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Abstract

We describe a computationally effective method for generating disjunc-
tive inequalities for convex mixed-integer nonlinear programs (MINLPs).
The method relies on solving a sequence of cut-generating linear pro-
grams, and in the limit will generate an inequality as strong as can be
produced by the cut-generating nonlinear program suggested by Stubbs
and Mehrotra. Using this procedure, we are able to approximately op-
timize over the rank one simple disjunctive closure for a wide range of
convex MINLP instances. The results indicate that disjunctive inequali-
ties have the potential to close a significant portion of the integrality gap
for convex MINLPs. In addition, we find that using this procedure within
a branch-and-cut solver for convex MINLPs yields significant savings in
total solution time for many instances. Overall, these results suggest that
with an effective separation routine, like the one proposed here, disjunc-
tive inequalities may be as effective for solving convex MINLPs as they
have been for solving mixed-integer linear programs.

1 Introduction

The focus of this work is on the effective generation of disjunctive cutting planes
for convex mixed-integer nonlinear programs. A mixed integer nonlinear pro-
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gram is the optimization problem

zminlp = minimize cTx

subject to gj(x) ≤ 0 ∀j ∈ J, (MINLP)

x ∈ X, xI ∈ Z|I|,

where J is the index set of nonlinear constraints, and I ⊆ N def
= {1, . . . , n} is the

index set of discrete variables. The set X = {x ∈ Rn | Ax ≤ b} is a polyhedral
subset of Rn. We define g(x) : Rn → R|J| as the vector-valued function g(x) =
(g1(x), g2(x), . . . , g|J|(x))T and ∇g(x)T ∈ R|J|×n as the Jacobian of g.

We focus on the case where the functions gj are differentiable and convex, so
by relaxing the constraints xI ∈ Z|I|, a smooth convex program is formed. The
fact that (MINLP) has a linear objective function is an important assumption
in our work. Our aim will be to add valid linear inequalities that exclude the
solution of a relaxation to (MINLP) from the feasible region. Without a linear
objective function, the minimizer of the relaxation may lie in the strict interior
of the feasible region, and thus may not be cut off using linear inequalities.
However, there is no loss of generality by considering a linear objective function.
A (convex) nonlinear objective function f(x) can be included with the addition
of an auxiliary variable η, changing the objective to minimize η and adding the
constraint f(x)− η ≤ 0.

If J = ∅, then (MINLP) is a mixed integer linear program (MILP), and
over the past decades, algorithms for solving MILPs have improved by orders
of magnitude. A crucial ingredient in the improvement of MILP software has
been cutting planes. The reader is referred to [15] for a recent survey on cutting
planes for MILP.

Research on the effective generation and use of cutting planes for MINLP is
far less advanced, though some authors have shown that many common MILP
cutting planes can be extended for use in nonlinear settings. For example, Çezik
and Iyengar show how the classic Gomory cut [23] can be extended to the case
of mixed integer second-order cone programs (MISOCP), which are (MINLP)
where gj(x) = ‖Hx−f‖2−rTx−c ∀j ∈ J . Atamtürk and Narayan [2] extended
mixed integer rounding cuts [29] to the case of MISOCP.

Our work follows closely along the lines of Stubbs and Mehrotra [34], who
demonstrated the applicability of the disjunctive inequalities of Balas [3] to
the realm of convex MINLP. Like Stubbs and Mehrotra [34], we will generate
disjunctive cuts only for simple, single variable, disjunctions of the form (xi ≤
k ∨ xi ≥ k + 1) for some i ∈ I. The ideas presented here can be extended to
more general disjunctions as well.

For MILP, disjunctive cutting planes were pioneered by Balas, Ceria, and
Cornuéjols [5]. A limitation of disjunctive inequalities is that in order to gen-
erate a valid cut, one must solve an auxiliary (separation) problem that is two
times the size of the original relaxation. In the case of MILP, clever intuition
of Balas and Perregaard [8] allows this separation problem to be solved in the
original space of variables. No such extension is known in the case of MINLP.
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Thus, the separation procedure of Stubbs and Mehrotra is quite computation-
ally expensive. Stubbs and Mehrotra [34] report computational results only on
four instances, the largest of which has n = 30 variables. Further, they report
numerical difficulties in generating the disjunctive inequalities using the sepa-
ration procedure that relies on solving a (nondifferentiable) nonlinear program
(NLP).

An implementation of the Stubbs and Mehrotra procedure for the case of
MISOCP appears in the Ph.D. thesis of Drewes [18]. Stubbs and Mehrotra [33]
have also explored methods for generating convex polynomial cuts for mixed 0-1
convex programs. Zhu and Kuno [36] have suggested to replace the nonlinear
feasible region of the separation problem of Stubbs and Mehrotra by a linear
approximation taken about the solution to a specific relaxation.

In this work, we introduce a new separation procedure for generating dis-
junctive inequalities for convex MINLPs. Our method solves a sequence of
cut-generating linear programs rather than solving a convex NLP in a higher
dimensional space as suggested in [34]. The first iteration of our procedure
yields a disjunctive inequality similar to what would be obtained by the proce-
dure of Zhu and Kuno [36]. However, the disjunctive cut we obtain is improved
at each iteration by strategically adding more linear structure derived from the
nonlinear constraints of (MINLP). We demonstrate that the inequalities gener-
ated from our procedure are as strong as the disjunctive inequalities of Stubbs
and Mehrotra [34] in the limit. A key advantage of our approach is that it
produces a valid inequality at every iteration, so that we can terminate early
in the event of “tailing off” in the cut generation procedure. We thus have a
procedure that can effectively exploit the middle ground between the procedure
of [36] which is computationally cheap but may generate weak inequalities, and
the approach of [34] which can generate all possible disjunctive inequalities, but
is computationally expensive.

A recent trend in mixed-integer linear programming has been to (approx-
imately) optimize over the relaxation obtained by using all possible valid in-
equalities from a given class, referred to as a closure. This line of work began
with Fischetti and Lodi [21] who optimized a broad class of instances over the
Chvátal-Gomory closure, the class of all inequalities that can be obtained using
the Chvátal-Gomory rounding procedure; see also [10] for the lift-and-project
closure and [9, 16] for other MILP closure studies. These studies provide valu-
able insights into the relaxation strength that is possible using the associated
classes of inequalities. Following these examples, we use our disjunctive cut
separation procedure to approximately optimize a set of test instances over the
rank one disjunctive cut closure, which includes all valid inequalities that can
be obtained from single variable disjunctions. Only constraints in the original
problem description are used to generate the disjunctive inequalities making up
the closure, thus the name “rank one.” We find that on many instances in our
test set the rank one disjunctive cut closure reduces significant portion of the
relaxation gap; on average 69% over our test set of 207 convex MINLP instances,
and by as much as 100%.

Encouraged by these closure results, we incorporated our disjunctive cut sep-
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aration procedure into FilMINT, a linearization-based solver for convex MINLPs.
In this preliminary implementation, relatively simple strategies were used to
limit the computational effort expended in generating the cuts. This disjunctive
cut separation procedure enabled the solution of several instances that previ-
ously could not be solved in a three hour time limit by FilMINT and significantly
reduced the solution time on many other instances.

The remainder of the paper is organized as follows. In §2, we give an overview
of the original disjunctive cutting plane method of Stubbs and Mehrotra [34] for
convex MINLP. We describe our new method for generating disjunctive inequal-
ities and prove its equivalence to the approach of [34] in §3. Implementation
details are described in §4. In §5, we give the disjunctive cut closure results and
computational results on a broad suite of convex MINLPs are presented in §6.
Conclusions are offered in §7.

2 Disjunctive Inequalities for MINLPs

In this section, we briefly review the basic theory on disjunctive inequalities for
convex MINLPs. For more details, the interested reader is referred to [34]. We
denote the feasible region of the continuous relaxation of (MINLP) as

R = {x ∈ X | g(x) ≤ 0}.

Disjunctive inequalities are linear inequalities that are feasible for the convex
hull of the union of two sets. Specifically, for a discrete variable xi, (i ∈ I),
consider the two sets

Rk−i = {x ∈ R | xi ≤ k} and Rk+i = {x ∈ R | xi ≥ k + 1},

for k ∈ Z. Simple disjunctive inequalities are valid inequalities for the set

Rki = conv(Rk−i ∪R
k+
i ).

Since Rki is a relaxation of the feasible region to (MINLP), valid inequalities
for Rki are also valid for (MINLP). There is an extended formulation of Rki in
terms of convex, nonlinear, inequalities using a variable transformation and the
perspective function. Define the perspective function h̃(x̃, λ) [26] related to a
given convex function h(x) : C ⊂ Rn → R as follows:

h̃(x̃, λ) =

 λh(x̃/λ) if x̃/λ ∈ C, λ > 0,
0 if λ = 0,
∞ otherwise.

.

Note that h̃(x̃, λ) may be a nondifferentiable function, even if h itself is differ-
entiable.
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Stubbs and Mehrotra [34] (see also [14]) showed that the convex set

M̃k
i =

(x, ỹ, z̃, λ, µ)

∣∣∣∣∣∣∣∣∣∣
x = ỹ + z̃, λ+ µ = 1,
g̃(ỹ, λ) ≤ 0, g̃(z̃, µ) ≤ 0
Aỹ ≤ λb, Az̃ ≤ µb,
ỹi ≤ λk, z̃i ≥ µk + µ,
λ ≥ 0, µ ≥ 0


provides an extended formulation for Rki . In other words,

projx(M̃k
i ) = {x | (x, ỹ, z̃, λ, µ) ∈ M̃k

i } = conv(Rk−i ∪R
k+
i ).

Given a point x̄ 6∈ conv(Rk−i ∪R
k+
i ), we can find a linear inequality separating

x̄ from conv(Rk−i ∪ R
k+
i ) by minimizing the distance d(x) = ‖x − x̄‖ between

the point and the set, in any norm ‖ · ‖. Specifically, consider the minimization
problem

dM̃k
i
(x̄) = min

(x,ỹ,z̃,λ,µ)∈M̃k
i

d(x). (1)

The following theorem states that a disjunctive inequality may be obtained
using the subgradient of d(·) at an optimal solution to (1).

Theorem 1 ([34]). Let x̄ /∈ conv (Rk−i ∪R
k+
i ), x∗ be an optimal solution of

(1), and let ξ ∈ ∂d(x∗). Then, ξT (x̄ − x∗) < 0 and ξT (x − x∗) ≥ 0 ∀x ∈
conv (Rk−i ∪R

k+
i ).

The downside of using (1) to generate inequalities is twofold. First, one
must solve a nonlinear program that is twice the size of the original problem
in order to generate a valid inequality. Second, the description of the set M̃k

i

contains nondifferentiable functions, so (as also noted by Stubbs and Mehrotra
[34]), numerical difficulties in nonlinear programming software designed for dif-
ferentiable functions may lead to the generation of invalid inequalities. In the
next section, we aim to address these issues by replacing nonlinear inequalities
with linearizations, obtaining a computationally viable method for generating
disjunctive inequalities.

3 Effective Disjunctive Cut Generation for MINLP

Our idea is to avoid solving the difficult nonlinear program (1) by instead solving
a sequence of linear programs that approximates (1). Let B ⊇ R be a relaxation
of the original relaxation feasible region R, and let

Bk−i = {x ∈ B | xi ≤ k} and Bk+i = {x ∈ B | xi ≥ k + 1}.

Inequalities valid for conv(Bk−i ∪ Bk+i ) are also valid for conv (Rk−i ∪R
k+
i ).

Further, if B is restricted to be a polyhedron, and an appropriate norm is used
in the definition of d(·), then the separation problem (1) reduces to a linear
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program (LP). Zhu and Kuno [36] propose to replace the nonlinear inequalities
in R with their linearizations at x̄ to a get polyhedral relaxation B. Their
preliminary results show that their method is effective for small test problems.
Note that if the solution to the continuous relaxation of MINLP lies in the convex
hull of the union of the two relaxed sets Bk−i and Bk+i (x̄ ∈ conv(Bk−i ∪Bk+i ),
then it cannot be separated with a linear inequality. This implies that in order
to be able to separate more points, one should seek to obtain tight relaxations
of the sets Rk−i and Rk+i . In what follows, we demonstrate that by iteratively
updating polyhedral outer approximations of Rk−i and Rk+i in an appropriate
manner, one may obtain a disjunctive inequality of the same strength as if one
directly solved the nonlinear separation problem (1).

The method relies on generating polyhedral relaxations of the sets Rk−i and
Rk+i iteratively. At iteration t, we define two finite sets of points Kt−,Kt+ ⊂ Rn
and linearize the nonlinear functions at these points, creating the sets

F t−
def
=
{
x ∈ X | xi ≤ k, g(x̄) +∇g(x̄)T (x− x̄) ≤ 0 ∀x̄ ∈ Kt−

}
and

F t+
def
=
{
x ∈ X | xi ≥ k + 1, g(x̄) +∇g(x̄)T (x− x̄) ≤ 0 ∀x̄ ∈ Kt+

}
.

By construction, Rk−i ⊆ F t− and Rk+i ⊆ F t+ ∀t. (For notational convenience, we
suppress the dependence on the variable index i and branching value k in the
notation of the relaxations F t− and F t+.)

Since the sets F t− and F t+ are polyhedral, the theory of disjunctive pro-
gramming for the union of polyhedral sets [3] yields the following extended
formulation for conv(F t− ∪ F t+):

M̃t =


(x, ỹ, z̃, λ, µ)

∣∣∣∣∣∣∣∣∣∣∣∣

x = ỹ + z̃, λ+ µ = 1
λg(x̄) +∇g(x̄)T (ỹ −λx̄) ≤ 0 ∀x̄ ∈ Kt−
µg(x̄) +∇g(x̄)T (z̃ −µx̄) ≤ 0 ∀x̄ ∈ Kt+
Aỹ ≤ λb, Az̃ ≤ µb
ỹi ≤ λk, z̃i ≥ µk + µ
λ ≥ 0, µ ≥ 0


.

Note that all inequalities describing M̃t are linear, so if d(x) = ‖x − x̄‖1 or
d(x) = ‖x− x̄‖∞, then the separation problem

dMDP (t)(x̄) = min
(xt,ỹt,z̃t,λt,µt)∈M̃t

d(xt) (MDP(t))

may be written as linear program. Using the solution x∗ to this linear program,
a linear inequality valid for conv(F t− ∪ F t+) may be derived using Theorem 1.

The algorithm starts with K0
− = K0

+ = ∅ and augments the sets based on
the solution of the linear program (MDP(t)). For stating the algorithm and
proving its convergence, we will make the standard assumptions that the set X
is compact and that either Rk−i or Rk+i is non-empty. (These assumptions ensure
that (MDP(t)) always has an optimal solution). At iteration t, the separation
problem (MDP(t)) is solved, yielding three points: ỹt, z̃t, and xt. The point xt
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will converge to an optimal solution of (1), and this limit point will serve as the
point x∗ for generating the disjunctive inequality using Theorem 1. The points
ỹt and z̃t are used to define the new points at which linearizations will be taken
in the following manner. Observe that if λ > 0 and µ > 0 and we define the
points yt and zt by

yt = ỹt/λt, zt = z̃t/µt,

then yt ∈ F t− and zt ∈ F t+. If yt ∈ Rk−i and zt ∈ Rk+i , then xt ∈ conv(Rk−i ∪
Rk+i ) since xt = ỹt + z̃t = λyt + µzt and hence we can terminate the cut sepa-
ration procedure. On the other hand, if yt /∈ Rk−i , then we add a linearization
that excludes yt from F t− by updating Kt+1

− ← Kt− ∪{yt}. Similarly, we update

Kt+1
− if zt /∈ Rk+i . Our separation procedure simply repeats this process; for

concreteness, we provide pseudo-code of the method in Algorithm 1.

x0 ← x̄, K1
− ← ∅, K1

+ ← ∅, t← 1
repeat

Solve MDP(t) for (xt, ỹt, z̃t, λt, µt)
if λt 6= 0 then
yt ← ỹt/λt

else
yt ← yt−1

end if
if µt 6= 0 then
zt ← z̃t/µt

else
zt ← zt−1

end if
Kt+1
− ← {yt} ∪ Kt−, Kt+1

+ ← {zt} ∪ Kt+, t← t+ 1
until λtg(yt) + µtg(zt) ≤ 0

Algorithm 1: Iterative generation of MDP(t).

The quality of the cut generated by Algorithm 1 may be measured by the
objective value of MDP(t), since dMDP(t)(x̄) is the distance between x̄, the

point we want to separate, and the separating hyperplane. In particular, we
successfully exclude the point x̄ if and only if dMDP(t)(x̄) > 0. Using this

measure, the following theorem states that, in the limit, the cut generated by
Algorithm 1 is as strong as the disjunctive cut proposed by Stubbs and Mehrotra
[34]. Our proof of convergence of Algorithm 1 is in the spirit of the proof of
Kelley’s cutting plane procedure [27].

Theorem 2. If (MDP(t)) is updated by the Algorithm 1, then

lim
t→∞

dMDP (t)(x̄)→ dM̃k
i
(x̄)
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Proof. By construction, F t+1
− ⊆ F t− and F t+1

+ ⊆ F t+ for ∀t and thus {dMDP (t)(x̄)}
forms a monotonically increasing sequence,

dMDP (1)(x̄) ≤ dMDP (2)(x̄) ≤ . . . .

Since Rk−i ⊆ F−t and Rk+i ⊆ F+
t for ∀t, then M̃k

i ⊆ M̃t and so dMDP (t)(x̄) ≤
dM̃k

i
(x̄). Therefore, the sequence converges. The proof continues by showing

that {xt} converges to a point in conv (Rk−i ∪R
k+
i ), so that {dMDP (t)(x̄)} con-

verges to dM̃k
i
(x̄).

To show the convergence of {xt} to a point in conv (Rk−i ∪R
k+
i ), let us

consider the sequence {λt}. There are three cases to consider:
Case 1: For every N , there exists t1 > N such that λt1 6= 0 and there exists
t2 > N such that λt2 6= 1.

First, we show {yt} converges to a point in Rk−i . Consider the subsequence
{yts} where {ts} corresponds to subset of indices such that yts /∈ Rk−i and
λts > 0. If the subsequence {yts} is finite then clearly {yt} converges to a
point in Rk−i . Otherwise, for every yts in {yts} there exists a j ∈ J such that
gj(y

ts) > 0 implying that the linearization of g at yts

gj(y
ts) +∇gj(yts)T (y − yts) ≤ 0

is an inequality violated at yts . Thus, yts is excluded from F ts+1

− . It follows
that

yts+1 6= ytp , p = 1, . . . , s.

On the other hand, since yts ∈ F ts− , it satisfies the inequalities

g(ytp) +∇g(ytp)T (ytp − yts) ≤ 0 (p = 1, . . . , s− 1).

If {yts} converges to a point in Rk−i , then g(yts) must possess a subsequence
that converges to a vector of nonpositive elements. If the desired convergence
does not occur, then there exists an ε > 0 and j ∈ J such that

ε ≤ gj(ytp) ≤ ∇gj(ytp)T (yts − ytp) ≤M‖yts − ytp‖ (p = 1, . . . , s− 1)

where M is a finite constant with M ≥ ∇gj(x) for all x ∈ X. This sequence of
inequalities implies that

‖ytq − ytp‖ ≥ ε

M
(p > q)

which means that {yts} does not contain a Cauchy subsequence. However, this
is impossible since the set X is compact. This completes the proof that {yt}
converges to a point in Rk−i .

Similarly, we can show that {zt} converges to a point in Rk+i . Since xt =
λtyt+µtzt and λt+µt = 1, then {xt} converges to a point in conv (Rk−i ∪R

k+
i ).

Case 2: There exists an N such that λt = 1 for ∀t > N .
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By a similar construction to Case 1, we can show that {yt} converges to a
point in Rk−i . In this case, {λt} converges to 1, so {µt} converges to 0. Since
xt = λtyt + µtzt and {yt} converges to a point in Rk−i , then {xt} converges to
a point in Rk−i thus a point in conv (Rk−i ∪R

k+
i ).

Case 3: There exists an N such that λt = 0 for ∀t > N .
This is similar to Case 2, as in this case {µt} converges to 1.

A consequence of this result is that if x̄ /∈ conv (Rk−i ∪R
k+
i ), then the al-

gorithm will find a valid inequality for conv (Rk−i ∪R
k+
i ) that cuts off x̄ in

finitely many iterations. Furthermore, in the limit, the valid inequality will be
supported by a point in conv (Rk−i ∪R

k+
i ).

4 Implementation Details

We first introduce some notation to facilitate the discussion of how to implement
our separation procedure. For the linearization sets Kt− = {y1, y2, . . . , yp} and

Kt+ = {z1, z2, . . . , zq}, we define the matrices A− ∈ Rm−×n, A+ ∈ Rm+×n, b− ∈
Rm− , and b+ ∈ Rm+

as

A− =


−A

−∇g(y1)T

−∇g(y2)T

...
−∇g(yp)T

 , b− =


−b

g(y1)−∇g(y1)T y1

g(y2)−∇g(y2)T y2

...
g(yp)−∇g(yp)T yp

 ,

A+ =


−A

−∇g(z1)T

−∇g(z2)T

...
−∇g(zq)T

 , b+ =


−b

g(z1)−∇g(z1)T z1

g(z2)−∇g(z2)T z2

...
g(zq)−∇g(zq)T zq

 .

When solving the separation problem MDP(t), any norm may be used in the
objective function. However, if either the 1-norm or ∞-norm is used, then
MDP(t) can be reformulated as a linear program. Our preliminary experiments
indicated that using the ∞-norm was superior to the 1-norm, as the generated
inequalities tend to be sparser with the∞ norm. (A similar observation was also
made in [34]). The ∞-norm objective function can be linearized by introducing
a new variable θ to represent the value of the objective function and ensuring
that

−θ ≤ xj − x̄j ≤ θ, ∀j ∈ N.

Thus, with the ∞-norm, MDP(t) can be written as the linear program

9



minimize θ

subject to − θ ≤ỹj + z̃j − x̄j ≤ θ, ∀j ∈ N
A−ỹ − λb− ≥ 0, A+z̃ − µb+ ≥ 0,

−ỹi + λk ≥ 0, z̃i − µ(k + 1) ≥ 0,

λ+ µ = 1, λ ≥ 0, µ ≥ 0,

(MLP)

where the substitution xj = ỹj + z̃j was performed.
From one iteration to the next, a new point is added to either Kt− or Kt+,

thus new constraints are added to (MLP) and the size of the basis of (MLP)
increases when using simplex method. To avoid this, we instead solve the dual
of (MLP):

maximize β − x̄T (α+ − α−)

subject to A−
T
u− u0ei − (α+ − α−) = 0,

A+T v + v0ei − (α+ − α−) = 0,

−uT b− + u0k + β ≤ 0,

−vT b+ − v0(k + 1) + β ≤ 0,∑
j∈I∪C

(α+
j + α−j ) = 1,

α+ ≥ 0, α− ≥ 0, u ≥ 0, v ≥ 0, u0 ≥ 0, v0 ≥ 0,

(CGLP)

where ei is i-th unit vector of appropriate size, α+, α− ∈ Rn are the dual
variables for each side of the first constraint and u ∈ Rm− ,v ∈ Rm+

,u0, v0, β ∈ R
are the dual variables for the remaining constraints in (MLP), respectively. In
this case, whenever a new point is added to either Kt− or Kt+, new columns
are added to (CGLP), so the size of the basis remains the same. Further,
(CGLP) can be effectively re-solved with the primal simplex method, since
primal feasibility is conserved.

The linear program (CGLP) is well-studied in the literature [5, 22]. It is
convenient to note that we can read the cut directly from the optimal solution
of the (CGLP). Specifically, the dual variables α = α+ − α− give the cut
coefficients, and β is right hand side of the cut—αTx ≥ β. The objective of the
(CGLP) is to maximize the violation of the point x̄.

Multiplying cut coefficients and right hand side of the cut with any positive
number will not change the actual hyperplane that defines the cut, but does scale
the objective value in (CGLP). Thus, a normalization constraint is required to
avoid having an unbounded problem in the case that x̄ can be cut off. The
constraint

∑
(α+
j + α−j ) = 1 provides one such normalization.

A more commonly used normalization, first proposed in [4] and called the
standard normalization condition, is defined as

∑
uj +

∑
vj + u0 + v0 = 1

which restricts the multipliers in (CGLP). This is equivalent to relaxing the
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original constraints in the (MLP). Our method can also be adopted for this
normalization. To do so, we modify the separation problem (MLP) as follows

minimize θ

subject to ỹ + z̃ = x̄

A−ỹ − λb− + 1 · θ ≥ 0,

A+z̃ − µb+ + 1 · θ ≥ 0,

− ỹi + λk + θ ≥ 0

z̃i − µ(k + 1) + θ ≥ 0,

λ+ µ = 1,

λ ≥ 0, µ ≥ 0,

(2)

where 1 is the appropriate size vector of all ones. The dual of this linear program
yields the linear program (CGLP) with the normalization constraint replaced by
the standard normalization condition,

∑
uj +

∑
vj + u0 + v0 = 1. Algorithm 1

can also be applied to iterative generation of (2) with stopping criteria λtg(yt) ≤
1 ·θt and µtg(zt) ≤ 1 ·θt where θt is the optimal solution value of (2) at iteration
t.

In our experiments, we used the ∞-norm and optimized (CGLP) with a
column-generation method. Our method works by iteratively updating a poly-
hedral outer approximation of convex hull of the feasible points. Initially, the
outer approximation is

C0 = {x ∈ X | g(xR) +∇g(xR)T (x− xR) ≤ 0}

where zR is the objective value and xR is the optimal solution of the continuous
nonlinear programming relaxation. If x̄ has fractional binary variables, they are
sorted in non-decreasing order of their infeasibility, and cuts are generated for
each variable in this order.

During the solution of (CGLP) by column generation procedure, only columns
(linearizations of nonlinear constraints) that have a reduced cost greater than
ε · (θt + 1) are included in the next (CGLP). The reduced cost of the column
with respect to point yt and constraint j can be calculated as λtgj(y

t), and
the reduced cost with respect to point zt and constraint j can be calculated as
µtgj(z

t). In Algorithm 2, we give the details for separation of a fractional point
x̄ with the disjunction on variable xi. Algorithm 2 is terminated after at most
τ iterations. This limits the total effort we spend generating cuts and helps to
maintain numerical stability of (CGLP).

If a cut is generated by Algorithm 2 that separates x̄ by at least δ, then it
is added to our polyhedral outer approximation Cs and the linear program is
solved to obtain a new point x̄ that we wish to separate from the polyhedral
outer approximation. (Note that this requires changing the objective function
coefficients of (CGLP)). However, the fractional variable for which we will
generate a disjunctive cut is still based on the original ordering. After generating
disjunctive cuts for all of the fractional variables based on the original order, the
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Input: x̄, i
t← 0
repeat

Solve CGLP. Let (α+t, α−
t
, βt, ut, vt, ut0, v

t
0) and (ỹt, z̃t, λt, µt, θt) be the

primal and dual solutions respectively
if λt > κ then
yt ← ỹt/λt

for j ∈ J do
if λtgj(y

t) > ε · (θt + 1) then
(−∇gj(yt),0,∇gj(yt)yt − gj(yt), 0, 0)T as a column to CGLP

end if
end for

end if
if µt > κ then
zt ← z̃t/µt

for j ∈ J do
if µtgj(z

t) > ε · (θt + 1) then
(0,−∇gj(zt), 0,∇gj(zt)T zt − gj(zt), 0)T as a column to CGLP

end if
end for

end if
t← t+ 1

until No new columns are generated or t > τ
α← α+t − α−t, β ← βt, θ ← θt

return αx ≥ β and t and θ

Algorithm 2: Iterative generation of CGLP.

variables are again ordered according to the current fractional solution x̄. The
procedure is repeated until the point x̄ can no longer be separated by disjunctive
cuts. Note that disjunctive cuts generated by the algorithm are never included
in the formulation of (CGLP), so the cuts we generate are always of rank one.
The details are given in Algorithm 3.

5 Computation of the Rank One Simple Dis-
junctive Closure

Significant advantages of the cut generation procedure outlined in Algorithm 2
are that it requires only the solution of linear programs and that it may be
terminated at any step. If the objective value of the separation problem at
termination is positive, then the current fractional point x̄ is excluded from the
feasible region by the generated inequality. These computational advantages
allow us to perform the first (to our knowledge) significant computational study
estimating the strength of disjunctive cuts for convex MINLP. Specifically, in
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x̄← argminx∈C0{cTx}
r ← 0, l← 0, s← 0
repeat
newcut← false
F ← {xi | ρ < x̄i < 1− ρ, i ∈ B}
Order xi1 , xi2 , . . . , xi|F | such that max{x̄ip , 1− x̄ip} ≥ max{x̄iq , 1− x̄iq} if
p < q
for p = 1 to |F | do
if ρ < x̄ip < 1− ρ then

Call Algorithm 2 with x̄ and ip to get αx ≥ β, t and θ
if θ > δ then
newcut← true
Cs+1 = {x ∈ Cs | αx ≥ β}
s← s+ 1
x̄← argminx∈Cs{cTx}

end if
l← l + t

end if
end for
r ← r + 1

until newcut = false or r ≥ R or l ≥ T
return Cs

Algorithm 3: Outer Loop for the Generation of Rank One Simple Disjunctive

Cuts.

this section, we will report results on an experiment aimed at estimating the
strength of the rank one disjunctive closure.

For this experiment, disjunctive cuts were generated only for the set of binary
decision variables B ⊆ I. In our test suite, only a small fraction of the instances
contain general integer variables. In this case, the rank one disjunctive closure
of R is

C def
= ∩i∈B(conv(R0−

i ∪R
0+
i )).

The set C can provide a much better approximation to the convex hull of feasible
solutions than R. We measure the improvement in terms of the additional inte-
grality gap closed. Specifically, let zR = minx∈R{cTx} and zC = minx∈C{cTx}.
The percentage gap closed by the rank one disjunctive cut closure is

100

(
zminlp − zC
zminlp − zR

)
.

When reporting this improvement for instances for which the optimal solution
value zminlp is not known, we use instead the best known value.

The strength of disjunctive cuts are tested on a suite of convex MINLPs from
the MacMINLP collection [28], GAMS MINLP World[12], the collection on the
website of the IBM-CMU research group [32] and instances we created ourselves.
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The test suite comprises 207 convex problems covering a wide range of appli-
cations such as multi-product batch plant design problems [35], layout design
problems [13], synthesis design problems [19], retrofit planning [31], stochastic
service system design problems [20], cutting stock problems [25], quadratic un-
capacitated facility location problems [24] and network design problems [11].
The computational experiments were run on a cluster of identical 64-bit Intel
Core2 Duo microprocessors clocked at 3.00 GHz, each with 2 GB RAM.

In theory, the gap closed by closure should not depend on the mechanism
by which it is generated. However, for practical reasons we must impose an
overall time limit in our experiments, and hence the gap closed depends on the
effectiveness of the separation procedure. We found that by mildly limiting the
effort on the individual cut generation, more gap could be closed within the
allowed time limit of 8 hours, leading to a better approximation of the true
closure results. Thus, we set ε = 10−6, δ = 10−6, κ = 10−2, ρ = 10−4 and
τ = 30 in Algorithms 2 and 3. R and T in Algorithm 3 are set to very large
numbers.

Characteristics of the instances and closure results are given in Table 1. The
first 7 columns in Table 1 list the instance family, whether or not the instance has
a nonlinear objective function, the number of instances in the family, average
number of variables, average number of binary variables, average number of
linear constraints, and average number of nonlinear constraints for the instances
in the family. In the next 3 columns, the percentage gap closed by disjunctive
cuts at the root node is given. The last column indicates for how many instances
we hit the time limit for that family of instances.

Table 1: Closure results.

Instance NL # of Average % gap closed Hit
Family Ob? ins Var Bin LC NLC min ave max limit
Batch

√
10 334.6 123 1089.1 1 44.87 53.53 64.19 10

CLay 12 116.7 35.3 138.3 40 7.47 40.81 72.74 0
FLay 10 158 28 183 4 28.72 50.72 99.99 3
fo-m-o 9 112.2 41.6 194.3 13.6 0.00 2.17 19.56 1

nd 5 574 37.6 283.8 37.6 73.03 85.00 93.05 0
RSyn 48 922.3 251 1716.3 34.2 60.49 88.50 100 0

safetyLay 3 120.7 38 111 34.7 100 100 100 0
SLay

√
14 336 92 437 0 37.61 69.35 86.78 6

sssd 14 162.4 135.5 50 20.1 99.40 99.68 99.82 0
Syn 48 366.3 95 660 34.2 95.83 99.32 100 0

trimloss 12 279.2 227.5 133.3 6 0.00 6.41 14.41 4
uflquad

√
10 1571 23.5 1613 0 0.00 6.41 13.21 10

others
√

12 205.4 86.4 206 3.3 0.00 47.57 100 3
Total 207 487.5 127.6 767.9 22.3 0.00 69.42 100 37
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Results in Table 1 shows that on average, 69% of the gap is closed at the
root node by adding rank one disjunctive cuts from single variable disjunctions.
For specific instance families the results are even more striking. For example,
disjunctive cuts close nearly the entire gap for instances in the RSyn, Syn, and
sssd families.

6 Branch-and-Cut Framework Results

In this section, we report our preliminary experience using our disjunctive cut
separation procedure within a general purpose solver for convex MINLP. We
implemented our iterative cut generation method within FilMINT [1]. FilMINT
is based on the LP/NLP-Based Branch-and-Bound algorithm of Quesada and
Grossmann [30]. The algorithm works by creating a reduced master-problem
that is a polyhedral relaxation of convex hull of the feasible points, conv{x|x ∈
R, xI ∈ Z|I|}. Specifically, FilMINT solves the problem

zminlp = minimize cTx

subject to g(x̄) +∇g(x̄)T (x− x̄) ≤ 0 ∀x̄ ∈ K (MP(K))

x ∈ X, xI ∈ Z|I|

by branch-and-cut, where the set K is a dynamically updated collection of points
about which linearizations are taken. In our experiment, we generated disjunc-
tive cuts after FilMINT preprocessed the original instance and generated its
default cuts.

To make disjunctive cuts practically effective, the effort spent on generation
must be limited. To that end, we followed the procedure explained in Section 4
with the following modifications:

• We set the parameters ε = 10−4, δ = 10−6, κ = 10−2, ρ = 10−4 and
τ = 30 in Algorithms 2 and 3.

• At each round, we generate cuts for at most half of the binary variables,
changing |F | to min{|B|/2, |F |} in Algorithm 3.

• The number of rounds is limited to 30 (R = 30 in Algorithm 3).

• The total number of iterations for the entire cut generation procedure is
limited to 15000 (T = 15000 in Algorithm 3).

• We also terminate Algorithm 3 if the objective function value was im-
proved by less than 1% over the last three rounds of cut generation.

A final change was to disable the addition of linearizations coming from the ex-
tended cutting plane (ECP)-based method or the Fixfrac method in FilMINT
[1]. These linearizations are used to capture the nonlinear structure of the
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problem within the LP/NLP-Based Branch-and-Bound algorithm. Our compu-
tational experience indicated that the disjunctive cuts provide sufficient informa-
tion about the nonlinear structure, and that generating these extra linearizations
was typically not helpful in conjunction with disjunctive inequalities.

Out of 207 instances we collected, 148 of them can be solved by FilMINT in
less than five minutes. For these “easy” instances, summary results for solution
times are given in Table 2. We see that the extra effort spent generating dis-
junctive cuts does not pay off for these instances. However, the average increase
in computing time is very small.

Table 2: Solution times (sec.) for FilMINT and FilMINT with disjunctive cuts
on 148 easy instances.

FilMINT FilMINT with DC
Arithmetic mean 24.4 25.4
Geometric mean 2.9 4.5

The remaining 59 hard instances were run, enforcing a three hour time limit.
Within the time limit, FilMINT could only solve 30 of the instances, but with
the practical disjunctive inequality separation procedure, 42 of the instances
were solved in less than 3 hours. Additionally, the instances are solved more
than three times as fast, on average.

The characteristics of the 42 solved instances are given in the Appendix in
Table 4, and the detailed performance of FilMINT and FilMINT with disjunctive
cuts on each instance is listed in Table 3. The relative improvement obtained by
using disjunctive cuts can also be dramatically seen in the performance profiles
(see [17]) of Figure 1.

7 Conclusion

We have introduced a computationally effective mechanism for computing dis-
junctive inequalities for convex MINLPs. The methodology relies only on solving
a sequence of linear programs, giving it a significant computational advantages
over the separation approach that relies on solving a nonlinear, nondifferentiable
program. We have proved that our methodology is “complete.” Specifically, if
x̄ is a point not in the convex hull of the union of the two convex sets defined
by the disjunction, then the procedure will find a linear inequality separating x̄
from the feasible region. Using the new cutting-plane procedure allows us for
the first time to report a significant computational study aimed at measuring
the strength of simple disjunctive inequalities for convex MINLPs. For many
families of convex MINLPs, the disjunctive inequalities close a significant frac-
tion of the gap between the nonlinear relaxation and the optimal value. Finally,
the inequalities have been successfully incorporated into the software FilMINT,
resulting in often dramatic performance improvements. Continuing work will
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aim to make the inequalities even more effective by testing additional normaliza-
tion constraints, adding monoidal strengthening [7], and solving the separation
problem for over only a subset of the variables [6].
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Table 3: Solution statistics for FilMINT with and without disjunctive cuts.

FilMINT FilMINT with DC
Problem

Node Time Node Time
FLay05H 106823 1771.5 106467 1639.2
FLay05M 82677 714.8 86731 603.4
fo7 247017 302.3 203434 213.0
fo8 601114 995.0 480980 651.3
fo9 4729736 10800.0 1972581 4217.0
nd-12 19078 1119.8 5337 152.5
nd-13 18242 921.3 11953 389.8
nd-14 113635 9939.8 96427 9732.9
o7 2 2864359 4947.0 2884020 3196.0
o7 2433961 4284.1 6901545 9245.3
RSyn0810M03M 129829 488.3 2150 101.8
RSyn0810M04M 152101 869.8 747 137.2
RSyn0815M02M 515741 1286.7 2813 46.8
RSyn0815M03M 2397805 8324.6 10286 298.8
RSyn0815M04M 2812556 10800.0 6208 472.1
RSyn0820M02M 2335654 6999.2 2952 56.8
RSyn0820M03M 2369872 10800.0 3069 190.8
RSyn0820M04M 1383792 10800.0 7567 660.4
RSyn0830M02M 1685598 6502.3 1735 61.8
RSyn0830M03M 1508031 10800.0 4511 268.1
RSyn0830M04M 937614 10800.0 9099 1057.4
RSyn0840M02M 2777282 10800.0 1617 117.0
RSyn0840M03M 1681035 10800.0 2116 251.7
RSyn0840M04M 696771 10800.0 6902 1213.5
Safety3 2026677 5736.9 2729701 8716.0
SLay09H 53071 898.0 73197 1599.2
SLay10M 1220630 10800.0 437652 5087.8
sssd-16-7-3 795223 403.8 499476 233.6
sssd-16-8-3 3421746 1691.8 1750796 807.8
sssd-17-7-3 724435 380.3 408062 197.8
sssd-18-7-3 757942 367.2 692627 326.1
sssd-18-8-3 4773204 2468.1 1328315 731.7
sssd-20-8-3 1036620 535.2 1773151 839.6
sssd-22-8-3 10766956 6760.2 1946252 1156.2
Syn30M04M 276797 1365.0 3 45.1
Syn40M02M 153675 363.3 11 6.8
Syn40M03M 3508363 10800.0 94 37.3
Syn40M04M 1996038 10800.0 23 58.5
uflquad-15-60 2437 403.4 2681 480.5
uflquad-15-80 3647 1249.9 3693 1365.4
uflquad-20-40 4101 548.5 4401 536.2
uflquad-25-40 6083 1216.3 7617 1384.3
Average 1526856.4 4844.1 582595.2 1394.9
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Table 4: Test set statistics.

Problem NL Obj Vars Ints L Cons NL Cons
FLay05H 382 40 460 5
FLay05M 62 40 60 5
fo7 114 42 197 14
fo8 146 56 257 16
fo9 182 72 325 18
nd-12 600 40 289 40
nd-13 640 40 316 40
nd-14 816 48 369 48
o7 2 114 42 197 14
o7 114 42 197 14
RSyn0810M03M 615 252 1434 18
RSyn0810M04M 820 336 2116 24
RSyn0815M02M 470 188 959 22
RSyn0815M03M 705 282 1614 33
RSyn0815M04M 940 376 2386 44
RSyn0820M02M 510 208 1046 28
RSyn0820M03M 765 312 1767 42
RSyn0820M04M 1020 416 2620 56
RSyn0830M02M 620 248 1232 40
RSyn0830M03M 930 372 2091 60
RSyn0830M04M 1240 496 3112 80
RSyn0840M02M 720 288 1424 56
RSyn0840M03M 1080 432 2424 84
RSyn0840M04M 1440 576 3616 112
Safety3

√
259 98 294 0

SLay09H
√

810 144 1044 0
SLay10M

√
290 180 405 0

sssd-16-7-3 161 133 51 21
sssd-16-8-3 184 152 56 24
sssd-17-7-3 168 140 52 21
sssd-18-7-3 175 147 53 21
sssd-18-8-3 200 168 58 24
sssd-20-8-3 216 184 60 24
sssd-22-8-3 232 200 62 24
Syn30M04M 640 240 1488 80
Syn40M02M 420 160 756 56
Syn40M03M 630 240 1314 84
Syn40M04M 840 320 1992 112
uflquad-15-60

√
915 15 960 0

uflquad-15-80
√

1215 15 1280 0
uflquad-20-40

√
820 20 840 0

uflquad-25-40
√

1025 25 1040 0
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