

0
50

100
150
200

Sp
ee

du
p

Pr
ed

ic
tio

n

Actual Speedup=23.3
(b) cfd2

Figure 6: High sensitivity of single learners to the choice of train and how ensemble and outlier removal can fix it.

a 0
b 24 0
c 25 28 0
d 17 28 23 0
e 23 22 27 25 0
f 26 24 24 20 25 0
g 28 19 28 23 18 24 0
h 26 24 28 22 23 20 21 0
i 25 24 28 25 24 26 20 23 0
j 28 18 27 24 19 24 5 20 21 0

a b c d e f g h i j

Table 6: Model disagreement Matrix.

the training set. For a given program, we observed that
there are good individual models and bad individual
models, which provide a wide range of predictions, with
varying degrees of accuracy. Figure 6(a) shows speedup
predictions for bkprop2, varying from 1 to 40, depending
on which individual model is picked. We also observed
that what we identify as a good or bad individual model
depends on the application. Figure 6(b) shows speedup
predictions for another program, cfd2. If we identify
the 60 individual models around the model with median
prediction (between the two vertical dashed lines) as
good individual models and the ones outside this range
as bad individual models, we can see that 24 models
that are bad for bkprop2 are actually good for cfd2.
We call this phenomenon model disagreement, and we
show that this is prevalent between any two programs;
Table 6 shows model disagreement across the 10 differ-
ent programs that appeared in Table 5, now labeled a
through j. The value at row m and column n shows
the number of models that are good for program m but
bad for program n. By definition, this Table is sym-
metric. We can see that almost half of the models that
are good for one program are actually bad for another
program. To quantify this in terms of error, we can
consider a simple example. If we use j’s 60 best models
to predict performance for programs a through j, the
accuracy would have been 23%, 127%, 237%, 38%, 31%,
14%, 28%, 37%, and 45%, in order. These error num-
bers show that good models for j are among the very
bad models for b, c and i. Therefore, we need an adap-
tive ensemble technique that selects different models for
each test point.

Another observation that we can make from Figure 6
is that the number of good models is significantly more
than the number of bad models. Therefore, if we can
automatically detect the good models and drop the bad
models, then the average prediction across the good

mem
Lbdiv32

gMemBW
Lbdiv16

gMemBW:Lb
div32

coalesce
d
coldRef dp

pages

Lbdiv1024

Features

40%
50%
60%
70%
80%
90%

100%

Fr
eq

ue
nc

y

100% 100% 100%

82%

70% 67%
61% 58% 54% 50%

Figure 7: Highly correlated features with GPU
execution time.

models would be a good indicator of the actual speedup.
We refer to this step as outlier removal analysis, and we
use a simple heuristic - for each application, we simply
select 60% of the most similar models in terms of pre-
dictions. We refer to this percentage as the inclusion
ratio, and we study how the inclusion ratio affects the
overall accuracy. By sweeping the inclusion ration from
0% (using the median as speedup) to 100% (including
all predictions) by steps of 20, the accuracy (CVerror)
changes as follows: 26.0% at 0%, 25.6% at 20%, 24.2%
at 40%, 22.4% at 60%, 24.0% at 80% and 49.3% at
100%.

5.4 Model Interpretation
Summary: Figure 7 shows the top 10 most frequent

features that appeared across 100 individual models,
used in the construction of an ensemble. All features
are intuitively correlated with GPU execution time.

Ensemble methods are popular ML techniques that
boost the accuracy and stability of the base learner at
the cost of comprehensibility [26, 27, 28, 29]. The result
of our ensemble technique is 100 individual models of 17
features each, each of which explains part of the feature
space, whose predictions are aggregated into one predic-
tion after outlier removal analysis. The large number
of individual models and the adaptive outlier removal
analysis that changes from one benchmark to another,
makes the ensemble outcome hard to interpret. Increas-
ing the comprehensibility of the ensemble model comes
at the cost of reduced accuracy (∼ 40% drop). [27, 28,
29]. Moreover, our main goal is to provide a tool with
high predictive accuracy, capturing correlation and not
necessarily causation.

To gain insight into the final complex model, we

looked into the set of all features that appear across
all individual models and measured the frequency of
their occurrence across all models. Figure 7 shows the
top 10 most frequent feature combinations. Of all the
possible feature combinations (27 single features +
C(27, 2) pairwise features = 378), 143 unique features
appeared across all models. The correlation of GPU
execution time with memory ratio (mem), branch
divergence ratio (Lbdiv), effective memory throughput
(gMemBW and coallesced), streaming/non-streaming
behavior (coldRef and pages) and dominance of
double-point arithmetic vs. integer or float arithmetic
(dp) is intuitive. Therefore, we only focus on the
non-intuitive pairwise feature.

gMemBW × Lbdiv32, which appeared across
70 models (with negative sign) captures how perfect
memory coalescing (high gMemBW) can cancel out
the increasing impact of high branch divergence (high
Lbdiv32) on execution time.

5.5 Other Metrics
We now evaluate our tool in terms of the other four

properties introduced in Section 1.

Programmer Usability indicates how much pro-
grammer involvement is required to make a CPU-based
GPU speedup prediction. While some analytical tech-
niques require GPU code to estimate program charac-
teristics, others require extensive source code modifica-
tion or GPU code sketches. We deem these techniques
to have low and medium usability, respectively. Ones
that can work with just the single-threaded CPU imple-
mentation have high usability. In our methodology, a
user only needs to tag her regions of interest. The entire
process is automated, hence XAPP has high usability.

Application Generality indicates if the technique
can target any application with any level of complex-
ity. There is nothing inherent in our machine learning
approach that makes it incapable of predicting certain
application types. We have a wide range of application
in our dataset, from non-amenable to GPU, to irregular,
to highly regular (speedup span of 0.8 to 321). Hence,
we claim XAPP has high application generality.

HW Generality refers to whether the technique
can easily adapt to various GPU hardware platforms.
We use two different GPU cards with different micro-
architectures as outlined in Table 4. The CVerror is 27%
and 36% on platform 1 and 2, respectively.

Speed refers to the time needed by the tool to make
a prediction. Our tool’s runtime overhead can be cat-
egorized into two parts. (1) One-time Overhead: Mea-
suring platform-independent program features for the
train set needs to be done only once (by us) and is pro-
vided with XAPP. Users must obtain the GPU execu-
tion time for all datapoints in the train set for each plat-
form of interest. This requires about 30 minutes. Model
construction, a one-time occurrence per GPU platform,
takes about 3 hours. (2) Recurring Ovehread: The
user needs to gather features for the candidate program.
This takes seconds to minutes — the instrumentation

Good for Easy for XAPP Prediction
GPU Human prediction space

No Yes No TN CS1
No No No TN CS2,K2
No Yes Yes FP -
No No Yes FP -
Yes Yes Yes TP CS2,K3
Yes No Yes TP CS3
Yes Yes No FN -
Yes No No FN CS2,K1

Table 7: XAPP prediction space. The last column
shows example code in case-studies in Figure 8.

run introduces a 10× to 20× slowdown to native execu-
tion. Speedup projection completes in milliseconds —
it is a matter of computing the function obtained in the
previous phase.

5.6 Limitations and Extensions
Our current model cannot capture the impact of tex-

ture memory and constant memory. However, this is
not a fundamental limitation of the technique, and is
more a limitation of the small dataset. Our original
dataset had only 5 kernels which use texture memory
and/or constant memory. This issue can be resolved by
adding more kernels with texture memory or constant
memory to our training set.

6. END TO END CASE STUDIES
We now describe some end-to-end case studies that

explain how our tool could perform in the wild.

6.1 Is XAPP’s speedup recommendation
always correct?

Our test data shows impressive accuracy and range
match on all test cases. But a natural question is
whether XAPP is always correct. We consider this both
from software development terms and from machine
learning terms. From a software development perspec-
tive, we consider whether a piece of code is easy for a
human to predict correctly or not (this is subjective
of course and depends on programmer expertise etc.).
The two other variables are whether or not the code
is good for GPU (provides appreciable speedup), and
then whether it is true positive (TP), true negative
(TN), false positive (FP) or false negative (FN) from
machine learning terms. If the prediction is in the right
level, we deem it true positive/negative, else deem it
false positive/negative. Table 7 shows the entire space.

We took three CPU applications for which optimized
GPU code already exist and compared the measured
speedup to the predicted speedup. Figure 8 shows the
interesting regions of these CPU codes. The boxes in-
dicate percentage execution based on profiling informa-
tion for that region of the CPU code. These applica-
tions were picked intentionally to specifically highlight
that our tool is not perfect. XAPP is not meant to be
used as a black box, nor is its output to be treated as
definitive. We note here that we went out of our way

for(j = 0; j<Nparticles; j++){
 int index = -1;
 for(int x = 0; x<Nparticles; x++){
 if(CDF[x] >= u[j]){
 index = x; break;
 }
 }
 if(index == -1) i = Nparticles - 1;
 else i = index;
 if(i == -1) i = Nparticles-1;
 xj[j] = arrayX[i]; yj[j] = arrayY[i];
}

Predicted Measured % time
1.93 1.96 73.9%

(a) Case study I

for (i=0; i<Ne; i++)
 image2[i] = expf(image[i]/255);
....
 for (j=0; j<Nc; j++){

for (i=0; i<Nr; i++){
 k = i + Nr*j; Jc = image[k];

 dN[k] = image[iN[i] + Nr*j] - Jc;
 dS[k] = image[iS[i] + Nr*j] - Jc;
 dW[k] = image[i + Nr*jW[j]] - Jc;
 dE[k] = image[i + Nr*jE[j]] - Jc;
 G2 = (dN[k]*dN[k] + dS[k]*dS[k]

+ dW[k]*dW[k] + dE[k]*dE[k]) / (Jc*Jc);
 L = (dN[k] + dS[k] + dW[k] + dE[k]) / Jc;
 num = (0.5*G2) - ((1.0/16.0)*(L*L));
 den = 1 + (.25*L); qsqr = num/(den*den);
 den = (qsqr-q0sqr) / (q0sqr * (1+q0sqr));
 c[k] = 1.0 / (1.0+den);
 if (c[k] < 0) c[k] = 0;
 else if (c[k] > 1) c[k] = 1;
}

 }
....
 for (j=0; j<Nc; j++){

for (i=0; i<Nr; i++){
 k = i + Nr*j;
 cN = c[k]; cS = c[iS[i] + Nr*j];
 cW = c[k]; cE = c[i + Nr*jE[j]];
 D = cN*dN[k] + cS*dS[k] + cW*dW[k] + cE*dE[k];
 image[k] = image[k] + 0.25*lambda*D;
}

 }
}
....
for (i=0; i<Ne; i++)
 image[i] = logf(image[i])*255;

Predicted Measured % time
76.4 108 0.3%

Predicted Measured % time
15.6 34.4 88%

Predicted Measured % time
3.63 3.7 8.8%

Predicted Measured % time
87.34 109 0.4%

K0

K1

K2

K3

(b) Case study II

for(int x = 0; x < w; x++){
 cameraX = 2 * x / float(w) - 1;
 rayDirX = dirX + planeX * cameraX;
 rayDirY = dirY + planeY * cameraX;
 float deltaDistX = sqrtf(1+(rayDirY*rayDirY)/(rayDirX*rayDirX));
 float deltaDistY = sqrtf(1+(rayDirX*rayDirX)/(rayDirY*rayDirY));
 hit = 0;
 if (rayDirX < 0){

stepX = -1;
 sideDistX = (rayPosX - mapX) * deltaDistX;
 }else{
 stepX = 1;
 sideDistX = (mapX + 1.0 - rayPosX) * deltaDistX;
 }
 if (rayDirY < 0){
 stepY = -1; sideDistY = (rayPosY - mapY) * deltaDistY;
 }else{
 stepY = 1; sideDistY = (mapY + 1.0 - rayPosY) * deltaDistY;
 }
 while (hit == 0){
 if (sideDistX < sideDistY){
 sideDistX += deltaDistX; mapX += stepX; side = 0;
 }else{
 sideDistY += deltaDistY; mapY += stepY; side = 1;
 }
 if (worldMap[mapX][mapY] > 0) hit = 1;
 }
 if (side == 0)
 perpWallDist = fabs((mapX-rayPosX+(1-stepX)/2)/rayDirX);
 else perpWallDist = fabs((mapY-rayPosY+(1-stepY)/2)/rayDirY);
 int lineHeight = abs(int(h / perpWallDist));
 int drawStart = -lineHeight / 2 + h / 2;
 if(drawStart < 0) drawStart = 0;
 int drawEnd = lineHeight / 2 + h / 2;
 if(drawEnd >= h) drawEnd = h - 1;
}

Predicted Measured % time
21.29 21.1 99%

(c) Case study III

Figure 8: Case study kernel regions

to obtain these examples - some of these are from the
train data set. We resorted to train data, since we did
not find these combinations with easy to explain code

in our test data. In the Table, an empty cell indicates
that we could not get an easily explainable example. We
emphasize this spread and behavior is the uncommon
case for XAPP, but is possible.

In summary, our tool can have false positives and
false negatives and cases where it could be easy for a
human to estimate. We recommend using XAPP as an
adviser to get an estimate, but ultimately users should
pay attention. As we get more training data, XAPP’s
accuracy should improve even further. We discuss each
of the case studies in detail below.

CS1: Bad for GPU, Easy for Human, True -ve.
In this example, the code consists of a number of con-

ditional operations, data dependent for loops and con-
ditional break statements. The structure of this kernel
makes it easy for a human to predict that it is a bad fit
for GPU, and XAPP corroborates this.

CS2,K1: Good for GPU, Hard for Human, False -ve.
In this case study, the code contains a number of

regular memory accesses, computations that have hard-
ware support on the GPU and memory accesses that are
heavily data dependent, making for an awkward com-
bination of features. This is deemed hard for a human
since it would be difficult to gain an understanding of
the memory access pattern and consequently GPU per-
formance through visual inspection. XAPP predicts a
speedup of 15.6 while the measured speedup is 34.4.
Even though XAPP predicts correctly, we treat the
under-prediction in this case as an example of a false
negative to contrast with the next case (CS2,K2).

CS2,K2: Bad for GPU, Hard for Human, True -ve.
Similar to CS2,K1, this code contains a mixture of

features that could be detrimental or beneficial to GPU
execution time. However, unlike CS2,K1, the measured
speedup is quite small and XAPP predicts correctly.
This case study shows that XAPP can predict the
speedup of programs that might appear ambiguous to
humans.

CS2,K3: Good for GPU, Easy for Human, True +ve.
This kernel is extremely simple and uses the logf

function and hence should have a good speedup. XAPP
predicts correctly and this is easy for humans as well.

CS3: Good for GPU, Hard for Human, True +ve.
This program contains one dominant kernel region

that contains a number of control flow statements, as
well as a data dependent loop, creating opportunities for
divergence on a GPU. XAPP predicts a relatively high
value of speedup (21.29) that almost seems counterin-
tuitive. However, the measured value of speedup (21.1)
goes against our intuition and is closer to the predicted
value. This case study shows that our tool can predict
the speedup of programs that are hard for humans and
might even appear to be a poor fit for GPUs. Here, the
two sqrt and heavy use of division and multiplication
make this code favorable for GPU.

6.2 Using XAPP
Programmers are often times tasked with porting a

CPU code to a GPU platform. In this scenario, XAPP
combined with gprof (which is part of our packaged
tool) can serve as a push button tool for determining
what pieces of code to target. To demonstrate this, we
took a CPU code with many kernels. We ran gprof
on it and determined the top functions (this gives %
breakdown when running on CPU). We then demar-
cated them as regions and obtained XAPP’s predictions
for those kernels. The results are shown in Figure 8, case
study 2. XAPP correctly predicted the speedup for all
kernels, and it was also close for the dominant kernel. A
programmer can use this information to then focus her
efforts on that function first. If Kernel-2 had ended up
being the dominant kernel according to gprof, it indi-
cates the programmer should develop a new algorithm.
These speedups can be combined with Amdhal’s law to
project full application speedups, and complement tools
like Kremlin [30].

7. RELATED WORK
CPU → GPU Performance Projection Exist-

ing techniques are not intended for accurate speedup
prediction. The Roofline model is a simple analytical
model that can provide upper-bound projections given
platform-specific source code [1]. Roofline is not in-
tended for accurate speedup prediction, but to provide
high-level insight on potential performance limiting fac-
tors. The boat-hull model [3, 2] has similar goals as our
paper, but approaches the problem from an algorithm-
template standpoint. They build a model that can be
viewed as a hybrid mechanistic model that uses infor-
mation about an algorithm to make performance pro-
jections. While accurate, their approach is limited to
“structured” algorithms like convolution and FFT, and
cannot handle arbitrary code. Meswani et. al. [31] have
proposed an idiom-based approach to predict execu-
tion time for memory-bound applications. Their model
can support only scatter/gather and streaming behav-
ior, and ignores the computation cost and branch di-
vergence impact on overall execution time. Baldini et.
al. [32] have proposed a binary predictor which can pre-
dict slowdown/speedup over a multi-threaded CPU im-
plementation. Their goal is not to predict the numerical
speedup value and they need an openMP implementa-
tion to begin with.

GPU → GPU Performance Projection Related
work in this category are intended for GPU design
space exploration and performance tuning [8, 15, 33,
34]. Further investigation is required to re-purpose
their models to use CPU code as input.

Automatic GPU Code Generation GROPHECY
is a novel approach that uses analytical models and
code-skeletons to make performance prediction [4]. Like
our work, the goal is to make the predictions prior to
writing GPU code. However, GROPHECY requires the
programmer to write code skeletons, which could be

quite time-consuming, and also relies on the underly-
ing GPU analytical models being accurate - this can
be problematic as GPUs evolve, and first-order mod-
els can’t capture their performance accurately. Auto-
compilation from C/C++ to CUDA or GPU binaries
is orthogonal to our work [5, 6, 7, 9]. Thus far, these
efforts have not produced high quality code. We ex-
amined OpenACC in particular, and tried to GPUize
benchmarks from our test set applying its pragmas. On
irregular kernels the generated code always performed
poorly and sometimes had slowdowns, even when the
CUDA version had > 10× speedup. For example: nn1
and srad1 3. We conclude OpenACC is not yet effec-
tive and lacks application generality. We acknowledge
that, if such compilers do succeed, tools like XAPP be-
come irrelevant. Tools like XAPP can help guide the
development of such compilers.

Use of ML models Machine Learning have been
used for program classification [35, 36], design space
exploration [37, 38, 39, 15, 40, 41], performance model-
ing [42, 43, 44] and hardware/software co-design [45].

8. CONCLUSION
In this paper, we developed an automated perfor-

mance prediction tool that can provide accurate esti-
mates of GPU execution time for any CPU code prior to
developing the GPU code. Our work is built on two in-
sights: i) Hardware characteristics and program proper-
ties dictate the execution time. ii) By examining a vast
array of previously implemented GPU codes, along-with
their CPU counterpart, we can use machine learning to
discover the correlation between CPU program prop-
erties and GPU execution time. We built an ensem-
ble model using forward selection as the base learner.
When applied to our test set, which was selected ran-
domly from real-world kernels, our tool showed 26.9%
avearge error.

The key contribution of our work is the obser-
vation that for any GPU platform, GPU execution
time can be formulated as a mathematical function
where fundamental microarchitecture-independent
and architecture-independent program properties
are variables and GPU hardware characteristics are
fixed coefficients. Variables alone change from one
application to another, and coefficients are fixed for
all applications and change from one GPU hardware
implementation to another. We are first to observe this
platform independent correlation.

The implications of this work are multifold. Nar-
rowly, in the context of speedup prediction for GPUs,
one direction is to determine how much additional train-
ing data can improve accuracy, and what is the accu-
racy “limit” of the machine-learning approach provided
a large dataset. While our case study has demonstrated
empirical examples of XAPP producing false positives,
further exploration that develops a more rigorous and
formal understanding of what can be learned effectively
can be useful. The features we have determined to be
interesting and the final regression model can comple-

ment GPU analytical models. While our specific imple-
mentation (XAPP) is accurate, improving its accuracy
is a promising direction for future work.

More broadly, our observation opens up many
directions of future work. First, this observation can
be naturally applied to many emerging programmable
accelerators (like FPGAs, coarse-grained reconfigurable
accelerators, fixed-function accelerators, etc.) to
determine accurate estimates of performance benefits
rapidly and at a very early-stage. The primary limi-
tation is the availablity of training data. Second, this
technique can be extended to learn other functions like
power/energy, or predicting speedup from vectorized or
multithreaded implementations, or predicting speedup
including the memory copy time. Third, it seems
plausible that performance counters of modern micro-
processors can capture a subset (or non-overlapping
set) of the program properties that we have already
found to be useful. One direction of future work is
to examine the extent to which performance counters
are sufficient. Finally, beyond predicting just single
output metrics, we could learn the correlation between
fundamental program properties and properties of
hardware-specific implementations to aid in auto-
compilers. For example, we could define GPU-specific
coding or programming transformations as the output
features and use machine-learning to predict whether
or not these transformations are to be applied. Such
a framework can be combined with traditional com-
pilers to auto-compile sequential codes for different
accelerators. In all of these cases, the availability of
good training data (which is very human intensive to
generate) limits the effectiveness of the approach. A
final open question is whether microbenchmarks, ideas
from auto-tuning, or random-program generation from
hardware verification, can be repurposed to generate
high-quality training data automatically.

Acknowledgments
We would like to thank the anonymous reviewers, Tony
Nowatzki and the members of Vertical Research Group
for their useful feedback on this work. Support for
this research was provided by NSF under the following
grants CCF-1162215, CNS-1228782, CNS-1218432.

APPENDIX
Regression: Given a set of n observations as train-
ing data, the goal of the regression analysis is to find
a relationship between input features and the output
response. Each observation consists of a vector of p
features (also known as independent variables) xi =
(x1i . . . xpi) and a response (also known as dependent
variable) yi. ŷi is formulated in terms of features and
coeffcients (β) as follows:

β = (β0, β1, ..., βp) : ŷi = β0 +

p∑
j=1

βjxji (1)

An underlying assumption of a standard linear regres-
sion is that the error value between prediction and re-

sponse (ei = yi− ŷi) is a Gausian random variable with
zero mean.

Often times, basic features interact with each other
in how they influence the output, which can be modeled
by defining derived features. For example, if the product
of three features (xp, xq, xr) influences the response, we
can define xs = xp ∗ xq ∗ xr as a new feaure. Similarly,
we can define higher order power terms.

Model comparison: How well a model explaines
the training data is assessed using various statistical
measures, including R2 and Adjusted R2. R2 shows the
fraction of variations in the output which can be ex-
plained by the model. It increases with the number of
features, and hence cannot be used to compare mod-
els with a different number of features. Adjusted R2

increases with a new feature only if it adds to the ex-
planatory power of the model.

Feature Selection: Feature selection is required
when there are many redundant features and a lim-
ited number of datapoints, to reduce the risk of over-
fitting. Exhaustive, forward (start with empty model
and add features) and backward (start with all features
and eliminate features until explanatory power drops
drastically) are different variations of feature selection.

Ensemble Prediction: is a set of learned mod-
els whose predictions are combined in a certain way
to provide prediction for new instances. It is a use-
ful technique when the base learners are unstable, or
the dataset size is small [12].

A. REFERENCES
[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an

insightful visual performance model for multicore
architectures,” Commun. ACM, vol. 52, pp. 65–76, Apr.
2009.

[2] C. Nugteren and H. Corporaal, “A modular and
parameterisable classification of algorithms,” Tech. Rep.
ESR-2011-02, Eindhoven University of Technology, 2011.

[3] C. Nugteren and H. Corporaal, “The boat hull model:
adapting the roofline model to enable performance
prediction for parallel computing,” in PPOPP ’12,
pp. 291–292, 2012.

[4] J. Meng, V. Morozov, K. Kumaran, V. Vishwanath, and
T. Uram, “Grophecy: Gpu performance projection from
cpu code skeletons,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, p. 14, ACM, 2011.

[5] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. H.
Wen-mei, “Cuda-lite: Reducing gpu programming
complexity,” in Languages and Compilers for Parallel
Computing, pp. 1–15, Springer, 2008.

[6] E. Schweitz, R. Lethin, A. Leung, and B. Meister,
“R-stream: A parametric high level compiler,” Proceedings
of HPEC, 2006.

[7] D. Mikushin and N. Likhogrud, “Kernelgen–a toolchain for
automatic gpu-centric applications porting,” 2012.

[8] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level parallelism
awareness,” in ISCA ’09.

[9] T. B. Jablin, Automatic Parallelization for GPUs. PhD
thesis, Princeton University, 2013.

[10] K. Hoste and L. Eeckhout, “Comparing benchmarks using

key microarchitecture-independent characteristics,” in
Workload Characterization, 2006 IEEE International
Symposium on, pp. 83–92, 2006.

[11] K. M. Ali and M. J. Pazzani, “Error reduction through
learning multiple descriptions,” Machine Learning, vol. 24,
no. 3, pp. 173–202, 1996.

[12] T. G. Dietterich, “Ensemble methods in machine learning,”
Multiple classifier systems, pp. 1–15, 2000.

[13] L. Breiman, “Bagging predictors,” Machine learning,
vol. 24, no. 2, pp. 123–140, 1996.

[14] K. S. Fu, Sequential Methods in Pattern Recognition and
Machine Learning. Academic Press, 1968.

[15] W. Jia, K. Shaw, and M. Martonosi, “Stargazer:
Automated regression-based gpu design space exploration,”
in ISPASS ’12.

[16] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali,
“Lonestar: A suite of parallel irregular programs,” in
Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on,
pp. 65–76, IEEE, 2009.

[17] M. Sinclair, H. Duwe, and K. Sankaralingam, “Porting
CMP Benchmarks to GPUs,” tech. rep., University of
Wisconsin-Madison, 2011.

[18] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-M. W. Hwu,
“Parboil: A revised benchmark suite for scientific and
commercial throughput computing,” Center for Reliable
and High-Performance Computing, 2012.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC ’09.

[20] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, et al., “The nas parallel
benchmarks,” International Journal of High Performance
Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[21] L. L. Pilla, “NAS Parallel Benchmarks CUDA version.”
http://hpcgpu.codeplex.com. Accessed May 22, 2015.

[22] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty,
P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the
100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” in ISCA 2010.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI ’05.

[24] “The R project for statistical computing.”
http://www.r-project.org/.

[25] P. Turney, “Technical note: Bias and the quantification of
stability,” Journal of Machine Learning, vol. 20, 1995.

[26] E. Bauer and R. Kohavi, “An empirical comparison of
voting classification algorithms: Bagging, boosting, and
variants,” Machine learning, vol. 36, pp. 105–139, 1999.

[27] P. Domingos, “Knowledge discovery via multiple models,”
Intelligent Data Analysis, vol. 2, no. 3, pp. 187–202, 1998.

[28] A. Van Assche and H. Blockeel, “Seeing the forest through
the trees: Learning a comprehensible model from an
ensemble,” in Machine Learning: ECML 2007,
pp. 418–429, Springer, 2007.

[29] C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana,
“From ensemble methods to comprehensible models,” in
Discovery Science, pp. 165–177, Springer, 2002.

[30] D. Jeon, S. Garcia, C. Louie, S. Kota Venkata, and M. B.
Taylor, “Kremlin: Like gprof, but for parallelization,” in
ACM SIGPLAN Notices, vol. 46, pp. 293–294, ACM, 2011.

[31] M. R. Meswani, L. Carrington, D. Unat, A. Snavely,
S. Baden, and S. Poole, “Modeling and predicting
performance of high performance computing applications

on hardware accelerators,” International Journal of High
Performance Computing Applications, vol. 27, no. 2,
pp. 89–108, 2013.

[32] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu
performance from cpu runs using machine learning,” in
Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 254–261, IEEE, 2014.

[33] W. Jia, K. A. Shaw, and M. Martonosi, “Starchart:
hardware and software optimization using recursive
partitioning regression trees,” in Proceedings of the 22nd
international conference on Parallel architectures and
compilation techniques, pp. 257–268, IEEE Press, 2013.

[34] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and
D. Chiou, “Gpgpu performance and power estimation using
machine learning,” in High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pp. 564–576, IEEE, 2015.

[35] B. Piccart, A. Georges, H. Blockeel, and L. Eeckhout,
“Ranking commercial machines through data
transposition,” in Proceedings of the 2011 IEEE
International Symposium on Workload Characterization,
IISWC ’11, (Washington, DC, USA), pp. 3–14, IEEE
Computer Society, 2011.

[36] J. Chen, L. K. John, and D. Kaseridis, “Modeling program
resource demand using inherent program characteristics,”
SIGMETRICS Perform. Eval. Rev., vol. 39, pp. 1–12, 2011.

[37] B. C. Lee and D. M. Brooks, “Accurate and efficient
regression modeling for microarchitectural performance and
power prediction,” in Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, ASPLOS XII,
pp. 185–194, ACM, 2006.

[38] B. Lee and D. Brooks, “Illustrative design space studies
with microarchitectural regression models,” in High
Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pp. 340–351, 2007.

[39] B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Efficient
system design space exploration using machine learning
techniques,” in Proceedings of the 45th annual Design
Automation Conference, DAC ’08, pp. 966–969, 2008.

[40] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili, “Eiger:
A framework for the automated synthesis of statistical
performance models,” in High Performance Computing
(HiPC), pp. 1–6, 2012.

[41] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz, “Efficiently exploring architectural design spaces
via predictive modeling,” in Architectural support for
programming languages and operating systems, ASPLOS
XII, pp. 195–206, 2006.

[42] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil,
“Construction and use of linear regression models for
processor performance analysis,” in HPCA, pp. 99–108,
2006.

[43] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A
predictive performance model for superscalar processors,”
in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, pp. 161–170,
2006.

[44] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru,
S. Stevens, V. Taylor, and X. Wu, “Performance projection
of hpc applications using spec cfp2006 benchmarks,” in
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pp. 1–12, 2009.

[45] W. Wu and B. Lee, “Inferred models for dynamic and
sparse hardware-software spaces,” in Microarchitecture
(MICRO), 2012 45th Annual IEEE/ACM International
Symposium on, pp. 413–424, 2012.

http://hpcgpu.codeplex.com
http://www.r-project.org/

	Introduction
	GPU execution time is correlated with program behavior
	Defining plausible program features
	Machine Learning Model
	Overview
	Implementation Details
	Training Data and Test Data
	Hardware Platforms and Software Infrastructure

	Results and Analysis
	Accuracy
	Robustness
	Why Adaptive Ensemble Solution?
	Model Interpretation
	Other Metrics
	Limitations and Extensions

	End to End Case Studies
	Is XAPP's speedup recommendation always correct?
	Using XAPP

	Related Work
	Conclusion
	References

