
  
  

 

Computer  
Sciences  
Department  
 

  

Regression, Regularization, and Redundancy: Humans’ Response 
to Redundant Inputs in a Linear System 
 
Rachael McCormick 
 
Technical Report #1704 
 
October 2011 

 
 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

Regression, Regularization, and Redundancy: 

Humans‘ Response to Redundant Inputs in a Linear System 

Rachael A. McCormick 

University of Wisconsin – Madison 

  



ii 
 

Abstract 

 In this study, I explored the affect redundant or highly intercorrelated input features had 

on human participants‘ ability to learn a linear regression-type task. Earlier studies suggest that, 

paradoxically, people perform worse with redundant input, something which could possibly be 

explaining by using regularization to sacrifice training set accuracy for model generalizability. I 

introduce a novel paradigm for having humans perform linear regression, for calculating what β 

weights they learned, and for establishing whether they favored the non-sparse L2 or the sparse 

L1 regularizer. I found that people form into two distinct groups, on favoring a sparse strategy 

and the other favoring a non-sparse strategy, but was not able to manipulate which strategy 

participants adopted. Discussion included implications for psychological and machine learning 

research. 
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Introduction 

Judgment tasks make up an enormous portion of human cognition: they cover many task 

areas, such as recognizing that the animal at your feet is your neighbor‘s dog, guessing the rough 

age of the person you are talking to, or learning what foods are safe to eat. The common form of 

judgment tasks is that they involve using some kind of input (often perceptual, but not always), 

and using some sort of rule which relates those inputs to produce a judgment. For example, you 

might learn that your neighbor‘s dog has a certain spotted pattern on his coat, is a certain size, 

and has a certain pitch to his bark. Even if you only have partial information, such as seeing a 

small animal of about the right size in the dark and hear a bark of that pitch, you are able to judge 

with reasonable certainty that the creature is indeed your neighbor‘s dog. This is because you 

have learned to use various input cues to make judgments about what animal it is that you are 

interacting with. 

There are many ways to model how humans perform judgment tasks. One of the simplest 

is linear regression. ―Regression‖ is simply a subset of judgment tasks that involve continuous-

valued decisions (such as guessing just how heavy something will be just by looking at it and 

knowing what it‘s made of), as opposed to categorical decisions (such as whether an animal is 

one‘s neighbor‘s dog or a raccoon). Linear regression is so-named because it makes a 

simplifying assumption about the relationship between the inputs and the judgment to be made: 

that the relationship is linear. Specifically, linear regression is the act of finding the best linear 

model to describe the judgment task at hand, and a linear model is simply a weighted sum of the 

input features: 

   (1)  
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The ―weights,‖ also called β weights or β values, represent how large of an effect that particular 

input feature has on the final decision. (Especially if the inputs are standardized, so their values 

are all in the same range.) Linear models cannot capture non-linear relationships, such as ―when 

input1 is above 5, input2 doesn‘t matter (its weight is 0).‖ One notable side-effect of linear 

models is that all input features are assumed to be independent, which is often not perfectly true. 

Despite its great simplicity, linear regression plays a major role in machine learning, as it 

is a very basic and easily-adaptable mathematical formulation of learning. For example, in 

addition to linear regression being used on its own to train computers to make judgments, it is 

also a key component of the widely used and successful neural network and support vector 

machine algorithms. The linear model also has a large role in cognitive psychological research. 

Besides using linear regression as a form of statistical analyses, linear models have been used in 

attempts to mathematically describe humans‘ decision-making behavior, such as Egon 

Brunswik‘s seminal ―lens model,‖ which uses precisely Equation 1 to model the judgments of 

human subjects on decision-making tasks (Karelaia & Hogarth, 2008). Many factors have been 

identified which contribute to humans‘ ability to learn the optimal linear model for a 

classification task (i.e., the model which makes the fewest erroneous classifications), such as 

number of features and participant expertise with the decision domain. 

One factor whose effect on learning is still unclear is feature intercorrelation and 

redundancy. (Or, when the input features are not perfectly independent.) Features are considered 

strictly redundant if they convey identical information, albeit in a different form. For example, 

imagine that for a particular variety of apple, larger fruits are always more red and vice versa. If 

you know that the more red the fruit is, the tastier it will be, than you also know that the larger 

the fruit is, the tastier it will be. Therefore, when trying to select the best apple to eat, you could 
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look for the largest one without looking at their colors, or vice versa—size and color provide 

redundant information. Even if the rule about larger apples being more red isn‘t always perfectly 

true—you could, given a lot of apples, find one that is more red than an apple larger than it—

using just color or just size to determine tastiness could still be a sound rule of thumb. If the rule 

about size and color isn‘t perfectly true, we can still say these two features of apples are 

―intercorrelated‖—larger apples tend to be more red, and vice versa. Redundant and 

intercorrelated features are common in naturalistic problems, and humans deal with them 

regularly when learning new tasks. It would be valuable, then, to more clearly understand how 

redundancy affects people‘s learning. 

Brunswik originally proposed that the mutual substitutability of redundant features would 

improve the reliability of judgments and improve response time (Brunswik, 1955). Since then, 

however, numerous studies have found the opposite effect; a recent meta-analysis spanning over 

50 years and 249 classification-task experiments testing the lens model found that overall, 

increased feature redundancy decreased judgment accuracy, reliability, and subjects‘ 

responsiveness to instructional feedback on the task (Karelaia & Hogarth, 2008). These results 

directly oppose machine learning theory, which states that a linear model could never perform 

worse with strictly redundant features, because one can always at worst just treat the redundant 

features as independent and process them as per usual. Identifying their redundancy is only a 

―shortcut‖ which allows the learner to ignore a feature and save on processing time somewhat.  

There is a possible explanation, however, for why people might perform worse with 

redundant features: regression can be ―regularized,‖ a method which effectively reduces the 

learner‘s accuracy on the examples they are given to learn from, but (hopefully) improves their 

performance on examples they did not get to learn with. This is helpful if the features are only 
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redundant in the examples the learner has to learn from initially, but this is not true of the general 

population of examples. For example, a devious teacher could carefully select apples for which 

the rule about larger apples being more red is always true. From this biased sample, the learner 

will discover that it doesn‘t matter whether they use color or size to judge which apple will taste 

best. However, it could secretly be the case that only the color predicts the tastiness, and the 

teacher just did not show the learner any small red (tasty) or large green (sour) apples. 

Regularization is helpful because it assumes that the sample used for learning will not be a 

perfect representative of the population overall. (For a precise explanation of how regularization 

accomplishes this, see ―Regularization‖ in ―Regression, Regularizers, and Redundancy.‖) 

It is unlikely that people normally encounter these sorts of purposefully-biased samples, 

but it is true that the fewer examples one learns from, the more likely this sample is to be biased, 

as per the law of large numbers. Humans are exceptionally able to learn from small samples 

sizes, suggesting that they may employ various mechanisms, such as regularization, to boost 

their performance assuming they have a somewhat biased sample to learn from. They may be 

particularly inclined to regularize their learning when they detect that some of the features are 

redundant, naturally ―suspicious‖ of any apparent redundancy. (Deciding too soon to completely 

ignore one of the redundant features may mean you do not notice later on when you see 

examples that violated the redundancy, like a small tasty red apple.) However, regularization 

does sacrifice some performance on the learning examples, and in the case of many psychology 

experiments, the learning sample is carefully crafted to not be biased, meaning regularization 

would just hurt performance in these experimental cases. 

Therefore, in order to better understand the effects of feature redundancy on human 

decision-making, I experimentally tested what regularization method (if any) people appear to 
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use when given redundant features to learn from. I hope that this will help explain the curious 

finding that redundant features impair people‘s learning. I chose to use a continuous-valued 

judgment task (e.g. ―how tasty will this apple be?‖) as opposed to a classification task (e.g. ―is 

this a tasty apple or a sour one?‖) because continuous-valued decisions are a more general form 

of the problem. Continuous judgments can be made into classification judgments with simple 

thresholding, such as deciding that above a certain cutoff an apple is deemed ―tasty‖ and below it 

it is ―sour.‖ Continuous-valued judgments are (mathematically) simpler to describe and reverse-

engineer, because they do not involve this thresholding step. 

 

Regression, Regularizers, and Redundancy 

Linear Regression.  Linear regression is the process of developing a linear model to 

describe relationships in the data. A linear model is essentially the ―rule‖ the learner develops in 

continuous-valued judgment tasks, and simply predicts the output measure for a given example 

through a weighted sum of the continuous-valued input features; these weights are called the beta 

weights (β). In the apple example, size (perhaps in ounces) and color (as a continuous hue 

measure along the rainbow) are the inputs to the regression analysis (  and ), and tastiness 

(on some fictional scale) is the output measure (y).  The resulting linear model, which calculates 

the estimated output  for a given example , can be described as follows (where  is the value 

of the f
th

 input feature for example , and  is the noise term for  (giving room for imperfect or 

‗noisy‘ inputs)):

 

 

 

(2) 
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Generally, when developing a linear model, the goal of the regression is to choose β 

values that minimize the difference between the estimated output  and the true output . 

Regression takes in the values for all the input features for all the examples in its training set a 

well as the output values for all those examples, and attempts to produce the best set of β weights 

possible. The difference between  and  is usually measured as the sum squared error (SSE) 

over all the training set examples. Therefore, the work of the regression analysis is to solve the 

following expression (which adjusts β, the weight vector, to minimize the SSE):

 

 

(3) 

 

 

The Problem of Overfitting.  One problem which all machine learning algorithms must 

deal with is overfitting, which is when the learning algorithm maximizes its accuracy on its given 

training set at the cost of generalizability to other data. One example is when the learner 

memorizes its training data ―rote‖—for example, an image classifier might just learn that images 

1, 3 and 4 are of cats and 2, 5 and 6 are of flowers, rather than learning more in general what a 

cat looks like compared to a flower. Then, when other pictures not in its training set are shown to 

it, it responds at random, having never actually learned any sort of generalizable rule. 

One common approach to counter overfitting is to subdivide the provided data, perhaps 

setting aside one tenth of the examples as a ―tuning set‖ and using the rest normally as a training 

set. The algorithm learns using only the training set data, but then is tested periodically using the 

tuning data. Learning is halted when performance on the tuning set begins to fall relative to 

earlier testing periods: this indicates that the algorithm is beginning to overfit its training data, 

losing generalizability to data it did not train with (i.e. the tuning set). 
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A further step is cross-validation. For instance, one could repeat the above tuning process 

ten times, each time with a different tenth of the examples set aside as the tuning set. The learner 

with the best final accuracy on its tuning set is selected as the final model. (This would be ―10-

fold‖ cross-validation, which is considered the standard number of splits, or folds, in machine 

learning.) Cross-validation helps ensure that there are no random artifacts in the selection of the 

tuning set (e.g., all the very ―easy‖ examples ended up in the tuning set) affect the final model. 

 

Regularization.  Vanilla linear regression (as described above) seeks only to find the set 

of βs which minimize the linear model‘s error for all the training examples it is given. This of 

course is very likely to cause overfitting. One common way of preventing linear regression from 

overfitting is to introduce a regularizer term to the minimized expression: 

  (4) 

Depending on λ, the balance term between how important it is to minimize the SSE versus the 

regularizer term, this causes the regression analysis to sacrifice having a minimal error to some 

extent in exchange for greater generalizability beyond its training data. How exactly ―greater 

generalizability‖ is achieved depends on which regularizer is used. 

One notable family of regularizers is the Lp regularizers, so-named because they are 

based on the Lebesgue p-norms of the β weights. The original, the L2 regularizer (also called 

ridge regression or the Euclidean norm), gives preference to choosing the smallest βs possible, 

by minimizing (the square root of) their squares: 

 

  

 

(5) 
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Conversely, the L0 regularizer (sometimes called the ―minimum weight solution‖ or simply the 

zero-norm) is simply the count of how many nonzero βs there are in the model; therefore, 

minimizing it encourages using as few features as possible and setting all other redundant 

features‘ βs to 0. For this reason, L0 is called a sparse regularizer. Unfortunately, calculating the 

L0 regularizer term is NP-hard, or prohibitively time-consuming to compute (for a full proof, see 

Amaldi & Kann, 1998). While NP-hard problems should not necessarily be discounted, because 

humans can make decisions so quickly, this makes the L0 regularizer not a likely candidate for 

directly modeling humans‘ behavior. The L1 regularizer (also called LASSO or Manhattan 

distance norm) is a middle ground between L0 and L2, and is the sum of the absolute values of β: 

 

 

 

(6) 

At first, this seems very similar to minimizing the squares of β (as in L2); however, it actually 

behaves more like to L0, acting as a sparse regularizer. While squaring the βs makes larger βs 

exponentially more costly, simply taking their absolute values means all βs are penalized 

linearly, causing the L1 regularizer to favor fewer nonzero βs. 

 Furthermore, more than one regularizer term can be used in the regression analysis, each 

with their own λ. For example, one could use both the L1 and L2 regularizers: 

 (7) 

This specific hybrid model is called an elastic net, first described by Zou and Hastie (2005). 

Elastic nets have many interesting properties and strengths, including handling redundant 

features more effectively than either of the L1 or L2 do alone. (For further discussion of this, see 

―How Regularizers Handle Redundancy.‖) 
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 The final question is how to select the appropriate λ(s). Clearly, λ = 0 will not use the 

regularizer at all and behave like vanilla (unregularized) regression. Conversely, an extremely 

high λ will dominate the SSE term, meaning the model will have no concern for finding βs which 

improve accuracy, only those which satisfying the regularizer. For example, a model with an 

overly-large λ for L1 will only concern itself with having the fewest nonzero βs possible—it will 

quickly conclude setting all the weights to zero is the best solution! 

 It can be very difficult to predict what will be a good λ, so one solution is to tune λ by 

running the regression analysis repeatedly, slightly increasing λ each time. In order to tell which 

λ produced the best linear model, a portion of the examples can be set aside as a tuning set (as 

described in ―The Problem of Overfitting‖). After performing regression analysis with the 

training set of examples (which does not included the tuning examples), the linear model is used 

to find the predicted outputs ( ) for the tuning examples. The model with the best prediction 

accuracy is considered the best fit, and to have the most ―correct‖ βs. Furthermore, cross 

validation should also be applied. Compared to a single run of vanilla linear regression, tuned 

and cross-validated regularized regression will take longer to compute, but will produce more 

accurate and meaningful βs, as they will also be relatively accurate for novel data, suggesting the 

better describe the true underlying relationships. (For those interested in applying this technique, 

the glmnet package for R (Friedman, Hastie, & Tibshirani, 2001) is a very fast implementation of 

tuned and cross-validated elastic net regression.) 

 

Redundancy.  Two features are considered redundant if they convey the same information 

about the output measure, even if their values are different. (Though identical features are by 

nature redundant.) For example, the diameter of a circle is always twice the radius (d = 2r), and 
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the area is πr
2
 = ¼πd

2
. If a regression task has both diameter and area as input features, while 

their values will rarely be identical, they are redundant: one can always find the area by knowing 

the diameter, and vice versa, meaning only one of them is actually needed. In this example, the 

features are strictly redundant, meaning they have a perfect correlation of 1.0. Strict redundancy 

is a specific subtype of feature intercorrelation, where features are significantly correlated, 

though not always perfectly. If the measurements of area and diameter were noisy, they would 

no longer be strictly redundant, though highly intercorrelated.  

Strictly redundant, and even highly intercorrelated features pose trouble for regression 

analysis. If two features  and  are strictly redundant, only one is needed and no additional 

information is conveyed by the other. Therefore, the model can give weight to only  and set 

‘s β to zero (effectively ignoring it), vice versa, or any intermediate combination of the two 

(e.g., weighting them equally). Notice that this gives rise to infinitely many possible weighting 

combinations for just two redundant features! More generally, the βs for two redundant features 

can be distributed any number of ways, so long as their collective weight, or their importance 

relative to other independent features in the model, is fixed. (Here, let  be the collective 

weight given to features  and , and p be a free variable from 0.0 to 1.0): 

 (8) 

 

How Regularizers Handle Redundancy.  Regularizers help offer a solution to which of 

the infinite solutions for β of redundant features the model should settle on. The L2 regularizer 

encourages weighting all redundant features equally. Consider the most basic form of 

redundancy, two identical features: L2  is less than any other 

potential combination. (The other extreme, completely ignoring one of the features, results in 
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. Note, however, how the L2 term is not very different even at its two 

extremes!) Conversely, sparse regularizers such as L1 will produce the opposite effect: one of the 

redundant features will be chosen to bear all their collective weight and the other(s) will be given 

β = 0. While there are not infinitely many sparse solutions for weighting redundant features, 

there are still as many as there are features, depending on which feature is chosen to have a 

nonzero weight. Therefore, L1 is technically undefined for strictly redundant features, though any 

of the redundant features can be chosen arbitrarily as the weight-bearer to produce a solution. 

Elastic net regression (equation 6), which uses both L1 and L2 regularizers, has interesting 

behavior given highly intercorrelated features, making it more effective in these situations than 

using L1 or L2 alone (Zou & Hastie, 2005). Specifically, if λ1 is substantially greater than λ2, there 

is a ―grouping effect‖ where highly intercorrelated features are effectively averaged together and 

their average is then entered into the model as one feature, but overall a sparse model is still 

produced. This is because, when λ1 is high, the model generally prefers sparse solutions, but 

when it does encounter the situation where the features are redundant and the optimal weighting 

solution is undefined, it reverts to L2 regularization to break the tie, as L1 regularization has no 

preference between the redundant features. 

 

Regularization by Humans 

 Given that there are multiple ways of handling strictly redundant features in a linear 

system, and that the presence of redundant features clearly affects human subjects‘ performance 

on decision tasks, what ―regularizer‖ (or combination thereof) are people using? It is quite likely 

that humans use some form of regularization for continuous-valued judgment tasks (i.e. 

regression tasks). Intercorrelated features and noisy inputs are common to human experience, 
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and are things regularizers help with. Furthermore, humans do very well at avoiding overfitting: 

we are naturals at identifying general patterns and rules, and often do poorly when trying to 

memorize various facts ―rote.‖ While they likely do not perfectly follow the mathematical 

formulation of any of the Lp regularizers, one can compare human behavior to the general 

―strategies‖ of the various regularizers: do humans prefer to consider all redundant features more 

or less equally, or do they prefer a more sparse solution?  

There are advantages and disadvantages to both approaches: sparse solutions are clearly 

faster and simpler to use, as fewer features need to be considered. However, they offer less 

insulation against noisy inputs: as soon as noise is introduced to the system (and noise is present 

in all sensory experiences for humans), even redundant features are no longer perfectly 

correlated. Instead, computing the average of these features actually helps get at the underlying 

true (noiseless) value of the features, much like taking repeated measures. Therefore, in noisy 

situations, less sparse regularizers offer a distinct advantage over sparse ones, which will be 

affected greatly by the noise since they attend to only one of the redundant features. 

 To date, experimental evidence for which regularizer humans most closely match is very 

mixed and inconclusive. Some studies have found that people try considering all features equally 

(Schmitt & Dudycha, 1975), while others have found that people employ a ―take the best‖ 

heuristic and prefer to examine as few features as possible (Pishkin & Williams, 1984; 

Hutchinson & Gigerenzer, 2005). Furthermore, I was not able to find any studies that have 

explored human ―regularization‖ in conjunction with (strictly) redundant features. 

Regularizers offer formally explicit hypotheses about how people might cope with 

redundant information in a continuous, linear regression-like setting; for example, the L1 and L2 

regularizers contrast sparse and non-sparse (equal-weighting) solutions, and hybrid systems like 
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the elastic net provide even more detailed predictions for responses to redundancy. This makes 

them a good framework for investigating and explaining how people use redundant data.  

Furthermore, while machine learning makes extensive use of linear regression and related 

models, rarely are models‘ designs informed by human behavior. For example, the best λ 

multiplier(s) for the regularizer term(s) are arrived at through tuning and cross-validation, not by 

considering what a human would prefer. However, it is highly unlikely that humans run the same 

regression analysis thousands of times in their heads, tuning their λs! Instead, it is possible that 

humans somehow know what strategies (i.e. degree of sparsity) are preferable in different 

situations, and are able to adjust their analysis on the fly. Knowing how to design such dynamic 

linear analyzers could be of great interest to the machine learning community, especially the 

areas of extended and continuous learning. 

 

The Present Study 

 In this paper, I report the results of a series of three experiments designed to investigate 

human behavior in a simple linear regression task with redundant features. The first experiment 

introduces the new paradigm I developed, as I could find none to replicate which could address 

our questions. It involves very simple conditions to test whether people can learn the task in our 

paradigm, and verifies that our novel methods for measuring peoples‘ β are accurate. The second 

experiment uses the same paradigm and analysis methods, but involves a much more difficult 

input set that prevents people from using obvious superficial solutions. This experiment also 

introduces a method of determining which regularizers best matches participants‘ behavior. 

Finally, the third experiment replicates the second except with noisy inputs, allowing us to 

investigate whether people adjust their regularization strategies depending on the situation at 
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hand. I hypothesize that with noisier inputs, people will tend towards less sparse β solutions than 

in the noiseless version, as non-sparse regularizers handle noise better than sparse regularizers 

(see ―Regularization by Humans‖).  
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Experiment 1 

A Paradigm for Studying Human Regression 

 I could not find any previously-used paradigms for testing human regression capability, 

especially using fully continuous-valued inputs and outputs and allowing for strict redundancy 

between features. Therefore, I developed my own, built around the simple back story that the 

participants are paleontologists-in-training, learning to use a chemical marker to determine the 

age of fossils. The ―catch,‖ participants are told, is that the level of the chemical is different in 

three different parts of the fossils‘ bodies, and some parts are more informative in determining 

the age of the fossil than others. 

The paradigm involves a learning (or ―training‖) phase followed by a testing phase, 

composed of 62 and 23 separate trials, respectively. Each trial represents a different fossil. 

Participants have a limited amount of time to look over the three chemical levels (represented as 

partially-filled in meters) and respond with their estimated age for that fossil. (For a more precise 

explanation of the program, see ―Methods: Procedure.‖) In the training phase, after they submit 

their answer, they see their answer alongside the true age as well as the three chemical meters, 

allowing them to adjust their mental model (and hopefully learn) before moving on to the next 

fossil. In the testing phase, however, they are not shown the correct answer, but instead go on to 

the next trial immediately. 

 Participants are encouraged to improve their performance by tracking their error 

(absolute difference between their estimated age and the true age). If they kept their error below 

a certain threshold for 20 trials, they were said to have reached criterion, and went on to the 

testing phase. If a participant never reached criterion, they would begin the testing phase after 

completing all 62 training trials. 
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In terms of linear regression, the chemical levels are the input features ( ,  and ), 

and the age of the fossil is the output measure. Both the input and outputs are continuous-valued, 

and can be negative or positive. The age of a given fossil  is calculated from the three chemical 

levels—how ―informative‖ it is for determining the age is essentially its β: 

 (9) 

Using this paradigm, any set of β weights and input  values can be chosen, and the matching y 

values derived using this equation. To produce redundant inputs (  and  and one 

independent input ( ),  and  are chosen randomly (uniform in the range (-1, 1)) and  is 

derived from  using a linear relationship: 

  

 

 

(10) 

Two input features in this way will clearly not have identical values, but will be strictly 

redundant: given knowledge of , one can always calculate what  must be and vice versa. The 

linear relationship is a relatively simple one, but the scaling (a) and offset (b) serve two 

purposes: First, to obscure the relationship between  and , so participants do not readily 

notice that they are in fact strictly redundant. In Experiment 1, b was always -0.4, but a was 

either +0.7 or -0.7 on a between-participants basis (see Table 1 for a summary of different 

experimental conditions). These two levels were chosen to see if how obscure the redundancy 

was would have any impact on people‘s behavior, with the ―negative‖ condition (a = -0.7) 

considered the ―more obscure‖ one, as the relationship between  and  is less clear when they 

are always of opposite sign (due to the negative multiplier) 

 Second, the offset term constrains the normally-infinite possible solutions for the βs of 

two strictly redundant features (see equation 7) to just one unique solution. Imagine plotting the  
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Table 1: Experimental Conditions 

Experiment β a b Noise 

    1: positive (1, 1, 1) +0.7 -0.4 no 

        negative (1, 1, 1) -0.7 -0.4 no 

    2: (0.55, 1, 1.6) -0.7 -0.4 no 

    3: (0.55, 1, 1.6) -0.7 -0.4 yes 

 

β weights for two features (say  and ) with  on one axis and  on the other: generally, the 

correct β would be a single point on the graph—this is a point solution, where there is a exactly 

one unique solution for β. However, if  and  are strictly redundant and, for example, one is a 

simple rescaling of the other (e.g. ), the solution for the correct β can be drawn as a 

straight line: any of the infinite points along that line are functionally identical. This is called a 

line solution for β. 

Unfortunately, it is harder to tell if participants‘ own βs conform to the correct line 

solution than if it conforms to a point solution. Consider a scatter plot of participants‘ βs, with 

the points representing the participants distributed in a loose cloud. With a single point as the 

correct beta, it is easy enough to determine if participants‘ βs crowd around this point or are 

distributed more or less randomly. But if the correct answer line bisects the cloud, it is much 

harder to determine if the cloud clusters meaningfully towards the line. Fortunately, the offset 

term forces there to be one unique point solution to the system. In other words, the β I select is 

the correct answer, and I can easily compare participants‘ βs to this. 

 Experiment 1 has two goals: to verify if people can learn our task, and then to determine 

if our novel method for approximating participants‘ βs is valid. For this reason, I chose a very 

simple scenario, with β1,2,3 = (1, 1, 1) (see Table 1 for experimental conditions.) This means all 

three input features are equally important (since they have the same βs), and furthermore, the 
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correct answer for the age is , or simply the sum of 

the three chemical levels. This is the ―easiest‖ β that still uses all three features, as it requires no 

feature selection (determining what features are irrelevant, or have a β = 0) nor differential 

weighting between features. 

 

Methods 

Participants. The participants were 27 undergraduate students (14 females, 13 males) 

enrolled in an introductory psychology course at the University of Wisconsin – Madison. Ages 

ranged from 18 to 21 (M = 19.04, SD = 0.98 years). Participation was voluntary, and participants 

received extra credit for their course for their time. Participants were treated in accordance with 

the APA‘s ―Ethical Principals of Psychologists and Code of Conduct‖ (American Psychological 

Association, 2002). 

Materials.  The study was conducted using a program written in Java by the author for 

this purpose. The program was run on Dell computers with Windows XP, Intel Celeron 2.4 GHz 

processors, 256 MB of RAM, and 17 inch CRT monitors at their native resolution of 1024x768. 

There are six such identical computers in a small computer room, where participants were run in 

batches of up to six (M = 5.63, SD = 0.49 simultaneous participants). After the program finished, 

participants were asked to fill out a brief questionnaire which asked them to describe the general 

―rule‖ they developed for determining their answers, to rate each meter‘s ―importance‖ in 

determining their answer on a scale of 0 to 100, and finally, the specific rules they had for each 

of the three meters (for a copy, see Appendix B). 

Procedure.  Participants were assigned randomly to either the ―positive‖ or ―negative‖ 

condition. Before beginning the experiment, all participants read and signed consent forms. Then 
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the experimenter read them the experimental protocol (Appendix A) which introduces the story, 

in which they are paleontologists-in-training, and gives an overview of the procedure and 

controls of the computer program. After this, they are again shown directions on the screen 

which they may read through at their own rate before beginning the training phase. 

In the training phase, all participants had the exact same 62 trials, and progressed through 

them in the same order. For each trial, participants are first shown a screen (Figure 1) with a 

crocodile fossil in the background and three small meters with lines connecting them to the 

fossil‘s head, torso and limb. These meters represent the levels of the chemical marker found in 

these parts of the body, and are filled with red coloring to different levels for each example. 

Negative values are represented by the red coloring extending below the midline, while it 

extends above the midline for positive values. There are no ends drawn on the meters, but rather 

they fade away, to suggest that the values are unbounded, but this is the range of interest. The 

meters do have ruler-style tick marks along the side, to aide with height measurement. The red 

meters range from -1 to +1. 

Superimposed over the fossil in the center is a fourth, much larger meter—the level of 

this meter is set by the participant using the keyboard, and represents their estimated age for the 

fossil. It is designed just like the smaller input meters, though its fill color is blue, and according 

to the tick marks, it ranges from -6 to +6. Finally, the screen also shows a timer in the lower left, 

which begins at 10 seconds and ticks down to 0, and an ―error meter‖ off to the far right. The 

height of the error meter represents the error they have accrued so far, and the number beneath it 

shows how many turns it has been since the meter reset. If they reach 20 turns without filling the 

meter, they finish the training phase.  
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Figure 1: Response Screen 

 

Figure 2: Results Screen 
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After 10 s, the screen changes, accepting whatever the participant had set the central blue 

meter to as their answer. The next screen (Figure 2) is very similar to the first, except it has two 

large meters in the second—the left shows what answer the participant submitted, and the right 

shows the correct age of the fossil using a green fill color. Furthermore, the magnitude (or 

absolute value) of the difference between their blue answer meter and the green correct answer 

meter is added to the orange-colored error thermometer on the right, and the number beneath the 

meter incremented by one. After 5 s (again displayed on the timer), if they have managed to go 

20 turns without filling the error meter (thus reaching the learning criterion) or if 62 training 

trials have passed, the training phase ends and the testing phase begins. Otherwise, an inter-trial 

screen reading ―Preparing next fossil…‖ is shown for 2 s and then the process beings again. 

Error criterion for all conditions was defined as 4.0: if a participant‘s accumulated 

absolute error stayed below 4.0 for 20 trials, they ―reached criterion.‖ If they did accumulate 4.0 

total error, filling the error meter, their accumulated total was reset to 0, but so was their count 

towards the 20 trials. (Visually, the meter would empty, and the number reset to 0.) 

For participants, the testing phase is nearly identical to the training phase, except the 

correct answer screen is not shown after the guess submission screen. (The testing phase is called 

the ―final exam‖ of the paleontology training, justifying why they do not receive immediate 

feedback on their performance.) Also, the error meter is not shown, as all participants will be 

doing all 23 trials regardless of their performance. After completing the testing phase, 

participants are given the questionnaire and instructed to take their time answering it. After they 

finish, they are thanked and debriefed. 
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Results 

 No effect of participant age, sex, study time, number of participants run simultaneously, 

or which computer participants used was found on any of the following analyses. Non-learners 

were defined as those who did not achieve a sum squared error (SSE) of less than 12 in the 

testing phase: using this standard, all the participants in both conditions qualified as learners, and 

were included in the following analyses. 

Performance.  In order to view performance over time, in the training phase accuracy is 

reported as the average squared error for a block of five trials: –  

(Figure 3). This measure is less sensitive than sum squared error (SSE) to the occasional 

extremely poor trials some participants had. Additionally, many participants in both conditions 

reached criterion and finished training before the 62
nd

 trial; however, there was no difference in 

the number of training trials completed by the positive (M = 44.92, SD = 12.67) and negative 

conditions (M = 39.79, SD = 12.05) (t = 1.08, p > .1). In contrast, performance in the testing 

phase was measured using the SSE for all 23 test trials. Participants in the negative condition (M 

= 0.90, SD = 0.78) performed better (had lower SSE) in the testing phase than those in the 

positive condition (M = 2.35, SD = 1.61) (t = 2.92, p = .01). 
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Figure 3: Training Phase Performance 

 

 

Trial Numbers in Block 

The average squared error in each block of five training trials, depicting learning over time. Each black line is a 

different participant, and the red line is the average of all the participants. If a participant stopped the training 

phase early because they reached criterion, then their line ends where they finished training. All the large spikes 

are due to a single trial with extremely high error, in which the participant’s answer was at or near the minimum or 

maximum response value (-6 or 6 respectively). Whether these trials are errors is uncertain, but they did not 

impact test phase performance. 
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A Method for Estimating Human β.  In our paradigm, I developed a novel was of 

measuring participants‘ β weights, using paired trial probes in the testing phase. Specifically, if 

two trials are engineered to have identical input values except for one feature, then the β for that 

feature can be deduced from the difference in the participant‘s responses to these paired trials. 

Consider the paired trials j and k, whose only difference that some Δ is added  in k: 

 

 

 

(11) 

It can easily be seen how comparing  and  reveals the value of β1:

 

 

  (12) 

This paired trial system creates two key reasons for not providing feedback in the testing 

phase. (In addition to these reasons, I also want to ―freeze‖ participants‘ models and discourage 

further learning midway through the testing phase.) As Equation 11 shows, a clever learner could 

easily use this very method to deduce the true value of β1 if they were given the true output 

values (  and ). Furthermore, notice that these paired trials violate the strict redundancy 

relationship between  and  (Equation 9) used in the training phase. Because no feedback is 

given, it is our hope that participants will not notice that the old redundancy is not always true: if 

they were relying on this redundancy (i.e. using a sparse solution and ignoring one of  or ), 

they would notice very quickly if they suddenly fail trials that vary the feature they were 

ignoring. (They would respond with identical  and , which is incorrect.) Without feedback, 

there is less chance that they will notice the change, especially because the redundancy 

relationship between  and  is already relatively obscure. 
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It is important to not present the second paired trial immediately after the first, or 

participants will employ their powerful change detection abilities to notice that only one value 

changed. However, the second trial should still follow relatively closely after the first, in case 

participants are still adjusting their models over the course of the testing phase. I arranged testing 

trials into blocks of six, with the first half of the paired trial probes for β1, β2, and β3 

(respectively) coming first, followed by the second halves of the pairs in the same order. While a 

minimum of one six-trial block would be required to probe all three βs, because human responses 

are by nature noisy, I had four blocks in the testing phase. All reported βs are simply the average 

of the four deduced values for that β. 

Estimated Human β.  Each participant‘s βs can be thought of as a point in a three-

dimensional space of possible β values; thus, they are easily visualized in a 3D scatter plot 

(Figure 4). Because the correct β is a point solution, participants whose β points crowd nearest to 

the true β are those who best solved the linear system. A qualitative measure for how well the 

group as a whole managed to match that point solution is set of three one-sample t tests, one for 

each dimension (β1, β2, and β3), using the correct β as their target. Using this measure, in the 

positive condition, participants‘ β1 was lower than the true β1 (M = 0.71, SD = 0.21, t = -5.09, p < 

.001), as were their β2s (M = 0.79, SD = 0.19, t = -3.99, p = .002); however, their β3s were 

correct—they did not vary significantly from the true β3 (M = 0.98, SD = 0.48, t = -0.16, p > .1). 

The same pattern arose in the negative condition, with participants‘ β1 (M = 0.61, SD = 0.24, t = -

6.06, p < .001) and β2 (M = 0.79, SD = 0.10, t = -7.79, p < .001) both being lower than their true 

values, while their β3s are on target (M = 0.83, SD = 0.47, t = -1.37, p > .1). 

The two conditions can be compared in a similar fashion, using an independent samples t 

test for each of β1, β2, and β3. According to this comparison, there were no differences between   
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Figure 4: Estimated Human βs 

           a)  Experiment 1 – Positive Condition         b)  Experiment 1 – Negative Condition 

 
           c)  Experiment 2                d)  Experiment 3 

Three-dimensional representation of participants’ βs across all four experimental conditions. The large black point 

is the correct β. All other points represent individual participants, and are color-coded to indicate their SSE for the 

testing phase. 
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participants‘ βs in the two conditions (β1: t = 1.11, p > 0.1;  β2: t = 0.01, p > 0.1;  β3: t = 0.82, p > 

0.1). 

 Participants‘ estimated βs were not significantly correlated with testing phase SSE in the 

positive condition (all r < .36, all p > .05). In the negative condition, however, both estimated β1 

and β3 were negatively correlated with test SSE (r = -.65, p < .05, and r = -.59, p < .05, 

respectively)—in other words, the lower participants‘ β1 and β3 were, the higher SSE was, so the 

worse they performed. These somewhat mixed findings may be an artifact of everyone doing so 

well, however. 

 Self-Report Data.  After finishing the experiment, participants were asked to describe 

their rules for producing their answers, as well as rate the ―importance‖ each of the three input 

meters has in determining their answers. While I performed no vigorous analysis of the self-

report data, by simply looking through their responses, it is clear that in both conditions 

participants reported having an underlying β very much like (1,1,1). Their rules included such 

statements as ―I added up the length of the bars (under the line = negative, above = positive) and 

filled the age bar according to scale,‖ and ―Adding all the bars together without any special 

importance for particular bars.‖ Their importance ratings almost always featured identical ratings 

for all three meters. 

 

Discussion 

 This experiment demonstrates that people are able to understand the game and learn the 

underlying βs. Though their test performance is not perfect, and their calculated βs are (in the 

case of β1 and β2) different from the true β, this could be a sign of regularization rather than poor 

learning. Their self-reported rules overwhelmingly describe simply adding up the values of the 

three input meters with no scaling, strongly suggesting a β of (1,1,1). The discrepancy between 
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the estimated βs and the self-report data could indicate a lack of awareness of the slight amount 

of regularization applied. 

The self-report data also raise an important point, however: when the true β is (1,1,1), the 

correct answer is to just ―stack‖ the heights of the three input red meters into the blue response 

meter. No scaling is required, because the scales between the meters are the same (with about an 

inch per full ―unit‖ on the tick marks). This underlying β was designed to make the problem easy 

for people to solve, but it‘s quite possible that it is too easy: it does not tell us whether people 

will be able to learn more complex (and realistic) underlying βs. Furthermore, participants may 

prefer this ―stacking solution‖ even when it is not quite correct, because it is much easier than 

trying to scale one meter by 0.96 and another by 1.02, for example. While regression analysis 

does not find a β of (1,1,1) special in any way, stacking solutions may be treated differently by 

humans, almost like a third kind of regularizer: one preferring ―easy‖ over small or non-zero 

weights.  

There is evidence of regularization in the conflict between participants‘ estimated βs and 

their self reports. However, in order to try to estimate which regularizers participants might have 

been using, I would need to account for this third regularizer. Unfortunately, with this 

experiment‘s data alone, defining ―easiness‖ would be pure conjecture. More importantly, these 

points may only be easy because of the way the game and paradigm are set up, and are mere 

artifacts. Therefore, after this experiment, I sought to avoid true βs that had a stacking solution, 

in hopes of avoiding areas of the space of possible βs where there is a clear ―easy‖ answer that 

will bias participants. 

Another strong reason for avoiding stacking solutions is that they also make any effects 

of the redundancy between  and  difficult to discern, as stacking them is probably much 

easier than learning to use just one by scaling it sufficiently. There is evidence of some effect of 
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the redundancy, as the redundancy relationship itself is the only thing which varied between 

conditions, and differences between the conditions were found. (Notably, participants took 

longer to learn in the negative relationship condition, but then went on to outperform those in the 

positive condition during the testing phase.) Unfortunately, nothing further can be understood 

about the effect of redundancy from this experiment. 

Experiments 2 sought to eliminate the influence of these superficial stacking solutions by 

using a carefully chosen true β for which there is no nearby ―easy‖ alternative. Using this new β, 

questions about human regularization and response to sparsity are explored in greater depth. 
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Experiment 2 

 As discussed in the conclusion of Experiment 1, it is important to avoid an underlying β 

that is a ―stacking solution‖ (where the inputs can be added without any scaling) for three 

reasons: first, to simply find out if people can learn more complex true βs. Second, to enable us 

to better discern the effects the redundant relationship between  and  has on participants‘ 

learning. Third, and very importantly, if there is even a similar underlying β that is particularly 

easy (such as simple stacking), human participants may show a preference for the ―easier‖ βs, as 

a form of regularization. However, I don‘t know what exactly will constitute ―easy‖ for humans, 

so it is best to stay well clear of all stacking solutions in hopes of minimizing the effect of this 

third regularizer. Without this regularizer having a noticeable effect on participants‘ solutions, I 

can calculate to what extent people are using sparse (L1) and non-sparse (L2) regularization. 

 In order to find an underlying β sufficiently far from a simple stacking solution, I plotted 

all seven stacking solutions in 3D β space (like the space shown in the 3D scatter pots from 

Experiment 1), and chose an underlying β that was distant from all of them. (The seven stacking 

solutions include, in addition to (1,1,1), those using only two of the inputs (e.g. (1,1,0)) and only 

one of the inputs (e.g. (1,0,0)).) Using this method, I selected a true β of (0.55, 1, 1.6) for 

Experiment 2. Besides changing the true β, however, nothing else was changed between 

Experiments 1 and 2, in order to continue testing the same paradigm as developed before. 

 

Methods 

Participants.  The participants were 27 undergraduate students (12 females, 15 males) 

enrolled in an introductory psychology course at the University of Wisconsin – Madison. Ages 

ranged from 18 to 22 (M = 19.41, SD = 1.01 years). Participation was voluntary, and participants 

received extra credit for their course for their time. Participants were treated in accordance with 
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the APA‘s ―Ethical Principals of Psychologists and Code of Conduct‖ (American Psychological 

Association, 2002). 

Materials. The program, computers, and questionnaire were the same as those used in 

Experiment 1. Once again, participants were run in batches of up to six (M = 4.85, SD = 0.91 

simultaneous participants). 

Procedure.  The procedure was identical to that in Experiment 1, from the protocol read 

at the beginning, through the program itself, to the questionnaire at the end. The only difference 

was the input values:  were generated the same way, though this time  

for all participants instead of having separate positive and negative conditions. (The negative a 

value was chosen because it better obscures the redundant relationship between  and , and 

participants performed better on it in Experiment 1.) The true β was also (0.55, 1, 1.6) in this 

experiment, meaning that y was calculated using this new linear equation. 

 

Results 

No effect of participant age, study time, number of participants run simultaneously, or 

which computer participants used on any of the following analyses was found. An effect of sex 

was found for performance on the testing set, with males (M = 5.04, SD = 3.21) performing 

better (having lower SSE) than females (M = 7.47, SD = 2.43) (F = 4.59, p =.04). However, sex 

had no observed effect on participants‘ β weights, nor their λs (see ―Determining the Human 

Regularizers‖), suggesting that sex may not have had an impact on how participants actually 

learned and the solutions they developed. 

Non-learners were again defined as those who did not achieve an SSE < 12 in the testing 

phase: using this standard, 2 participants were classified as non-learners and excluded from the 

following analyses, leaving n = 25. Exclusions of these participants is justified in that they never 
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established a ―rule‖ for forming their answers, so any βs I would deduce for them are extremely 

noisy and would not represent a coherent solution to the linear system. 

Performance.  As in Experiment 1, accuracy over time in the training phase is reported 

using average squared error (Figure 3). Unlike in Experiment 1, only one participant reached 

criterion and finished training early. Performance in the testing phase was measured using the 

SSE for all 23 test trials (M = 6.31, SD = 3.04). Notice that, on average, participants performed 

worse in this experiment than in the easier conditions used in Experiment 1. 

Estimated Human β.  In this experiment, all of the participants‘ βs were lower than the 

true β (Figure 4). β1 was below the true 0.55 (M = 0.39, SD = 0.29, t = -2.72, p = .012), β2 was 

below the true 1.00 (M = 0.79, SD = 0.23, t = -4.38, p < .001), and β3 was below the true 1.60 (M 

= 0.87, SD = 0.24, t = -15.03, p < .001). In this experiment, only participants‘ estimated β3 was 

correlated with testing phase SSE (r = -.62, p < .01)—again, the correlation was negative, so the 

lower participants‘ β3s were, the higher SSE was, or the worse they performed. 

Determining the Human Regularizers.  Clearly, participants‘ βs are notably different 

from the true β. This does not necessarily mean the participants are doing poorly on the task, 

however. As I discussed, sometimes perfect performance on the training set is not the best goal, 

and it is wise to regularize the linear equation to prevent overfitting and improve generalizability 

of the rule produced. While the true β, (0.55, 1, 1.6), is actually perfectly correct in this 

experiment (because the y values were generated using this β), the learner does not know that, 

meaning some form of regularization is still a reasonable choice. If regularized, linear regression 

analysis will produce points different from the true β; the point‘s distance from the true β will 

grow with the magnitude of λ, as less and less preference is given to training set accuracy and 

more to the regularizer term. In the 3D scatter plots, sparse regularizers (e.g. L1) will prefer 

solutions where at least one β weight is 0—their points will tend towards the axes of the graph. 
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Non-sparse regularizers (e.g. L2) shrink β weights, especially larger ones—therefore, their points 

tend towards the origin of the graph. 

 It can be hard to tell by looking at a cloud of participants‘ βs whether any deviation  from 

the true β is towards the axes or origin—these two patterns look very similar for small 

divergences from the true β, and the participant β cloud is highly varied and noisy itself. In order 

to rigorously estimate what regularizer best describes each participant‘s deviation from the true 

β, I used a variation of tuning an elastic net (linear regression using both L1 and L2 regularization; 

see equation 6). I repeatedly performed the elastic net regression analysis using the same training 

set  and y that participants learned with, incrementing λ1 and λ2 slightly until I had grid-

sampled a large number of possible λ settings. However, instead of determining the best model 

based on performance on some tuning set, I looked to see what model was closest to the model 

developed by each participant, thereby finding the best-fitting λ1 and λ2 for each individual 

participant. 

 ―Closest‖ was defined as the (Euclidean) distance between the model‘s β vector 

(generated by the regression analysis), and the β vector I calculated for the given participant 

using the paired trials probe method discussed in Experiment 1 (―Results: Estimating Human β‖). 

Therefore, I were simply looking for the combination of λs that would produce the same (or 

closest possible) βs as what I estimated for that participant. The distance would not be zero, 

however, meaning that participants‘ βs cannot be explained by L1 and L2 regularization alone. 

However, the distances were still quite small (M = 0.76, SD = 0.35), and it‘s uncertain to what 

extent nonzero distance should be attributed to some third cause, or simply noise and 

measurement error. 

 Interestingly, the fitted λs clearly divide participants into two clusters (Figure 5): those 

with λ1 less than 5 and those with λ1 greater than 15. Because λ1 represents the relative  
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Figure 5: Fitted λs 

          a)  Experiment 2            b)  Experiment 3 

 

λ1  (L1 Regularizer) 

Two-dimensional representation of participants’ λs, found through tuning an elastic net, for Experiments 2 and 3. 

Each point represents an individual participant, and is color-coded to indicate the Euclidean distance from the 

model-generated β for those λs to the participant’s actual β. 

 

importance of sparsity (as it is the weight of the L1 regularizer in the expression minimized by 

the regression analysis), I call the clusters the ―non-sparse‖ and ―sparse‖ strategies, respectively. 

In fact, not only is λ1 lower for participants with non-sparse strategies (M = 0.64, SD = 0.90) than 

those with sparse strategies (M = 17.65, SD =1.22) (t = -40.17, p < .001), λ2 is higher for non-

sparse strategists (M = 10.29, SD = 11.79) than sparse ones (M = 2.79, SD = 4.31) (t = 2.25, p = 

.04), further validating the claim that the first cluster is of participants using (relatively) non-

sparse regularization and the second is of those using sparse regularization. Importantly, there 

are no differences in terms of the Euclidean distances between the βs produced by fitting and the 

participants‘ actual βs between the non-sparse (M = 0.77, SD = 0.33) and the sparse strategy 

clusters (M = 0.75, SD = 0.39) (t = 0.13, p > .1).  
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Despite representing different regularization strategies, participants in the non-sparse 

cluster (M = 5.96, SD = 3.73) performed just as well in the testing phase (in terms of SSE) as 

participants in the sparse cluster (M = 6.82, SD = 1.59) (t = -0.79, p > .1). Finally, removing the 

outlier in the non-sparse cluster with λ1 = 0 and λ2 = 49.71 has no effect on any of these findings. 

Discussion 

 The two clusters represent two different potential regularization solutions—one favoring 

the non-sparse (with all-around small β weights) L2 regularization, and the other favoring sparse 

L1 regularization. One reason for the enormous gap in λ1 values compared to the (still significant) 

difference in λ2 values is that a rather high λ1 is needed to produce a solution with two non-zero 

βs, while a λ1 of practically 0 is all that‘s needed to produce a solution with all three βs being 

nonzero. Participants using a non-sparse strategy used all three input features, resulting in three 

non-zero β weights, while those using a sparse strategy were more likely to disregard one of the 

features. Because there was no difference in performance between the two clusters, this suggests 

that the sparse strategies were utilizing the redundant input structure: disregarding the 

independent feature is always detrimental, while if done correctly, only one of the redundant 

features is needed to achieve the same performance as someone who uses all three correctly. 

Since people appear to strongly take one of two approaches to regularizing linear 

systems, the next logical question is whether we can manipulate which approach people will 

take. There could be many ways to try to affect this, from asking participants to consciously 

prefer one strategy, to subtly changing the task to encourage one or the other. Experiment 3 takes 

the latter tactic, introducing noise to the system in hopes of promoting non-sparse strategies. 
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Experiment 3 

 One possible way to manipulate participants‘ λs is to make the inputs noisy. Thus far, all 

the inputs have been noiseless: y is always exactly the weighted sum of the values of the three 

input meters. However, noiseless inputs are not realistic: all real-world measurements are fraught 

with some degree of measurement error, be they due to some sort of measurement device, or the 

senses of the observer themselves. If all the features are noisy, even if they are redundant it is 

beneficial to attend to all of them: since redundant features carry the same underlying 

information, using both is akin to taking repeated measurements and using them to deduce the 

true value obscured by the noise. Therefore, noisy systems would encourage more non-sparse 

regularization (e.g. L2). I hypothesized that by replicating Experiment 2 identically except with 

noisy inputs, I would see a greater preference for L2 regularization in Experiment 3 than I did in 

Experiment 2. 

 

Methods 

Participants.  The participants were 29 undergraduate students (18 females, 11 males) 

enrolled in an introductory psychology course at the University of Wisconsin – Madison. Ages 

ranged from 18 to 24 (M = 19.10, SD = 1.23 years). Participation was voluntary, and participants 

received extra credit for their course for their time. Participants were treated in accordance with 

the APA‘s ―Ethical Principals of Psychologists and Code of Conduct‖ (American Psychological 

Association, 2002). 

Materials.  The program, computers, and questionnaire were the same as those used in 

Experiment 1. Once again, participants were run in batches of up to six (M = 4.07, SD = 1.22 

simultaneous participants). 
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Procedure.  The procedure was same as the one used for Experiments 1 and 2. 

Furthermore, the inputs were identical to those used in Experiment 2, except in the training phase 

random noise was applied to  after y was calculated. Thus, since β is still (0.55, 1, 1.6), the y 

values remained unchanged from Experiment 2, but the x values were slightly different: 

 

 , … (13) 

Here,  is the ―noisy‖ x that is actually displayed on the screen—it is the original x plus a noise 

term (ε). (Notice that the equation for y still uses x, not , is used to calculate y.) A separate noise 

term was randomly generated (uniform in (-0.075, +0.075)) for each x value for each example. 

This relatively small range of noise was selected because it produced the highest degree of 

difference between L1 and L2 regularizations‘ βs, for reasonably small λ values. (For very large λ 

values, L1 and L2 regularization will always produce drastically different solutions, as the 

regression will emphasize the regularization term well over training set accuracy.) Because  

and  have different, independent noise terms applied to them, the strict redundancy 

relationship between  and  is broken; however, ε is relatively small, so they are still highly 

intercorrelated. Noise is not applied in the testing phase, making those inputs identical to 

Experiment 2. 

 

Results 

No effect of participant age, sex, study time, number of participants run simultaneously, 

or which computer participants used on any of the following analyses was found. As before, non-

learners were defined as those who did not achieve an SSE < 12 in the testing phase: 4 
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participants were classified as non-learners and were excluded from the following analyses, 

leaving n = 25. 

Performance.  As in Experiment 1, accuracy over time in the training phase is reported 

using average squared error (Figure 3). Unlike in Experiment 1, only one participant reached 

criterion and finished training early. Performance in the testing phase was measured using the 

SSE for all 23 test trials (M = 5.22, SD = 2.00). 

Estimated Human β.  As in Experiment 2, participants‘ βs were lower than the true β for 

all three β weights (Figure 4). β1 was below the true 0.55 (M = 0.41, SD = 0.28, t = -2.48, p = 

.021), β2 was below the true 1.00 (M = 0.68, SD = 0.27, t = -5.92, p < .001), and β3 was below 

the true 1.60 (M = 0.89, SD = 0.20, t = -17.52, p < .001). Also as with Experiment 2, only 

participants‘ estimated β3 was correlated with testing phase SSE (r = -.73, p < .01), and the 

correlation was again negative—the lower β3 was, the worse that participant performed. 

Fitted λ and Cluster Comparison.  λ1 and λ2 were fitted using the method described in 

Experiment 2 (―Results: Determining the Human Regularizers‖). The Euclidean distance 

between a given participant‘s β and the β produced by their best-fit λs was sufficiently small (M 

= 0.84, SD = 0.34). Once again, participants were sharply divided into non-sparse and sparse 

clusters (Figure 5). Just as in Experiment 2, λ1 lower for participants in the non-sparse cluster (M 

= 0.41, SD = 0.72) than participants in the sparse cluster (M = 16.74, SD =1.36) (t = -39.56, p < 

.001), λ2 is higher in the non-sparse cluster (M = 9.50, SD = 5.57) than in the sparse cluster (M = 

4.33, SD = 5.34) (t = 2.26, p = .03), and there are no differences in the distances between the 

fitted models‘ βs and participants‘ βs between the non-sparse (M = 0.82, SD = 0.27) and the 

sparse clusters (M = 0.89, SD = 0.44) (t = -0.43, p > .1).  
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Curiously, unlike in Experiment 2, participants in the non-sparse cluster (M = 4.57, SD = 

1.97) performed better in testing phase (had lower SSE) than participants in the sparse cluster (M 

= 6.37, SD = 1.53) (t = -2.36, p = .03). (For further discussion, see ―Effect of Noise.‖) 

Effect of Noise.  To establish whether the introduction of noisy input features (x values) 

has the hypothesized effect of promoting non-sparse regularization, I compared the data from 

Experiments 2 and 3. Because these experiments were conducted about two weeks apart, first 

they must be checked for any confounding demographic differences. (Note: all statistics reported 

here are for learners only.) There were no differences between the experiments for participant 

age, sex, number of participants run simultaneously, or which computers participants chose to 

use. Participants were run earlier in the day for Experiment 2 (M = 10:19 am, SD = 4.61 hours) 

than Experiment 3 (M = 11:46 am, SD = 0.59 hours) (t = -1.57, p < .001). However, it is unclear 

whether this would have had any impact on the data, or indicates any averse sampling effects. 

Regarding performance, participants in Experiment 2 actually had performed more 

poorly (had higher SSE) during the testing phase (M = 6.31, SD = 3.04) than participants in 

Experiment 3 (M = 5.22, SD = 2.00) (t = 1.49, p = .03). Interestingly, using the same t test 

method used to compare the positive and negative conditions in Experiment 1, no differences 

were observed between participants‘ βs in the two experiments (β1: t = -0.23, p > 0.1;  β2: t = 

1.56, p > 0.1;  β3: t = -0.35, p > 0.1). This hints that participants did not develop different 

solutions despite the noisy inputs. 

Further comparison between the fitted λs of the two experiments also did not support my 

hypothesis that noisy inputs would promote non-sparse solutions: the ratio of participants that 

fell in the sparse versus non-sparse cluster was the same in Experiment 2 (M = 40%, SD = 50.0% 

are sparse) and Experiment 3 (M = 36%, SD = 49.0%) (t = 0.29, p > .1). There were also no  
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Figure 6: Testing Phase Performance by Noise and Strategy 

   

Comparison of testing phase performance (measured by SSE) between participants who adopted non-sparse 

versus sparse regularization strategies (determined by which λ cluster they fell into), and noiseless versus noisy 

inputs (Experiments 2 and 3 respectively). * denotes a difference with p < .05, and ** denotes a difference with p < 

.01. 

 

differences between participants in the non-sparse cluster in Experiments 2 versus 3 in terms of 

their fitted λ1, λ2, or the distances between the fitted models‘ βs and participants‘ βs (all p > .1). 

The same is true of participants in the sparse cluster of Experiment 2 versus 3 (all p > .1). 

A two-way ANOVA analyzing the effects of noisiness (Experiment 2 or 3) and 

regularization strategy (non-sparse or sparse cluster) on testing phase performance (in terms of 

SSE) revealed only a partial effect of strategy (F = 3.24, p = .08) (all other effects‘ p > .1) 

(Figure 6). Specifically, participants with a non-sparse strategy in a system with noisy inputs 

(Experiment 3) (M = 4.57, SD = 1.97) outperformed participants with a sparse strategy in both 

noisy (Experiment 3) (see ―Fitted λ and Cluster Comparison‖) and noiseless systems 

(Experiment 2) (M = 6.82, SD = 1.59) (t = 3.03, p < .01).  
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Discussion 

 My hypothesis that participants would adjust their regularization strategies to favor non-

sparse solutions in systems with noisy input was not validated. However, because participants 

with non-sparse solutions outperformed those with sparse solutions, and even those with sparse 

solutions in the noiseless version of the experiment (which is impressive, since the noiseless 

version should be easier for participants), it is clear that those who did adopt a non-sparse 

regularization strategy benefited from it. Why, then, did more participants not favor this strategy 

in the noisy experiment? Is it that people are inflexible, and some people will always prefer non-

sparse solutions and others will always prefer sparse ones? This seems unlikely. However, I 

cannot determine from these experiments alone whether people are able to adjust their strategies 

at all, and if so, what would trigger this adjustment. 
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General Discussion 

Summary 

 Little is understood about humans‘ ability to learn linear regression tasks; and even less is 

understood about how the presence of redundant or intercorrelated input features affects their 

learning. What previous work there is suggests that redundant data actually impairs humans‘ 

learning, an unexpected result from a mathematical and computational point of view. One 

possible explanation for this detrimental effect could be that humans regularize their solutions to 

linear systems, perhaps even more so when their training set appears to involve redundancy. In 

the carefully designed training examples of psychological studies, regularization might hurt 

performance with no apparent benefit. Therefore, to better understand how people respond to 

redundancy, I sought to explore how people regularize their solutions to linear systems. 

 Experiment 1 acted as a baseline: I established that participants could learn in our 

paradigm, and that I could estimate their βs using our paired trials probing method. 

Unfortunately, although the true β of (1,1,1) was easy for participants to learn, it is a ―stacking‖ 

solution, meaning all the input meters‘ values are simply summed to find the answer. This seems 

to be a narrow corner case, and invalidates any attempt to discern what regularizers participants 

are using. In Experiments 2 and 3, a true β that was far from any stacking solution was used, and 

I used a tuning method to fit the λs for elastic net regression to each participant individually to 

determine to what extent they were using L1 and L2 regularization. I found that participants fell 

into two groups: non-sparse and sparse regularizers. To test the adaptability of humans, in 

Experiment 3 I introduced noise to the inputs: however, this did not appear to alter participants‘ 

strategies despite those adopting the non-sparse strategy clearly outperforming those with sparse 

strategies. 
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Implications for Psychology and Machine Learning 

 This study revealed that humans do regularize their solutions to linear systems, and 

furthermore, they are able to use both sparse and non-sparse regularization. Interestingly, while 

may use a mixture of the two, they still strongly adopt one strategy or the other, only using the 

opposite regularizer lightly in comparison to their primary regularizer. Unfortunately, it is 

uncertain how stable versus task-related people‘s preference for sparse or non-sparse 

regularization is—they did not appear to adapt their strategy to a noisy situation, despite the fact 

that those who ended up using a non-sparse strategy performed better. 

 I also found evidence that people, at least unconsciously, noticed and even made use of 

the redundancy between two of the input features. For example, in the Experiment 1, the only 

difference between the positive and negative conditions was the ―sign‖ of the redundancy 

relationship (whether the redundant features always had the same sign (were both positive or 

both negative), as in the ―positive‖ condition, or had opposite signs, as in the ―negative‖ 

condition). However, this simple change to the redundancy relationship caused participants in the 

negative condition to learn more slowly in the training phase but then outperform the positive 

condition participants in the testing phase, suggesting that the redundancy structure was affecting 

participants‘ learning and solutions. Furthermore, in Experiment 2, participants who adopted a 

sparse regularization strategy performed equally well in the testing phase compared to those who 

adopted a non-sparse strategy, suggesting that they learned to attend to one of the redundant 

features less, not the independent feature (as paying less attention to the independent one would 

invariably reduce performance.) (On a side note, this is perhaps why only participants‘ estimated 

β weight for the independent feature was correlated with performance.) 
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 These findings have strong, if still ill-understood, implications for both psychology and 

machine learning. That humans regularize their solutions to linear systems at all is a previously 

unverified finding (Schmitt & Dudycha, 1975; Pishkin & Williams, 1984; Hutchinson & 

Gigerenzer, 2005). With regards to psychology, this suggests that humans actively take measures 

while learning to improve the generalizability of their rule, even if it involves sacrificing 

performance during the learning stage itself, something not always considered or discussed when 

investigating human learning. For example, regularization could be used to explain some earlier 

conflicting results, such as how humans perform worse when feature redundancy is present 

(Karelaia & Hogarth, 2008)—it might be that they are carefully regularizing the redundant data, 

only to sacrifice performance during the psychological experiment itself! It may be the case that, 

in fact, redundant inputs do not confuse or impair humans, but simply cause them to respond 

differently and more prudently by regularizing. 

 Similarly, those involved in machine learning should be interested to know that humans 

actually use some of the methods statisticians and machine learning theorists have developed and 

used to avoid overfitting. A question raised but not satisfyingly answered by this study is 

whether humans adapt their regularization strategies to suit the task at hand, something machine 

learning systems usually do not do. Given further research into this question, we might be able to 

develop rules for when what strategies should be used, and how they can be best combined, 

helping machine learning researchers to develop computer learners who are as adaptive and 

dynamic as humans, a continual goal in the field. 
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Potential Issues and Flaws 

 The data generated by this study have several seemingly paradoxical findings. For 

example, while participants clearly divide into two groups for their fitted λs, there were no 

observed differences between the estimated βs for these groups. This indicates a potential flaw in 

either the human β estimation method, or the λ fitting method. Another paradoxical finding is 

that participants‘ estimated βs are not always correlated with their testing phase performance. Of 

course, as was at least the case in Experiments 2 and 3 (where only β3, the independent feature‘s 

β, was correlated with performance), this could be evidence that participants noticed and used the 

redundant relationship between two of the inputs. (See ―Implications for Psychology and 

Machine Learning.‖) Perhaps on a related note, in Experiment 2, sex was a predictor of test SSE, 

but not of their estimated β or fitted λs. Clearly, more investigation needs to be done into the 

paradigm itself, to understand how these measures are interacting, and if they are indeed valid 

measures. 

 

Suggestions for Future Study 

The current work is only the beginning of this line of research. Many additional questions 

have been raised, some of which have already been mentioned. Some are simple, such what 

effect increasing the number of features (both over all and redundant) would have, or if a 

different computer interface or ―game‖ is used. One could also explore using a categorization 

task instead of a continuous-valued judgment task (i.e., ask for discrete (even binary) answers 

instead of a continuous output measure), or using categorical inputs instead of continuous inputs. 

One major line of questioning would be to find out if there is a way to manipulate 

humans‘ λs, to test the extent of their situational adaptability. In addition to simply replicating 
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Experiment 3 with even noisier inputs, one could take a sort of opposite approach and severely 

limit the time participants have to process the inputs, to encourage sparse strategies. For 

example, the inputs could be only briefly flashed on the screen. The timing could be chosen such 

that participants don‘t have enough time to adequately read all of the input meters. While this 

would obviously force them to a more sparse solution, the question is whether they can find the 

optimal sparse solution (the one L1 regularization would settle on.) If there are strictly redundant 

features, the hope would be that participants learn to ignore of these redundant inputs. A 

different approach to testing human adaptability could be to explore how well people can 

consciously control the sparsity versus non-sparsity of their β solutions. This could be as simple 

as explaining these concepts to them beforehand, or involve some sort of subtle variation in the 

description of the task at hand. 

Another possible line of questioning is about the so-called ―third‖ regularizer: instead of 

preferring to have the fewest nonzero β weights (sparse regularization) or the smallest β weights 

(non-sparse), a regularizer which prefers the ―easiest‖ β weights. This might include ―stacking‖ 

solutions that allow people to add up the x values without any scaling (e.g. a β of (1,1,1), (1,1,0), 

(1,0,1), etc.) Other ―easy‖ βs could be those where the xs can be summed and then the whole sum 

scaled, because all the β weights are equal (e.g. β of (2,2,2)). Furthermore, it is unclear whether 

stacking solutions are easy in general, or because of the particular design of the user interface for 

out paradigm. It would be prudent to explore stacking using a different interface. While it would 

be relatively simple to come up with a regularizer term that penalizes β weights that aren‘t 

―easy‖ enough, one would first need to carefully explore what exactly constitutes ―easy.‖ This 

could be done by grid-sampling the three-dimensional β space, to try and find βs that are easier 

for humans to learn than others.  
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Appendix A – Experimenter Protocol 
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Appendix B - Questionnaire 
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