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Abstract
Traditionally, reference monitors have been used both to specify
a policy of secure behaviors of an application, and to ensure that
an application satisfies its specification. However, for recently pro-
posed privilege-aware systems, applications satisfy a policy defined
over a set of security-sensitive events by invoking explicitly a sep-
arate set of primitive operations provided by the system. To date, a
programmer who writes an application for such a system both de-
fines and implements a policy using the low-level primitives. While
the programmer may have a high-level policy in mind, it is difficult
for him to ensure that the application calls the primitives in such a
way that it satisfies the policy. It is also difficult for him to ensure
that he does not call the primitives in such a way that it cripples the
program’s original functionality.

In this paper, we formalize the problem of writing programs for
privilege-aware systems, and make significant steps toward solving
the problem, using an automata-theoretic approach. First, we dis-
tinguish between the high-level policies supported by a privilege-
aware system and the low-level primitives provided to enforce poli-
cies. Second, we define the policy-weaving problem, which is to
take as input (1) a declarative description of a privilege-aware sys-
tem, (2) a program that makes no use of the primitives provided by
the system, and (3) a high-level policy that describes the program’s
security and functionality requirements, and produce as output a
program that uses the primitives of the privilege-aware system to
satisfy the high-level policy. We reduce important subclasses of the
weaving problem to finding strategies to parity games. Finally, we
formalize the Capsicum capability system, demonstrating that the
problem of writing secure programs for a practical privilege-aware
system can be described as a policy-weaving problem.

1. Introduction
Developing practical programs to run securely on traditional oper-
ating systems is currently a nearly impossible task. In part, this is
because traditional systems only weakly and implicitly associate
a program module (e.g., a process) with the privileges that the
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module has for interacting with other objects. However, for many
security-critical practical applications, the programmer must rea-
son about the privileges of the modules that make up the applica-
tion, as well as the modules with which the application interacts.
Moreover, not all modules may be trusted to behave securely. An
example of such an application is a server that receives requests
from clients, and then services each request by interacting with a
module that is either large and complicated—and thus is difficult to
verify—or is loaded dynamically. Another example is a pipeline of
applications, run with the privilege of a trusted user, that contains
a commonplace, but complex and vulnerable, application. Well-
tested and heavily used but complex programs, such as compres-
sion programs like gzip, still often have errors that may be ex-
ploited by an attacker to control a system [32]. Furthermore, many
complex programs, such as tcpdump [31] or WUFTPD [9], contain
large amounts of unverified code, but also contain small, trusted
modules that must execute with high privilege to interact with, e.g.,
the file system or network services. Unfortunately, when such pro-
grams execute on traditional OS platforms, the untrusted modules
often must be allowed to execute with the same high privileges re-
quired for the trusted modules.

To resolve this problem, the operating-systems community has
developed a variety of privilege-aware operating systems that pro-
vide primitive operations that an application can invoke to manage
the privileges granted to its modules [15, 21, 32, 33]. Such systems
allow applications to satisfy security properties that would be diffi-
cult to satisfy on traditional OS platforms. The notion of privilege,
and the mechanisms used to define privileges, differ from system to
system. However, all privilege-aware systems place the burden on
application developers to write their programs so that they correctly
uses the primitives of the system to ensure secure behavior.

While privilege-aware systems allow programmers to write
practical programs that satisfy strong security properties, such sys-
tems also present new challenges to the programmer. For exam-
ple, consider the tcpdump program, a simplified version of which
is presented as pseudocode in Fig. 1, along with its control-flow
graph. For now, ignore the underlined code in Fig. 1. Tcpdump
takes as input a pattern that describes network packets and an input
device, and prints all packets read from the input device that match
the pattern. Tcpdump performs its task by compiling the packet
pattern into a Berkeley Packet Filter (BPF) [25], configuring the
input device, and iteratively reading packets from the input device,
printing each one that matches the BPF ([32]).

Historically, tcpdump has suffered from multiple security vul-
nerabilities because its module for matching packets against the
BPF is complex. An input crafted maliciously by an attacker could
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tcpdump() {
1: pat = compile_bpf();
2: setup_bpf_dev(dev);
3: limit_fd(dev, { RD });
4: while(*) {
5: enter_cap_mode();
6: resolve_dns();
7: match_pattern(dev, pat);

}
}

1: cbpf / ε 

7: match / ε

6: dns / ε

4: iter / cm

exit

2: sbpf /
lim(dev, RD)

Figure 1. tcpdump instrumented to enforce a policy when run
on Capsicum, given both as a pseudocode and as a transducer. In
the pseudocode, the underlined statements are calls to Capsicum
primitives. The structure of the transducer is based on the CFG of
the original program. In particular, if the symbols to the right of
each “/” are ignored, then the resulting automaton is the CFG.

compromise the packet-matching module, causing it to execute ar-
bitrary code on behalf of the attacker, e.g., via a buffer-overflow
attack [27]. However, tcpdump can be modified to run securely,
without trusting its packet-matching module, by rewriting it to run
on the Capsicum privilege-aware system [32].

For the discussion in this section, Capsicum can be thought
of as a system that maintains, for each file descriptor opened by
each process, the set of rights (e.g., “read,” “write,” “stat”) that
describe how the process may access each descriptor. Capsicum
allows each process to call two primitive operations, which allow
each process to manage its privileges: (1) for descriptor desc and
set of rights R, the process may limit its rights for desc to R by
calling limit fd(desc,R); (2) the process may enter capability
mode, after which it may no longer open descriptors to any other
system resources, by calling enter cap mode().

The Capsicum developers implemented a secure version of
tcpdump for Capsicum by instrumenting tcpdump with the calls
to primitives underlined in Fig. 1. After the instrumented tcpdump
configures the input device, it limits itself to only be able to read
from the input device by calling limit fd (line 3), and before
tcpdump executes its vulnerable packet-matching code, it disal-
lows itself from opening descriptors to any new resources by call-
ing enter cap mode (line 5).

While the resulting version of tcpdump instrumented for Cap-
sicum is secure, the Capsicum developers later found, through test-
ing, that the version no longer provided some of the core func-
tionality of the original tcpdump. In particular, tcpdump invokes
the libc DNS resolver, and the DNS resolver requires access to
the file system to function correctly. Even though the resolver ac-
cesses the file system, it does not violate a developer’s intuitive,
high-level notion of security, even if tcpdump is compromised and
the attacker can choose how to call the resolver. However, tcpdump
instrumented for Capsicum could, in some safe executions, cause
the resolver to fail by invoking enter cap mode before calling the
resolver. Moreover, tcpdump could not be otherwise instrumented
to call enter cap mode under different conditions: for each instru-
mentation of tcpdump, there is an execution of tcpdump that either
calls enter cap mode before calling the resolver, or does not call
enter cap mode before matching packets, which is insecure.

To resolve the tension between ensuring security during match-
ing packets and preserving the functionality of the DNS resolver,
the Capsicum developers leveraged the fact that Capsicum main-
tains a separate set of rights for each process that it hosts. In par-
ticular, the developers partitioned tcpdump to execute as two pro-
cesses: the main process executes most of the tcpdump code, but
when the main process needs to call the DNS resolver, it instead ex-

ecutes a remote-procedure call (RPC) to a separate process, which
executes the resolver code. Even if the main tcpdump process calls
the DNS resolver after calling enter cap mode, the resolver ex-
ecutes with the privilege to open descriptors for arbitrary files in
the file system, and thus its functionality is preserved. After the de-
velopers partitioned tcpdump and instrumented it in this way, they
found no more flaws in the instrumentation through testing, and
thus tentatively determined that the new version of tcpdump was
correct.

The final version of tcpdump for Capsicum seems to satisfy
significantly stronger security properties than tcpdump for a tra-
ditional system. However, the Capsicum developer’s experience
rewriting tcpdump for Capsicum illustrates several fundamental
problems that currently arise when writing a program for Cap-
sicum, or other privilege-aware systems, such as Decentralized In-
formation Flow Control (DIFC) systems (e.g., HiStar [33]).

First, the low-level primitives provided by a privilege-aware
system are powerful mechanisms for enforcing secure behavior, but
currently they are also the only mechanism provided for specifying
secure behavior. As a result, it is difficult even to define what it
means for a program rewritten to use the primitives to be “correct,”
because there is no separate first-class notion of a policy specifi-
cation. For instance, in DIFC systems, programmers use labels as
primitives to ensure the flow of information between system ob-
jects. While simple information-flow policies can be specified quite
naturally using labels, a label-based system typically cannot ex-
press practical policies unless it is extended with capabilities for de-
classifying information by changing labels. Even if a desired high-
level policy were stated, it would not be obvious whether such label
manipulations satisfy a high-level policy for the flow of information
among objects.

Second, rewriting a program to be secure when executing on a
privilege-aware system is often straightforward, but rewriting the
program to be secure and to exhibit its required functionality is of-
ten non-trivial. To enforce desired policies, programs sometimes
must be restructured or repartitioned before they can be instru-
mented with calls to system primitives. Just as tcpdump needed to
be partitioned to execute correctly on Capsicum, the Apache web-
server needed to be repartitioned before it could execute correctly
on the DIFC operating system Flume [18].

Finally, an application programmer must reason about two mod-
els of his program: if the program satisfies some model of “good
behavior” (e.g., a model of tcpdump in which the packet-matching
code is not compromised), then the program should be functional.
But even if the program follows a weaker “bad-behavior” model
(e.g., a model of tcpdump in which the packet-matching code is
compromised, and executes under the attacker’s control), then the
program must still be secure. This problem is particularly intri-
cate because a compromised program can be used to conduct an
API-level attack that invokes the privilege-aware system’s primi-
tives to attempt to induce an insecure behavior. Programmers for
DIFC systems face this challenge when determining the labels for
untrusted processes, and what capabilities each process should have
for changing its label.

In this paper, we formalize the problem of instrumenting pro-
grams for privilege-aware systems as the policy-weaving problem,
and present an algorithm for solving important subclasses of the
problem. Our algorithm allows an application developer to define
policies that specify what security-sensitive events the application
should or should not be able to perform, and to obtain an instrumen-
tation of the program that manipulates system primitives so that the
policy will be enforced.

For an application developer to apply our algorithm, a system
architect first provides to the algorithm a semantics of the privilege-
aware system as a state machine. Often, system architects already
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Program
(e.g., tcpdump)

Host
(e.g., Capsicum)

Security Policy
(e.g., must not access ENV 
when matching packets)

Functionality Policy
(e.g., DNS resolver must have 

privilege to access ENV)

Policy 
Weaver

Instrumented
Program

(e.g., version of  
tcpdump that 

invokes Capscium 
primitives

Figure 2. Flowchart of applying the policy-weaving algorithm.

describe their systems semi-formally through the transition relation
of a state machine that the system implements [21, 33]. In a state
machine for Capsicum, a state is a mapping from each process
to the rights that the process holds for each descriptor, plus a
Boolean value specifying whether the process is in capability mode.
Capsicum defines how the state of the system changes when each
application limits its rights, or enters capability mode.

The application developer provides to the algorithm a version of
his program that does not manipulate system primitives, a descrip-
tion of when the program may be compromised (e.g., for tcpdump,
any point after tcpdump reaches match pattern), a policy that
describes the set of all sequences of security-sensitive events that
the program may be allowed to perform (e.g., for tcpdump, when
an execution calls match pattern, it should only be able to read
from the BPF input device and write to STDOUT), and a policy
that describes the set of all sequences of security-sensitive events
that the program must be allowed to perform (e.g., for tcpdump),
the DNS resolver should always be able to access the file system).

Given the inputs described above, the goal of our algorithm is to
instrument the program to invoke the system primitives so that the
instrumented program always satisfies the given policy. To do so,
the algorithm reduces the problem of instrumenting the program to
the problem of finding a winning strategy for an appropriate two-
player parity game between an attacking player that corresponds to
a program, and a defending player that responds to each step of the
program’s execution by invoking a host primitive. If the game has
a winning strategy for the defender, then from the strategy, the al-
gorithm instruments the program to call system primitives in such
a way that the program satisfies the policy provided by the appli-
cation developer. If the tcpdump developer provided the version of
tcpdump partitioned to execute in two process spaces, along with
the policy described above, then the algorithm would successfully
instrument tcpdump to call limit fd and enter cap mode so that
it satisfies the policy, as in Fig. 1.

If the game has no winning strategy for the defender, then the
algorithm produces as its final result an attacker strategy that de-
scribes program executions that foil any possible instrumentation.
The application developer can use such a strategy as guidance for
restructuring the program. If a tcpdump developer provided the
original version of tcpdump and the policy described above, our
algorithm would provide a strategy that establishes that the original
version of tcpdump cannot be instrumented to satisfy the given pol-
icy, and the developer would use the strategy to partition tcpdump
to execute in multiple processes.

This paper makes the following contributions. First, we de-
fine the policy-weaving problem, which formalizes, in automata-
theoretic terms, the important, emerging practical problem of in-
strumenting a program to run on a privilege-aware system.

Second, we give algorithms for solving several important
classes of the policy-weaving problem. In particular, we show that
an instance of the problem can be solved soundly using suitable

C alphabet of program commands
D alphabet of host primitives
E alphabet of privilege events

C× D alphabet of turns
C× E alphabet of security-sensitive events

(C× D)∗ language of all plays
(C× E)∗ language of all system traces

Table 1. Glossary of policy-weaving alphabets and languages.

over-approximations of the given program and host. Furthermore,
we show that many interesting classes of the policy-weaving prob-
lem are equivalent to classes of two-player parity games, a well-
studied formalism for synthesizing reactive programs [3, 4].

Finally, we formalize the Capsicum, HiStar, Asbestos, and
Flume privilege-aware systems. The formalization demonstrates
that our policy-weaving problem is sufficiently powerful to de-
scribe the practical problem of instrumenting programs for a real
privilege aware system. We formalize an abstraction of each sys-
tem useful for weaving algorithms, programs and policies for each
system.

Organization §2 uses the running example of tcpdump to de-
scribe informally the policy-weaving problem and how to solve
it. §3 defines the policy-weaving problem and algorithms for solv-
ing important subclasses of the problem. §4 formalizes the Cap-
sicum privilege-aware system. §5 discusses related work, and §6
concludes.

2. Overview
In this section, we informally present our policy-weaving algo-
rithm by demonstrating how it instruments tcpdump for Capsicum.
The algorithm reduces a policy-weaving problem for instrument-
ing tcpdump to finding a winning strategy for a parity game. The
program, policies, and host that define a policy-weaving problem
are defined as languages over appropriate alphabets. In particular,
a program will be treated as a language of executions defined over
an alphabet C of program commands. All alphabets and languages
used to define a policy weaving problem are summarized in Tab. 1.

Example 1. Let the alphabet of program commands of tcpdump,
CTcp be the abbreviated commands listed to the left of the “/” sym-
bols on edge labels in tcpdump’s control-flow graph in Fig. 1. The
language PTcp ⊆ C∗Tcp of tcpdump is all sequences of program
commands in CTcp on runs of tcpdump’s CFG.

Along with a program, a weaving problem also consists of two
policies. Each policy is a language of system traces, where a system
trace is a string over an alphabet of security events C× E, which is
the product of C and an alphabet of privilege events E.

This definition of a policy for a program on a privilege-aware
host has a richer structure than some policies for programs that
execute on traditional systems; the latter are sometimes defined as
languages of allowed or disallowed strings of program commands.
However, a policy for a program that executes on a privilege-
aware host cannot naturally be defined as a language over program
commands: a program command only induces a security event
if, when the command is executed, the host determines that the
program has sufficient privileges to induce the event.

Example 2. For a program executing on Capsicum, a security
event is (i) a program command that attempts to access a re-
source, paired with (ii) the program’s right to access the resource.
In language-theoretic terms, the alphabet of security events for
tcpdump on Capsicum is the product of the alphabet of program
commands CTcp (Ex. 1) and an alphabet of privilege events ETcp,
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where each privilege event corresponds to a right that tcpdump has
to access a particular file descriptor or the environment. Privilege
event r(desc) denotes that tcpdump may access descriptor desc
with right r. The privilege event ENV denotes that tcpdump may
open new descriptors to resources in its environment. The privilege
event null, which is paired with a program command to denote that
the command executes, but does not say anything about what priv-
ileges the program has when it executes the command.

The second component of a policy-weaving problem is a secu-
rity policy, which defines the language of all system traces that the
instrumented program may induce.

Example 3. The security policy for tcpdump discussed in §1
specifies that when tcpdump matches inputs against a BPF, the
instrumented tcpdump may only induce security events in which
tcpdump may read from the BPF device, but not open descriptors
to resources in its environment. For example, in language-theoretic
terms, the following system trace over the alphabet of security
events CTcp × ETcp should not be allowed:

(cbpf, null), (sbpf,ENV), (iter,ENV), (dns,ENV), (match,ENV).

In general, the only system traces that should be allowed are those
in the regular language:

STcp = (((CTcp\{match})× ETcp) | (match, rd(dev)))∗

The third component of a policy-weaving problem is a func-
tionality policy, which describes the required functionality of the
instrumented program. In language-theoretic terms, the functional-
ity policy is a language over system traces. For each system trace
in the functionality policy, if the program executes the sequence of
program commands that act as first components of each security
event in the trace, then the host must allow the security events in
the trace.

Example 4. §1 describes an informal functionality policy for
tcpdump: the instrumented tcpdump must have the right to ac-
cess its environment when setting up the BPF device, it must have
the right to read from the BPF device when matching input packets
against the filter, and it must have the right to access the environ-
ment when executing the DNS resolver.

For example, in language-theoretic terms, if the program exe-
cutes the sequence of program commands

cbpf sbpf iter dns match

then the host should allow the system trace

(cbpf, null)(sbpf,ENV)(iter,ENV)(dns,ENV)(match, rd(dev))

In general, for each system trace in the following regular language
FTcp, if tcpdump executes the sequence of program commands
that form the first components of security events in the trace, then
Capsicum must allow all security events in the trace:

((CTcp × {null}) | (sbpf,ENV)

| (dns,ENV) | (match, rd(dev)))∗

The fourth component of a policy-weaving is a host language,
which relates each execution of a program executing on the host to
the system traces induced by the execution. The language is defined
over the alphabet (C × D) × E, where D is an alphabet of host
primitives D. Let a turn be a program command paired with a host
primitive (i.e., an letter in the alphabet C × D), and let a play be
a sequence of turns. The language of the host is defined over the
alphabet of all turns paired with privilege events (C×D)× E, and
the language describes the system traces allowed by the host, as
follows. If [((ci, di), (ei)]i with each ci ∈ C, di ∈ D, and ei ∈ E is
a string in the language of the host, then if a program running on the
host executes each program command ci followed immediately by

((C \ {sbpf}), cm) / ENV

(sbpf, cm) / ENV

(*, lim(dev, {})) /
RD(dev)

(*, cm) / RD(dev)

(sbpf, noop) /
ENV

{}, F

RD, F RD, T

{}, T
(1)

(4)

(5)(2)

(3)

Figure 3. A fragment of the transducer model of the Capsicum-
state of tcpdump. Each transition is labeled with a program com-
mand paired with a host command, followed by a “/”, followed by
an allowed privilege event.

each host primitive di in sequence, then the host allows the system
trace [(ci, ei)].

Example 5. The Capsicum host provides primitive operations to
tcpdump that allow tcpdump to limit the rights that it has to
access each file descriptor, enter capability mode, or not change
its Capsicum state. In language-theoretic terms, the alphabet of
Capsicum host primitives DTcp contains, for each descriptor desc,
and set of rights R, a primitive lim(desc,R) that limits the rights
of tcpdump for desc to R, a primitive cm that transitions tcpdump
into capability mode, and a primitive noop that has no effect.

Fig. 3 shows a fragment of a finite-state machine HTcp that
represents the Capsicum state of tcpdump. The language of the
state machine is its set of runs, and the language relates each
sequence of turns constructed from tcpdump program commands
CTcp and Capsicum host primitives DTcp to the system traces
allowed by Capsicum in response to the sequence of turns.

Each state in HTcp corresponds to a map from each descriptor
to the set of rights that tcpdump has for the descriptor, paired
with a Boolean value that denotes whether or not tcpdump is in
capability mode.

Each transition in Fig. 3 is labeled with an index and a turn in
CTcp × DTcp, followed by a privilege event in ETcp. For clarity,
Fig. 3 does not contain all of the transitions of a complete model
of the Capsicum system, but the transitions included in Fig. 3
illustrate the salient points of how Capsicum relates plays to system
traces:

1. If tcpdump executes any program command and invokes cm,
then the resulting Capsicum state is in capability mode (e.g.,
transitions (1) and (3)).

2. If tcpdump executes the program command sbpf , (which opens
dev) when its Capsicum state is not in capability mode, then
in the resulting Capsicum state, tcpdump has all rights for
dev (e.g., transitions (2) and (3)). In this section, we model
Capsicum as maintaining for each descriptor only a single right
“read” (rd), but the full implementation of Capsicum supports
63 rights for each descriptor [32].

3. If tcpdump executes a program command from a Capsicum
state in which it has the right to read dev, then when it exe-
cutes the command, it has the privilege to read from dev (e.g.,
transitions (4) and (5)).

4. If tcpdump executes any program command, and then invokes
the primitive lim(dev, {}), then in the resulting Capsicum state,
tcpdump does not have the right to read from dev (e.g., transi-
tion (5)).

A host as defined above relates each play issued by an instru-
mented program to the system traces that the play induces. A pro-
gram P, security policy S, functionality policy F, and host H define
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a policy-weaving problem, which is satisfied by an instrumented
program P′ that, when run on H, enforces S and F. In language-
theoretic terms, an instrumented program P′ ⊆ (C × D)∗ is a lan-
guage of plays that when composed with H, induce system traces
that enforce S and F. We may view P′ itself as a composition P◦Q
of P and a solution Q, a function from strings in C∗ to strings in D∗

of equal length, where the plays of P′ are constructed by pairing
each command string of P element-wise with its image under Q.
The policy-weaving problem then amounts to finding a Q such that
P ◦ Q enforces S and F when run on H. There is no harm in only
searching for instrumented programs of the form P ◦ Q, because
one can show that a weaving problem is satisfied by some language
of plays if and only if it is satisfied by the language of P ◦ Q for
some Q. Moreover, there are multiple advantages to searching for
solutions as functions from program commands to host primitives.
First, because the solution is separate from the program that it in-
struments, a solution to a weaving problem defined over an abstract
program directly solves analogous weaving problems defined over
refinements of the abstract program (see §3.4.1).

We may view P′ itself as a composition Ins(P,Q) of P and
a solution Q, a function from strings in C∗ to strings in D∗ of
equal length, where the plays of P′ are constructed by pairing
each command string of P element-wise with its image under Q.
The policy-weaving problem then amounts to finding a sufficient
Q that Ins(P,Q) satisfies enforces S and F when run on H. There
is no harm in only searching for languages of plays of the form
Ins(P,Q), because one can show that a weaving problem is satis-
fied by some language of plays if and only if it is satisfied by the
language of Ins(P,Q) for some Q. Moreover, there are multiple
advantages to searching for solutions as functions from program
commands to host primitives. First, because the solution is sepa-
rate from the program that it instruments, a solution to a weaving
problem defined over an abstract program directly solves analogous
weaving problems defined over refinements of the abstract program
(see §3.4.1).

The second, and more fundamental, reason to view a solution
to a weaving problem as a function is that if a program may be
approximated by a suitably simple language, such as a regular
language, then we may find a solution as a winning strategy to an
appropriate two-player parity game. The algorithm that constructs
the parity game constructs from the languages of the host and the
security policy the language of all plays that, when issued on the
host, induce a system trace that violates the security policy (see
§3):

Example 6. To instrument tcpdump for Capsicum, the weaving
algorithm constructs the language of plays that violate the se-
curity policy STcp (Ex. 3) under the model of Capsicum HTcp
(Ex. 5). The plays that violate security do not call the host primitive
enter cap mode before executing the program command match.
This language of plays may be represented by the following regular
expression over the alphabet of turns CTcp × DTcp, where “.” is
any character in CTcp × DTcp:

(CTcp × (DTcp\{cm}))∗ (match,DTcp) .
∗

Just as the weaving algorithm constructs from the host and secu-
rity policy the language of plays that violate security, the algorithm
also constructs from the host and functionality policy the language
of plays that violate functionality (see §3). Constructing the lan-
guage of plays that violate functionality is less direct than con-
structing the language of plays that violate security, so for now
we only present the language of functionality-violating plays for
tcpdump and Capsicum, and leave a precise description of the steps
of the construction for §3.

Example 7. To instrument tcpdump for Capsicum, the weaving
algorithm constructs the language of plays that violate the func-
tionality policy FTcp (Ex. 4) under the model of Capsicum (Ex. 5).
Intuitively, a play violates FTcp if it causes tcpdump to enter ca-
pability mode before executing sbpf or dns, or if it limits tcpdump
not to have the right to read from desc when executing match. The
language of such plays is described by the following regular ex-
pression over the alphabet of turns:

.∗(CTcp × {cm}).∗({sbpf, dns} × DTcp).
∗

∪ .∗(CTcp × {lim(dev, ∅)}).∗({match} × DTcp).
∗

where “.” denotes any letter in C× D.

Once the algorithm constructs a language V of all plays that vi-
olate security or functionality, it constructs a parity game such that
from a winning strategy to the game, the algorithm may construct
a solution to the weaving problem. The game is played in turns by
an attacker, who chooses a program command on each turn, and a
defender who responds to each program command by invoking a
host primitive. Thus, each play of the game corresponds to a play
in the context of the weaving problem. The attacker wins a play of
the game if it corresponds to a play in V ; otherwise the play is won
by the defender. A defender strategy for a game is a function that
maps each sequence of program commands to the sequence of host
primitives that the defender invokes in response. Thus, a defender
strategy that always wins—i.e., a strategy that never allows a play in
V—corresponds directly to a solution to the weaving problem. On
the other hand, an attacker strategy that always wins—i.e., a strat-
egy that always produces a play in V in a finite number of turns no
matter what host primitives are invoked by the defender—provides
a proof that the original weaving problem has no solution.

Example 8. The weaving algorithm reduces the weaving problem
for tcpdump and Capsicum to the two-player parity game defined
by the languages of plays that violate security (Ex. 6) or functional-
ity (Ex. 7). Both languages of violating plays are regular, and thus
the parity game resulting from the reduction is a parity game over
a finite graph. Such games are well-studied, and known algorithms
solve them efficiently [3, 4]. The game has a winning attacker strat-
egy: if the attacker chooses the sequence of program commands

cbpf sbpf iter dns match iter dns

then any response by the defender produces a play that violates se-
curity or functionality. To enforce the security policy, the defender
must invoke cm before the attacker executes match, but if the de-
fender invokes cm and the attacker then executes dns, then the re-
sulting play violates functionality.

Thus, if a tcpdump developer provides tcpdump, the security
and functionality policies of Exs. 3 and 4, and the model of Cap-
sicum from Ex. 5 to the weaving algorithm, the algorithm will fail
to instrument tcpdump. However, the algorithm provides to the de-
veloper an attacker strategy that explains why the program cannot
be instrumented.

The developer may be able to use the strategy to understand how
to restructure tcpdump so that it may be instrumented with host
primitives to enforce his desired policies. Suppose that a tcpdump
developer uses the attacker strategy to manually partition tcpdump
into two processes, where one process executes the bulk of the
tcpdump code, and the other process executes dns. The Capsicum
state of each process is represented by a distinct state machine
analogous to the one in Fig. 3, and the Capsicum state of tcpdump
is represented as the product of the two per-process state machines.
If the developer provides the partitioned tcpdump, security and
functionality policies, and the model of Capsicum, then the weav-
ing algorithm instruments the partitioned tcpdump to enforce the
two policies. We do not discuss each step of how the algorithm in-
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struments the partitioned tcpdump, but only note that the weaving
problem defined by such a program has a solution that waits for
the tcpdump process to setup the BPF device, limits the tcpdump
process to only have the right to read from the BPF device, and
then enters capability mode. The strategy may be represented as
the following regular language over the alphabet CTcp × DTcp:

((sbpf, lim(dev, {rd}))|(iter, cm)|((CTcp\{sbpf, iter}), noop))∗

In Fig. 1, the full pseudocode and the fully-labeled control-flow
graph represent the tcpdump instrumented according to this strat-
egy.

Note that the simple strategy in Fig. 1 is inefficient in that it
invokes the primitive enter cap mode on each iteration through
the loop, while it need only call enter cap mode once before
entering the loop. We leave the problem of optimally instrumenting
programs as future work.

3. The Policy-Weaving Problem
In this section, we define the policy-weaving problem, which is
to take an uninstrumented program, a host, and policies, and con-
struct a solution that describes how the program should invoke the
primitives of the host to enforce the policies. We solve the policy-
weaving problem by reducing it to a parity game. We present a
symbolic technique for solving a class of weaving problems par-
tially defined by languages given as symbolic automata. Finally,
we motivate and introduce the problem of weaving over partially-
trusted programs, and sketch a solution to a class of such problems
using a symbolic technique.

3.1 The Policy-Weaving Problem
The policy-weaving problem is a language-theoretic problem de-
fined using a set of operations that build languages and relations
over strings from other languages and relations. The problem is de-
fined using the following relational operators. In each definition, let
Σ1, Σ2, and Σ3 be arbitrary alphabets of symbols.

Definition 1. Replace: For li ∈ Σ1 and Ai ⊆ Σ2, let the re-
place binary relation Repl[{Ai/li}i] ⊆ Σ∗1 × Σ∗2 be such that
Repl[{Ai/li}i] ([a1, a2, . . . , an], [b1, b2, . . . , bn]) if and only
if for each ai = lj , bi ∈ Aj .

Zip: For T ⊆ Σ∗1 × Σ∗2, let Zip[T ] ⊆ (Σ1 × Σ2)∗ be such that
Zip[T ]([(a1, b1), . . . , (an, bn)] if and only if T ([a1, . . . , an],
[b1, . . . , bn]).

Unzip: ForL ⊆ (Σ1×Σ2)∗, let Unzip[L] ⊆ Σ∗1×Σ∗2 be such that
Unzip[L]([a1, . . . , an], [b1, . . . , bn]) if and only if L([(a1, b1),
. . . , (an, bn)]).

Compose: For T1 ⊆ Σ∗1 × Σ∗2 and T2 ⊆ Σ∗2 × Σ∗3, let the
composition T1 ◦ T2 ⊆ Σ∗1 × Σ∗3 be {(u,w)|∃v ∈ Σ∗2 :
T1(u, v) ∧ T2(v, w)}.

Apply: For T ⊆ Σ∗1 × Σ∗2 and L ⊆ Σ∗1, let the application
T (L) ⊆ Σ∗2, be the set {τ ∈ Σ∗2|∃σ ∈ Σ∗1 : T (σ, τ)}.

Restrict: For T ⊆ Σ∗1 × Σ∗2 and L ⊆ Σ∗1, let the restric-
tion of T to L, denoted as T |L ⊆ Σ∗1 × Σ∗2, be such that
T |L([a1, . . . , an], [b1, . . . , bn]) if and only if T ([a1, . . . , an],
[b1, . . . , bn]) and [a1, . . . , an] ∈ L.

Project: Let the projection πΣ1×Σ2,1 ⊆ (Σ1 × Σ2)∗ × Σ∗1 be
{(σ, τ)|σ = [(a0, b0), (a1, b1), . . . , (an, bn)]∧τ = [a0, a1, . . . ,
an]}.
The policy-weaving problem is defined as follows.

Definition 2. For an alphabet of program commands C, alphabet
of host primitives D, and alphabet of privilege events E, let the
program be P ⊆ C∗, let the host be H ⊆ ((C × D) × E)∗, let the
security policy be S ⊆ (C × E)∗, and let the functionality policy
be F ⊆ (C × E)∗. Let Q ⊆ (C × D)∗ be a language of plays, and

let Ins(P,Q) ⊆ C∗ × (C × D)∗ be a binary relation from each
execution from P to the execution instrumented according to Q:

Ins(P,Q) = {(σ, τ)|σ = [c0, c1, . . . , cn] ∈ P

∧τ = [(c0, d0), (c1, d1), . . . , (cn, dn)] ∈ Q}.

Let the alphabet of security events be C×E, and let the language of
system traces be (C×E)∗. Let SysTraces(P,Q,H) ⊆ (C×E)∗ be
the language of system traces induced by running P instrumented
by Q on H:

SysTraces(P,Q,H) = Zip[Ins(P,Q) ◦ Unzip[H]]

The policy-weaving problem POLWEAVE(P,H, S,F) is to find a
solution Q ⊆ (C× D)∗ that satisfies the following conditions:

1. Online: Q is prefix-closed, and for each trace of Q, and each
program command, there is a trace of Q that extends the orig-
inal trace to respond to the program command. Formally, for
each τ ∈ Q and c ∈ C there is some host command d ∈ D such
that τ . (c, d) ∈ Q, where “.” denotes concatenation.

2. Secure: each system trace induced by P instrumented with Q
executing on H is allowed by the security policy S:

SysTraces(P,Q,H) ⊆ S

3. Functional: if a trace σ ∈ P is the sequence of program
commands of some system trace τ ∈ F, then τ must be a system
trace induced by P instrumented with Q executing on H:

Zip[Unzip[F]|P] ⊆ SysTraces(P,Q,H)

3.2 Policy Weaving as a Parity Game
In this section, we solve the POLWEAVE problem by reducing it
to a parity game. To do so, we first show that any POLWEAVE
problem is equivalent to a POLWEAVE problem with a triv-
ial functionality policy (though potentially with a different host),
called a (purely) upper-bounded weaving problem UBWEAVE.
We then reduce UBWEAVE to a parity game; i.e, the reduction is
POLWEAVE⇒ UBWEAVE⇒ parity game.

The first step of the reduction is to restate each policy-weaving
problem, which is explicitly defined by what privileges a program
may and must have as it executes, to a policy-weaving problem
that is explicitly defined by what privileges it must and must not
have. The reduction proceeds as follows. For alphabet Σ, define
the negative alphabet Σ by constructing, for each symbol a ∈ Σ,
a negative symbol a ∈ Σ (for negative alphabet Σ, let Σ be
the corresponding positive alphabet). For the alphabet of privilege
events E, alphabet E is an alphabet of negative privilege events,
which explicitly denote when a program does not execute with a
particular privilege.

For a policy-weaving problem POLWEAVE(P,H,S,F), the
languages H, S, and F are defined solely over alphabets partially
constructed from the alphabet of privilege events. To reduce the
problem to a problem in UBWEAVE, each language is lifted to a
language defined over negative privilege events using the positive
and negative closure of the each language. The positive closure
of each language is, intuitively, the largest language that does not
allow more positive privileges than the original language.

Definition 3. For alphabets Σ1 and Σ2 and L ⊆ (Σ1 ×Σ2)∗, the
positive closure of L, denoted by C+

L ⊆ (Σ1 × (Σ2 ∪Σ2))∗, is the
largest language such that if C+

L ([(a0, b0), (a1, b1), . . . , (an, bn)])
with ai ∈ Σ1, bi ∈ Σ2 ∪ Σ2, then there is some trace [(a0, b

′
0),

(a1, b
′
1), . . . , (an, bn)] ∈ L such that for each bj ∈ Σ2, b′j = bj .

This is a correction of the definition in the submission, which
requires only that if bn ∈ Σ2, then b′n = bn.
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Lemma 1. C+
L is well-defined, and is equal to the following lan-

guage:

C+
L = Zip[Unzip[L] ◦ Repl[{{bi} ∪ Σ2/bi}bi∈Σ2 ]]

Proof. Let M = Zip[Unzip[L] ◦ Repl[{{bi} ∪Σ2/bi}bi∈Σ2 ]]. We
first show thatM ⊆ C+

L . Let σ = (a0, b0), (a1, b1), . . . , (an, bn) ∈
M . Then by the definition of Repl, there is some τ = (a0, b

′
0),

(a1, b
′
1), . . . , (an, b

′
n) ∈ τ , where b′i = bi for each bi ∈ Σ2. Then

by the definition of positive closure, σ ∈ C+
L .

We now show that C+
L ⊆ M . Suppose, for a proof by contra-

diction, that σ = (a0, b0), (a1, b1), . . . , (an, bn) ∈ C+
L \M . By the

definition of C+
L , there is some τ = (a0, b

′
0), (a1, b

′
1), . . . , (an, b

′
n),

with b′i = bi for each bi ∈ Σ2. But by the defintion of Repl,
σ ∈ Zip[Repl[{{bi} ∪ Σ2/bi}bi∈Σ2 ](τ)].

For each security policy S ⊆ (C×E)∗, the security policy C+
S ⊆

(C× (E ∪ E))∗ is the largest language that allows no system trace
constructed from a program execution with more positive privilege
events than some trace in S constructed from the same execution.
For host H ⊆ ((C×D)×E)∗, the host C+

H ⊆ ((C×D)×(E∪E))∗

is the largest language that, in response to any given play, allows no
trace with more positive privilege events than some trace in H that
responds to the same play. It follows that each program and solution
that only induce system traces in S on H only induce system traces
in C+

S on C+
H , and vice-versa.

The negative closure of a language is, intuitively, the largest
language that does not allow a negative privilege when the original
language allows the corresponding positive privilege.

Definition 4. For alphabets Σ1 and Σ2 and L ⊆ (Σ1 × Σ2)∗,
the negative closure of L, denoted by C−L ⊆ (Σ1 × (Σ2 ∪ Σ2))∗,
is the largest language that satisfies the following condition. For
trace σ = [(a0, b0), (a1, b1), . . . , (an, bn)] ∈ (Σ1 × Σ2)∗ and
τ = [(a0, b

′
0), (a1, b

′
1), . . . , (an, b

′
n)] ∈ (Σ1 × (Σ2 ∪ Σ2))∗, say

that σ and τ are inconsistent if there is some i for which b′i = bi.
Then C−L is the largest language that does not contain any trace
that is inconsistent with some trace in L.

Lemma 2. C−L is well-defined, and is equal to the following lan-
guage. Let Flip ⊆ E∗ × (E ∪ E)∗ be the transducer such that for
σ = a0, a1, . . . , an ∈ E∗ and τ = a′0, a

′
1, . . . , a

′
n ∈ (E ∪ E)∗,

Flip(σ, τ) if some a′j = aj . Then

C−L = Zip[Unzip[L] ◦ Flip]

Proof. Let M = Zip[Unzip[L] ◦ Flip]. We first show that M ⊆
C−L . Suppose, for a proof by contradiction, that there is some trace
σ ∈ M\C−L . By the definition of C−L , σ is inconsistent with some
trace τ ∈ L. It must be the case that σ ∈ Zip[Unzip[L] ◦ Flip],
by the definition of Flip, but then σ /∈ M , by the definition of M .
Thus M ⊆ C−L .

We now show that C−L ⊆ M . Suppose, for a proof by contra-
diction, that there is some trace σ ∈ C−L \M . Then σ is consistent
with every trace in L. Thus σ /∈ Zip[Unzip[L] ◦ Flip] by the defi-
nition of Flip, and thus σ ∈ Zip[Unzip[L] ◦ Flip] = M , which is a
contradiction. Thus C−L ⊆M .

For functionality policy F ⊆ (C× E)∗, the functionality policy
C−F ⊆ (C × (E ∪ E))∗ is the largest language that forbids traces
that are inconsistent with some trace protected by the functionality
policy F. For host H ⊆ ((C×D)×E)∗, the host C−H ⊆ ((C×D)×
(E ∪ E)∗ is the largest language that allows no system trace that is
inconsistent with a system trace of H. It follows that each program
and solution that enforces F on H only induces system traces in C−F
on C−H , and vice-versa.

Using the closures of a host and policies, we may reduce every
policy-weaving problem with non-trivial security and functionality
policies to a policy-weaving problem with only a non-trivial secu-
rity policy.

Lemma 3. POLWEAVE(P,H,S,F) has exactly the same solu-
tions as POLWEAVE(P, C+

H ∩ C
−
H , C

+
S ∩ C

−
F , ∅).

Proof. We first prove that if Q is a solution toP = POLWEAVE(P,
H, S, F) then Q is a solution of P ′ = POLWEAVE(P, C+

H ∩
C−H , C

+
S ∩ C

−
F , ∅) by showing that Q satisfies each of the three

conditions for a solution to P ′ given in Defn. 2. Q is online for
P ′ because it is online for P , and Q is functional for P ′ be-
cause the functionality policy for P ′ is ∅. Q satisfies security
for P ′ if and only if SysTraces(P,Q,H) ⊆ C+

S ∩ C
−
F . We first

show that SysTraces(P,Q, C+
H ∩ C

−
H ) ⊆ C+

S . It suffices to show
that SysTraces(P,Q, C+

H ) ⊆ C+
S , because SysTraces(P,Q, C+

H ∩
C−H ) ⊆ SysTraces(P,Q, C+

H ). Note that SysTraces(P,Q,H) ⊆ S
because Q is a solution to P , and S ⊆ C+

S by definition of positive
closure. Thus

SysTraces(P,Q, C+
H ) ∩ SysTraces(P,Q,H) ⊆ S ⊆ C+

S

To show that Q satisfies security for P ′ it only remains to show
that SysTraces(P,Q, C+

H )\SysTraces(P,Q,H) ⊆ C+
S . First, for

traces σ, τ ∈ (C × E ∪ E)∗, say that τ positively matches σ
when for each (ci, ei) ∈ σ, if (c′i, e

′
i) is the ith element of

τ , then ci = c′i, and if ei ∈ E, then ei = e′i. For σ ∈
SysTraces(P,Q, C+

H )\SysTraces(P,Q,H), there is some τ ∈
SysTraces(P,Q,H) that positively matches σ, by the definition
of C+

H . Therefore, τ ∈ S, because Q satisfies security for P . There-
fore, σ ∈ C+

S , by the definition of C+
S . Thus SysTraces(P,Q, C+

H ) ⊆
C+
S .

We now show that Q satisfies the functionality condition of P ′,
which holds if and only if SysTraces(P,Q, C+

H ∩C
−
H ) ⊆ C+

F . First,
Zip[Unzip[F]|P] ⊆ SysTraces(P,Q,H), because Q satisfies the
functionality condition of P . It thus holds that C−SysTraces(P,Q,H) ⊆
C−Zip[Unzip[F]|P], by the definition of C−. Next,

C−SysTraces(P,Q,H) = Zip[Unzip[SysTracesP,Q,H] ◦ Flip] (1)

= Zip[Ins(P,Q) ◦ Unzip[H] ◦ Flip] (2)

= Zip[Ins(P,Q) ◦ Unzip[H] ◦ Flip] (3)

= Zip[Ins(P,Q) ◦ Unzip[H] ◦ Flip] (4)

= Zip[Ins(P,Q) ◦ Unzip[Zip[Unzip[H] ◦ Flip]]] (5)
= SysTraces(P,Q, C−H ) (6)

Eqn. (1) follows from Lem. 2, Eqn. (2) follows from the definition
of SysTraces (Defn. 2), and Eqn. (3) follows from the definition of
Zip (Defn. 1). Eqn. (4) follows from the fact that Ins(P,Q) is a total
function, Eqn. (5) follows from the definitions of Zip and Unzip
(Defn. 1), and Eqn. (6) follows from the definition of SysTraces.

Thus SysTraces(P,Q, C−H ) ⊆ C−SysTraces(P,Q,H) ⊆ C
−
F . Fur-

thermore, SysTraces(P,Q, C+
H ∩ C

−
H ) ⊆ SysTraces(P,Q, C−H ), so

SysTraces(P,Q, C+
H ∩ C

−
H ) ⊆ C−F .

We now show that any solution to P ′ is a solution to P . Let
Q be a solution to P ′. We first show that Q satisfies the security
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condition of P . Observe that

C+
SysTraces(P,Q,H) = Zip[Unzip[Zip[Ins(P,Q) ◦ Unzip[H]]] (7)

◦Repl[{{bi} ∪ E/bi}bi∈E]]

= Zip[Ins(P,Q) ◦ Unzip[H] (8)
◦Repl[{{bi} ∪ E/bi}bi∈E]]

= Zip[Ins(P,Q) ◦ Unzip[Zip[Unzip[H] (9)
◦Repl[{{bi} ∪ E/bi}bi∈E]]]]

= SysTraces(P,Q, C+
H ) (10)

Eqn. (7) follows from Lem. 1, and Eqn. (8) and follows from the
definition of Zip and Unzip, as does Eqn. (9). Eqn. (10) follows
from the definition of SysTraces (Defn. 2).

SysTraces(P,Q, C+
H ∩C

−
H ) ⊆ C+

S , because Q is a solution ofP ′.
In fact, SysTraces(P,Q, C+

H ) ⊆ C+
S . To see this, for any language

L, let f(L) be the union of all strings in L and all strings incon-
sistent with some string in L. f(SysTraces(P,Q, C+

H ∩ C
−
H )) =

SysTraces(P,Q, C+
H ) by the definition of C−H , and f(C+

S ) = C+
S by

the definition of C+
S . Furthermore, f is monotonic over language

containment, so

SysTraces(P,Q, C+
H ) = f(SysTraces(P,Q, C+

H ∩ C
−
H ))

⊆ f(C+
S )

= C+
S

Therefore C+
SysTraces(P,Q,H) ⊆ C

+
S , by Eqn. (10).

We now how that for alphabets Σ1,Σ2 and languages L,M ⊆
(A × B)∗, if C+

L ⊆ C
−
M . Let σ ∈ L. Then σ ∈ C+

M , because
L ⊆ C+

L ⊆ C
+
M . But σ ∈ (A×B), so σ ∈M , by the definition of

C+
M (Defn. 3). Thus, in particular, SysTraces(P,Q,H) ⊆ C+

S , and
thus Q satisfies the security condition of P .

We now show Q satisfies the functionality condition of P ,
which is equivalent to showing that Zip[Unzip[F]|P] ⊆ SysTraces(P,
Q, H). First, SysTraces(P,Q, C+

H ∩ C
−
H ) ⊆ C−F , because Q is a so-

lution of P ′. Thus, SysTraces(P,Q, C+
H ∩ C

−
H ) ⊆ C−Zip[Unzip[F ]|P ],

by the definition of SysTraces. Thus, SysTraces(P,Q, C−H ) ⊆
C−Zip[Unzip[F ]|P ]. To see this, for any language L, let g(L) be the
set of all strings in L positively matched by any string in L.
g(SysTraces(P,Q, C+

H ∩ C
−
H )) = SysTraces(P,Q, C−H ), by the

definition of C+
H , and g(C−Zip[Unzip[F ]|P ]) = C−Zip[Unzip[F ]|P ], by the

definition of C−Zip[Unzip[F ]|P ]. Furthermore, g is monotonic over lan-
guage inclusion, so

SysTraces(P,Q, C−H ) = g(SysTraces(P,Q, C+
H ∩ C

−
H )

⊆ g(C−Zip[Unzip[F ]|P ])

= C−Zip[Unzip[F ]|P ]

Therefore, C−SysTraces(P,Q,H) ⊆ C
−
Zip[Unzip[F ]|P ], by (6).

We now show that for alphabets Σ1,Σ2 and languages L,M ⊆
(Σ1 × Σ2)∗, if C−L ⊆ C

−
M , then M ⊆ L. Suppose, for a proof by

contradiction, that there is a trace σ ∈ M\L. Let τ be equal to
σ, except that if (a0, b0) is the first element of σ, then (a0, b0)
is the first element of τ . Then τ /∈ C−M , but the only string in
(Σ1 × Σ2)∗ that τ is inconsistent with is σ, and σ /∈ L, so
τ ∈ C−L . But this contradicts the assumption that C−L ⊆ C

−
M .

In particular, because C−SysTraces(P,Q,H) ⊆ C
−
Zip[Unzip[F ]|P ], it holds

that Zip[Unzip[F ]|P ] ⊆ SysTraces(P,Q,H). Thus Q satisfies the
functionality condition of P .

Define the UBWEAVE problem as UBWEAVE(P,H,Pol) =
POLWEAVE(P,H,Pol, ∅). Lem. 3 shows that to solve POLWEAVE,
it suffices to solve UBWEAVE. Solving UBWEAVE reduces to
finding a strategy to a two-player parity game, defined as follows.

A solution to UBWEAVE(P,H,Pol) must not allow any play that
corresponds to an execution of P and induces a system trace not in
Pol. The language of all plays constructed from executions of P is
ProgPlays(P) = Zip[(C∗ × D∗)|P], and the language of all plays
that induce a system trace in a language L ⊆ (C× E)∗ is

Plays(H, L) = π(C×D)×E,1(Zip[πC×D,1 ◦ Unzip[L]] ∩ H)

Therefore, a solution to UBWEAVE(P,H,Pol) may not allow any
play in the language of violating plays:

Vio(P,H,Pol) = ProgPlays(P) ∩ Plays(H,Pol)

We now use the representation of the language of violating
plays to reduce POLWEAVE to a parity game. In particular,
from this point on, we will restrict our attention to policy-weaving
problems defined solely by regular languages. In §3.5.2, we relax
this restriction to consider policy-weaving problems defined by
input languages that support limited counting and recursion, such
as context-free grammars and visibly-pushdown languages [2].

Each POLWEAVE problem defined by regular languages may
be reduced to a parity game over a finite graph, defined here simi-
larly to the literature [3].

Definition 5. A finite-graph parity game G = (S0, S1, s0, A,Σ0,
Σ1, ρ0, ρ1) is defined by:

1. A finite set of Player-0 states S0

2. A finite set of Player-1 states S1.
3. An initial state s0 ∈ S0.
4. A set of accepting states A ⊆ S0.
5. A Player-0 transition relation ρ0 ⊆ S0×Σ0×S1, and a Player-

1 transition relation ρ1 ⊆ S1 × Σ1 × S0.

A game play σ = (s0
0, l

0
0, s

0
1), (s0

1, l
0
1, s

1
0), . . . , (sn−1

1 , ln−1
1 , sn0 ),

is a finite run of the game automaton, where for each i < n,
ρ0(si0, l

i
0, s

i
1), and ρ1(si1, l

i
1, s

i+1
0 ). Player 0 wins σ if sn0 ∈ A.

Otherwise, Player 1 wins σ. The trace τ(σ) of a play σ is the
sequence of pairs of letters (l00, l

1
0), (l01, l

1
1), . . . , (ln−1

0 , ln−1
1 ).

Definition 6. For game G = (S0,S1, A, s0,Σ0,Σ1, ρ0, ρ1), a
Player-1 strategy f1 : Σ0(Σ1 × Σ0)∗ → Σ1 is a function that
maps each string of a Player-0 letter followed by Player-1 letters
paired with Player-0 letters to a Player-1 letter. f1 is a winning
Player-0 strategy for G if the following hold. Let the set of runs of
f1 be all runs of G induced by choosing each Σ0 letter in the run
according to f1:

1. For each l, and s such that ρ0(s0, l, s), (s0, l, s) is a run of f1.
2. If r = (s0

0, l
0
0, s

0
1), . . . , (sn0 , l

n
0 , s

n
1 ) is a run of f1 with sn1 ∈ S1,

and ρ1(sn1 , f1(τ(r)), s′) then r . (sn1 , f1(τ(r)), s′) is a run of
f1.

3. If r = (s0
0, l

0
0, s

0
1), . . . , (sn−1

1 , ln−1
1 , sn0 ) is a run of f1 with

sn0 ∈ S0, then for each (sn0 , l, s
′) ∈ ρ1, the run r . (sn0 , l, s

′) is
a run of f1.

Let the rank of a run be defined as follows. For any run that contains
an accepting state, the rank for the run is 0. The rank of every other
run σ is one more than the rank of all other runs of f1 of the form
σ . (s, l, s′) for some (s, l, s′) ∈ ρ0 ∪ ρ1. Strategy f1 is a winning
strategy if the rank of every run of f1 is infinite; i.e. there is no
run in which each Player-1 letter is defined by f1 that reaches an
accepting state.

A Player 0-strategy f0 for G, and its runs, are defined symmet-
rically to a Player-1 strategy, with the Player-0 strategy mapping
each trace to a Player-0 action. A Player-0 strategy is a winning
strategy if no run of the strategy has finite rank.

The game problem for game G is to construct a winning Player-
0 strategy or winning Player-1 strategy for G.
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Each parity game defined by Defn. 5 has either a winning
Player-0 strategy or a winning Player-1 strategy. Furthermore,
known algorithms can solve finite parity game problems in polyno-
mial time. If a Player-1 strategy exists, then there is some winning
strategy f1 that may be represented as a finite-state acceptor A1 ⊆
Σ0(Σ1 × Σ0)∗, where f1(l00(l01, l

1
0), . . . , (ln−1

1 , ln0 )) = ln1 if and
only if for all ln0 ∈ Σ0,A0([l00(l01, l

1
0), . . . , (ln−1

1 , ln−1
0 ), (ln1 , l

n
0 )]).

Each Player-0 strategy may similarly be represented as a finite-state
acceptor.

Each policy-weaving problem POLWEAVE(P,H, S,F) with
regular P, H, S, and F is reduced to finding a winning Player-1 strat-
egy to a finite-graph parity game. By Lem. 3, the POLWEAVE
problem reduces to UBWEAVE(P, C+

H ∩ C
−
H , C

+
S ∩ C

−
F , ∅). It is

easy to show that if P, H, S, and F are regular, then C+
H ∩ C

−
H and

C+
S ∩ C

−
F are regular.

UBWEAVE(P,H,Pol) defined by regular inputs is reducible
to a finite-graph parity game as follows. If P, H, and Pol are regular,
one can show that the language of violating plays Vio(P,H,Pol)
is regular. Recall that for UBWEAVE(P,H,Pol), the language
V = Vio(P,H,Pol) describes all plays that violate Pol. From
AV = (S, A, s0,C × D, ρ) a deterministic acceptor for V, we
may construct a game G = Game(V), such that a Player-1 strat-
egy for G = (Ŝ0, Ŝ1, Â, ŝ0, Σ̂0, Σ̂1, ρ̂0, ρ̂1) is a solution to
UBWEAVE(P,H,Pol). Game G is defined as follows. Ŝ0 = S,
Ŝ1 = S × C, ŝ0 = s0, Â = A, Σ0 = C, and Σ1 = D. For each
s ∈ S and each c ∈ C, let ρ̂0(s, c, (s, c)). For each s, s′ ∈ S, c ∈ C,
and d ∈ D, let ρ̂1((s, c), d, s′) if and only if ρ(s, (c, d), s′).

Lemma 4. The solutions to UBWEAVE(P,H,Pol) are exactly
the Player-1 strategies to Game(Vio(P,H,Pol)).

Proof. Let Q be a solution to UBWEAVE(P,H,Pol). Then Q
defines a Player-1 strategy fQ, using the construction of Defn. 6.
Suppose, for a proof of contradiction, that there is a play σ =
c0, d0, c1, d1, . . . , cn, dn of fQ that is not a winning play of G =
Game(Vio(P,H,Pol)), and thus is a play of G for Player 0. Then
by the construction of G, the string τ = (c0, d0), (c1, d1), . . . , (cn, dn)
is a play in ProgPlays(P)∩Plays(H,Pol). The play τ thus induces
a system trace for which the program commands are an execu-
tion of P, and which violates Pol. Thus Q is not a solution of
UBWEAVE(P,H,Pol), which contradicts the initial assumption
for Q. Thus Q is a Player-1 strategy to G.

Let f be a winning Player-1 strategy to G, represented as a lan-
guage Qf ⊆ (C× D)∗. Suppose, for a proof by contradiction, that
there is some play σ = (c0, d1), (c1, d1), . . . , (cn, dn) of Qf such
that σ ∈ ProgPlays(P) ∩ Plays(H,Pol). Then by the construction
of G, there is some run of G of the form r(τ) = (s0

0, c0, s
0
1),

(s0
1, d0, s

1
0), (s1

0, c1, s
1
1), (s1

1, d1, s
2
0), . . . , (sn−1

0 , cn−1, s
n−1
1 ),

(sn−1
1 , dn−1, s

n
0 ) with sn0 an accepting state of G. But then f is

not a winning strategy of G.

Thus any policy-weaving problem defined by regular languages
may be reduced to a finite-graph parity game.

Theorem 1. The solutions to POLWEAVE(P,H, S,F) are ex-
actly the Player-1 strategies to Game(Vio(P, C+

H ∩C
−
H , C

+
S ∩C

−
F )).

Proof. By Lemmas 3 and 4.

POLWEAVE restricted to regular languages is, in fact, equiv-
alent to the problem of finding a strategy for parity games, in that
one can reduce any parity game to a POLWEAVE problem con-
structed from regular languages. However, we omit the reduction
in this direction.

3.3 Symbolic Policy Weaving
Practical classes of POLWEAVE are challenging to solve scal-
ably. As shown in §3.2, each policy-weaving problem POLWEAVE(P,
H, S, F) defined by regular languages can be reduced to finding a
winning Player-1 strategy to a finite-graph parity game. There are
at least three issues that we must address. First, the size of the
game is directly proportional to the size of the automata that rep-
resent P, H, S, and F, and in practice the size of the automata for
P and H can be quite large. The size of P and H can be reduced
by soundly over-approximating them with smaller automata (see
§3.4), but natural over-approximations may still be large, and thus
games defined by such automata may take prohibitively long to
solve. Second, the size of a winning Player-1 strategy for such a
game, and thus the size of the solution to the corresponding weav-
ing problem, is in general proportional to the size of the game
automaton. If a program is instrumented to query a large strategy
at runtime to decide when to invoke host primitives, then the in-
strumentation could degrade the time and space performance of the
program unacceptably. Third, the alphabet of host primitives used
to define a weaving problem (i.e., the Player-1 alphabet) may be
large, while the alphabet of program commands relevant to security
(i.e., the Player-0 alphabet) may be relatively small. For example,
Capsicum supports 63 rights, and allows a program to attempt to set
each file descriptor to any subset of the rights, effectively providing
263 host primitives for each resource. In the reduction of §3.2, each
host primitive corresponds to a letter in the alphabet of Player 1
in the resulting game, but traditional algorithms for solving such
parity games typically enumerate over the entire alphabet of Player
1, and the number of enumerations is proportional to the size of the
game.

In this section, we address these scalability issues via a symbolic
technique for solving POLWEAVE. We assume that the transition
relation of the automaton for each input language may be repre-
sented as a formula in a theory T that allows an efficient decision
procedure, such as a combination of SMT theories [30]. Modern
decision procedures can often solve formulas in such theories very
quickly in practice [12, 13].

Definition 7. An acceptor automaton A = (T , S, s0, A,Σ, ρ) is
represented symbolically if

1. T is a logical theory that supports conjunction, disjunction, and
negation.

2. The set of states S and alphabet of actions Σ are domains of
values.

3. s0(s) can be expressed as a formula in T , in which the variable
s is free, satisfied only by the initial state of A.

4. The set of accepting states A(s) can be expressed as a formula
in T in which the variable s is free, and which is only satisfied
by the accepting states of A.

5. The transition relation ρ(s, l, s′) ⊆ S×Σ×S can be expressed
as a formula in T in which s, l, and s′ are free, and which only
hold for (s, l, s′) in the transition relation of A.

A policy-weaving problem defined by languages given as sym-
bolic acceptors can be efficiently reduced to solving a symbol-
ically represented parity game. In particular, consider a policy-
weaving problem POLWEAVE(P, H, S,F) accompanied by a
bound b > 0 on the size of the state-space of a solution al-
lowed for the problem, in which P, H, S, and F are given as sym-
bolic acceptors. From the symbolic acceptors for the input lan-
guages, we can construct a symbolic representation of the game
G = Game(Vio(P, C+

H ∩ C
−
H , C

+
S ∩ C

−
F )), defined in §3.2.

Existing symbolic techniques [11, 24] for solving symbolic par-
ity games are, in general, unsatisfactory for solving games con-
structed by reduction from POLWEAVE, for the following rea-
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sons. First, most of the techniques given in [11, 24] take as input a
symbolic representation of a game and produce either a decision as
to which player can always win the game, or construct a symbolic
strategy. However, instrumenting a program to query a symbolic so-
lution at runtime does not resolve the second problem raised above,
because such an instrumentation could degrade the performance of
the application unacceptably. Second, the algorithms of [11, 24] ex-
plicitly enumerate over Player 1’s alphabet. Thus, such algorithms
do not address the third issue raised above.

We thus solve symbolic games produced by reduction from
POLWEAVE by applying a novel symbolic construction for find-
ing a Player-1 strategy to a symbolic parity game. The construction
searches for a sub-game of G by searching for a “witness set” of b
states in G, and transitions between them, such that no play of the
sub-game is a winning play for Player 0 in G, and the sub-game is
Player-1 simulated by G [4]. Any such sub-game corresponds to a
winning Player-1 strategy for G. The construction is analogous to a
known construction [24] for solving symbolic parity games; how-
ever, our solution finds strategies with a different set of winning
conditions (i.e., the ones specified in Defn. 5).

Our construction defines a winning Player-1 strategy for a game
G = (S0, S1, A, s0,Σ0,Σ1, ρ0, ρ1) from an interpretation ι of a
bounded set of logical constants as states in S0 and S1, and letters in
Σ1. By bounding the set of constants interpreted as states, we may
bound the execution time of a decision procedure applied to solve
the game, and simultaneously bound the size of any strategy found
by our construction. In particular, to bound the search for a winning
Player-1 strategy to strategies that may be represented by automata
with b states, let there be b constants for Player-0 sub-game states.
Moreover, for each Player-0 sub-game state s, and each Player-0
letter l, let there be one Player-1 sub-game state for which there is
an l-transition from s. Thus, for each i, 0 ≤ i < b+b|Σ0|, let there
be a state constant qi for each state in the collection of Player-0 and
Player-1 sub-game states.

To bound the search through the large alphabet of Player-1 let-
ters, we define a small, bounded set of constants that are interpreted
as the different Player-1 letters chosen by a strategy. For each state
constant qi, let there be a Player-1 letter constant di to be inter-
preted as the letter chosen by Player-1 if the game reaches the state
interpreted for qi: for each i, 0 ≤ i < b|Σ0|, let there be a Player-
1-letter constant di.

We will search for an interpretation ι of the state constants qi
and letter constants dj that interprets the constants as a sub-game of
G from which we may construct a winning Player-1 strategy for G.
Such an interpretation must be a model of the following constraints.
First, no state of the sub-game is an accepting state of G, so for each
state constant qi we have the constraint

¬A(qi) (11)

Second, some state of the sub-game—we may arbitrarily choose
the state interpreted for q0—is the initial state of the game. Thus
we have the constraint:

s0(q0) (12)

Third, each Player-0 state of the sub-game has a transition on each
Player-0 letter to some other state of the sub-game. For each state
constant qi, we have the constraint

S0(qi) =⇒
∧
j

∨
k

ρ0(qi, cj , qk) (13)

Finally, each Player-1 state of the sub-game has a transition on
some Player-1 letter to some other state of the sub-game. For each
qi, we have the constraint

S1(qi) =⇒
∨
j

ρ1(qi, di, qj) (14)

The conjunction of these four kinds of constraints define the
bounded symbolic weaving formula B(G, b). The bounded sym-
bolic weaving formula is a formula of T , and thus a decision pro-
cedure for T can be applied to search for a satisfying interpretation
for the constants {qi}i and {dj}j . Consider the size of B(G, b)
in terms of the occurrences of formulas that define the symbolic
representation of G (i.e., s0, A, and ρ). For n = b + b|Σ0|, the
number of state and Player-1 alphabet letters defined, there are n
occurrences of A, one occurrence s0, n occurrences of S0, n2|Σ0|
of ρ0, n occurrences of S1, and nb|Σ0| occurrences of ρ1.

If the decision procedure for T finds a satisfying interpretation
ι, then from ι we may construct a solution automaton Q(ι) =

(Ŝ, ŝ0, Â, Σ̂, ρ̂) to represent a Player-1 solution for G (see Defn. 6).
The state space of the solution Ŝ is all Player-1 states in the range of
the interpretation: Ŝ = S0∩Rng(ι). The initial state of the solution
ŝ0 is the initial state of the game: ŝ0 = s0. The accepting states of
the solution Â are all states of the solution: Â = Ŝ (except for the
stuck state). The alphabet of the solution is Σ̂ = Σ0 × Σ1. The
transition relation of the solution ρ̂ is defined as follows for each
pair of game-state constants si, sj ∈ S, program command ck, and
host primitive dl:

ρ̂(si, (ck, dl), sj) ⇐⇒
∨
m

ρ0(si, ck, ι(qm))

∧ dl = ι(dm)

∧ ρ1(ι(qm), dl, sj)

ρ̂ is defined by the set of state-constants {qi}i, and the set of host-
primitive constants {di}i, all of which are assumed to be small.
Thus ρ̂ can be constructed directly from ι without further applying
a decision procedure for T .

For Q(ι) described above, we have the following theorem.

Theorem 2. For weaving problem POLWEAVE(P,H, S,F), let
G = Game(Vio(P, C+

H ∩ C
−
H , C

+
S ∩ C

−
F )). For bound b, if ι is

a model of B(G, b), then Q(ι) ⊆ (C × D)∗ is a solution to
POLWEAVE(P,H, S,F).

Proof. Q(ι) is a solution to POLWEAVE(P,H, S,F) if and only
if it is a winning Player-1 strategy to the game G = Game(Vio(P, C+

H ∩
C−H , C

+
S ∩C

−
F , ∅)). Let G = (S0, S1, s0, A,Σ0,Σ1, ρ0, ρ1). Let the

sub-game defined by ι be Gι = (Ŝ0, Ŝ1, ŝ0, Â, Σ̂0, Σ̂1, ρ̂0, ρ̂1),
with Ŝ0 = S0 ∩ Rng(ι), Ŝ1 = S1 ∩ Rng(ι), ŝ0 = s0, Â =

A∩ Rng(ι), Σ̂0 = Σ0, Σ̂1 = Σ1, ρ̂0 = ρ0 ∩ (Ŝ0 ×Σ0 × Ŝ1), and
ρ̂1 = ρ1 ∩ (Ŝ1 × (Σ1 ∩ Rng(ι))× Ŝ0)

Let fι be the strategy defined by Q(ι) by Defn. 6. We will show
that every play of fι is a winning play for Player 1. We will show
that for each play σ of fι, r(σ) (see proof of Lem. 4) ends in some
state in Ŝ0 ∪ Ŝ1, by induction on the length of σ.

As the base case, consider a play of fι of length 1, which is
a program command c. By constriant (12), there is some state
s0 ∈ S0 that is the initial state of G, and by constraint (13), for
each c ∈ Σ0, there is some state (s0, c) ∈ Ŝ1 such ρ(s0, c, (s0, c)).

For the inductive case, let σ be a play of fι of length n. First,
suppose σ = τ . cn. By the definition of the plays of fι (Defn. 6),
τ is a play of fι. Furthermore, |τ | = n − 1 < n, and thus by
the inductive hypothesis, τ ends in a Player-0 state sn0 ∈ Ŝ0. By
constraint (13), if sn1 ∈ S1 is such that ρ0(sn0 , c, s

n
1 ), then sn1 is a

state of G(ι). Thus σ ends in a state in Ŝ0.
Now, suppose σ = τ.dn. By the definition of the plays of fι,

τ is a play of fι. Furthermore, |τ | = n − 1 < n, and thus by
the inductive hypothesis, τ ends in a Player-1 state sn1 ∈ Ŝ1. By
constraint (14), there is some state constant q and host-command
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constant d such that ρ1(sn1 , ι(d), ι(q)). Thus σ ends in a state of
ŝ1, and thus in a state of G(ι).

Thus by induction, for each play σ of fι, σ ends in a state in
Ŝ0∪ Ŝ1. No state in Ŝ0 is inA by constraint (11), and no state in Ŝ1

is in A, because Ŝ1 ⊆ S1, A ⊆ S1, and S0 and S1 do not overlap.
Thus no play of fι corresponds to a run in which G enters a state in
A. Thus by Defn. 6, fι is a winning strategy of G.

If for policy-weaving problem POLWEAVE(P,H, S,F), the
languages of P, H, S, and F are given by symbolic acceptors
with finite state spaces, and the problem has a solution, then for
the resulting parity game G, there is some b for which B(G, b)
is satisfiable. Furthermore, we can use the techniques of [24] to
simultaneously search for a Player-0 strategy to the symbolic game,
as a proof that the original weaving problem has no solution.

3.4 Policy Weaving over Abstractions
3.4.1 Sound Abstractions of Programs
§3.2 gives an algorithm for solving policy-weaving problems if
all inputs languages, including the program, are represented as
finite-state acceptors. Of course, real-world programs cannot be
modeled precisely as finite-state acceptors, or even by simple stack
machines; however, we now show that, as is the case for other
well-known problems in software verification [5], a solution for a
policy-weaving problem constructed from an over-approximation
of a program is a solution for a policy-weaving problem constructed
from the original program. Thus if we can solve a policy-weaving
problem for an automaton that over-approximates the set of runs
of the program, such as the automaton induced from the program’s
control-flow graph, then we can solve the weaving problem for the
original program.

Theorem 3. Let Q be a solution toP# = POLWEAVE(P#,H, S,F),
with P ⊆ P#. Then Q is a solution toP = POLWEAVE(P,H,S,F).

Proof. Q is a solution to P if and only if Q is a solution to P ′ =
UBWEAVE(P, C+

H ∩ C
−
H , C

+
S ∩ C

−
F ) = POLWEAVE(P, C+

H ∩
C−H , C

+
S ∩ C

−
F , ∅) (Lem. 3). We will show that Q is a solution

to P ′ by showing that it satisfies every condition for a solu-
tion given in Defn. 2. First, Q is online, because it is a solu-
tion to P#. Q is secure for P , because SysTraces(P,Q,H) ⊆
SysTraces(P#,Q,H) by the definition of SysTraces (Defn. 2),
and SysTraces(P#,Q,H) ⊆ C+

S ∩ C
−
F , because Q is a solution to

POLWEAVE(P,H,S,F) = UBWEAVE(P, C+
H ∩C

−
H , C

+
S ∩C

−
F ).

Thus,

SysTraces(P,Q,H) ⊆ SysTraces(P#,Q,H)

Thus Q satisfies the security condition of P . Q satisfies the func-
tionality condition of P because the functionality policy is ∅, and
thus is satisfied trivially.

3.4.2 Sound Abstractions of Hosts
Practical hosts can typically be formalized directly as state ma-
chines. However, we typically cannot solve weaving problems de-
fined from such hosts, because, for example, their transition relation
may be specified using formulas with alternating quantification (see
§4.1). The following theorem allows us to soundly solve a policy-
weaving problem over a “complex” host by substituting a “simpler”
host, analogous to how Thm. 3 allows us to soundly solve a policy-
weaving problem over a complex program by substituting a simpler
program. As in Thm. 3, the substitution is incomplete, in the sense
that the original weaving problem may have a solution, while the
simpler weaving problem may not.

Theorem 4. Let Q be a solution to UBWEAVE(P,H#,Pol), and
let H ⊆ H#. Then Q is a solution to UBWEAVE(P,H,Pol).

Proof. Let Q be a solution to P# = UBWEAVE(P,H#,Pol).
Q is a solution to UBWEAVE(P,H,Pol) if and only if it is the
solution to P = POLWEAVE(P,H,Pol, ∅). We will show that
Q is solution to P by showing that it satisfies every condition on
a solution given in Defn. 2. First, Q is online, because it a so-
lution to P#. Q is secure for P because SysTraces(P,Q,H) ⊆
SysTraces(P,H#,Pol) by the definition of SysTraces, and SysTraces(P,
Q, H#) ⊆ Pol, because Q is a solution to P#. Thus

SysTraces(P,Q,H) ⊆ SysTraces(P,H#,Pol) ⊆ Pol

Q is functional for P , as the functionality policy for P is ∅, and
thus the functionality condition is satisfied trivially.

We can apply Thm. 4 to solve an instance of UBWEAVE
produced as a reduction from POLWEAVE. In doing so, we over-
approximate, for host H ⊆ ((C × D) × E)∗, its closure C+

H ∩ C
−
H

with some abstract host H#, such that C+
H ∩ C

−
H ⊆ H#. However,

H# itself need not be the closure of any host. In fact, it turns out
that for H ⊆ ((C × D) × E)∗, if C+

H ∩ C
−
H ⊂ H#, there is no

host H1 ⊆ ((C × D) × E)∗ for which C+
H1
∩ C−H1

= H#. Thm. 4
shows that for the policy-weaving problem, this inconsistency may
be tolerated as imprecision.

3.5 Policy Weaving over Partially-Trusted Programs
A program that runs on a privilege-aware system either is often
composed of or interacts with untrusted program modules. Recall
from §1 and §2 that to secure tcp dump, the programmer needed
to reason about partially-trusted functions for matching packets that
may be compromised, and then execute arbitrary commands. Weav-
ing partially-trusted programs presents two main challenges. The
first challenge is immediate: a partially-trusted program follows a
weaker model, in which after certain points in an execution, it exe-
cutes arbitrary program commands, and even invokes arbitrary host
commands.

The second challenge arises from reasoning about programs that
are partitioned to execute in separate process spaces. Programmers
attempt to write programs that execute securely in the presence of
untrusted modules by isolating different modules of the program
in different processes. If some of the modules are compromised
during execution, then they still may not cause the entire program
to behave insecurely, if the insecure behavior requires collusion
with modules that are not compromised. We currently assume that
processes execute sequentially: a process executes until it transfers
control to a module in another process by invoking the module via
a remote procedure call (RPC), and the caller process blocks until
the called process finishes executing. Given that our weaving al-
gorithm is defined on state machines, it seems likely that we can
extend the algorithm to weave systems constructed from concur-
rently executing processes; we leave such an extension for future
work.

If we view a program as a collection of mutually untrusting
processes, then this complicates the weaving problem, because
we cannot instrument a program according to a weaving solution
that monitors program commands and updates its internal state
across multiple processes. Such an instrumentation is infeasible in
practice because if a called process receives the current state of
the strategy from a calling process, but the calling process may
be compromised, then the callee cannot trust the validity of the
strategy state.

We now formalize the problem of weaving over partially-trusted
programs as the PARTWEAVE problem.
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Definition 8. Let a program be a set of n modules. For module
i, let Ci be the alphabet of module program commands, Let Di
be the alphabet of host primitives that may be issued by module
i, and let Ei be the alphabet of privilege events for module i.
Let module 0 be the root module, and let C0 contain a set of
program commands {call(j)}j for 0 < j < n. The problem
PARTWEAVE({Pi}i, {Ti}i,H, S,F) is defined by:

• {Pi}i, with Pi ⊆ C∗i , are the well-behaved models of each
module.

• {Ti}i, with Ti ⊆ Pi, are the trustworthy executions of each
module.

• H ⊆ ((
⋃
i Ci ×

⋃
i Di)×

⋃
i Ei)

∗ is the secure host.
• S,F ⊆

⋃
i Ci ×

⋃
i Ei are the security and functionality poli-

cies, respectively.

The set of languages of trustworthy executions {Ti}i define
when a program may execute arbitrary program and host com-
mands, as follows. Let the language of untrustworthy executions
of each module Ui be defined from each module and set of trust-
worthy executions as Ui = Pi\Ti. Intuitively, if the ith module
ever executes a sequence of commands in Ui, then the module may
then execute an arbitrary sequence of program and host commands.

Defn. 8 may only be used to model programs in which a root
module may RPC auxiliary modules in other processes, but the
auxiliary modules may not RPC each other. In practice, it is simple
to require each RPC module to only accept calls from the root
module, and many practical programs fit this model. Moreover, if
we allow processes to create arbitrarily many processes via RPC,
with each process supported by the host, then intuitively we must
model a host as an automaton with an unbounded stack, such as a
pushdown system or nested-word automaton [2]. We leave this as
future work.

A solution to a PARTWEAVE problem is a set of solutions
{Qi}i, with Qi ⊆ (Ci × Di)

∗, subject to the following security
and functionality conditions.

Security Condition The security condition describes all system
traces that the instrumented program may induce, analogous to the
security condition in Defn. 2. The key difference from Defn. 2 is
that the security condition constrains the system traces of the pro-
gram, even if modules of the program are compromised. For solu-
tion Qi, let Li be the language of module i instrumented with Qi,
including executions in which Li is compromised after executing
some untrustworthy execution:

Li>0 = (Qi(Pi) ∪ (Qi(Ui) . (Ci × Di)
∗))

L0 = (Q0(P0) ∪ (Q0(U0) . (C0 × D0)∗))[{Li/call(i)}j>0]

Let PartIns(L), analogous to Ins(P,Q) in Defn. 2, be

PartIns(L) = {(σ, τ)|τ = [(c0, d0), (c1, d1), . . . , (cn, dn)]

∧σ = πC×D,1(τ) ∈ L}

Let PSysTraces(H, L), analogous to SysTraces in Defn. 2, be

PSysTraces(H, L) = Zip[PartIns(L) ◦ H]

The security condition is:

PSysTraces(H, L0) ⊆ S (15)

Functionality Condition The functionality condition describes
the system traces that the instrumented program must induce in re-
sponse to sequences of program commands, analogous to the func-
tionality condition in Defn. 2. The functionality condition requires
that the instrumented program preserves the core functionality of
the original program, but it makes little sense to try to preserve the
functionality of the program when some of its modules are compro-

mised. Thus we define functionality solely over the well-behaved
models of program modules.

For solution Qi, let Wi be the language of program module i
instrumented with Qi, restricted to executions where each module
satisfies its well-behaved model:

Wi = Qi(Pi)

W0 = Qi(P0)[{Wi/((call(j)× Di)}j>0]

Let P be the set of all executions of the modules {Pi}i:

P = P0[{Pj/call(j)}j>0]

Then the functionality condition is:

Zip[F|P] ⊆ PSysTraces(H,W0) (16)

3.5.1 Solving PARTWEAVE

In §3.2, we showed that POLWEAVE can be reduced to solving
a single parity game. However, we cannot reduce PARTWEAVE
to a single parity game, because the solution automata Qi must
be independent of each other, for the practical reasons discussed
in §3.5. But while we cannot reduce PARTWEAVE to finding a
strategy to a single parity game, we can reduce it to finding a set
of games that satisfy a particular condition, and finding winning
strategies for these games.

In §3.2, we reduced each POLWEAVE problem to a POLWEAVE
problem constructed from a trivial functionality policy using a
set of closure functions defined for hosts and policies. In other
words, the reduction was from a weaving problem that placed
upper and lower bounds on the set of system traces allowed
to a weaving problem that only placed an upper bound on the
set of traces allowed. Similarly, every PARTWEAVE problem
may be reduced to a UBPRTWEAVE problem that only places
an upper bound on the set of system traces. However, unlike
UBWEAVE and POLWEAVE, UBPRTWEAVE is a variation
of PARTWEAVE, not a restricted case of it.

Definition 9. A (purely) upper-bounded partial weaving problem
UBPRTWEAVE({Pi}i, {Ti}i,H,S,F) and its solutions satisfy
the same definition as Defn. 8, with inequality (16) replaced with:

PSysTraces(H,W0) ⊆ F (17)

Lemma 5. The solutions to PARTWEAVE({Pi}i, {Ti}i,H, S,F)
are exactly the solutions to UBPRTWEAVE({Pi}i, {Ti}i,
C+
H ∩ C

−
H , C

+
S ∩ C

−
F ).

UBPRTWEAVE({Pi}i, {Ti}i,H,Pol) may be reduced to
the problem of finding a suitable set of two-player parity games
and their strategies, as follows. First, restate the security condition
Eqn. (15) as finding a set of pairs of languages {(L1

i , L
2
i )}i, with

L0
i , L

1
i ⊆ (Ci × Di)

∗ such that

Li>0 = (L1
i ∪ (L2

i . (Ci × Di)
∗))

L0 = (L1
0 ∪ (L2

0 . (C0 × D0)∗))[{Lj/call(j)}j ]
Pi ⊆ π1(L1

i )

Ui ⊆ π1(L2
i )

L0 ⊆ Plays(H, S)

and requiring each Qi to be a winning Player-1 strategy for the
games

G1
i = Game(ProgPlays(Pi) ∩ L1

i )

G2
i = Game(ProgPlays(Ui) ∩ L2

i )

for Game as defined in §3.2.
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Second, restate the functionality condition of Eqn. (17) as find-
ing a set of languages Wi ⊆ (Ci × Di)

∗ such that

Pi ⊆ π1(W1
i )

W = W0[{Wj/callj}j ]
W ⊆ Plays(H,F)

and require that each strategy Qi is a winning Player-1 strategy for
the game

G3
i = Game(ProgPlays(Pi) ∩Wi)

Each module solution Qi is thus constrained as a single Player
1 strategy that wins two games G1

i and G2
i defined by the security

condition, and one game G3
i defined by the functionality condition.

However, all three games may be combined to constrain Qi as a
winning strategy to a single game:

Game((ProgPlays(Pi) ∩ L1
i )

∪ (ProgPlays(Ui) ∩ L2
i )

∪ (ProgPlays(Pi) ∩Wi))

Thus every instance of PARTWEAVE may be expressed as
finding a set of triples of languages {(L1

i , L
2
i ,Wi)}i, and a winning

strategy Qi for a game defined by each triple. We are aware of no
algorithm that can in general efficiently find languages that satisfy
systems of inequalities of the above form, and we leave the problem
for future work. However, we can symbolically search for solutions
up to a bound by extending the algorithm in §3.3. The key idea
is to simultaneously search for languages that may be represented
with automata of size up to some bound as we search for strategies
to the games defined by the languages, approximating language
containment constraints with simulation.

Refining Program Abstractions Automatically Thm. 3 states that
if we can find a suitable abstraction P# of a program P such
that we can solve a weaving problem defined over P#, then the
solution holds for the analogous weaving problem defined over P.
Given a program P, there are several natural abstractions that may
serve for weaving. However, in general we cannot expect any fixed
abstraction to be suitable for all weaving problems, and it would
be much better if we could iteratively refine a given abstraction of a
program until we either find a solution to the weaving problem over
P, or we validate that no weaving exists. Such an approach is in the
spirit of counterexample-guided abstraction refinement (CEGAR),
which is a standard approach to checking properties of systems
with large or infinite state spaces [5, 10, 19].

However, we cannot solve weaving problems by directly mim-
icking CEGAR-based techniques for checking programs against
properties. To see this, note that in each step of a CEGAR-based
model checker, the checker considers an execution of the origi-
nal program that is a potential counterexample to the correctness
of the program. The checker either determines that the counterex-
ample is a true counterexample to correctness, or the checker re-
fines the abstraction of the program so that the program does not
allow the counterexample as an execution. However, for a given
POLWEAVE problem with no solution, there may not always be
a single trace of the program that serves as a counterexample.

While an unsolvable weaving problem will not always have
a single program trace as a counterexample, the reduction from
weaving problems to parity games in §3.2 shows what objects wit-
ness that a weaving problem is unsolvable. In particular, whenever
a weaving problem is unsolvable, we obtain a Player-0 strategy
f0 ⊆ (C × D)∗ that foils any candidate solution to the weaving
problem.

Thus, to iteratively refine a model of a program towards find-
ing a weaving solution, we must refine the program model us-
ing a Player-0 strategy f0. We can do so as follows. Observe that

π2(f0) ⊆ C∗ is the set of all sequences of program commands
that the program may execute to foil a solution. If every sequence
of program commands in π2(f0) is a possible execution of P, for-
mally that π2(f0) ⊆ P, then f0 is a true counterexample to the
weaving problem, and we present it to the user. However, if there is
some run of π2(f0) that is not an execution of P, then it is possible
that the true program P does allow a solution, but the abstraction
P# is too coarse to determine this. In this case, we may use stan-
dard techniques from CEGAR-based model checking to obtain a
new abstraction of the program that does not allow the spurious
execution. Note that our model-checking problem π2(f0) ⊆ P is
actually checking the finite-state specification π2(f0) as an under-
approximation of the program P. However, we may construct a pro-
gram P′ such that P′ ⊆ π2(f0) if and only if π2(f0) ⊆ P, and from
any counterexample trace to the claim P′ ⊆ π2(f0), we may con-
struct a counterexample trace to the claim π2(f0) ⊆ P.

3.5.2 Weaving over Stack-Based Models of Programs
The policy-weaving problem as defined in Defn. 2 is defined for
programs, hosts, and policies as arbitrary languages. In §3.2, we
discussed how to solve such problems when all languages are
regular, and are represented as finite-state machines. However, the
input languages may be irregular, and in particular, may be stack-
based. There are multiple possible advantages to weaving over such
languages:

1. Stack-based models of programs accurately capture the behav-
ior of calls and returns in the program. This allows for more
precise definitions of the plays that Player 0 is allowed in the
resulting game, which may allow us to find winning Player-1
strategies that do not win for games constructed from any finite-
state over-approximation of the same program.

2. Policies for some hosts, such as the Java Virtual Machine with
Java Stack Inspection [16], are defined over the stack configu-
rations of the program.

Enriching the languages of programs, host, and policies to
stack-based languages has important consequences for our abil-
ity to solve the resulting policy-weaving problem. In particu-
lar, suppose that stack-based languages may be either context-
free languages, represented as pushdown systems (PDS) [6],
or visibly-pushdown languages, represented as nested-word au-
tomata (NWA) [2]. First, consider the reduction of the original
POLWEAVE problem to a parity game, as discussed in §3.2. We
can define a policy-weaving problem with P or F as a PDS, or if
we construct S as a PDS, we can define a POLWEAVE problem
from it. However, we cannot in general represent H as a PDS, as the
language of bad plays V produced by the reduction is defined from
H and H. Furthermore, because V is defined by an intersection of
languages defined by different input languages, we may define at
most one input language as a PDS. Under these restrictions, V may
be represented as a PDS, and from V we may construct a game as
an alternating PDS, and solve the game using an algorithm given in
[7]. Solving such games is EXPTIME-complete. However, with a
careful reduction, we can ensure that the complexity of the policy-
weaving problem is exponential in only the size of the goal states
of Player 0 (i.e., the policy), and only polynomial in the size of the
program.

We may also represent the program, host, and policies in a
POLWEAVE problem all as NWAs, and represent V as an NWA,
as NWAs are closed under language complement and intersection.
From V, we may construct a game represented as an alternating
NWA, and solve the game using an algorithm given in [23].

However, while our algorithm for solving POLWEAVE may
be extended directly to handle stack-based languages, our algo-
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rithm for solving symbolic weaving problems (§3.3) cannot, as the
algorithm specifically searches for a game strategy represented as
a finite-state machine of some bounded size. It seems non-trivial
to extend this approach to symbolically search for bounded strate-
gies to games defined by alternating PDSs or alternating NWAs.
We leave this as future work.

When solving instances of the PARTWEAVE problem (§3.5)
defined over stack-based languages, we encounter problems sim-
ilar to those found in extending symbolic weaving to stack-based
languages. Solving PARTWEAVE over stack-based languages is
actually even more complicated than symbolic weaving over stack-
based languages, as to solve a PARTWEAVE problem, we must
find a set of languages (from §3.5, the Lji and Wi) and their comple-
ments. Thus we cannot, in general, find solutions where each lan-
guage is a context-free grammar, although we could feasibly search
for solutions in which every language is an NWA, provided that we
can derive a technique to find NWAs with bounded representations
that satisfy the language equations given in §3.5.

4. Practical Instances of Policy Weaving
In this section, we demonstrate that the policy-weaving problem
formalizes the problem of instrumenting programs to run on real-
world privilege-aware hosts. In particular, we formalize the Cap-
sicum, HiStar, Asbestos, and Flume privilege-aware systems as lan-
guages from which one can define policy-weaving problems. We
formally model each system as a symbolic acceptor. We then define
a sound abstraction of the system as a symbolic acceptor whose
transition relation may be described in quantifier-free SMT theo-
ries. Finally, we describe real-world programs that may be instru-
mented to execute securely on the system, along with their security
and functionality policies.

These formalizations demonstrate that (i) our notion of a host
introduced in §3.1 is expressive enough to describe the primitives
and privilege events of a wide variety of real-world privilege aware
systems, and (ii) our notion of security and functionality policies
(§3.1) is expressive enough to describe the correctness require-
ments that real-world application programmers have for their pro-
grams. This exercise also allows us to evaluate qualitatively the
complexity of programming for privilege-aware hosts. A program-
mer that manually instruments their program to invoke the primi-
tives provided by a privilege-aware host must understand, at some
level, the formalized semantics of the host in order to write a correct
application for the host.

4.1 Concrete Model of Capsicum
§1 and §2 introduced the Capsicum host, giving an informal de-
scription of Capsicum’s primitive operations, and demonstrating
how a real-world application, tcpdump, can invoke the primitives
to enforce desired security and functionality policies. §3.1 solved
the weaving problem for hosts represented symbolically as au-
tomata whose runs are a language relating sequences of program
commands and host primitives to the system traces that they in-
duce. This section describes Capsicum as such an automaton.

By Defn. 2, a policy-weaving problem is defined for alphabets
of program commands C, host primitives D, and privilege events
E by a program P ⊆ C∗, policies S,F ⊆ (C × E)∗, and a host
language H ⊆ ((C×D)×E)∗. The language H thus describes how
the host responds to commands and primitives and allows privilege
events for a fixed program P.

The Capsicum language for P is defined over an alphabet C of
program commands of P, an alphabet D of host primitives that Cap-
sicum provides to P, and an alphabet E of privilege events induced
by P. Let the alphabet of program commands C be the following.
Assume that P is given as a finite set of process modules. Each pro-
cess module proc executes in its own process space, and thus dur-

ing execution, Capsicum maintains separate rights for each module.
proc defines an alphabet of program commands Cproc, with C =⋃

proc Cproc, and a set of descriptors Descsproc, defined as follows.
Let there be a fixed set of descriptors Uproc ⊆ Descsproc that cor-
respond to STDIN, STDOUT, and STDERR on a standard UNIX
system. Let there be a finite set of callsites to open in module proc,
represented asOproc ⊆ Cproc . Then for each callsite openj ∈ Oproc

and k ≥ 0, desc(j, k) ∈ Descsproc is the kth descriptor opened
at callsite j. For descriptor desc ∈ Descsproc, let there be pro-
gram commands (proc, open(desc)), (proc, close(desc)) ∈ Cproc.
Capsicum treats every program command that does not open or
close a descriptor the same, so let there be one program command
step ∈ Cproc not of the form open or close.

Let the alphabet of host primitives D of Capsicum for P be
as follows. For each process module proc, let there be a host
primitive that places proc in capability mode, (proc, cm) ∈ D, and
a primitive that has no effect on the Capsicum state (proc, noop) ∈
D. Let the set of all access rights be supported by Capsicum by R.
For each descriptor desc ∈ Descs, and set of rights S ⊆ R, let
there be a primitive that limits proc to only have the rights of in S
for desc: (proc, lim(desc, S)) ∈ D.

Let the alphabet of privilege events E of Capsicum for P be
as follows. For each process module proc, let there be a privilege
event denoting that proc may open descriptors into its environment
(proc, allow(ENV)) ∈ E, and for each descriptor desc ∈ Descs,
and right r ∈ R, let there be a privilege event denoting that proc
may access desc with right r: (proc, allow(desc, r)) ∈ E. Finally,
let there be a privilege event that corresponds to no particular right
(proc, null) ∈ E.

For alphabets C, D, and E, the language of Capsicum for P
may be defined as the traces of a symbolic acceptor (see Defn. 7)
HCap = (T , S, s0, A,Σ, ρ). The theory T of Capsicum for P is
first-order, with conjunction, disjunction, negation, and quantifica-
tion. Formulas in T are interpreted over a domain that contains
elements corresponding to the elements of alphabets C, D, and E,
an identifier for each process module in P, each right in r, each set
of rights, and each descriptor in Descs. The constants of T are the
constant ∅ for the empty set of rights, and the constant R for the set
of all rights. The functions of T are intersection over sets of rights,
and constructors that construct elements in the alphabets. The pred-
icates of T are an equality predicate and set membership. Functions
and predicates not corresponding to sets of rights are interpreted as
their corresponding elements in the domain of T , and the set func-
tions and predicates are axiomatized by a standard set theory. In all
following logical formulas, both in the theory of Capsicum and in
other theories, let all logical variables that are not explicitly quan-
tified be existentially quantified, and for formulas ϕ0, ϕ1, and ϕ2,
let the formula ite(ϕ0, ϕ1, ϕ2) ≡ (ϕ0 ⇒ ϕ1) ∧ (¬ϕ0 ⇒ ϕ2). Let
any variable using the symbol “proc” range over the set of process
modules, and let any variable using the symbol “desc” range over
the set of descriptors.

Each state in the state-space S is either the stuck state, or maps
each process module proc to a Boolean flag denoting if proc is in
capability mode, and a mapping from each descriptor to the rights
that proc holds for the descriptor. Thus, S is the domain

S = Procs→ (B× (DescsP → P(R)))

As shorthand, denote the capability mode of process proc in state
s as cm(s, proc) = π1(s(proc)), and denote the rights of process
proc in state s as rights(s, proc) = π2(s(proc)).

The initial state s0 ∈ S is the unique state in which every pro-
cess is not in capability mode, and for each process, each descriptor
has no rights:

∀proc : ¬cm(s0, proc) ∧ ∀desc : rights(s0, proc)(desc) = ∅
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The accepting states A are all non-stuck states of HCap.
The alphabet Σ of Capsicum for P is the alphabet of all program

commands paired with host primitives, paired with all privilege
events: Σ = (C× D)× E.

The transition relation ρ is a ternary predicate ρ(s, ((c, d), e), s′)
satisfied by pre-state s, program command c, host primitive d, privi-
lege event e, and post-state s′ that satisfy the following conjunction
of constraints. The first constraints define what privilege events are
allowed in each transition. A process proc is allowed to access
descriptor desc with right r only if in s, proc has right r for desc:

e = (proc, allow(desc, r)) =⇒ r ∈ rights(s, proc)(desc) (18)

proc is allowed to access the environment only if proc is not in
capability mode:

e = (proc, allow(ENV)) =⇒ ¬cm(s, proc) (19)

The null event is always allowed for every process:

e = (proc, null) =⇒ True

The next constraints define how HCap responds to each program
command c. Let post : Procs → DescsP → P(R) map each
process proc to a map from each descriptor to the set of rights
that proc has after executing program command c ∈ C. First, if a
process proc opens a descriptor desc, then HCap responds by giving
proc all rights for desc.

c =(proc, open(desc)) =⇒
ite(cm(s, proc),

post(proc)(desc) = rights(s, proc)(desc),

post(proc)(desc) = R) (20)

If proc closes descriptor desc, then HCap responds by clearing all
of the rights that proc has for desc.

c =(proc, close(desc)) =⇒
post(proc, desc) = ∅ (21)

If proc executes a command other than opening or closing a file,
then the command does not change the rights of any process for
any descriptor:

c = (proc, step) =⇒ (22)
∀proc : post(proc) = rights(s, proc)

The next constraints define how HCap responds to each host prim-
itive in D. If proc requests to place itself in capability mode, HCap

places proc in capability mode.

d = (proc, cm) =⇒ cm(s′, proc)

If proc requests to limit its rights for descriptor desc to S, then HCap

limits the rights of proc for desc to S intersected with whatever
rights that proc had for desc before requesting to limit its rights.

d = (proc, lim(desc, S)) =⇒
rights(s′, proc)(desc) = post(proc)(desc) ∩ S (23)

Finally, if proc invokes the host primitive noop, then the state of
HCap does not change:

d = noop =⇒ rights(s′) = post ∧ cm(s′) = cm(s) (24)

Unless a constraint explicitly requires that the rights or capability
mode of a process proc change from s to s′, then the rights and
capability mode of proc do not change from s to s′. ρ is the
conjunction of constraints, (18)–(24).

4.1.1 An Abstract Model of Capsicum
The concrete model of Capsicum HCap defined in §4.1 directly
corresponds to the model of Capsicum described by the Capsicum

developers [32]. However, if HCap is given as a component to a
symbolic weaving problem, then existing SMT solvers will not be
able to solve the weaving problem, because the transition relation
of HCap is defined by formulas that quantify universally over the
set of all descriptors created dynamically by a program, and this
set is unbounded. To resolve this, we define an abstract model
of Capsicum HCap

# that soundly abstracts the concrete model
HCap. The key idea behind the definition of HCap

# is that for each
callsite o to open in P, HCap

# keeps precise information about the
capabilities of a process for only the most recent descriptor created
at o, and approximate information about each process’s capabilities
for all other descriptors created at o. This approximate information
may be represented without unbounded universal quantification.

We now define HCap
# = (T , S, s0, A,Σ, ρ) as a symbolic

acceptor (Defn. 7). The theory T of HCap
# is the same as the

theory of the concrete model of Capsicum, but with only bounded
universal quantification.

Each state in S is either a stuck state, or maps each process proc
in P to a Boolean flag denoting if the process is in capability mode,
and a map from each open callsite o to the index of the descriptor
isolated for o, a lower bound on the set of rights that proc has for all
summarized descriptors allocated at o, and an upper bound on the
set of rights that proc has for all summarized descriptors allocated
at o. S is thus the domain

Procs→ (B× (O → (N× P(R))× P(R)2))

As shorthand, in addition to the function cm defined for HCap,
define the following functions for describing components of a
state. For state s, process module proc, and open callsite o, let
the index of the descriptor isolated for process proc for call-
site o be isoindx(s, proc, o) = π1(π1(π2(s(proc))(o))), let the
capabilities of proc for the descriptor isolated for callsite o be
isocaps(s, proc, o) = π2(π1(π2(s(proc))(o))), let the lower-
bound of capabilities of proc for all summarized descriptors allo-
cated at o be sumlb(s, proc, o) = π1(π2(π2(s(proc))(o))), and let
the upper-bound of capabilities of proc for all summarized descrip-
tors allocated at o be sumub(s, proc, o) = π2(π2(π2(s(proc))(o))).

The initial state s0 isolates no descriptor for any process, and
maps each process to the highest possible lower bound and low-
est possible upper bound. s0 is the unique state that satisfies the
formula over the free variable s:

∀proc : ¬cm(s, proc) ∧ ∀o : isoindx(s, proc, o) = 0

∧isocaps(s, proc, o) = ∅
∧sumlb(s, proc, o) = R

∧sumub(s, proc, o) = ∅

The accepting states A are all non-stuck states.
The alphabet HCap

# is Σ = (C×D)× (E∪E), for C, D, and E
defined in §4.1. Note that Σ is different from the alphabet of HCap,
which is (C × D) × E). HCap

# actually abstracts the closures of
HCap, not HCap itself (see §3.4.2).

The transition relation ρ(s, ((c, d), e), s′) is a conjunction of
the following constraints, over free variables s the pre-state of the
transition, c ∈ C and d ∈ D the program command and host
primitive executed by the instrumented program, e ∈ E ∪ E a
positive or negative privilege event that HCap

# may allow, and
s′ a post-state. First, if the privilege event is positive, that is, if
e = (proc, allow(desc(o, i), r)), then HCap

# allows e if the
descriptor desc(o, i) is isolated for proc and proc has the right r
for desc(o, i), or if desc(o, i) is summarized, and proc may have r
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for desc(o, i):

e = (proc, allow(desc(o, i), r)) =⇒ ite(isoindx(s, proc, o) = i,

r ∈ isocaps(s, proc, o),

r ∈ sumub(s, proc, o))

Next, if the privilege event is negative, that is, if e = (proc,
allow(desc(o, i), r)), then HCap

# allows e if desc(o, i) is isolated
for proc and proc does not have the right r for desc(o, i), or if
desc(o, i) is summarized, and proc may not have r for desc(o, i):

e = (proc, allow(desc(o, i), r)) =⇒ ite(isoindx(s, proc, o) = i

r /∈ isocaps(s, proc, o),

r /∈ sumlb(s, proc, o))

HCap
# responds to program commands in C as follows. The

function post : Procs → O → (N × P(R)) × P(R)2 maps
each process to the rights for isolated and summarized descriptors
after executing a program command. Suppose that a process proc
opens a new descriptor at open callsite o by executing the program
command open(o). Then HCap

# isolates a new descriptor for proc
for o, gives proc all rights for the new descriptor, and merges the
rights for the previous descriptor isolated for o with the summary
bounds for all other descriptors opened at o:

c = (proc, open(o)) =⇒
isoindx(post, proc, o) = isoindx(s, proc, o) + 1

∧ isocaps(post, proc, o) = R

∧ sumlb(post, proc, o) = sumlb(s, proc, o) ∩ isocaps(s, proc, o)

∧ sumub(post, proc, o) = sumub(s, proc, o) ∪ isocaps(s, proc, o)

Suppose that a process proc closes a descriptor close(desc(o, i))
by executing the program command close(desc(o, i)). If HCap

#

currently isolates desc(o, i) for callsite o, then HCap
# updates the

set of rights for desc(o, i) to be empty. Otherwise, if HCap
# does

not isolate desc(o, i) for o, then HCap
# notes that for all descriptors

allocated at o, proc may have no rights:

c = (proc, close(desc(o, i))) =⇒ ite(isoindx(s, proc, o) = i),

isocaps(post, proc, o) = ∅,
sumlb(post, proc, o) = ∅)

All sets of rights not explicitly mentioned in the above constraints
are unchanged between s and post.

HCap
# responds to each host primitive that P may invoke as

follows. If a process in P invokes cm, then HCap
# responds sim-

ilarly to how HCap responds to cm. If a process proc invokes lim
on a descriptor desc(o, i), then HCap

# updates the rights of proc
for desc(o, i). If desc(o, i) is isolated, then HCap

# precisely up-
dates the rights for desc(o, i), and if desc(o, i) is summarized, then
HCap

# updates the rights for all descriptors summarized for o:

d = (proc, lim((o, i), S)) =⇒
ite(i = isoindx(post, proc, o),

isocaps(s′, proc, o) = isocaps(post, proc, o) ∩ S
∧sumlb(s′, proc, o) = sumlb(post, proc, o),

sumlb(s′, proc, o) = sumlb(post, proc, o) ∩ S
∧isocaps(s′, proc, o) = isocaps(post, proc, o))

The rights of proc for all other callsites and the rights of all other
processes are unchanged from post to s′.

4.1.2 Programs and Polices on Capsicum
We now describe problems of instrumenting real-world programs
for Capsicum as policy-weaving problems. We describe each pro-
gram as an automaton over program commands, and describe the

security and functionality policies of the program as languages over
program command and privilege events.

tcpdump In §2, we described the problem of instrumenting
tcpdump for Capsicum.

gzip The problem of instrumenting the gzip compression tool
for Capsicum can be expressed as a policy-weaving problem. At a
high level, gzip executes as follows. gzip takes as input a set of
input files and output file destinations, and a set of command-line
arguments that configure details of its execution. gzip executes
a small prologue of commands, and then enters a loop. In each
iteration of the loop, gzip opens an output file for writing, opens
an input file for reading, compresses or decompresses the input file,
and outputs the result into the output file. gzip iterates through the
loop until it processes all files.

The high-level model of gzip described above may be repre-
sented as a regular language over an alphabet of program com-
mands. The alphabet of program commands for this simplified view
of gzip is

C = {setup, openout, openin, operate, iter}

The alphabet of host primitives D and alphabet of privilege events
E are defined by gzip according to §4.1, for descriptors infile and
outfile.

The executions of gzip can be expressed by the following
regular language over the alphabet C:

P = setup . (iter . openout . openin . operate)∗

The security policy of gzip can be expressed as a regular lan-
guage over the alphabet C×E. The compression or decompression
operations executed by gzip in each iteration of its loop are com-
plex, and historically, have allowed vulnerabilities. Thus for gzip
to be secure, it may only read from an input file and write to an
output file when executing the program command operate. Thus
the security policy for gzip is

S =(((C\{operate})× E)

| ({operate} × {allow(infile, rd), allow(outfile,wr)}))∗

The functionality policy of gzip can be expressed as a regular
language over the alphabet C×E. When gzip opens each input file
and output file, it must be able to open descriptors in its execution
environment. When gzip executes a compression or decompres-
sion operation, it must be able to read from the input file, and write
to the output file.

F =((C× null) | ((openout× ENV) | (openin× ENV)

| ({operate} × {allow(infile, rd), allow(outfile,wr)}))∗)

gzip cannot be instrumented to satisfy its S and F without being
partitioned into multiple processes. To see this, note that gzip may
execute the following sequence of program commands:

setup iter openout openin operate iter openout

For gzip to satisfy F, it must be able to access its environment
each time that it executes openout. However, for gzip to be able
to access its environment when it executes openout a second time,
it must be able to access its environment when it executes operate,
by the rules of Capsicum. But if gzip can access its environment
when it executes operate, then it violates S. Thus, if we apply the
policy-weaving algorithm to a policy-weaving problem constructed
from P, S, and F, the algorithm will produce a winning strategy
for Player 0. A gzip developer can use the strategy to partition
gzip into multiple process modules, with the operate program
command executing in a separate module from the rest of gzip. If
a policy-weaving problem constructed from the repartitioned gzip
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is given to the policy-weaving algorithm, then the algorithm finds
a correct instrumentation of gzip.

dhclient dhclient configures network devices on a system us-
ing the Dynamic Host Configuration Protocol (DHCP). dhclient
first reads configuration options in a configuration file. It then
fetches a list of network devices on its host system. For each device
dev in the list, dhclient opens a descriptor to dev, over which it
configures dev.

The alphabet of program commands for this high-level model
of dhclient is

C = {config, listdev, opendev, cfgdev, iter}
The alphabets of host primitives D and privilege events E for
dhclient are defined according to §4.1, with a descriptor dev.

The executions of the high-level model of dhclient corre-
spond to strings in the following regular language over the alphabet
C:

P = config . listdev . (iter . opendev . cfgdev)∗

A security policy for dhclient can be expressed as regular
language over the alphabet C×E. When dhclient configures each
network device, it must use complex code to parse input packets
given in a complex format. Thus when dhclient executes cfgdev,
it must only be able to read and write to the current device. Thus
the security policy for dhclient is

S = ((C\{cfgdev})× E)| ({cfgdev} × {allow(dev, rd), allow(dev,wr)})∗

A functionality policy for dhclient can be expressed as a reg-
ular language over the alphabet C×E. When dhclient configures
itself, it must be able to access the execution environment to open
various configuration files. When dhclient lists network devices,
it must be able to access its execution environment. Finally, when
dhclient configures each network device, it must be able to open
the descriptor for each device and read from and write to the de-
scriptor. Thus the functionality policy for dhclient is

F =((config × ENV) | (listdev × ENV) | ((iter× ENV)

| (opendev × ENV) | ({cfgdev} × {rd(dev),wr(dev)}))∗

As with tcpdump and gzip, dhclient cannot satisfy its security
and functionality policies without being partitioned to execute in
multiple process modules.

wget wget downloads data from a server to a local host. wget
first configures itself according to its command-line arguments.
Next, wget iterates in a loop. In each iteration, wget opens a
specified file for output, accesses a network device to retrieve the
data for the file from the network, fetches the data from over the
network device, and writes the data to the specified output file.

The alphabet of program commands for this high-level model
of wget is:

C = {setup, openout, connect, retr, iter}
The alphabet of host primitives D and privilege events E are as
defined in §4.1 from the descriptors socket and outfile.

The executions of the high-level model of wget correspond to
strings of the regular language

P = setup . (iter . openout . connect . retr)∗

The security policy of wget may be described as a regular
language over the alphabet C × E. The code that wget executes
to retrieve data from the network is complex, and vulnerable to
compromise by a malicious input. Thus, when wget executes retr,
it must only be able to read from and write to socket, and write to
outfile. Thus the security policy is

S =(((C\{retr})× E)

| ({retr} × {allow(socket, rd), allow(socket,wr), allow(outfile,wr)}))∗

The functionality policy of wget may be described as a regular
language over the alphabet C×E. When wget opens files for output
or connects to a resource over the network, it must be able to access
its execution environment. Also, when wget retrieves data from
each URL, it must be able to read from and write to the network
socket, and write to the output file. Thus the functionality policy is

F =((C× {null})| (openout× ENV) | (connect× ENV)

| ({retr} × {allow(socket, rd), allow(socket,wr), allow(outfile,wr)}))∗

As with tcpdump, gzip, and dhclient, wget cannot be in-
strumented to satisfy its security and functionality policies without
being partitioned to execute in multiple process modules.

4.2 HiStar
HiStar is a Decentralized Information Flow Control (DIFC) operat-
ing system [33]. HiStar, like most DIFC systems, assigns a label to
each process executing on it. When one process attempts to com-
municate information to another process, HiStar interposes on the
communication, and only allows the communication if the labels
of the processes satisfy a particular relationship. The developers of
HiStar have rewritten several real-world programs to securely run
on HiStar, including the ClamAV [8] virus scanner and the Open-
VPN [28] VPN client. In this section, we first formalize HiStar
as a symbolic acceptor H?, according to the description provided
by its developers [33]. The transition relation of H? is defined by
unbounded universal quantification, and thus H? is not be a suit-
able input for our symbolic weaving algorithm. Thus, we all also
present a sound abstraction H?

# of H? that is a suitable input to the
symbolic weaving algorithm. Finally, we will describe the problem
of instrumenting several real-world programs for HiStar as policy-
weaving problems.

4.2.1 Concrete Model of HiStar
We may describe HiStar as a symbolic acceptor H? = (T , S, s0, A,Σ, ρ).
As with the Capsicum symbolic acceptor HCap, H? describes how
HiStar allows privilege events in response to the program com-
mands and host primitives executed by a fixed application P. We
assume that each such P is represented by a finite set of process
modules, where each process module proc is represented as an
automaton over an alphabet of program commands.

The program commands of H?, C, are the program commands
of each process module in P. The model H? reacts to each program
command identically, so we assume that there is one program
command (proc, step) for each process module proc that denotes
that proc takes a step of execution.

The privilege events of HiStar, E, are defined as follows. For
every two process modules proc1 and proc2 in P, let there be a
privilege event allow(proc1, proc2) that denotes that information
is allowed to flow from proc1 to proc2.

To define the alphabet of host primitives D, we first define
process labels. For every process, HiStar maintains a label, which
HiStar uses to decide if each process may send information to
another. HiStar provides to P a set of host primitives that allow each
process in P to change its label. Each process’s label maps each
category allocated by P to a level. We define the set of categories by
assuming a set of bins B, with each bin b(i) ∈ B defined by some
natural number. A category cat(b, i) ∈ Cats is then defined by a
bin b and a natural number i as index into the bin, that denotes in
what order the category is allocated. The model of HiStar presented
in [33] has no notion of bins: the processes in a program simply
allocate a categories. Bins are instead a part of our framework for
instrumenting programs to run in HiStar. However, clearly there is a
direct correspondence between a system that constructs a category
from a single natural number index, and a system that constructs a
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category from a pair of natural number as bin number and natural
number as index into the bin.

A process’s label maps each category to a level, which denotes
the highest confidentiality, or taint, of information that the process
has read with respect to the given category. Let the set of levelsL be
the terms level(i) for 0 ≤ i ≤ 3, which denote increasing levels of
taint for a category, and the term ?, which denotes declassification
privilege in a category.

Let the alphabet of host primitives D be as follows. For each
process proc and bin b, let there be a host primitive (proc,make cat(b)) ∈
D that requests H? to allocate a new category in b. For each cate-
gory cat and level l, let there be a host primitive (proc, set taint(l)) ∈
D that requests H? to set the level of cat for proc to l. Finally, let
there be a host primitive noop ∈ D that has no effect on any label
of any process.

Let the theory of HiStar T be a first-order logic with conjunc-
tion, disjunction, negation and quantification. Each formula in T is
interpreted over a domain that contains elements corresponding to
elements of the alphabets C, D, and E, an identifier for each process
module in P, each category that may be allocated, and each level.
There is one constant in T for each level. The predicates of T are
equality andv, which is a binary predicate over labels, axiomatized
below.

Each state in S, the state-space of H?, is either the stuck state
stuck, or a map from each process in P to a partial map from each
category to a level, and a map from each bin to the number of
categories allocated in the bin:

S = (Procs→ Cats→ L)× (B → N)

As shorthand, define the following functions for describing com-
ponents of a state. Let s be a non-stuck state. Let label(s, proc) =
π1(s)(proc) be the map in s from each process to a label, and let
count(s) = π2(s) be the map in s from each bin to the count of
categories allocated in the bin.

The initial state of H?, s0, is the function that maps each process
to an empty label, and in which no categories have been allocated
in any bin.

∀proc : label(s0, proc) = ∅ ∧ ∀b : count(s0)(b) = 0

The set of accepting states A is the set of a states that are not
the stuck state.

The alphabet Σ is the product of the program commands, host
commands, and privilege events: Σ = (C× D)× E.

The transition relation of H?, ρ(s, ((c, d), e), s′), is a conjunc-
tion of the following constraints. To define the constraints, we first
define a flow relation vlev over levels, and from it, a flow relation
over labels. A category cat allows information to flow from a send-
ing process procs to a receiving process procr if the level of cat
for procs is at least as low as the level of cat for procr , or if the
level of cat for either procs or procr is the declassification level ?.
Define a binary flow relation vlev over levels as:

l1 vlev l2 ⇐⇒
(l1 = level(n) ∧ l2 = level(m) ∧ n ≤ m) ∨ l1 = ? ∨ l2 = ?

Note that the relation vlev is not an ordering (it is not anti-
symmetric), even though the symbol “v” is typically used to denote
an order. We use the symbol to be consistent with [33].

In HiStar, a process procs may send information to a process
procr if for each category cat that has been allocated by P, the
level of cat for procs and the level of cat for procr satisfy the flow
relation. Define a binary flow relation v over two labels l1 and l2
as:

l1 v l2 ⇐⇒ ∀cat : l1(cat) vlev l2(cat)

v defines when H? allows a privilege event. H? allows a process
procs to send information to process procr only if procs and procr
satisfy the flow relation:

e = allow(procs, procr) =⇒ label(s, procs) v label(s, procr)

H? responds to program commands executed by P as follows.
Each program command is of the form (proc, step) for some proc
in P. H? allows each such program command:

c = (proc, step) =⇒ True

H? responds to host primitives invoked by P as follows. If a
process proci in P allocates a new category in a bin, then for the
new category, H? gives proci the declassification level, and gives
every other process the default label of 1:

d =(proci,make cat(b)) =⇒
label(s′, proci)(cat(b, count(b)) = ?

∧∀procj 6= proci : label(s′, procj)(cat(b, count(b)) = 1

∧∧count(s′)(b) = count(s)(b) + 1

If a process proci requests to set its level for a category cat to
ln, then HiStar sets the level of cat for proci to ln, provided that
the that old level lo of proci for cat and ln satisfy the “can-change
relation” vδ:

lo vδ ln ⇐⇒ lo v ln ∧ (ln 6= ? ∨ lo = ?)

Suppose that P requests to set the level of category cat to level ln.
Then H? sets the level of cat to ln only if for lo the current level of
cat lo can change to ln:

d =(proc, set taint(cat(b, i), l)) =⇒
ite(label(s, proc)(cat) vδ l,

label(s′, proc)(cat) = l,

label(s′, proc)(cat) = label(s, proc)(cat))

Finally, if P invokes the host primitive, then the state of H? does
not change:

d = (proc, noop) =⇒ s = s′

4.2.2 An Abstract Model of HiStar
The model of HiStar H? defined in §4.2.1 directly corresponds to
the description of HiStar given by its developers. However, we
cannot solve symbolic policy-weaving problems defined over H?
by applying an SMT solver, as the transition relation ρ of H? is
defined by formulas that are universally quantified over the set of all
categories that may be allocated by a program P. In general, this set
of categories may be unbounded. To resolve this issue, we define a
host H?

# from which one can define policy-weaving problems that
may be solved using an SMT solver. There are sound abstractions
of H? that are coarser or finer than H?

#. However, the definition
of H?

# is based on a how expert programmers write programs
for HiStar. In particular, while HiStar allows a program to allocate
arbitrarily many categories, expert HiStar programs typically write
their real-world program to use only a small number of categories.
Analogously, H?

# maintains precise information for, or isolates,
a small set of categories, and combines the precise information
for the isolated categories with approximate but sound information
about the non-isolated, or summarized categories, to ensure that a
program is secure.

Let H?
# = (T ,S, s0, A, ρ) be a symbolic acceptor that defines

a language in ((C×D)×(E∪E))∗. The theory T of H?
# is a first-

order theory with only bounded quantification. The formulas of T
are interpreted in the semantics of three-valued logic [29]. We now
give a brief background on three-valued logic sufficient to describe
its use in defining H?

#. In three-valued logic, an interpretation
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maps every predicate, and by extension, every formula, to one
of three truth values in B3, intuitively corresponding to true (1),
false (0), and unknown ( 1

2
). We do not give the full semantics of

three-valued logic, but define the following set of operators and
predicates over truth values. For truth values x and y, x ≤ y yields
a definite (two-valued) truth value that is true iff the numeric value
for x is less than or equal to the numeric value for y. x + y and
x − y produce the truth values from saturation arithmetic over
the range [0, 1]. The truth value least upper bound uv is a binary
function over truth values such that x uv y = min(x, y). uv may
be extended in the natural way to a function over arbitrary sets of
truth values. The domain to which the constants and functions of T
are interpreted is the same as the domain of the theory H?.

Each state in the state-space S of H?
# maps each bin to a

counter of the category isolated for the bin and map from each
process to its level for the isolated category, and a map from each
pair of processes to a three-valued Boolean that denotes whether
information can flow from the first process to the second process.
Thus, S is the domain

S = B → ((N× (Procs→ L))× (Procs2 → B3))

As shorthand, let isoindx(s, b) = π1(π1(s(b))), let isolabel(s, b) =
π2(π1(s(b))), and let sum(s, b) = π2(s(b)).

In the initial state s0 of H?
#, no bin has an isolated category,

and the summary flow relation allows information to flow from
each process to each process:

∀b : isoindx(s, b) = 0 ∧ isolabel(s, b) = ∅
∧ ∀proc1, proc2 : sum(s0, b)(proc1, proc2) = 1

The accepting states of H? are all non-stuck states in S.
The transition relation ρ(s, ((c, d), e), s′) of H?

# holds if and
only if pre-state s, program command c, host primitive d, privi-
lege event e, and post-state s′ satisfy a conjunction of constraints.
The constraints are defined using three-valued logic predicates and
operators, but ρ itself is interpreted as a two-valued logic value.
The constraints are defined in terms of a three-valued flow-relation
v# that decides for each pair of process proc1 and proc2, either
proc1 definitely may send information to proc2 (in which case,
proc1 v# proc2 = 1), or proc1 definitely may not send infor-
mation to proc2 (in which case, proc1 v# proc2 = 0), or H#

cannot decide precisely if proc1 can send information to proc2 (in
which case, proc1 v# proc2 = 1

2
). proc1 v# proc2 if and only

if, for each bin b, the category isolated for b allows proc1 to send
information to proc2, and the categories summarized for b allow
proc1 to send information to proc2:

proc1 v
# proc2 =

vl

b∈B

isolabel(s, b)(proc1) v isolabel(s, b)(proc2)

uvsum(s, b)(proc1, proc2)

Thev# relation defines when each privilege event e ∈ E∪E is
allowed:

e = allow(proc1, proc2) =⇒ proci v
# procj ≥

1

2

e = allow(proc1, proc2) =⇒ proci v
# procj ≤

1

2

The only program commands in C are (proc, step) for each
process module proc. H?

# allows each such program command:

c = (proc1, step) =⇒ True

H?
# responds to host primitives in D as follows. First, suppose

that a process proc requests to create a new category in bin b. Then
H?

# merges information about the category isolated for b with the

summary relation for b, and isolates a new category for b:

d = (proc,make cat(b)) =⇒
isoindx(s′, proc) = isoindx(s, proc) + 1

∧ isolabel(s, b)(proc) = ?

∧ ∀proc1 6= proc : isolabel(s, b)(proc1) = 1

∧ ∀proc1, proc2 : sum(s′, b)(proc1, proc2) =

(sum(s, b)(proc1, proc2)

uv isolabel(s, b)(proc1) vlev isolabel(s, b)(proc2))

Now suppose that a process proc requests to set the level of
some category cat in its label. If cat is isolated in its bin b, then
H?

# updates the precise level to which cat is mapped. Otherwise,
H?

# updates the summary relation for b, making the sound as-
sumption that the label of proc is raised to an arbitrarily high level.

d = (proc, set taint(cat(b, i), l)) =⇒
ite(isoindx(s, b) = i,

ite(isolabel(s, b)(proc) vδ l,
isolabel(s′, b)(proc) = l,

isolabel(s′, b)(proc) = isolabel(s, b)(proc)),

∀ proc2 :

x = sum(s, b)(proc, proc2)

∧sum(s′, b)(proc, proc2) =

(
x+

1

2

)
− 1

2

∧y = sum(s, b)(proc2, proc)

∧sum(s′, b)(proc2, proc) =

(
y − 1

2

)
+

1

2
)

Finally, if a process proc invokes the noop host primitive, then
H?

# does not change its state:

d = (proc, noop) =⇒ s′ = s

4.2.3 Real-World Programs and Policies on HiStar
Anti-Virus Scanner The developers of HiStar ported the ClamAV
anti-virus scanner [8] to the HiStar operating system [33]. The
version of ClamAV rewritten for HiStar can enforce strong security
guarantees while making weak assumptions about the integrity of
ClamAV. In particular, ClamAV executes over a Scanner process
module. The Scanner module reads the private data of a user,
reads entries in an updated virus database VirusDB, and checks
the private data against information in the database. If the private
data indicates that the host system has been infected with a virus,
then the Scanner reports the virus to the user over a TTY terminal.
However, the Scanner module may contain vulnerabilities, and if it
is compromised after reading the user’s private data, then it may
leak the data directly over the network. Furthermore, a daemon
process Update updates the virus database; Update should be able
to read information from the network and write information to the
virus database, but it should not be trusted to write the user’s private
data.

We may formalize the problem of instrumenting ClamAV to
execute securely and functionally as a policy-weaving problem. In
particular, let the ClamAV program be defined by the following set
of process modules:

• Network: a network device.
• TTY: an output terminal to which the Scanner reports infor-

mation to the user.
• UserData: a user’s sensitive data that the Scanner should be

able to read, but should not be able to leak directly over the
network.
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• VirusDB: a virus database that stores information used by the
Scanner to detect the signature of a virus in a user’s files.

• Update: a process that fetches information about new viruses
from the Network and updates the VirusDB.

• Scanner: the main module of ClamAV, which reads UserData
and VirusDB, and reports information about viruses on a sys-
tem to TTY through wrap.

• wrap: a module that launches ClamAV by spawning the Scanner
module. wrap also filters information that flows from the
Scanner module to an output TTY device.

Let the alphabet of program commands for ClamAV C contain
a command step that denotes any step of execution by any process
module. Let the alphabet of privilege events E contain one event
allow(proc1, proc2) for each pair of process modules proc1 and
proc2.

Let the security policy of ClamAV be a regular language
S ⊆ (C × E)∗. Let TransFlow(proc, proc′,Procs) ⊆ (C × E)∗

be the language of all sequences that contain a subsequence
(step, allow(proc, proc1)), (step, allow(proc1, proc2)), . . . , (step,
allow(procn−1, proc′)) for each proci ∈ Procs. Then the language
of system traces that violate security is

V = TransFlow(Scanner,Network, {wrap})
∪TransFlow(Scanner,TTY, {wrap})
∪.∗(step, allow(Update,UserData))

Then the security policy is S = V .
Let the functionality policy of ClamAV be a regular language

F ⊆ (C×E)∗ that describes each required communication between
processes described informally above. Let the set of protected priv-
ilege events be

R = {allow(Scanner,wrap), allow(wrap, Scanner),

allow(Network,Update), allow(Update,Network),

allow(Update,VirusDB), allow(VirusDB,Update),

allow(wrap,TTY), allow(step,UserData)}

Then the functionality policy is F = ({step} ×R)∗.

OpenVPN The developers of HiStar ported a version of the
OpenVPN virtual private network (VPN) client [28] to HiStar,
and described how to instrument programs so that they enforce
strong guarantees using the VPN. A VPN allows a system not con-
nected physically to a network to securely connect to the network
remotely. If applications on such a system are compromised, then
an attacker can use the compromised applications to leak informa-
tion to and from the secure network. However, a system may use
HiStar to ensure that even if applications are compromised, they
cannot leak information to and from the secure network.

We may express the problem of instrumenting applications on
a HiStar system with a VPN to a policy-weaving problem. Let an
application consist of the following process modules:

• VPNBrowser: a browser that must be able to connect to the
VPN, but must not be able to send or receive information from
the Internet, unless the information is sent through OpenVPN.

• VPNStack: a process that mediates connections to the VPN.
• InetBrowser: a browser that must be able to connect to the In-

ternet, but must not be able to send or receive information from
the VPN, unless the information is sent through OpenVPN.

• InetStack: a process that mediates connections to the Internet.
• OpenVPN: OpenVPN, a VPN client that is trusted to send and

receive information from both the VPN and the Internet.

Let the alphabet of program commands for OpenVPN C contain
a command step that denotes any other step of execution by any
process module. Let the alphabet of privilege events E contain one
event allow(proc1, proc2) for each pair of process modules proc1

and proc2.
Let the security policy for OpenVPN be S ⊆ (C × E)∗, be

defined as follows. VPNBrowser should not be able to leak infor-
mation to InetStack, and InetBrowser should not be able to leak
information to VPNStack. Thus, for

V = TransFlow(VPNBrowser, InetStack, {OpenVPN})
∪TransFlow(InetBrowser,VPNStack, {OpenVPN})

The security policy is S = V .
Let the functionality policy for OpenVPN be F ⊆ (C × E)∗,

defined as follows. VPNBrowser must always be able to send
information to and receive information from VPNStack, the
InetBrowser should always be able to send information to and
receive information from InetStack, and OpenVPN should be able
to send information to and receive information from VPNStack
and InetStack. Let the set of protected events be

R = {allow(VPNBrowser,VPNStack), allow(VPNStack,VPNBrowser),

allow(InetBrowser, InetStack), allow(InetStack, InetBrowser),

allow(OpenVPN,VPNStack), allow(VPNStack,OpenVPN),

allow(OpenVPN, InetStack), allow(InetStack,OpenVPN)}

Then F = ({step} ×R)∗.

4.3 Asbestos
The Asbestos operating system is a DIFC system similar to the
HiStar operating system. Asbestos assigns a label to each process.
When one process tries to communicate information to another pro-
cess, Asbestos interposes on the communication, checks the label
of the sending process against the label of the receiving process,
and only allows the communication if the labels satisfy a particular
relationship. However, while HiStar allows each process to explic-
itly manipulate its label, in Asbestos, labels are updated automati-
cally when information is sent and received. Furthermore, Asbestos
allows processes to raise the labels of other processes by providing
a contamination label with each message, described below, which
has no clear analogous object in HiStar. We thus present Asbestos
alongside HiStar to illustrate how different privilege-aware systems
provide different host primitives with different semantics, to allow
programs to enforce policies defined over the same privilege events.
A key feature of our policy-weaving problem and algorithm is that
as long as the developers of two systems with different primitives
provide models of their system, an application developer need only
write a single policy for their application and may automatically
obtain a version of their application instrumented for each system.

4.3.1 Concrete Model of Asbestos
We now give a model of Asbestos for a program P, represented as
a symbolic acceptor HA = (T ,S, s0, A,Σ, ρ). HA is partly defined
by various objects identical to objects used to define HiStar (§4.2),
such as labels, categories, and levels; for clarity, we do not redefine
these objects.

The theory of Asbestos T is identical to the theory of HiStar.
A state of Asbestos in S maps each process to a send label and a

receive label. The state space of HA is thus the space of all functions

Procs→ (Cats→ L)2

along with a special stuck state. As shorthand, let recvlab(s, proc) =
π1(s(proc)), and let sndlab(s, proc) = π2(s(proc)).
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The initial state s0 of HA is the state that maps every process to
an empty label:

∀proc : s0(proc) = ∅
The accepting states A of HA are all non-stuck states.
The alphabet Σ of HA is (C×D)×E, where C and E are defined

from P as they are for HiStar. The alphabet of host primitives
D are defined as follows. Each process proc may invoke a host
primitive to request to create a category ((proc, createcat) ∈ DA),
may request to authorize another process to be able to declassify
a category ((proc, authdecl(proc1, c)) ∈ DA), or may send a
classification label to another process ((proc, sndclass(L)).

The transition relation ρ of Capsicum for P is a ternary predi-
cate ρ(s, ((c, d), e), s′) satisfied by pre-state s, program command
c, host primitive d, privilege event e and post-state s′ that sat-
isfy the conjunction of the following constraints. The first con-
straints define what privilege events are allowed. The privilege
event allow(procs, procr) is allowed if and only if the sending label
of procs and the receiving label of procr satisfy the flow relation
defined in §4.2.1:

e = (proc, allow(procs, procr)) =⇒
sndlab(procs) v recvlab(procr)

HA allows each program command (proc, c) for each process mod-
ule proc. HA responds to each host command in D as follows. If
a process requests to create a category on HA, then HA responds
analogously to how H? responds to the same command. If a pro-
cess proc1 requests to authorize another process proc2 to be able to
declassify a category cat, then HA checks if proc1 has the declassi-
fication label for cat, and if so, updates the label of proc2 to be the
declassification label:

d= (proc1, authdecl(proc2, cat)) =⇒
sndlab(s′, proc1)(cat) = ? ⇐⇒ sndlab(s′, proc2)(cat) = ?

Finally, if a process procs requests to raise the label of a receiving
process procr by sending a classification label L to procr , then HA

responds to raising the sending label of procr accordingly:

d= (procs, sndclass(procr, L)) =⇒
ite(sndlab(s, procr) v L,

sndlab(s′, procr) = L,

sndlab(s′, procr) = sndlab(s, procr))

4.3.2 An Abstract Model of Asbestos
The concrete model of Asbestos HA cannot be used to construct
symbolic weaving problems that may be solved by applying an
SMT solver, because the transition relation of HA is defined by the
v relation over labels, which is defined by universal quantification
over the unbounded set of categories that a program may allocate
at runtime. However, we may construct a sound abstraction HA

#

of HA that keeps an approximation of the flow relation that may
be finitely represented. HA

# is constructed from HA similarly to
how H?

# is constructed from H? (§4.2.2): HA
# partitions the

unbounded set of categories that may be constructed by a program
are partitioned into a finite set of bins, and HA

# maintains an over-
approximation of the flow-relation over labels using the bins. Given
that the constructions are nearly identical, we do not give an explicit
definition of HA

#.

4.3.3 Real-World Programs and Policies on Asbestos
OKWS The developers of Asbestos ported the OKWS web-
server [20] to Asbestos, allowing it enforce stronger security prop-
erties than it could when running on UNIX [15]. OKWS is a web-
server that receives requests over the network, and services each

request by launching an untrusted Worker process to service the
request. The full implementation of OKWS is complex, and in this
report, we only discuss a high-level model of the system, along with
its security and functionality policies. Let OKWS be structured as
executing over the following process modules and files:

• netd: implements the network stack, and mediates all informa-
tion sent into and out of the network.

• okdemux: receives requests for services from netd.
• Workeri: for each request u that okdemux receives, it forks

a process Workeri to service the request. In general, OKWS
may fork an unbounded set of Worker processes. Our policy-
weaving problem cannot reason about applications composed
from unbounded sets of processes, so in this discussion, we
suppose that OKWS only receives a bounded number (two) of
requests.

• porti: for each request i that okdemux receives, it creates a port
to send and receive all information regarding the request.

The alphabet of program commands C contains, for each process
module proc, a program command (proc, step) that denotes that
proc performs a step of execution. The alphabet of privilege events
E contains, for each pair of processes proc1 and proc2, a privilege
events allow(proc1, proc2).

Let the security policy S ⊆ (C× E)∗ for OKWS be the follow-
ing. Workeri for request i must not be able to send information to
the Worker process for the other request, or to the port for the other
request. Let the set of violating privilege events V ⊆ E be

V = {allow(Worker0,Worker1), allow(Worker0, port1),

allow(Worker1,Worker0), allow(Worker1, port0)}

The security policy is S = ({step} × V )∗.
Let the functionality policy F ⊆ (C × E)∗ for OKWS be

the following. Each Workeri must be able to send information
to and receive information from porti. okdemux must be able to
send information to and receive information from netd and each
Workeri. Let the set of protected events be

R = {allow(Worker0, port0), allow(port0,Worker0),

allow(Worker1, port1), allow(port1,Worker1),

allow(okdemux, netd), allow(netd, okdemux),

allow(okdemux,Worker0), allow(Worker0, okdemux),

allow(okdemux,Worker1), allow(Worker1, okdemux)}

Then the functionality policy is F = ({step} ×R)∗.

4.4 Flume
The Flume [21] DIFC operating system provides a set of host
primitives for allowing applications to enforce information-flow
security. The Flume primitives are distinct from those of HiStar
or Asbestos, because in the HiStar and Asbestos systems, the label
of each process completely determines both when it can send or
receive information, and how the label itself my change. However,
in Flume, each process has, along with its label, a distinct positive
capability that describes all categories that it may add to its label,
and a negative capability that describes all categories that it may
remove from its label.

4.4.1 Concrete Model of Flume
The concrete model of Flume HF = (T , S, s0, A,Σ, ρ) for a given
program P is a symbolic acceptor defined as follows.

HF is defined over an alphabet of program commands C, alpha-
bet of host primitives D, and alphabet of privilege events E. The
program commands in C are the following. Each process module
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proc in P executes only a single program command that denotes a
step of execution, (proc, step) ∈ C.

The host primitives in D are the following. Each process mod-
ule proc in P can request to create a new category by invoking
(proc, createcat) ∈ D. proc can request to add a category to its
label by invoking (proc, addcat) ∈ D, or can request to remove
a category from its label by invoking (proc, addcat) ∈ D. Fi-
nally, proc can request to remove a positive capability by invoking
(proc, rmpos) ∈ D, or it can request to remove a negative capabil-
ity by invoking (proc, rmneg) ∈ D.

The alphabet the privilege events E for P in Flume is the same
alphabet of privilege events for P in HiStar.

The theory T of Flume for P is first-order, with conjunction,
disjunction, negation, and quantification. Formulas in T are inter-
preted over a domain that contains elements corresponding to the
elements of alphabets C, D, and E, an identifier for each process
module in P, and element and set of elements in a countable set of
categories in Cats. The constants of T are the constant ∅ for the
empty set of categories, and the constant Cats for the set of all cat-
egories. The functions of T are intersection over sets of categories,
and constructors that construct elements in the alphabets. The pred-
icates of T are an equality predicate and set membership. The sub-
set predicate is defined from the membership predicate. Functions
and predicates not corresponding to sets of rights are interpreted
as their corresponding elements in the domain of T , and the set
functions and predicates are axiomatized by a standard set theory.

Each state in the state-space S of Flume stores the index of
the next category to be created, and maps each process to (1) its
label, which is the set of categories that define what information it
may send and receive, (2) its positive capability, which is the set of
categories that it may add to its label, and (3) its negative capability,
which is the set of categories that it may remove from its label. For
Procs the set of process modules in a program and Cats the set of
categories that may be allocated dynamically by a program, S is the
domain

S = N× (Procs→ (P(Cats))3)

along with a “stuck” state. As shorthand, for each non-stuck state
s and process proc, let catindx(s) = π1(s), let lab(s, proc) =
π1(π2(s)(proc)), let pos(s, proc) = π2(π2(s)(proc)), and let
neg(s, proc) = π3(π2(s)(proc)).

The initial state s0 of Flume for P maps every process in P to
an empty label, positive capability, and negative capability:

∀proc : lab(s0, proc) = pos(s0, proc) = neg(s0, proc) = ∅

The accepting states A of Flume for P are all non-stuck states.
The alphabet of Flume is ((C× D)× E).
The transition relation ρ of Flume for P is a ternary predicate

ρ(s, ((c, d), e), s′) over a pre-state s, program command c, host
primitive d, privilege event e, and post-state s′. ρ is a conjunction
of constraints. The first constraint requires that a process procs may
only send information to a process procr if the label of procs is a
subset of the label of procr:

e = allow(procs, procr) =⇒ lab(s, procs) ⊆ lab(s, procr)

where subset over sets of categories has its standard definition:

L1 ⊆ L2 ⇐⇒ ∀c : c ∈ L1 =⇒ c ∈ L2

For each process module proc in P, there is only one program
command (P, step), and it is allowed as a component of each
transition. HF responds to host primitives in D as follows. If a
process proc requests to create a category by invoking the host
primitive (P, createcat), then HF creates a category, gives proc
positive and negative capabilities for the category, and updates the

index of the next category to be created:

d = (proc, createcat) =⇒
pos(s′, proc) = pos(s, proc) ∪ {catindx(s)}
∧ neg(s′, proc) = neg(s, proc) ∪ {catindx(s)}

If a process proc requests to add a category cat to its label
by invoking the host primitive (proc, addcat(cat)), then HF only
adds cat to the label of proc if proc has cat category in its positive
capability:

d = (proc, addcat(c)) =⇒
ite(c ∈ pos(s, proc),

lab(s′, proc) = lab(s, proc) ∪ {c},
lab(s′, proc) = lab(s, proc))

If a process proc requests to remove a category cat from its
label by invoking the host primitive (proc, addcat(cat)), then HF

removes cat from the label of proc only if cat is in the negative
capability of proc.

d = (proc, addcat(c)) =⇒ ite(c ∈ neg(s, proc),

lab(s′, proc) = lab(s, proc)\{c},
lab(s′, proc) = lab(s, proc))

If a process proc requests to remove a category from its positive
capability, then HF removes the category:

d = (proc, rmpos(c)) =⇒ pos(s′, proc) = pos(s, proc)\{c}
If a process proc requests to remove a category from its negative

capability, then HF removes the negative capability:

d = (proc, rmneg(c)) =⇒ neg(s′, proc) = neg(s, proc)\{c}

4.4.2 An Abstract Model of Flume
The concrete model of Flume HF cannot be used to construct weav-
ing problems that may be solved by applying an SMT solver, be-
cause the transition relation of HF is defined by the subset relation
over sets of categories created by a program, which is defined by
universal quantification over the set of all categories, which is un-
bounded. However, we may construct a sound abstraction HF

# of
HF that keeps an approximation of the containment relation that
may be finitely represented. HF

# is constructed from HF similarly
to how H?

# is constructed from H? (§4.2.2): HF
# partitions the

unbounded set of categories that may be constructed by a program
into a finite set of bins, and HF

# maintains an approximation of
the containment relation defined by the bins. Given that the con-
struction of HF

# from HF
# is nearly identical to the construction

of H?
# from H?, we do not give an explicit definition of HF

#.

4.4.3 Real-World Programs and Policies on Flume
The developers of Flume ported the MoinMoin wiki [26] to Flume,
allowing it to enforce stronger security properties than it could
when running on a traditional operating system, like UNIX [21].
MoinMoin is a wiki server that allows users to send remote re-
quests over the network to read or edit content on the wiki. The
Flume developers repartitioned MoinMoin into FlumeWiki, a wiki
server more appropriately structured to use the Flume primitives to
enforce security. The developers then instrumented FlumeWiki to
use the Flume primitives to enforce security. The full implementa-
tion of FlumeWiki is a complex server, and in this report, we only
describe the server at a high-level, and discuss a component over
its security and functionality policies. Let FlumeWiki execute over
the following process modules and files:

• port80: a special network port from which requests come in for
the wiki server.
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• httpdi: an instance of the http daemon that communicates
information about request i to and from port80. In practice,
FlumeWiki may service an unbounded set of requests, and thus
may create an unbounded set of instances of httpdi. However,
for this report, we assume that FlumeWiki services at most two
requests.

• wikilaunchi: a small, trusted process that receives a request
from the httpd process and creates an untrusted Worker process
to service the request.

• Workeri: a complex, untrusted process that implements most of
the logic in servicing a request.

Let the alphabet of program commands C contain a single
program command step that denotes one step of execution of
FlumeWiki. Let the alphabet of privilege events E contain for each
two processes proc1 and proc2, a privilege event allow(proc1, proc2)
that denotes that information is allowed to flow between proc1 and
proc2.

Let the security policy S ⊆ (C× E)∗ be defined as follows. No
Workeri process should be able to directly leak information to the
network over port80, or to another Workeri process. Let the set of
violating privilege events be

V = {allow(Worker0, port80), allow(Worker1, port80),

allow(Worker0,Worker1), allow(Worker1,Worker0)}

Then the security policy is S = ({step} × V )∗.
Let the functionality policy F ⊆ (C×E)∗ be defined as follows.

Each httpdi process must always be able to send information to
and receive information from port, each wikilaunchi process must
be able to send information to and receive information from the
corresponding httpdi process, and each Workeri process must be
able to send information to and receive information from the cor-
responding wikilaunchi process. Let the set of protected privilege
events be

R = {allow(httpd0, port), allow(port, httpd0),

allow(httpd1, port), allow(httpd1, port),

allow(wikilaunch0, httpd0), allow(httpd0,wikilaunch0),

allow(wikilaunch1, httpd1), allow(httpd1,wikilaunch1),

allow(Worker0,wikilaunch0), allow(wikilaunch0,Worker0),

allow(Worker1,wikilaunch1), allow(wikilaunch1,Worker1)}

The functionality policy is F = ({step} ×R)∗.

5. Related Work
Formal games: Formal games have been studied [3, 4, 11, 24] as
a framework for synthesizing reactive programs and control mech-
anisms. Previous work describes algorithms that take a parity game
represented symbolically, determine which player may always win
the game, and sometimes synthesize a winning strategy for the
player [11, 24]. One contribution of our work is connecting these
problems to an apparently different problem of instrumenting pro-
grams for privilege-aware systems. Accordingly, we present an al-
gorithm that addresses problems that arise in games constructed
from instrumenting programs for such systems. In particular, our
algorithm searches for strategies with size up to a given bound,
and considers the case where the alphabet of the defending player
is much larger than the alphabet of the attacking player. The ap-
proach is similar to a known algorithm that searches for a witness
set of states of bounded size [24]. Our approach differs from that
algorithm in that we search for a strategy with a different condition
for winning.

Reference monitors: Inline reference monitors describe a policy
for a program to satisfy, and monitor the program to ensure that it
satisfies the policy [1, 16]. Reference monitors traditionally mon-
itor a stream of security-sensitive events, and respond with one of
two possible actions: either the monitor may allow the program to
continue executing, or it may abort the program. In contrast, our
policy-weaving algorithm instruments a program to enforce a pol-
icy by instrumenting the program to (i) track the security-sensitive
events of a program, and (ii) respond by invoking primitives drawn
from a rich set provided by a privilege-aware system. Furthermore,
an inline reference monitor guarantees the correctness of the pro-
gram that it monitors only if the integrity of the control-flow of
the program is preserved. In contrast, our policy-weaver can poten-
tially instrument programs to enforce security policies even when
the control-flow integrity of an application is subverted, provided
that the integrity of the host operating system is not subverted.

Edit automata: Edit automata form a hierarchy of runtime en-
forcement mechanisms that generalize IRMs [22]. The hierarchy
consists of supression automata, which can remove events from the
event stream of a monitored program while allowing the program
to continue to execute; insertion automata which can insert events
into the event stream of the program; and edit automata, which can
both suppress and insert. As in the case of IRMs, edit automata both
monitor and alter a stream of events, whereas a solution to a weav-
ing problem monitors events and responds by calling primitive op-
erations, subject to rules defined by a privilege-aware system. The
work in [22] introduces a notion of transparency to restrict how an
edit automaton may alter the events of a program. This concept is
similar in spirit to our notion of a functionality policy (Defn. 2),
and the two notions intuitively seem equivalent, although we have
not proven any formal equivalence.

Privilege-aware OS: Privilege-aware operating systems [15, 21,
32, 33] provide powerful primitive operations that applications call
to enforce a high-level notions of security. DIFC operating systems
[15, 21, 33] allow applications to enforce information-flow policies
using labels, while Capsicum [32] allows applications to enforce
access policies using capabilities and lists of rights. Prior work
automatically verifies that a program instrumented to use the Flume
OS [21] primitives enforces a high-level policy [17]; automatically
instruments programs to use the primitives of the HiStar OS [33] to
satisfy a policy [14], and automatically instruments programs [17]
to use the primitives of the Flume OS [21]. However, the languages
of policies used in the approaches presented in [14, 18] are not
temporal and cannot clearly be applied to other privilege-aware
systems, and the proofs of the correctness of the instrumentation
algorithms are ad hoc. The work presented in this paper generalizes
the work presented in [14, 18] by reducing the instrumentation
problem to a parity game. As a result, the technique in this paper
can be instantiated to instrumentation algorithms for a variety of
privilege-aware systems, including HiStar and Flume, that support
rich languages of policies, and admit direct proofs of correctness.

6. Conclusion
Privilege-aware operating systems make feasible the problem of
constructing large, secure applications from untrusted components.
However, such systems do so by greatly complicating the task of
application programmers. In this paper, we have formalized the
problem of writing programs for such systems with a game se-
mantics. As a result, we have obtained an algorithm that takes a
formal description of the semantics of a privilege-aware system, a
program that makes no use of the primitive operations of the sys-
tem, a set of executions allowed for security, and a set of executions
required for functionality, and produces a secure but functional pro-
gram. We believe that these results will allow for a set of tools that
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will significantly increase the efficacy, and encourage the adoption
of, privilege-aware systems.
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