
Virtually-Aged Sampling DMR: Unifying Circuit Failure
Prediction and Circuit Failure Detection

Raghuraman Balasubramanian
University of Wisconsin-Madison

ragh@cs.wisc.edu

Karthikeyan Sankaralingam
University of Wisconsin-Madison

karu@cs.wisc.edu

ABSTRACT
Hardware failure due to wearout is a growing concern. Cir-
cuit failure prediction is an approach that is effective if
it meets the following requirements: low design complex-
ity, low overheads, generality (supporting various types of
wearout including soft and hard breakdown) and high ac-
curacy. State-of-the-art techniques, which typically detect
and measure low level circuit properties like gate delay can-
not deliver on all four requirements. Moving away from the
paradigm of measuring circuit delays is key to satisfying the
four design requirements. Our insight is to virtually age
the processor and thus manifest a wearout fault early – we
convert the delay degradation into a logic fault; expose the
fault and then detect the fault. To virtually age the pro-
cessor, reducing supply voltage effectively mirrors wearout.
For fault exposure, we observe that faults in critical paths
are naturally exposed and we develop a technique to expose
faults along the non-critical paths using clock phase shifting
logic. Our system, Aged-SDMR, combines these two mech-
anisms to expose wearout faults early and detects them us-
ing Sampling DMR. We also develop principles to combine
these two mechanisms with any detection technique. We
implement a prototype system based on the OpenRISC pro-
cessor on a Xilinx Zync FPGA. We demonstrate that Aged-
SDMR is practical and delivers on all four requirements,
has area and energy overheads of 9% and 0.7% respectively,
takes at most 0.4 days to detect failure after onset and its
early warning window is configurable. More generally, Aged-
SDMR provides the capability for low-overhead DMR exe-
cution without any missed errors and 100% coverage. It is
likely to find broad uses within reliability and elsewhere.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization] Performance of Systems — Fault Tol-
erance; C.0 [Computer Systems Organization] General —
System architectures

General Terms: Design, Reliability, Performance

Keywords: Fault tolerance, Permanent Fault, Dual-modular
redundancy, Sampling, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’46 December 07 - 11 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00.

1 Introduction
In future generations of silicon technology, microprocessors
are increasingly likely to fail in the field due to device faults [2,
8, 10,31]. One source of the problem is increasing manufac-
turing fault escapes during testing [33]. The other source is
faults that appear during the chip’s lifetime due to various
silicon aging or wearout phenomenon [23,52]. The latter is
the focus of this paper and can be classified into two broad
philosophies: fault detection and fault prediction1.

Fault detection determines faults as it occurs, whereas
fault prediction predicts a fault before it occurs. As out-
lined in prior works, detection techniques potentially suffer
from low fault coverage, long detection latency, silent data
corruption and unbounded missed architectural errors [3,19,
37]. On the other hand, prediction techniques suffer from
high overheads, high design complexity, low accuracy and
poor generality (i.e. what types of aging mechanisms cov-
ered). We define soft and hard breakdowns that character-
ize wearout and then summarize the representative works
in these two paradigms to motivate the principles that can
achieve the best of both approaches.

Terms We use the following terms throughout the paper to
distinguish two different types of device breakdown. Soft
Breakdown : As devices wearout, the gates operate slower.
When their delays exceed a set period (frequency of opera-
tion of the device), they manifest as faults. Hard Breakdown
: Wearout may cause a catastrophic failure in gates, leading
to a permanent fault in its digital logic behavior.

Fault detection Gizopoulos et al. provide a summary and
survey of detection techniques [19], some of which we re-
view below. Dual Modular Redundancy (DMR) [20, 28, 35,
46] provides full fault coverage while incurring significant
power overheads and design complexity in terms of pro-
cessor microarchitecture. Diva [5], Argus [34] and BIST-
based techniques [13,47] fall into a paradigm of asymmetric
DMR (where the dual is a simplified version of the mas-
ter) and have lower overheads while they fall short in full
fault coverage. SWAT [31] is a software-based low over-
head technique, but has an “unbounded” detection latency
and does not provide 100% fault coverage. On the other
hand, Sampling+DMR [37] provides 100% fault coverage
like DMR, while keeping overheads to 1%-5% through sam-
pling, and avoids microarchitecture design complexity. It
uses lightweight communication of architectural trace be-
tween cores and activates DMR only for small windows at

1Complementing and somewhat orthogonal to both is the body of
work on repair [4, 22,26,53], and recovery [42,50]

CLK

Processor circuit

Representative test circuit

Delay
measurement

Failure
predicted?

(a) Canaries

CLK

Processor circuit Age detecting latch

Circuit level failuresGates covered
Gates missed

(b) Age Detection Latches

CLK

Processor circuit

Degradation measurement and
Analysis

Failure
predicted?

CLK

Processor circuit

Test circuit
BIST/DFT
Generate Failure predicted?

Test vector in Test vector out
Analysis

(c) BIST/DFT Aging Analysis (d) Continuous delay degradation monitoring

Canary circuit based In-situ techniques

CLK

Processor circuit

Clock Phase
Shifting Logic

No Modifications to Critical Paths

DVS

Checker core

Virtually Aged Checked core

@0
yrs

CLK

@2.6 yrs

@3 yrs

Degradation

Timing Fault

@2.6 yrs
virtually

aged
Fault Manifested

Architecture state
corruption

(e) Aged SDMR

Virtual Ager

Fault Exposure
Supply Voltage

Low Overheads
Generality: { Soft Breakdown

Low Design-Complexity High Accuracy
Hard Breakdown

Low Overheads
Generality: { Soft Breakdown

High Accuracy
Hard Breakdown

Low Overheads
Generality: { Soft Breakdown

High Accuracy
Hard Breakdown

Low Overheads
Generality: { Soft Breakdown

High Accuracy
Hard Breakdown

Low Overheads
Generality: { Soft Breakdown

High Accuracy
Hard Breakdown

} }

}} }† †

Low Design-Complexity

Low Design-Complexity Low Design-Complexity Low Design-Complexity

Requirement provided/satisfied by the technique Partially provided/satisfied Not provided/satisfied
Design complexity means the techniques interferes with the critical path; † : Higher overhead can increase soft breakdown coverage.

Figure 1: Overview of failure prediction techniques and Aged-SDMR

random or periodically chosen intervals. However, from
a practical standpoint it suffers from the phenomenon of
“missed errors” for device faults that have low architectural
error rate. For hardware faults that cause a very low error
rate of architectural errors, many sampling windows must
occur before the DMR window overlaps with when the error
occurs - thus detecting it. In the prior epochs, the architec-
ture errors are missed and caused irrecoverable data corrup-
tion. This issue creates a significant problem, without which
Sampling-DMR is almost perfect.

Fault prediction Figure 1 graphically demonstrates the un-
derlying mechanism in different prediction techniques. The
figure also classifies the techniques according to tradeoffs in
design-complexity, overheads, generality and accuracy. By
generality, we refer to whether the technique can handle vari-
ous types of wearout, in particular soft and hard breakdown.

Broadly, prediction techniques fall into one of two cat-
egories, canary-based and in-situ, and in general they are
driven by the principle that aging faults start with delay
degradation before transitioning into hard breakdown. The
main drawback of canary-based techniques (for example [56,
60] - in the interest of space we do not cite the vast literature
here) is low accuracy, since it is hard to sensitize the canaries
similarly to the circuit they are associated with. In-situ
techniques attempt to address this problem. Fine-grained
techniques [3, 9, 16, 39] operate at the level of each flip-flop
and suffer from high overheads if applied to all flip-flops.
If selectively applied to only the critical paths, they suffer
from poor generality, as uncovered flip-flops can transition
unknowingly to hard breakdown as shown in Figure 1(b). In
the figure, we show a missed gate – on a path that has a lot
of slack. A delay degradation that this gate incurs will not
be reflected as a logic fault. While the gate may transition to
a hard breakdown, fine-grained techniques can not predict
the fault. Coarse-grained techniques attempt to operate on

an entire circuit block to amortize overheads. BIST/DFT-
based techniques [18,49,62] are shown in Figure 1(c). They
suffer from coverage problems in that full coverage for de-
lay/timing faults is hard (in general “model coverage” and
fault coverage problems [40,43]), lack generality, and offline
measurements miss faults masked by dynamic effects like
temperature and noise. Blome et al. [6] propose an online
technique similar in spirit - they measure circuit signal delay
online (i.e., as regular code runs on the processor) at groups
of flip-flops attached to a measurement and analysis block as
depicted in Figure 1(d). Although time-sharing this block
across several gates mitigates some overhead, it adds to load
on critical path. For gathering statistically significant mea-
surements, the gates must be sampled frequently; this puts
a limit on the number of gates an analysis block can han-
dle and so is not scalable. Further using several, always on,
units to boost coverage has high power and area overhead.
Section 3.7 expands more on these issues.

In summary, prior work does not simultaneously provide
high accuracy, generality, low overheads and low design com-
plexity. A practical and deployable technique has remained
elusive. Building on the prior work, we seek to develop
a hardware-only technique (desirable for a microprocessor
manufacturer) that can satisfy all four requirements with a
paradigm unifying detection and prediction.

1.1 Overview of Aged-SDMR
We observe that the four design requirements — low over-
heads, low design complexity, high accuracy, and generality
— can be achieved by moving away from the paradigm of
measuring circuit delays to predict wearout. Our key insight
is to virtually wearout the processor and thus manifest a
wearout fault early — we convert the delay degradation into
a logic fault; then we expose the fault, and then detect the
fault — which effectively predicts/detects the wearout. By
observing that all wearout faults first start as delay faults,

“any” detection technique can be repurposed as a prediction
technique. In this work, we specifically repurpose Sampling-
DMR since it provides three of four requirements: low over-
heads, low design complexity and high accuracy. Figure 1(e)
shows an overview of our technique called Aged-SDMR. In
this section, we first explain how we manifest faults early,
followed by two specific mechanisms that together provide
generality and then the full system design.

Virtual aging to manifest faults We can force faults to
manifest early by virtually degrading (or stressing) the pro-
cessor being checked. Since soft breakdown affects delays
only, reducing Vdd (without reducing clock period) will ef-
fectively increase the delay of gates, thus manifesting the
delay fault. This is denoted by the “Virtual Ager” module
in Figure 1(e). By reducing Vdd only during DMR windows,
we effectively create an illusion of the checked processor be-
ing older than it currently is and ensure that faults always
manifest first in the DMR window - eliminating the missed
error problem that plagues detection using Sampling+DMR.
Further, resetting the voltage level restores the gate back to
its current age.

Fault exposure To expose faults, i.e. get circuit logic (or
digital) behavior to be affected by the apparent presence
of wearout induced by virtual aging, we discover and ad-
dress two subtle cases to guarantee generality and full cov-
erage. Wearout on gates on the critical path get naturally
exposed — gate delay increases and ultimately causes setup-
time/hold-time violations or metastability problems that re-
sult in a wrong value being captured in a flip-flop. Gates on
non-critical paths do not cause any timing faults and if unad-
dressed, can unknowingly transition to hard breakdown. We
observe that a simple clock-phase shifting logic can be added
to gates on non-critical paths to effectively expose their de-
lays. Both these cases are indicated in Figure 1(e). Further,
only a fraction of gates/paths fall under this category and we
develop a low overhead mechanism for generating this phase
shifting logic. The timing diagram in Figure 1(e) shows this
concept without making the distinction about the type of
path. During normal operation, values arrive before the ris-
ing clock-edge, and after wearout degradation delays, say in
36 months, the signal arrives after the clock edge. This ef-
fect can be manifested and the timing fault exposed “early”
at 26 months, by running at reduced Vdd.

Overall system The two simple mechanisms described above
combine to provide a simple, yet effective circuit failure pre-
diction technique advancing the state-of-the-art. Overall,
Aged-SDMR works as follows and is depicted in Figure 1(e)
and Figure 2. Program execution is broken into epochs of
execution, with a small window at the start of each epoch
executed in DMR mode. A light-weight mechanism is used
to pair two cores arbitrarily and checking is done for every
retired instruction. To implement virtual aging, every core
is augmented with the capability to reduce its supply voltage
by a small amount - it is the designer’s choice, as it directly
controls the timeliness of prediction. In practice, we simply
leverage existing DVS mechanisms that can reduce Vdd by as
little as 50mV. To implement fault exposure, at design-time
(during the physical design phase), a delay-chain is inserted
into each coarse-grained block. All fast paths are examined,
and based on their delays, they are “connected” to different
points in the delay-chain.

Reliability Manager

Processor
Signature
Generator

Comparator

Control

Error

Checker ID
 DMR Active
Age mode

Router

Trace Stall
Cache
refill

Ro
ut

er

Full

Checked core

Checker core

Checked core

Checker core

DMR
Mode

+ Aged

DMR
Mode

+ Aged Normal Operation

Occupied/Free timeChecking Checking

Coupled

Figure 2: Design of Aged-SDMR

Paper contributions In this paper we describe in detail the
design of Aged-SDMR. We also develop the general princi-
ples that a detection mechanism requires to leverage virtual
aging and fault exposure to be repurposed as a prediction
mechanism. We have implemented a full system prototype
of Aged-SDMR on the OpenRISC processor running on an
FPGA and evaluated with 10 SPEC benchmarks. We show
that Aged-SDMR works in practice and effectively provides
early warning of impending failure. It has area overheads
of less than 9%, power overheads of 3%, and energy over-
heads less than 1%, and it can provide generality. This paper
makes five contributions:

• Observation that detection and prediction can be uni-
fied by virtual aging to manifest wearout faults early.

• Circuit & microarchitecture mechanisms for fault ex-
posure.

• Principles for repurposing detection techniques to pre-
diction techniques.

• Full system design, implementation, and evaluation of
fault prediction using Aged-SDMR that provides gen-
erality, low overheads, low design complexity and high
accuracy.

• A methodological contribution with an end-to-end frame-
work for timing fault studies on complete applications.

Implications Aged-SDMR was developed as a technique
targeted at wearout. Its fundamental contribution and ad-
vancement to state-of-art is applicable more broadly. The
key idea is to deterministically trigger DMR execution, while
ensuring one of the duals operates in a stressed environment
thereby guaranteeing errors occur first when DMR is ac-
tive. We discuss these broader issues in the Conclusions
outlining applications for reducing guardband, amplifying
fault-mitigation techniques among others.

Paper organization The rest of this paper is organized as
follows. Section 2 presents a primer on wearout. Sections 3
and 4 present the detailed design and implementation. Sec-
tion 5 presents evaluation, Section 6 discusses related work
and Section 7 concludes.

2 Primer on aging
This section gives an overview of three predominant wearout
mechanisms and how they contribute to the increase in prop-
agation delay through gates. For further details on wearout
and modeling, we refer readers to [45].

2.1 Propagation delay in CMOS logic
The delay through a gate (td) is a function of the capaci-
tance it drives (C), its size (L,W), the gate oxide capac-
itance (Cox), the charge carrier mobility (µeff), the oper-
ating voltage (Vdd) and the threshold voltage (Vth) and is
governed by the equation:

td =
2LC

WµeffCox(Vdd − Vth)2
(1)

Most degradation mechanisms directly affect the Vth. This
causes an increase in td, implying the gate becomes slower.
Note that reducing the Vdd has the same effect. Increasing
temperature reduces µeff and thus has a similar effect.

2.2 Wear-out mechanisms
Bias Temperature Instability (BTI) When a negative bias
is applied to the gate at elevated temperature, holes/electrons
migrate to the silicon-oxide interface. This causes an in-
crease in threshold voltage Vth governed by, among other
things, the switching activity of the device. Calimera et
al. [11] report 10%-15% degradation in Vth over a year of
circuit operation, which approximates to a delay degrada-
tion of 15% over 3 years of continuous operation.

Hot Carrier Injection (HCI) Occasionally, carriers (elec-
trons or holes) gain sufficient kinectic energy and break into
the the gate dielectric. Over time, this accumulation of car-
riers in the dielectric causes a degradation in Vth.

Time Dependent Dielectric Breakdown (TDDB) Long
time application of a low electric field causes slow gate oxide
degradation, which gradually increases the threshold volt-
age, causing a (soft breakdown). Eventually it leads to for-
mation of a conductive path from the gate to the substrate,
irreversibly breaking the gate (hard breakdown). Linder and
Stathis characterize this in detail [32]. The notion of hard
breakdown is traditionally thought of as the gate stopping
to function, but is increasingly viewed also as having such
high leakage that causes associated heating problems [24].

3 Design
In this section we present the design and implementation of
Aged-SDMR. We first describe the system architecture and
then details of the two underlying mechanisms for virtual
aging and fault exposure. We then describe general princi-
ples for repurposing any detection technique, how to react to
impending failures through the notion of an impending fail-
ure exception, and conclude with a discussion on practical
implementation concerns.

Before getting into details, we review the meaning of cir-
cuit failure prediction. Microprocessor manufacturers use
models and insert guardband to account for the expected
degradation during chip’s lifetime (say 8 years). Weibull dis-
tributions and bathtub curves capture failure distributions
in the field [52]. Typically most chips (say 70% to 95% -
exact values depend on maturity of process), will not have a
single device that exhibits delay degradation exceeding the
guardband of the chip during 8 years of operation. Circuit
failure prediction pertains to the 5% to 30% of chips that
exceed the delay guardband during their lifetime. The role
of the predictor is to warn sufficiently in advance of an im-
pending failure. The amount of guardband and percentage
of non-failing chips are inter-related variables.

3.1 Aged-SDMR system organization
Figure 2 shows the system architecture of Aged-SDMR. The
main additions to a Sampling-DMR system are i) voltage
reduction of the checked core, which virtually ages only the
checked code and ii) DMR error exception augmentation as
an impending failure exception.

We summarize the system architecture that largely bor-
rows from the work of Nomura et al. [37] and Wells et al. [61].
Each core in a multicore chip is augmented with a Reliability
Manager (RM) that includes a FIFO and some small amount
of state. It interacts with the processor accepting a trace of
completed instructions converted into a signature and condi-
tionally stalls it if the FIFO is full. A checked core drains its
FIFO when possible by sending messages through an inter-
connection network to the checker core (saved in the Checker
ID register). The checker core does similar operations to fill
its local FIFO. In addition, it receives messages and writes
them into the receiver FIFO. Whenever entries are available
in the local FIFO and receiver FIFO, they are both popped
and compared - differences indicate fault. To avoid memory
incoherence and to avoid load-store ordering problems, the
cores are synchronized on all cache refills (which includes
dirty evictions). Since DMR is active for small parts of time
(1% in our case), slowdowns do not impact performance.

We depict execution progress in Figure 2. To manage
switching in and out of DMR mode and exposing a fixed
number of available cores to the operating system, we as-
sume the chip exposes a fixed number of virtual CPUs (VCPU)
and has firmware to expose this to the OS [61]. The key
benefit of the firmware VM layer is that it allows the VC-
PUs to be arbitrarily paused, allows quick transition in and
out of DMR mode and makes available all physical cores to
processes instead of reserving a dual for each core. Every
VCPU is dynamically mapped to two physical cores (phys-
ical pair) by the firmware and the operating system assigns
work to a VCPU. Each physical core is capable of operating
in four modes, namely, checker mode, checked (or DMR)
mode, non-DMR mode, and free mode. Execution of every
process is in terms of epochs (100K to 5 million cycles, to
define a system checkpoint to rollback to). Safetynet [50],
Revive [42], ReviveIO [36] are all viable candidates for check-
points. The firmware starts a process by marking one core
to be in non-DMR mode and the other is marked available
(free mode). When entering DMR mode, the firmware acti-
vates the checker core (by finding a core in free mode) and
changes its mode to the checker mode. It then copies the
entire architecture state (registers and cache-lines) from the
checked core to checker core. It executes in DMR mode for
the DMR period length. The checked core is always executed
at a reduced voltage. If no error occurs, the checked core’s
mode is changed to non-DMR, voltage restored to nominal
Vdd and the checker core is marked free. If an error occurs
in DMR mode, the RM triggers an exception - the exception
handler will restore the system checkpoint first. We specif-
ically assume randomized sampling of the DMR windows.
Alternatively the OS itself can be modified to handle these
responsibilities.

In the following sections, we discuss the two underlying
mechanisms of virtual aging and fault exposure.

3.2 Virtual Aging
Under normal degradation, the threshold voltage Vth of tran-
sistors increases, slowing down their operation. From equa-

Time in Months Vdd

G
at

e
de

la
y

Sl
ac

k

Clock Period

Sl
ac

k

Vdd

50ps

50ps 20ps 20ps

Time Voltage

Virtual Aging using DVS (Used in our Evaluation)

40mV 20
ps

SlackDelay Delay Voltage Slack Relative Delay

Slack = 70ps

Slack = 20 ps
C

lo
ck

 P
er

io
d

(a) Delay degradation over time (b) Delay as a function of supply voltage (c) Slack as a function of supply voltage (d) Slack as a function of clock period

Finer Grained Control Using Voltage and Frequency Scaling

G
at

e
de

la
y

Figure 3: Delay increases as devices wearout; Reducing Vdd mimics aging. Slack may be removed by reducing Vdd or period

tion 1 we note that reducing supply voltage Vdd has the same
effect. Figure 3(a)-(b) show this correspondence between
delay from aging and delay from Vdd reduction. Restoring
the operational supply voltage brings back the transistors
to their previous state. We elaborate this with an exam-
ple. Consider a device with nominal Vdd of 1.2V and Vth of
200mV at start of life. After 24 months of degradation say
Vth is 250mV and after 36 months of degradation say Vth is
300mV. The concept of virtual aging is that, at 24 months,
setting Vdd to 1.15V effectively creates a device that behaves
like the 36 month old device (Vdd−Vth = 0.9). Reducing the
supply voltage is a reversible and accurate method to force
a processor to behave as if it has aged further. Equation 1
captures the impact of degradation (Vth increase) and Vdd

on the delay of gates. We show this equation holds true
emperically in Section 5.3.

Implementation Dynamic voltage scaling (DVS) is preva-
lent in commercial microprocessors and is controllable by
operating system and firmware. We leverage this mecha-
nism as-is in Aged-SDMR. When a core operates in checked
mode, the DVS controller is set to deliver a lower supply
voltage – 50 mV reduction is practical in modern designs.

Challenges Since virtual aging is achieved by reducing Vdd,
this affects the minimum amount of delay that can be in-
duced on gates i.e. the minimum amount of wearout that
can be virtually induced. This introduces a relationship be-
tween the granularity at which Vdd may be controlled and
how early a prediction may be made. In addition to changing
the supply voltage, frequency (clock period) control may be
used to improve the granularity. Figure 3(c)-(d) shows the
direct correlations between gate-delay change to first path-
slack and then from path-slack to clock period reductions.
Through empirical measurements we can create a mapping
from aging period in months to clock period reduction. Mod-
ern processors allow for clock period changes of as little as
25ps. This can be combined with voltage reduction to get
fine grained control. For the technology node we consider,
a 50mV reduction corresponds to 9 months of degradation
and 80ps delay. Combining Vdd reduction with 50ps of clock
period increase we can emulate, 30ps of aging delay which
is 3 months of degradation. Dynamic fine-grained body bi-
asing [1,54] which can be changed in 1µs to 10µs timescales
can be used to effectively alter Vth, giving further control
over granularity. In the evaluation, we restrict ourselves to
voltage reductions alone since it is sufficient to demonstrate
the utility of the concept.

CLK
In
D
Q

Time

D
Q

D
Q

Guardband

Degradation

Timing Violation
Soft breakdown

D
Q Fault Exposed

0 years

2.5 years

3 years

2.5 years +
Virtual Aging

Clock
Input

D
Q

D
Q

D
Q

Large slack

Degradation

Hard breakdown

D
Q No Fault seen

Q' Fault Exposed
Phased Clock

(a) Near-Critical Paths (b) Non-Critical Paths

Capture edge Capture edge
CLK CLK

D Q

Input CLK CLK

D Q

Input

Fault Manifested Fault Manifested

Fault exposure

Figure 4: Signal Integrity in Near-Critical and Fast paths

3.3 Fault Exposure in Critical Paths
Terms Fast-gate: Gates that are exclusively part of paths
whose delays are well below the clock period are called fast-
gates. Fast flip-flops and fast paths: Flip-flops and paths
where arrival times are well below the clock period. Gate
subcircuit: A gate subcircuit is a set of gates in all paths
that pass through a gate. We assume usual definitions of
critical path and non-critical path.

Exposing faults in the critical path is straight-forward.
Figure 4 (a) shows the effect of degradation in a critical-
path assuming guardband is added to accommodate aging.
As the chip ages, the delay increases and the guardband
slack decreases. When the delay degradation overshoots the
guardband (3 years in the figure), soft breakdown occurs.
Under virtual aging, the additional delay in gates that fall
in near-critical paths show up as faults at the flip-flops they
drive. This causes a bit-flip (or metastability) at the output
of the flip-flops that may propagate to cause an architec-
tural state corruption. These faults are exposed, with no
modifications required to the processor. Figure 5 shows an
example circuit block highlighting the fact that the critical
path is left unmodified.

3.4 Fault exposure in Non-Critical Path
Non-critical paths introduce subtle challenges because gates
that are exclusively on non-critical paths (fast gates) may
directly degrade to hard breakdown without ever manifest-
ing as a delay fault. On the OpenRISC and OpenSPARC
processor, respectively, 39% and 30% of all logic gates are
such fast gates. Note that these gates are as likely to wearout

CLK

Near-critical paths

Non-critical path
fast gate

phased CLK Additional logic
inserted to cover

fast gatesAging mode

Capture Flop

Clock Gate

Figure 5: Circuit and changes required to capture all faults

1
3

2
4

Figure 6: Where do capture flip-flops go?

as the gates on critical paths. To the best of our knowledge,
all prior prediction techniques leave these gates uncovered
and they will unknowingly transition to hard breakdown.
To expose these faults, we develop a novel mechanism.

Concept In non-critical paths, the delay through gates is
much smaller than the clock period. This excess slack masks
normal and virtual aging induced degradation. Figure 4 (b)
illustrates this effect. At the time of manufacture, there is a
large inherent slack. After a period of use, significant delay
degradation occurs. However, there is sufficient slack and
the flip flop still captures the correct value. Eventually, the
gate goes into a hard breakdown. At this time, the output of
the circuit is indeterminate. Before going into hard break-
down and with virtual aging enabled, a delay degradation
goes unnoticed as it is masked by the excessive slack. By
capturing the signal at an appropriately “phased clock”, the
fault can be exposed.

Implementation We implement the phased clock idea at
a relatively coarse granularity of pipeline stages. In each
stage, we begin by creating a number of phased clocks by
passing the clock through a delay chain. Using timing infor-
mation gathered from the synthesis phase, we determine the
nominal delay through the non-critical paths. The phase of
the clock that best captures the degradation (see Figure 4)
for each path is then chosen. A “capture flip-flop” triggered
by this clock is introduced at the end point of each path. A
mux is inserted to override the signal with a captured fault
if a core is in checked mode. This facilitates power/clock
gating the delay chains and capture flip-flops when the core
is in other modes. Figure 5 shows the additional circuitry
added to cover one such fast gate. The additional mux in
the circuit path causes a small increase in delay. This does
not pose a concern as these paths are, by design, non criti-
cal. This also enables the use of high threshold, low power
gates for the additional circuitry. Note that in non-checked
mode, the capture flip-flop is bypassed. Since, the capture
flip-flop is out of phase and its edge is far earlier than the
regular clock, in checked mode, we are not introducing an
additional clock cycle even though the signal passes through

an additional flip-flop.
Figure 6 illustrates the need for inserting the capture flip-

flop at the gate level granularity Consider two non critical-
paths which have the same end point Ê. Inserting a capture
flip-flop here will capture the degradation in path Ì. How-
ever, the fast path Ë is “faster” than Ì. We insert a capture
flip-flop at Í specifically for gates in path Ë.

Tradeoffs/Challenges The phase of the clock can be incre-
mented at the granularity allowable by the delay elements.
Thus faults at a few gates whose delays are closer to the
quantized delay are captured at lesser degradation than oth-
ers. Our end goal is a prediction window measured in hours
and days, hence this impact is overall insignificant. In our
design, we implement one delay chain per pipeline stage.
We derive multiple phased clocks using a single delay chain
per module. At design time, after timing closure, we deter-
mine the worst case delay through fast paths. We choose
the clock phase that best captures degradation, for exam-
ple, the worst case delay + 14%. This is done in design time
on paths with large slacks – the design complexity is low in
the sense changes are only to non-critical paths. It can be
done at various coarser or finer granularities and can even
be folded into clock-tree generation.

Another issue for the non-critical paths is slack distri-
bution. Even in highly optimized production designs, fast
paths do exist. Bowman et al. [9] show the distribution in
an Intel microprocessor. While Vdd reduction would cover
most (near critical) paths, additional capture logic is essen-
tial to cover the fast paths – most prior work focuses only
on near-critical paths.

3.5 Principles required in the detection mech-
anism

Virtual aging coupled with fault exposure can be combined
with any detection mechanism. We now develop the princi-
ples a detection system must provide for it to be compatible.

Principle 1: A checker. Introducing faults early is risky.
The detection mechanism must have a robust checker
- ideally providing 100% fault coverage.

Principle 2: Transition in and out of aged mode. The
aging mode is activated only for short periods of time.
The detection mechanism must facilitate being turned
on and off without large overheads.

Principle 3: Recovery. When a virtually manifested fault
is exposed and then detected, a mechanism to recover
must exist. The knowledge and capability that we pre-
cisely control when we enable virtual aging can be ex-
ploited.

We find Sampling+DMR to best fit these requirements. Ta-
ble 1 shows how four other state-of-the-art detection tech-
niques can be repurposed for prediction by manifesting faults
using virtual aging and exposing them using our mechanism.
In general they are enhanced with this hybridization com-
pared to their original detection-only approach: Argus and
DIVA need to be turned on only during sampling windows
of prediction, reducing their power overheads. SWAT can be
augmented with shorter epochs since the performance over-
heads get gated by sampling. Full DMR’s power overheads
also get gated by sampling. We note that some of these tech-
niques were designed to capture transient faults also, which
sampling curtails.

Pipeline
Stage

Functionality Slack
(ns)

Notes

G1 PC Generate Next PC value (bit 3) 0.0003 Part of mux that chooses next PC based on decoded branch opcode.
G2 ALU Adder (bit 31) 0.051 MSB of addition (ripple carry adder).

Switches when input operands change, even if not executing an ADD instruction.
G3 Instr Fetch Instr from ICache (bit 30) 0.026 Gate at output of instruction cache, critical as cache read cycle delay is high.
G4 LSU Write back on load (bit 0) 0.520 LSU data forward from data cache.

Value latched before forwarded: non-critical.
G5 Decode Extract Immediate Value 0.943 Extract immediate value from instruction on decode

(bit 0) Path contains only buffers: non-critical.

Table 2: Gates analyzed in our evaluation

Detection
Technique

Principle 1 Principle 2 Principle 3

Argus Yes DVS + Sampling Pipeline flush
DIVA Yes DVS + Sampling Pipeline flush
SWAT Symptoms DVS + Sampling Checkpoint
Full DMR Use checker DVS + Sampling Pipeline recovery

Table 1: Re-purposing other detection techniques

3.6 Impending failure exception
We propose a new “Impending failure exception” to convey
a failure prediction to the operating system. The operating
system may handle this exception in a lazy manner in many
possible ways: decommission the core, reserve the core only
for non-critical application code [30,44], trigger wearout mit-
igation techniques [12,27,54,55], or salvage the core [41].

3.7 Other practical concerns
Can errors escape? During sampling windows, virtual ag-
ing manifests faults in conjunction with DMR to detect the
errors. By doing so, we guarantee that when the errors
first occur, we detect them. As we have full control over
when the faults are manifested and have full coverage DMR
mechanism in place to detect errors, Aged-SDMR does not
suffer from missed errors escaping - an important distinction
to Sampling-DMR. An issue arrises if the underlying fault
does not first present as a delay degradation. We discuss
this as Question 7 in Section 5.

Could Aged-SDMR make wrong predictions? We can
look at two possibilities. First, consider false positives —
Aged-SDMR predicts failure, but no “failures” occur. A fail-
ure is predicted only when a wearout fault is impending in a
gate and application(s) activates the gate during sampling.
Once a failure is predicted, a different application(s) that
does not use this gate will not encounter errors. In this
regard, Aged-SDMR is at least as good as prior art. Sec-
ond, false negatives – Aged-SDMR fails to make a predic-
tion before breakdown. This is indeed a fundamental issue
that we analyze in detail in our results. We show that this
is exceedingly rare and can be avoided by common design
practices. In the above cases, the change in the application
behavior has to be radical. For example, for a false negative,
an application(s) that does not use the floating point unit
does not detect wearout in that unit. After breakdown, an
application that uses the floating point unit will encounter
unpredicted errors.

Relation and improvements over BIST coverage Exist-
ing BIST techniques are insufficient for the following rea-
sons. (i) Using limited test vectors, BIST/DFT can detect
stuck-at faults efficiently. Nomura et al. [37], explain that
for BIST like techniques to achieve 99.5% delay fault cover-
age, a large test vector is required and the processor must

be taken offline for 10s of seconds. As any gate in a proces-
sor may breakdown, 100% coverage is necessary which BIST
cannot provide. (ii) Online environment issues, like applica-
tion behavior triggering voltage noise are not captured by of-
fline techniques. (iii) Delay degradations in fast paths (prior
to hard breakdown) will never cause timing failures in BIST
test vectors, since they have large slack - additional fault ex-
posure logic is necessary. However, adding fault-exposure to
BIST is insufficient, because covering all gates/paths means
significantly longer vectors.

Execution perturbation We define execution perturbation
as the difference to program execution (time and ordering of
events) compared to a hypothetical run/system without pre-
diction techniques. On epochs where no impending failure
exception is raised, no perturbation is introduced beyond
what the DMR execution introduces on sampled windows.
On epochs where it is raised, restoring to a checkpoint in-
troduces “avoidable” perturbation, because the original pro-
cessor has not yet failed.

Interaction with process variation and voltage noise
An issue that is universal to all wearout prediction tech-
niques is interaction with voltage noise and process variation
related guardband. The process related addition in guard
band is static. Regardless of whether speed binning [14],
techniques like body biasing [57], or variation-tolerant power
optimizations [15,29] are used for a given chip, its influence
remains unchanged during life time and hence does not im-
pact Aged-SDMR. The guardband to accommodate oper-
ating condition variations, in particular, voltage noise and
temperature (which affects carrier mobility and hence gate
delays) is dynamic. Hence, it may lead to changes in the tim-
ing slack at random clock cycles even when all other factors
are constant. This dynamic variation may hinder exposing
the fault under virtual aging. When operating a core under
checked mode (with virtual aging), a variation – for example,
a positive surge in supply voltage – may cause the degrada-
tion to be masked. This poses a challenge in capturing the
fault. However, such noise is infrequent and/or intermittent,
and hence in worst case, the end effect is additional time to
predict failure.

Relationship to transient faults Our philosophy and claim
is that a missed permanent fault (≤ 100% coverage) results
in unbounded missed errors in the field because of recur-
ring errors from the fault, while ≤ 100% transient fault
coverage is more benign. We thus argue that it is best to
decouple treatment of permanent and transient faults and
design for 100% permanent fault coverage. For example,
Shoestring [17] can be used if 100% transient fault coverage
is not necessary. Alternatively, physically-based targetted
transient fault detection provides 100% coverage [59].

Number of fast gates The additional logic inserted to cover
fast gates contributes to an increase in logic area. We argue
that this is not a significant design concern in future de-
signs because (i) tuning for power reduction replaces gates
in non critical-paths with their low power (slower) counter
parts – reducing the number of fast gates. (ii) The clock
phase shifting logic may be implemented with relaxed skew
requirements – this adds minor imprecision to the predic-
tion horizon. (iii) The additional logic is added to paths
with large slack – obviating need for further timing opti-
mizations.

4 Implementation
In this section we describe our prototype implementation of
an Aged-SDMR system. Our goal in building this prototype
is to understand its effectiveness and overheads of the tech-
nique. Due to the difficulties in inducing actual wearout, we
develop a delay-aware simulation to get fault vectors which
are then injected into the prototype system.

4.1 Baseline Processor
We use the the OpenRISC OR1200 [38] - an ASIC proven mi-
croprocessor with full system stack support. Using a 32nm
technology library, the processor was synthesized to fit tim-
ing with a clock period of 1.2 ns and a guardband of 0.08 ns.
To measure fault rates and understand wearout effects, we
pick five representative circuits for analysis. We run these
through detailed SPICE simulations to understand delay
degradation. This strategy is similar to picking fault sites in
functional simulator based studies. We considered diversity
across pipeline, a mix of critical and non-critical paths, and
high switching activity gates (most likely to fail). Table 2
lists the gates with characteristics. Gates 4, 5 are fast gates.

4.2 Aged-SDMR Prototype system
Virtual Aging To model virtual aging, we use the gate li-
brary design specification and run delay aware simulations
and SPICE simulations with the correspondingly reduced
Vdd — we determined that 50mV corresponds to 9 months.

Fault Exposure We wrote custom scripts to automate adding
the circuitry required to capture faults in non critical-paths
– the delay chain, the capture flip-flop and the mux as shown
in Figure 5 – to the netlist. This gives us a version of Open-
RISC with fault exposure mechanisms added to it. We then
used delay aware simulation to determine when a flip-flop
(either critical or non-critical) captures an incorrect value
due to delays. Running logic simulation or delay-aware sim-
ulation for a full processor on full benchmarks is impractical,
and an FPGA cannot perform delay aware simulation, nor
is overclocking or under-volting an FPGA representative of
wearout or aging an ASIC processor. Hence we developed a
split strategy - note the below steps are for evaluation only
and are not required in a production system.

For each of the five gates described in Table 2, we ex-
tracted a “gate subcircuit” – that includes all gates that are
in the gate’s fan-in and fan-out, including the clock phase
shifting and capture logic. While running benchmarks on an
unmodified OpenRISC processor mapped on an FPGA, we
saved the input sequence driven to the gate subcircuit during
sampling windows. We then fed this as inputs to the gate
subcircuit’s delay aware simulation which produced a fault
vector, marking the cycles in which timing faults occurred.

Technology
• Digital Cell Libraries Synopsys 32nm multi-Vth library
• Transistor models Synopsys 32nm PDK (level 54)

Tools
• Degradation Modeling HSPICE + MOSRA
• Delay-aware Sim Synopsys VCS
• Area/Power Analysis Design Compiler
• FPGA Prototype Xilinx Zynq 7020

Benchmarks
• SPEC CINT2000 gzip, vpr, mcf, parser, vortex, bzip†

• SPEC CFP2000 art, equake, ammp, mesa†

† Compiled using uClibC for OpenRISC. Other benchmarks were in-
compatible. File-IO modified as memory ops to run on bare-metal.

Table 3: Infrastructure used in our evaluation.

Aged-SDMR prototype We implemented an emulation of
a full Aged-SDMR system by time-slicing an FPGA to run
two copies of OpenRISC 1,000 cycles at each step. We
sampled for 100,000 cycles in epochs of 10 million cycles
(1% DMR). We also implemented a simple reliability mod-
ule. Outputs, representing the trace of retired instructions
is buffered in an internal FPGA RAM. Virtual aging on the
checked core is modeled by injecting the fault vector from
the previous experiment. For prototyping we use the Xilinx
Zync 7020 FPGA which includes an ARM cortex A9 core,
which we utilize for orchestrating the time-slicing.

We do not model the interconnection network mapping of
multiple cores, firmware layer or VCPUs. We instead time-
slice two cores on the same FPGA. The implication is that
our prototype does not model performance degradations —
but as described previously, Sampling-DMR’s overheads are
1-2% with 1% sampling.

5 Evaluation
We describe our methodology, and then present results or-
ganized as answers to a set of evaluation questions.

5.1 Goals
Our goal of understanding wearout and Aged-SMDR’s effec-
tiveness is organized around the following questions.
Q1. Is delay degradation measurably observable?
Q2. Can voltage reduction virtually manifest wearout faults?
Q3. Do the manifested faults get exposed to the µarch and
cause timing faults?
Q4. Do the faults exposed to the microarchitecture translate
to architectural errors, then detected?
Q5. What are the overheads?
Q6. What is the delay to predict?
Q7. When does this technique provably fail to predict wearout?

5.2 Methodology
Figure 7 shows the flow of data across our evaluation proto-
type, tools used to obtain the data and questions they help
to answer. The general philosophy is as follows: (1) Use
SPICE + MOSRA to evaluate any gate level effects. These
tools when used with the advanced MOS models provide
accurate measurements. (2) Use gate level delay aware sim-
ulations to check for timing faults. (3) Where actual run
time data is required, use full system emulation running on
the FPGA setup. Table 3 lists the technology, tools and
benchmarks we use in our evaluation. Note that we refer to
five representative gates we track as gates G1-G5.

Understanding degradation (Q1) We modeled the gate
subcircuits for G1-G5 in SPICE and obtained delay degra-

OpenRISC RTL

Synopsys Design
Compiler

32
nm

 lib
32

nm
 lib

HSPICE + MOSRA

1 1
1

1 0

CLK

Gate under test

Worst case path

Time
Voltage
Switching
Activity

Time

De
la

y
CLK

OpenRISC
processor

SPEC2000
Sensitivity vector for fan in
 for each gate during a
100000 cycle sampling window

9 months from degradation,SS-DMR mode

1

1

0

Ti
m

in
g

Fa
ul

t R
at

e

Xilinx Zynq FPGA

Ar
ch

ite
ct

ur
al

 E
rro

r R
at

e

Aged SDMR Emulation

Gate subcircuit

Netlist

Synopsys Design
Compiler- STA

Fast Gates

Script to insert
capture logic

Modified Netlist

Area, Power, Energy overheads

@ different gates
@ supply voltage reduction
@ switching activity variation

Q1 : Is delay degradation in CMOS logic measurably
observable? Is this deterministic?
Q2 : Can reducing supply voltage virtually manifest
wearout faults?

Q3 : Do these faults get exposed to the
micro-architecture and cause timing faults? Q5 : What are the overheads?

Q4 : Do these timing faults translate to architectural errors, then detected?

OpenRISC
Processor

Architecture state

OpenRISC
Processor

Architecture state

Test controller

Checker

SPEC2000

Fault
Vectors

Ager

Delay Aware Simulation

Sensitivity vector extraction
Exposing Faults

Detecting Architectural Errors

Manifesting Faults

Estimating Overheads

Netlist
VCS

A1, A2 : Figure 8 A4 : Table 5

A5 : Table 6A3 : Table 4

Xilinx Zynq FPGA

Figure 7: Setup of all the experiments and inter-relationships between them

dation with age using MOSRA and occurrence of soft and
hard breakdown. We repeated the experiment by varying
the switching activity to bring out its influence on degra-
dation. worst case paths through 5 gates × 60 months × 5
activity factors = 1500 runs.

Manifesting Faults (Q2) We ran the SPICE+MOSRA setup
above with many reduced supply voltage settings to deter-
mine how well voltage reduction mirrors aging. We report
results for 2 Vdd settings. worst case paths through 5 gates
× 60 months × 2 Vdd = 600 runs.

Exposing Faults (Q3) Using the fault exposure setup from
our prototype implementation (Section 4.2), we measured
the fault rate for each benchmark. To measure the vari-
ability across execution phases of a benchmark, we ran this
experiment in three different 100,000 cycle sampling win-
dows. 5 gates × 3 sampling windows × 10 benchmarks =
150 runs.

Detecting Faults as Architectural Errors (Q4) We in-
ject faults based on fault vector from previous experiment
into Aged-SDMR prototype, detect errors and measure er-
ror rate. In total, across three windows while executing each
of the ten benchmarks on the full processor, this experiment
covered 21 to 9862 faults injected per gate. 5 gates × 3 sam-
pling windows × (21–9862) faults (across 10 benchmarks) =
399453 runs.

Estimating the Overheads(Q5) and Q6/Q7 We used syn-
thesis tools to estimate overheads on OpenRISC and the
OpenSPARC processors. For Q5 alone we consider a sec-

ond processor OpenSPARC to understand sensitivity to de-
sign optimizations. We formulated thought experiments and
mathematical analysis to answer Q6 and Q7.

5.3 Results
Our results are presented as answers to the seven questions.

Understanding Degradation (Q1) Figure 8(a),(b) shows
degradation over time (simulated for 60 individual months
of continuous operation at 30◦ celcius with full switching ac-
tivity) of the worst case paths through the five representa-
tive gates. As expected, delay grows monotonically2. When
the delay exceeds clock period (α in graph), soft breakdown
manifests as timing faults. Gate G4 transitions to hard
breakdown at 56 months. To capture influence of switch-
ing activity, we show details for one gate G1 in Figure 8(c),
with switching activity rates varied between 10%-100%. It
is clear switching activity plays a significant role in wearout
demonstrating the need for in-situ techniques.
Answer 1: Delay degradation in CMOS logic is measurably
observable, and is dependent on factors including the switch-
ing activity and hence cannot be statically determined.

Manifesting Faults (Q2) To demonstrate virtual aging we
show G1 in detail. Figure 8(d) shows delay again over a 60
month simulation with Vdd and reduced Vdd = 1.15V . We
see that we can force the onset of the soft breakdown early.
Answer 2: We see that reducing Vdd mimics aging. In this
case a 50 mV (4.1%) reduction corresponds predicting up to

2Each point plotted is delay of circuit at one instance in that month
- the variations are due to MOSRA’s internal modeling of noise.

Gate 1 Gate 2 Gate 3 Gate 4 Gate 5
AF% Faults AF% Faults AF% Faults AF% Faults AF% Faults

ammp 33.3 3324 3323 3222 46.2 6653 4618 4613 66.6 6660 6660 6661 33.3 3330 3332 3330 65.2 6545 6521 6522
art 66.5 0 47 0 33.2 0 6653 6654 21 24 0 0 66.4 6641 6617 6639 1.2 0 42 0
bzip2 11.9 3442 2610 7474 3.6 1488 2901 657 10.0 1355 308 1355 4.2 408 682 155 22.5 220 85 397
gzip 15.8 6472 1194 2154 2.9 190 476 221 4.4 541 245 541 1.8 190 239 110 9.3 87 63 128
mcf 16.6 8018 0 5382 32.8 5062 532 4257 13.3 531 2933 530 10.2 1054 531 1468 2.3 320 364 0
mesa 13.1 9862 1020 3466 17.6 155 4160 953 20.9 2816 637 2815 6.7 120 1558 352 26.8 488 1397 6182
parser 23.3 5518 6588 8774 26.2 2133 3886 1875 20.7 2493 1226 2494 12.2 929 1818 901 43.8 3799 2572 6782
quake 16.2 4720 2421 2264 14.2 833 1166 2270 13.6 1102 1858 1112 9.3 1370 487 934 39.7 6410 4309 1208
twolf 66.4 6648 6648 6635 22.1 0 0 6653 1.7 0 0 68 60.6 4988 6654 6654 60.9 4989 6653 6655
vpr 16.7 2530 5354 8756 14.7 2962 1054 396 24.7 3054 3058 1296 12.9 1502 1668 716 47.4 5789 2163 6274

Table 4: Timing faults in three 100000 cycle sampling windows seen when running at reduced voltage 9 months before failure.
AF indicates the rate at which the gate toggles

Benchmark G1 G2 G3 G4 G5
ammp 1.6% 3.1% 5.1% 1.4% 1.4%
art 0.02% 2.7% 0.01% 2.6% 0.01%
bzip 2.3% 1.2% 0.9% 0.2% 0.07%
gzip 1.5% 0.03% 0.4% 0.04% 0.01%
mcf 3.4% 3.1% 0.9% 0.7% 0.02%
mesa 2.2% 1.0% 1.2% 0.09% 0.8%
parser 4.3% 1.3% 1.9% 0.5% 1.5%
quake 1.9% 0.9% 0.8% 0.2% 1.3%
twolf 3.3% 1.1% 0.02% 4.3% 1.9%
vpr 2.6% 0.8% 2.1% 0.7% 1.6%

Table 5: Error rate - detected by Aged-SDMR

nine months in advance.

Exposing Faults (Q3) Table 4 lists the toggle rate (switch-
ing activity) and faults that virtual aging generated. The
three fault columns correspond to three 100000 cycle tests
run at different phases of the benchmark application. This
test used the processor running benchmarks on the FPGA
to extract input sequences, that are then fed to delay-aware
simulation of Aged-SDMR netlist to get timing faults —
for G1-G3 in in-circuit flip-flop and G4 and G5 in inserted
capture flip-flop.

Virtual aging induces timing faults at the rate of between
0 – 9.8%. While we capture no faults in some sampling
windows, faults appear eventually. An interesting case that
showcases this is running the art benchmark while looking
for faults to occur on gate G1. During two of the sampling
windows, the phase of the program was such that the input
sequences that activated the worst case path through G1 did
not appear. In a third window, we observed timing faults
being captured.
Answer 3: For an impending soft or hard breakdown, when
running at Aged-SDMR mode with workloads, timing faults
appear indicating an impending failure.

Detecting Faults as Architectural Errors (Q4) Table 5
shows architecture error rate across sampling windows on
our Aged-SDMR prototype. Using the fault vector from the
previous experiment, bit flips were injected in the gates. A
check between a reference trace – of PC, register writes – and
the trace with a fault injected was used to detect an archi-
tectural fault. Note that this experiment is determining the
independent error-rate – for each fault, we have one fault-
injected run. For example, for G1 on ammp, we run 3324
experiments. Each run represents one epoch of execution.
Answer 4: Faults introduced in Aged-SDMR mode translate
to architectural errors and can be caught without escapes.

Estimating the Overheads (Q5) Table 6 quantifies the
area, power, and energy overheads of adding fault expo-

OpenRISC OpenSPARC

Logic Core∗ Logic Core†

Gates on fast paths 39% 30%
Area Overhead 28.95% 8.9% 22.18% 6.8%

Peak Power Increase 3.2% 2.54% 2.21% 0.99%
Energy Increase 0.9% 0.7% 1.02 % 0.21 %

∗ OpenRISC: with 8KB L1 Instruction & Data cache. 64 entry TLBs.
† OpenSPARC: with 16K L1 Instruction & 8K L1 Data cache.

Table 6: Aged-SDMR overheads for fault exposure

sure to OpenRISC and OpenSPARC. We show overheads
for “logic only” (excluding SRAM structures, caches and
TLBs, and register files) and for the full core3. The differ-
ence in area and power overheads across cores is due to the
number and percentage of fast gates. From the cumulative
distribution of worst case delay through gates we observed
that 39% and 30% of gates are fast gates in OpenRISC and
OpenSPARC. Note that by design, Aged-SDMR’s overhead
logic is active only 1% of the time. Power and energy over-
heads (including energy consumed by the checker core) are
≤ 1% to 3%.
Answer 5: Aged-SDMR has small area (8.9%), power (2.54%),
and energy overheads (0.7%).

Delay to predict (Q6) We can guarantee effectiveness and
Aged-SDMR’s latency to predict in mathematical terms and
defect rate. We define a defective chip as one in which the
prediction mechanism fails to raise impending failure ex-
ception before wearout occurs and results in missed errors.
For a defect rate of DR, and random sampling rate S, the
upper bound on the number of epochs that need to be ob-
served is logeDR

S
; which is = 2072 epochs for DR = 10−9

(an extremely low defect rate) and 1% sampling. This is a
result that is independent of fault occurrence patterns and
architecture error patterns as proven by Nomura et al. [37].
Virtual aging and random sampling guarantees that faults
first appear in DMR execution in any epoch and thus are
not missed (do not escape). For a given clock frequency,
epoch size, and per epoch error rate, the worst case # days

to predict is
2072∗epoch size

frequency
/per epoch error rate

60∗60∗24 . Assum-
ing a 5 million cycle epoch, and 3 GHz clock frequency, and
10−4 per epoch error rate (lowest we observed - Table 5),
this amounts to 0.4 days of activity to predict 4.

3OpenRISC especially has somewhat inefficient logic implementation
- its SRAM and register files contribute only 22% to core power. We
believe in a typical commercial-grade processor, overheads of Aged-
SDMR will be even less since storage structure contribution is more.
4In contrast, Nomura et al. report a worst case latency of 78 seconds
to sustain DR = 10−9. The discrepancy is that their latency is for
the worst particular error occurrence pattern observed in their bench-
marks (determined with a a 3-state markov model). Our result holds
for any possible pattern since we are counting epochs.

0 10 20 30 40 50 60
Time in months

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Pr
op

ag
at

io
n

de
la

y
in

 n
s 1e−9

®

¯

G1: Gen PC

G2: ALU Add

G3: iCache IF

G4: LSU wb

G5: Decode Imm

0 10 20 30 40 50 60
Time in months

1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24

Pr
op

ag
at

io
n

de
la

y
in

 n
s 1e−9

Clock Period

Initial worst case delay

®

G
u
a
rd

b
a
n
d

G1: Gen PC

G2: ALU Add

G3: iCache IF

0 10 20 30 40 50 60
Time in months

1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24

Pr
op

ag
at

io
n

de
la

y
in

 n
s 1e−9

Clock Period

Initial worst case delay G
u
a
rd

b
a
n
d

100%

90%

70%

50%

30%

10%

0 10 20 30 40 50 60
Time in months

1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24

Pr
op

ag
at

io
n

de
la

y
in

 n
s 1e−9

Initial worst case delay

®Vdd=1:15V
®Vdd=1:2V

G
u
a
rd

b
a
n
d

9 months

VDD = 1.2V VDD = 1.15V

(a) Delay degradation over 60 mo (b) Zoomed version of (a) (c) Switching activity→degradation (d) Virtual aging on G1 at 1.15V

Figure 8: Delay degradation and virtual aging

Technique
Overheads Time

to
Prediction

Area Power predict horizon

Online
Wearout Pre-
diction [6]

4.6%† 8.6%† 4 days 2yr - 4 days

Wearmon [62] ∼14%‡ NR Varies NR
FIRST [49] NR 0% 1 day 9mo-1 day∗

Aged-SDMR 8.94% 3.2% 0.4 days 9mo-0.4 days
† : For every 8 signals monitored; ‡ : Rough estimates from FPGA
utilization numbers reported by the authors; NR : Not Reported; ∗ :
Assuming a virtual aging mechanism similar to this work.

Table 7: Aged-SDMR compared to state-of-the-art

Answer 6: This result can be interpreted in two ways.
First the longest latency to predict is 0.4 i.e. after the first
onset of a fault under virtual aging, the impending failure
exception will be triggered in all but 1 of 1 billion chips
within 0.4 days. Alternatively, as long as voltage reduction
(or with clock period reduction) causes a virtual aging of
greater than 0.4 days, Aged-SDMR will predict the fault
without faults escaping.

When does this technique not work (Q7) Faults that
do not start as delay faults cannot be predicted by Aged-
SDMR (electromigration and package level faults like ther-
mal cycling). Given device faults that do adhere to this
behavior, for Aged-SDMR to fail, there must be fault sites
that have high switching activity and hence wearout during
a program’s (or set of programs) execution but not pro-
duce any effect on the architectural trace - for example in-
teger benchmarks may do this to the floating point pipeline.
For the fault to then get exposed, the fault site is exer-
cised at some later point after wearout has occurred. If
the fault-triggering workload runs after delay has exceeded
guardband, Aged-SDMR will fail. If > 0.4 days of life re-
mains, Aged-SDMR will still predict correctly. Regardless
the masking scenario is exceedingly rare in commercial de-
signs because power/value gating is common design practice
to avoid unnecessary switching.

Answer 7: In only very rare scenarios is Aged-SDMR prov-
ably ineffective - these senarios can be avoided with common
design practices.

Comparison to other prediction techniques Table 7 com-
pares Aged-SDMR to three state-of-the-art techniques [6,49,
62]. Recall the previous techniques do not provide general-
ity and leave 30% to 40% of gates uncovered. Aged-SDMR
is comparable if not better on other metrics and in addition
provides generality.

Limitations We conclude with a discussion of three evalu-
ation limitations; design limitations were addressed in Sec-
tion 3.7. Our prototype implementation and evaluation did
not consider performance overheads, since the full multicore
system was not implemented because it is not our work’s
focus. DMR period is active for 1% of time, and previous
results on performance impact of Sampling-DMR show it is
2% and hence not necessary to re-demonstrate. Our exper-
imental evaluation did not trigger worst case error patterns
on a very low error rate and a burst of errors in the 2072nd
epoch - so we did not empirically demonstrate the 0.4 days
limits. Triggering controllable error patterns is hard and in-
stead we perform sound mathematical analysis. We avoided
sensitivity studies with voltage reduction + clock period re-
duction, since it requires careful and measured calibration
of Vdd to gate delay. Instead we rigorously evaluated using
50mV which sufficiently demonstrated Aged-SDMR’s value.

6 Related Work
We discussed much related work in the introduction. We
summarize others here. Modeling work [3, 51, 58] and miti-
gation techniques [7,21,55] are orthogonally related. Of the
canary based [56,60] and in-situ [3,9,16,39,49,62] prediction
techniques, FIRST [49] and WearMon [62] are most closely
related and we revisit them here focusing on similarities to
our work. FIRST introduces the idea of “stressing” the pro-
cessor in its test-vector injected mode without describing
exactly how, while WearMon eliminates guard band. Nei-
ther formalizes the idea of virtual aging and the interaction
to fast gates and both suffer from generality since they se-
lectively go after critical paths to curtail overheads.

7 Conclusion
This paper proposed Aged-SDMR which unifies fault predic-
tion and detection to create a technique that provides low
overhead, generality, high accuracy and low design complex-
ity. It includes the concept of virtually aging the processor
and then uses Sampling-DMR to detect faults exposed. To
guarantee generality and coverage of all faults/gates, Aged-
SDMR uses a novel mechanism for fault exposure. This
paper showed the design principles and reported on a full
prototype implementation. We demonstrated Aged-SDMR
works in practice using an FPGA demonstration on 10 full
SPEC benchmarks and has 8.9% area overhead and less than
1% energy overhead. We conclude the paper with thoughts
on the fundamental capability of Aged-SDMR, its implica-
tion within processor reliability and broader implications.

Fundamental capability By providing low overhead, gen-
erality, high accuracy and low design complexity, Aged-SDMR
could serve as an important component for future fault dom-
inated technologies. Aged-SDMR is a simple idea making it
attractive for practical deployment but provides unprece-
dented capability for meeting all four design constraints.

Implication for reliability In addition to providing a solu-
tion for reliability, an important contribution of our work is
the identification of the fundamental issue that gates in non
critical-paths are as likely to fail as gates in critical paths -
and have to be covered. Almost every related work in lit-
erature implicitly or explicitly ignores these gates – which
may amount to 30% to 35% of all gates in a microproces-
sor. Aged-SDMR proposes a low overhead solution to cover
these gates.

We developed Aged-SDMR as a prediction technique to
deal with wearout related end-of-life failures. Stepping back
from this specific use case, the virtual-aging combined with
Sampling-DMR provides the general capability that faults
can be predicted/detected before errors leak into the system.
A disruptive implication is that a machine equipped with
Aged-SDMR can dynamically manage guardband added for
handling uncertainty. For example, voltage noise and tem-
perature are sources of uncertainty. If the checker-core can
be located physically far apart, it could be impervious to
noise and temperature effects as the checked-core. Further-
more, time scales at which noise and temperature change
are likely to be much larger than the epoch sizes of DMR
thus allowing Aged-SDMR to behave as a detection mecha-
nism. Another example is to deploy Aged-SDMR as a way to
aggressively manage guardband for static variations. Con-
ventionally, the operation point of a processor is determined
after fabrication through VLSI testing and some guardband
is added. Alternatively, Aged-SDMR can be used in the
field, to find the VDD/clock period such that we get fault
free execution for the next 6 months only (starting from a
fresh chip). This voltage will vary between different chips
depending on the process variation. In effect, we could
use Aged-SDMR to operate a microprocessor at exactly the
point where we know no failures will occur in the next few
months.

More generally, looking at the broad scope of prediction,
detection and mitigation, Aged-SDMR serves as an effective
prediction and detection technique. Thus it’s presence can
amplify the role of mitigation techniques and allow mitiga-
tion techniques to be very aggressive, since they can oper-
ate under the assumption that there is a fail-safe predic-
tion/detection technique which guarantees no incorrect op-
eration will occur. For example, mitigation techniques like
Facelift [55], Bubblewrap [25] and others [48] can be config-
ured to be aggressive in terms of energy efficiency.

Broader implications Beyond reliability, the core idea of
Aged-SDMR is that it allows controlled triggering of DMR
and guaranteeing that errors occur first when in DMR mode,
thus providing extremely lightweight detection capability. In
our work, we utilize this for predicting wearout. More gen-
erally, our work enables a new paradigm to deal with other
sources of uncertainty – by allowing predictors for various
other phenomena to control periods during which DMR is
active. Aged-SDMR ensures error free execution as long as
the prediction technique guarantees no false negatives. This
opens up opportunities to rethink many techniques for un-

certainty beyond just reliability including perhaps software
reliability due to bugs etc.,

Overall, Aged-SDMR provides a new perspective on the
decades’ old idea of dual modular redundancy and could
trigger rethinking the many current uses of DMR and also
creating new uses.

8 Acknowledgments
We thank the anonymous reviewers, the Vertical group, Ke-
wal Saluja, Marc de Kruijf, and Arkaprava Basu for pro-
viding valuable comments. Thanks to Shuou Nomura for
many detailed comments on the paper and in instigating our
development of the mathematical analysis to answer Aged-
SDMR’s defect quality. Support for this research was pro-
vided by NSF under the following grants: CNS-1117782.

9 References

[1] Body biasing. In S. Narendra and A. Chandrakasan,
editors, Leakage in Nanometer CMOS Technologies.
Springer US, 2006.

[2] Semiconductor Industry Association (SIA), Design,
International Roadmap for Semiconductors, 2009 edition.

[3] M. Agarwal, B. Paul, M. Zhang, and S. Mitra. Circuit
failure prediction and its application to transistor aging. In
VTS ’07.

[4] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Necromancer:
enhancing system throughput by animating dead cores. In
ISCA ’10.

[5] T. M. Austin. Diva: A reliable substrate for deep
submicron microarchitecture design. In MICRO ’99.

[6] J. Blome, S. Feng, S. Gupta, and S. Mahlke.
Self-calibrating online wearout detection. In MICRO ’07.

[7] T. Boon-Chan, J. Sartori, P. Gupta, and R. Kumar. On the
efficacy of nbti mitigation techniques. In DATE ’12.

[8] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. Micro, IEEE, 25(6):10–16, 2005.

[9] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik,
V. De, and S. Borkar. Circuit techniques for dynamic
variation tolerance. In DAC ’09.

[10] M. A. Breuer, S. K. Gupta, and T. Mak. Defect and Error
Tolerance in the Presence of Massive Numbers of Defects.
IEEE Design and Test, 21(3):216–227, 2004.

[11] A. Calimera, E. Macii, and M. Poncino. Nbti-aware power
gating for concurrent leakage and aging optimization. In
ISLPED ’09.

[12] X. Chen, Y. Wang, Y. Cao, Y. Ma, and H. Yang.
Variation-aware supply voltage assignment for minimizing
circuit degradation and leakage. In ISLPED ’09.

[13] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco.
Software-based online detection of hardware defects
mechanisms, architectural support, and evaluation. In
MICRO ’07.

[14] B. D. Cory, R. Kapur, and B. Underwood. Speed binning
with path delay test in 150-nm technology. Design & Test
of Computers, IEEE, 2003.

[15] J. Donald and M. Martonosi. Power efficiency for
variation-tolerant multicore processors. In ISLPED ’06.

[16] Ernst et al. Razor: A low-power pipeline based on
circuit-level timing speculation. In MICRO ’03.

[17] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring:
Probabilistic soft-error reliability on the cheap. In
ASPLOS-15, 2010.

[18] V. Gherman, J. Massas, S. Evain, S. Chevobbe, and
Y. Bonhomme. Error prediction based on concurrent
self-test and reduced slack time. In DATE ’11.

[19] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran,
S. K. S. Hari, D. Sorin, A. Meixner, A. Biswas, and
X. Vera. Architectures for online error detection and
recovery in multicore processors. In DATE ’11.

[20] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and
I. Pomeranz. Transient-fault recovery for chip
multiprocessors. In ISCA ’03.

[21] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook,
J. Torrellas, D. Chen, and C. Zilles. Blueshift: Designing
processors for timing speculation from the ground up. In
HPCA ’09.

[22] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke.
The stagenet fabric for constructing resilient multicore
systems. In MICRO ’08.

[23] A. Haggag, M. Moosa, N. Liu, D. Burnett, G. Abeln,
M. Kuffler, K. Forbes, P. Schani, M. Shroff, M. Hall,
C. Paquette, G. Anderson, D. Pan, K. Cox, J. Higman,
M. Mendicino, and S. Venkatesan. Realistic Projections of
Product Fails from NBTI and TDDB. In Reliability Physics
Symposium Proceedings, pages 541 –544, 2006.

[24] T. Hosoi, P. Lo Re, Y. Kamakura, and K. Taniguchi. A
new model of time evolution of gate leakage current after
soft breakdown in ultra-thin gate oxides. In IEDM ’02.

[25] U. R. Karpuzcu, B. Greskamp, and J. Torrellas. The
bubblewrap many-core: popping cores for sequential
acceleration. In MICRO 42.

[26] U. R. Karpuzcu, B. Greskamp, and J. Torrellas. The
BubbleWrap many-core: popping cores for sequential
acceleration. In MICRO ’09.

[27] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. Adaptive
techniques for overcoming performance degradation due to
aging in digital circuits. In ASP-DAC ’09.

[28] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar.
Utilizing dynamically coupled cores to form a resilient chip
multiprocessor. In DSN ’07.

[29] J. Lee and N. S. Kim. Optimizing throughput of power-
and thermal-constrained multicore processors using dvfs
and per-core power-gating. In DAC ’09.

[30] X. Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. In HPCA ’07.

[31] Li et al. Understanding the propagation of hard errors to
software and implications for resilient system design. In
ASPLOS ’08.

[32] B. Linder and J. Stathis. Statistics of progressive
breakdown in ultra-thin oxides. Microelectronic
Engineering, 72:24 – 28, 2004.

[33] E. J. McCluskey, A. Al-Yamani, J. C.-M. Li, C.-W. Tseng,
E. Volkerink, F.-F. Ferhani, E. Li, and S. Mitra.
Elf-murphy data on defects and test sets. VTS ’04.

[34] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus:
Low-cost, comprehensive error detection in simple cores. In
MICRO ’07.

[35] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading
alternatives. In ISCA ’02.

[36] J. Nakano, P. Montesinos, K. Gharachorloo, and
J.Torrellas. Revivei/o: efficient handling of i/o in
highly-available rollback-recovery servers. In HPCA ’06.

[37] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju,
M. de Kruijf, and K. Sankaralingam. Sampling+ dmr:
practical and low-overhead permanent fault detection. In
ISCA ’11.

[38] OpenRISC, http://opencores.org/or1k/.

[39] J. Park and J. Abraham. An aging-aware flip-flop design
based on accurate, run-time failure prediction. In VTS ’12.

[40] I. Pomeranz and S. M. Reddy. An efficient non-enumerative
method to estimate path delay fault coverage. In ICCAD
’92.

[41] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee.
Architectural core salvaging in a multi-core processor for
hard-error tolerance. In ISCA ’09.

[42] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive:
cost-effective architectural support for rollback recovery in
shared-memory multiprocessors. In ISCA ’02.

[43] J. Rearick. Too much delay fault coverage is a bad thing. In
ITC ’01.

[44] Sampson et al. Enerj: Approximate data types for safe and
general low-power computation. In PLDI ’11.

[45] D. Schroder. Negative bias temperature instability: What
do we understand? Microelectronics Reliability,
47(6):841–852, 2007.

[46] E. Schuchman and T. N. Vijaykumar. BlackJack: Hard
Error Detection with Redundant Threads on SMT. In DSN
’07.

[47] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and
T. Austin. Ultra low-cost defect protection for
microprocessor pipelines. In ASPLOS ’06.

[48] T. Siddiqua. A Multi-Level Approach to NBTI Mitigation
in Processors. PhD thesis, University of Virginia, December
2012.

[49] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and
K. Mai. Detecting emerging wearout faults. In Proc. of
Workshop on SELSE, 2007.

[50] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
Safetynet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery. In ISCA
’02.

[51] J. Srinivasan, S. Adve, P. Bose, J. Rivers, and C. Hu.
Ramp: A model for reliability aware microprocessor design.
IBM, Poughkeepsie, NY, 2003.

[52] A. W. Strong, E. Y. Wu, R.-P. Vollertsen, J. Sune,
G. La Rosa, T. D. Sullivan, and S. E. Rauch III. Reliability
wearout mechanisms in advanced CMOS technologies,
volume 12. Wiley-IEEE Press, 2009.

[53] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive
self-healing architecture for unpredictable silicon. IEEE
Design and Test, 23(6):484–490, 2006.

[54] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.
Mitigating parameter variation with dynamic fine-grain
body biasing. In MICRO ’07.

[55] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing
down aging in multicores. In MICRO ’08.

[56] Tschanz et al. Tunable replica circuits and adaptive
voltage-frequency techniques for dynamic voltage,
temperature, and aging variation tolerance. In Symposium
on VLSI Circuits, pages 112–113. IEEE, 2009.

[57] Tschanz et al. Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on
microprocessor frequency and leakage, ISSCC ’02.

[58] B. Tudor, J. Wang, W. Liu, and H. Elhak. Mos device aging
analysis with hspice and customsim. Technical report, 2012.

[59] G. Upasani, X. Vera, and A. González. Setting an error
detection infrastructure with low cost acoustic wave
detectors. In ISCA ’12.

[60] X. Wang, D. Tran, S. George, L. Winemberg, N. Ahmed,
S. Palosh, A. Dobin, and M. Tehranipoor. Radic: A
standard-cell-based sensor for on-chip aging and flip-flop
metastability measurements. In ITC ’12.

[61] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode
multicore reliability. In ASPLOS ’09.

[62] B. Zandian, W. Dweik, S. H. Kang, T. Punihaole, and
M. Annavaram. Wearmon: Reliability monitoring using
adaptive critical path testing. In DSN ’12.

