

Computer
Sciences
Department

EPIC: Platform-as-a-Service Model for Cloud Networking

Theophilus Benson
Aditya Akella
Sambit Sahu
Anees Shaikh

Technical Report #1686

February 2011

EPIC: Platform-as-a-Service Model for Cloud Networking

Theophilus Benson⋆, Aditya Akella⋆, Sambit Sahu†, and Anees Shaikh†

⋆UW-Madison, †IBM Research

Abstract

Enterprises today face several challenges when hosting
line-of-business applications in the cloud. Central to
many of these challenges is the limited support for con-
trol over cloud network functions, such as, the ability
to ensure security, performance guarantees or isolation,
and to flexibly interpose middleboxes in application de-
ployments. In this paper, we present the design and im-
plementation of a novel cloud networking system called
EPIC. Customers can leverage EPIC to deploy applica-
tions augmented with a rich and extensible set of net-
work functions such as virtual network isolation, custom
addressing, service differentiation, and flexible interpo-
sition of various middleboxes. EPIC primitives are di-
rectly implemented within the cloud infrastructure itself
using high-speed programmable network elements, mak-
ing EPIC highly efficient. We evaluate an OpenFlow-
based prototype of EPIC and find that it can be used to
instantiate a variety of network functions in the cloud,
and that its performance is robust even in the face of large
numbers of provisioned services and link/device failures.

1 Introduction
Cloud computing is an emerging new model for the de-
livery and consumption for IT resources. Cloud ser-
vice providers deliver virtual servers with pre-configured
software stacks using standardized and highly automated
processes with support for several delivery models, e.g.,
public, private, and hybrid. Customers of cloud services
are able to consume these resources paying only for the
resources they use, with the ability to scale usage on de-
mand. Given the economic appeal and agility of this
model, it is not surprising that both small and large com-
panies are increasingly leveraging cloud computing for
their workloads [40, 41].

Despite the growing adoption of cloud by enterprises,
particularly for test/development workloads, key chal-
lenges remain when migrating Line-of-Business produc-
tion applications. A variety of reasons are cited to keep
certain production workloads in the enterprise data cen-
ter. These include, poor isolation, lack of support for se-
curity, privacy, and audit compliance, unpredictable per-
formance, and poor reliability of resources [45]. Finally,
it is increasingly evident that large enterprises are unwill-
ing to move all workloads to public clouds. This means,
for example, that applications running in a cloud must
be able to communicate securely with those running be-

hind the enterprise firewall, something which is not well-
supported today.

Underlying many of these challenges is theabsent or
limited support for control over the network in current
Cloud Computing environments. The goal of our pa-
per is to highlight the support needed in the cloud net-
work layer to overcome these challenges. Our central
contribution is thedesign, implementation and evalua-
tion of EPIC, a general cloud networking system that of-
fers network-level controls and services to support the
operation and management of a broad range of produc-
tion enterprise applications. EPIC’s novelty arises from
the integration of provisioning and management for both
cloud-based applications and networks. EPIC brings
these together in a unified framework that provides cloud
tenants with a simple abstraction for deploying virtual in-
stances and their underlying network functions, and also
includes a number of techniques and algorithms to ad-
dress the scaling and performance issues that surface.

The cloud network model thus far has been to provide
basic reachability, based on dynamic or static publicly
routable addresses, with basic firewall capabilities avail-
able at each virtual server. Several key network functions
are generally not available, however, e.g., fine-grained
network isolation for security and/or service differen-
tiation, middleboxes for intrusion detection and audit
compliance, control over addressing, and optimizations
like protocol acceleration, path control and distributed
caching for improved performance and availability.

A few cloud providers are starting to provide network-
related features that address some of these shortcomings.
Cloud providers such as Amazon have extended their
network features to include secure VPN-based connec-
tivity to a set of isolated virtual instances with the abil-
ity to specify private address ranges and subnets [3, 7].
Third-party companies provide virtual appliances that
can be deployed in a cloud to provide, for example, fast
data replication [11], application acceleration [19] and
content delivery [1, 4].

While these certainly help to bridge the gaps in cloud
networking functionality, they represent point solutions
that are not well-integrated from a customer point of
view. In particular, anecdotal evidence suggests that it is
difficult to compose different service offerings in order to
faithfully replicate, in clouds, the complex network func-
tionality found within enterprise deployments today [35].
It is also expensive, as each offering is from a diffe-
rent vendor. We believe that what is required is a uni-

1

fied cloud-provided framework for customers to flexibly
define and use a rich variety of cloud network services,
coupled with corresponding mechanisms for providers to
efficiently deploy and manage these services.

In this paper, we describe EPIC, a cloud networking
framework with key primitives that customers can lever-
age to complement their virtual server deployments with
a rich set of network functions for virtual network iso-
lation, custom addressing, service differentiation, and a
variety of middlebox functions such as intrusion detec-
tion, caching, or application acceleration. EPIC does
not merely integrate existing solutions and offerings for
these services – rather, it is a comprehensive and exten-
sible solution for cloud networking that also provides a
simple API for customers to specify their network de-
signs and policies. Unlike solutions based on third-party
virtual appliances and overlay networks, EPIC primi-
tives are implemented within the cloud infrastructure,
and hence are highly efficient and transparent to cloud
tenants and end-users.

Hence, EPIC allows enterprises to easily and effec-
tively replicate key aspects of their application deploy-
ments in the cloud, and even enrich them, with little
overhead. In effect, our approach can be viewed as a
Platform-as-a-Service (PaaS) model for cloud network-
ing, similar to existing PaaS offerings that provide stan-
dard application-level services and associated APIs to
make it easier to move (or write) applications to the
cloud [18, 17, 9].

EPIC is built around several design principles: (1)
leveraging software-defined networks to enable fine-
grained control over the network, (2) using indirection to
maintain the abstraction of control over address alloca-
tion, and (3) extending the network edge onto the phys-
ical hosts with host-based virtual switches. Although
address indirection and programmable networks are es-
tablished approaches, EPIC integrates all of these tech-
niques at the network layer, and ties them to the cloud
provisioning system to streamline and unify the way in
which applications and network services are deployed in
current clouds.

The design and implementation of EPIC is made chal-
lenging by the practical issues that arise when design-
ing for an environment as large and dynamic as a cloud.
For example, network devices are limited in the amount
of control state they can maintain, and the rate at which
state can be updated. Also, the dynamic nature of cus-
tomer applications and infrastructure failures or down-
time require that the cloud network maintain specified
policies under varying amounts of churn in the system.
EPIC’s design and implementation includes algorithms
and optimizations designed to reduce the impact of these
hardware limitations, and also manage the dynamic na-
ture of cloud-delivered services.

Our prototype implementation of EPIC leverages pro-
grammable virtual network devices, including Open-
Flow [37], and Open vSwitch [13] (though the design can
make use of other programmable network paradigms as
we discuss later in the paper). EPIC primitives are spec-
ified as part of a cloud deployment, and low-level direc-
tives (forwarding rules) are installed in the network data
plane automatically, as the corresponding virtual servers
are instantiated. In this way, the desired network func-
tions are integrated with the application as a policy file,
making it easy for the tenant to tailor the network sup-
port for the needs of the workload. The common case of
providing basic Internet connectivity to virtual servers is
supported by default, so that customers not requiring any
specific support need not do anything new.

We show the flexibility of EPIC in supporting a num-
ber of network functions in the cloud using a typical
multi-tier application model in our lab testbed with com-
mercial OpenFlow-enabled network devices. We vali-
date that fine-grained access control, VLAN-based iso-
lation, service differentiation, IP address mapping, and
middlebox interposition can be easily specified and de-
ployed using EPIC. We also evaluate, using emulated
scenarios, the performance and scalability of EPIC in the
face of dynamics such as network and host failures, and
also as the number of customers and size of the cloud
varies. EPIC scales to the dynamics of a large cloud with
270K VMs by recovering (i.e., re-establishing network
services as well as connectivity) from link failures and
device failures in well under .1 seconds and 6 seconds,
respectively. We find that EPIC imposes a low overhead
on the devices in the cloud, requiring, for example, only
96 MB of memory per endhost. We also show that simple
heuristics can be employed to effectively manage limited
device-level memory for holding the forwarding state for
large numbers of cloud tenants.

2 Background and Design Requirements
In this section, we motivate the need for additional
network-level support when moving typical multi-tier
enterprise applications to the cloud. We argue that the
lack of sufficient network support in clouds today deters
operators from redeploying their applications, and iden-
tify the design requirements for our system to overcome
these challenges.

2.1 Limitation of Current Cloud Network-
ing Mechanisms

Below we focus on three important challenges that arise
from limited control over the networking policies in cur-
rent clouds.
Limitation 1: Application performance. Many tiered
applications require some assurances of the bandwidth
between server instances to satisfy user transactions

2

within an acceptable time frame and meet predefined
SLAs. For instance, the “thumbnail” application de-
scribed in [29] generates and sends different versions of
photos between the business logic servers before they
are finally returned to the user. Insufficient bandwidth
between these servers, e.g., at times of high cloud uti-
lization, will impose significant latency on user interac-
tions [29]. Also, recent studies [38] point to the slow rise
in the average latency within the EC2 cloud, possibly due
to oversubscription. Thus, without explicit control, vari-
ations in cloud workloads and oversubscription can cause
delay and bandwidth to drift beyond acceptable limits,
leading to SLA violations for the hosted applications.
Limitation 2: Flexible middlebox interposition. Enter-
prises deploy a wide variety of security middleboxes in
their data centers, such as deep packet inspection (DPI)
or intrusion detection systems (IDS), to protect their ap-
plications from attacks. These are often employed along-
side other middleboxes [23] that perform load balanc-
ing [5], caching [27] and application acceleration [15].
When deployed in the cloud, an enterprise application
should continue to be able to leverage this collection of
middlebox functions.

Today, there are a limited number of solutions to ad-
dress this need. IDS providers, such as SourceFire [16],
have started packaging their security software into virtual
appliances that can be deployed within the cloud. Simi-
larly, EC2 provides a virtual load balancer appliance for
cloud-based applications [8]. Unfortunately, there is no
means today to specify and control middlebox traversal,
i.e., the series of virtual appliances that traffic should tra-
verse before arriving at, or after leaving, a node in the
enterprise application. A common practice when using
virtual appliances is to install all the virtual appliancesin
the same VM as the application server. However, this
approach can degrade application performance signifi-
cantly. It also increases the cost of the cloud-based de-
ployment as the customer will have to buy as many ap-
pliance instances as there are application servers.
Limitation 3: Application rewriting for consistent
network operation. The cost and difficulty of appli-
cation rewriting places a significant barrier to migrating
enterprise applications into the cloud. Applications may
need to be rewritten or reconfigured before deployment
in the cloud to address several network-related limita-
tions. Two key issues are: (i) lack of a broadcast do-
main abstraction in the cloud and (2) cloud-assigned IP
addresses for virtual servers.

Cloud providers such as EC2 do not allow broadcast
traffic [21], which precludes important mechanisms such
as broadcast-based failover. Applications may have to
be rewritten to employ alternate failover mechanisms in
the cloud. For example, backend database servers must
be rewritten to use other failover mechanisms such as

Layer-3 heartbeats [42] and third-party cluster resource
managers (e.g., PaceMaker [14]).

When writing configuration files for their applications,
some applications may have hardcoded IP addresses for
servers in various tiers or for external services on which
the applications depend (see examples in [36]). When re-
deploying applications within the cloud, virtual servers
are likely to be given new addresses in the cloud, re-
quiring, at a minimum, updates to their configurations
Depending on whether or not the services that the ap-
plications depend on have also been migrated into the
cloud, further updates to configurations may be neces-
sary. Configurations can be quite complex for production
3-Tier applications [28], hence retooling them to ensure
consistency in IP addresses is challenging and difficult to
automate.

Network On-path Layer 2 QoS ACL Static
Functions Middlebox Broadcast Addressing
EC2 [2] N N N Y N

EC2+VLAN N Y N Y N
EC2 w/VPC [3] N N N Y Y
VPN-Cubed [7] N Y N Y Y

EPIC Y Y Y Y Y

Table 1: Policies supported by the networking layers of
various clouds.

As mentioned in Section 1, some cloud providers do
support some specific network-level functionality, but
these are generally point solutions that only partially ad-
dress the limitations described above. For example, in
Table 1, we list a number of network functions and con-
sider to what extent they are supported by some commer-
cially available cloud services1. We see that each of the
available mechanisms addresses a subset of the desired
functions, while EPIC provides a framework with more
comprehensive support for network-layer policies in the
cloud.

2.2 Design Requirements
Our aim is to design a cloud networking framework to ef-
fectively support production enterprise applications. Our
system should address the basic challenges outlined in
Section 2.1, also make it relatively simple to realize a
wide variety of network functionality within the cloud.
Specifically, we set the following five functional and op-
erational design goals for our framework:

(i) Allow enterprises to realize a cloud deployment with
an identical data-plane configuration as when de-
ployed locally; this includes the ability to flexibly in-
terpose a variety of middleboxes such as firewalls,
caches, application accelerators, and load balancers.

1Note that EC2+VLAN is not actually available, but represents an
IaaS service with the ability for customers to create VLANs.

3

(a) Specify user requirements (b) Convert requirements into (c) Compile matrix entries (d) Install rules and
a communication matrix into network-level rules configure paths

Figure 1: Various steps in the EPIC framework.

(ii) Allow enterprises to specify bandwidth required by
applications hosted in the cloud, ensuring similar per-
formance to hosting locally.

(iii) Require little or no rewriting of applications (i.e.,ap-
plications should run “out of the box” as much as pos-
sible), in particular for IP addresses and for failover
mechanisms.

(iv) Operate effectively at scale and under a variety of
dynamic scenarios, extending the benefits of running
in the cloud to as large a customer-base as possible
and minimizing undesirable interactions among con-
sumers.

(v) Provide a simple, easy-to-use interface to enterprise
customers.

To meet these requirements, our ground-up design
leverages programmable networks (both at network de-
vices and end-hosts), coupled with a simple interface
that allows customers to specify their application config-
uration at a high level of abstraction. Our use of pro-
grammable networks based on OpenFlow enables dy-
namic reconfiguration of the cloud to efficiently meet our
design goals.

3 EPIC System Design
In this section, we describe the architectural components
of the EPIC cloud networking framework and their inter-
actions. This high-level description is followed by more
details on the design and implementation of each com-
ponent.
EPIC overview. Figure 1 illustrates the four main ac-
tions required in EPIC.

First, a cloud tenant or operator uses a simple cloud in-
terface to specify the network requirements, or a policy,
for their application using high level language constructs
(Figure 1 (a)). We describe the constructs and the rich set
of features that can be specified using them, e.g., QoS re-
quired, address remapping, middlebox traversal, etc. in
Section 3.1.

Next, the network policy is translated from the high
level constructs into a canonical description of the de-
sired network communication patterns and network ser-
vices; we refer to this as the “communication matrix”
(Figure 1 (b)). This represents the logical view of the re-
source demand of the tenant and it remains invariant as

long as the tenant application is running. At the end of
this step, the tenant instance is deployed by creating and
placing the specified number of VMs. We describe this
in Section 3.2.

Then, we translate the logical communication matrix
along with knowledge of VM locations into network-
level directives (i.e., configuration commands or rules)
for devices in the cloud (Figure 1 (c)). This is done
based on the knowledge of other tenants’ requirements
and/or their current levels of activity. This step deter-
mines whether it is possible to map the tenants logical
requirements into the cloud’s physical resources.

Figure 2: EPIC architecture and components

The final step is to install the configuration commands
or rules into the devices within the network (Figure 1
(d)), thereby creating the necessary physical communi-
cation paths that satisfy the tenant’s needs. In addi-
tion, address-rewriting rules are instantiated within vari-
ous network locations to ensure that applications can use
legacy IP address even within the cloud’s setting. We
describe the last two steps in Section 3.3. The tenant’s
Cloud instance is then ready to run as per the operator’s
specifications.
EPIC components.Figure 2 presents the main compo-
nents of EPIC that implement the above steps:cloud con-
troller andnetwork controller. The cloud controller man-
ages both the virtual resources and the physical hosts,
and externalizes APIs for setting network policies. It
addresses the steps described in Figure 1 (a) and (b).
The network controller is responsible for monitoring and

4

managing the configuration of network devices. It han-
dles the tasks outlined in Figure 1 (c) and (d). The
communication between these two controllers is handled
through the use of TCP connections.

3.1 Network Policy Specification
In this section, we describe a simple policy language
and its constructs with which cloud customers can spec-
ify networking requirements for their applications. We
have implemented and evaluated EPIC using this lan-
guage (Sections 5 and 6) and have found it to be suffi-
cient to realize the requirements outlined in Section 2.2.
As we show below, it is also easy and intuitive to use.
Policy example. Our policy language provides a set of
constructs for describing the set of VMs that make up an
application and the network controls desired for them.
We illustrate these constructs by showing how an enter-
prise operator specifies policies to instantiate the 3-Tier
application presented in Figure 3. It is is composed of
1 front-end server which distributes connections across
a clustered business logic tier. The backend tier consists
of 2 database servers, only one of which is active at any
time. A broadcast-based failover mechanism is used for
notification in case the current master fails [10]). The
frontend server is configured to accept secure connec-
tions and it is protected by middleboxes that perform
deep packet inspection and intrusion detection. Inter-
posed between the business-logic tier (3 servers used in a
load-balancing configuration) and the backend tier, there
are middleboxes that perform application classification
– specifying that certain traffic receives reserved band-
width while others be treated as best effort. We assume
that the customer wishes to use enterprise-assigned ad-
dresses for the backend servers.

In using the policy language to configure the above
application, the operator first identifies the specific
enterprise-defined addresses to use for VMs in his appli-
cation; e.g., the operator specifies addresses for backend
VMs in lines 1 and 2. Then, the operator proceeds to
identify logical groupings (e.g., based on tiers) for the
VMs that are part of her application (lines 1-3).

Next the operator defines the properties for the virtual
networks to be created between these groups of VMs.
In doing so, the operator has the ability to control three
network aspects among groups of VMs: (1) quality-of-
service or, more specifically, bandwidth reservations, (2)
need for layer 2 broadcast, and (3) on-path middleboxes.

The operator configures the application in Figure 3 as
follows. For the front end, she first defines a network ser-
vice calledprotectfrontend() (line 8) that prevents Layer-
2 broadcast, provides best effort guarantees, and forces
traffic through a DPI middlebox. In line 13, theprotect-
frontend() network service is applied between VMs in

Figure 3: Example 3-tier application

1 address dbserver1 = {128.1.104.103}
2 address dbserver2 = {128.1.104.13}
3 group frontend = {httpdserver}
4 group businesslogic = {jboss1,jboss2, jboss3}
5 group backend = {dbserver1, dbserver2}
6 middlebox Class = {type=classifier, config=””}
7 middlebox DPI = {type=dpi, config= ””}
8 networkService protectFrontEnd =

{l2broadcast=no, qos=BestEffort, mb=DPI}
9 networkService besteffort =

{l2broadcast=no, qos=BestEffort, mb=none}
10 networkservice reservedbw =

{l2broadcast=no, qos=10mbs, mb=Class}
11 networkservice allowFailover =

{l2broadcast=yes, qos=BestEffort, mb=none}
12 virtualnet allowfailover (backend)
13 virtualnet protectFrontEnd(frontend, EXTERNAL)
14 virtualnet besteffort(frontend,businesslogic)
15 virtualnet reservedbw(businesslogic,backend)

Figure 4: Enterprise network policies for our example 3
tier application

frontend and those in theEXTERNAL group which refers
to external users.

To configure the network for the back-end, the opera-
tor creates a network serviceallowfailover() that allows
failover through layer 2 broadcast (in line 9). The oper-
ator applies this network service among all VMs in the
groupbackend (line 12).

Finally, the operator configures the rest of the network
by creating a virtual network between thebackend and
the businesslogic tiers and applying thereservedband-
width() network service (defined in line 8) to the network
(line 13). This service also includes a middlebox “Class”
(defined in line 4) to perform application classification,
in addition to 10Mbps of bandwidth between a VM in
the second tier and one in the 3rd tier and disallowing
layer-2 broadcast.

3.1.1 Network Policy Constructs
We now provide more formal definitions of the con-
structs employed in the example above.

Address.This construct allows the enterprise operator
to bound an enterprise assigned address to a VM.

Groups. This construct allows the enterprise operator
to logically group a set of virtual machines. The group-
ing could be on the basis of similarity in their functional-
ity, as in the example above, or on the basis of similarity
in policies that apply to the VMs. A group can contain
one or more virtual machines and the virtual machines
can be identified either by name or by the IP address as-
signed by the cloud provider.

5

Middleboxes. With this construct, a user can config-
ure and initialize a virtual middlebox. Any virtual mid-
dlebox supported by the cloud provider can be used – the
middlebox can be provided directly by the cloud (similar
to Amazon’s VPN middlebox), or it can be a third-party
appliance (similar to NetEx [11]).

To initialize a virtual middlebox, the enterprise oper-
ator must specify: (1) the type of middlebox (a list of
supported middleboxes can be retrieved from the cloud
provider) and (2) a configuration file for the middle-
box. The exact format, which is provided by the cloud
provider or the third-party vendor, may vary from mid-
dlebox to middlebox.

Network Service. This construct allows enterprise
operators to specify the set of services to provide among
a collection of virtual machines.

Currently, we support 3 different services: a layer 2
broadcast service, a bandwidth reservation service, and
a middlebox interposition service. Each of these net-
work services can be specified as a parameter of the
networkservice command: layer 2 broadcast has
two options: yes and no; quality of service has two op-
tions: best effort or a numerical value specifying the
amount of bandwidth to reserve in Mbps; and middle box
interposition takes as arguments a list of 0 or more mid-
dlebox names to traverse in sequence.

Virtual Network. We refer to a collection of VMs
among which a certain network service should apply as
a virtual network. A virtual network can span 1 or two
groups. A virtual network is specified by applying a net-
work service to a list of 1 or 2 groups. When a single
group is used, it means that the service should apply
among all pairs of VMs in the group. When a pair of
groups are used it means that the service should apply
between an arbitrary VM in the first group and an arbi-
trary in the second group.

This approach to specifying policies has a few char-
acteristics which makes it intuitive and easy to use: (1)
groups makes it simple to modify the policy configu-
ration when, for example, additional VMs with similar
functionality or with similar policies applied to them are
added to a customer’s application. The policy change is
then confined to just the group definition and does not
impact the rest of the specification. The use of groups
is similar to the use of policy units in [24] – it aligns
with how operators think of their network services. (2)
The use of the network service abstraction means that
the cloud can provide a variety of pre-defined services as
policy templates and tenants can simply apply them to
the desired groups of VMs. (3) Middlebox interposition
is easy to specify, and it is also possible to provide canon-
ical middlebox traversals as templates to tenants (e.g., for
implementing security policies).

The EPIC specification language complements pol-

icy languages and constructs provided by current clouds
such as Amazon EC2 and Windows Azure. For exam-
ple, our policy language can work with EC2’s virtual in-
stance identifiers when specifying the policies. Our pol-
icy language can also be easily embedded into Azure’s
current configuration language by extending the “end-
point” element to accept our policies. Such an extension
of the Azure configuration will provide tenants with con-
trol over properties of the connection between created
between virtual instances, something the language does
not currently offer.

Finally, note that EPIC’s policy language is merely a
candidate among many possibilities; it is possible to in-
corporate alternative, more descriptive languages. We
leave this exploration for future work.

3.2 Cloud Controller
In typical cloud, the cloud controller is responsible for
managing physical resources, monitoring the physical
machines, placing virtual machines, and allocating stor-
age. The controller reacts to changes in workload by
migrating virtual machines, scheduling new virtual ma-
chines, and allocating physical resources.

EPIC extends the cloud controller in three ways in or-
der to facilitate better control over the network in addi-
tional to control over hosts:
(1) It accepts a wide range of network policies (as op-
posed to simple requests for VMs) and parses it to gen-
erate a communication matrix for the tenant’s resources.
The matrix captures the requirements for the network be-
tween two tenant VMs. An entry specifies if the virtual
network between the source and the destination VM (row
and column, respectively) should permit packets; if so,
whether layer 2 broadcast is allowed, or layer 3 traffic is
allowed, or both are allowed. And when layer 3 traffic is
allowed, the entry also specifies bandwidth reservations
and the middlebox traversal required by traffic between
the endpoints, if any are set. The matrix is then passed
to the network controller which interfaces with the pro-
grammable switches.
(2) As the location of virtual resources changes either
due to user requests, workload fluctuations, or device
failure, the cloud controller updates the network con-
troller with the new locations; this information is used by
the network controller when it decides how to re-assign
network level directives to switches in order ensure the
appropriate connectivity between different tenant VMs.
(3) It instantiates a software programmable switch on
each physical host that is integrated into a tenant’s app-
lication. The software switch is configured to connect
any number of virtual machines to the network of physi-
cal programmable switches. The software switches are
crucial to extend network control beyond the physical
switches and into the end-hosts themselves. Once config-

6

ured, the cloud controller informs the network controller
of the location of the software switches and subsequently
sends updates about the set of virtual machines attached
to the switches.

3.3 Network Controller
The network controller is a new component that EPIC
introduces into the cloud. It is responsible for configur-
ing virtual networks throughout the cloud by mapping
the logical requirements in the communication matrix
onto the physical network resources. It also controls re-
sources, e.g., by performing re-mapping when available
resources change, to ensure that tenant requirements are
consistently satisfied. Thus, it is crucial to EPIC’s overall
functioning.

Figure 5: Internal components of the network controller.
In figure 5, we present the internal modules for the

network controller. The network controller takes two in-
puts: communication matrix, and a mapping between a
tenant’s VMs and physical hosts. In addition, the net-
work controller collects at least two additional pieces of
state: the current status of various switches and links
(along with link utilizations) and the current mapping of
flows corresponding to various virtual networks across
the physical cloud network. By default, it uses the cloud
monitor module to periodically poll the devices for this
state; however, the cloud monitor can also receive trig-
gered state updates from devices when they come up or
when their neighbors fails.

Based on the inputs, the controller uses the network
provisioner module to generate the set of configuration
commands for each of the programmable devices in the
network and configures them accordingly to instantiate
the tenant’s virtual network. A similar set of actions
must be taken by the network provisioner when remap-
ping tenant virtual networks during network failures. In
addition to these basic actions, the network provisioner
is responsible for situations where control over the net-
work is necessary, e.g., tearing down a tenant’s applica-
tion, and providing the necessary support to prevent the

tenant from having to rewrite applications to match ad-
dresses assigned in the cloud. We discuss these tasks in
more detail below.

Provisioning and De-provisioning Virtual Net-
works To provision a virtual network between a pair of
virtual resources (VMs, or a VM and a middlebox), the
network controller first determines the constraints that
apply to the path between the resources based on the at-
tributed requested. The constraints can range from sim-
ply finding a loop-free circuit when the user request sim-
ple best effort connectivity between two VMs, to identi-
fying the amount of bandwidth needed along a path when
QoS is required. Once the constraints have been gath-
ered, the network controller searches the graph reflect-
ing the current network state and resources for a physical
path that satisfies these constraints. We use widest short-
est path first for generating Best effort paths and paths
with QoS requirements, while we use Spanning Tree al-
gorithms for generating broadcast paths.

If a path is found, the controller generates and pushes
the appropriate configuration commands to the network
devices on the path. The nature of the configuration com-
mands generated is specific to the type of programmable
devices used in the network. We discuss the details of
how rules are created and allocated to the appropriate
devices while taking into account limited ruleset mem-
ory in Section 4.1.

De-provisioning a tenant’s application occurs is a sim-
ilar fashion; we omit the details for brevity.

Addresses Rewriting
The final crucial function of the network provisioner is

to perform address mapping to allow enterprises to reuse
existing addresses. To achieve this, the cloud controller
provides the network controller a map of the VM names
to their enterprise-local addresses (provided by the tenant
as part of his policy). For each VM in the map, the net-
work controller installs a “mangle” rule in the software
switch resident on the host where the VM resides. This
rule rewrites the destination address from the enterprise-
local address to the cloud-assigned address before for-
warding out the appropriate port. For other VMs or
traffic using cloud addresses, rules are installed for for-
warding without rewriting the destination address. When
VMs move, the mangle rules are recreated at the appro-
priate software switches. Thus, we leverage programma-
bility of the Cloud, in particular, the software switches to
avoid address rewriting.

4 Practical Issues
The Network Controller faces several challenges in: (i)
installing forwarding state to completely enforce tenant
policies under the constraints of network device process-
ing and memory limitations, and (ii) ensuring that net-
work policies persist in the face of cloud dynamics such

7

as device and link failures. In this section, we discuss
the techniques used by EPIC to deal with these practical
issues.

4.1 Hardware Device Limitations
EPIC uses the fine-grained control provided by pro-
grammable devices to enforce quality of service guaran-
tees, middle-box interposition, tenant defined broadcast
domains, and address writing. The cost of using fine-
grained control is state explosion in the network devices.
In using the APIs provided by OpenFlow and NOX to
configure the network, EPIC createsO(V ∗N2) forward-
ing entriesper device within the network, whereV is the
number of virtual networks andN is the number of vir-
tual machines using these virtual networks.

Several data center grade switches have limited
TCAM space for flow table entries, roughly on the order
of 2000 entries. Thus, unless this memory is carefully
managed, we may not be able to support a large number
of virtual networks in the cloud.

Next, we present several optimizations implemented
at the network controller to address this issue. These op-
timizations leverage the distinction between host-based
switches, i.e., OpenFlow based software switches on
the physical hosts, and OpenFlow-enabled in-network
switches: Flow tables in the former are stored in the
much larger host memory (DRAM), providing room for
many more rules, as opposed to limited TCAMs used
in the latter. The goal of these optimizations is to pro-
vide EPIC with fine grained control while limiting the
in-network state.

Optimization 1: Best effort traffic. Our first op-
timization applies to configuring flow table rules for
best effort traffic. It works simply as follows: We in-
stall full flow-based rules in the host switches, and sim-
ple destination-based rules in in-network switches (i.e.,
source-based entries are wild-carded in the latter case).
This optimization leverages the insight that best effort
traffic can be aggregated along a small collection of net-
work paths. Thus, each in-network device needs only to
maintain rules for at most one spanning tree per destina-
tion, thereby reducing storage requirements fromO(N2)
to O(N) per virtual network, whereN is the number
of virtual machines. We illustrate this optimization in
Figure 6. In (a), we show rule sets at different devices
without the optimization. Device D carries 6 flow table
rules. In (b), we show that, with the optimization, device
D holds 4 flow table rules, a 33% reduction.

This destination based forward prevents Middlebox
traversal. To allow for middlebox traversal, EPIC in-
stalls rules in the software switches of the source VM
and subsequent middleboxes that encapsulate and tunnel
the packet from the source VM or current middlebox to
the next middlebox.

(a)

(b)

Figure 6: A network with 4 hosts, 4 switches, and 4 VMs.
The flow table for each switch is displayed in a white
rectangle. The flow entries in each table have the follow-
ing format:{Src IP:Dest IP:ToS:InPort}-> OutPort with
a * indicating a wildcard.

Optimization 2: QoS traffic. Our next optimization
extends the above idea to traffic with QoS requirements.
The behavior of host-based software switches remains
qualitatively the same as above. However, in-network
switches forward on the basis of both the destination-
based information as well as the type-of-service (ToS)
bits in the packet header. ToS bits are used to select the
appropriate queue for network traffic.

If multiple reserved paths to the same destination use
the same underlying devices and links, then only one en-
try is need per in-network device. If a pair of paths only
share some links and devices, then the controller uses
different ToS values for each path leading to separate
entries in in-network switches; the optimization is less
effective in this situation. Although less effective, this
approach reduces the storage requirements fromO(N2)
to O(S ∗N) per virtual network, whereN is the number
of virtual machines andS is the max number of alternate
paths from any switch to the virtual machine.

Optimization 3: Forwarding entry aggregation.
Given that the earlier optimizations allow for simple des-
tination based forwarding, we can use the wildcard fea-
ture to aggregate forwarding entries with the same output
port, in a fashion similar to how IP address aggregation
is done in Internet routers. To increase the efficiency,
we assign contiguous addresses to VM placed behind the
same ToR switch. This results in gains of O((S)*N/P),
where S is the number of distinct paths to a ToR, N is the
number of virtual machines, and P is the size of prefix
assigned to each ToR switch.

8

4.2 Cloud Dynamics
The validity of the network policies are affected by dy-
namic cloud events ranging from link failures, device
failures, to policy changes. We now show how EPIC
ensures that the correct set policies are enforced during
these events. EPIC employs a simple design principle
of precomputation and caching to reduce the impact of
device or link failures on the network.

Policy Changes & Host/VM dynamics: When host
conditions change due to oversubscription or failure, the
cloud controller may map a tenant’s VMs to other hosts
and regenerate the communication matrix. The cloud
controller also regenerates the communication matrix
when a tenant changes his policies. When the matrix
is regenerated, the cloud controller informs the network
controller of the new matrix. The virtual networks would
then need to be reprovisioned as well.

To do this without causing significant disruption to
existing tenants, the network controller performs re-
mapping for only the changed portions of the commu-
nication matrix.

Device/link failures: When devices or links fail, vir-
tual networks can potentially be rendered invalid. In
such situations, EPIC tears down and re-provisions all
virtual networks which are dependent on the failed links
or devices. To reduce downtime EPIC employs precom-
putation and caching. EPIC maintains a map between
devices/links and the set of dependent virtual networks,
thus allowing it to quickly determine the virtual networks
to re-provision under link or device failures. To reduce
the time to re-provision these virtual networks, EPIC pre-
computes network state for different failure scenarios. In
our current implementation EPIC precomputes network
state for the failure of the core and aggregation devices
– a small number of devices with significant state. Thus,
failure of these devices can be resolved by simply look-
ing up the cache for the new network state and installing
this state.

5 Prototype Implementation
In this section, we describe our prototype of the EPIC
cloud networking framework.
OpenNebula cloud controller. We leverage the Open-
Nebula 1.4 cloud framework to implement the cloud con-
troller component of EPIC. We chose OpenNebula as it
provides an identical set of abstractions to users as many
prominent IaaS providers, such as EC2, 3Tera, and Eu-
calyptus. We modified the OpenNebula source to accept
user requirements specified using the language described
in §3.1, to keep the generate the communication ma-
trix, and to instantiate and configure software switches
on hosts. Our modifications were limited to 226 lines
of code. We also built a parser to convert policy spec-
ifications into communication matrices. Our Perl-based

parser has 237 lines.
NOX and OpenFlow for network control. We utilize
OpenFlow-enabled switches (specifically, HP Procurve
6400 series switches flashed with the OpenFlow 1.0
firmware) within our lab-based set-up. We chose Open-
Flow because using OpenFlow does not require a forklift
change to the network; in most cases a simple firmware
upgrade of switches is sufficient.

The OpenFlow framework provides an API that allows
external software control of the flow tables of network
switches. In particular, it allows an authenticated soft-
ware controller running NOX [12] to dynamically install,
update and delete flow-level entries in switch flow ta-
bles. It also provides a variety of mechanisms to track
network state (e.g., switch and link states). The NOX
controller can also be configured to read state from ex-
ternal sources.

We implemented the EPIC network controller atop
NOX using 2468 lines of C++ code. We interfaced the
network controller with cloud controller; the network
controller constantly polls the cloud controller and pulls
new/updated communication matrices and VM map-
pings as and when they are available. We implemented
the full set of functionality outlined in Section 3.3 in-
cluding, provisioning and de-provisioning virtual net-
works, handling host and network dynamics, and pro-
viding mechanisms for address rewriting. Our controller
runs on a commodity Linux machine (2.4 GHZ, 4 cores,
4GB RAM).

We implemented end-host software switches using
Open vSwitch.

For completeness, we also implemented the follow-
ing functions: (1) NAT functionality at the cloud gate-
way to allow customers to use cloud-assigned internal
IPs for their applications; this function is configured
and controlled by the network controller, and (2) ARP
functionality within customer applications; similar to
Ethane [25], we redirect all ARP traffic to the network
controller who then provides the appropriate responses.

The network controller is the most crucial compo-
nent of the EPIC framework as it directly orchestrates
the physical network by mapping customer requirements
onto it and by managing the mappings. In what follows,
we first provide (in Section 4.1) details of the algorithms
used by our network controller in performing the map-
pings by leveraging the OpenFlow interface to network
switch flow tables. We then note (in Section 4.2) that
in addition to managing network bandwidth and switch-
level queues when provisioning virtual networks, the
controller must also manage the limited memory avail-
able for flow table entries in network switches. This is
crucial to supporting a large number of customers with
diverse requirements. We conclude with a description of
simple optimizations we have implemented for manag-

9

Figure 7: Experimental testbed

ing flow table memories.

6 EPIC System Evaluation
In this section, we present an experimental evaluation of
the EPIC prototype in both a lab-based cloud as well as
a large-scale emulated cloud. We demonstrate the key
primitives supported in EPIC, validating the ability to
specify and instantiate a variety of network functions in
the cloud. Our experiments also show that EPIC perfor-
mance scales well as the number of provisioned services
grows, and when reconstituting the virtual network after
a link or device failure in clouds of varying sizes.

6.1 Functional Validation
We begin by demonstrating the flexibility and function-
ality of EPIC in implementing several different network
functions and policies, including the ability to satisfy
user-specified constraints under component failures.

By submitting different network policies to the user in-
terface, we were able to implement, within the confines
of the cloud, the different enterprise networking scenar-
ios below.

We perform the testing on a cloud testbed consisting
of 5 physical hosts and 5 network switches connected as
shown in Figure 7. Four of the five hosts are available
for deploying virtual machines, while the fifth (Host5)
is used to run the controller services (i.e., cloud con-
troller and network controller each within a different
VM). The 5 programmable network devices are 24 port
HP Procurve 6400 switches with 20 1Gbps ports.

Our initial application deployment uses a policy that
enables point-to-point reachability between VMs 1-3
(which are all part of the application deployment), but
not to/from any other VMs in the cloud.

VLAN: In the VLAN scenario, we modify the base-
line policy above to place VM2 and VM3 in the same
VLAN (broadcast domain) to enable the broadcast-based
failover service. We verified that that VM2 and VM3 are
able to communicate and then failed the application run-
ning in VM2. The VLAN configuration allowed VM3 to
correctly detect the failure and take over the role of the
primary.

Class-of-Service:To demonstrate the CoS primitive,
we modify the baseline policy to reserve 900Mbps for

traffic between VM1 and VM2. In this case, the quality-
of-service constraint did not result in a change to the
underlying paths, though in general a new path may be
computed to meet the requirement, as described earlier
in Section 5. We instantiate file transfers from VM1 and
VM2 and simultaneously from VM5 to VM4 which are
deployed on the same hosts as VM1 and VM2, respec-
tively. We observe, with the aid of IPerf, that flows be-
tween VM1 and VM2 received the requested share of
link bandwidth on the paths shared with flows between
VM4 and VM5.

Middlebox Interposition: To validate the correctness
of our framework to interpose virtual middleboxes on
the network path, we modified our policy between VM1,
VM2 and VM3 to force all traffic to and from VM1
through an DPI middlebox implemented in snort. Over
several runs of the experiments, we observed that it takes
an average of 12ms to modify the path so that traffic from
VM2 to VM1 is directed through VM8, where the DPI
function is hosted.

Address Rewriting: Finally, we demonstrated the
ability of enterprise customers to retain their current IP
addressing and connectivity as they move their applica-
tions to the cloud. We deployed a simple client-server
application with the client in VM3 and server on VM2.
The client is configured to refer to the server in VM2
by its original globally routable IP address. Without the
address mapping policy installed, VM3 is unable to com-
municate with VM2 since each VM has been assigned a
new private IP address in the cloud. After adding a policy
to remap VM2’s original address, we observe that traffic
from VM3 is able to reach VM2.

6.2 Network Controller Performance
Next, we evaluate the ability of EPIC’s network con-
troller to scale to provisioning and managing a large
number of virtual networks in a large-scale cloud data
center. In these experiments, we use a script to gen-
erate a series of user policy files that specify virtual
machine connectivity and the associated network func-
tions. The cloud controller functionality is emulated by a
script that simulates placement information for each VM
(rather than actually provisioning them) and generates a
communication matrix for the network controller. The
network controller operates as usual, computing the re-
quired flow table entries for each switch based on the
physical location of the VMs, but does not install the en-
tries. This approach allows us to focus on the perfor-
mance of the network controller in a large-scale setting
unconstrained by the size and topology of our lab testbed.
In our experiments, the network controller is deployed on
a 2.40GHz quad core Intel Xeon PC with 4GB of mem-
ory running Ubuntu 10.

10

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120

N
um

be
r

of
 V

M
s

Computation Time (In Seconds)

Compute Time

Figure 8: Virtual network computation time

6.2.1 Virtual Network Computation

First, we examine the time taken to initialize services
containing a relatively large number of virtual machines
and a complex set of virtual networks and policies. In
these experiments, we utilize a reference 3-tier services
containing 3 virtual middleboxes and 14 application
servers (VMs). The service is composed of 6 front-end
servers, 5 business logic servers, 3 back-end servers, a
VPN middlebox, an IDS middlebox, and a load balancer
middlebox. The associated virtual network specification
is: (i) traffic to the front-end servers must traverse the
IDS, and a load balancer, (ii) traffic between the front-
end servers and the business-logic tier receives 10Mbps
guaranteed bandwidth, (iii) the back-end servers must be
placed within a broadcast domain to enable failover, and
(iv) traffic from the enterprise (i.e., external to the cloud)
to the back-end must use a VPN.

Figure 8 shows the amount of time taken to simultane-
ously instantiate network services for as many as 270K
VMs (about 16K instances of the reference service). The
total time consists of the time to compute corresponding
flow table entries and paths in the network. The con-
troller would additionally need to install the flow table
entries in the appropriate switches – this time is not cap-
tured in our experiments, but is expected to take less than
10ms per flow entry [43]. From the figure, we observe
that it takes about 120s to instantiate the virtual network
services for the 270K VMs in the cloud. This delay is
relatively small when considering the overall service pro-
visioning time, including virtual machine provisioning.
For example, experiments in Amazon EC2 showed that
provisioning 20 small virtual machine instances can take
180s, and that this time grows with the number of in-
stances being deployed [39].

6.2.2 Failure Handling

When data center elements such as links, switches, or
hosts fail, the virtual networks must be remapped and
re-installed to restore service. In this series of experi-
ments, we measure the performance of the network con-
troller in re-establishing functional virtual networks in
data centers of varying sizes when different components

fail. Our data center network model consists of 3-tiers of
switches (top-of-rack, aggregation, and core switches).
We consider data centers with 200, 500, and 1000 ToR
switches, each connected to 30 hosts that can in turn sup-
port 9 VMs. These data center models each have 2 core
switches, and 20, 50, and 100 switches in the aggrega-
tion layer, respectively. As is typical, ToR switches each
have two uplinks to the aggregation layer, and aggrega-
tion switches are dual-homed to the core layer. In each
of these cases, we assume the maximum number of VMs
are running, i.e., 54K, 140K, and 270K, respectively.

In our failure model, a link, switch, or host is randomly
selected to fail. We measure the time taken by EPIC’s
network controller to recalculate the configuration state
to be pushed to the devices. We ignore the time to receive
failure notifications which is bounded by the frequency
of device polling, and also the time to install state in the
device which is, again, assumed less than 10ms. We run
each experiment around 150 times to generate the distri-
bution of recomputation times.

Link and Switch Failures. To understand the impact
of link failures, we randomly select and delete a link
from the topology, triggering the network controller to
deprovision paths that use the failed link, and reprovi-
sion them on alternate links. We examine the recovery
time for links with and without our precomputation and
caching. We observe in Figure 9, that without precom-
putation and caching the median recovery time for the
largest cloud with 270K VMs is 2s, and the worst case
is under 10s. With caching and precomputation, we ob-
serve that the median recovery time for the largest cloud
is reduced to 0.2s. In examining the recovery time for
device failures, not shown here due to space constraints,
we observe that these numbers are in general an order
of magnitude worse than the link failure numbers. We
note that by extending the precomputation algorithm to
precompute for the edge switches we can reduce the re-
covery for all links and device to a constant time of un-
der 0.2 second (Cache lookup time). However, doing this
will require allocating more memory for the cache.

Host Failures. In our experiments with host failures,
we randomly select a host to fail and delete it from the
topology. This triggers the cloud controller to update the
state of the affected VMs and notify the network con-
troller to remap the corresponding virtual networks. Fig-
ure 10 shows the time for the network controller to do
this; we can see that, compared to provisioning, this take
very little time. While provisioning requires searching
the graph and calculating paths, remapping requires only
a look up in a data structure followed by a control mes-
sage sent to the appropriate switches (Section 3.2.2).
6.3 Impact on Cloud Infrastructure
The design of EPIC introduces a number of changes
to the cloud infrastructure. In this section, we summa-

11

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10

C
D

F

Recovery Time (in Seconds)

small
medium

large

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1

C
D

F

Recovery Time (in Seconds)

small
medium

large

Figure 9: Virtual network recomputation time under link
failures. (a) Without caching and precomputation (b)
With caching and precomputation of core and aggrega-
tion devices

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

C
D

F

Deprovision Time (in Seconds)

largeCloud
MedCloud

SmallCloud

Figure 10: virtual network deprovision time under host
failures

rize our observations of the resource overheads of these
changes.

One significant change is the modification of the cloud
controller to generate and transfer the communication
matrix to the network controller. Our experience with
EPIC revealed little negative impact in terms of memory
and CPU overhead in the cloud management system due
to this change. Another change that might raise some
concern for a cloud provider is the introduction of the
Open vSwitch at each host, which requires instantiation
of TAP interfaces in place of the standard kvm vswitch.
We observed that the resource usage of the TAP inter-
faces was minimal, however, and should not impact the
number of VMs that can be supported, for example.

In examining the overhead of adding large rulesets in
the Open vSwitch, we find that the memory consumption
is not significant. Table 2 shows the amount of mem-
ory consumed by the virtual switch. We observe that a

Ruleset Size Memory (in MB)
65536 33
131072 37
196608 57
262144 77
327680 94

Table 2: Resource impact of flow entries in Open
vSwitch on hosts.

virtual switch in able to store 300K entries in less than
100MB (of the 4GB available to the Open vSwitch). We
note that with a limit of 300K rules, EPIC is able to al-
locate on average 10K fowarding rules for each VM on
the host – hardly limiting the size of a VM’s virtual net-
work. We conclude that the host-based Open vSwitches
are able to efficiently hold a significant amount of state
and thus support our optimizations which increase the
amount of forwarding rules and state at the edge.

In Section 4.2, we described several optimizations to
the network provisioning algorithm to reduce the num-
ber of forwarding rules in the network switches. Here,
we show the quantitative impact of those optimizations
on the network state for the case of provisioning 16K
instances of the reference service (270K VMs) in the
largest data center model (i.e., 1000 ToR switches). Ta-
ble 3 shows the maximum number of flow table entries
across the switches in each of the 3 tiers of the data cen-
ter, plus the Open vSwitches at the hosts. Our goal is
to indicate the relative benefits offered by our optimiza-
tions. The first row shows the maximum number of flow
table entries with no optimizations. Subsequent rows
show the number of entries after applying each optimiza-
tion separately and the last row shows the impact of all
of the optimizations taken together.

The best effort and QoS forwarding optimizations
achieve substantial benefits each. As the results show,
moving up from the host virtual switch layer toward the
data center core results in greater benefits from the opti-
mization since there are more flows available for con-
solidation. On the whole, the optimizations are able
to yield between 93% and 99% reduction in flow table
usage across different network switches.

Note that the applications we provision have “con-
centrated” many-to-one or one-to-many communication
patterns (e.g., simultaneous communication between a
front-end VM and multiple VMs in the business logic
layer). Such patterns are quite amenable to our opti-
mizations as they lead to aggregation of entries in in-
network switches. As other studies have noted, such
many-to-one patterns are highly prevalent in enterprise
workloads [29]. In fact, prior studies have found even
more highly concentrated communication patterns than
what we imposed in our reference application [29]; our
optimization can help reduce flow table requirements for
such applications to a much greater extent than shown in

12

Algo host switch ToR Agg Core
No Optimization 283152 3436 62512 277421

Destination Forwarding 0% 3% 21% 39%
Cos Forwarding 0% 2% 20% 30%

Cos + Destination + Prefix 0% 93% 95% 99%

Table 3: Results indicating effect of flow entry optimiza-
tions on switches at each tier. The bottom three rows
show the percentage reduction in flow table size.

Table 3. This leads us to believe that our optimizations
are likely to be quite effective in many practical scenar-
ios.

7 Discussion
In this section, we briefly address some additional con-
siderations toward a more complete network services
platform offering in the cloud. As we do not lay out de-
tails of how these additional services can be implemented
in this limited space, they should be considered as sub-
jects for future work.
Applicability to Non-IaaS clouds: Although we have
focused on applying EPIC to the IaaS cloud model, we
believe our approach can be generalized to other cloud
models which operate at higher levels of abstraction than
virtual machines. In PaaS clouds, for example, users
write applications to take advantage of specific services
and APIs, which are then deployed and managed in the
cloud using cloud-assigned ports and IP addresses. In
our current design, EPIC allows policies to be specified
on a VM basis – in a PaaS model, these policies would
be specified on applications. When creating the commu-
nication matrix, the cloud controller can map labels to
the appropriate address/port assigned to the user appli-
cation. EPIC network services would then be applied to
flows between applications rather than between virtual
machines.
Managing Cloud Network Services: In this paper we
described EPIC network services and primitives related
primarily to the data plane, e.g., traffic isolation, mid-
dleboxes, and QoS. An important additional set of ser-
vices are also needed for enterprise tenants to monitor
and manage the cloud virtual network, similar to what
they could do in a traditional data center. For exam-
ple, we can extend the EPIC framework to allow users
to attach monitoring, reporting, and logging functions to
virtual network devices. The management data can be
processed and made available as a continuous feed, or
uploaded to a management application in the cloud that
provides the ability to visualize the virtual network ope-
rations. Careful optimization is of course necessary to
ensure privacy of the network data, and to limit the over-
head of collecting and transmitting management data.
Extending Enterprise Policies across the WAN:Al-
though cloud providers do not typically control the wide-
area portion of the network, enhanced network services
that extend from the cloud into the WAN would further

benefit applications, particularly those that need to in-
tegrate with enterprise-side services, e.g., in a hybrid
model. This could be achieved by integrating the vir-
tual network in the cloud with a cooperating ISP or over-
lay network provider. The EPIC framework can be ex-
tended to support new primitives that identify endpoints
outside the cloud that are to be integrated. The network
controller can negotiate an overlay path, for example, to
provision wide-area paths that provide specific services
such as service differentiation, WAN acceleration, data
deduplication, encryption, etc.

8 Related Work
A fair amount of recent work [22, 44] has been done to
examine current and future challenges for both users and
providers of cloud computing in running a variety of di-
verse workloads in the Cloud. In particular, the most
closely related works to ours (e.g., [47, 48, 30, 33] fo-
cus on individual issues, such as providing better access
control, privacy and isolation [47, 48, 30] or reducing
disruption of services during migration [47]. Our goals
are much more comprehensive and they span security,
isolation for performance, and minimal application re-
writing.

In our work, we note that the space of security policies
utilized by enterprises is much wider than access con-
trol or privacy and it is often encapsulated within mid-
dleboxes. Our approach accommodates middlebox in-
terposition as a first-class requirements while the above
studies do not. Middlebox interposition has been consid-
ered in the context of data center architecture before [31],
where the goal is to decouple middlebox placement from
network location to ensure more robust DC functioning.
Conceptually, our approach to accommodating middle-
boxes is similar to this prior work.

Our work complements efforts on virtualization tech-
nologies which is fundamental to cloud computing.
Much work in the network virtualization community has
focused on providing and enforcing isolation between
users [26], on using virtualization to allow better man-
agement [46, 20], or on providing primitives to measure
aspects of the virtual network [32]. However, none of
these studies have highlighted the network layer support
needed in typical IaaS cloud computing scenarios and
how to offer it.

EPIC considers enterprise security policies on the
same footing as the ability to control performance of ap-
plications. The latter issue has been addressed in prior
work [29, 34], where the focus is on which applications
to move into based on expected latency [29] or on decid-
ing which cloud to choose based on performance [34].
We argue that the cloud itself should provide the en-
terprise with a means to control network performance
within the cloud.

13

Several virtual appliances [7, 6], have been devel-
oped to provide point solutions which utilize overlays
to accomplish addressing indirection and enforce pri-
vacy. Unlike our approach, such solutions do not require
provider involvement, but they result in inferior perfor-
mance as they are external to the cloud and their func-
tioning is subject to variations in wide-area performance.

9 Conclusion
In this paper, we presented EPIC, a network service plat-
form that enables tenants to leverage many of the net-
work functions needed for production enterprise applica-
tions to run in IaaS clouds. Our prototype design and im-
plementation of EPIC leverages programmable network
devices and supports key features such as isolation, mid-
dlebox functions, and quality-of-service. EPIC primi-
tives are specified as part of a Cloud deployment, and
are installed in the network data plane automatically, as
the corresponding virtual servers are instantiated. We
demonstrated the flexibility of EPIC in supporting a
number of network functions in the cloud using a typical
multi-tier application model in our lab testbed with com-
mercial OpenFlow-enabled network devices. We showed
how fine-grained access control, VLAN-based isolation,
service differentiation, and middlebox interposition can
be easily specified and deployed in several scenarios. We
also showed that EPIC performs well in the face of large
numbers of provisioning requests, and network and host
dynamics.

References
[1] Amazon cloudfront. http://aws.amazon.com/cloudfront/.
[2] Amazon ec2. http://aws.amazon.com/ec2/.
[3] Amazon virtual private cloud. http://aws.amazon.com/vpc/.
[4] Aruba networks: Virtual bracnch network.

http://www.arubanetworks.com/solutions/vbnannouncement.php.
[5] Barracuda Load Balancer.http://www.barracudanetworks.com.
[6] Cloudswitch. http://www.cloudswitch.com.
[7] Cohesive ft:vpn-cubed. http://www.cohesiveft.com/vpncubed/.
[8] Elastic load balancing. http://aws.amazon.org/elasticloadbalancing/.
[9] Google app engine. http://code.google.com/appengine/.

[10] How a server cluster works: Server clusters (mscs).
http://technet.microsoft.com/en-us/library/cc738051%28WS.10%29.aspx.

[11] Netex. http://www.netex.com.
[12] Nox. http://noxrepo.org/.
[13] Open vswitch project. http://www.vswitch.org/.
[14] The pacemaker linux project. Http://www.clusterlabs.org.
[15] Riverbed Networks: WAN Optimization.

http://www.riverbed.com/solutions/optimize/.
[16] Sourcefire. http://www.sourcefire.com.
[17] Vmware springsource. http://www.springsource.com/.
[18] Windows azure platform. http://www.microsoft.com/windowsazure/.
[19] Aryaka Networks: Cloud-based Application Acceleration.

http://www.aryaka.com, 1999.
[20] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration asa network

management primitive.SIGCOMM Comput. Commun. Rev., 38(4):111–
122, 2008.

[21] Amazon. Using dhcp options. http://docs.amazonwebservices.com/AmazonVPC
/latest/DeveloperGuide/index.html?UsingDHCPOptions.html, 2010.

[22] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, Feb 2009.

[23] M. Arregoces and M. Portolani.Data Center Fundamentals. Cisco Press,
2003.

[24] T. Benson, A. Akella, and D. A. Maltz. Mining policies from enterprise
network configuration. InIMC ’09: Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement conference, pages 136–142,
New York, NY, USA, 2009. ACM.

[25] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown,and S. Shenker.
Ethane: Taking control of the enterprise. InSIGCOMM Computer Comm.
Rev, 2007.

[26] X. Chen, Z. M. Mao, and J. Van Der Merwe. Shadownet: a platform for
rapid and safe network evolution. InUSENIX’09: Proceedings of the 2009
conference on USENIX Annual technical conference, pages 3–3, Berkeley,
CA, USA, 2009. USENIX Association.

[27] cisco. Cisco MDS 9000 Series Caching Services Module, 2003.
[28] T. Eilam, M. H. Kalantar, A. V. Konstantinou, G. Pacifici, and J. Persh-

ing. Managing the Configuration Complexity of Distributed Applications
in Internet Data Centers.IEEE Communications Magazine, pages 166–177,
March 2006.

[29] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
and M. Tawarmalani. Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud. InSIGCOMM ’10: Proceedings of
the ACM SIGCOMM 2010, pages 243–254, New York, NY, USA, 2010.
ACM.

[30] F. Hao, T. Lakshman, S. Mukherjee, and H. Song. Secure cloud computing
with a virtualized network infrastructure. InHotCloud, 2010.

[31] D. A. Joseph, A. Tavakoli, I. Stoica, D. Joseph, A. Tavakoli, and I. Stoica.
A policy-aware switching layer for data centers. InSIGCOMM, 2008.

[32] E. Keller, R. B. Lee, and J. Rexford. Accountability in hosted virtual net-
works. In VISA ’09: Proceedings of the 1st ACM workshop on Virtual-
ized infrastructure systems and architectures, pages 29–36, New York, NY,
USA, 2009. ACM.

[33] E. Keller and J. Rexford. The ”platform as a service” model for networking.
In INM/WREN ’10, San Jose, CA, USA, 2010.

[34] A. Li, X. Yang, and S. K. M. Zhang. Cloudcmp: Comparing public cloud
providers. InIMC ’10, Melborne, Australia, 2010.

[35] L. MacVittie. The Question Shouldnt Be Where are the
Network Virtual Appliances but Where is the Architecture?
http://devcentral.f5.com/weblogs/macvittie, 2010.

[36] A. Mankin and K. Ramakrishnan. Embedding globally-routable internet
addresses considered harmful. Request for Comments 4085, Internet Engi-
neering Task Force, June 2005.

[37] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks.SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

[38] C. Metz. Amazon cloud accused of network slowdown.
http://www.thebitsource.com/featured-posts/rackspace-cloud-servers-
versus-amazon-ec2-performance-analysis/, January 2010.

[39] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. A performance analysis of ec2 cloud computing services for
scientific computing. InCloudcomp 2009, Munich, Germany, 2009.

[40] S. Palumbo. Is iaas moving beyond just cloud fluff? August 2010.
http://www.businesswire.com/news/home/20100823005929/en.

[41] C. Pettey. Gartner identifies the top 10 strategic technologies for 2010.
October 2009. http://www.gartner.com/it/page.jsp?id=1210613.

[42] A. L. Robertson. The high-availability linux project.Http://linux-ha.org/.
[43] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the

datacenter. InProc. of workshop on Hot Topics in Networks (HotNets-VIII),
2009.

[44] L. M. Vaquero, L. R. Merino, J. Caceres, and M. Lindner. Abreak in the
clouds: towards a cloud definition.SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009.

[45] G. Wang and T. S. E. Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. InINFOCOM’10: Proceedings of the
29th conference on Information communications, pages 1163–1171, Pis-
cataway, NJ, USA, 2010. IEEE Press.

[46] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J.Rexford. Vir-
tual routers on the move: live router migration as a network-management
primitive. In SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008
conference on Data communication, pages 231–242, New York, NY, USA,
2008. ACM.

[47] T. Wood, P. Shenoy, A. Gerber, K. Ramakrishnan, and J. V.der Merwe. The
case for enterprise-ready virtual private clouds. InHotCloud, 2009.

[48] T. Wood, P. Shenoy, K. K. Ramakrishnan, and J. V. D. Merwe. Cloudnet:
A platform for optimized wan migration of virtual machines.Technical
Report 2, University of Massachusetts, Amherst, 2010.

14

http://www.barracudanetworks.com
http://www.riverbed.com/solutions/optimize/
http://www.aryaka.com

	TECHCOVER.NEW1686.pdf
	1686
	Introduction
	Background and Design Requirements
	Limitation of Current Cloud Networking Mechanisms
	Design Requirements

	EPIC System Design
	Network Policy Specification
	Network Policy Constructs

	Cloud Controller
	Network Controller

	Practical Issues
	Hardware Device Limitations
	Cloud Dynamics

	Prototype Implementation
	EPIC System Evaluation
	Functional Validation
	Network Controller Performance
	Virtual Network Computation
	Failure Handling

	Impact on Cloud Infrastructure

	Discussion
	Related Work
	Conclusion

