

Computer
Sciences
Department

OpenSPLySER: The Integrated OpenSPARC and DySER Design

Jesse Benson
Ryan Cofell
Chris Frericks
Chen-Han Ho
Karthikeyan Sankaralingam

Technical Report #1685

January 2011

1

OpenSPLySER: The Integrated OpenSPARC and DySER Design

Jesse Benson Ryan Cofell Chris Frericks

Chen-Han Ho Karthikeyan Sankaralingam

University of Wisconsin – Madison
jmbenson2@wisc.edu,cofell@wisc.edu, frericks@wisc.edu,

ho9@wisc.edu, karu@cs.wisc.edu

Abstract

The Dynamically Synthesized Execution (DySE)

model has been proposed to improve the energy
efficiency and performance of general purpose
programmable processors. We describe how a DySE
Resource (DySER) block can be integrated into a
processor pipeline. The block size can be adjusted
based on design constraints, but we integrate an
8x8 functional unit array into a simple in-order
OpenSPARC T1 pipeline. The instruction set changes
and the microarchitectural interface between the
DySER block and processor are described.

1. Introduction

Based on the International Technology

Roadmap for Semiconductor’s (ITRS) current
predictions, devices will continue to double in
density every 24 to 36 months over the next 15
years. However, the power efficiency of devices is
expected to scale slowly from generation to
generation. ITRS predicts static power consumption
will remain approximately flat while dynamic power
consumption will increase significantly despite
power reduction techniques like low-leakage
transistors, power-gating, multi-gate threshold
voltages, and architectural effort to reduce
switching frequency [1].

Hardware specialization has been identified as a
technique to power efficiently improve
performance at the cost of reduced generality and
programmability. Hardware specialization
examples include GPU special function units

andhardware encryption, which perform
significantly faster than software solutions.

The Dynamically Synthesized Execution (DySE)
model has been proposed to improve the energy
efficiency of general purpose processors [2].
Applications often execute in phases, and these
phases can be identified at compile time. A
heterogeneous array of computational units and
interconnection can be configured to execute a
portion of the phase’s datapath. A co-designed
compiler constructs application path-trees to
identify phases. The compiler slices path-trees to
create mappings to DySE Resource (DySER) blocks
[3].

This paper describes the design of an integrated
DySER and OpenSPARC T1 processor [4]. While the
DySER block size can be adjusted based on design
constraints, we implemented an 8x8 array of
functional units. The OpenSPARC T1 instruction set
was modified to add DySER specific instructions,
and the simple 6-stage pipeline was modified to
incorporate the 8x8 DySER block in the execute
stage. The SPARC assembler was modified to
output binaries compatible with our integrated
OpenSPARC with DySER (OpenSPLySER) processor.

The remainder of this paper is organized as
follows. Section 2 describes the DySER design.
Section 3 describes our implementation and
processor modifications. Section 4 discusses our
simulation results and section 5 discusses future
work. Section 6 discusses related work and section
7 concludes.

2

2. DySER Design

 Dynamically Synthesized Execution is meant

to provide the benefits of specialized hardware
resources with increased generality. When an
application enters a phase, the application
configures the Dynamically Synthesized Execution
Resource (DySER) block for that phase using
instruction set extensions. Once configured, a
DySER block looks like a multi-cycle specialized
functional unit with addressable input and output
ports to the processor and compiler. Execution
proceeds with the processor sending data to the
now configured DySER block. The data flows
through the configured DySER block in a dataflow
fashion. The processor reads the final results of the
computation from the DySER block and writes the
data back to the register file. Figure 1 outlines an
example path-tree constructed from Blackscholes
and mapped onto an example 3x2 DySER block.
Additionally, normal SPARC instructions can be
performed while a DySER block is performing
computations.

2.1. DySER Operation

A DySER block is composed of an array of

heterogeneous functional blocks connected with
switches. Figure 2 breaks down the components of
a DySER block (Figure 2a). The functional units
(Figure 2b) compose the core of the computation
array. Functional units can be multi-purpose and
heterogeneous, with a configuration register
determining the function to perform. Switches
(Figure 2c) form the interconnection network
between the functional units. Data flows into the
network along the circuit-switched path in a
dataflow fashion using a credit-based flow control
(Figure 2d,e). The switch network and functional
units are configured before use by the compiler.
While the DySER block is in configuration mode, the
switch network is used to send configuration data
to the switches and functional units in the DySER
block.

2.2. Instruction Set Extensions

The SPARC instruction set was extended with

four instructions to facilitate processor and
compiler interaction with a DySER block. The
instructions allow the compiler to configure the
DySER block, send data from the register file to the
DySER block, and send data from the DySER block to
the register file. The instructions are detailed in
Table 1.

3. OpenSPLySER Implementation

Before discussing the changes made to the

OpenSPARC T1 architecture, we will briefly discuss
the behavior of the pipeline during each of the four
DySER instructions. All DySER instructions flow
through the fetch and thread select stages in the
same fashion as all other instructions. The only
important thing to note is the register read sources
are decoded but not enabled in thread select. In
the decode stage, DySER instructions are decoded
and DySER signals are set for pipelining [3].

Because each instruction behaves differently in
execution, we describe them individually:

dyser_init: Because dyser_config_enable is high,
DySER takes the configuration bits.

dyser_send: The register read enables and registers
to read are piped to the register file in decode, so
the data is available during execute. Both RS1 and
RS2 are fed to DySER, dictated by the ports selected
in the dyser_send instruction.

Figure 1. Mapping a phase of Blackscholes
onto a DySER block.

3

dyser_recv: Register write is enabled, the DySER
register destination and DySER data out are all
pipelined to memory and then writeback. In the
event that the data specified by the receive port is
not ready to commit, DySER will stall the processor
until the data is able to come out.

dyser_commit: Commit flag going high causes
DySER to writeback all of the ready results. Only
required for out of order execution, and is unused
in our current implementation.

Except for dyser_recv, which writes data back

into register file, memory and writeback stage are
the same for all DySER instructions. Register write
enable is set low to prevent any writes to the
register file.

3.1 OpenSPARC T1 Pipeline Changes

In order to facilitate correct DySER operation,

the decode and execute stages of OpenSPARC T1
required careful modification. The DySER
instructions are implemented through one of two
SPARC V9 “implementation dependent” instructions
already present in the pipeline. They are, however,

caught as illegal instructions if not implemented
and removed from the illegal instruction logic. In
the decode stage, we added decode logic to decode
DySER instructions and set the DySER interface
signals (detailed in section 3.2) correctly. Also
modified was the validation logic to enable register
reads for dyser_sends and the decoding of the
DySER compslice.

Pipeline latches were added for the DySER
signals going to the execute stage. Here, the DySER
block is added along with all of the stall logic to
squash DySER from taking in any new data on a
stall. A diagram of the integrated design is shown in
Figure 3. Three muxes were added just after the
ALU result, register write signal and register
destination (as mentioned above). A DySER stall
request was also added (going to the fetch control
logic) on the occasion that the DySER block needs to
stall the entire pipeline along with completion logic
to tell the fetch stage when to resume fetching
instructions again. Finally, all of the routing for
DySER signals was added to the top level modules.

Instruction Description

dyser_init [config data]

The DySER block is placed in config mode, and the config data is shifted
into the block. The number of dyser_init instructions to fully configure a
DySER block depends on the block size.

dyser_send RS1 => DI1
dyser_send RS1 => DI1, RS2 => DI2

Reads from the register file and sends the data to a DySER block. 1 or 2
source registers are sent to the specified DySER input ports

dyser_recv DO => RD Writes output data from DySER to the register file

dyser_commit

Signals DySER to write all ready data back to general-purpose registers
and/or memory. This facilitates out-of-order execution. Not applicable
in single-issue, in-order OpenSPARC.

Figure 2. Major components of a Dynamically Synthesized Execution Resource.

Table 1. Stylized SPARC instruction set extensions to support DySER operation.

4

3.2 DySER-OpenSPARC T1 Interface

An input interface and output interface support

the interaction between the OpenSPARC T1 pipeline
and a DySER block. A DySER block has separate
addressable input ports and output ports. Each
input or output port contains a FIFO queue that
buffers data at that port. Table 2 describes the
detailed signal interface between the OpenSPARC
processor and a DySER block. The OpenSPARC
register file contains three read ports, and two
write ports. Due to the 32-bit instruction encoding
limitation, only two source registers can be read per
cycle for a DySER instruction. The second write port
is used to allow long running memory accesses to
write results to the register file immediately when
non-memory instructions are also writing to the
register file. Thus, one result can be read from
DySER to be written into the register file per cycle.

Input Interface: The processor sends data from the
register file to an input port. The data is buffered in
the queue at that port until the DySER block is ready
to consume the data. If the processor attempts to
send data to a full port, the pipeline is stalled until
the DySER block frees up space at the port.

Output Interface: Output values from DySER are
held at the output ports in the queues until a
dyser_recv instruction is executed to read the
values out. The credit-based flow control
guarantees that results will be generated in the

order inserted into the DySER block, and results will
not be overwritten by more recent invocations
before being read out. If the result data has not yet
reached the output port, the pipeline is stalled.

4. Results

The first step in determining OpenSPLySER’s

success is to verify that the changes to the pipeline
do not interfere with normal processor operation.
Because our main goal was to integrate DySER into
an existing pipeline, functionality first takes
precedence. After integrating OpenSPARC with the
DySER modules, we ran all of the regression tests
that came with it to ensure they all complete
successfully. To verify DySER’s correctness, we
wrote a DySER assembler to construct binaries
containing OpenSPARC and DySER instructions
compatible with our OpenSPLySER processor. This
enabled us to able to verify that the correct data
was sent into the DySER input queues, the
configuration bits routed data correctly and the
correct data was read from the DySER output
queues. Pipeline stalls and interrupts were also
verified to execute correctly. Context switches
were not investigated, as DySER’s internal
configuration state does not currently support
context saves. Once functionality was verified, we
then considered DySER’s potential impact on
performance.

 A DySER block contains WxH functional units,
allowing up to WxH operations to be performed

Figure 3. The OpenSPARC T1 pipeline with an integrated DySER block.

5

concurrently. A DySER block kernel f computes
Y[1..M] = f(X[1..N]), where f has N inputs and M
outputs. We use an 8x8 DySER block which
supports either 2 inputs or 1 output per cycle
(dyser_send and dyser_recv, respectively). Thus, a
particular kernel that requires N inputs and M
outputs will require N/2 + M cycles to send in a set
of inputs and receive the set of outputs. A kernel
performing K operations (K <= WxH) can obtain
speedup at most S = K / (N/2+M), if the kernel is
executed repeatedly in a pipelined fashion. To test
this, we performed a sum-reduction kernel over an
array of values. This kernel takes 16 inputs and
produces 1 output performing 15 additions,
allowing theoretical speedup of S = 15 / (16/2 + 1) =
1.67. Using simulation, summing an array of size

4096 resulted in a speedup of 1.57 (95% of optimal)
compared to usingasequenceof4095 SPARC
additions. Larger data sets can better amortize the
overhead of configuring DySER.

5. Future Work

A number of future directions have been

identified to improve the design. One source of
overhead is the configuration of DySER blocks. The
configuration time is amortized over the duration of
the phase, but opportunities to reduce
configuration time exist. One solution is to
implement two DySER blocks and perform double
buffering, where one DySER block is in use while a
second is being configured. An alternate solution is

Signal Name Description

 Inputs

dyser_config_enable Signals DySER to take incoming configuration data. Enabled on a dyser_init

dyser_send_enable0
dyser_send_enable1

Signals DySER to receive data incoming from register file (RF) specified by RS1(2).
High on dyser_send. dyser_send_enable1 is only used when sending two source
registers

dyser_receive_enable0
dyser_receive_enable1

Signals DySER to send results from DySER ports specified by dyser_receiveport0(1) to
register specified by dyser_reg_dest. High on dyser_recv. OpenSPARC only allows 1
write per cycle, so dyser_receive_enable1 is always low

dyser_sendport0[4:0]
dyser_sendport1[4:0]

Address that specifies DySER input ports where data from register file goes.
dyser_sendport1 is only used when two register sources are specified by dyser_send
instruction

dyser_receiveport0[4:0]
dyser_receiveport1[4:0]

 Address that specifies port on DySER that writes to the register file.
Currently, OpenSPARC allows 1 write per cycle, so dyser_receiveport1 is always low

dyser_commit Signals DySER block to commit. Enabled on dyser_commit instruction

dyser_write Register file write enable for dyser_recv instructions. Enabled on dyser_recv
instruction.

dyser_mux_select Selects DySER output signals from muxes in execute stage, which include dyser_write,
dyser_data_out and dyser_reg_dest.

dyser_reg_dest[4:0] Register destination for dyser_data_out on a dyser_recv

send_data_r0[63:0]
send_data_r1[63:0]

Data from the register file sent to DySER on a dyser_send.

dyser_clk DySER’s clock based on global clock

dyser_rst DySER’s reset based on global reset

 Outputs

dyser_data_out[63:0] Output data from DySER block to be written into a register

dyser_stall Request from DySER to stall pipeline. dyser_stall is routed to the fetch control logic
unit where it is handled by stall request logic

Table2. The microarchitectural interface between DySER and OpenSPARC.

6

to create copies of the configuration register inside
a DySER block. With this design, the DySER block
could be pre-configured multiple times, and the
stored configurations swapped between very
quickly.

Allowingdyser_inits to load configuration
information directly from memory, instead of being
instruction encoded, is expected to be a better
approach as well. This would provide the
opportunity for a more flexible approach to
configuration, such as designating configuration
information to be sent to only a subset of DySER
blocks, as well as providing larger effective
bandwidth. Considering research is already
underway for scheduling multiple smaller comp-
slices at once, this strategy would complement it
well.

In our current implementation, at most two
values can be sent to or one value read from a
DySER block each cycle. The DySER interface scales
well, so this is a limitation with OpenSPARC T1, not
DySER. Integrating a DySER block into a multi-issue
and/or out-of-order processor can improve the use
efficiency of a DySER block by improving raw
operand bandwidth and effective operand
bandwidth limit through dependency reduction and
memory disambiguation. A full characterization of
the performance in the OpenSPARC pipeline would
still be helpful in evaluation, with an FPGA
implementation looking to be the most feasible
option for this. This would allow us to run larger
programs utilizing DySER in the native compiler-
dictated environment, something lacking from
current RTL simulations, as well as accounting for
cache-miss impact on large run-times.

6. Related work

Similar architectures, such as VEAL[5], attempt

to address the common problem of hardware
accelerators by focusing on overcoming the need
for binary compatibility. Due to DySER’s
requirement of special compilation, it ends up less
portable than would otherwise be. Instead, VEAL
executes the processor’s baseline instruction set,
without the need for extension. VEAL’s advantage
lies in its ability to accelerate inner loops, while
DySER has similar capabilities in addition to the

ability of extracting inherent parallelism out of
block structures that VEAL cannot.

On the other end of the spectrum, architectures
like Wavescalar[6] are almost entirely composed of
circuit-switched ALU “tiles” forming a grid, similar
to DySER. Between the ALUs are sets of small data
caches, store buffers and switch controls for
sending data around the network. Wavescalar is an
example of a dataflow architecture, an approach
that greatly differs from the typical realization of
linear control-flow structured operation, an
example being MIPS as described in Patterson and
Hennessy [7]. In Wavescalar, results are
immediately sent through a network to become an
operand to any ALU that needs it, whereas typical
pipelines use centralized register-files to organize
operand-fetch & write for each operation. As a
result, Wavescalar differs greatly on a high-level
from DySER. DySER is a hardware accelerator
meant to complement the existing (super-)scalar
pipeline, whereas Wavescalar itself replaces the
entire pipeline and memory structure, eschewing
the linear Von Neumann PC model.

7. Conclusions

The DySER model of execution has been

outlined, with details of the DySER hardware block
constituting a grid of circuit-switched functional
units provided. An overview of the ISA extensions
and changes made for integration into the
OpenSPARC T1 pipeline has been detailed as well.
Application of the DySER model to an in-order
pipeline has been proven possible, with DySER
producing functionally correct results during chip-
level RTL simulations. The peak-performance
results for a sum-reduce kernel in these simulations
corroborate with the theoretical expected for our
particular DySER configuration. As a whole, these
results show promise for a more complete
implementation of the original ideas outline in [2],
in addition to those mentioned above in future
work.

Integrating DySER into the OpenSPARC pipeline
presented some unique challenges, considering the
sheer scale of the existing infrastructure. Luckily,
the acts of understanding and modifying the
simulation environment, making changes to the

7

pipeline RTL and additions to the DySER RTL were
able to be done in a relatively parallel fashion. In
retrospect, the maturity of the OpenSPARC
offerings is a blessing and a bane. Regression
environments are well defined, allowing minor
micro-architectural changes to proceed relatively
easy, however ISA-level changes are rather
complex, as assembler provisions are not directly
provided and workarounds are necessary. The
multi-threaded philosophy of the core presented
additional complications, as single-threaded
operation was a late addition, leaving many
ramifications in the pipeline’s approach to flushes
and stalling. Actively making design decisions early
in the process favoring a simpler implementation
approach proved well, considering this.

Acknowledgments

Many thanks to the great team at Vertical

Research Group including Chen-han Ho,
Venkatraman Govindaraju, Tony Nowatzki, and
Karthikeyan Sankaralingam. A special thanks to
Hennessey and Patterson for setting the foundation
for computer architecture [8].

References

[1] K. Jeong, A. Kahng, A power-constrained MPU
roadmap for the International Technology
Roadmap for Semiconductors (ITRS), SoC Design
Conference (ISOCC), 2009 International, pp. 49-
52, Nov 2009.

[2] C. Ho, V. Govindaraju. Energy Efficient

Computing With Dynamically Synthesized
Datapaths. Vertical Research Group. To
appear.

[3] C. Ho. Dynamically Synthesized Execution

Resources (DySER) Design Specification.
Vertical Research Group. To appear.

[4] OpenSPARC T1 Microarchitecture Specification.

Sun Microsystems, Inc. 2006.

[5] N. Clark, A. Hormati, and S. Mahlke. Veal:
Virtualized execution accelerator for loops. In
ISCA ’08, pages 389–400, 2008.

[6] S. Swanson, K. Michelson, A. Schwerin, and M.

Oskin. Wavescalar. In ISCA ’03, pages 291–302.

[7] D. Patterson and J. Hennessy. Computer

Organization and Design. Morgan Kaufman
Publisher 4th Edition, 2008

[8] J. Hennessy and D. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc, 1996.

8

A. Appendix

A.1 Changes to OpenSPARC pipeline

In order to facilitate correct DySER operation, the following changes to the OpenSPARC architecture were
applied:

sparc_ifu.v:

 Routed dyser_stall from execution stage to fetch control logic

 Routed all DySER signals from the output of decode to execute

sparc_ifu_dec.v:

 Used “Implementation Dependant Instruction 2” to implement all DySER instructions
o Removed “impdep2” from illegal opcode logic

 Added decode logic to set DySER signals correctly which are pipelined to execute stage

o DySER_Init, Store, Receive and Commit signals are set (detailed below in 3.1.2)
 Compslice extraction from DySER_Init
 Added validation logic to enable RS1 and RS2 reads for DySER_Sends

sparc_ifu_flc.v:

 Added “DySER stall request” to the rest of the stall request logic

sparc_ifu_thrcmpl.v:

 Added dyser_complete signal to the other long latency instruction complete signals

sparc_exu.v:

 Pipelined all DySER signals coming from decode

 Added instance of DySER module to execute stage

 Stall logic to disable DySER inputs on a global Stall

dyser_block.v:

 Dyser_block module created as a wrapper between SPARC execution stage and DySER

sparc_exu_ecl.v:

 Added mux for choosing either a DySER_Receive’s register destination or the normal destination register
 Routed DySER register write to writeback logic

sparc_exu_ecl_wb.v:

 Added mux for choosing either DySER register write enable or normal write enable

sparc_exu_byp.v:

 Added mux for choosing DySER data out or ALU output

sparc.v:

 Routed all DySER signals from ‘fetch-thread select-decode’ to ‘execute’

9

A.2 Changes to DySER

Flip-Flop Stage (ff_stage.v):

 Improved the resiliency of the stage machine

 Added support for multi-cycle functional units

Functional Unit (functional_unit.v):

 Functional unit was not properly capturing both inputs when they arrived at different times
 Added a Flip-Flop stage specific to functional units to manage this (fu_stage.v)

Switch (switch.v):

 Added configuration registers to each switch

 Configuration data is pipelined through the switches using a static “configure mode” path along the
existing switch data network

Core (core.v):

 Fixed incorrect connections between the Edge fabric and Tile fabric

 Added a “configure mode” to the Core which uses the existing switch network for streaming
configuration data to all Tiles in the DySER block

Input Bridge and Output Bridge (input_bridge.v and output_bridge.v):

 Full redesign. Added 4 element FIFO’s at every port
 Control logic to interface between the processor and DySER Core (core.v)

DySER (dyser.v):

 Designed the interface between OpenSPARC and DySER based on various limitations
 Combined the components of DySER to interface properly with the OpenSPARC processor.

Testbenches:

 A variety of testbenches have been created to validate the functionality of the components of DySER.
 The most important being dyser_tb, which simulates a processor interfacing with a DySER block.

 All testbenches reside in the $DYS_SVN_ROOT/dyser/testbenches/ directory.

A.3 Environment Setup

In order to run conduct OpenSPLySER Assembly & Regressions/Simulation, the following needs to done to
correctly configure the environment. Environment variables to the following need to be configured in the main
script sourced from (found in the ./opensparc/OpenSPARCT1.bash):

 $DYS_SVN_ROOT := The absolute path to the OpenSPLySER SVN check-out (where ./dyser &
./opensparc are located).

 - OR - (Normally set by the above)

 T1_ROOT := Path to the OpenSPARC base directory, used to hold anything required for the full
implementation.

 DYS_ROOT := Path to the DySER verilog files.

10

Doing so points $PATH to the correct binaries & scripts used for simulation, as well other important

directories/vars, including:
 $DV_ROOT := Directory holding all of the RTL, scripts/binaries, regression tests, etc.

o ./design/ := All OpenSPARC RTL
 ./sys/iop/ := Core-level verilog, anything relating to the pipeline, broken down into sub-

modules/stages mostly
 ./sys/iop/SPARC_Changes := Any new RTL that gets included in the design, or changed

verilog to get grafted (used instead of) the original
o ./tools/ := Simulation/regression tools

 ./src/sims/sims,1.26 := Main front-end script called to handle building RTL into run-
time models with VCS, calling Midas to assemble diagnostic assembly code into memory
images, and simulating said models

 $MODEL_DIR := Directory to place/search for compiled VCS RTL models
 $REGR_DIR := Directory to place regressions/simulations in
 $DRMJOBSCRATCHSPACE := Temporary scratch space to use when running simulations

At the current moment, VCS is configured (for use in the CS department’s environment) as the verilog

compiler/simulator. Changing to another version may require debugging, as the shared libraries tend to clash;
OpenSPARC provides 32-bit PLI libraries for interfacing with the simulator by default, so re-compiling them will
be necessary if the sims’ run-time argument -vcs_build_args=”-mode32” doesn’t suffice to fix compilation.

A.4 Running Regressions

Since it is not currently possible to run a single assembler that includes OpenSPARC T1 plus the DySER
extensions, running a normal regression diagnostic is required before integrating DySER instructions. An
example of this procedure is as following:

1. Change to the $REGR_DIR

1. Run “sims -group=thread1_mini -graft_flist=$T1_ROOT/impl/design/sys/iop/SPARC_Changes/graft.flist -

flist=$T1_ROOT/impl/design/sys/iop/SPARC_Changes/include.flist -sim_type=vcs -vcs_build_args="-
mode32" -novera_build -novera_run -sys=core1 -regress_id=somedir -vcs_build_args=-PP -
vcs_build_args=+v2k -config_rtl=VPD

2. The above will compile the verilog model and run the full mini-regression test suite for the single-thread
version of the T1 core, with DySER integrated (remove the graft/flist options to do so for the original
pipeline). In order to run only ONE diagnostic it may be possible to add “-
alias=exu_alu:model_core1:thread1_mini:0” for running a simple alu diag, although this has not been
tested, so some variation on the “-alias” argument may be required.

3. After the above is run, the results for each diagnostic run will appear in $REGR_DIR/somedir, including
the diagnostic assembly file (diag.s) and file to re-run only that diagnostic (sim_command). These
provide everything necessary to create a new diagnostic/simulation test that will work for our purposes.

11

A.5 Diag Assembly for DySER Instructions and Simulations

With the environment created from the above, it is now possible to create an assembly file containing
DySER operations to be performed, which will be spliced into the diagnostic assembly file after being processed
through the DySER assembler (dyser_asm.awk). The DySERassembler will convert any DySERoperations into
nops and pass all other instructions through, so as to allows Midas, the OpenSPARC assembler/linker front-end,
to produce a properly aligned binary memory image. This is required, since the actual binutils used (GNU AS, LD,
and OBJDUMP) do not support DySER instructions, and adding support has not been possible yet. Using this
procedure allows a perfectly valid memory image (aligned with our DySER instructions!) and MMU programming
to be created with the existing tools, then some extra effort is done to lay the DySER ops over the shadow nops
in the image.

A DySER assembly file is written as such:
 Normal GAS (GNU AS assembly) syntax is used for SPARC V9 (T1 implementation) instructions, which is

to say, that anything non-DySER and normal should be handled correctly.
 DySER instructions attempt to follow the same syntax in the following format

dyser_init <Configuration> Configuration is a 21-bit immediate, typically numbers should be expressed in
hex, with ‘0x’ as a prefix

dyser_send <reg>, <port>[,
<reg>, <port>]

One or two DySER input ports can be sent to in an instruction. The ports are 5-
bit immediates, expressed in either decimal or hex (‘0x’)

dyser_recv <port>, <reg> Only one port can be received from, where port is 5-bits immediate, either
decimal or hex (‘0x’)

dyser_comm No operands required

<reg> General purpose registers are specified in typical GAS SPARC syntax:
 %g[0-7]
 %l[0-7]
 %i[0-7]
 %o[0-7]

The procedure for generating the proper memory image is as follows:

2. Change directory to the regression output
a. e.g. $REGR_DIR/somedir/exuexu_alu:model_core1:thread1_mini:0
3. Create the DySER assembly file

4. Run dyser_asm.awk <dys_asm_file>
5. From the output, splice the adjusted assembly code into diag.s
6. Modify sim_command with the following arguements:
 . -nobuild

a. -asm_diag_path=$REGR_DIR/somedir/model_core1:thread1_mini:0
b. -asm_diag_name=diag.s #Note: Remove the normal *.s reference in here

7. Run sim_command, which will create a new mem.image, diag.ev, and symbols.tbl
8. Run dyser_asm.awk <dys_asm_file> again

12

9. Splice the differences in mem.image with the memory locations produced
 . This is rather tedious at the moment, this procedure will be simplified sometime in the near future

a. For the moment being, it’s best to have the DySER code go into the beginning of the “main”
section in the diagnostic assembly file, as that can be found at the “MAIN” section tag seen in
mem.image.

10. Copy mem.image, diag.s, diag.ev, and symbols.tbl to something like dys_test.*, keeping the same extension
names.
11. Run sim_command with the changes
 . Remove the (6.c) addition, and add the following

a. -image_diag_path=$REGR_DIR/dummy_dyser_1/exu_alu:model_core1:thread1_mini:0/
b. -image_diag_name=dys_test.image

12. View the results
 . Use “dve” to load the vcdplus.vpd file for waveform viewing

a. “procvlog ./sim.log” gives a log of architectural changes

A.6 Presentation Slides

13

14

15

16

17

18

19

20

	TECHCOVER.NEW1685.pdf
	1685

