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Abstract
Leveraging idempotence for efficient recovery is of emerg-
ing interest in compiler design. In particular, identifying se-
mantically idempotent code and then compiling such code
to preserve the semantic idempotence property enables re-
covery with substantially lower overheads than competing
software techniques. However, the efficacy of this technique
depends on application-, architecture-, and compiler-specific
factors that are not well understood.

In this paper, we develop algorithms for the code gen-
eration of idempotent code regions and evaluate these al-
gorithms considering how they are impacted by these fac-
tors. Without optimizing for these factors, we find that typ-
ical performance overheads fall in the range of roughly 10-
15%. However, manipulating application idempotent region
size typically improves the run-time performance of com-
piled code by 2-10%, differences in the architecture instruc-
tion set affect performance by up to 15%, and knowing in
the compiler whether control flow side-effects can or cannot
occur can impact performance by up to 10%.

Overall, we find that, with small idempotent region and
careful architecture- and application-specific tuning, it is
possible to bring compiler performance overheads consis-
tently down into the single-digit percentage range. The ab-
solute best performance occurs when constructing the largest
possible idempotent regions; to this end, however, better
compiler support is needed. In the interest of spurring de-
velopment in this area, we open-source our LLVM compiler
implementation and make it available as a research tool.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—code generation, compilers

General Terms Algorithms, Design, Performance
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1. Introduction
Idempotence—the property that re-execution has no side-
effects—has been recently proposed for compiler-based re-
covery in a variety of domains, including exception recov-
ery [7, 10, 14], hardware fault recovery [8, 9], speculation re-
covery [11, 18], and concurrency bug recovery [19]. In these
proposals, a compiler identifies semantically idempotent re-
gions of code using static analysis techniques, and then gen-
erates code for these regions in such a way that idempotence
is preserved by ensuring that certain live register or stack
memory locations are not overwritten. The latter is accom-
plished either by integrating the concept of idempotence into
the register allocation flow [7, 8, 14] or by checkpointing
state that is live-in to an idempotent region [9–11, 18].

Among these two approaches, the former approach of
preserving idempotence during register allocation is of par-
ticular interest because it enables a form of intelligent check-
pointing that utilizes stack storage as a checkpointing re-
source only “as needed”. For instance, some live-in variables
may never be overwritten inside an idempotent region. These
variables can be allocated to a register throughout a region
and need not be checkpointed. Incorporating idempotence
information into the register allocation algorithm allows the
compiler to determine whether or not doing so is profitable
leveraging existing register allocation heuristics. If it is not
profitable, the compiler can choose to “checkpoint” the live-
in variable to the stack by spilling it before region entry and
then re-loading it as needed, as in the latter approach.

Despite the claimed benefits, however, no algorithms
have been previously proposed for incorporating idempo-
tence information into the register allocation flow. Addition-
ally, the benefits of this approach compared to simple live-in
register checkpointing has not been previously measured and
its sensitivities with respect to architecture and application
characteristics has not been evaluated. This paper addresses
this gap in our understanding to contribute the following:

• It presents algorithms for the integration of idempotence
information during register allocation. These algorithms
allow the compiler to choose whether to (a) checkpoint
a register to the stack or (b) preserve the register by
preventing re-use.



• It evaluates the performance of the resulting code and ex-
plores sensitivities to application and architecture char-
acteristics. Our main quantitative findings are that:
1. with large idempotent regions, performance over-

heads quickly approach 0% as regions grow beyond
roughly 50 instructions;

2. small idempotent regions of 10-25 instructions typi-
cally entail performance overheads of roughly 10%;

3. for small regions ISA effects typically influence per-
formance by 2-3% (up to 15%); and

4. a code generation algorithm that allows possible con-
trol flow side-effects performs only slightly worse—
less than 1% worse on average—than a more specific
code generation algorithm that allows them. However,
in specific cases the impact can be as severe as 10%.

• To foster continued exploration of idempotence in com-
piler design and research into incorporating heuristics
and transformations such as those explored in this paper,
we publicly release the source code and documentation
of our LLVM-based compiler implementation for use by
the wider research community [2].

2. Background and Related Work
In the recent literature, researchers have proposed executing
programs (either entirely or over some interval) as sequences
of idempotent code regions [7–11, 14, 18, 19]. A compiler
or programer demarcates these regions either in the source
code or the program binary, and the underlying hardware
utilizes the fact that regions are idempotent to recover from
faulty events (such as hardware exceptions, faults, and mis-
speculations) by simple re-execution. Figure 1 illustrates
the overall approach. It operates similarly to recovery using
checkpoints, except that there is no explicit checkpoint—
the regions themselves provide an implicit checkpoint by
leveraging the property of idempotence.

To name specific research efforts, De Kruijf and Sankar-
alingam use this technique to simplify the microarchitec-
ture of an in-order processor [7], Menon et al. use it to en-
able efficient exception recovery for GPUs [14], Hampton
uses it to achieve virtual memory support on vector proces-
sors [10], Feng et al. apply it to enable low-cost fault re-
covery on commodity processors [9], and Zhang et al. use it
for light-weight concurrency bug recovery support [19]. De
Kruijf also creates a taxonomy that identifies constraints that
must be met across a diverse range of applications [6]. In a
similar fashion, this paper develops a tunable compiler algo-
rithm that can be applied across a range of applications, and
subsequently analyzes the role of applications, architectures,
and compilers in idempotent region construction.

The remainder of this section presents background on
the analysis and compiler construction of idempotent re-
gions. We focus on the algorithms developed in our previous
work [8] because these algorithms enable programs to be
partitioned entirely into idempotent regions and hence they

Figure 1. Recovery using idempotence.

support the greatest diversity of uses; other algorithms, in
contrast, allow only a selective partitioning [9, 10, 19].

2.1 Terms and Definitions
In our discussion, we assume the following terms and def-
initions. First, the terms flow dependence and antidepen-
dence refer to a read-after-write (RAW) data dependence and
write-after-read (WAR) data dependence, respectively.

The term region refers to a subset of a function’s control
flow graph with a single entry point and multiple possible
exit points. A region is uniquely defined by its entry point,
and it contains all instructions reachable from its entry point
to its exit points.

Finally, we distinguish between two different types of
storage elements. The term pseudoregister refers to a function-
local storage element such as a register or stack memory lo-
cation and the term non-local memory refers to to all other
types of storage elements—namely heap, global, and non-
local stack memory.

2.2 Idempotence
Idempotence can be identified through the absence of clob-
ber antidependences, which are antidependences with no
prior flow dependence on the same variable [8]. That is, an
idempotent region can contain an antidependence as long
as the antidependent variable is defined before it is used.
For example, a {read, write} sequence over a variable is
not idempotent. However, a {write, read, write} sequence
is idempotent due to the initial “protecting” write.

Some clobber antidependences are semantic while others
are artificial. Artificial clobber antidependences act on pseu-
doregister locations. These resources are compiler controlled
and can be allocated such that clobber antidependences do
not actually emerge in compiled code, possibly at the ex-
pense of some additional register pressure. Semantic clob-
ber dependences, in contrast, act on non-local memory. This
memory is not under the control of the compiler; its location
is fixed by the semantics of the program.

2.3 Idempotent Region Construction Algorithm
Our idempotent region construction algorithm attempts to
partition entire functions into maximimally-sized idempo-
tent regions [8]. The primary purpose in maximizing region
size is that it is generally straight-forward to take large idem-
potent regions and partition them into smaller regions as de-
sired, whereas the reverse problem is much harder.

The algorithm operates in three steps. In the first step,
it transforms the function to remove artificial clobber an-
tidependences and non-clobber antidependences, allowing
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Figure 2. Idempotent region construction example.

the region construction problem to be formulated as a sim-
ple graph cutting problem. In the second step, the algorithm
forms regions by “cutting” antidependences and placing re-
gion boundaries at the site of the cuts. Finally, in the third
step, heuristics are introduced to maximize the sizes of re-
gions as they occur dynamically at runtime.

Example. Figure 2 shows the algorithm applied to an ex-
ample C function. Figure 2(a) shows the function’s source
code and Figure 2(b) shows its control flow graph with ba-
sic blocks B1, B2, and B3. Inside each block are shown
the low-level statements, Si, and the use of pseudoregisters,
ti, to hold operands and read and write values to and from
memory. The code in Figure 2(b) shows the pseudoregister
assignments in SSA form; conversion to SSA is part of the
initial transformation step of the construction algorithm. Fig-
ure 2(c) shows a dependence graph with semantic may-alias
clobber antidependences indicated using solid black lines.
These are the semantic clobber antidependences that remain
after pseudoregister assignments are converted to SSA. A to-
tal of nine may-alias clobber antipendences exist in the func-

tion: S1 → S9, S1 → S11, S2 → S9, S2 → S11, S6 → S9,
S6 → S11, S7 → S9, S8 → S9, and S8 → S11 (the final
one is must-alias)1.

All semantic clobber antidependences involve a write to
either memory location mem[t7 + t8] or memory location
mem[t6 + 4]. For this simple example, it is possible to place
a single cut that cuts all antidependences exactly between
the statements S8 and S9 as shown in Figure 2(c). With
this cut in place, the function is ultimately divided into two
idempotent regions in total: one region with entry point at
the beginning of the function and the other beginning at the
site of the cut.

2.4 Recovery Using Idempotence
While intuitive that idempotence can be used to recover from
failures with no visible side-effects such as traditional hard-
ware exceptions, it is less obvious how it can be used to re-
cover from failures that introduce incorrect control flow ef-
fects (e.g. branch mispredictions) or have other side-effects
(e.g. transient hardware errors).

The approach to handling such side-effects varies. At
one extreme, Hampton’s work is limited to recovery from
only virtual memory exceptions [10], which have no user-
visible side-effects. Feng et al., in contrast, propose recov-
ery from arbitrary hardware errors by checkpointing live-
in pseudoregister state and assuming memory stores due to
erroneous control flow or erroneous address computations
are contained [9]. For them, the possibility of incorrect con-
trol flow is irrelevant for pseudoregister state since all such
state is checkpointed. Our previous work assumes that erro-
neous updates to non-local memory are contained, similarly
to Feng et al., and that the compiler protects against incorrect
control flow effects with respect to pseudoregisters [8].

In this paper, we assume, as in all prior work, that incor-
rect control flow effects with respect to non-local memory
are contained using a store buffer or similar technique. For
pseudoregister state, however, we develop code generation
strategies for both the case where control flow is always the
same and for where control flow can vary upon re-execution.

3. Overview
While integrating idempotence analysis into the register al-
location flow naturally seems more efficient than simply
checkpointing all live-in register state, the extent to which
this is true depends on a variety of factors. This paper ex-
plores three such factors in detail, namely the impact of (a)
the sizes of idempotent regions, (b) the instruction set ar-
chitecture (ISA), and (c) the need to account for potentially
variable control flow upon re-execution.

In this section, we elaborate on the significance of each
of these factors. In Section 4, we then present our algo-
rithms and data structures for integrating idempotence in-

1 As an aside, the large number of may-alias dependences illustrates the
difficulty in statically analyzing small functions with non-local side-effects
such as the one shown.



Figure 3. Run-time overhead in relation to region size.

formation with register allocation. Section 5 presents perfor-
mance analysis and results. Finally, Section 6 concludes.

3.1 Idempotent Region Sizes
The type of failure idempotence is used to recover from af-
fects the optimal idempotent region size in two ways: large
idempotent regions are good when it is important to mini-
mize the detection stall latency at region boundaries (exe-
cution may not proceed beyond the end of region until the
its execution is verified correct); however, small region sizes
are sometimes better because they minimize the re-execution
penalty in the event of failure and recovery. Different types
of failures have different characteristics with respect to these
two features. However, this is fairly well understood.

What is less well understood is how region size affects
the run-time overheads introduced by compiling to preserve
the idempotence property itself, irrespective of the type of
failure. In this paper, we explore in detail this relationship,
which is quite different when using the approach of check-
pointing all live-in state (live-in checkpointing) and integrat-
ing idempotence analysis into register allocation (idempo-
tent code generation). The relationship for each of the two
cases is as illustrated by Figure 3. The shape of each curve
is as explained below.
Live-in checkpointing. When checkpointing, the amount
of state that must be saved per idempotent region is simply
the number of live-in registers at the entry point of the
region. Let r represent the number of instructions to execute
a region, and let the number of live registers at the entry
point of a region be approximated by a constant, l. Assume
moreover that the cost of checkpointing one live-in register
corresponds with exactly one additional instruction. Then,
the equation below computes the overhead under the live-in
checkpoint approach o, as a fraction of r.

o =
l

r
The fractional overhead o is inversely proportional to r,

approaching zero as r approaches infinity, irrespective of
l. This inverse relationship is what is shown for the corre-
sponding curve of Figure 3.
Idempotent code generation. As with live-in checkpoint-
ing, idempotent code generation exerts some amount of ad-
ditional register pressure on the function: at the entry point
of a region each register that holds a value that could be used
subsequent to that point must be preserved, even when such
a register might be dead at some points inside the region and
available for re-use. A key difference is that, in the case of

live-in checkpointing, such a register is always spilled; with
idempotent code generation, however, it may not need to be.

How the overhead of idempotent code generation corre-
lates with region size is roughly as depicted by the corre-
sponding curve of Figure 3. Note that the curve is neither
monotonically increasing or decreasing with region size. Be-
low, we explain the shape of this curve. For ease of expla-
nation, we make the simplifying assumption that there are
enough live variables at any given point in the program that
all of a processor’s physical registers can be usefully em-
ployed at all times. We also assume a fixed number of live-in
registers, as we did in the live-in checkpointing case, as well.

The intuition is as follows: Initially assume each instruc-
tion forms its own idempotent region. This can be sup-
ported quite simply by modifying instructions that overwrite
a source register to write to a separate register (spilling an-
other register if necessary). The occurrence of such instruc-
tions is in most cases rare2, and hence this introduces only
modest additional pressure and incurs little run-time over-
head as illustrated at the far left point of the curve.

As region size grows beyond one instruction, however,
quickly register pressure grows and registers must be spilled
to preserve input registers. Initially, the rate of growth can
be as high as one register spill for each additional register-
writing instruction. Over time, however, register pressure
starts to diminish as live registers are forcibly spilled, allow-
ing those registers to be re-used. Eventually the worst case
is reached, where all live registers are pushed to the stack
before the region’s start. This worst case entails a fixed max-
imum cost that is amortized over the region’s execution, and
hence as region size approaches infinity, the fractional over-
head approaches zero.

In Section 5.2 we concretely evaluate the impact of region
size on the overhead of idempotent code generation, fitting
the corresponding curve of Figure 3 with actual data. Over-
all, we produce two main findings. First, we find that per-
formance overheads quickly approach zero as regions grow
beyond roughly 50 instructions, and we identify a variety
of program transformations and analyses that expose the in-
herent idempotence in applications and allow this to happen.
Second, we find that code generation of small (10-25 instruc-
tion) idempotent regions introduces performance overheads
commonly in the range of 10-15%. Heuristics that attempt
to minimize register pressure reduce this by 1-4%.

3.2 ISA Sensitivity
For idempotent code generation, three ways in which in-
struction sets differ are of general significance: register-
memory addressing support, three-address instructions sup-
port, and the number of available registers.

Register-memory vs. register-register. Whether an in-
struction set is a RISC-like load/store instruction set or not

2 It is rare generally speaking, although it is not true for instruction sets with
predominantly two-address instructions (e.g. x86). See Section 3.2.



can affect the performance overhead in terms of dynamic
instruction count. x86 is not a load/store instruction set, and
hence it is often able to account for additional register pres-
sure by spilling instructions “for free”, folding a register spill
or reload into an existing instruction. A load/store instruc-
tion set such as MIPS or ARM does not share this capability.

Two-address vs. three-address instructions. Certain in-
struction sets, such as x86, implement many operations as
so-called “two-address” instructions. These instructions read
two source operands and overwrite one of them with the re-
sult. Such instructions are self-antidependent and hence not
idempotent; when contained inside idempotent regions they
must be preceded by some instruction that first defines the
overwritten source register before it is overwritten. When
no such instruction exists, a (logically redundant) move or
copy instruction must be inserted to satisfy this requirement.
This can artificially boost performance overheads particu-
larly when idempotent region sizes are small. Three-address
instructions, supported by instruction sets such as MIPS or
ARM, avoid this inconvenience and hence are preferred.

Few registers vs. many registers. For load/store instruc-
tion sets, more registers allow the instruction set to accom-
modate additional register pressure more easily by simply
allocating more available registers rather than spilling to the
stack. However, as is the case without idempotence, more
registers are only beneficial as long as they can be useful.
Hence, the same trade-off in choosing the number of archi-
tectural registers exists with or without idempotence; idem-
potence only affects this trade-off to the extent that it exerts
additional register pressure.

In Section 5.3 we evaluate the impact of these different
ISA factors on the overhead of idempotent code genera-
tion. We find that, when region sizes are small, (1) memory-
register support in x86 typically improves performance by
1-2% compared to ARM when register pressure is high, (2)
three-address instruction support in ARM typically improves
performance by 2-3% compared to x86 when register pres-
sure is low, and (3) when register pressure is high and region
sizes are small, achieving the same performance with idem-
potent code generation as without typically requires increas-
ing the number of registers by as much as 60%.

3.3 Non-Deterministic Control Flow Effects
The region construction algorithm of Section 2.3 forms re-
gions by ensuring that no region contains a clobber antide-
pendence. Implicit in this formulation is the assumption that
control flow does not vary upon re-execution. During recov-
ery from mis-speculations or hardware faults, however, con-
trol flow may vary upon re-execution. In this case, the ab-
sence of clobber antidependences alone is not sufficient to
guarantee idempotence, and thus a more general formulation
is needed. To this end, below we introduce the more general
concept of a clobber dependence (of which a clobber antide-
pendence is a special type).

Clobber dependences. In the presence of potentially vari-
able control flow, any variable whose value at the entry point
of the region might be read after entry to the region must not
be overwritten to preserve the idempotence property. This is
in contrast to the clobber antidependence relationship, which
only preserves variables that must have been read after en-
try to the region (with respect to the point where they are
overwritten). The distinction is subtle, but important.

To support the non-determinstic control flow effects re-
sulting from potentially erroneous control flow, we introduce
the term clobber dependence to denote a write occurring in-
side a region where the write is to a variable that is statically
live-in to the region. A clobber antidependence, described
in similar terms, is a write to a variable that is dynamically
live-in to a region with respect to the point of the write. In
this light, it is easy to see that a clobber antidependence is
simply a special type of clobber dependence.

In Section 5.4, we evaluate the differences in reasoning
about idempotence in terms of clobber dependences com-
pared to clobber antidependences during code generation.
We find that using the more general concept of a clobber de-
pendence, in addition to yielding a simpler code generation
algorithm (see Section 4.3), increases the performance over-
head of idempotent code generation by less than 1% on av-
erage, although in two specific cases the overhead increases
by roughly 10%.

4. Idempotent Code Generation
This section presents our algorithms for integrating idem-
potence information during register allocation. Section 4.1
presents the new data structures we use and Sections 4.2
and 4.3 present our algorithms for deterministic and non-
deterministic control flow, respectively.

4.1 Region Intervals and Shadow Intervals
On the data structure side, we introduce the concepts of a
region interval and a shadow interval, which are similar in
spirit to the existing concept of a live interval—a compiler
concept commonly used to track the liveness of variables.

A live interval spans the definition point(s) of a variable
to all uses of that variable, and is easily computed using well-
known data-flow analysis techniques [3]. Figure 4(a) shows
the assignment to a variable x in basic block A and the sole
use of the variable x in basic block B. The live interval of
variable x shown using a transparent light gray overlay.

A region interval spans all basic block ranges contained
inside a region, and a shadow interval, associated with each
variable, spans the ranges where a variable must not be over-
written specifically to preserve idempotence. For simplicity,
we define the shadow interval as disjoint from the live in-
terval, since the live interval already prevents overwriting
where the two interval types might otherwise overlap,

The shadow interval is computed in terms of live inter-
vals and region intervals using an algorithm that varies based
on assumptions about control flow. Below, the algorithm
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Figure 4. An example control flow graph (CFG) subset annotated with the live interval and shadow interval of a variable x.

that assumes invariable (deterministic) control flow is pre-
sented in Section 4.2. The assumption of potentially variable
(non-deterministic) control flow simplifies the algorithm, but
makes it more conservative. This simplified algorithm is pre-
sented in Section 4.3.

4.2 Algorithm 1: Deterministic Control Flow
Under deterministic control flow assumptions, a variable
write may be co-allocated with a variable that is statically
live-in to the region as long as the live-in variable is dynam-
ically dead with respect to the point of the write. This “dy-
namically dead” property guarantees that the variable will
never be read, even upon re-execution, and even though it
may be statically live at the point of re-execution. A live-
in variable is known to be dynamically dead beyond some
point if (a) no read of that variable’s value may have oc-
curred along any path leading up to that point and (b) no
read of that variable’s value can occur anywhere after that
point. Hence, a variable may not be overwritten only in the
inverse case, i.e. (a) a read of that variable’s value may have
already occurred or (b) a read of that variable’s value can oc-
cur in the future. The live interval concept already prevents
overwriting if (b) is true; hence, the shadow interval concept
need only additionally prevent it for (a). The shadow inter-
val of a live-in variable thus consists of the points inside a
region interval that are reachable from any read inside the
region (with all live interval ranges removed).

The algorithm for computing this shadow interval is
shown in Algorithm 1. The algorithm takes as input a vari-
able v and the set of region intervals R in v’s function. It ac-
cumulates on the shadow interval s those ranges in a region
r that are reachable from the “use” points of v (the points
where v is read). The final step of the algorithm removes all
ranges in v’s live interval, l, from s.

The result of applying this algorithm to the example CFG
of Figure 4(a) (again, with v = x) is illustrated in Fig-

Algorithm 1 COMPUTE-SHADOW-INTERVAL(v, R)
1: s← ∅
2: l← COMPUTE-LIVE-INTERVAL(v)
3: U ← GET-USE-POINTS(v)
4: for all r ∈ R such that (the entry point of r) ∈ l do
5: for all u ∈ U such that u ∈ r do
6: s← s ∪ COMPUTE-REACHING-INTERVAL(u, r)
7: end for
8: end for
9: return s \ l

ure 4(b). The shadow interval of x is shown using a dark gray
overlay. The live interval of the variable y is also shown in
order to concretely motivate the the use of the shadow inter-
val concept in contrast to simply extending the live intervals
of idempotence-preserved variables so that live-in variables
are also marked live-out, as previously suggested [8]. Do-
ing so would not allow x and y to be co-allocated. With the
shadow interval concept, however, a live interval may over-
lap a shadow interval as long as the definition point(s) of the
live interval do not overlap the shadow interval.
Algorithmic Complexity. Assuming the union (logically
“append”) and difference (logically “remove”) binary set op-
erations used in Algorithm 1 have complexity O(|z|), where
z is the operand to the right, the worst case complexity of the
loop is bounded by |U | ·

∑
r∈R |r|. The term

∑
r∈R |r| is in

turn bounded by n · s, where n is the number of instructions
in the function and s is the sharing factor—the maximum
number of regions to which a single instruction may belong
(our definition of region allows a single instruction to belong
to multiple regions). While |U | and s are both theoretically
bounded by n—implying worst case complexity O(n3)—in
practice |U | and s are both small with |U | � n and s � n.
Moreover, the mean |U | across all variable instances v in
the function is a constant, while s can additionally be stati-



Figure 5. Code generation output with Figure 2(c) as input.

cally bounded if needed. Hence, in practice the average case
complexity is only O(n). To provide contrast, the average
complexity of the live interval computation is also O(n).

Code Generation Example. Figure 5 shows sample code
generation output given as input the example function of Fig-
ure 2(a) partitioned as previously illustrated in Figure 2(c).
The left side of the figure shows stylized assembly code
with arrows indicating control flow edges. The diamonds on
the right mark the region to which each instruction belongs,
according to the legend shown at the bottom of the figure
(“IR” stands for Idempotent Region). The compiler produces
idempotence boundaries at either (1) register move and store
instructions (a free “marker” bit is assumed for those instruc-
tion types), for which the boundary logically occurs before
the instruction, or (2) at stack pointer register SP updates, for
which the boundary logically occurs after the instruction (SP
updates are a special kind of non-idempotent instruction that
we assume can be supported as long as it terminates a re-
gion.) Finally, the far right shows two columns with the col-
umn headers L, for “live”, and H, for “held”. The live column
marks the number of general-purpose registers (R0-R3) live
immediately before each instruction. The held column marks
the number of “held” registers immediately before each in-
struction. These registers are dead but not re-usable because
their shadow interval extends out to this point.

In the code generation output, the cut placed before S9

in Figure 2(c) translates to a cut before the store instruction
on line 18. The compiler preserves the function argument

Algorithm 2 COMPUTE-VCF-SHADOW-INTERVAL(v, R)
1: s← ∅
2: l← COMPUTE-LIVE-INTERVAL(v)
3: for r ∈ R such that (the entry point of r) ∈ l do
4: s← s ∪ r
5: end for
6: return s \ l

list live at the entry of region IR2, initially in R1, by re-
assigning it to R2 in lines 9 and 11. To accomodate the
increase in register pressure in block B4 where R1 is held
(dead but unavailable), R2 is spilled on line 12 and then re-
loaded on line 17. In total, 21 instructions are generated. For
comparison, without idempotent code generation, only 17
instructions would be generated (see Figure 7).

4.3 Algorithm 2: Non-Deterministic Control Flow
In the presence of potentially variable control flow, no vari-
able written in a region may be co-allocated with a vari-
able that is statically live-in to a region. Otherwise, a clob-
ber dependence might arise over the allocated resource. The
shadow interval of a live-in variable is thus simply the region
interval with all live interval ranges removed. The algorithm
for computing the shadow interval is thus also very simple.
Given the same inputs as in Algorithm 1, the algorithm is as
presented in Algorithm 2.

The result of applying this algorithm to the example CFG
of Figure 4(a) (with v = x) is illustrated in Figure 4(c),
with the shadow interval shown using a transparent dark
gray overlay. It shows how the variable y cannot be co-
allocated with variable x because its definition point falls in
the shadow interval of x. The code generated using this algo-
rithm happens to be the same as for Algorithm 1 (Figure 5).

5. Analysis and Compiler Evaluation
The region construction algorithm of Section 2.3 and the
algorithms proposed in Section 4 were implemented with
static verification using LLVM 3.0 [12]. In our evaluation,
source code is compiled to LLVM IR using GCC with the
LLVM DragonEgg plug-in [1]. The initial region construc-
tion is performed on the IR, and the code generator then
takes the output of this construction and further refines and
compiles the regions as the IR is gradually lowered to ma-
chine code. Our compiler targets both the x86 (x86-64) and
ARM (ARMv7) instruction sets.

Benchmarks. In our evaluation, we consider three bench-
mark suites: SPEC 2006 [16], a suite targeted at conventional
single-threaded workloads, PARSEC [4], a suite targeted
at emerging multi-threaded workloads3, and Parboil [17],

3 Only five PARSEC benchmarks were chosen. These were the five bench-
marks that (a) could be easily compiled for both x86-64 and ARMv7, (b)
spend more than 90% of their execution time not in external library code,
and (c) do not have an excessively long program setup phase.
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Figure 6. Baseline execution time overhead.

a suite targeted at massively parallel GPU-style workloads
written for CPUs.
Measurements. We focus on two evaluation metrics: ex-
ecution time and region size. Execution time is measured
in terms of dynamic instruction count, which provides an
architecture-neutral platform for compiler evaluation. For
x86-64 we measure this using Pin [13], and for ARMv7
we use gem5 [5]. For region size, we specifically focus on
the length of the instruction sequences dynamically executed
though regions. We call this the path length, and measure it
in terms of executed x86-64 instructions using Pin.
Execution. To account for the differences in instruction
count between the compiled benchmark versions (i.e. with
and without idempotent code generation), simulation time
in Pin (x86) and gem5 (ARMv7) is measured in terms of
the number of functions executed, which is constant between
both versions. Initially, all benchmarks execute unmonitored
for the number of function calls needed to execute at least
10 billion instructions for the benchmark version generated
with the typical LLVM compiler flow. Execution is then
monitored for the number of function calls needed to exe-
cute 10 billion additional instructions for this same version.
For benchmarks with fewer than 20 billion instructions, the
entire execution is monitored following the number of func-
tion calls needed to exit the setup phase of the benchmark.

5.1 Baseline Results
Figure 6 shows the baseline performance results that we
compare against in the following sub-sections. The data was
generated for the x86 instruction set using the region con-
struction algorithm developed in our prior work [8] and us-
ing Algorithm 1. In Section 5.2 we vary how the regions are
constructed, in Section 5.3 we vary instruction set features,
and in Section 5.4 we vary the code generation algorithm.
A brief comparison with our prior work. Our prior work
reports a roughly 8% geometric mean overhead while our
baseline results show 12%. The main causes of difference
are that: (1) our baseline does not include any loop opti-
mizations, including loop unrolling; (2) our baseline ISA is
x86, compared to ARM; (3) our compiler is built on top
of LLVM 3.0, not LLVM 2.9, and with respect to regis-
ter allocation there are very substantial differences between
these two LLVM versions; (4) our compiler supports vari-

ous architecture- and code-specific corner cases; and (5) we
consider slightly different (overall, more) benchmarks.

5.2 Path Length Sensitivity
As explained in Section 3.1, it is often possible to reduce
overheads by both decreasing and increasing idempotent
path lengths. In this section, we consider both approaches
separately in the two subsections below.

Increasing Path Length
In analyzing our applications, we observe that many bench-
marks exhibit smaller path lengths than are actually achiev-
able. Limited aliasing information in the compiler is in part
responsible for short path lengths in specific benchmarks
such as hmmer, lbm, and fft. Additionally, overlooked loop
optimizations, large storage arrays, and intra-procedural
scope provide three other reasons why path lengths are of-
ten unnecessarily small. In the discussion that follows, these
four total problem sources are identified using the labels
ALIASING, LOOP-OPT, ARRAYS, and SCOPE.
ALIASING. With limited aliasing information, a load/store
pair may be believed to alias while in practice they could not,
or would only alias under specific and rare circumstances.
In some cases, the ambiguity is due to a lack of source-
level annotations and/or inter-procedural scoping. However,
in several cases the problem is simply that LLVM does
not provide a flow-sensitive alias analysis. Flow-sensitivity
helps particularly in the case of loops, for instance, where
a load and store may only alias across iterations of some
outer loop, or where a store and load may alias only when
the store comes before the load inside the same iteration.
Such loop-level aliasing information is a common feature of
auto-parallelizing compilers [15], and although forthcoming
in LLVM, it is not currently supported.
LOOP-OPT. Certain loop optimizations, such as loop fis-
sion/fusion, loop interchange, loop peeling/unrolling, and
scalarization allow the construction of larger idempotent re-
gions because they allow clobber antidependences to span
longer distances and/or allow multiple of them to be cut si-
multaneously by a single boundary. Additionally, cuts inside
loops require extra copies [8] and loop transformations can
help with this as well.
ARRAYS. The region construction algorithm proposed in
prior work assumes all non-clobber antidependences are
eliminated by using local storage to hold the result of the
“protecting” initial write and replacing the read to use the
local storage [8]. This technique can be impractical, how-
ever, for a large or unknown number of initial writes (as
in e.g. array initialization), since it effectively requires du-
plicating the non-local memory storage on the stack. For
efficiency, our compiler does not duplicate this state on the
stack, and hence it conservatively cuts the non-clobber an-
tidependences that arise. For most benchmarks they are rare,
with any additional cuts that they require masked by inter-
procedural effects. However, certain applications exhibit



a specific pattern, the initialization-accumulation pattern,
where these antidependences arise in abundance. In this pat-
tern the initialization phase and accumulation phase together
are idempotent but the accumulation phase alone is not.
SCOPE. Several applications, particularly those written in
an object-oriented style, tend to execute in sequences of rela-
tively small functions. Naturally, small function bodies limit
any intra-procedural alias analysis and our region construc-
tion additionally forces cuts at function boundaries, further
constraining idempotent path lengths.

Assuming the capability to overcome the four limiting
factors identified above, we wish to understand the resulting
idempotent path lengths and associated overheads. We con-
sider as a case study the PARSEC and Parboil benchmarks,
which are relatively small and well-contained and thus suit-
able for manual inspection and modification. These bench-
marks are limited by each of the four factors in the manner
indicated by the second column of Table 1.

We overcome each of the limiting factors as follows
(here, we primarily rely on manual annotations due to in-
sufficiently advanced compiler support). For ALIASING,
we assist the compiler in identifying no-alias memory re-
lationships by manually providing source code annotations
using the C/C++ restrict keyword and/or performing code
refactoring. For LOOP-OPT, we manually modify the pro-
gram source code to refactor loops and or scalarize non-
local memory accesses. For ARRAYS, we modify the code
generator to initially ignore potentially non-clobber antide-
pendences in the antidependence cutting phase of the re-
gion construction. The non-clobber antidependences that
then emerge are handled in a separate post-cutting phase
“as-needed”, in the same manner that loop pseudoregister
antidependences are handled as a post-pass [8]. Finally, for
SCOPE, we add annotations to force inlining.
Results. Columns 3-4 of Table 1 show that very large path
length improvements can be achieved with these modifica-
tions compared to the baseline. In all cases, the geometric
mean path length grows to at least one hundred instructions
and in the vast majority of cases they grow to many thou-
sands of instructions4. More importantly, however, we see
examining columns 5-6 of the table that these transforma-
tions create a very sharp reduction in dynamic execution
time overhead. In most cases, execution time overhead is
effectively eliminated. The data thus strongly supports con-
structing larger idempotent regions to reduce the compiler-
induced execution time overheads. The reason is intuitive:
larger regions allow amortizing the cost of preserving region
live-in state over longer distances.

Decreasing Path Length
Computationally-intensive programs, such as those from the
Parboil and PARSEC suites, tend to have extractably large

4 As desired, path lengths can still be arbitrarily reduced by employing loop
blocking and other similar techniques.

Figure 7. Code generation output given Figure 2(c) as input
with a pressure threshould value greater than or equal to 1.

idempotent regions. However, programs written for general
purpose processors—particularly those written in an object-
oriented style with frequent updates to object member vari-
ables in heap memory—do not generally have such large
regions. These programs often contain many ambiguous
“may-alias” memory references of the same variety as those
that inhibit automatic parallelization by compilers [15]. For
these programs, the semantically idempotent regions are not
generally large enough to usefully amortize the register pres-
sure overheads of preserving their idempotence throughout
the compilation process. These programs are sometimes bet-
ter served by judiciously shortening region sizes to minimize
overheads resulting from register pressure.

To explore the opportunity, we modified our compiler to
take as argument an optional pressure threshold, which is a
value from 1 to 10. When this value is set, the compiler ex-
amines the entry point of each basic block and computes the
10 “heaviest” (least likely to be spilled) pseudoregister val-
ues at those points using various weighting heuristics such as
loop depth, etc. Among those 10 pseudoregisters it computes
the number whose values would be preserved purely for
idempotence purposes. If that number meets or exceeds the
pressure threshold, then an idempotence boundary is placed
at the entry point of the basic block.

The algorithm examines the entry point of basic blocks
because that is where the number of held registers is typ-
ically highest due to registers becoming dynamically dead
as a result of control divergence. This can be seen examin-
ing the compiler output previously shown in Figure 5. At the
start of B2 register R1 is a held register because it is dead



Benchmark Limiting Factor(s) Length Before Length After Overhead Before Overhead After
blackscholes ALIASING, SCOPE 78.9 >10,000,000 -2.93% -0.05%
canneal SCOPE 35.3 187.3 5.31% 1.33%
fluidanimate ARRAYS, LOOP-OPT, SCOPE 9.4 >10,000,000 26.67% -0.62%
streamcluster ALIASING 120.7 4,928 13.62% 0.00%
swaptions ALIASING, ARRAYS 10.8 210,674 17.67% 0.00%

cutcp LOOP-OPT 21.9 612.4 6.44% -0.01%
fft ALIASING 24.7 2,450 11.12% 0.00%
histo ARRAYS, SCOPE 4.4 4,640,000 23.53% 0.00%
mri-q — 22,100 22,100 0.00% 0.00%
sad ALIASING 51.3 90,000 4.17% 0.00%
tpacf ARRAYS, SCOPE 30.2 107,000 12.36% -0.02%

Table 1. PARSEC and Parboil benchmarks, limiting factors, and characteristics before and after addressing limiting factors.
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Figure 8. Overhead with a pressure threshold value of 5.
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Figure 9. Path length versus execution time overhead.

along that control flow path. Figure 7 shows the output after
setting a pressure threshold value of 1 or more. It causes the
register pressure exerted by R1 along B2’s control flow path
to be subsequently removed. As a result, the number of reg-
ister spills is reduced by 1 and the code is more compact with
a total of only 17 instructions (which happens to be ideal).
Results. Figure 8 shows that the modified compiler, using
a pressure threshold value of 5, produces lower execution
time overheads relative to the baseline. However, the dif-
ferences are not large; while the baseline compiler yielded
runtime overheads of roughly 9-16%, the modified compiler
reduces these overheads to 9-13%—only a modest 3% re-
duction at the high end. Across a range of threshold values,
the difference is similarly not large (not shown).

Summary and Implications
Figure 9 plots the correlation between geometric mean path
length and run-time overhead for the baseline results (cir-
cles), after increasing path lengths (stars), and after decreas-
ing path lengths (triangles).

With respect to large regions, it suggests that path lengths
of 50 instructions and more are sufficient to yield negligi-
ble overhead overall; benchmarks omnetpp, blackscholes,
canneal, sphinx3, and sad all have mean path lengths in the
range of 30-80 instruction under the baseline, and in all cases
the overhead is relatively low, between -2 and 5%. The main
exception is streamcluster, which has path lengths of over
100 instructions but still has overheads in the 10% range
for x86. The compiler compiles this benchmark’s most criti-
cal loop differently when compiling for idempotence, insert-
ing one extra instruction and growing the size of the loop
from 7 instructions to 8 instructions. The extra instruction
appears redundant, and indeed, comparing against the same
code compiled for ARMv7 (see Figure 10), the loop is com-
piled without any extra instructions and the overall overhead
becomes negligible. We thus conclude that this difference
is purely due to noise that our extensions introduce into the
compiler register allocator algorithm.

With respect to small regions, however, no clear rule-
of-thumb emerges. Evidently, the overheads of compiling
for small idempotent regions is heavily dependent on exist-
ing application register pressure and control flow behavior;
while in some cases constructing smaller regions to reduce
register pressure provides a substantial improvement in per-
formance, in other cases it provides little or no improvement.

5.3 ISA Sensitivity
We now consider and evaluate the extent to which ISA
register-memory addressing support, three-address instruc-
tions support, and the number of available registers affect the
compiler-induced overheads of idempotent code generation.

With respect to register-memory addressing and three-
address instruction support, a perfectly controlled experi-
ment is challenging given that no mainstream register-to-
register two-address instruction set (nor register-to-memory
three-address instruction set) exists. As a compromise, we
evaluate the impact of both features at the same time by com-
paring dynamic instruction count increase across the x86-64
and ARMv7 instruction sets; both instruction sets have the
same number of general purpose integer registers (16) and
we compile then with the same floating point support (x86-



as
ta

r
bz

ip
2

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
gm

ea
n

de
al

II
lb

m
m

ilc
na

m
d

so
pl

ex
gm

ea
n

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

st
re

am
cl

us
te

r
sw

ap
tio

ns
gm

ea
n

cu
tc

p fft
hi

st
o

m
ri-

q
sa

d
tp

ac
f

gm
ea

n

ov
er

al
lg

m
ea

n

0%
10%
20%
30%
40%

ov
er

he
ad

SPEC INT SPEC FP PARSEC Parboil

x86-64 ARMv7

Figure 10. Execution time overhead x86-64 vs. ARMv7.

64 has 16 single-precision FP registers with SSE2 and we
compile ARMv7 to similarly use only 16 single-precision
FP registers, even though 32 are available with NEON).

To evaluate the impact of the number of available regis-
ters, we attempt to quantify the number of additional regis-
ters that would be needed in the ISA for idempotent code
generation to achieve achieve comparable performance to
normal code generation. For this piece, we focus specifically
on benchmarks with small idempotent regions, since intu-
itively as regions grow larger the impact of the number of
available registers approaches insignificance.
Results. Figure 10 compares the overheads in execution
time for x86-64 and ARMv7 in terms of dynamic instruction
count5. Overall, the figure indicates a lower geometric mean
overhead for ARMv7, at 12.6%, than for x86-64, which has
13.9% overhead. Curiously the differences closely correlate
with the type of benchmark—integer (SPEC INT) vs. float-
ing point (SPEC FP, PARSEC, and Parboil). For floating
point benchmarks, ARM has substantially lower overhead
(typically by 2-4%) because register pressure is lower, which
enhances the benefit of three-address instruction support in
ARM relative to memory-register support in x86. With in-
teger benchmarks, however, we see the opposite effect; x86
has lower overhead (typically by 1-3%) than ARM because
register pressure is higher, which enhances the benefit of
memory-register support in x86 relative to three-address in-
struction support in ARM. Overall, the benefits of register-
memory addressing and three-address instructions can be
quite substantial (up to 15%), as we see for astar and flu-
idanimate, respectively.

Finally, to understand the impact of the number of avail-
able registers, Figure 11 shows the effect on the execution
time overhead for ARMv7 as we reduce the number of gen-
eral purpose integer registers (GPRs) from 16 to 14, 12, and
10. We focus only the SPEC INT integer benchmarks, which
are most affected, and see that performance of having only
10 (removing 6 out of 16) general purpose registers roughly
corresponds with the performance of compiling with a pres-
sure threshold value of 5, for which the data is also shown
on the right using a hatched bar. The implication is that, as-

5 Data for SPEC INT’s gcc and SPEC FP’s sphinx3 and povray is not
presented since these benchmarks either did not compile for the version
of LLVM DragonEgg used or would not run for the version of gem5 used.
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Figure 11. Execution time overhead for non-idempotent
ARMv7 code assuming 10, 12, and 14 general purpose
registers (-Idem,GPR=x) compared to a 16 GPR base-
line. The overhead of idempotent ARMv7 code com-
piled with 16 GPRs using a pressure threshould of 5
(+Idem,GPR=16,PT=5) is shown for comparison.

suming region sizes are constrained and register pressure is
continually high (as is presumably the case with only 10 reg-
isters), compiling for idempotence with no performance loss
generally requires a roughly 6

10 = 60% increase in the num-
ber of available registers. This effective 60% increase in reg-
ister pressure seems high. However, it also seems intuitive
that idempotent region sizes in the range of 5 to 15 instruc-
tions, which is typical for the SPEC INT benchmarks, would
have a roughly proportional number of live-in registers that
must be preserved for idempotence.

5.4 Sensitivity to Control Flow Assumptions
Table 2 reports the increase in execution time for x86-64
compiling using the deterministic (Algorithm 1) and non-
deterministic (Algorithm 2) code generation algorithms pre-
sented in Section 4. The table shows that overall, there is
only a 0.5% overhead difference between the two algo-
rithms. The data thus suggests that performance is largely
unaffected by the distinction between determinstic and non-
deterministic control flow assumptions.

While this result may seem counter-intuitive, its implica-
tion, which is that the opportunity to take advantage of de-
termistic control flow is rare, is corroborated by inspection.
We find that, while deterministic control flow allows stat-
ically live-in but dynamically dead registers to be re-used,
the occurrence of this statically-live but dynamically-dead
condition is relatively rare: it requires both an interval where
a register is live but only used after control flow divergence
(in which case the register is a good candidate for spilling)
and register scarcity (if registers were indeed scarce, the live
register would most likely already have been spilled).

For most benchmarks, the overheads are effectively un-
changed. However, for two specific benchmarks, SPEC
INT’s libquantum and SPEC FP’s namd, is there a very
noticeable difference of roughly 10% (not shown in table).

6. Summary & Conclusions
Using idempotence for recovery is a novel and emerging
paradigm with applicability in a variety of domains [7–11,
14, 18, 19]. However, its effectiveness is susceptible to the



SPEC INT SPEC FP PARSEC Parboil Overall

A1 15.0% 14.1% 11.6% 9.3% 13.1%
A2 16.2% 14.7% 11.6% 9.1% 13.6%

Table 2. Geometric mean overheads using the deterministic
(A1) and non-determinstic (A2) control flow algorithms.

whims of the compiler algorithms that generate idempotent
code, the structure of applications that give rise to the code,
and the architectures that run the code. An understanding of
the resulting sensitivities is crucial to furthering the state of
the art in applying the technique and its variants.

As a first result, this paper finds that it is possible to in-
crease the performance of idempotent generated code both
by increasing and decreasing idempotent region sizes. Al-
though ideal region size depends on a variety of characteris-
tics, the compiler-induced performance overheads for large
regions quickly become negligible as regions grow beyond
roughly 50 instructions. For small regions (typically 10-20
instructions in size), however, some overhead is unavoid-
able, and typical overheads of 10% are common, even with
careful tuning. Yet with smaller idempotent region sizes, the
instruction set plays an important role; we find that it in-
fluences performance typically by 2-3%, and sometimes by
much more. Finally, we find that, in accounting for possible
control flow side-effects, a more general idempotent code
generation algorithm has only slightly worse performance
than a more specific code generation algorithm.

In the end, we conclude that, when large idempotent re-
gions are achievable and they make sense (i.e. recovery is
infrequent, implying low re-execution costs), large regions
are ideal in allowing the compiler to generate highly effi-
cient idempotent code with effectively no overhead. In this
mode, idempotence analysis is highly effective in simplify-
ing recovery by allowing memory state to be freely over-
written and amortizing register preservation costs over large
groups of instructions. Additionally, we find that a variety
of program transformations and analyses can expose the in-
herent idempotence in loop-intensive applications to allow
such large region sizes, suggesting a compelling fit with
the expressiveness of functional languages and high-level,
domain-specific languages. Yet even when idempotent re-
gions are necessarily small, we find that keeping the perfor-
mance overheads low is still possible with careful algorith-
mic tuning and instruction set co-design.

In the interest of enabling future development in each of
these directions, we hope that the public release of our com-
piler [2] will enable future researchers and systems designers
in building the efficient recovery systems of the future.
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