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Abstract 
 
The Dynamically Synthesized Execution (DySE) 

model has been proposed to improve the energy 
efficiency and performance of general purpose 
programmable processors.  We describe how a DySE 
Resource (DySER) block can be integrated into a 
processor pipeline.  The block size can be adjusted 
based on design constraints, but we integrate an 
8x8 functional unit array into a simple in-order 
OpenSPARC T1 pipeline.  The instruction set changes 
and the microarchitectural interface between the 
DySER block and processor are described. 

 

1.  Introduction 
 
Based on the International Technology 

Roadmap for Semiconductor’s (ITRS) current 
predictions, devices will continue to double in 
density every 24 to 36 months over the next 15 
years.  However, the power efficiency of devices is 
expected to scale slowly from generation to 
generation.  ITRS predicts static power consumption 
will remain approximately flat while dynamic power 
consumption will increase significantly despite 
power reduction techniques like low-leakage 
transistors, power-gating, multi-gate threshold 
voltages, and architectural effort to reduce 
switching frequency [1]. 

Hardware specialization has been identified as a 
technique to power efficiently improve 
performance at the cost of reduced generality and 
programmability.  Hardware specialization 
examples include GPU special function units 

andhardware encryption, which perform 
significantly faster than software solutions.  

The Dynamically Synthesized Execution (DySE) 
model has been proposed to improve the energy 
efficiency of general purpose processors [2].  
Applications often execute in phases, and these 
phases can be identified at compile time.  A 
heterogeneous array of computational units and 
interconnection can be configured to execute a 
portion of the phase’s datapath.  A co-designed 
compiler constructs application path-trees to 
identify phases.  The compiler slices path-trees to 
create mappings to DySE Resource (DySER) blocks 
[3]. 

This paper describes the design of an integrated 
DySER and OpenSPARC T1 processor [4].  While the 
DySER block size can be adjusted based on design 
constraints, we implemented an 8x8 array of 
functional units.  The OpenSPARC T1 instruction set 
was modified to add DySER specific instructions, 
and the simple 6-stage pipeline was modified to 
incorporate the 8x8 DySER block in the execute 
stage.  The SPARC assembler was modified to 
output binaries compatible with our integrated 
OpenSPARC with DySER (OpenSPLySER) processor. 

The remainder of this paper is organized as 
follows.  Section 2 describes the DySER design.  
Section 3 describes our implementation and 
processor modifications.  Section 4 discusses our 
simulation results and section 5 discusses future 
work.  Section 6 discusses related work and section 
7 concludes. 
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2.  DySER Design 
 
 Dynamically Synthesized Execution is meant 

to provide the benefits of specialized hardware 
resources with increased generality.  When an 
application enters a phase, the application 
configures the Dynamically Synthesized Execution 
Resource (DySER) block for that phase using 
instruction set extensions.  Once configured, a 
DySER block looks like a multi-cycle specialized 
functional unit with addressable input and output 
ports to the processor and compiler.  Execution 
proceeds with the processor sending data to the 
now configured DySER block.  The data flows 
through the configured DySER block in a dataflow 
fashion.  The processor reads the final results of the 
computation from the DySER block and writes the 
data back to the register file.  Figure 1 outlines an 
example path-tree constructed from Blackscholes 
and mapped onto an example 3x2 DySER block.  
Additionally, normal SPARC instructions can be 
performed while a DySER block is performing 
computations. 
 

2.1.  DySER Operation 
 
A DySER block is composed of an array of 

heterogeneous functional blocks connected with 
switches.  Figure 2 breaks down the components of 
a DySER block (Figure 2a).  The functional units 
(Figure 2b) compose the core of the computation 
array.  Functional units can be multi-purpose and 
heterogeneous, with a configuration register 
determining the function to perform.  Switches 
(Figure 2c) form the interconnection network 
between the functional units.  Data flows into the 
network along the circuit-switched path in a 
dataflow fashion using a credit-based flow control 
(Figure 2d,e).  The switch network and functional 
units are configured before use by the compiler.  
While the DySER block is in configuration mode, the 
switch network is used to send configuration data 
to the switches and functional units in the DySER 
block. 

 
 
 
 

2.2.  Instruction Set Extensions 
 
The SPARC instruction set was extended with 

four instructions to facilitate processor and 
compiler interaction with a DySER block.  The 
instructions allow the compiler to configure the 
DySER block, send data from the register file to the 
DySER block, and send data from the DySER block to 
the register file.  The instructions are detailed in 
Table 1.  

 

3.  OpenSPLySER Implementation 
 
Before discussing the changes made to the 

OpenSPARC T1 architecture, we will briefly discuss 
the behavior of the pipeline during each of the four 
DySER instructions.  All DySER instructions flow 
through the fetch and thread select stages in the 
same fashion as all other instructions.  The only 
important thing to note is the register read sources 
are decoded but not enabled in thread select.  In 
the decode stage, DySER instructions are decoded 
and DySER signals are set for pipelining [3]. 

Because each instruction behaves differently in 
execution, we describe them individually: 
 
dyser_init:  Because dyser_config_enable is high, 
DySER takes the configuration bits. 

 
dyser_send:  The register read enables and registers 
to read are piped to the register file in decode, so 
the data is available during execute.  Both RS1 and 
RS2 are fed to DySER, dictated by the ports selected 
in the dyser_send instruction. 

 

Figure 1.  Mapping a phase of Blackscholes 
onto a DySER block. 
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dyser_recv:  Register write is enabled, the DySER 
register destination and DySER data out are all 
pipelined to memory and then writeback.  In the 
event that the data specified by the receive port is 
not ready to commit, DySER will stall the processor 
until the data is able to come out.   

 
dyser_commit:  Commit flag going high causes 
DySER to writeback all of the ready results.  Only 
required for out of order execution, and is unused 
in our current implementation.   

 
Except for dyser_recv, which writes data back 

into register file, memory and writeback stage are 
the same for all DySER instructions.  Register write 
enable is set low to prevent any writes to the 
register file. 

 

3.1 OpenSPARC T1 Pipeline Changes 
 
In order to facilitate correct DySER operation, 

the decode and execute stages of OpenSPARC T1 
required careful modification.  The DySER 
instructions are implemented through one of two 
SPARC V9 “implementation dependent” instructions 
already present in the pipeline.  They are, however, 

caught as illegal instructions if not implemented 
and removed from the illegal instruction logic.  In 
the decode stage, we added decode logic to decode 
DySER instructions and set the DySER interface 
signals (detailed in section 3.2) correctly.  Also 
modified was the validation logic to enable register 
reads for dyser_sends and the decoding of the 
DySER compslice. 

Pipeline latches were added for the DySER 
signals going to the execute stage.  Here, the DySER 
block is added along with all of the stall logic to 
squash DySER from taking in any new data on a 
stall.  A diagram of the integrated design is shown in 
Figure 3.  Three muxes were added just after the 
ALU result, register write signal and register 
destination (as mentioned above).  A DySER stall 
request was also added (going to the fetch control 
logic) on the occasion that the DySER block needs to 
stall the entire pipeline along with completion logic 
to tell the fetch stage when to resume fetching 
instructions again.  Finally, all of the routing for 
DySER signals was added to the top level modules. 

 
 
 

Instruction Description 

 
dyser_init [config data] 

The DySER block is placed in config mode, and the config data is shifted 
into the block.  The number of dyser_init instructions to fully configure a 
DySER block depends on the block size. 

dyser_send RS1 => DI1 
dyser_send RS1 => DI1, RS2 => DI2 

Reads from the register file and sends the data to a DySER block.  1 or 2 
source registers are sent to the specified DySER input ports 

dyser_recv DO => RD Writes output data from DySER to the register file 

 
dyser_commit 

Signals DySER to write all ready data back to general-purpose registers 
and/or memory.  This facilitates out-of-order execution.  Not applicable 
in single-issue, in-order OpenSPARC. 

Figure 2.  Major components of a Dynamically Synthesized Execution Resource. 

 

Table 1.  Stylized SPARC instruction set extensions to support DySER operation. 
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3.2 DySER-OpenSPARC T1 Interface 
 
An input interface and output interface support 

the interaction between the OpenSPARC T1 pipeline 
and a DySER block.  A DySER block has separate 
addressable input ports and output ports.  Each 
input or output port contains a FIFO queue that 
buffers data at that port.  Table 2 describes the 
detailed signal interface between the OpenSPARC 
processor and a DySER block.  The OpenSPARC 
register file contains three read ports, and two 
write ports.  Due to the 32-bit instruction encoding 
limitation, only two source registers can be read per 
cycle for a DySER instruction.  The second write port 
is used to allow long running memory accesses to 
write results to the register file immediately when 
non-memory instructions are also writing to the 
register file.  Thus, one result can be read from 
DySER to be written into the register file per cycle. 

 
Input Interface:  The processor sends data from the 
register file to an input port.  The data is buffered in 
the queue at that port until the DySER block is ready 
to consume the data.  If the processor attempts to 
send data to a full port, the pipeline is stalled until 
the DySER block frees up space at the port. 

 
Output Interface:  Output values from DySER are 
held at the output ports in the queues until a 
dyser_recv instruction is executed to read the 
values out.  The credit-based flow control 
guarantees that results will be generated in the 

order inserted into the DySER block, and results will 
not be overwritten by more recent invocations 
before being read out.  If the result data has not yet 
reached the output port, the pipeline is stalled. 

 

4.  Results 
 
The first step in determining OpenSPLySER’s 

success is to verify that the changes to the pipeline 
do not interfere with normal processor operation.  
Because our main goal was to integrate DySER into 
an existing  pipeline, functionality first takes 
precedence.  After integrating OpenSPARC with the 
DySER modules, we ran all of the regression tests 
that came with it to ensure they all complete 
successfully.  To verify DySER’s correctness, we 
wrote a DySER assembler to construct binaries 
containing OpenSPARC and DySER instructions 
compatible with our OpenSPLySER processor.  This 
enabled us to able to verify that the correct data 
was sent into the DySER input queues, the 
configuration bits routed data correctly and the 
correct data was read from the DySER output 
queues.  Pipeline stalls and interrupts were also 
verified to execute correctly.  Context switches 
were not investigated, as DySER’s internal 
configuration state does not currently support 
context saves.  Once functionality was verified, we 
then considered DySER’s potential impact on 
performance.   

  A DySER block contains WxH functional units, 
allowing up to WxH operations to be performed 

Figure 3.  The OpenSPARC T1 pipeline with an integrated DySER block. 
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concurrently.  A DySER block kernel f computes 
Y[1..M] = f(X[1..N]), where f has N inputs and M 
outputs.  We use an 8x8 DySER block which 
supports either 2 inputs or 1 output per cycle 
(dyser_send and dyser_recv, respectively).  Thus, a 
particular kernel that requires N inputs and M 
outputs will require N/2 + M cycles to send in a set 
of inputs and receive the set of outputs.  A kernel 
performing K operations (K <= WxH) can obtain 
speedup at most S = K / (N/2+M), if the kernel is 
executed repeatedly in a pipelined fashion.  To test 
this, we performed a sum-reduction kernel over an 
array of values.  This kernel takes 16 inputs and 
produces 1 output performing 15 additions, 
allowing theoretical speedup of S = 15 / (16/2 + 1) = 
1.67.  Using simulation, summing an array of size  

 
 
 
4096 resulted in a speedup of 1.57 (95% of optimal) 
compared to usingasequenceof4095 SPARC 
additions.  Larger data sets can better amortize the 
overhead of configuring DySER. 

 

5.  Future Work 
 
A number of future directions have been 

identified to improve the design.  One source of 
overhead is the configuration of DySER blocks.  The 
configuration time is amortized over the duration of 
the phase, but opportunities to reduce 
configuration time exist.  One solution is to 
implement two DySER blocks and perform double 
buffering, where one DySER block is in use while a 
second is being configured.  An alternate solution is 

Signal Name Description 

 Inputs 

dyser_config_enable Signals DySER to take incoming configuration data.  Enabled on a dyser_init   

dyser_send_enable0  
dyser_send_enable1 

Signals DySER to receive data incoming from register file (RF) specified by RS1(2).  
High on dyser_send.  dyser_send_enable1 is only used when sending two source 
registers 

dyser_receive_enable0  
dyser_receive_enable1 

Signals DySER to send results from DySER ports specified by dyser_receiveport0(1) to 
register specified by dyser_reg_dest.  High on dyser_recv.  OpenSPARC only allows 1 
write per cycle, so dyser_receive_enable1 is always low 

dyser_sendport0[4:0] 
dyser_sendport1[4:0] 

Address that specifies DySER input ports where data from register file goes.  
dyser_sendport1 is only used when two register sources are specified by dyser_send 
instruction 

dyser_receiveport0[4:0] 
dyser_receiveport1[4:0] 

 Address that specifies port on DySER that writes to the register file.   
Currently, OpenSPARC allows 1 write per cycle, so dyser_receiveport1 is always low 

dyser_commit Signals DySER block to commit.  Enabled on dyser_commit instruction 

dyser_write  Register file write enable for dyser_recv instructions.  Enabled on dyser_recv 
instruction. 

dyser_mux_select Selects DySER output signals from muxes in execute stage, which include dyser_write, 
dyser_data_out and dyser_reg_dest. 

dyser_reg_dest[4:0] Register destination for dyser_data_out  on a dyser_recv 

send_data_r0[63:0] 
send_data_r1[63:0] 

Data from the register file sent to DySER on a dyser_send. 

dyser_clk DySER’s clock based on global clock 

dyser_rst DySER’s reset based on global reset 

 Outputs 

dyser_data_out[63:0] Output data from DySER block to be written into a register 

dyser_stall Request from DySER to stall pipeline.  dyser_stall is routed to the fetch control logic 
unit where it is handled by stall request logic 

Table2.  The microarchitectural interface between DySER and OpenSPARC. 
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to create copies of the configuration register inside 
a DySER block.  With this design, the DySER block 
could be pre-configured multiple times, and the 
stored configurations swapped between very 
quickly.  

Allowingdyser_inits to load configuration 
information directly from memory, instead of being 
instruction encoded, is expected to be a better 
approach as well.  This would provide the 
opportunity for a more flexible approach to 
configuration, such as designating configuration 
information to be sent to only a subset of DySER 
blocks, as well as providing larger effective 
bandwidth.  Considering research is already 
underway for scheduling multiple smaller comp-
slices at once, this strategy would complement it 
well. 

In our current implementation, at most two 
values can be sent to or one value read from a 
DySER block each cycle.  The DySER interface scales 
well, so this is a limitation with OpenSPARC T1, not 
DySER.  Integrating a DySER block into a multi-issue 
and/or out-of-order processor can improve the use 
efficiency of a DySER block by improving raw 
operand bandwidth and effective operand 
bandwidth limit through dependency reduction and 
memory disambiguation.  A full characterization of 
the performance in the OpenSPARC pipeline would 
still be helpful in evaluation, with an FPGA 
implementation looking to be the most feasible 
option for this.  This would allow us to run larger 
programs utilizing DySER in the native compiler-
dictated environment, something lacking from 
current RTL simulations, as well as accounting for 
cache-miss impact on large run-times. 

 

6.  Related work 
 
Similar architectures, such as VEAL[5], attempt 

to address the common problem of hardware 
accelerators by focusing on overcoming the need 
for binary compatibility.  Due to DySER’s 
requirement of special compilation, it ends up less 
portable than would otherwise be.  Instead, VEAL 
executes the processor’s baseline instruction set, 
without the need for extension.  VEAL’s advantage 
lies in its ability to accelerate inner loops, while 
DySER has similar capabilities in addition to the 

ability of extracting inherent parallelism out of 
block structures that VEAL cannot. 

On the other end of the spectrum, architectures 
like Wavescalar[6] are almost entirely composed of 
circuit-switched ALU “tiles” forming a grid, similar 
to DySER.  Between the ALUs are sets of small data 
caches, store buffers and switch controls for 
sending data around the network.  Wavescalar is an 
example of a dataflow architecture, an approach 
that greatly differs from the typical realization of 
linear control-flow structured operation, an 
example being MIPS as described in Patterson and 
Hennessy [7].   In Wavescalar, results are 
immediately sent through a network to become an 
operand to any ALU that needs it, whereas typical 
pipelines use centralized register-files to organize 
operand-fetch & write for each operation.  As a 
result, Wavescalar differs greatly on a high-level 
from DySER.  DySER is a hardware accelerator 
meant to complement the existing (super-)scalar 
pipeline, whereas Wavescalar itself replaces the 
entire pipeline and memory structure, eschewing 
the linear Von Neumann PC model. 

 

7.  Conclusions 
 
The DySER model of execution has been 

outlined, with details of the DySER hardware block 
constituting a grid of circuit-switched functional 
units provided.  An overview of  the ISA extensions 
and changes made for integration into the 
OpenSPARC T1 pipeline has been detailed as well.  
Application of the DySER model to an in-order 
pipeline has been proven possible, with DySER 
producing functionally correct results during chip-
level RTL simulations.  The peak-performance 
results for a sum-reduce kernel in these simulations 
corroborate with the theoretical expected for our 
particular DySER configuration.   As a whole, these 
results show promise for a more complete 
implementation of the original ideas outline in [2], 
in addition to those mentioned above in future 
work. 

Integrating DySER into the OpenSPARC pipeline 
presented some unique challenges, considering the 
sheer scale of the existing infrastructure.  Luckily, 
the acts of understanding and modifying the 
simulation environment, making changes to the 
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pipeline RTL and additions to the DySER RTL were 
able to be done in a relatively parallel fashion.  In 
retrospect, the maturity of the OpenSPARC 
offerings is a blessing and a bane.  Regression 
environments are well defined, allowing minor 
micro-architectural changes to proceed relatively 
easy, however ISA-level changes are rather 
complex, as assembler provisions are not directly 
provided and workarounds are necessary.  The 
multi-threaded philosophy of the core presented 
additional complications, as single-threaded 
operation was a late addition, leaving many 
ramifications in the pipeline’s approach to flushes 
and stalling.  Actively making design decisions early 
in the process favoring a simpler implementation 
approach proved well, considering this. 
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A.  Appendix 
 
A.1 Changes to OpenSPARC pipeline 
 
In order to facilitate correct DySER operation, the following changes to the OpenSPARC architecture were 
applied: 
 
sparc_ifu.v: 

 Routed dyser_stall from execution stage to fetch control logic 

 Routed all DySER signals from the output of decode to execute 

 
sparc_ifu_dec.v: 

 Used “Implementation Dependant Instruction 2” to implement all DySER instructions 
o Removed “impdep2” from illegal opcode logic 

 Added decode logic to set DySER signals correctly which are pipelined to execute stage 

o DySER_Init, Store, Receive and Commit signals are set (detailed below in 3.1.2) 
 Compslice extraction from DySER_Init 
 Added validation logic to enable RS1 and RS2 reads for DySER_Sends 

 
sparc_ifu_flc.v: 

 Added “DySER stall request” to the rest of the stall request logic 

 
sparc_ifu_thrcmpl.v: 

 Added dyser_complete signal to the other long latency instruction complete signals 

 
sparc_exu.v: 

 Pipelined all DySER signals coming from decode 

 Added instance of DySER module to execute stage 

 Stall logic to disable DySER inputs on a global Stall 

 
dyser_block.v: 

 Dyser_block module created as a wrapper between SPARC execution stage and DySER 
 
sparc_exu_ecl.v: 

 Added mux for choosing either a DySER_Receive’s register destination or the normal destination register 
 Routed DySER register write to writeback logic 

 
sparc_exu_ecl_wb.v: 

 Added mux for choosing either DySER register write enable or normal write enable 

 
sparc_exu_byp.v: 

 Added mux for choosing DySER data out or ALU output 

 
sparc.v: 

 Routed all DySER signals from ‘fetch-thread select-decode’ to ‘execute’ 
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A.2 Changes to DySER 
 
Flip-Flop Stage (ff_stage.v): 

 Improved the resiliency of the stage machine 

 Added support for multi-cycle functional units 

 
Functional Unit (functional_unit.v): 

 Functional unit was not properly capturing both inputs when they arrived at different times 
 Added a Flip-Flop stage specific to functional units to manage this (fu_stage.v) 

 
Switch (switch.v): 

 Added configuration registers to each switch 

 Configuration data is pipelined through the switches using a static “configure mode” path along the 
existing switch data network 

 
Core (core.v): 

 Fixed incorrect connections between the Edge fabric and Tile fabric 

 Added a “configure mode” to the Core which uses the existing switch network for streaming 
configuration data to all Tiles in the DySER block 

 
Input Bridge and Output Bridge (input_bridge.v and output_bridge.v): 

 Full redesign.  Added 4 element FIFO’s at every port 
 Control logic to interface between the processor and DySER Core (core.v) 

 
DySER (dyser.v): 

 Designed the interface between OpenSPARC and DySER based on various limitations 
 Combined the components of DySER to interface properly with the OpenSPARC processor. 

 
Testbenches: 

 A variety of testbenches have been created to validate the functionality of the components of DySER. 
 The most important being dyser_tb, which simulates a processor interfacing with a DySER block. 

 All testbenches reside in the $DYS_SVN_ROOT/dyser/testbenches/ directory. 

 

 

A.3  Environment Setup 
 

In order to run conduct OpenSPLySER Assembly & Regressions/Simulation, the following needs to done to 
correctly configure the environment.  Environment variables to the following need to be configured in the main 
script sourced from (found in the ./opensparc/OpenSPARCT1.bash): 

 $DYS_SVN_ROOT  :=  The absolute path to the OpenSPLySER SVN check-out (where ./dyser & 
./opensparc are located). 

 
       - OR -  (Normally set by the above) 

 T1_ROOT  :=  Path to the OpenSPARC base directory, used to hold anything required for the full 
implementation. 

 DYS_ROOT  :=  Path to the DySER verilog files. 
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Doing so points $PATH to the correct binaries & scripts used for simulation, as well other important 

directories/vars, including: 
 $DV_ROOT  :=  Directory holding all of the RTL, scripts/binaries, regression tests, etc. 

o ./design/  :=  All OpenSPARC RTL 
 ./sys/iop/  :=  Core-level verilog, anything relating to the pipeline, broken down into sub-

modules/stages mostly 
 ./sys/iop/SPARC_Changes  :=  Any new RTL that gets included in the design, or changed 

verilog to get grafted (used instead of) the original 
o ./tools/  :=  Simulation/regression tools 

 ./src/sims/sims,1.26  :=  Main front-end script called to handle building RTL into run-
time models with VCS, calling Midas to assemble diagnostic assembly code into memory 
images, and simulating said models 

 $MODEL_DIR  :=  Directory to place/search for compiled VCS RTL models 
 $REGR_DIR  :=  Directory to place regressions/simulations in 
 $DRMJOBSCRATCHSPACE  :=  Temporary scratch space to use when running simulations 

 
At the current moment, VCS is configured (for use in the CS department’s environment) as the verilog 

compiler/simulator.  Changing to another version may require debugging, as the shared libraries tend to clash; 
OpenSPARC provides 32-bit PLI libraries for interfacing with the simulator by default, so re-compiling them will 
be necessary if the sims’ run-time argument -vcs_build_args=”-mode32” doesn’t suffice to fix compilation.   
  
A.4  Running Regressions 
 

Since it is not currently possible to run a single assembler that includes OpenSPARC T1 plus the DySER 
extensions, running a normal regression diagnostic is required before integrating DySER instructions.  An 
example of this procedure is as following: 

 
1. Change to the $REGR_DIR 

 
1. Run “sims -group=thread1_mini -graft_flist=$T1_ROOT/impl/design/sys/iop/SPARC_Changes/graft.flist -

flist=$T1_ROOT/impl/design/sys/iop/SPARC_Changes/include.flist -sim_type=vcs -vcs_build_args="-
mode32" -novera_build -novera_run -sys=core1 -regress_id=somedir -vcs_build_args=-PP -
vcs_build_args=+v2k -config_rtl=VPD  
 

2. The above will compile the verilog model and run the full mini-regression test suite for the single-thread 
version of the T1 core, with DySER integrated (remove the graft/flist options to do so for the original 
pipeline).  In order to run only ONE diagnostic it may be possible to add “-
alias=exu_alu:model_core1:thread1_mini:0” for running a simple alu diag, although this has not been 
tested, so some variation on the “-alias” argument may be required. 
 

3. After the above is run, the results for each diagnostic run will appear in $REGR_DIR/somedir, including 
the diagnostic assembly file (diag.s) and file to re-run only that diagnostic (sim_command).  These 
provide everything necessary to create a new diagnostic/simulation test that will work for our purposes. 
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A.5  Diag Assembly for DySER Instructions and Simulations 
 

With the environment created from the above, it is now possible to create an assembly file containing 
DySER operations to be performed, which will be spliced into the diagnostic assembly file after being processed 
through the DySER assembler (dyser_asm.awk).  The DySERassembler will convert any DySERoperations into 
nops and pass all other instructions through, so as to allows Midas, the OpenSPARC assembler/linker front-end, 
to produce a properly aligned binary memory image.  This is required, since the actual binutils used (GNU AS, LD, 
and OBJDUMP) do not support DySER instructions, and adding support has not been possible yet.  Using this 
procedure allows a perfectly valid memory image (aligned with our DySER instructions!) and MMU programming 
to be created with the existing tools, then some extra effort is done to lay the DySER ops over the shadow nops 
in the image.    
 

A DySER assembly file is written as such: 
 Normal GAS (GNU AS assembly) syntax is used for SPARC V9 (T1 implementation) instructions, which is 

to say, that anything non-DySER and normal should be handled correctly. 
 DySER instructions attempt to follow the same syntax in the following format 

 

 

dyser_init  <Configuration> Configuration is a 21-bit immediate, typically numbers should be expressed in 
hex, with ‘0x’ as a prefix 

dyser_send <reg>, <port>[, 
<reg>, <port>] 

One or two DySER input ports can be sent to in an instruction.  The ports are 5-
bit immediates, expressed in either decimal or hex (‘0x’) 

dyser_recv <port>, <reg> Only one port can be received from, where port is 5-bits immediate, either 
decimal or hex (‘0x’) 

dyser_comm No operands required 

<reg> General purpose registers are specified in typical GAS SPARC syntax: 
  %g[0-7] 
  %l[0-7] 
  %i[0-7] 
  %o[0-7] 

 
The procedure for generating the proper memory image is as follows: 

2. Change directory to the regression output 
a. e.g. $REGR_DIR/somedir/exuexu_alu:model_core1:thread1_mini:0 
3. Create the DySER assembly file 

4. Run dyser_asm.awk <dys_asm_file> 
5. From the output, splice the adjusted assembly code into diag.s 
6. Modify sim_command with the following arguements: 
 . -nobuild  

a. -asm_diag_path=$REGR_DIR/somedir/model_core1:thread1_mini:0 
b. -asm_diag_name=diag.s   #Note:  Remove the normal *.s reference in here 

7. Run sim_command, which will create a new mem.image, diag.ev, and symbols.tbl 
8. Run dyser_asm.awk <dys_asm_file> again 
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9. Splice the differences in mem.image with the memory locations produced 
 . This is rather tedious at the moment, this procedure will be simplified sometime in the near future 

a. For the moment being, it’s best to have the DySER code go into the beginning of the “main” 
section in the diagnostic assembly file, as that can be found at the “MAIN” section tag seen in 
mem.image. 

10. Copy mem.image, diag.s, diag.ev, and symbols.tbl to something like dys_test.*, keeping the same extension 
names. 
11. Run sim_command with the changes 
 . Remove the (6.c) addition, and add the following 

a. -image_diag_path=$REGR_DIR/dummy_dyser_1/exu_alu:model_core1:thread1_mini:0/  
b. -image_diag_name=dys_test.image  

12. View the results 
 . Use “dve” to load the vcdplus.vpd file for waveform viewing 

a. “procvlog ./sim.log” gives a log of architectural changes 
 
 

A.6 Presentation Slides 
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