

Computer
Sciences
Department

Valid Inequalities for the Pooling Problem with Binary Variables

Claudia D’Ambrosio
Jeff Linderoth
James Luedtke

Technical Report #1682

November 2010

Valid Inequalities for the Pooling Problem with Binary Variables

Claudia D’Ambrosio, Jeff Linderoth, James Luedtke∗

November 15, 2010

Abstract

The pooling problem consists of finding the optimal quantity of final products to obtain by blending
different compositions of raw materials in pools. Bilinear terms are required to model the quality of
products in the pools, making the pooling problem a non-convex continuous optimization problem. In
this paper we study a generalization of the standard pooling problem where binary variables are used
to model fixed costs associated with using a raw material in a pool. We derive four classes of strong
valid inequalities for the problem and demonstrate that the inequalities dominate classic flow cover
inequalities. The inequalities can be separated in polynomial time. Computational results are reported
that demonstrate the utility of the inequalities when used in a global optimization solver.

∗Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Mechanical Engineering Building, 1513
University Ave., Madison, WI 53706, USA, {cdambrosio;linderoth;jrluedt1}@wisc.edu

1 Introduction

The pooling problem is to optimize the net cost of products whose composition is determined by blending
different raw materials. The blending network consists of three types of nodes: the input streams, represent-
ing the raw materials; the pools, where the materials are blended; and the output streams, representing the
final products. By deciding the flow quantity passing through the arcs of the this network, the composition
of the final products is determined.

There are many applications areas for the pooling problem, including petroleum refining, wastewater
treatment, and general chemical engineering process design [2, 12, 1, 4]. Different variants of the pooling
problem have been introduced in the literature. In the standard pooling problem, the topology of the net-
work is fixed—the pools are fed only by the input streams and connected only to the output streams. The
standard pooling problem may be modeled as a non-convex nonlinear program (NLP), where the nonlinear-
ities are bilinear terms that are present to model the (linear) blending process that occurs. The generalized
pooling problem involves discrete decisions, where the activation of arcs connecting different nodes of the
network is to be decided. This problem can be modeled as a non-convex Mixed Integer Nonlinear Program
(MINLP). In the extended pooling problem, the Environmental Protection Agency limits on complex emis-
sions are considered and modeled. In this case, extra variables are introduced and the additional constraints
are non-smooth. In many applications of the pooling problem finding the (certified) global optimum can
result in significant monetary savings, so a significant research effort has been undertaken on global opti-
mization approaches for the problem. For an overview of the pooling problem variants and the optimization
techniques that have been applied successfully for solving such problems, the reader is referred to the recent
and exhaustive survey [9].

The focus of this paper is on a special case of the generalized pooling problem, where the topology
of a portion of the network is also to be decided. Specifically, there are yes-no decisions associated with
connecting the input streams and the pools. For example, this variant of the pooling problem is relevant for
crude oil scheduling operations [6, 14], where the input streams represent supply ships feeding the storage
tanks of a refinery.

Starting from a mathematical formulation of the pooling problem called the PQ-formulation, we detect
an interesting set X for which we derive valid inequalities. The set X is a generalization of the well-
known single-node fixed-charge flow set [10]. We introduce three classes of inequalities for this set that we
call quality inequalities, because they are based on the quality target for a final product. A final class of
valid inequalities introduced are called pooling flow cover inequalities, as they are related to, but dominate,
standard flow cover inequalities for the single-node fixed-charge flow set. There are exponentially many
pooling flow cover inequalities, and we demonstrate that they can be separated in polynomial time.

The present work is one of the first attempts to generate valid inequalities for a variant of the stan-
dard pooling problem that uses specific structures present in the problem. Other approaches have applied
general-purpose convexification techniques, such as the reformulation-linearization technique [8] or dis-
junctive programming [5]. Simultaneously (and independently), Papageorgiou et al. [11] take an approach
related to ours. Specifically, they study a polyhedral set that serves as a relaxation to a blending problem with
fixed-charge structure. The focus of [11] is on developing inequalities for the single product, uncapacitated
case, and they are able to find facet-defining inequalities that are useful in computation.

Our new valid inequalities were validated to be quite useful computationally both on instances available
in the open literature and on randomly generated instances. Inequalities generated at the root node of a

1

branch-and-bound tree were added to a standard model for the problem and given to the state-of-the-art
global optimization solver BARON. With the strengthened model on a test suite of 76 instances solvable
by BARON in 2 hours, adding the inequalities resulted reducing BARON’s CPU time by a factor 2. An
interesting observation from this study is that these useful valid inequalities for this mixed-integer nonconvex
set were derived by studying a mixed-integer linear relaxation of the set. This suggests that it may be a useful
approach in general to study mixed-integer linear relaxations of global optimization problems.

The remainder of the paper is divided into three sections. Section 2 gives a mathematical description of
the problem we study. Section 3 describes the classes of inequalities we have derived, and Section 4 gives
the computational results.

2 The Pooling Problem

In this section, we introduce our variant of the standard pooling problem, in which a portion of the topology
of the network must be decided. In this variant, a fixed cost is paid if an arc connecting an input stream to a
pool is utilized.

2.1 Mathematical formulation

Sahinidis and Tawarmalani [13] introduced the PQ-formulation for the standard pooling problem and demon-
strated that it provided a tighter relaxation when the standard McCormick [7] approximation is used to relax
the bilinear terms and obtain a Mixed Integer Linear Programming (MILP) problem. The PQ-formulation
is used as the starting point for our model.

2.1.1 Notation

Input to the pooling problem consists of a network G = (N,A), where the nodes are partitioned into
three sets N = I ∪ L ∪ J . The set I is the set of the input streams, the nodes representing the raw
materials; the set L is the pool set, where the raw materials are blended; and J is the set of the output
streams, the nodes representing the final products. For ease of notation, we will assume that there is a
complete interconnection network between the nodes of I and L and between the nodes of L and J . That
is, A = {(i, l) | i ∈ I, l ∈ L} ∪ {(l, j) | l ∈ L, j ∈ J}. The inequalities we derive later can easily be
generalized to sparse networks. K is a set of input and output attributes.

Each input stream i ∈ I has an associated unit cost ci and availability Ai. Each output stream j ∈ J

has an associated unit revenue dj and demand bound Dj . Each pool l ∈ L has a size capacity Sl. The
parameters Cik denote the level of attribute k ∈ K found in input stream i ∈ I . For each output stream
j ∈ J , PU

jk is the upper bound on the composition range of attribute k ∈ K in the final product j. Finally,
there are the parameters fil, which represent the fixed cost that has to be paid if the arc from input stream
i ∈ I to pool l ∈ L is used.

Decision variables in the formulation are the following:

• qil: proportion of flow from input i ∈ I to pool l ∈ L.

• ylj : flow from intermediate pool node l ∈ L to output j ∈ J .

• vil: binary variable with value 1 if the arc from input i ∈ I to pool l ∈ L is used, 0 otherwise.

• wilj : flow from input i ∈ I to output j ∈ J through pool l ∈ L.

2

2.1.2 The PQ-formulation

The objective is to maximize net profit:

min
∑
j∈J

(∑
l∈L

∑
i∈I

ciwilj −
∑
l∈L

djylj

)
+
∑
i∈I

∑
l∈L

filvil.

There are simple constraints that bound raw material availability, pool capacity, and final product demand:∑
l∈L

∑
j∈J

wilj ≤ Ai ∀i ∈ I;
∑
j∈J

ylj ≤ Sl ∀l ∈ L;
∑
l∈L

ylj ≤ Dj ∀j ∈ J.

A distinguishing feature of the pooling problem is that there is an upper bound on the target value for each
attribute of each product: ∑

l∈L

∑
i∈I

Cikwilj ≤ PU
jk

∑
l∈L

ylj ∀j ∈ J,∀k ∈ K. (1)

The q variables must satisfy properties of proportion and only be positive if the associated arc was opened:∑
i∈I

qil ≤ 1 ∀l ∈ L; 0 ≤ qil ≤ vil ∀i ∈ I,∀l ∈ L.

The w variables are related to the other decision variables as

wilj = qilylj ∀i ∈ I,∀l ∈ L,∀j ∈ J. (2)

Finally, in the PQ-formulation, two redundant sets of constraints are added to the formulation to make
subsequent relaxations stronger:∑

i∈I

wilj = ylj ∀l ∈ L,∀j ∈ J ;
∑
j∈J

wilj ≤ qilSl ∀i ∈ I,∀l ∈ L.

This formulation, augmented with appropriate bounds on the variables is given to the global optimization
solver BARON in our subsequent computational experiments. Let Ylj

def= min{Sl, Dj ,
∑

i∈I Ai} be an
upper bound on the flow on from l ∈ L to j ∈ J . By replacing the nonlinear equations (2) with the
well-known McCormick inequalities [7], a linear relaxation of the problem is formed. The McCormick
inequalities in this context reduce to the following:

0 ≤ wilj ≤ qilYlj ; wilj ≤ ylj ; wilj ≥ Yljqil + ylj − Ylj ∀i ∈ I,∀l ∈ L,∀j ∈ J.

Branching on the continuous variables q and y, as well as the binary variables v is required in order to
converge to a globally optimal solution.

2.2 Example

3

Figure 1: Pooling problem example.

w
1 , C

1 =
3

w2, C2 = 1

w3
, C3

=
2

≤ 100

To demonstrate the valid inequalities we derive, we
will use the following simple example shown in
Figure 1. There is a single pool, a single product,
and a single attribute (|L| = |J | = |K| = 1).
The three input streams have input quality C1 = 3,
C2 = 1, C3 = 2, and there is an upper bound of
PU = 2.5 on the target quality. There is an upper
bound of Y = 100 on the final product.

3 Valid inequalities

In this section, we extract an appropriate subset of the constraints of the formulation presented in Section 2
and derive a number of strong valid inequalities for this relaxation. To that end, we focus on a single output
stream and a single attribute and define the sets

I+ = {i ∈ I | Ci − PU ≥ 0}, and I− = {i ∈ I | Ci − PU < 0},

where we have dropped the irrelevant indices on the parameters. Next, we define αi = |Ci − PU | ∀i ∈ I ,
substitute into equation (1) and use the fact that yl =

∑
i∈I wil, to extract the set

X =
{

(w, q, v) ∈ R2|I||L| × {0, 1}|I||L| |
∑
l∈L

∑
i∈I+

αiwil −
∑
l∈L

∑
i∈I−

αiwil ≤ 0;

∑
i∈I

qil ≤ 1 ∀l ∈ L; wil ≤ Ylqil, qil ≤ vil, ∀i ∈ I,∀l ∈ L
}

,

which is a relaxation of the set of feasible solutions to the pooling problem presented in Section 2. The set X

is composed of a single-node flow constraint, upper bounds on the flow variables based on the proportions
q (coming from the McCormick inequalities), variable upper bounds on the proportion variables q, and the
definition equations on the proportion variables q.

3.1 Quality inequalities

We define the following two classes of inequalities ∀i ∈ I+,∀i∗ ∈ I−,∀l ∈ L:

α1

αi∗
wil −

∑
i′∈I−> (αi∗)

(
α1

αi∗
− 1
)

Yl(vi′l − qi′l)−
α1

αi
Yl(vil − qil)−

α1

αiαi∗

∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤ 0 (3)

αiwil −
∑

i′∈I−> (αi∗)

(αi′ − αi∗)wi′l − αi∗Yl(vil − qil)−
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤ 0 (4)

where α1 = maxi′∈I−{αi′} and I−> (αi∗) = {i ∈ I− | αi > αi∗}.

Proposition 3.1. Inequality (3) is valid for X ∀i ∈ I+,∀i∗ ∈ I−,∀l ∈ L.

4

Proof. Case vil = 0: (3) becomes
∑

i′∈I−> (αi∗)

(
α1
αi∗

− 1
)

Yl(vi′l− qi′l)+ α1
αiαi∗

∑
l′ 6=l

∑
i′∈I− αi′wi′l′ ≥ 0.

Case
∑

i′∈I−> (αi∗) vi′l = 0: it reduces to

αiwil ≤ αi∗Yl(1− qil) +
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ = αi∗Yl(
∑

i′∈I−

qi′l +
∑

i′∈I+:i′ 6=i

qi′l) +
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′

αiwil ≤ αi∗Yl

∑
i′∈I−\I−> (αi∗)

qi′l +
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ , that is always valid.

Case
∑

i′∈I−> (αi∗) vi′l > 0:

α1

αi∗
wil −

(
α1

αi∗
− 1
)

Yl(1−
∑

i′∈I−> (αi∗)

qi′l) ≤ α1

αi
Yl(1− qil) +

α1

αiαi∗

∑
l′ 6=l

∑
i′∈I−

αi′wi′l′

α1

αi∗
wil −

(
α1

αi∗
− 1
)

Ylqil ≤ α1

αi
Yl

∑
i′∈I−

qi′l +
α1

αiαi∗

∑
l′ 6=l

∑
i′∈I−

αi′wi′l′

Ylqil ≤ α1

αi
Yl

∑
i′∈I−

qi′l +
α1

αiαi∗

∑
l′ 6=l

∑
i′∈I−

αi′wi′l′

αiYlqil − α1Yl

∑
i′∈I−

qi′l −
α1

αi∗

∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤ 0, always valid because weaker than

∑
i′∈I+

αi′wi′l −
∑

i′∈I−

αi′wi′l −
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤ 0.

Proposition 3.2. Inequality (4) is valid for X ∀i ∈ I+,∀i∗ ∈ I−,∀l ∈ L.

Proof. Case vil = 0: it reduces to
∑

i′∈I−> (αi∗)(αi′ − αi∗)wi′l +
∑

l′ 6=l

∑
i′∈I− αi′wi′l′ ≥ 0.

Otherwise

αiwil −
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−> (αi∗)

(αi′ − αi∗)wi′l + αi∗Yl(1− qil)

αiwil −
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−> (αi∗)

(αi′wi′l + αi∗(Ylqi′l − wi′l)) + αi∗Yl

∑
i′∈I−\I−> (αi∗)

qi′l

αiwil −
∑
l′ 6=l

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−

αi′wi′l

In order to make the definition of inequalities (3) and (4) more clear, consider the example of Section
2.2. For the example, α1 = 0.5, α2 = 1.5, α3 = 0.5 and I+ = {1}, I− = {2, 3}. The inequalities (3) and
(4), defined for indices i = 1, i∗ = 3, respectively, are

3w1 − 200(v2 − q2)− 300(v1 − q1) ≤ 0 (5)

0.5w1 − w2 − 50(v1 − q1) ≤ 0. (6)

A final valid inequality limits the flow from inputs that exceed the target quality.

5

Proposition 3.3. The following valid inequality is valid for X ∀i ∈ I+,∀l ∈ L:

αiwil − Ylα1(vil − qil)− vil

∑
l′ 6=l

Yl′α1 ≤ 0. (7)

Proof. We consider two cases. Case vil = 0: inequality (7) reduces to 0 ≤ 0. Otherwise, using the inequal-
ity qil ≤ 1−

∑
i′∈I− qi′l we see that (7) is weaker than αiwil − Ylα1

∑
i′∈I− qi′l −

∑
l′ 6=l Yl′α1 ≤ 0 which

is valid because it is weaker than the valid inequality
∑

l′∈L

∑
i′∈I+ αi′wi′l′ ≤

∑
l′∈L

∑
i′∈I− αi′wi′l′ .

Let us consider again the example of Section 2.2. Inequality (7) for i = 1 is

0.5w1 − 150(v1 − q1)− 0 ≤ 0. (8)

None of the three classes of inequalities introduced dominates the other, as in general, they can cut off
different fractional solutions. Specifically, for the example problem,

• consider the solution q′ = (0.1; 0.9; 0), y = 100, w′ = (10; 90; 0), v′ = (0.15; 0.9; 0). The inequali-
ties reduce to: 30− 0− 15 ≤ 0; 5− 90− 2.5− 0 ≤ 0; 5− 7.5 ≤ 0 and only the first inequality
cuts off this infeasible solution.

• Consider the solution q′ = (0.5; 0.1; 0.4), y = 100, w′ = (50; 10; 40), v′ = (0.7; 0.9; 0.4). The
inequalities reduce to: 150− 160− 60 ≤ 0; 25− 10− 10 ≤ 0; 25− 30 ≤ 0 and only the second
one excludes the fractional solution.

• Finally, consider the solution q′ = (0.5; 0.5; 0), y = 100, w′ = (50; 50; 0), v′ = (0.6; 1; 0). The
inequalities reduce to: 150 − 100 − 30 ≤ 0; 25 − 50 − 5 ≤ 0; 25 − 15 ≤ 0 and only the last
inequality cuts off the fractional solution.

3.2 Pooling flow cover inequalities

In this section, we focus on the case of a single pool, and hence for notational convenience drop the index l

from the discussion. The primary result of the section is the generalization of a flow cover inequality:

Proposition 3.4. Let C+ ⊆ I+ with λ =
∑

i∈C+ αiY > 0, S− ⊆ I−, and define u∗C+ = maxi∈C+ αiY .
The following pooling flow cover inequality is valid for X:∑

i∈C+

αiwi −
∑
i∈S−

[u∗C+(vi − qi)]−
∑

i∈I−\S−

αiwi ≤ 0. (9)

Proof. Let (w, q, v) ∈ X and define the set T = {i | vi = 1}. If |S− ∩ T | = 0, inequality (9) reduces to∑
i∈C+ αiwi−

∑
i∈I−\S− αiwi ≤ 0 which is valid because wi = 0 for all i ∈ S−. Now suppose |S−∩T | ≥

1. Since −
∑

i∈I−\S− αiwi ≤ 0 because wi ≥ 0 ∀i ∈ I , it is sufficient to prove that
∑

i∈C+ αiwi −∑
i∈S− [u∗C+(vi − qi)] ≤ 0. First, observe that

1
u∗

C+

∑
i∈C+

αiwi −
∑
i∈S−

[u∗C+(vi − qi)]

 ≤
∑

i∈C+

αiwi

αiY
−
∑
i∈S−

(vi − qi) ≤
∑

i∈C+

qi −
∑
i∈S−

(vi − qi).

Thus, we will be done if we prove that
∑

i∈C+ qi −
∑

i∈S−(vi − qi) ≤ 0, which follows from∑
i∈C+

qi −
∑

i∈S−∩T

(1− qi) =
∑

i∈C+

qi +
∑

i∈S−∩T

qi − |S− ∩ T | ≤ 0

6

since |S− ∩ T | ≥ 1.

The next simple proposition shows that the inequalities (9) are stronger than the generalized flow cover
inequalities (see [15]): ∑

i∈C+

αiwi −
∑
i∈S−

λvi −
∑

i∈I−\S−

αiwi ≤ 0. (10)

Proposition 3.5. Inequalities (10) are implied by (9), for every C+ ⊆ I+ such that λ =
∑

i∈C+ αiY > 0
and S− ⊆ I−.

Proof. By definition, u∗C+ ≤ λ, and hence−
∑

i∈S− u∗C+(vi−qi) ≥ −
∑

i∈S− u∗C+vi ≥ −
∑

i∈S− λvi.

Now let us consider the multiple-pool, one output stream and one attribute case. (Thus, we add index
l ∈ L back to the variables.)

Proposition 3.6. For each pool l ∈ L, subset of inputs S− ⊆ I−, and cover C+ ⊆ I+, define u∗l

C+ =
maxi∈C+ αiYl. The following inequalities are valid for X:∑

i∈C+

αiwil −
∑
i∈S−

[u∗l

C+(vil − qil)]−
∑

i∈I−\S−

αiwil −
∑
i∈I−

∑
l′∈L\{l}

αiwil′ ≤ 0 (11)

Proof. The proof of 3.4 is valid also in this case.

3.2.1 The separation problem

Given a fractional solution (w∗, q∗, v∗) 6∈ X we want to find C+ ⊆ I+, S− ⊆ I− and pool l ∈ L such that
(11) is violated. Let the maximum violation of such constraints be

zSEP = max
C+⊆I+,l∈L

∑
i∈C+

αiw
∗
il −

∑
i∈I−

min(u∗C+(v∗il − q∗il), αiw
∗
il)−

∑
i∈I−

∑
l′∈L\{l}

αiw
∗
il′ .

If zSEP > 0, inequality (11) is violated for (C+, S−, l) with S− = {i ∈ I−|u∗C+(v∗il − q∗il) < αiw
∗
il}. Note

that the solution with the maximum violation has the following nice property: if i ∈ C+, then i′ ∈ C+

∀i′ such that αi′ ≤ αi. (This follows since, by the definition of u∗C+ , the if αi′ ≤ αi, the inequality can
only be made more violated by including i′ in C+.) Thus, the separation problem may be solved exactly in
polynomial time by considering all the αi (i ∈ I+) in non-increasing order over all the pools. Algorithm 1
gives pseudocode for the separation algorithm.

4 Computational results

The utility of the quality and pooling flow cover inequalities for solving instances of our version of the gener-
alized pooling problem was tested using a cut-and-branch approach. Models were created using the GAMS
modeling language both for the original problem and for the continuous linear relaxation of the problem,
wherein the nonlinear constraints wilj = qilylj are replaced by their McCormick envelopes (as described
in Section 2.1) and the constraints vil ∈ {0, 1} are replaced with 0 ≤ vil ≤ 1. The continuous relaxation

7

Algorithm 1 Algorithm for solving the separation problem.
1: set σ̂ = −∞, ĉ = −∞, l̂ = −∞;
2: order αi such that α1 ≤ α2 ≤ · · · ≤ α|I+| (i ∈ I+);
3: for c = 1, . . . , |I+| do
4: for l ∈ L do
5: σ =

∑c
i=1 αiw

∗
il −

∑
i∈I− min(αcYl(v∗il − q∗il), αiw

∗
il)−

∑
i∈I−

∑
l′∈L\{l} αiw

∗
il′ ;

6: if σ > σ̂ then
7: set σ̂ = σ, ĉ = c and l̂ = l;
8: end if
9: end for

10: end for
11: if σ̂ > 0 then
12: add cut for (C+, S−, l) with C+ = {1, . . . , ĉ}, l = l̂ and S− = {i ∈ I−|u∗C+(v∗il − q∗il) < αiw

∗
il};

13: end if

is iteratively solved, where at each iteration, if the solution is fractional and the separation problems find
violated inequalities, they are added to the linear relaxation, and the relaxation is resolved. The process re-
peats until the fractional solution can no longer be separated, after which all inequalities generated are added
to the MINLP model. The augmented MINLP model is solved with BARON [13] using a CPU time limit
of 2 hours. We compare against the performance of BARON on the model without adding the separated
quality and pooling flow cover inequalities. Computational results were obtained on a heterogeneous cluster
of computers. For each instance, the model was solved on the same machine both with and without cuts, so
while the CPU times cannot be compared between instances, the relative times between the performance of
BARON with and without cuts are comparable.

Our first test suite consisted of 11 instances from the literature, collected by Sahinidis and Tawarmalani
[13]. For these instances, a fixed cost of 500 was added to every input arc. Some of these instances contain
bypass arcs, or arcs that connect input streams directly to outputs are present. Bypass arcs are treated as
additional pools with only one input in the inequalities. Results of the experiment are given in Table 1, where
we report for each instance, the value of the global optimum, the number of nodes and the CPU time needed
for BARON to find the optimum both with and without the addition of the violated quality and pooling flow
cover inequalities, and the number of inequalities found. In general, the instances from the literature were
far too small to draw any meaningful conclusions. The number of nodes is fewer in 4 of 11 cases, in 6 cases
it is the same, and in one case, more nodes are taken after adding the inequalities.

A second test set consisted of 90 randomly generated instances of various sizes. The random instances
were parameterized by the average graph density β, the number of inputs |I|, the number of pools |L|, the
number of outputs |J |, and the number of attributes |K|, and named β−|I|− |L|− |J |− |K| based on their
size. For each combination of tested parameters, 10 instances were generated, and we report average perfor-
mance results over all instances in the family. All the instances are available at the webpage http://www.
or.deis.unibo.it/research pages/ORinstances/ORinstances.htm. Results of this ex-
periment are summarized in Table 2.

Without adding inequalities, BARON is able to solve 76 of the 90 instances. Adding the inequalities,
BARON is able to solve three additional instances of the 90. Averages in Table 2 are taken only over
the instances that both methods can solve. Complete results detailed the computational performance on
specific instances are given on the web site http://www.or.deis.unibo.it/research pages/

8

Table 1: BARON Performance With and Without Cutting Planes
no cuts with cuts

GO # nodes CPU time # cuts # nodes CPU time
adhya1 630.0 7 0.14 20 7 0.14
adhya2 630.0 1 0.07 15 5 0.11
adhya3 978.0 17 0.43 8 1 0.12
adhya4 529.2 17 0.84 12 7 0.54
bental4 500.0 9 0.02 4 1 0.02
bental5 -2000.0 1 0.12 0 1 0.13
foulds2 266.7 1 0.04 6 1 0.02

haverly1 500.0 9 0.01 4 1 0.01
haverly2 400.0 9 0.01 4 9 0.01
haverly3 100.0 1 0.01 4 1 0.01

rt2 -1672.6 356 1.02 0 356 1.05

Table 2: Average Performance of BARON With and Without Cutting Planes

No Cuts With Cuts
Instance Family # Solved Avg Nodes Avg Time Avg # Cuts Avg Nodes Avg Time

20-15-10-10-1 9 1052 14.9 11.1 383 7.3
20-15-10-10-2 10 7850 638.2 15.3 3338 440.3
20-15-10-10-4 10 2637 109.5 11.9 2241 168.5

30-15-5-10-1 9 22009 520.5 12.8 13095 367.4
30-15-5-10-2 8 7384 406.8 19.6 3988 239.0
30-15-5-10-4 10 6041 361.1 27.0 1884 109.9
30-15-8-10-1 3 21971 1689.6 11.7 6504 478.3
30-15-8-10-2 9 15663 823.9 19.7 4303 337.6
30-15-8-10-4 8 30424 1035.3 22.0 5472 457.2

9

ORinstances/ORinstances.htm.
For the 76 solved instances, the total CPU time required to solve the instances reduces from 39927

seconds to 20602 seconds when the cuts are added to the model before calling BARON. The total number
of nodes required to solve the 76 instances reduces from 882173 to 329851 by adding cuts. The most
significant performance improvement seems to occur on the instances that have 30% network density and 8
pools (in the 30-15-8-10-x family), indicating that larger, denser instances may benefit most from the
additional of the quality and pooling flow cover inequalities.

A performance profile of the CPU time of the 79 instances solvable by either method is given in Figure 2.
In the curves shown in Figure 2, the point (X, p) is on the graph for the associated method if a fraction p

of the 79 instances solved by either method were solved within a factor X of the best of the two methods.
For a more complete description of performance profiles, the reader is referred to [3]. From the results of
the second experiment, it is clear that the addition of the inequalities has a significant beneficial impact on
computational performance.

Figure 2: Performance Profile of Solution Time

 X

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

With Cuts
Without Cuts

 p

 0

Acknowledgement

The authors would like to thank Ahmet Keha for bringing reference [11] to their attention. This work
benefitted from numerous insightful discussions with Andrew Miller.

10

References

[1] M. Bagajewicz. A review of recent design procedures for water networks in refineries and process
plants. Computers & Chemical Engineering, 24:2093–2113, 2000.

[2] C.W. DeWitt, L.S. Lasdon, A.D. Waren, D.A. Brenner, and S. Melham. OMEGA: An improved
gasoline blending system for Texaco. Interfaces, 19:85–101, 1989.

[3] Elizabeth Dolan and Jorge Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91:201–213, 2002.

[4] J. Kallrath. Mixed integer optimization in the chemical process industry: Experience, potential and
future perspectives. Chemical Engineering Research and Design, 78:809–822, 2000.

[5] R. Karuppiah and I.E. Grossmann. Global optimization for the synthesis of integrated water systems
in chemical processes. Computers & Chemical Engineering, 30:650–673, 2006.

[6] H.M. Lee, J.M. Pinto, I.E. Grossmann, and S. Park. Mixed-integer linear programming model for
refinery short-term scheduling of crude oil unloading with inventory management. Industrial & Engi-
neering Chemistry Research, 35:1630–1641, 1996.

[7] G.P. McCormick. Computability of global solutions to factorable nonconvex programs: Part 1 - convex
underestimating problems. Mathematical Programming, 10:147–175, 1976.

[8] C.A. Meyer and C.A. Floudas. Global optimization of a combinatorially complex generalized pooling
problem. AIChE Journal, 52:1027–1037, 2006.

[9] R. Misener and C.A. Floudas. Advances for the pooling problem: Modeling, global optimization, &
computational studies. Applied and Computational Mathematics, 8:3–22, 2009.

[10] M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems. Opera-
tions Research, 33:842–861, 1985.

[11] D. J. Papageorgiou, A. Toriello, G. L. Nemhauser, and M.W.P. Savelsbergh. Fixed-charge transporta-
tion with product blending. Unpublished manuscript.

[12] B. Rigby, L.S. Lasdon, and A.D. Waren. The evolution of Texaco’s blending systems: From OMEGA
to StarBlend. Interfaces, 25:64–83, 1995.

[13] N.V. Sahinidis and M. Tawarmalani. Accelerating branch-and-bound through a modeling language
construct for relaxation-specific constraints. Journal of Global Optimization, 32:259–280, 2005.

[14] N. Shah. Mathematical programming techniques for crude oil scheduling. Computers & Chemical
Engineering, 20:S1227–S1232, 1996.

[15] L.A. Wolsey and G.L. Nemhauser. Integer and Combinatorial Optimization. Wiley, New York, NY,
USA, 1988.

	TECHCOVER.NEW1682.pdf
	1682

