

Computer
Sciences
Department

Verifying File System Properties with Type Inference

Haryadi S. Gunawi
Shweta Krishnan

Technical Report #1695

August 2011

Verifying File System Properties with Type Inference

Haryadi S. Gunawi and Swetha Krishnan
{haryadi, swetha}@cs.wisc.edu

Abstract

The storage stack is not trustworthy due to errors that
arise from a variety of sources: unreliable hardware,
malicious errors and file system bugs. Today, software
errors play a dominant role due to their inherent com-
plexity. In the first part of our project, we look towards
verifying a specific file system property: on-disk pointer
manipulation. We utilize CQUAL, a framework for adding
type qualifiers with type inference support, and apply our
analysis to the Linux ext2 file system. We find that adding
qualifiers serves the valuable purpose of ensuring that
on-disk pointers are accessed and manipulated correctly
by the file system. Thus, we believe that the qualifiers
we introduce would decrease the probability of bugs
being introduced by file system programmers. We also
describe our experience in using CQUAL and discuss its
limitations. Based on our experience with CQUAL, we
come up with a second analysis, a buffer management
verifier, that fits better with the power of CQUAL by
being simpler, yet more widely applicable to different file
systems than the first analysis.

1 Introduction

The storage stack is not trustworthy due to errors that arise
from a variety of sources: unreliable hardware, transport,
firmware, malicious errors and file system bugs. While
traditionally hardware has been seen as the main source
of errors, today, software errors play a more dominant part
due to their inherent complexity. Alongside other ongo-
ing file system bug-finding projects, we intend to verify
two specific file system properties. First, we attempt to
verify that file system manipulates on-disk pointers cor-
rectly. This means that we verify whether the pointers
in the file system actually point to the disk blocks that
they are assumed to point to. Without such verification, a
programmer can introduce on-disk pointer bugs that will
lead to a corrupt and unusable file system in the worst
case. Moreover, on-disk pointer analysis is important for
two reasons: First, even recent commodity file systems
do not sanity-check their on-disk pointers [16, 15], e.g.
the file system does not check if a file’s data block pointer
points to a wrong location. Second, the file system has the

highest responsibility for the disk’s contents. Hence, until
pointer guards have been installed into the file system, it
is necessary to check and prove that the file system moves
on-disk pointers around correctly.

As each file system has a different internal represen-
tation of on-disk structures, we realize that one specifi-
cation can only used by one file system. Hence, such
analysis might be useful as averifier rather than as abug
finding tool. We come up with a second analysis that is
lightweight and reusable across many file systems. In
particular, we attempt to verify a simple rule that relates
to a reliability bug: “After disk read failure, the data in
the buffer should not be used.” We name this analysis
as buffer uptodate analysis. Although this is a simple
rule, recent work by Prabhakaranet al. shows that this
violation still occurs in recent file systems [15]. Unfor-
tunately, their work uses a black-box approach and hence
could not pinpoint the locations of the bugs. We hope that
with source code analysis we shall be able to locate these
bugs.

In this project, we adopt an approach based on type
qualifiers and type-inferencing [6, 10]. In our first anal-
ysis, we use CQUAL to add qualifiers to pointer types
that point to on-disk structures. Simple qualifiers such as
$ibitmap and$bbitmap could be added to the bitmap
block pointers in order to distinguish between an inode
bitmap and a block bitmap respectively. With such qual-
ifiers, we can verify several basic structural properties of
the ext2 file system [2]. Furthermore, with type quali-
fiers, we can distinguish different kinds of on-disk point-
ers besides the ones implied by existing structures. For
instance, ext2 uses theinode structure to describe both
file and directory inodes. Hence, to explicitly differenti-
ate file and directory inodes,$reginode and$dirinode
type qualifiers can be added to the pointer typeinode.

The second analysis, the buffer uptodate analysis, re-
quires flow-sensitivity; a buffer can have different states
(and hence different qualifiers) at different locations in
the program (similar to locking analysis). To apply flow-
sensitive analysis to the buffer uptodate analysis, we could
introduce qualifiers such as$Null and$Uptodate to an-
notate the buffer implying whether the buffer contains in-
valid data or invalid data respectively. With such quali-
fiers, the flow-sensitive buffer uptodate analysis will catch

1

super_block

group_desc

inode_bitmap inode_tableblock_bitmap

inode_number

inode_block
a

Figure 1: Logical Dependencies: The graph above
shows a chain of logical dependencies between various
on-disk structures in ext2.

any erroneous$Null buffer access.

The rest of this paper is structured as follows. We de-
scribe the disk pointer and the buffer uptodate analyses in
Sections 2 and 3 respectively. We discuss future work in
Section 4. Related work is discussed in Section 5. Finally,
we conclude in Section 6.

2 Disk Pointer Analysis

With disk pointer analysis, we aim to capture and verify
semantic properties relating to the ways in which vari-
ous on-disk data and metadata are accessed and manip-
ulated. For example, in the ext2 file system, the pointer
to the group descriptor block must originate from the su-
perblock, and the pointer to the inode bitmap block must
originate from the group descriptor block. We have ana-
lyzed disk pointers for the Second Extended File System
[2] since it is one of the simplest and oldest file systems
implemented in the Linux kernel, and so a good candidate
to start with.

We find that our disk pointer analysis is largely flow-
insensitive (there are few cases where we require flow-
sensitivity, but as illustrated in Section 2.4.2, we find
that they can easily be transformed to be made flow-
insensitive). Of course, given that our analysis is re-
stricted to ext2, we cannot say this with confidence for
other file systems.

It is important to note that this analysis is specific to
a particular file system since the type qualifiers added are
dependent on the metadata representations used by the file
system, and the analysis applied is dependent on the con-
trol flow from one metadata type to another.

2.1 Background on Ext2 Types

The ext2 file system code uses various structure types to
represent data and metadata stored on the disk. As seen
in Figure 1, each structure is derived from one or more
other structures and integers. First, the superblock is read
from the disk, and since the superblock contains infor-
mation such as the number of groups and the number of
group descriptors per block, this structure is required to
obtain the group descriptor block for a particular block
group. Similarly, the group descriptor contains the infor-
mation needed for retrieving the block bitmap, the inode
bitmap and the inode table blocks from the disk. The in-
ode bitmap is in turn used to fetch the inode number of
a file being created. To retrieve the inode block number,
both the inode number and the inode table are required.
Thus, we can easily observe that there is a chain of logical
dependencies between the various on-disk structures, and
if there are violations anywhere in this chain, we could be
manipulating data in incorrect ways. For instance, if one
accidentally uses the block bitmap block’s contents to try
and retrieve an inode number, one would end up with an
erroneous value.

2.1.1 Implicit Types

In ext2, there are two important elements that have
implicit types: block number which is represented as
unsigned long (sector t) and the buffer head struc-
ture with its data field. A block number could assume
typesblock bitmap or inode bitmap and so on. Ext2
uses the generic in-memory data structurebuffer head

to read the contents of a disk block (be it a data or meta-
data block of any sort) into memory. This structure con-
tains achar* b data field which is a pointer to the data
of that block. This data field is cast to various ext2 spe-
cific structures for metadata, so as to extract the necessary
information. Thus, a buffer head could take on implicit
types corresponding to the inode structure, the group de-
scriptor structure and so on.

These implicit types come into play in ways “assumed
to be safe.” For instance, the function used in ext2 to read
any disk block is:

struct buffer_head*
sb_bread (unsigned long block);

A dangerous use of this function could be as follows:

1. struct buffer_head *bh;
2. bh = ext2_read_inode_bitmap(...);

// read an inode_bitmap block by a call
// to sb_bread() within the function.
// bh will now refer to an
// inode_bitmap block

3. ext2_get_group_desc(..., bh);
// within this function, bh->b_data is
// cast to (struct ext2_group_desc *), so

2

unsigned long logic_sb_block

bh−>b_data;

struct buffer_head bh*

struct ext2_super_block *ext2_sb

ext2_sb =

bh = sb_bread (logic_sb_block);

(struct ext2_super_block*)

Figure 2: Logical Connection: The diagram above
shows how three different entities, the block number, the
buffer head pointer and theext2 super block pointer,
are logically connected by the control flow. This connec-
tion can be captured by attaching a type qualifier such as
$superblock.

// it now points to a group descriptor
// block.

Thus, here the inode bitmap block has been “tainted”
with a group descriptor block’s contents. We could
trap this error using CQUAL by adding qualifiers to
tag the buffer head instances with the block type they
represent. For example, we would qualify the buffer
head pointer returned byext2 read inode bitmap()

with $ibitmap, to signify an inode bitmap, and qualify
the buffer head type passed toext2 get group desc()

with $groupdesc to signify a group descriptor. Then
CQUAL would flag an error since the buffer headbh is
used both as an$ibitmap in line 2 and as a$groupdesc
in line 3.

2.1.2 Logical Connections

It is also interesting to observe that in retrieving metadata
from blocks, a series of actions are taken that relate to
the same logical entity. For example, as Figure 2 shows,
the superblock number is passed to a function that reads
the block corresponding to the given block number, and
returns a buffer head pointer. To retrieve metadata infor-
mation from the superblock, the data field of the buffer
head is then cast to a pointer to the appropriate struc-
ture (ext2 super block in this case). Thus, three dif-
ferent entities - block number, buffer head pointer and su-
perblock pointer - are logically connected by the control
flow, and this connection can be well captured by attach-
ing a single type qualifier (say$superblock) to all of
them.

2.2 Implementation

We outline our approaches of adding qualifiers to ensure
correct usage of a single structure that assumes various
types (such as buffer head), and to impose dependency
checks.

•Qualifying implicit types associated with buffer head:
The first naive approach we take is simple, that is, an-
notate every function declaration that receives or uses a
buffer head pointer with the appropriate qualified type ac-
cording to correctness requirements. For example, we add
in our CQUAL prelude file [5], declarations of the form:

static $bbitmap struct buffer_head*
read_block_bitmap(unsigned int block_group);

•Using qualifier subtyping: In our lattice configura-
tion, we define$bbitmap and$ibitmap to be qualifiers
with level=value and sign=eq. We also introduce a new
qualifier$bitmap (level=value, sign=neg) and add qual-
ifier subtyping relationships:$ibitmap ≺ $bitmap and
$bbitmap ≺ $bitmap. This allows us to take into ac-
count functions requiring a bitmap of any type as argu-
ment such asext2 set bit function that sets a bit in a
bitmap:

int ext2_set_bit (int bit, $bitmap void *addr);

•Leveraging qualifier polymorphism: A key observa-
tion is that the block number and buffer head types, even
though used in different places as multiple types, have a
relationship: A function that takes a block number cor-
responding to say, an$ibitmap, must always return a
buffer head pointer that semantically refers to an inode
bitmap ($ibitmap). That is, any qualifierQ on a block
number must also be reflected in the returned buffer head.
This is a clear case for using qualifier polymorphism,
which CQUAL provides. We add annotations of the fol-
lowing form to our prelude file:

$_1 struct buffer_head*
sb_bread ($_1 sector_t block);

This enables the flow of qualifiers from the block
number of a block to the corresponding data. We also
add a polymorphic functiongetBData(bh) to qualify
theb data pointer of astruct buffer head with the
same qualifier as the buffer head pointer passed to it. We
have to do this since we disabledfieldptrflow for the
qualifiers in general, hence preventing qualifiers from
flowing from a structure to all its fields.

•Adding interfaces: To enforce properties, we need to
attach a qualifier to the point of origin of a chain of de-
pendencies, for instance, the block number of the block
bitmap. Initially, we could not get CQUAL to work with

3

type qualifiers added directly within the kernel files. So,
we had to find a workaround such that our qualifier anno-
tations would be limited to just the CQUAL prelude file
and would not need to touch the kernel files. For this, we
introduce interface functions, such as the one below, in
our prelude file:

$bbitmap tagBlkBitmap (sector_t blknum)
{

return ($bbitmap sector_t) blknum;
}

We then instrument the points within the kernel where
an unqualified variable (such asblknum) is being used
directly and replace it with a call to the corresponding in-
terface function that would qualify it.

2.3 Enhancements

We conducted the second phase of the above analysis,
where we made the following improvements.

•Minimizing the number of manual annotations: We
found that the interface functions approach required tak-
ing a close look at the kernel code to find points at which
to insert calls to these functions. To avoid this, we made
a second attempt in trying to add qualifiers directly in the
kernel code, and eventually succeeded in getting CQUAL
to work with in-kernel qualifiers.

There are two things here that are of benefit. First, by
adding qualifiers at variable and structure field declaration
points, and in function declarations within the file sys-
tem code, we could reduce the total manual annotations.
For example, adding the qualifier$bbitmap ahead of
bg block bitmap field of theext2 group desc struc-
ture avoids adding annotations at each place where this
field is being used.

Second, by adding qualifiers ahead of structure types
instead of annotating each instance of the structure, we
again save on the number of annotations. Since CQUAL
does not regard qualifier annotations appropriately when
the qualifier is added directly to the structure type defi-
nition, we instead explicitly typedef each structure type
to a new name, and attach a qualifier to that new name.
Of course, this means that we have to replace the type
of each structure instance declaration with the new name,
but that is fairly automatic and can be done easily
with a find-and-replace. For example, we replace struct
ext2 group desc* with EXT2 GD everywhere, where
EXT2 GD is defined as:

typedef
$groupdesc struct ext2_group_desc*
EXT2_GD;

•Merging derivations from multiple qualifiers: We
find that in certain cases, a single qualified type may

have a dependency on more than one qualified type. This
arises in cases where there is acomputational dependency
within the file system’s manipulation of pointers to disk
blocks. Consider the simplified code snippet below:

struct ext2_inode *ext2_get_inode
(int inum, ..)

{
offset = ((inum - 1) % ...);
iblock = gd->inode_table +

(offset >> BLOCK_SIZE);
struct buffer_head *bh =

sb_bread (iblock);
return

(struct ext2_inode*) bh->b_data;
}

The question here is whether we can use type qualifiers
to verify that the computation ofiblock from two differ-
ent integers is correct. Checking the absolute correctness
of such a computation might be impossible, however, a
cheap way to check partial correctness could be achieved
by using qualifiers and qualifier propagation provided by
CQUAL. The code above shows that in order to obtain an
inode block (viaiblock number), the file system must
know the inode number (inum) and also the starting ad-
dress of the inode table. The inode table pointer can only
be derived by an access to the group descriptor block and
an inode number can be acquired by finding the first free
bit in the inode bitmap. In order to ensure that a pro-
grammer does not erroneously use say a number derived
in some other way in place of the inode number obtained
from the inode bitmap, we introduce qualifiers for such
entities (that is, anything that is derived directly or indi-
rectly from the disk). We also add interface functions, as
shown below, to our prelude file, to capture such compu-
tational dependencies between a qualifier and two other
qualifiers.

$inode sector_t
computeInode ($itable it, $inumber inum);

Note that CQUAL cannot do this automatically since
the addition operation between two different qualified
types would confuse CQUAL as to which qualifier
($itable or $inumber) it should propagate for the l-
value of the assignment, hence creating a conflict of quali-
fiers. Current semantics of arithmetic addition in CQUAL
require that the qualifiers on the operands match. How-
ever, since there are not many places where such compu-
tational dependencies with multiple entities are seen, we
feel that adding manual annotations in such places can still
be considered low overhead.

2.4 Case Studies

To test the effectiveness of our type-qualifiers approach
to file system verification, we ran CQUAL on the anno-
tated kernel ext2 file system code. We set up our own

4

CQUAL lattice file and prelude file prior to this experi-
ment. While we could not uncover any bugs (logical or
computational dependency violations) in the ext2 code,
we come up with the following interesting case studies
where small programming errors or missed code can lead
to violations that our analysis with CQUAL can catch.

2.4.1 Case Study 1

In this first case study, we mix up use of bufferheads in
the same function. Consider the code fragment below:

void ext2_free_blocks(...)
{

struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
...
bitmap_bh = read_block_bitmap(...);
get_group_desc(&bitmap_bh);
// get_group_desc(&bh2);

}

Here, the intent (as observed from the commented
line) is to use two different buffer head pointers for
the block bitmap returned and the argument passed
to get group descriptor(). However, a small
programming error wherein thebitmap bh returned
by read block bitmap() is passed as argument to
get group desc() can lead to incorrect results when
bitmap bh’s referred data is later used. Our framework,
with qualifiers$bbitmap and $groupdesc, can catch
this error, as can be seen in the CQUAL output1 shown
below:

44 WARNING: **sbi->s_group_desc treated as
$bbitmap and $groupdesc

**sbi->s_group_desc: $bbitmap $groupdesc

139 $bbitmap == desc->bg_block_bitmap
91 == cast
91 == *sb_bread_ret@91
91 == *bh

102 == *read_block_bitmap_ret
229 == *read_block_bitmap_ret@229
229 == *bitmap_bh
234 == **bh@234
234 == **bh
69 == **sbi->s_group_desc
44 == $groupdesc

Note that the only annotations added explicitly are to
thebg block bitmap field of the group descriptor struc-
ture, and to the group descriptor structure itself. The rest
of the lines in the output result from automatic qualifier
inference and propagation that CQUAL provides.

1Original output has been modified (file paths removed) for ease of
representation

2.4.2 Case Study 2

In the second case study, we ensure that “parent” inode
must always be a directory inode. Consider the code frag-
ment below:

struct find_group
(..., $dirinode struct inode* parent);

struct inode* ext2_new_inode
($dirinode struct inode* dir, ...);

{
struct inode* inode = new_inode();
if(S_ISDIR(..)) {

inode_dir =
($dirinode struct inode*) inode;

find_group_dir(..., dir);
}
else {

// NOT a directory inode
inode_gen =

($nondirinode struct inode*)inode;
find_group(inode_gen,...);
// find_group(dir,..);

}
}

The functionfind group() finds a block group for
the new inode, implementing ext2’s policy of trying to
place the new inode in the same block group as its parent
directory. However, notice that the directory assumption
of the argument to this function is very loosely captured
in the nameparent given to the argument. We know
that any inode that is treated as a parent of some other in-
ode should be a directory inode. However, this function
(like many other such functions) does not check whether
the inode passed is indeed a directory inode. Rather, this
check happens somewhere deep inside the function call
hierarchy usingS ISDIR() on themode field , and is as-
sumed elsewhere. If there happens to be a call to this
function, as shown above, with a non-directory inode as
argument instead of a directory inode, then we would end
up with allocations very different from that of the policy,
since the regular inode is no parent. Again, CQUAl can
catch this error by having qualifiers such as$dirinode

and$nondirinode at the appropriate places. For exam-
ple, every call toS ISDIR() could be followed with an
annotation attaching$dirinode to that inode instance.

Notice that we actually find the need for a flow-
sensitive analysis here since the same inode instance
would need to be qualified differently depending on the
result ofS ISDIR(). However, in many places, we could
easily transform the flow-sensitive analysis to a flow-
insensitive analysis by using different names for the quali-
fied inode instances on the two paths of the branch. There
are other places where such transformation is not straight-
forward, and we ignore those for our present analysis.
In any case, properties like the one shown above can be
checked even in the absence of flow-sensitivity.

5

2.4.3 Case Study 3

This final case study shows an erroneous computation of
inode block number. Consider the code fragment below:

void ext2_preread_inode(struct inode *inode)
{

EXT2_GD gdp;
...
block_group =

(inode->i_ino - 1) /
INODES_PER_GROUP(inode->i_sb);

gdp = ext2_get_group_desc
(inode->i_sb, block_group, &bh);

offset =
((inode->i_ino - 1) %
INODES_PER_GROUP(inode->i_sb)) *
INODE_SIZE(inode->i_sb);

block = computeInode(
le32_to_cpu(gdp->bg_block_bitmap),
offset >> BLOCK_SIZE_BITS(inode->i_sb));

// block = computeInode(
// le32_to_cpu(gdp->bg_inode_table),
// offset >> BLOCK_SIZE_BITS(inode->i_sb));

}

Here, the computation of inode block number is
done by an addition involving an offset derived from
an inode->i ino (qualified with $inumber in the in-
ode structure), and thebg inode table (qualified with
$itable in the group descriptor structure). To en-
force a correctness check on the computation, we sub-
stitute the direct arithmetic with an interface function
computeInode(), as explained in Section 2.3. With
this, we can catch an erroneous computation like the
one shown above that attempts to compute the inode
block number from the block bitmap rather than from its
bg inode table field.

2.5 Evaluation

We use the latest version (0.991) of CQUAL for our disk
pointer analysis. We run our analysis on the ext2 files of
the Linux kernel version 2.6.7. We also include in this di-
rectory the ext2-relevant header files and .c files such as
buffer.c that are present elsewhere in the kernel directory
structure. Table 1 shows the qualifiers we add to distin-
guish different entities (that live on the disk) in the ext2
file system. We add a total of 14 qualifiers. Notice that a
few qualifiers like$error and$bitmap do not actually
correspond directly to entities that live on the disk, but
are used to qualify the error number field and to enforce
subtyping relationships respectively. We add these quali-
fiers to make our analysis more complete. The subtyping
relationships introduced are as follows:

Qualifier Sign
$superblock eq
$groupdesc eq
$bbitmap eq
$ibitmap eq
$bitmap neg
$itable eq
$inumber eq
$indirect eq
$dirinode eq
$nondirinode neg
$reginode eq
$linkinode eq
$inode neg
$error eq

Table 1:Type qualifiers: The table shows the type quali-
fiers added to check ext2.

$bbitmap < $bitmap
$ibitmap < $bitmap
$dirinode < $inode
$reginode < $inode
$linkinode < $inode
$nondirinode < $inode
$reginode < $nondirinode
$linkinode < $nondirinode

We add a total of 32 qualifier annotations in the ext2
code. We also make changes at a total of 15 places in
the code to introduce calls to interface functions such as
getBData(). Given that ext2 has around 7000+ lines of
code, the number of changes we introduce is trivial.

The total number of files in ext2 that we touch is 12
(including the extra files such as header files). Since our
focus was not on verification of special features, we do
not touch certain files (such as acl.c and xattrsecurity.c)
dealing with permissions and security in the ext2 code.

2.6 Limitations of CQUAL

In the course of our analysis using CQUAL (version
0.991), we have come across several limitations in
CQUAL’s current implementation, and have also found
work arounds for some of them.

•No polymorphism for structure fields: CQUAL does
not support polymorphism when dealing with fields of
structures. For example, the following is not supported:

$_1 struct A {
$_1 int a;
char b;

};

6

Such support would be have useful for us with respect
to the structurebuffer head and itsb data field, since
this field should be qualified depending on the qualifier
attached to the structure instance. We work around this
by introducing thegetBData() interface function as
explained in Section 2.2.

•No support for variable properties for the same
qualifier with respect to different structures: CQUAL
allows us to specify “fieldptrflow” for each qualifier
introduced, which refers to the direction in which the
qualifier flows between pointers to aggregates (structures
and unions) and pointers to their fields. However, there
is no way to specify a different “fieldptrflow” direction
for the same qualifier with respect to different structures.
For example, qualifier$q should propagate fromstruct
buffer head to itsb data field but the same qualifier$q
should not propagate fromstruct ext2 group desc

to its bg inode bitmap or bg block bitmap field. We
work around this by disabling “fieldptrflow” and instead
qualifying structure fields separately or introducing
interface functions for qualifier propagation as the case
may be.

•Definition of polymorphic function is ignored:
CQUAL ignores definition of polymorphic functions.
Even though commenting certain lines of code causes
CQUAL to analyze the body of the function, but calls
to that function still go to the polymorphic declaration.
As a result, though we can catch a type-qualifier error
internal to the function, we cannot catch one that requires
analyzing the function and connecting those results to the
results at a call-site.

•False positives due to qualifier semantics in arith-
metic operations: Qualifiers flow from one operand to
the other in case of arithmetic operations, causing false
positives in some cases. For example, the current seman-
tics for arithmetic “+” in CQUAL require that the quali-
fiers on the operands match. Hence, the following code
fragement causes CQUAL to complain with an error“in-
compatible operands of +,” since the variablec gets two
qualifiers$q t1 and$q t2 that flow to it through the ad-
dition. But as we can see, there is no real incorrect use
of qualified types here; this is a false alarm. The creators
of CQUAL suggest that in future, the semantics of arith-
metic operations can alternately require the qualifiers on
the operands to lower-bound the qualifier on the result.

$q_t1 int a;
$q_t2 int b;
int c;
int z;
int v;
z = a + c;
v = b + c;

3 Buffer Uptodate Analysis

Since each file system has its own internal representation
of on-disk structures, our first analysis described in the
previous section is not applicable to other file systems be-
sides ext2 and ext3. Hence, such analysis might be use-
ful as averifier rather than abug findingtool. To under-
stand how CQUAL can be utilized as a bug finding tool we
study how CQUAL has been used in previous work. Ta-
ble 2 shows the code coverage and number of bugs found
in three analyses that uses CQUAL. The two take-away
points from Table 2 are: all analyses are lightweight and
the corresponding rules are reusable across many source
codes. For example, in the user/kernel pointer analysis,
the rule that programmers must transform a user pointer to
a kernel pointer appropriately can be applied to any part
of the kernel code. Also logically, having a large code
base as the target code gives a higher probability in find-
ing bugs.

In the file system world, one analysis that is reusable
across many file systems is an analysis that relates to
buffer management. Almost all file systems use a buffer
cache as the mechanism to store file system data in the
memory and thus must use the buffer head abstraction.
This provides the ground for our second analysis that we
namebuffer management verifier. The other property of
the buffer head besides being used by many file systems
is that the buffer head contains a lot of states representing
the current status of the buffer as depicted in Figure 3.

Having a lot of states implies that there are many rules
that can be checked upon buffer usage. For example, the
traditional lock/unlock analysis can also be applied here;
to find a reliability bug, we could enforce a rule such as
“a dirty buffer should not be released” because it should
be submitted to the disk first, otherwise the file system
could reach an inconsistent state; to find a performance
bug, we could also catch redundant operations such as an
unnecessary disk read of an uptodate buffer. Although
it is possible to impose such rules by deploying runtime
checks throughout the kernel code, such deployment is
not a common practice as it could lead to excessive check-
ing and performance degradation [13]. Instead, when an
operation is reached, a corresponding state is usually as-
sumed to be true. For example, when accessing the data
field of the buffer, it is assumed that the buffer is indeed
uptodate. Thus, type qualifiers might be an appropriate
approach to unearth and assert the assumed states.

3.1 Buffer Access Rule

For this project, we attempt to verify a simple rule that
relates to a reliability bug:After a disk read failure, the
data in the buffer should not be used. Although this is a
simple rule, recent work by Prabhakaranet al.shows that

7

Conf. Analyses Target Bugs
PLDI’02 Locking Analysis [7] 892 files 11
SEC’01 Format String Vulnerabilities [17] 10 programs (20 KLOC/prog) 2
SEC’01 User/Kernel Pointer Bugs [10] Whole kernel 11

Table 2:CQUAL as a Bug Finding Tool: The table shows how CQUAL has been used as a bug finding tool. The
analyses shown in the second column are generally lightweight and applicable to large code base.

struct buffer_head
{

unsigned long b_state // buffer state bitmap
atomic_t b_count // users using this block
u32 b_size // block size (usually 4KB)
sector_t b_blocknr // disk block number
char* b_data // pointer to data block
...

}

enum bh_state_bits
{

BH_Uptodate, // Contains valid data
BH_Dirty, // Is dirty
BH_Lock, // Is locked
...

}

Figure 3:Buffer Head Structure and Buffer States: The code above shows important fields of the buffer head and
bitmaps that represent the state of the buffer (there are 14 state bits in total). Buffer head structure is the abstraction
that will hold a disk block. For our analysis, we only trackb state andb data fields of the buffer head and the
BH Uptodate state bit.

this violation still occurs in recent file systems [15]. In
their work, they construct approximately 50 test cases en-
compassing different block types and POSIX APIs, and
run test cases to three different file systems in Linux 2.6.
They find that there are two cases where disk read failure
is ignored, one in ReiserFS and one in IBM JFS. Unfor-
tunately, their work uses a black-box approach and hence
could not pinpoint the locations of the bugs. We hope that
with source code analysis we can locate these bugs.

In order to verify such a property, we need to observe
the buffer uptodate bit in the buffer state field of the buffer
head (See Figure 3). If the uptodate bit is set, it means
the data field of the buffer head points to a location that
contains avalid data, otherwise it points to an invalid
data. Note that this is not a null/non-null pointer analy-
sis; in both cases, uptodate and not uptodate, the buffer
data pointer points to an already allocated region of mem-
ory. However, the data in the region could only be valid
if the uptodate bit is asserted, thus the need to check the
uptodate flag in correspondence with buffer data usage.

Figure 4 shows an example of a function that performs
disk read (line 15) and correctly checks the buffer upto-

date flag (line 18) before using the data field of the buffer
(line 26). The functionread inode in particular reads an
inode buffer from the disk and casts the buffer data to an
inode structure. Meanwhile, please ignore the instruction
that is marked as “CQUAL instr”; these instructions will
be described in the next section. The check on the buffer
uptodate bit of the buffer state is done through a wrap-
per functionbuffer uptodate. Since the buffer upto-
date flag is only set and cleared by the disk driver, buffer
uptodate check must be performed every time after a syn-
chronous disk read. The file system should not make any
assumption that the read succeeds.

Generally, if the buffer is not uptodate, control flows to
a failure handling block, but if the buffer is uptodate the
data field is allowed to be accessed. For example, the code
segment in Figure 4 flows to thefail: block which sets
the inode to NULL if the buffer is not uptodate. But if the
read succeeds, the buffer can be accessed and cast to an
inode structure.

8

13 void read_inode (struct inode* inode, struct buffer_head *bh)
14 {
15 submit_bh(bh); // Submit a disk read
16 change_type (*bh, $Null struct buffer_head); // CQUAL instr
17
18 if (!buffer_uptodate(bh)) { // is buffer uptodate?
19 goto fail; // if not, goto fail
20 }
21 else {
22 change_type (*bh, $Uptodate struct buffer_head); // CQUAL instr
23 }
24
25 assert_type(*bh, $Uptodate struct buffer_head); // CQUAL instr
26 inode = (struct inode*) bh->b_data; // read data and cast
27 return; // to inode struct
28
29 fail:
30 inode = NULL; // if fail, set inode
31 } // to NULL

Figure 4: An Example of Disk Read Operation. The functionread inode illustrates an example of how disk
read is performed. The functionread inode accepts a buffer headbh whose data field (b data) has been allocated,
and then it primarily performs three things: submits a disk read (line 15), checks if the disk read succeeds or fails
by checking the buffer uptodate bit of the buffer state field (line 18), and casts the data field of the buffer to an inode
structure if the disk read succeeds (line 26). All instructions that are marked with “CQUAL instr” are the CQUAL
instructions that are added automatically in order to run CQUAL flow-sensitive analysis on the code. In particular,
change type changes the qualifier of the buffer head andassert type ensures that the buffer head has the same
given qualifier.

$Top

$Null $Uptodate

Figure 5:Lattice for Buffer Uptodate Analysis. We in-
troduce three qualifiers$Null, $Uptodate, and$Top in
order to perform flow-sensitive buffer uptodate analysis.

3.2 Qualifiers

To apply a flow-sensitive analysis to the buffer uptodate
analysis, we introduce 3 qualifiers to annotate the buffer
head as depicted in Figure 5:$Null, $Uptodate, and
$Top. A $Null qualifier implies that the buffer has not
been verified uptodate hence could contain invalid data.
On the other hand, an$Uptodate data is valid to be used.

The $Top qualifier, and the subtyping$Null<$Top
and$Uptodate<$Top, are needed because at every join
point in the program (e.g.fail:), CQUAL joins quali-
fiers together. In particular, in one predecessor tofail:,
*bh has qualifier$Null, and in the other predecessor,

*bh has qualifier$Uptodate. Since CQUAL does not
know which path was taken to reach that point, it decides
that at fail:, *bh has qualifier$Null| $Uptodate,
which is not allowed in the partial order in the absence
of $Top. Thus, adding the$Top qualifier would allow
CQUAL to use the qualifier$Top at the join point.

Each time after a disk read is performed, we add a
change type($Null) CQUAL instruction that changes
the type of the buffer to$Null (line 16 of Figure 4). Sub-
sequently, we have the buffer uptodate check where the
correspondingif block describes what should happen if
the buffer is not uptodate. The idea here is that we need to
introduce anelse block whose body contains a CQUAL
instruction that changes the buffer type to$Uptodate
(line 21-23). Finally, before any uses of the buffer data
field we invoke theassert type CQUAL instruction to
assert that the data buffer is indeed valid (line 25).

The flow-sensitive buffer analysis will catch any er-
roneous$Null buffer access. For example, imagine
if the goto fail; in line 19 is mistakenly removed.
CQUAL will flag an error, with output as below since
there is a flow fromchange type($Null) at line 16 to
assert type($Uptodate) at line 25.

CQUAL error output:
16 incompatible types in change_type

9

*bh@16: $Uptodate
16 $Null <= __change
16 <= *bh@16
18 <= *bh
18 <= *bh
25 <= assert
25 <= $Uptodate

3.3 Limitations

Unfortunately, unlike the flow-insensitive disk pointer
analysis described in earlier section, the flow-sensitive
buffer analysis cannot be directly applied to the kernel
code, mostly due to the limitations of the flow-sensitive
implementation of CQUAL, which we briefly describe
here. More description on these limitations can be found
in the CQUAL paper and manuals [4, 5, 7]. We are not
sure whether the features below are theoretically impossi-
ble with a flow-sensitive analysis or they are just not yet
implemented.

First, CQUAL’s flow-sensitive implementation does not
have field-sensitivity; all instances of a structure share the
same field qualifiers. For example, givenstruct foo {

struct buffer head a; } x, y;, x.a andy.a will
share qualifiers, which is a property that is not desirable
for the kind of analysis we do. Second, polymorphism
is not supported; as described by Fosteret al., analy-
sis without context-sensitivity will not be accurate due to
excessive false positives [10]. Third, there is no “cast
preserve”; in our buffer analysis, cast preserve is needed
because buffers are often stored in generic lists, where
buffer head is casted tolist head. In summary, with-
out the features above, running flow-sensitive CQUAL di-
rectly on the kernel gives way too many errors (hundreds)
that are impossible to analyze. In order to continue with
the analysis, this limitation only leaves us with an option
to reduce the kernel code base.

3.4 Code Reducer in CIL

We write a program using CIL [14] to reduce the kernel
code base into a much smaller code base that only cov-
ers functions and instructions related to buffer manipula-
tion. The program consists of approximately 600 lines of
code. Besides reducing the code, the program will also
automatically insert qualifier annotations as described in
Section 3.2, including adding the “else” block to change
the qualifier to$Uptodate. This automated process is
actually a big advantage of the code reducer. In addition,
control flow such as while, if, etc. must be preserved cor-
rectly in order to have the same flow as in the original
code.

To significantly remove unrelated code, we only pre-
serve functions and instructions that relate to buffer head.

Moreover, since doing that still gives many false posi-
tives, we specifically only preserve functions that perform
disk read and access the buffer data. One slight problem
here is that buffer heads are stored within other structures,
and further these structures are also nested in others (e.g.
super block->super block info->buffer head).
Hence, functions and instructions that touch those related
structures must also be preserved. Although the process
of finding those related structures can be automated,
right now we manually specify them. Furthermore, due
to lack of support for polymorphism, we must remove
many insignificant calls that are unrelated to the analy-
sis. For example, functions such asbrelease() and
lock buffer(), that also manipulate the buffer, do not
affect our buffer uptodate analysis in any way and hence
can be omitted.

3.5 Results

We targeted three file systems for our analysis: ext2,
ext3, and ReiserFS which consist of approximately 300
KLOCs. We have not analyzed IBM JFS because
IBM JFS uses another buffer abstraction,struct bio,
instead of the generic buffer head interfacestruct
buffer head. We believe it is straightforward to extend
our analysis to include thebio interface. The CIL output
consists of approximately 6 KLOCs, which is only 2%
of the original code base. We know from previous find-
ings that ReiserFS and IBM JFS each has one bug of non-
uptodate buffer access. Yet, with our current approach, we
still could not find the bugs, which we believe is because
of the very low code coverage of the analyzed code.

Nevertheless, since we want to test whether our analy-
sis is useful or not, we inject bugs into the source code and
check whether the bug is detected as expected or not. In
fault-injection experiments, the first question that comes
up is where to inject the bugs. We write another program
with CIL to help pinpoint interesting places to inject the
bugs. We define and locate three types of interesting func-
tions where we inject the bugs:R-A is a function that per-
forms disk read (callssubmit bh and accesses the data
buffer within the same function);R-FA is a function that
performs disk read and then calls another function that
accesses the buffer;FR-A is a function that calls another
function to perform the disk read, and then accesses the
buffer.

In order to introduce bugs that are realistic, we
define our bug as removal of one important line.
This line usually contains a statement that defines
the control flow of the program such as thegoto
fail; statement in line 19 of Figure 4. So far,
we have only analyzedR-A type of functions. We
find three related functions (ext3 get inode loc,
journal read transaction, and search by key)

10

and introduce the bugs in these three functions. All the
injected bugs are detected as expected.

4 Future Work

We realize that our buffer uptodate analysis is far from
complete, largely due to the low coverage of the reduced
kernel code, which is again due to the limitations of the
flow-sensitive CQUAL. However, we feel that even with
low code coverage, we still could come up with inter-
esting case studies where we could inject our own bugs,
hence suggesting that this might be a good path to pro-
ceed along. We feel that we have little hope in having a
fully supported flow-sensitive CQUAL in the near future.
Hence, this leaves us with couple of options described be-
low.

From our buffer uptodate analysis, we learn that not
many existing tools work perfectly on the Linux kernel
due to its massive size. Hence, we have constructed a two
phase analysis. The first one is about reducing the code
base. Currently, we write our own code reducer using
CIL. We plan to study other tools that have similar func-
tionality, such as the Chen’s MOPS infrastructure [3]. As
mentioned in Section 3, there are many rules that can be
checked within the buffer management world. Therefore,
an infrastructure that produces much smaller code whose
contents are only relevant with buffer management will be
very useful as many buffer analyses can be performed on
top of it.

In the second phase, which is the analysis itself, we
have experienced that although the flow-sensitive CQUAL
is theoretically appropriate to our analysis, it does not
have many features that are present in the flow-insensitive
CQUAL. Hence, we need to investigate other tools that
are appropriate and fully supported for this kind of anal-
ysis. One example might be the GrammaTech’s CodeS-
onar [8].

For the on-disk pointer analysis, we plan to conduct
verification of further file system correctness properties
such as “no hard links to a directory inode”. We also in-
tend to explore other interesting buffer management anal-
yses, such as for ones to detect performance hitches. We
would also need to expand our analyses to more file sys-
tems in order to comprehensively demonstrate the effec-
tiveness of such analyses.

5 Related Work

Being the primary guardian of the disk contents, verify-
ing file system properties can be considered a good re-
search path. As far as we know, after two decades since
the first “intelligible” file system was published [12], not
many formal file system verifiers exist until today. Some

file system specifications have been formally introduced
in some previous work [1, 9]. Recently, Joshi and Holz-
mann realized that testing the file system is not enough,
hence they took a “mini” challenge to a formal specifica-
tion for a file system and verify it [11]. They intend to
solve the challenge within three years.

The framework for adding type qualifiers to a language,
which serves as a means to define polymorphic types
was proposed by Fosteret al. in [6]. In subsequent
work, Johnsonet al.use type qualifiers to find user/kernel
pointer bugs [10]. In our project, we take the same ap-
proach but for solving file system specific problems. An-
other tool that might be useful is Sparse, which is a static
type-checking program written by Linus Torvalds specifi-
cally for the Linux kernel [19]. However, CQUAL seems
to be more powerful than Sparse.

Our motivation to analyze file system code stems from
the work of Yanget al. [20] and Bairavasundaramet
al. [16]. Yang et al. use model checking to show that
the file system code is buggy and find serious errors in
all the file systems explored. Bairavasundaramet al.em-
phasize how on-disk pointers form a critical piece of the
file system code that is likely to fail under erroneous con-
ditions. Surprisingly, they find that Windows NTFS, one
of the most widely used file systems, does not verify on-
disk pointers thoroughly before using them, causing the
system to crash and rendering the file system unusable.

A recent approach to ensuring safe accesses to disk
blocks through pointers is described in the ACCESS pro-
totype built over Type-Safe Disks [18], which is intended
to be implemented on disk processors. TSD only dis-
tinguishes between normal data blocks that do not have
any outgoing pointers and reference blocks (such as in-
ode blocks) that have incoming and outgoing pointers.
Thus, the only access constraints that TSD can enforce
are:“a block cannot be accessed until a valid reference
block pointing to it is accessed.” and and “No pointer cre-
ations/deletions can be made to root blocks.” The two ma-
jor differences between TSD and our disk pointer analysis
are: First, our approach is more lightweight (with type in-
ference support) and requires less changes to existing sys-
tems; with TSD, existing file systems must be modified
in order to support new TSD APIs. Second, TSD ensures
that the final product (the collection of on-disk pointers)
is always correct, but it does not solve the problem of file
system bugginess; we take into account the various ways
in which the file system uses on-disk pointers.

6 Conclusions

We have shown that checking type qualifiers with auto-
matic type inference is a powerful means of enforcing
file system correctness properties. Our on-disk pointer

11

analysis with qualifier annotations is a useful and simple
way for kernel programmers to trap the errors they might
make while modifying the file system. With the bare min-
imal overhead of a just few annotations, identifying disk-
pointer mismatches in the code with a simple tool can be
some relief for coding in the complex kernel domain. Our
buffer management verifier which performs flow-sensitive
analysis using qualifiers, can be used to prevent reliability
bugs in the file system code. Since qualifiers are statically
checked, our analysis does not impact the performance of
a file system in action. Nevertheless, our analyses are not
complete. We hope that with further extension and im-
provement of our analyses, we shall be able to uncover
known as well as unknown bugs in the file systems of to-
day.

Acknowledgments

We would like to thank Ben Liblit for advising this
project. We also extend particular thanks to Jeff Foster
and Rob Johnson for answering our questions promptly.

References
[1] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying

a file system implementation. InProceedings of the 6th
International Conference on Formal Engineering Methods
(ICFEM ’04), Seattle, Washington, November 2004.

[2] R. Card, T. Ts’o, and S. Tweedie. Design and Implementa-
tion of the Second Extended Filesystem. In Proceedings of
the First Dutch International Symposium on Linux, 1994.

[3] H. Chen and D. Wagner. MOPS: an infrastructure for ex-
amining security properties of software. InProceedings
of the 9th ACM Conference on Computer and Communi-
cations Security (CCS ’02), Washington, DC, November
2002.

[4] J. S. Foster. “CQUAL User’s Guide Version 0.98”, Feb.
2004.

[5] J. S. Foster. “CQUAL User’s Guide Version 0.991”, Feb.
2004.

[6] J. S. Foster, M. Fahndrich, and A. Aiken. A Theory of
Type Qualifiers. InProceedings of the 1999 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI ’99), Atlanta, Georgia, May 1999.

[7] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive
Type Qualifiers. InProceedings of the 2002 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI ’02), Berlin, Germany, June 2002.

[8] GrammaTech. “CodeSonar”. www.grammatech.com.

[9] M. Heisel. Specification of the Unix file system: A com-
parative case study. In4th International Conference on
Algebraic Methodology and Software Technology (AMAST
’95), Montreal, Canada, July 1995.

[10] R. Johnson and D. Wagner. Finding User/Kernel Pointer
Bugs With Type Inference. InProceedings of the 13th
USENIX Security Symposium (Sec ’04), San Diego, Cal-
ifornia, August 2004.

[11] R. Joshi and G. J. Holzmann. A Mini Challange: Build
a Verifiable Filesystem. InWorkshop on Verified Soft-
ware: Theories, Tools, Experiments (VSTTE ’05), Zurich,
Switzerland, October 2005.

[12] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A Fast File System for UNIX.ACM Transactions on Com-
puter Systems, 2(3):181–197, August 1984.

[13] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-Safe Retrofitting of Legacy
Software.ACM Transactions on Programming Languages
and Systems, 27(3), May 2005.

[14] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
An infrastructure for c program analysis and transforma-
tion. In International Conference on Compiler Construc-
tion (CC ’02), pages 213–228, April 2002.

[15] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. IRON File Systems. InProceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP
’05), pages 206–220, Brighton, United Kingdom, October
2005.

[16] M. Rungta, L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Limiting Trust in the Storage
Stack. InThe 2nd International Workshop on Storage Se-
curity and Survivability (StorageSS ’06), Alexandria, Vir-
ginia, November 2006.

[17] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detect-
ing Format-String Vulnerabilities with Type Qualifiers. In
Proceedings of the 10th USENIX Security Symposium (Sec
’01), Washington, D.C, August 2001.

[18] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-Safe
Disks. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), Seattle,
Washington, November 2006.

[19] L. Torvalds. “Sparse”.
tree.celinuxforum.org/pubwiki/moin.cgi/Sparse.

[20] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Us-
ing Model Checking to Find Serious File System Errors.
In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04), San Fran-
cisco, California, December 2004.

12

	TECHCOVER.NEW1695
	1695.pdf

