
A General Constraint-centric Scheduling
Framework for Spatial Architectures

Tony Nowatzki† Michael Sartin-Tarm† Lorenzo De Carli† Karthikeyan Sankaralingam†
Cristian Estan∗ Behnam Robatmili‡1

(tjn@cs.wisc.edu, msartintarm@wisc.edu, lorenzo@cs.wisc.edu, karu@cs.wisc.edu, cristian@estan.org, behnamr@qti.qualcomm.com)

†University of Wisconsin-Madison ∗Broadcom ‡ Qualcomm Research Silicon Valley

Abstract
Specialized execution using spatial architectures provides energy
efficient computation, but requires effective algorithms for spatially
scheduling the computation. Generally, this has been solved with
architecture-specific heuristics, an approach which suffers from
poor compiler/architect productivity, lack of insight on optimality,
and inhibits migration of techniques between architectures.

Our goal is to develop a scheduling framework usable for all
spatial architectures. To this end, we expresses spatial scheduling
as a constraint satisfaction problem using Integer Linear Program-
ming (ILP). We observe that architecture primitives and scheduler
responsibilities can be related through five abstractions: placement
of computation, routing of data, managing event timing, managing
resource utilization, and forming the optimization objectives. We
encode these responsibilities as 20 general ILP constraints, which
are used to create schedulers for the disparate TRIPS, DySER,
and PLUG architectures. Our results show that a general declar-
ative approach using ILP is implementable, practical, and typically
matches or outperforms specialized schedulers.

Categories and Subject Descriptors D.3.4 [Processors]: opti-
mization, retargetable compilers; G.1.6 [Optimization]: Integer
programming, Linear programming

Keywords Spatial Architectures; Spatial Architecture Schedul-
ing; Integer Linear Programming

1. Introduction
Hardware specialization has emerged as an important way to sus-
tain microprocessor performance improvements to address tran-
sistor energy efficiency challenges and general purpose process-
ing’s inefficiencies [6, 8, 19, 28]. The fundamental insight of
many specialization techniques is to “map” large regions of com-
putation to the hardware, breaking away from instruction-by-
instruction pipelined execution and instead adopting a spatial
architecture paradigm. Pioneering examples include RAW [50],
Wavescalar [46] and TRIPS [9], motivated primarily by perfor-
mance, and recent energy-focused proposals include Tartan [39],
CCA [10], PLUG [13, 35], FlexCore [47], SoftHV [15], MESCAL [31],
SPL [51], C-Cores [48], DySER [25, 26], BERET [27], and
NPU [20]. A fundamental problem in all spatial architectures is the

1 Majority of work completed while author was a PhD student at UT-Austin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

scheduling of computation to the hardware resources. Specifically,
five intuitive abstractions in terms of graph-matching describe the
scheduling problem: i) placement of computation on the hardware
substrate, ii) routing of data on the substrate to reflect and carry
out the computation semantics - including interconnection network
assignment, network contention, and network path assignment, iii)
managing the timing of events in the hardware, iv) managing uti-
lization to orchestrate concurrent usage of hardware resources, and
v) forming the optimization objectives to meet the architectural
performance goals.

Thus far, these abstractions have not been modeled directly,
and the typically NP-complete (depending on the hardware archi-
tecture) spatial architecture scheduling problem is side-stepped.
Instead, the focus of architecture-specific schedulers has typi-
cally been on developing polynomial-time algorithms that approx-
imate the optimal solution using knowledge about the architecture.
Chronologically, this body of work includes the BUG scheduler
for VLIW proposed in 1985 [17], UAS scheduler for clustered
VLIW [41], synchronous data-flow graph scheduling [7], RAW
scheduler [36], CARS VLIW code-generation and scheduler [33],
TRIPS scheduler [12, 40], Wavescalar scheduler [37], and CCA
scheduler proposed in 2008 [43]. While heuristic-based approaches
are popular and effective, they have three problems: i) poor com-
piler developer/architect productivity since new algorithms, heuris-
tics, and implementations are required for each architecture, ii) lack
of insight on optimality of solution, and iii) sandboxing of heuris-
tics to specific architectures — understanding and using techniques
developed for one spatial architecture in another is very hard.

Considering these problems, others have looked at exact mathe-
matical and constraint-theory based formulations of the scheduling
problem. Table 1 classifies these prior efforts, which are based on
integer linear programming (ILP) or Satisfiability Modulo Theory
(SMT). They lack in some prominent ways - which perhaps ex-
plains why the heuristic-based approaches continue to be preferred.
In particular, Feautrier [22] is the most related - but it lacks three of
five abstractions required, and the static-placement/static-issue of
VLIW restrict its applicability to the general problem. These tech-
niques and their associated problems serve as the goal and inspi-
ration for our work, which is to develop a declarative, constraint-
theory based universal spatial architecture scheduler.

By unifying multiple facets of the related work above, specifi-
cally the past experience of architecture-specific spatial schedulers,
the principal of attaining architectural generality, and the mathe-
matical power of integer linear programming, we seek to create a
solution which allows high developer productivity, provides prov-
able properties on results, and enables true architectural generality.
Achieving architectural generality through the five scheduling ab-
stractions mentioned above is the key novelty of our work.

Implementation: In this paper, we use Integer Linear Program-
ming (ILP) because it allows a high degree of constraint express-
ability, can provide strong bounds on the solution’s optimality, and
has fast commercial solvers like CPLEX, GUROBI, and XPRESS.

Year Technique Comments or differences to our approach
1950 ILP machine sched. [49] M-Job-DAG to N-resource scheduling. No job communication modeling, or network contention modeling. (missing ii,iv)
1992 ILP for VLIW[22] Modulo scheduling. Cannot model an interconnection network, spatial resources, or network contention. (missing i,ii,iv)
1997 Inst scheduling [16] Single-Processor Modulo Scheduling. (missing i,ii,iv)

2001 Process scheduling [18]
M-Job-DAG to N-resource scheduling using dynamic programming. Has no network routing or contention modeling, fixed
job delays, and no flexible objective. (missing ii,iv,v)

2002 ILP for RAW [3]
M-Job-DAG to N-resource scheduling. Not generalizable as it does not model network routing or contention, just fixed
network delays. (missing ii,iv)

2007 Multiproc Sched. [34,45] M-Job-DAG to N-resource scheduling - No path assignment or contention modeling, just fixed delays. (missing ii,iv)
2008 SMT for PLA [21] Strict communication and computation requirements: no network contention or path assignment modeling (missing ii,iv).

Table 1. Related work – Legend: i) computation placement ii) data routing iii) event timing iv) utilization v) optimization objective

Specifically, we use the GAMS modeling language. We show that
a total of 20 constraints specify the problem. We implement these
constraints and report on results for three architectures picked to
stress our ILP scheduler in various ways. To stress the performance
deliverable by our general ILP approach, we consider TRIPS be-
cause it is a mature architecture with sophisticated specialized
schedulers resulting from multi-year efforts [1, 9, 12, 40]. To rep-
resent the emerging class of energy-centric specialized spatial ar-
chitectures, we consider DySER [26]. Finally, to demonstrate the
generality of our technique, we consider PLUG [13, 35], which
uses a radically different organization. Respectively, only 3, 1, and
10 additional (and quite straightforward) constraints are required
to handle architecture-specific details. We show that standard ILP
solvers allows succinct implementation (our code is less than 50
lines in GAMS), provide solutions in tractable run-times, and the
mappings produced are either competitive with or significantly bet-
ter than those of specialized schedulers. The general and declarative
approach allows schedulers to be specified, implemented, evaluated
rapidly. Our implementation is provided as an open-source down-
load, allowing the community to build upon our work.

Paper Organization: The next section presents background on
the three architectures and an ILP primer. Section 3 presents an
overview of our approach, Section 4 presents the detailed ILP for-
mulation, Section 5 discusses architecture-specific modeling con-
straints. Section 6 presents evaluation and Section 7 concludes. Re-
lated work was covered in the introduction.

2. Spatial Architectures and ILP Primer
2.1 Spatial Architectures
We use the term spatial architecture to refer to an architecture in
which some subset of the hardware resources, namely functional
units, interconnection network, or storage, are exposed to the com-
piler, whose job, as part of the scheduling phase, is to map compu-
tation and communication primitives in the instruction set architec-
ture to these hardware resources. VLIW architectures, dataflow ma-
chines likes TRIPS and Wavescalar, tiled architectures like RAW
and PLUG, and accelerators like CCA, SoftHV, and DySER all fit
this definition. We now briefly describe the three spatial architec-
tures we consider in detail, and a short primer on ILP. A detailed
diagram of all three architectures is in Figure 8 (page 7).

The TRIPS architecture is organized into 16 tiles, with each
tile containing 64 slots, with these slots grouped into sets of eight.
The slots from one group are available for mapping one block of
code, with different groups used for concurrently executing blocks.
The tiles are interconnected using a 2-D mesh network, which
implements dimension-ordered routing and provides support for
flow-control and network contention. The scheduler must perform
computation mapping: it takes a block of instructions (which can
be no more than 128 instructions long) and assigns each instruction
to one of the 16 tiles and within them, to one of the 8 slots.

The DySER architecture consists of functional units (FUs)
and switches, and is integrated into the execution stage of a con-

ventional processor. Each FU is connected to four neighboring
switches from where it gets input values and injects outputs. The
switches allow datapaths to be dynamically specialized. Using a
compiler, applications are profiled to extract the most commonly
executed regions, called path-trees, which are then mapped to the
DySER array. The role of the scheduler is to map nodes in the path-
trees to tiles in the DySER array and to determine switch configu-
rations to assign a path for the data-flow graph edges. There is no
hardware support for contention, and some mappings may result in
unroutable paths. Hence, the scheduler must ensure the mappings
are correct, have low latencies and have high throughput.

The PLUG architecture is designed to work as an accelera-
tor for data-structure lookups in network processing. Each PLUG
tile consists of a set of SRAM banks, a set of no-buffering routers,
and an array of statically scheduled in-order cores. The only mem-
ory access allowed by a core is to its local SRAM, which makes
all delays statically determinable. Applications are expressed as
dataflow graphs with code-snippets (the PLUG literature refers to
them as code-blocks) and memory associated with each node of
the graph. Execution of programs is data-flow driven by messages
sent from tile to tile - the ISA provides a send instruction. The
scheduler must perform computation mapping and network map-
ping (dataflow edges→ networks). It must ensure there is no con-
tention for any network link, which it can do by scheduling when
send instructions execute in a code-snippet or adjusting the map-
ping of graph nodes to tiles. It must also handle flow-control.

In all three architectures, multiple instances of a block, region,
or dataflow graph are executing concurrently on the same hardware,
resulting in additional contention and flow-control.

2.2 ILP Primer
Integer Linear Programs (ILP) are algebraic models of systems
used for optimization [52]. They are composed of three parts:
1) decision variables describing the possible outcomes, 2) linear
equations on these variables describing the set of valid solutions,
3) an objective function which orders solutions by desirability. A
short tutorial on ILP modeling and solving techniques is here:
http://wpweb2.tepper.cmu.edu/fmargot/introILP.html.

2.3 Non goals
Graph abstractions and ILP (Integer Linear Programming) tech-
niques are common in architecture and programming languages,
and are used for a variety of applications unrelated to spatial
scheduling. Our goal is not to unify this wide and diverse domain.
In the following we discuss a few examples of “non-related work”
and “non-goals”, highlighting the difference from our techniques.

Notably, uses of ILP in register allocation, code-generation, and
optimization ordering for conventional architectures [32, 42] are
unrelated to the primitives of spatial architecture scheduling. Affine
loop analysis and resulting instruction scheduling/code-generation
for superscalar processors is a popular use of mathematical mod-
els [2, 5, 44], and since it falls within the data-dependence analysis
role of the compiler, not its scheduler, is a non-goal for us. In gen-
eral, modeling loops or any form of back-edges is meaningless for

Architecture feature Scheduler responsibility TRIPS DySER PLUG

1 Compute HW organization Placement of computation Homogeneous compute units Heterogeneous compute units Homogeneous compute units

2 Network HW organization Routing of data
2-D grid, dimension-order
routing

2-D grid, unconstrained routing
2-D multi-network grid, dimension-
order routing

3
HW timing and
synchronization

Manage timing of events
Data-flow execution and
dynamic network arbitration

Data-flow execution and
conflict-free network
assignment + flow control

Hybrid data-flow and in-order
execution with static compute and
network timing

4

Concurrent HW usage
within a block

Manage utilization

8-slots per compute-unit, reg-
tile, data-tile

No concurrent usage; dedicated
compute units, switches, links

32 slots per compute-unit; bundled
links and multicast communication

Concurrent HW usage
across blocks

Concurrent execution of
different blocks

Concurrent usage across blocks
with pipelined execution

Pipelined execution across different
tiles

5

Performance Goal
architecturally mandated

Naturally enforced by ILP
constraints

Any assignment legal Throughput Throughput

Performance Goal
high efficiency

ILP objective formulation Throughput and Latency Latency & Latency Mismatch Latency

Table 2. Relationship between architectural primitives and scheduler responsibilities.

our work because of the nature of our scheduler’s role (scheduling
happens at a finer granularity than loops, so we always deal with
Directed Acyclic Graphs by design).

On the architecture side, ILP and similar optimization theo-
ries have been used for hardware synthesis and VLSI CAD prob-
lems [4, 11, 31]. These techniques focus on taking a fixed com-
putational kernel and generating a specialized hardware implemen-
tation. This is generally accomplished by extending/customizing
a well-defined hardware pipeline structure. Therefore, even if in
principle they share some responsibilities with our scheduler, the
concrete approach they take differs significantly and cannot be ap-
plied to our case. For example, in [4] contention and timing issues
are avoided by design, by provisioning enough functional units to
meet the target latency, and by statically adjusting the system to
timing constraints. In [31], ILP is used as a sub-step to synthesize
pipelined hardware implementations of loops. Their formulation is
specific to the problem and system, and does not apply to the more
general scheduling problem. Finally, performance modeling frame-
works, such as [38], are also orthogonal to our work. We emphasize
that we have cited only a small subset of representative literature in
the interest of space.

3. Overview
We present below the main insights of our approach in using
constraint-solving for specifying the scheduling problem for spatial
architectures. We distill the formulation into five responsibilities,
each corresponding to one architectural primitive of the hardware.
For a more general discussion of limitations and concerns related
to our approach, see the comments in section 7 (Conclusions).

The scheduler for a spatial architecture works at the granularity
of “blocks” of code, which could be basic-blocks, hyper-blocks,
code-regions, or other more sophisticated partitions of program
code. These blocks, which we represent as directed acyclic graphs
(DAGs) consist of computation instructions, control-flow instruc-
tions, and memory access instructions that must be mapped to the
hardware. We formulate the scheduling problem as spatially map-
ping a typed computation DAG G to a hardware graph H under
certain constraints as shown by Figure 1 on page 4. For ease of ex-
planation, we describeG as comprised of vertices and edges, while
H is comprised of nodes, routers and links(formal definitions and
details follow in Section 4).

To design and implement a general scheduler applicable to
many spatial architectures, we observe that five fundamental archi-
tectural primitives, each with a corresponding scheduler responsi-
bility, capture the problem as outlined in Table 2 (columns 2 and
3). Implementing these responsibilities mathematically is a mat-

ter of constraint and objective formulas involving integer variables,
which form an ILP model, covered in depth in Section 4. Below we
describe the insight connecting the primitives and responsibilities
and highlight the mathematical approach. Table 2 summarizes this
correspondence (in columns 2 and 3), and describes these primi-
tives for three different architectures.

Computation HW organization→ Placement of computation:
The spatial organization of the computational resources, which
could have a homogeneous or heterogeneous mix of computational
units, requires the scheduler to provide an assignment of individual
operations to hardware locations. As part of this responsibility,
vertices in G are mapped to nodes in the H graph.

Network HW organization→ Routing of data: The capabilities
and organization of the network dictate how the scheduler must
handle the mapping of communication between operations to the
hardware substrate, i.e. the scheduler must create a mapping from
edges in G to the links represented in H . As shown in the 2nd row
of Table 2, the network organization consists of the spatial layout
of the network, the number of networks, and the network routing
algorithm. The flow of data required by the computation block and
the placement of operations defines the required communication.
Depending on the architecture, the scheduler may have to select a
network for each message, or even select the exact path it takes.

Hardware timing/synchronization→Manage timing of events:
The scheduler must take into consideration the timing properties of
computation and network together with architectural restrictions,
as shown in the 3rd row of table 2. In some architectures, the
scheduler cannot determine the exact timing of events because it
is affected by dynamic factors (e.g. memory latency through the
caching hierarchy). For all architectures, the scheduler must have at
least a partial view of timing of individual operations and individual
messages to be able to minimize the latency of the computation
block. In some architectures, the scheduler must exert extensive
fine-grained control over timing to achieve static synchronization
of certain events.

Concurrent hardware resource usage→Managing Utilization:
Central to the difficulties of the scheduling problem is the concur-
rent usage of hardware resources by multiple vertices/edges in G
of one node/link in H . We formalize this concurrent usage with a
notion of utilization, which represents the amount of work a sin-
gle hardware resource performs. Such concurrent usage (and hence
> 1 utilization) can occur within a DAG and across concurrently
executing DAGs. Overall, the scheduler must be aware of resource

 כ

DAG G for

z=(x+y)2

Graph H for hardware of

spatial architecture
A Mapping of G to H

 כ +

x

y

z

y x

+

z

edges

(E)

vertices

(V)
routers (R)

nodes (N)
links (L)

Figure 1. Example of computation G mapped to hardware H .

limits in H and which resources can be shared as shown in Table 2
row 4. For example, in TRIPS, within a single DAG, 8 instruction-
slots share a single ALU (node inH), and across concurrent DAGs,
64 slots share a single ALU in TRIPS. In both cases, this node-
sharing leads to contention on the links as well.

Performance goal→ Formulate ILP objective: The performance
goals of an architecture generally fall into two categories: those
which are enforced by certain architectural limitations or abilities,
and those which can be influenced by the schedule. For instance,
both PLUG and DySER are throughput engines that try to perform
one computation per cycle, and any legal schedule will naturally
enforce this behavior. For this type of performance goal, the sched-
uler relies on the ILP constraints already present in the model. On
the other hand, the scheduler generally has control over multiple
quantities which can improve the performance. This often means
deciding between the conflicting goals of minimizing the latency of
individual blocks and managing the utilization among the available
hardware resources to avoid creating bottlenecks, which it manages
by prioritizing optimization quantities.

4. General ILP framework
This section presents our general ILP formulation in detail. Our
formal notation closely follows our ILP formulation in GAMS
instead of the more conventional notation often used for graphs in
literature. We represent the computation graph as a set of vertices
V , and a set of edges E. The computation DAG, represented by
the adjacency matrix G(V ∪E, V ∪E), explicitly represents edges
as the connections between vertices. For example, for some v ∈ V
and e ∈ E, G(v, e) = 1 means that edge e is an output edge
from vertex v. Likewise, G(e, v) = 1 signifies that e is an input to
vertex v. For convenience, lowercase letters represents elements of
the corresponding uppercase letters’ set.

We similarly represent the hardware graph as a set of hardware
computational resource nodes N , a set of routers R which serve as
intermediate points in the routing network, and a set of L unidi-
rectional links which connect the routers and resource nodes. The
graph which describes the network organization is given by the ad-
jacency matrix H(N∪R∪L,N∪R∪L). To clarify, for some l ∈ L
and n ∈ N , if the parameter H(l, n) was 0, link l would not be an
input of node n. Hardware graphs are allowed to take any shape,
and typically do contain cycles. Terms vertex/edge refer to mem-
bers in G, and node/link to members in H .

Some of the vertices and nodes represent not only computation,
but also inputs and outputs. To accommodate this, vertices and
nodes are “typed” by the operations they can perform, which also
enables the support of general heterogeneity in the architecture.
For the treatment here, we abstract the details of the “types” into
a compatibility matrix C(V,N), indicating whether a particular
vertex is compatible with a particular node. When equations depend
on specific types of vertices, we will refer this set as Vtype.

Figure 1 shows an example G graph, representing the compu-
tation z = (x + y)2, and an H graph corresponding to a sim-
plified version of the DySER architecture. Here, triangles repre-

Inputs: Computation DAG Description (G)
V Set of computation vertices.
E Set of Edges representing data flow of vertices
G(V ∪E, V ∪E) The computation DAG
∆(E) Delay between vertex activation and edge activation.
∆(V) Duration of vertex.
Γ(E) (PLUG) Delay between vertex activation and edge reception.
Be Set of bundles which can be overlapped in network.
Bv (PLUG only) Set of mutually exclusive vertex bundles.
B(E∪V,Be∪Bv) Parameter for edge/vertex bundle membership.
P (TRIPS only) Set of control flow paths the computation can take
Av(P, V),
Ae(P,E) (TRIPS)

Activation matrices defining which vertices and
edges get activated by given path

Inputs: Hardware Graph Description (H)
N Set of hardware resource Nodes.
R Routers which form the network
L Set of unidirectional point-to-point hardware Links
H(N∪R∪L,
N∪R∪L)

Directed graph describing the Hardware

I(L,L) Link pairs incompatible with Dim. Order Routing.
Inputs: Relationship between G/H

C(V,N) Vertex-Node Compatibility Matrix
MAXN ,MAXL Maximum degree of mapping for nodes and links.

Variables: Final Outputs
Mvn(V,N) Mapping of computation vertices to hardware nodes.
Mel(E,L) Mapping of edges to paths of hardware links
Mbl(Be, L) Mapping of edge bundles to links
Mbn(Bv , N)
(PLUG only)

Mapping of vertex bundles to nodes

δ(E) (PLUG) Padding cycles before message sent.
γ(E) (PLUG) Padding cycles before message received.

Variables: Intermediates
O(L) The order a link is traversed in.
U(L∪N) Utilization of links and nodes.
Up(P) (TRIPS) Max Utilization for each path P .
T (V) Time when a vertex is activated
X(E) Extra cycles message is buffered.
λ(b, e) (PLUG) Cycle when e is activated for bundle b
LAT Total latency for scheduled computation
SV C Service interval for computation.
MIS Largest Latency Mismatch.

Table 3. Summary of formal notation used.

sent input/output nodes and vertices, and circles represent compu-
tation nodes and vertices. Squares represent elements of R, which
are routers composing the communication network. Elements of E
are shown as unidirectional arrows in the computation DAG, and
elements of L as bidirectional arrows in H representing two unidi-
rectional links in either direction.

The scheduler’s job is to use the description of the typed com-
putation DAG and hardware graph to find a mapping from com-
putation vertices to computation resource nodes and determine the
hardware paths along which individual edges flow. Figure 1 also
shows a correct mapping of the computation graph to the hardware
graph. This mapping is defined by a series of constraints and vari-
ables described in the remainder of this Section, and these variables
and scheduler inputs are summarized in Table 3.

We now describe the ILP constraints which pertain to each
scheduler responsibility, then show a diagram capturing this re-
sponsibility pictorially for our running example in Figure 1.

Responsibility 1: Placement of computation.
The first responsibility of the scheduler is to map vertices from
the computation DAG to nodes from the hardware graph. For-
mally, the scheduler must compute a mapping from V to N , which
we represent with the matrix of binary variables Mvn(V,N).
If Mvn(v, n) = 1, then vertex v is mapped to node n, while

Mvn(v, n) = 0 means that v is not mapped to n. Each vertex
v ∈ V must be mapped to exactly one compatible hardware node
n ∈ N in accordance with C(v, n). The mapping for incompatible
nodes must also be disallowed. This gives us:

∀v Σn|C(v,n)=1Mvn(v, n) = 1 (1)
∀v, n|C(v, n) = 0, Mvn(v, n) = 0 (2)

An example mapping with corresponding assignments to Mvn

is shown in Figure 2.

DAG G for

z=(x+y)2

n4

n5

n6

n7

Graph H for hardware of

spatial architecture

Mapping V to N

 n1

 n2

 n3

 n8

 n9

 n10 z

y x

 כ

v1 v2

v3

v4

v5

Mvn(v1,n1)=1,

Mvn(v3,n4)=1,

Mvn(v2,n1)=0,

Mvn(v3,n5)=0, ͙

 כ +

x

y

z

+

Figure 2. Placement of computation

Responsibility 2: Routing of data
The second responsibility of the scheduler is to map the required
flow of data to the communication paths in the hardware. We use
a matrix of binary variables Mel(E,L) to encode the mapping of
edges to links. Each edge emust be mapped to a sequence of one or
more links l. This sequence must start from and end at the correct
hardware nodes. We constrain the mappings such that if a vertex v
is mapped to a node n, every edge e leaving from v must be mapped
to one link leaving from n. Similarly, every edge arriving to v must
be mapped to a link arriving to n.
∀v, e, n|G(v, e),Σl|H(n,l),Mel(e, l) = Mvn(v, n) (3)
∀v, e, n|G(e, v),Σl|H(l,n),Mel(e, l) = Mvn(v, n) (4)

In addition, the scheduler must ensure that each edge is mapped
to a contiguous path of links. We achieve this by enforcing that for
each router, either we have no incoming or outgoing links mapped
to a given edge, or we have exactly one incoming and exactly one
outgoing link mapped to the edge.
∀e ∈ E, r ∈ R Σl|H(l,r),Mel(e, l) = Σl|H(r,l)Mel(e, l) (5)
∀e ∈ E, r ∈ R Σl|H(l,r),Mel(e, l) ≤ 1 (6)
Figure 3 shows these constraints applied to the example.

Graph H for hardware of

spatial architecture

Routing E to L

l1

l2

l3

l4,l5

l49

l48

l47

Mel(e3,l24)=0,

Mel(e3,l25)=1,
͙

l24

l25

 כ +

x

y

z

DAG G for

z=(x+y)2

z

y x

 כ

v1 v2

v3

v4

v5

e1 e2

e4 e3

e5

Mel(e2,l2)=1,

Mel(e1,l7)=1,

l7
+

(links)

(edges)

Figure 3. Routing of data.

Some architectures require dimension order routing: a message
propagating along the X direction may continue on a link along
the Y direction, but a message propagating along the Y direction
cannot continue on a link along the X direction. To enforce this re-
striction, we expand the description of the hardware with I(L,L),
the set of link pairs that cannot be mapped to the same edge (i.e. an
edge cannot be assigned to a path containing any link pair in this
set).

∀l, l′|I(l, l′), e ∈ E, Mel(e, l) +Mel(e, l
′) ≤ 1 (7)

Responsibility 3: Manage timing of events
We capture the timing through a set of variables T (V) which rep-
resents the time at which a vertex v ∈ V starts executing. For
each edge connecting the vertices vsrc and vdst, we compute the
T (vdst) based on T (vsrc). This time is affected by three compo-
nents. First, we must take into account the ∆(E), which is the num-
ber of clock cycles between the start time of the vertex and when
the data is ready. Next is the total routing delay, which is the sum
of the number of mapped links between vsrc and vdest. Since the
data carried by all input edges for a vertex might not all arrive at
the same time, the variable X(E) describes this mismatch.

∀vsrc, e, vdest|G(vsrc, e)&G(e, vdest),

T (vsrc) + ∆(e) + Σl∈LMel(e, l) +X(e) = T (vdest) (8)

The equation above cannot fully capture dynamic events like
cache misses. Rather than consider all possibilities, the scheduler
simply assumes best-case values for unknown latencies (alterna-
tively, these could be attained through profiling or similar means).
Note that this is an issue for specialized schedulers as well.

 כ +

x

y

z

3

2

4

1

5

6

Figure 4. Fictitious cycles.

With the constraints thus far,
it is possible for the scheduler
to overestimate edge latency be-
cause the link mapping allows fic-
titious cycles. As shown by the cy-
cle in the bottom-left quadrant of
Figure 4, the links in this cycle
falsely contribute to the time be-
tween input “x” and vertex “+”.
This does not violate constraint 5 because each router involved con-
tains the correct number of incoming / outgoing links.

In many architectures, routing constraints (see constraint 7)
make such loops impossible, but when this is not the case we elim-
inate cycles through a new constraint. We add a new set of vari-
ables O(L), indicating the partial order in which links activated. If
an edge is mapped to two connected links, this constraint enforces
that the second link must be of later order.

∀l, l′, e ∈ E|H(l, l′), O(l) +Mel(e, l) +Mel(e, l
′)− 1 ≤ O(l′) (9)

Figure 5 shows the intermediate variable assignments that the
constraints for timing provide.

DAG G for

z=(x+y)2

n4

n5

n6

n7

Graph H for hardware of

spatial architecture

Timing Calculation

 n1

 n2

 n3

 n8

 n9

 n10 z

y x

 כ

v1 v2

v3

v4

v5

r1

r2

r3

r4

l1

l2

l3

l4,l5

l49

l48

l47

T(v1)=0,

T(v4)=6, ͙

e1 e2

e4 e3

e5

l6 + כ

x

y

z

1

1

2

4 5

5

6

7

8

9

X(e3)=1,

X(e4)=0, ͙

3

2 l7
+

Figure 5. Timing of computation and communication.

Responsibility 4: Managing Utilization
The utilization of a hardware resource is simply the number of cy-
cles for which it can not accept a new unit of work (computation or
communication) because it is handling work corresponding to an-
other computation. We first discuss the modeling of link utilization
U(L), then discuss node utilization U(N).

∀l ∈ L, U(l) = Σe∈EMel(e, l) (10)

The equation above models a link’s utilization as the sum of
its mapped edges and is effective when each edge takes up a
resource. On the other hand, some architectures allow for edges to

be overlapped, as in the case of multicast, or if it is known that sets
of messages are mutually exclusive (will never activate at the same
time). This requires us to extend our notion of utilization with the
concept of edge-bundles, which represent edges that can be mapped
to the same link at no cost. The set Be denotes edge-bundles, and
B(E,Be) defines its relationship to edges. The following three
constraints ensure the correct correspondence between the mapping
of edges to links and bundles to links, and compute the link’s
utilization based on the edge-bundles.

∀e, be|B(e, be), l ∈ L, Mbl(be, l) ≥Mel(e, l) (11)
∀be ∈ Be, l ∈ L, Σe∈B(e,be)Mel(e, l) ≥Mbl(be, l) (12)

∀l ∈ L, U(l) = Σbe∈BMbl(b, l) (13)

To compute the vertices’ utilization, we must additionally con-
sider the amount of time that a vertex fully occupies a node. This
time, ∆(V), is always 1 when the architecture is fully pipelined,
but increases when the lack of pipelining limits the use of a node n
in subsequent cycles. To compute utilization, we simply sum ∆(V)
over vertices mapped to a node:

∀n ∈ N U(n) = Σv∈V ∆(v)Mvn(v, l) (14)
For many spatial architectures we use utilization-limiting con-
straints such as those below. One application of these constraints
are hardware limitations in the number of registers available, in-
struction slots, etc. Also, they ensure lack of contention with op-
erations or messages from within the same block or other blocks
executing concurrently.

∀l ∈ L, U(l) ≤MAXL (15)
∀n ∈ N, U(n) ≤MAXN (16)

As shown in the running DySER example below in Figure 6, we
limit the utilization of each link U(l) to MAXL = 1. This ensures
that only a single message per block traverses the link, allowing the
DySER’s arbitration-free routers to operate correctly.

Mbl(b1,l7)=1,

Mbl(b2,l7)=1,

Mbl(b3,l23)=1,

 כ +

x

y

z

σ ࡮א࢈࢒࢈ࡹ (b,l7)>1

Illegal Utilization: Mbl(b1,l7)=1,

Mbl(b2,l7)=0,

Mbl(b3,l23)=1, σ ࡮א࢈࢒࢈ࡹ (b,l7)=1

Legal Utilization:

 כ
e5

z

y x

v3

e1 e2

e4 e3 l23
 כ + +

x

y

z

DAG G for

z=(x+y)2

b3

b1 b2

b4

l23
l7 l7

Figure 6. Utilization Management.

Responsibility 5: Optimizing performance
The constraints governing the previous sections model the quanti-
ties which capture only individual components for correctness and
performance. However, the final responsibility of the scheduler is
to manage the overall correctness while providing performance in
the context of the overall system. In practice, this means that the
scheduler must balance notions of latency and throughput. Hav-
ing multiple conflicting targets requires strategic resolution, since
there is not necessarily a single solution which optimizes both. The
strategy we take is to supply to the scheduler a set of variables to
optimize for with their associated priority.

To calculate the critical path latency, we first initialize the input
vertices to zero (or some known value) then find the maximum
latency of an output vertex LAT . This represents the scheduler’s
estimate of how long the block would take to complete.

∀v ∈ Vin, T (v) = 0 (17)
∀v ∈ Vout, T (v) ≤ LAT (18)

To model the throughput aspects, we utilize the concept of the
service interval SV C, which is defined as the minimum number
of cycles between successive invocations when no data dependen-
cies between invocations exists. We compute SV C by finding the
maximum utilization on any resource.

∀n ∈ N, U(n) ≤ SV C (19)
∀l ∈ L, U(l) ≤ SV C (20)

For fully pipelined architectures, SV C is naturally forced to 1,
so it is not an optimization target. Other notions of throughput are
possible, as in the case of DySER, where minimizing the latency
mismatch MIS is the throughput objective (see Section 5.2).

For our running example, the final solution is shown in Figure 7,
where the critical path latency LAT and the latency mismatch
MIS (mentioned above), are both optimized by the scheduler.

Optimal Mapping

 כ +

x

y

z

1

1

2

2
3

7

4

5

5

4

6

DAG G for

z=(x+y)2

z

y x

 כ

v1 v2

v3

v4

v5

e1 e2

e4 e3

e5

Latency

 LAT=8

 כ +

x

y

z

1

1 3 4

4

5

6

7

2

8

l7

X(e3)=1,

X(e4)=0, ͙

X(e1)=1,

X(e2)=0,

Lat Mismatch=

MIS=Max(X(E)) =1

X(e3)=0,

X(e4)=0, ͙

X(e1)=0,

X(e2)=0,

Lat Mismatch=

MIS=Max(X(E)) =0

2

T(v1)=0,

T(v5)=8
T(v1)=0,

T(v5)=7

Latency

 LAT=7

Legal Mapping

+

Figure 7. Optimizing performance.

5. Architecture-specific modeling
In this section, we describe how the general formulation pre-
sented above is used by three diverse architectures. Figure 8 shows
schematics and H graphs for the three architectures.

5.1 Architecture-specific details for TRIPS
Computation organization → Placement of computation: Fig-
ure 8 depicts the graph H we use to describe a 4-tile TRIPS archi-
tecture. A tile in TRIPS is comprised of nodes n ∈ N denoting a
functional unit in the tile and r ∈ R representing its router - the
two are connected with one link in either direction. The router also
connects to the routers in the neighboring tiles. The functional unit
has a self-loop that denotes the bypass of the tile’s router to move
results into input slots for operations scheduled on the same tile.

Network organization→ Routing data: Since messages are ded-
icated and point-to-point (as opposed to multicast), we use con-
straints modeling each edge as consuming a resource and con-
tributing to the total utilization. The TRIPS routers implement
dimension-order routing, i.e. messages first travel along the X axis,
then along the Y axis. TRIPS uses the I(L,L) parameter, which
disallows the mapping of certain link pairs, to invalidate any paths
which are not compatible with dimension-order.

HW timing → Managing timing of events: We can calculate
network timing without any additions to the general formulation.

Concurrent HW usage → Utilization: TRIPS allows significant
level of concurrent hardware usage which affects both the latency
and throughput of blocks. Specifically, the maximum number of
vertices per node is MAXN = 8. The utilization on links is used
to finally formulate the objective function.
Extensions: For TRIPS, the scheduler must also account for control
flow when computing the utilization and ultimately the service
interval for throughput. Simple extensions, as explained below,
can in general handle control flow for any architecture and could

RF

DySER

Fetch Decode Execute Mem Wr.Back
0 1 2 3

Reg. Files

Bank 0

Bank 1

Bank 2

Bank 3

TRIPS DySER PLUG

H graphs for each architecture

Figure 8. Three candidate architectures and corresponding H graphs, considering 4 tiles for each architecture.

Architecture Description ILP Modeling and scheduler responsibility ILP Constraints

Compute HW
organization

16 titles, 6 routers per tile Each tile is 7 nodes in H, one in N, and six in R. Gen. ILP framework
4 mem-banks per tile Handled with utilization Gen. ILP framework
32 cores per tile Handled with utilization Gen. ILP framework

Network HW
organization

2D nearest neighbor mesh Node n connected to r; r connected to 4 neighbors Gen. ILP framework
Dimension order routing I(L,L) configure for dimension-order routing Gen. ILP framework

Multicast messages deliver values at every intermediate node on path Enforce mapping of multicast messages to link to computation node Eq. 25

HW timing and
synchronization

Code-scheduling of network send instructions Variables for send timing and receive time (E); (E)
Send instructions scheduled to avoid n/w conflicts Variables for delaying send/receive timing by padding with no-ops Eq. 26, 27a-c, 28

Concurrent HW
usage

4 mem-banks per tile Manage utilization (MAXN = 4) Gen. ILP framework
Dedicated network per message Manage utilization (MAXL=1) Gen. ILP framework
Mutually exclusive activation of nodes in G Concept of vertex bundles and utilization refined Eq. 29, 30, 31
Code-length limitations (maximum is 32) handled for all code on tile Manage utilization and combine with vertex bundles Eq. 32, 33, 34

Table 4. Description of ILP model implementation for PLUG

belong in the general ILP formulation as well. Let P be the set of
control flow paths that the computation can take through G. Note
that p ∈ P is not actually a path through G, but the subset of its
vertices and edges activated in a given execution. Let Av(P, V)
and Ae(P,E) be the activation matrices defining, for each vertex
and edge of the computation, whether they are activated when a
given path is taken or not. For each path we define the maximum
utilization on this path Wp(P). These constraints are similar to the
original utilization constraints (10, 14), but also take control flow
activation matrices into account.

∀l ∈ L, p ∈ P, Σe∈EMel(e, l)Ae(p, e) ≤Wp(p) (21)
∀n ∈ N, p ∈ P, Σv∈VMvn(v, n)∆(v)Av(p, v) ≤Wp(p)(22)

And an additional constraint for calculating overall service interval:

SV C = Σp∈PWp(p) (23)

Note that this heuristic provides the same importance to all
control-flow paths. With profiling or other analysis, differential
weighting can be implemented.

Objective formulation: For the TRIPS architecture, we empiri-
cally found that optimizing for throughput is of higher importance,
in most cases, then for latency. Therefore, our strategy is to first
minimize the SV C, add the lowest value as a constraint, and then
optimize for LAT . The following is our solution procedure, where
numbers refer to constraints from the formulation:
min SV C s.t. [1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 21, 22, 23]

min LAT s.t. [1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 21, 22, 23]

and SV C = SV Coptimal

5.2 Architecture-specific details for DySER
Computation organization → Placement of computation: We
model DySER with the hardware graph H shown in Figure 8;
heterogeneity is captured with the C(V,N) compatibility matrix.

Network organization→Routing data: We use bundle-link map-
ping constraints to model multicast, and constraint 9 to prevent fic-
titious cycles. Since the network has the ability to perform multi-
cast messages and can route multiple edges on the same link, we
use the bundle-link mapping constraints. Since there is no ordering
constraint on the network, we need to prevent fictitious cycles.

HW timing → Managing timing of events: No additions to the
general formulation are required.

Concurrent HW usage → Utilization: Since DySER can only
route one message per link, and max one vertex to a node, both
MAXL and MAXN are set to 1.

Objective Formulation: DySER throughput can be as much as
one computation G per cycle, since the functional units themselves
are pipelined. However, throughput degradation can occur because
of the limited buffering available for messages. The utilization
defined in the general framework does not capture this problem
because it only measures the usage of functional units and links,
not of buffers. Unlike TRIPS, where all operands are buffered as
long as needed in named registers, DySER buffers messages at
routers and at most one message per edge is buffered at each router.
Thus, two paths that diverge and then converge, but have different

lengths, will also have different amounts of buffering. Combined
with backpressure, this can reduce throughput.

Computing the exact throughput achievable by a DySER sched-
ule is difficult, as multiple such pairs of converging paths may exist
- even paths that converge after passing through functional units
affect throughput. Instead we note that latency mismatches always
manifest themselves as extra buffering delaysX(e) for some edges,
so we model latency mismatch as MIS:

∀e ∈ E,X(e) ≤MIS (24)

Empirically, we found that external limitations on the through-
put of inputs is greater than that of computation. For this reason,
the DySER scheduler first optimizes for latency, adds the latency
of the solution as a constraint, then optimizes for throughput by
minimizing latency mismatch MIS, as below:

min LAT s.t. [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 24]

min MIS s.t. [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 24]

and LAT = LAToptimal

5.3 Architecture-specific details for PLUG
The PLUG architecture is radically different from the previous two
architectures since all decisions are static. Our formulation is gen-
eral enough that it works for PLUG with only 10 predominantly
simple additional constraints. In the interest of clarity, we summa-
rize the key concepts of the PLUG architecture, corresponding ILP
model, and additional equations in Table 4. The grayed rows sum-
marize the extensions, and this section’s text describes them.
Computation organization → Placement of computation: See
Table 4, row 1. No additional constraints required.

Network organization→ Routing data: See Table 4, row 2.
Additional constraints: Multicast handled with edge-bundles: Let
Bmulti ⊂ Be be the subset of edge-bundles that involve multicast
edges. The following constraint, which considers links through a
router to a node, then enforces that the bundle mapped to the router
link must also be mapped to the node’s incoming link.

∀b ∈ Bmulti, l, r, l
′, n|H(l, r)&H(r, l′)&H(l′, n),

Mbl(b, l) ≤Mbl(b, l
′) (25)

HW timing→Managing timing of events: See Table 4, row 3.
Additional constraints: We need to handle the timing of send in-
structions. We use ∆(E) and the newly-introduced Γ(E) to re-
spectively indicate the relative cycle number of the corresponding
send instruction and use instruction.

Network contention is avoided by code-scheduling the send
instructions with NOP padding to create appropriate delays and
equalize all delay mismatch. δ(E) denotes sending delay added,
and γ(E) denotes receiving delay added. To model the timing for
PLUG, we augment equation 8 as follows:

∀vsrc, e, vdst|G(vsrc, e)&G(e, vdst),

T (vsrc)+Σl∈LMel(e, l)+∆(e)+δ(e)=T (vdst)+Γ(e)+γ(e) (26)

Because the insertion of no-ops can only change timing in
specific ways, we use two constraints to further link δ(E) and
γ(E) to ∆(E) and Γ(E). The first ensures that the scheduler never
attempts to pad a negative number of NOPs. The second ensures
that sending delay δ(E) is the same for all multicast edges carrying
the same message.

To implement these constraints we use the following 4 sets con-
cerning distinct edges e, e′: SI(e, e′) has the set of pairs of edges
arriving to the same vertex such that Γ(e) < Γ(e′), LIFO(e, e′)
has, for each vertex with both input and output edges, the last in-
put edge e and the first output edge e′, SO(e, e′) has the pairs of

output edges with the same source vertex such that ∆(e) < ∆(e′),
and EQO(e, e′) has the pairs of output edges leaving the same
node concurrently.

∀e, e′|SI(e, e′),γ(e) ≤ γ(e′) (27a)

∀e, e′|LIFO(e, e′),γ(e) ≤ δ(e′) (27b)

∀e, e′|SO(e, e′),δ(e) ≤ δ(e′) (27c)

∀e, e′|EQO(e, e′),δ(e) = δ(e′) (28)

Concurrent HW usage→ Utilization: See Table 4, row 4.
Additional constraints: PLUG groups nodes in G into “super-
nodes” (logical-page), and programmatically only a single node
executes in every super-node. This mutual exclusion behavior is
modeled by partitioning V into a set of vertex bundles Bv with
B(V,Bv) indicating to which bundle a vertex v ∈ V belongs. We
introduce Mbn(b, n) to model the mapping of bundles to nodes,
enforced by the following constraints:

∀v, bv|B(v, bv), n ∈ N, Mbn(bv, n)≥Mvn(v, n) (29)
∀bv ∈ Bv, n ∈ N, Σv∈B(v,bv)Mvn(v, n)≥Mbn(bv, n) (30)

We then define the utilization based on the number of vertex
bundles mapped to a node. We also instantiate edge bundles be for
all the set of edges coming from the same vertex bundle and going
to the same destination. Since all the edges in such a bundle are
logically a single message source, the schedule must equalize the
receiving times of the message they send. LetBmutex ⊆ Be be the
set of edge-bundles described above. Then we add the following
timing constraint:

∀e, e′, bx ∈ Bmutex|B(e, bx)&B(e′, bx), γ(e) = γ(e′) (31)

Additionally, architectural constraints require the total length in
instructions of the vertex bundles mapped to the same node to be
≤ 32. This requires defining, for each bundle, the maximum bundle
length λ(bv) as a function of the last send message of the vertex.
This length can then be constrained to be ≤ 32.

To achieve this, we first define the set LAST (Bv, Be), which
pairs each vertex bundle with its last edge bundle, corresponding
to the last send message of the vertex. This enables to define the
maximum bundle length λ(bv) as:

∀e, be, bv|LAST (bv, be)&B(e, be),
∆(e) + δ(e) ≤ λ(bv) (32)

We finally define Q(Bv, N) as the required number of instruc-
tions on node n from vertex bundle bv and limit it to 32 (the code-
snippet length).

∀bv, n ∈ N, Q(bv, n)−32 ∗Mbn(bv, n)≥λ(bv)−32 (33)
∀n, Σbv∈BvQ(bv, n) ≤ 32 (34)

Objective Formulation: For PLUG, the smallest service interval
is achieved and enforced for any legal schedule, and we optimize
solely for latency LAT .

min LAT s.t. [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14,

15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]

6. Implementation and Evaluation
In this section, we describe our implementation of the constraints in
an off-the-shelf ILP solver and evaluate its performance compared
to native specialized schedulers for the three architectures.

6.1 Implementation
We use the GAMS modeling language to specify our constraints as
mixed integer linear programs, and we use the commercial CPLEX
solver to obtain the schedules. Our implementation strategy for

TRIPS DySER PLUG

Benchmarks

• Same as prior TRIPS scheduler papers
[9]: SPEC microbenchmarks and EEMBC

• Full SPEC benchmarks can’t run to
completion on simulator and don’t
stress scheduler (since blocks are small)

• DySER data-parallel workloads since they produce large blocks and
complete code from compiler [25].

• Additional throughput microbenchmark (details below)1

• SPEC2006 and PARSEC in [25] are not usable because they don’t
produce high quality code on compiler. [25] used a trace-simulation
based approach (not compiler-based code-generation).

• PLUG benchmarks from [13]

Native scheduler • Optimized SPS scheduler [9] • Specialized greedy algorithm in toolchain & hand scheduled [26] • Hand scheduled [13]

Metric • Total execution cycles for program • Total execution cycles for program • Total execution cycles for lookups

1. DySER “throughput” microbenchmark: This performs the calculation 𝑦 = 𝑥 − 𝑥2𝑖 in the code-region. Paths diverge at the input node x, into one long path which computes the 𝑥2𝑖 with a series
of i multiplies, and along a short path which routes x to the subtraction. This pattern tends to cause latency mismatch because one of these converging paths naturally takes less resources.

Table 5. Tools and methodology for quantitative evaluation

Compiler
“frontend”

GAMS ILP
program

GAMS/
CPLEX

Compiler
“backend”

Simulator
G

Constraints H

“frontend”: passes in the compiler that produce pre-scheduled code;
“backend”: passes that convert scheduled code into binary.

Figure 9. Implementation of our ILP scheduler. Dotted boxes indicate the
new components added.

prioritizing multiple variables follows a standard approach: we
define an allowable percentage optimization gap (of between 2% to
10%, depending on the architecture), and optimize for each variable
in prioritized succession, finishing the solver when the percent gap
is within the specified bounds. After finding the optimal value for
each variable, we add a constraint which restricts that variable to
be no worse in future iterations.

Figure 9 shows our implementation and how we integrated
with the compiler/simulator toolchains [1, 13, 25]. For all three
architectures, we use their intermediate output converted into our
standard directed acyclic graph (DAG) forG and fed to our GAMS
ILP program. We specifiedH for each architecture. To evaluate our
approach, we compare the performance of the final binaries on the
architectures varying only the scheduler. Table 5 summarizes the
methodology and infrastructure used.

6.2 Results
Is this ILP-based approach implementable? Yes, it is possible to
express the scheduling problem as an ILP problem and implement
it for real architectures. Considering the ILP constraint formulation
for the general framework, our GAMS implementation is around
50 lines of code.
Result-1: A declarative and general approach to expressing and
implementing spatial-architecture schedulers is possible.

Is the execution time of standard ILP-solvers fast enough to be
practical? Table 6 (page 10) summarizes the mathematical char-
acteristics of the workloads and corresponding scheduling behav-
ior. The three right-hand columns respectively show the number of
software nodes to schedule, the amount of single ILP equations cre-
ated, and the solver time.2 There is a rough correlation between the
workload “size” and scheduling time, but it is still highly variable.

The solver time of the specialized schedulers in comparison is
typically on the order of seconds or less. Although some blocks
may take minutes to solve, these times are still tractable, demon-
strating the practicality of ILP as a scheduling technique.
Result-2: Our general ILP scheduler runs in tractable time.

Are the output solutions produced good? How do they compare
against the output of specialized schedulers? Figure 10 (page 10)

2 For TRIPS, the per-benchmark number of DAGs can range from 50 to
5000, and the metrics provided are average per DAG. For DySER, #DAGs
is 1 to 4 per benchmark, and PLUG is always 1.

shows the performance of our ILP scheduler. It shows the cycle-
count reduction for the executed programs as a normalized percent-
age of the program produced by the specialized compiler (higher is
better, negative numbers mean execution time was increased). We
discuss these results in terms of each architecture.

Compared to the TRIPS SPS specialized scheduler (a cumulated
multi-year effort spanning several publications [9, 12, 40]), our ILP
scheduler performs competitively as summarized below.3

Compared to SPS
(a)Better on 22 of 43 benchmarks up to 21% GM +2.9%
(b)Worse on 18 of 43 benchmarks within 4.9% GM -1.9%

(typically 2%)
(c)5.4%, 6.04%, and 13.2% worse on ONLY 3 benchmarks

Compared to GRST
Consistently better, up to 59% better; GM +30%

Groups (a) and (b) show the ILP scheduler is capturing the
architecture/scheduler interactions well. The small slowdown-
s/speedups compared to SPS are due to dynamic events which
disrupt the scheduler’s view of event timing, making its node/link
assignments sub-optimal, typically by only 2%. After detailed anal-
ysis, we discovered the reason for the performance gap of group
(c) is the lack of information that could be easily integrated in
our model. First, the SPS scheduler took advantage of information
regarding the specific cache banks of loads and stores, which is
not available in the modular scheduling interface exposed by the
TRIPS compiler. This knowledge would improve the ILP sched-
uler’s performance and would only require changes to the compat-
ibility matrix C(V,N). Second, knowledge of limited resources
was available to SPS, allowing it to defer decisions and interact
with code-generation to map movement-related instructions. What
these results show overall is that our first-principles based approach
is capturing all the architecture behavior in a general fashion and ar-
guably aesthetically cleaner fashion than SPS’s indirect heuristics.
Our ILP scheduler consistently exceeds by appreciable amounts a
previous generation TRIPS scheduler, GRST, that did not model
contention [40], as shown by the hatched bars in the figure.

On DySER, the ILP scheduler outperforms the specialized
scheduler on all benchmarks, as shown in Figure 10, for a 64-
unit DySER. Across the benchmarks, the ILP scheduler reduces
individual block latencies by 38% on average. When the latency
of DySER execution is the bottleneck, especially when there are
dependencies between instances of the computation (like the nee-
dle benchmark), this leads to significant speedup of up to 15%. We
also implemented an extra DySER benchmark, which elucidates
the importance of latency mismatch and is described in Table 5.

3 We did not run on SPEC benchmarks for three reasons: prior TRIPS
scheduler work uses this set; TRIPS simulator does not have sim-point
etc. to meaningfully simulate TRIPS benchmarks; TRIPS compiler does
not produce good enough code on SPEC (10-15 inst blocks only) to make
scheduler a factor [12, 23]. Using TRIPS hardware was impractical for us.

cj
p

eg

ro
ta

te
0

1

b
it

m
n

p
0

1

b
ez

ie
r0

1

a2
ti

m
e

0
1

ca
n

rd
r0

1

[µ
]g

zi
p

_2

[µ
]b

zi
p

2
_1

[µ
]p

ar
se

r_
1

ai
ff

tr
0

1

[µ
]a

m
m

p
_

1

d
jp

eg

tb
lo

o
k0

1

co
n

ve
n

0
0

au
tc

o
r0

0

[µ
]a

m
m

p
_

2

ai
if

ft
0

1

o
sp

f

[µ
]g

zi
p

_1

p
kt

fl
o

w

p
n

tr
ch

0
1

fb
it

al
0

0

b
as

ef
p

0
1

rs
p

ee
d

0
1

p
u

w
m

o
d

0
1

iir
fl

t0
1

ro
u

te
lo

o
ku

p

te
xt

0
1

ff
t0

0

tt
sp

rk
0

1

d
it

h
er

0
1

vi
te

rb
0

0

[µ
]a

rt
_1

[µ
]G

M
TI

ai
fi

rf
0

1
-

m
at

ri
x0

1
-

ca
ch

eb
0

1
-

[µ
]m

at
ri

x_
1

-

[µ
]a

rt
_3

--

[µ
]e

q
u

ak
e

_1

id
ct

rn
0

1
 -

[µ
]v

ad
d

 -

[µ
]a

rt
_2

th
ro

u
gh

tp
u

t

n
ee

d
le ff
t

km
ea

n
s

tp
ac

f

m
m

n
n

w

m
ri

-q

st
en

ci
l

sp
m

v

Se
at

tl
e

Et
h

an
e

IP
v4

Et
h

er
n

et

-10

-5

0

5

10

15

20

49

TRIPS DySER PLUG

-13%

4.2X

47 30 31 30 38 37 28 27 30 59 22 49 24 53 23 29 23

SPS GRST

Figure 10. Normalized percentage improvement in execution cycles of ILP scheduler compared to specialized scheduler.

a2time01 11 1914 5 ttsprk01 11 1993 8

aifftr01 12 2173 25 cjpeg 12 2280 3

aifirf01 11 1933 7 djpeg 12 2277 1

aiifft01 11 2025 1 ospf 10 1778 3

basefp01 10 1863 6 pktflow 10 1774 3

bitmnp01 9 1535 3 routelookup 10 1747 3

cacheb01 27 2745 76 bezier01 10 1788 2

canrdr01 10 1871 8 dither01 10 3579 4

idctrn01 11 1947 3 rotate01 10 1910 5

iirflt01 11 2080 2 text01 10 1781 3

matrix01 11 1426 2 autcor00 10 1746 2

pntrch01 10 1819 5 conven00 10 1758 4

puwmod01 10 1779 3 fbital00 9 1699 3

rspeed01 10 1816 7 fft00 10 1808 5

tblook01 10 1818 4 viterb00 10 1870 5

Applications #nodes #eqns
Solver

time (sec)

fft 20 120250 365

mm 32 159231 77

mri-q 19 98615 66

spmv 32 155068 72

stencil 30 153428 74

tpacf 40 211584 368

nnw 25 169197 102

kmeans 40 232399 218

Needle 34 181686 183

Throughput 9 45138 62

DySER Avg. 28 152660 159

Applications #nodes #eqns
Solver

time (sec)
Applications #nodes #eqns

Solver
time (sec)

ammp_1 17 3744 76 gzip_1 23 4480 1

ammp_2 8 1593 <1 gzip_2 22 4506 111

art_1 22 4547 74 matrix_1 19 3797 18

art_2 27 5506 76 parser_1 33 7248 174

art_3 33 7042 20 transp_GMTI 20 4159 115

bzip_1 13 2655 10 vadd 30 7313 315

equake_1 24 4455 3

M
ic

ro
b

e
n

ch
m

a
rk

s
[9

]
EE

M
B

C
 [

9
]

Applications #nodes #eqns
Solver

time (sec)
Ethernet 18 25603 57

Ethane 11 13905 14

IPv4 12 38741 384
Seattle 16 14531 26

PLUG Avg. 14 23195 120

TRIPS Avg. 14 2832 31

(c) PLUG

(a) TRIPS

(b) DySER

D
at

a
-P

ar
al

le
l B

e
n

ch
m

ar
ks

 [
2

6]

P
LU

G
 b

e
n

ch
m

ar
ks

 [
1

3
]

Table 6. Benchmark characteristics and ILP scheduler behavior.

The specialized scheduler tries to minimize the extra path length at
each step, exacerbating the latency mismatch of the short and long
paths in the program. The ILP scheduler, on the other hand, pads the
length of the shorter path to reduce latency mismatch, increasing
the potential throughput and achieving a 4.2× improvement over
the specialized scheduler. Finally, we also compared to manually
scheduled code on an 16-unit DySER (since hand-scheduling for
64unit DySER is exceedingly tedious). The ILP scheduler always
matched or out-performed it by a small (< 2%) percentage.

The ILP scheduler matches or out-performs the PLUG hand-
mapped schedules. It is able to both find schedules that force
SV C = 1 and provide latency improvements of a few percent.
Of particular note is solver time, because PLUG’s DFGs are more
complex. In fact, each DFG represents an entire application. The
most complex benchmark, IPV4, contains 74 edges (24 more
than any others) split between 30 mutually exclusive or multicast
groups. Despite these difficulties, it completes in tractable time.
Result-3: Our ILP scheduler outperforms or matches the perfor-
mance of specialized schedulers.

Modeling Concerns Approach

Can constraints be
modeled precisely?

• Most constraints are directly expressible
• Nonlinear constraints do not arise
• Logical operations can be modeled using known
techniques [24, 29, 30]

Can other constraint
theories be used?

• Constraints can be specified in SMT theory
• Our Z3[14] implementation shows that SMT
solving takes significantly longer than ILP

Implementation Concerns

Can dynamic effects
(cache misses, network
contention) be taken into
account?

• We optimize for best-case scenario (same
approach as existing specialized schedulers)
• Stochastic techniques can optimize concurrently
for multiple scenarios (future work)

How does implementing
objective functions
compare to implementing
scheduling heuristics?

• Declarative formulation is more intuitive &
simplifies implementation.
• Example: the TRIPS SPS scheduler uses several
indirect heuristics to model utilization, whereas
utilization directly captures it

Productivity Concerns

Is a deep understanding of
architecture required?

• Full understanding of the target architecture
is required regardless of the approach
• We streamline process by defining sets of
responsibilities & direct modeling of behavior

Table 7. Feasibility concerns

7. Discussion and Conclusions
Scheduling is a fundamental problem for spatial architectures,
which are increasingly used to address energy efficiency. Com-
pared to the architecture-specific schedulers, which are the current
state-of-the-art, this paper provides a general formulation of spatial
scheduling as a constraint-solving problem. We applied this for-
mulation to three diverse architectures, ran them on a standard ILP
solver, and demonstrated such a general scheduler outperforms or
matches the respective specialized schedulers. Some potential lim-
itations and concerns about our work are outlined in Table 7, but
do not detract from its central contributions.

We conclude with a discussion of some broader extensions and
implications of our work. Specifically, we discuss the possibility
of improving the scheduling time through algorithmic specializa-
tion, and how our scheduler delivers on its promises of compiler-
developer productivity/extensibility, cross-architecture applicabil-
ity, and insights on optimality.

Specializing ILP Solvers: While the benefits of using Integer Lin-
ear Programming come at the cost of additional scheduler execu-
tion time, we suspect that there may be further opportunities for
improvement. One strategy is to specialize the solver’s algorithms
to the problem domain. The Network Simplex algorithm for the
minimum cost flow problem is a widely known example. To create
a specialized algorithm for our problem, a detailed investigation of
the constraints from a solver design perspective would be required,
as well as the modification of existing ILP solvers. This is one crit-
ical direction for future work.

Responsibility RAW WaveScalar Neural Processing Unit

Placement Homogeneous Cores (Tiles) Homogeneous Processing Elements 8 Processing Elements, 1 Shared Bus

Routing 2-D grid, unconstrained routing
Hierarchical Network. First two levels are
fully connected, last level grid uses
dynamic routing

Responsibility Not Applicable -- Broadcast
bus used for communication.

Timing

In-order execution inside tile,
dataflow between tiles
(Secondary list scheduler orders
inter-stream events)

Data-flow execution, and dynamic
network arbitration; network latency
varies by hierarchy level

Fully Static execution. “No-ops” between
bus events maintain synchronization.

Utilization
Many instructions per tile. Shared
network links

64-Instuctions/PE; Shared Network Links Shared Processing Elements

Objective Latency & Throughput Contention & Latency Latency

Table 8. Applicability to other Spatial Architectures

Formulation Extensibility: In our experience, our model formula-
tion was easily adaptable and extensible for modeling various prob-
lem variations or optimizations. For example, we improved upon
our TRIPS scheduler’s performance by identifying blocks with
carried-loop cache dependencies (commonly the most frequently
executed), and extended our formulation to only optimize for rele-
vant paths.

Application to Example Architectures: Table 8 shows how our
framework could be applied to three other systems. For both
WaveScalar and RAW, we can attain optimal solutions by refraining
from making early decisions, essentially avoiding the drawbacks of
multi-stage solutions. For WaveScalar, our scheduler would con-
sider all levels of the network hierarchy at once, using different
latencies for links in different networks. For RAW, our scheduler
would consider both the partitioning of instructions into streams,
and the spatial placement of these instructions simultaneously.

As a more recent example, NPU [20] is a statically-scheduled
architecture like PLUG, but uses a broadcast network instead of a
point-to-point, tiled network. Instead of using the routing equations
for communication, the NPU bus is more aptly modeled as a com-
putation type. Timing would be modeled similarly to PLUG, where
“no-ops” prevent bus contention, allowing a fully static schedule.

Insights on Optimality: Since our approach provides insights on
optimality, it has potentially broader uses as well. For instance, in
the context of a dynamic compilation framework, even though the
compilation time of seconds is impractical, the ILP scheduler still
has significant practical value – it enables developers to easily for-
mulate and evaluate objectives that can guide the implementation
of specialized heuristic schedulers.

Revisiting NPU scheduling, we can observe another potential
use of ILP models, specifically in designing the hardware itself. For
the NPU, the fifo depth of each processing element is expensive in
terms of hardware, so we could easily extend the model to calculate
the fifo depth as a function of the schedule. One strategy would
be to first optimize for performance, then fix the performance and
optimize for lowest maximum fifo depth. Doing this across a set
of benchmarks would give the best lower-bound fifo depth which
does not sacrifice performance.

Finally, while our approach is general, in that we have demon-
strated implementations across three disparate architectures and
shown extensions to others, a somewhat open question remains on
“universality”: what spatial architecture organization could render
our framework ineffective? This is subject to debate and is future
work. Overall, our general scheduler can form an important com-
ponent for future spatial architectures.

Acknowledgments
We thank the anonymous reviewers for comments. Thanks to Mark
Hill and Daniel Luchaup for their valuable insights and comments
on the paper. Support for this research was provided by NSF un-
der the following grants: CCF-0845751, CNS-0917213, and CNS-
0917238.

References
[1] Trips toolchain, http://www.cs.utexas.edu/ trips/dist/.
[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools.
[3] S. Amarasinghe, D. R. Karger, W. Lee, and V. S. Mirrokni. A theoret-

ical and practical approach to instruction scheduling on spatial archi-
tectures. Technical report, MIT, 2002.

[4] S. Amellal and B. Kaminska. Functional synthesis of digital systems
with tass. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 13(5):537 –552, 1994.

[5] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In
PPOPP 1991.

[6] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-
performance tradeoffs in processor architecture and circuit design: a
marginal cost analysis. In ISCA 2010.

[7] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software Synthesis
from Dataflow Graphs. Kluwer Academic Publishers, 1996.

[8] S. Borkar and A. A. Chien. The future of microprocessors. Commun.
ACM, 54(5):67–77, 2011.

[9] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the end of silicon with EDGE architectures.
IEEE Computer, 37(7):44–55, 2004.

[10] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-
specific processing on a general-purpose core via transparent instruc-
tion set customization. In MICRO 2004.

[11] J. Cong, K. Gururaj, G. Han, and W. Jiang. Synthesis algorithm for
application-specific homogeneous processor networks. IEEE Trans.
Very Large Scale Integr. Syst., 17(9), Sept. 2009.

[12] K. Coons, X. Chen, S. Kushwaha, K. S. McKinley, and D. Burger.
A Spatial Path Scheduling Algorithm for EDGE Architectures. In
ASPLOS 2006.

[13] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam. Plug:
Flexible lookup modules for rapid deployment of new protocols in
high-speed routers. In SIGCOMM 2009.

[14] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

[15] A. Deb, J. M. Codina, and A. Gonzales. Softhv: A hw/sw co-designed
processor with horizontal and vertical fusion. In International Confer-
ence on Computing Frontiers 2011.

[16] A. E. Eichenberger and E. S. Davidson. Efficient formulation for
optimal modulo schedulers. In PLDI 1997.

[17] J. R. Ellis. Bulldog: a compiler for vliw architectures. PhD thesis,
1985.

[18] D. W. Engels, J. Feldman, D. R. Karger, and M. Ruhl. Parallel
processor scheduling with delay constraints. In SODA 2001.

[19] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark Silicon and the End of Multicore Scaling. In ISCA
2011.

[20] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural accel-
eration for general-purpose approximate programs. In MICRO 2012.

[21] K. Fan, H. h. Park, M. Kudlur, and S. o. Mahlke. Modulo scheduling
for highly customized datapaths to increase hardware reusability. In
CGO 2008.

[22] P. Feautrier. Some efficient solutions to the affine scheduling problem.
International Journal of Parallel Programming, 21:313–347, 1992.

[23] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill, S. W.
Keckler, D. Burger, and K. S. McKinley. An evaluation of the trips
computer system. In ASPLOS 2009.

[24] G. J. Gordon, S. A. Hong, and M. Dudı́k. First-order mixed integer
linear programming. In UAI 2009.

[25] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim. Dyser: Unifying functionality and
parallelism specialization for energy efficient computing. IEEE Mi-
cro, 33(5), 2012.

[26] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically spe-
cialized datapaths for energy efficient computing. In HPCA 2011.

[27] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled
execution of recurring traces for energy-efficient general purpose pro-
cessing. In MICRO 2011.

[28] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
dark silicon in servers. IEEE Micro, 31(4):6–15, 2011.

[29] J. N. Hooker. Logic, optimization and constraint programming. IN-
FORMS Journal on Computing, 14:295–321, 2002.

[30] J. N. Hooker and M. A. Osorio. Mixed logical-linear programming.
Discrete Appl. Math., 96-97(1), Oct. 1999.

[31] Z. Huang, S. Malik, N. Moreano, and G. Araujo. The design of dy-
namically reconfigurable datapath coprocessors. ACM Trans. Embed.
Comput. Syst., 3(2):361–384, May 2004.

[32] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed superop-
timizer. In PLDI 2002.

[33] K. Kailas and A. Agrawala. Cars: A new code generation framework
for clustered ilp processors. In HPCA 2001.

[34] M. Kudlur and S. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. In PLDI 2008.

[35] A. Kumar, L. De Carli, S. J. Kim, M. de Kruijf, K. Sankaralingam,
C. Estan, and S. Jha. Design and implementation of the plug architec-
ture for programmable and efficient network lookups. In PACT 2010.

[36] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-time scheduling of instruction-level paral-
lelism on a raw machine. In ASPLOS 1998.

[37] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin,
M. Oskin, and S. J. Eggers. Instruction scheduling for a tiled dataflow
architecture. In ASPLOS 2006.

[38] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin,
M. Oskin, and S. J. Eggers. Modeling instruction placement on a
spatial architecture. In SPAA 2006.

[39] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, M. Budiu,
and S. C. Goldstein. Tartan: Evaluating spatial computation for whole
program execution. In ASPLOS 2006.

[40] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin,
and S. W. Keckler. Static placement, dynamic issue (spdi) scheduling
for edge architectures. In PACT 2004.

[41] E. Özer, S. Banerjia, and T. M. Conte. Unified assign and schedule:
a new approach to scheduling for clustered register file microarchitec-
tures. In MICRO 31.

[42] J. Palsberg and M. Naik. Ilp-based resource-aware compilation, 2004.
[43] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim. Edge-

centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In PACT 2008.

[44] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing 1991.

[45] N. Satish, K. Ravindran, and K. Keutzer. A decomposition-based
constraint optimization approach for statically scheduling task graphs
with communication delays to multiprocessors. In DATE 2007.

[46] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar.
In MICRO 2003.

[47] M. Thuresson, M. Sjalander, M. Bjork, L. Svensson, P. Larsson-
Edefors, and P. Stenstrom. Flexcore: Utilizing exposed datapath con-
trol for efficient computing. In IC-SAMOS 2007.

[48] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation cores:
reducing the energy of mature computations. In ASPLOS 2010.

[49] H. M. Wagner. An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131–140, 1959.

[50] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal. Baring It All to Software: RAW Machines. Computer,
30(9):86–93, 1997.

[51] M. Watkins, M. Cianchetti, and D. Albonesi. Shared reconfigurable
architectures for cmps. In FPGA 2008.

[52] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial
Optimization.

