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Abstract We study approaches for obtaining convex relaxations of global optimization problems containing

multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the

relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach

reformulates the problem to contain only bilinear terms and then relaxes each term independently. We show

that for a multilinear function having a single product term, these relaxations are equivalent if the bounds on all

variables are symmetric around zero. We then review and extend some results on conditions when the concave

envelope of a multilinear function can be written as a sum of concave envelopes of its individual terms. Finally,

for bilinear functions we prove that the difference between the concave overestimator and convex underestimator

obtained from the McCormick relaxation approach is always within a constant of the difference between the

concave and convex envelopes. These results, along with numerical examples we provide, provide insight into

how to construct strong relaxations of multilinear functions.

Keywords Global optimization · Bilinear function · Multilinear function

1 Introduction

The construction of convex underestimators and concave overestimators for nonconvex functions plays a critical

role in algorithms for globally solving nonconvex optimization problems. In this work, we focus on multilinear

functions φ : [`, u] → R, where

φ(x) =
X

t∈T

at

Y

j∈Jt

xj , (1)

and [`, u] = {x ∈ Rn | ` ≤ x ≤ u}. Specifically, we are interested in comparing the strength of relaxations of the

set

X
def
= {(x, z) ∈ [`, u]× R | z = φ(x)}.
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An important special case is when φ is a bilinear function having |Jt| ≤ 2 for all t ∈ T .

When φ(x) consists of a single bilinear term, McCormick [13] proposed to relax the set B = {(x1, x2, z) ∈
[`1, u1]× [`2, u2]×R | z = x1x2} with the following inequalities, which we refer to as the McCormick inequalities:

z ≥ u2x1 + u1x2 − u1u2, z ≥ `2x1 + `1x2 − `1`2, (2a)

z ≤ u2x1 + `1x2 − `1u2, z ≤ `2x1 + u1x2 − u1`2. (2b)

Al-Khayyal and Falk [1] showed that the convex hull of B is described by the McCormick inequalities. For more

general factorable nonconvex functions, including multilinear functions of the form (1), McCormick proposed

a recursive procedure in which additional variables and constraints are added to obtain a formulation of the

problem having only bilinear equations which are subsequently relaxed using (2). The resulting relaxation, which

we refer to as the McCormick relaxation, has formed a basis for the relaxations used in many global optimization

solution approaches, such as implemented in the software BARON [19,21] and Couenne [3].

The strongest possible relaxation of X, its convex hull conv(X), has been shown to be a polyhedron with

the following characterization [6–8,17,20]:

conv(X) = Proj
x,z

n
(x, z, λ) ∈ [`, u]× R×∆2n | x =

2nX

j=1

λjx
j , z =

2nX

j=1

λjφ(xj)
o

, (3)

where x1, x2, . . . x2n

are the vertices of [`, u], and ∆2n is the 2n-dimensional simplex. In general, the McCormick

relaxation may strictly contain the convex hull, leading to weaker relaxation bounds. On the other hand, direct

use of the convex hull characterization (3) to create a convex relaxation of X is limited by the exponential

growth in the number of variables. Thus, a natural idea is to seek relaxations of X that may be tighter than

what is obtained with the standard McCormick approach, but which are not as prohibitively large as the full

convex hull approach. A simple idea along these lines is to use the formulation (3) over subsets of the variables

chosen small enough to keep the size of the relaxation tractable. This idea has already been explored with

promising results by Bao, Sahinidis, and Tawarmalani [2], where procedures to find valid inequalities based on

the dual formulation of (3) are investigated.

Since using (3) in any form is likely to increase the computational burden in solving the relaxation, it is

important to understand when this extra work is most likely to yield significant benefits in relaxation quality.

To this end, in this work we explore conditions under which the convex hull formulation yields nothing more

than McCormick relaxation approach, and, for the case of bilinear functions, we provide bounds on how much

worse the McCormick relaxation can be. To our knowledge, this is the first result of this type in the global

optimization literature.

We begin in §2 with the case in which φ consists of single product term (|T | = 1). We first review a result

of Ryoo and Sahinidis [18] that shows the McCormick relaxation is equivalent to the convex hull when the

bounds on the variables are all [0, 1]. We then provide the new result that this also holds when the bounds are

symmetric about zero, i.e., xi ∈ [−ui, ui]. Finally, we provide examples that when these conditions do not hold,

the difference between the convex hull and McCormick relaxations can be arbitrarily large.

In §3, we consider the case when φ can have multiple terms. We begin by reviewing an existing result

of Meyer and Floudas [14] which states that the concave envelope of φ over x ∈ [0, 1]n can be obtained as

the sum of concave envelopes of the individual terms of φ when the coefficients on each term are positive.

We show that this result extends to x ∈ [`, u] provided ` ∈ Rn
+, and to general [`, u] if φ is bilinear. While

these results are interesting, they do not say anything about how the convex envelope of φ compares to the

convex underestimator obtained from the McCormick relaxation. In §3.2 we focus on bilinear functions of the
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form b(x) =
P

(i,j)∈E aijxixj , and prove that if aij > 0 for all (i, j) ∈ E, then the gap between the McCormick

concave overestimator and convex underestimator of b is within a constant factor of the gap between the concave

and convex envelope of b. As a special case of our result, we obtain an alternate proof of the result of Coppersmith

et. al. [5] that the McCormick relaxation is equivalent to the convex hull when graph G = (N, E) is bipartite,

where N = {1, . . . , n}. More generally, our bound on the ratio decreases with the coloring number of G. We

also consider the general bilinear case in which the coefficients are not all positive. We again obtain a bound on

the relative gap between the McCormick and convex hull relaxations, but in this case the bound can be as bad

as O(n), although it is a constant if G is bipartite. We also show that as terms are removed from the bilinear

function, the difference between the convex hull and McCormick relaxation gaps decreases, suggesting that the

improvement in relaxation quality by using the convex hull formulation will be more significant when the graph

G is denser.

In §4 we present numerical examples that show our results are tight, and also provide insights into the gap

between these relaxations for cases where our results do not apply. We make some concluding remarks in §5.

Notation: Given a function f : D → R, the concave envelope of f over D, written cavD[f ], is defined to be the

minimum concave overestimator of f on D. That is, cavD[f ](x) ≥ f(x) for all x ∈ D, and if g : D → R is any

other concave function with g ≥ f on D, then g ≤ cavD[f ]. Similarly, the convex envelope of f over D, written

vexD[f ], is defined to be the maximum convex underestimator of f on D. We let 0 and 1 denote vectors of all

zeros and all ones, and ei be a vector of all zeros except the ith component which has value 1. The lengths of

0,1, and ei will be clear from context (but are usually all n). We let H = [0,1] be the unit hypercube. For

u ∈ Rn, we define Diag(u) to be the n× n diagonal matrix with Diag(u)ii = ui.

2 Recursive McCormick relaxation of a single multilinear term

In this section, we consider a multilinear function consisting of a single term, f(x) =
Qn

j=1 xj . Specifically, we

compare relaxations of the set

X[`,u] = {(x, y1) ∈ [`, u]× R | y1 = f(x)}.

We consider cases in which a recursive McCormick relaxation, constructed by recursively applying the Mc-

Cormick relaxation to products of pairs of variables, is as strong as conv(X).

2.1 Preliminaries

We first formally define the recursive McCormick relaxation of the set X[`,u]. This relaxation is referred to as a

recursive Arithmetic Interval in [18]. First, for (x1, x2) ∈ [l1, u1]× [l2, u2] define MC[l1,u1]×[l2,u2](x1, x2) to be

the closed interval

MC[l1,u1]×[l2,u2](x1, x2)
def
=
ˆ
max{u2x1 + u1x2 − u1u2, `2x1 + `1x2 − `1`2},

min{u2x1 + `1x2 − `1u2, `2x1 + u1x2 − u1`2}
˜

and observe that (y1, x1, x2) satisfies the McCormick inequalities (2) if and only if y1 ∈ MC[l1,u1]×[l2,u2](x1, x2).

Now suppose `, u ∈ Rn with ` ≤ u. A relaxation of this nonconvex set X[`,u] can be constructed in a higher-

dimensional space by introducing variables y2, . . . , yn that satisfy yi = xiyi+1 for i = 1, . . . , n− 1 and yn = xn
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and then relaxing these constraints with the McCormick inequalities. This leads to a “recursive” McCormick

relaxation of X[`,u] which is the polytope define by:

RMC
`
X[`,u]

´
=
n

(x, y) ∈ [`, u]× Rn | yn = xn,

yi ∈ MC[`i,ui]×[˜̀i+1,ũi+1]
(xi, yi+1), i = 1, . . . , n− 1

o

where ˜̀n
def
= `n and ũn

def
= un and ˜̀

i = min{ũi+1ui, ũi+1`i, ˜̀
i+1ui, ˜̀

i+1`i} and ũi = max{ũi+1ui, ũi+1`i, ˜̀
i+1ui, ˜̀

i+1`i}
are implied lower and upper bounds on yi for i = n − 1, . . . , 1. The variable yn could be eliminated from the

description of RMC
`
X[`,u]

´
, but we include it for notational convenience.

We are now ready to state the result of Ryoo and Sahinidis [18].

Theorem 1 ([18]) Let f(x) =
Qn

i=1 xi. The recursive McCormick relaxation describes the convex hull of f

over H, i.e., Proj(x,y1) (RMC(XH)) = conv(XH).

As observed in [18], when ` = 0, the assumption that u = 1 is without loss of generality; i.e., we can show

the same result holds for f(x) over [0, u]. For completeness, we provide a proof of this statement in the appendix.

Corollary 1 Proj(x,y1)

“
RMC(X[0,u])

”
= conv(X[0,u]).

2.2 Symmetric bounds

We now show another, somewhat surprising, case where the recursive McCormick relaxation defines the convex

hull of a single multilinear term. Specifically, we show that the two relaxations are the same if the bounds on

x are symmetric about zero, i.e., x ∈ [−u, u] for some u ∈ Rn
+. We begin with the case in which x ∈ [−1,1].

First observe that in this case, the implied bounds on yi for i = 1, . . . , n are [l̃i, ũi] = [−1, 1]. Consequently, the

conditions yi ∈ MC[−1,1]2(xi, yi+1) in the definition of RMC(X[−1,1]) have the form

yi ≥ max{−xi − yi+1 − 1, xi + yi+1 − 1},
yi ≤ min{xi − yi+1 + 1,−xi + yi+1 + 1},

for i = 1, . . . , n− 1.

We will use the following simple lemma. The proof is in the appendix.

Lemma 1 Let x1, x2 ∈ [−1, 1]. If either x1 ∈ {−1, 1} or x2 ∈ {−1, 1} then

max{−x1 − x2 − 1, x1 + x2 − 1} = min{x1 − x2 + 1,−x1 + x2 + 1}.

Thus, if y ∈ MC[−1,1]2(x1, x2) then y = x1x2. Conversely, if x1 ∈ (−1, 1) and x2 ∈ (−1, 1) then

max{−x1 − x2 − 1, x1 + x2 − 1} < min{x1 − x2 + 1,−x1 + x2 + 1}

so that MC[−1,1]2(x1, x2) is a positive length interval.

Theorem 2 Let f(x) =
Qn

i=1 xi. The recursive McCormick relaxation describes the convex hull of f over

[−1,1], i.e., Proj(x,y1)

“
RMC(X[−1,1])

”
= conv(X[−1,1]).

Proof We only need to prove Proj(x,y1)

“
RMC(X[−1,1])

”
⊆ conv(X[−1,1]). We will prove that if (x, y) is an

extreme point of RMC(X[−1,1]) then y1 =
Qn

i=1 xi, and hence (x, y1) ∈ X[−1,1]. This is sufficient to prove the
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result, since this shows that every point in Proj
“
RMC(X[−1,1])

”
can be written as a convex combination of

points in X[−1,1].

Therefore, let (x, y) be an extreme point of RMC(X[−1,1]). We consider three cases. First, if x ∈ {−1, 1}n

then Lemma 1 immediately implies yi = xiyi+1 =
Qn

j=i xj for i = n−1, . . . , 1. Second, if for some k, xi ∈ {−1, 1}
for all i 6= k, then yk+1 =

Qn
j=k+1 xj ∈ {−1, 1}, and hence yk = xkyk+1 by Lemma 1. Thus, yk =

Qn
j=k xj , and

because xi ∈ {−1, 1} for all i < k, Lemma 1 implies yi =
Qn

j=i xj for j = k−1, . . . , 1. We will show that the last

case, |{i | xi ∈ (−1, 1)}| ≥ 2, cannot happen, since if it did (x, y) would not be an extreme point. Assume to the

contrary that |{i | xi ∈ (−1, 1)}| ≥ 2 and let t = max{j | xj ∈ (−1, 1)} and s = max{j < t | xj ∈ (−1, 1)}. Since

xi ∈ {−1, 1} for i = s+1, . . . , t−1 and for i > t, an argument identical to the second case shows that yi =
Qn

j=i xj

for i = s+1, . . . , n and hence yi ∈ {−1, 1} for i = t+1, . . . , n and yi ∈ (−1, 1) for i = s+1, . . . , t. Next, because

ys+1 ∈ (−1, 1) and xs ∈ (−1, 1) Lemma 1 implies that either ys > max{−xs − ys+1 − 1, xs + ys+1 − 1} or

ys < min{xs − ys+1 + 1,−xs + ys+1 + 1}.
Suppose first ys > max{−xs − ys+1 − 1, xs + ys+1 − 1}. Consider the vector (∆x, ∆y) defined by

∆y =

tX

i=s+1

`
yt+1

t−1Y

j=i

xj

´
ei, ∆x =

`
yt+1

t−1Y

j=s+1

xj

´
es + et

where we use the conventions that a product of an empty set is one and yn+1 = 1 (if t = n). We claim that

there exists ε > 0 such that the vectors (x ± ε∆x, y ± ε∆y) are in RMC(X[−1,1]) which shows (x, y) is not

an extreme point. Consider the vector (x′, y′) = (x + ε∆x, y + ε∆y); the argument for (x − ε∆x, y − ε∆y)

is similar. As xs ∈ (−1, 1) and xt ∈ (−1, 1), we an take ε > 0 small enough so that x′ ∈ [−1,1]. Next, as

yi ∈ MC[−1,1]2(xi, yi+1) for i > t and i < s, the same holds for y′i since (yi, xi, yi+1) are unchanged for all i > t

and i < s. Next, using yt = xtyt+1, yt+1 = y′t+1, and x′t = xt + ε we have

y′t = yt + yt+1ε = xtyt+1 + yt+1ε = (xt + ε)yt+1 = x′ty′t+1

which implies y′t ∈ MC[−1,1]2(x
′
t, y

′
t+1). Similarly, for i = t− 1, . . . , s + 1, using yi = xiyi+1 and x′i = xi yields

y′i = yi +
`
yt+1

t−1Y

j=i

xj

´
ε = xi

“
yi+1 +

`
yt+1

t−1Y

j=i+1

xj

´
ε
”

= x′iy
′
i+1

and hence y′i ∈ MC[−1,1]2(x
′
i, y

′
i+1). Finally, for i = s, we have assumed that ys > max{−xs − ys+1 − 1, xs +

ys+1 − 1} and hence there exists ε > 0 such that y′s = ys > max{−x′s − y′s+1 − 1, x′s + y′s+1 − 1}. On the other

hand,

x′s − y′s+1 = xs +
Y

(yt+1

t−1Y

j=i

xj

´
ε−

“
ys+1 +

Y
(yt+1

t−1Y

j=i

xj

´
ε
”

= xs − ys+1

and hence ys ≤ min{xs− ys+1 + 1,−xs + ys+1 + 1} implies that y′s = ys ≤ min{x′s− y′s+1 + 1,−x′s + y′s+1 + 1}
and hence y′s ∈ MC[−1,1]2(x

′
s, y

′
s+1) completing the proof that (x′, y′) ∈ RMC(X[−1,1]).

The case ys < min{xs − ys+1 + 1,−xs + ys+1 + 1} is nearly identical, except that in this case we define

(∆x, ∆y) by

∆y =

tX

i=s+1

`
yt+1

t−1Y

j=i

xj

´
ei, ∆x = −`yt+1

t−1Y

j=s+1

xj

´
es + et.

Then, again considering (x′, y′) = (x + ε∆x, y + ε∆y), the arguments are identical except that for checking that

y′s ∈ MC[−1,1]2(x
′
s, y

′
s+1). In this case, existence of ε > 0 such that y′s < min{x′s−y′s+1+1,−x′s+y′s+1+1} follows

from the same strict inequality holding for (ys, xs, ys+1). The condition y′s ≥ max{−x′s−y′s+1−1, x′s +y′s+1−1}
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follows from the same holding for (ys, xs, ys+1) and the observation that

x′s + y′s+1 = xs −
`
yt+1

t−1Y

j=s+1

xj

´
ε + ys+1 +

`
yt+1

t−1Y

j=s+1

xj

´
ε = xs + ys+1.ut

Using arguments that are identical to the proof of Corollary 1, we obtain the following generalization.

Corollary 2 Let u ∈ Rn
+. Then Proj(x,y1)

`
RMC(X[−u,u])

´
= conv(X[−u,u]).

2.3 Worst-case examples

We have seen that when either ` = 0 or ` = −u, the recursive McCormick relaxation of f(x) =
Qn

i=1 xi is as

good as the convex hull relaxation. We now show that when either of these conditions is violated, the recursive

McCormick relaxation can be arbitrarily worse than the convex hull. We measure the relative quality of these

relaxations by comparing the distance between the minimum and maximum allowable values for y at a point x.

Specifically, for a given D = [`, u], we define

chgapD[f ](x) = max
˘
y | (x, y) ∈ conv(XD)

¯
| {z }

=cavD[f ](x)

−min
˘
y | (x, y) ∈ conv(XD)

¯
| {z }

=vexD[f ](x)

rmcgapD[f ](x) = max
˘
y | (x, y) ∈ RMC(XD)

¯
| {z }

def
= rmcuD[f ](x)

−min
˘
y | (x, y) ∈ RMC(XD)

¯
| {z }

def
= rmclD[f ](x)

.

The relation rmcgapD[f ](x) ≥ chgapD[f ](x) always holds, and equality holds when either ` = 0 or ` = −u. The

examples we give show that rmcgapD[f ](x) À chgapD[f ](x) is possible, and the difference can be arbitrarily

large.

First, let D3 = [1, u]3 for some u > 1 and consider the point x̂ = (u+1
2 , u, 1). The only way x̂ can be written

as a convex combination of vertices of D3 is x̂ = 1
2 (1, u, 1) + 1

2 (u, u, 1). Thus, vexD3 [f ](x̂) = cavD3 [f ](x̂) so

chgapD3
[f ](x̂) = 0. Next consider the recursive McCormick relaxation of f over D3. It is possible to check that

rmcuD3 [f ](x̂) = u2 + 1−u
2 and rmclD3 [f ](x̂) = u + u−1

2 , and therefore

rmcgapD3
[f ](x̂) = rmcuD3 [f ](x̂)− rmclD3 [f ](x̂) = u2 − u > 0.

Since chgapD3
[f ](x̂) = 0, this example shows that, if we let u →∞, the difference in relaxation quality between

the convex hull and recursive McCormick relaxations can be arbitrarily large even for fixed n = 3.

Now, let Dn = [−2, 2]n−2×[0, 2]×[−2, 2], and consider the point x̂ = (2, . . . , 2, 0, 0, 2). Again, the only way x̂

can be written as a convex combination of vertices of Dn is x̂ = 1
2 (2, . . . , 2,−2, 0, 2)+ 1

2 (2, . . . , 2, 2, 0, 2) and hence

vexDn
[f ](x̂) = cavDn

[f ](x̂) so chgapDn
[f ](x̂) = 0. On the other hand, if we consider the recursive McCormick

relaxation of f over Dn, it can be verified that for n ≥ 3, rmcuDn
[f ](x̂) = 2n and rmclDn

[f ](x̂) = −2n and

hence rmcgapDn
[f ](x̂) = 2n+1. Thus, by letting n →∞, we see that even if the bounds ` and u do not grow, the

difference in relaxation quality between the convex hull and recursive McCormick relaxations can be arbitrarily

large.
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3 General multilinear functions

We now consider general multilinear functions of the form

φ(x) =
X

t∈T

at

Y

j∈Jt

xj , (4)

defined over x ∈ [`, u], and study concave overestimators and convex underestimators of φ over [`, u]. In Section

3.1 we will focus on concave envelopes, and study cases in which the concave envelope of φ can be written as

a sum of concave envelopes of the individual terms. These results mostly follow directly from results in [6,14],

but we state them here since they are necessary in what follows. Our main results are in Section 3.2, where we

show that for bilinear functions (i.e., |Jt| ≤ 2 ∀t), the gap between the simple McCormick overestimator and

underestimator of φ is uniformly within a constant of the gap between the concave and convex envelopes of φ.

Recall that the concave and convex envelopes of φ have the following representations [17,20]:

cav[`,u][φ](x) = max
λ

8
<
:

2nX

k=1

λkφ(xk) |
2nX

k=1

λkxk = x, λ ∈ ∆2n

9
=
; (5)

vex[`,u][φ](x) = min
λ

8
<
:

2nX

k=1

λkφ(xk) |
2nX

k=1

λkxk = x, λ ∈ ∆2n

9
=
; (6)

where xk, k = 1, . . . , 2n are the vertices of [`, u].

3.1 Concave envelope of a sum of multilinear terms

The first result is an almost immediate consequence of [6] and has been explicitly proved in [14].

Theorem 3 ([14]) Let φ : H → R be as defined in (4), and assume that at > 0 for all t ∈ T . Also let

ft(x) =
Q

j∈Jt
xj for t ∈ T . Then the concave envelope of φ is given by the sum of concave envelopes of ft:

cavH [φ](x) =
X

t∈T

at cavH [ft](x) ∀x ∈ H.

This result also holds for x ∈ [`, u] as long as ` ≥ 0.

Corollary 3 Let `, u ∈ Rn satisfy 0 ≤ ` ≤ u and let φ : [`, u] → R be as defined in (4), and assume that at > 0

for all t ∈ T . Also let ft(x) =
Q

j∈Jt
xj for t ∈ T . Then the concave envelope of φ over [`, u] is given by the

sum of concave envelopes of ft:

cav[`,u][φ](x) =
X

t∈T

at cav[`,u][ft](x) ∀x ∈ [`, u].

Proof Define φ′ : H → R by

φ′(x′) = φ
`
Diag(u− `)x′ + `

´
=
X

t∈T

atft
`
Diag(u− `)x′ + `

´

=
X

t∈T

at

X

k∈Kt

a′kf ′k(x′)

where the functions f ′k have the form f ′k(x′) =
Q

j∈Jk
x′j . Also, a′k ≥ 0 since each will be a product of `j and

(uj − `j) terms and `j ≥ 0. Now, let φ′t(x′) =
P

t∈T atft
`
Diag(u− `)x′ + `

´
=
P

k∈Kt
a′kf ′k(x′) for t ∈ T .
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Applying Theorem 3 twice then yields

cavH [φ′](x′) =
X

t∈T

at

X

k∈Kt

a′k cavH [f ′k](x′) =
X

t∈T

at cavH [φ′t](x′) ∀x′ ∈ H. (7)

Next, because φ′t(x′) = ft(Diag(u− `)x′ + `) and x ∈ H if and only if (Diag(u− `)x′ + `) ∈ [`, u], it is not hard

to see that

cavH [φ′t](x′) = cav[`,u][ft](Diag(u− `)x′ + `), ∀x′ ∈ H. (8)

Now, let x ∈ [`, u] and let x′ = Diag(u − `)−1(x − `) and y′ = cavH [φ′](x′). Then there exists λ ∈ ∆2n such

that
P

k λkx̃k = x′ and
P

k λkφ′(x̃k) = y′, where x̃k, k = 1, . . . , 2n are the vertices of H. Then, observing that

xk = Diag(u− `)x̃k + `, for k = 1, . . . , 2n are the vertices of [`, u] we have

2nX

k=1

λkxk =

2nX

k=1

λk

“
Diag(u− `)x̃k + `

”
= Diag(u− `)x′ + ` = x

and so λ is feasible to the linear program (5) defining cav[`,u][φ]. Also, the objective value of λ in (5) is

2nX

k=1

λkφ(xk) =

2nX

k=1

λkφ′(x̃k) = y′ =
X

t∈T

at cavH [φ′t](x′) =
X

t∈T

at cav[`,u][ft](x)

where the first second-to-last equality follows from (7) and the last equality follows from (8). This proves

cav[`,u][φ](x) ≥
X

t∈T

ak cav[`,u][ft](x)

and completes the proof as the reverse inequality is immediate. ut

For bilinear functions, this result can be generalized to allow x ∈ [`, u] for any ` ≤ u. The arguments are

fairly standard, but for completeness we provide a proof in the appendix.

Corollary 4 Let b(x) =
P

(i,j)∈E aijxixj for x ∈ [`, u] where `, u ∈ Rn and E is a set of (i, j) pairs, and assume

aij > 0 for all (i, j) ∈ E. Then the concave envelope of b is equal to the termwise McCormick overestimator:

cav[`,u][b](x) =
X

(i,j)∈E

aij min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j} ∀x ∈ [`, u].

3.2 Approximation results for bilinear functions

In this section, we study the strength of the McCormick relaxation for bilinear functions of the form:

b(x) =
X

(i,j)∈E

aijxixj (9)

for x ∈ H where E is a subset of pairs of indices in N = {1, . . . , n}. Specifically, the McCormick overestimator

is

mcuH [b](x) = max
n X

(i,j)∈E

aijyij | (x, y) ∈ P
o

and the McCormick underestimator is

mclH [b](x) = min
n X

(i,j)∈E

aijyij | (x, y) ∈ P
o
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where P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀(i, j) ∈ E} is the polyhedron obtained

by using the McCormick inequalities to bound the bilinear terms xixj .

We are interested in the quality of the McCormick approximation as compared to the best possible, given

by the convex and concave envelopes of b. We therefore define

mcgapH [b](x) = mcuH [b](x)−mclH [b](x), and

chgapH [b](x) = cavH [b](x)− vexH [b](x).

mcgapH [b](x) is a measure of the tightness of the McCormick relaxation of b(x) at each point x ∈ H = [0, 1]n,

and likewise for chgapH [b](x). In this section, we will show that under certain conditions, mcgapH [b](x) is

uniformly close to chgapH [b](x) over x ∈ H.

We begin in Section 3.2.1 by reviewing some existing results and establishing some new results needed for

proving out main theorems. Then, in Section 3.2.2 we give our results for the case aij > 0 for all (i, j) ∈ E. In

Section 3.2.3 we present our (weaker) results for the general case. Throughout this section we assume x ∈ H.

However, all the results can be generalized to x ∈ [`, u] using arguments similar to those in the proof of Corollary

4.

We first introduce some new notation. For a graph G = (N, E), we let χ(G) be the coloring number of

G. Also, when G is associated with weights we for e ∈ E, we define w(E′) =
P

e∈E′ we for any E′ ⊆ E.

We also define E+ = {e ∈ E | we > 0}, E− = E \ E+, and for E′ ⊆ E, w+(E′) =
P

e∈E+∩E′ we and

w−(E′) =
P

e∈E−∩E′ we. We let S = {S | S ⊆ N} be the set of all subsets of N . For two sets S1, S2 ⊆ N ,

δ(S1, S2) = {e ∈ E | e has one end in S1 and one end in S2}. For any S ∈ S, we let δ(S) = δ(S, N \ S) and

γ(S) = {e ∈ E | e has both ends in S}. Finally, for i ∈ N , we let Si = {S ∈ S | i ∈ S} be the set of subsets

that contain element i.

3.2.1 Preliminaries

We first state two existing results that are required for our analysis.

Theorem 4 ([16]) Let P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀(i, j) ∈ E}. The

extreme points of P are all {0, 1/2, 1}-valued.

In [16], Theorem 4 is proved for the case that E is the set of edges of a complete graph, but the theorem is also

true when E is any subset of edges.

Theorem 5 ([12]) Consider any graph G = (V, E) having |V | even and weights we for e ∈ E. There exists a

matching M ⊆ E, with

w(M) ≥ w(E)

|V | − 1
.

The following corollary is a slight strengthening of the simple result that there exists a cut with weight at

least half the weight of all edges in the graph (see, e.g., Theorem 5.1 in [15]). It is a slight improvement on a

result in [4]. The slight improvement is important for our results and can be obtained using arguments from [9]

using Theorem 5 in place of the (weaker) bound on the size of a matching used in [4]. (See also the discussion

in [11]).

Corollary 5 Let G = (V, E) be a graph with |V | even and weights we for e ∈ E. Then there exists a cut C ⊆ E

in G having

w(C) ≥ 1

2
w(E) +

1

2(|V | − 1)
w+(E).
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Proof By Theorem 5, there exists a matching M in the graph (V, E+) with w(M) ≥ w(E+)/(|V | − 1) =

w+(E)/(|V | − 1). We construct a random cut C̃ to be defined by the edges between the sets S and N \S which

are generated as follows. For every edge e = (i, j) ∈ M , we assign i to S and j to N \ S with probability 1/2

and assign j to S and i to N \ S with probability 1/2. Thus, with probability 1, every edge in M is in the cut

C̃, but every node that was matched by an edge in M has equal probability of being in S or N \ S. For every

node i that was not matched by M , we assign i to S with probability 1/2 and to N \ S with probability 1/2.

Thus, any edge e ∈ E \M has probability 1/2 of being in the cut C̃. Therefore, the expected weight of the cut

is:

E[w(C̃)] = w(M) +
1

2

X

e∈E\M
we = w(M) +

1

2
(w(E)− w(M))

=
1

2
w(E) +

1

2
w(M) ≥ 1

2
w(E) +

w+(E)

2(|V | − 1)
.

This implies there exists a cut that achieves the value of the expected weight of this random cut. ut

This result can be strengthened further for graphs that have a small coloring number.

Lemma 2 Let G = (V, E) be a graph with χ(G) even, and weights we for e ∈ E. Then there exists cuts C+

and C− in G with

w(C+) ≥ 1

2
w(E) +

1

2(χ(G)− 1)
w+(E),

w(C−) ≤ 1

2
w(E) +

1

2(χ(G)− 1)
w−(E).

Proof We prove the existence of the cut C+; the existence of C− can be achieved by applying the C+ result

to a graph with weights w̄e = −we. Let χ = χ(G) and let S1, . . . , Sχ be a partition of V such that γ(Si) = ∅
for all i = 1, . . . , k. (I.e., these sets define a coloring of size χ.) Define a complete graph G′ with vertices

V ′ = {1, . . . , χ}, and define w̄ij = w(δ(Si, Sj)) for 1 ≤ i < j ≤ χ as the weights on the edges, E′, in G′. By

definition, w̄(E′) = w(E). Applying Corollary 5 to the graph G′, there exists a cut C′ in G′ with

w̄(C′) ≥ 1

2
w̄(E′) +

1

2(χ− 1)
w̄+(E′) =

1

2
w(E) +

1

2(χ− 1)
w+(E).

Now let C be the set of edges in E defined by C =
S

(i,j)∈C′ δ(Si, Sj). Since w(C) = w̄(C′), w+(C) = w̄+(C′)
and C is a cut in G, this proves the result. ut

Due to Theorem 4, vectors x that are {0, 1/2, 1}-valued will play an important role in our analysis. We

therefore determine mcgapH [b](x) and find bounds on cavH [b](x) and vexH [b](x) for such vectors.

Lemma 3 Let x ∈ Rn be {0, 1/2, 1}-valued and let T1 = {i ∈ N | xi = 1} and Tf = {i ∈ N | xi = 1/2}. Then

mcgapH [b](x) = 1
2

X

(i,j)∈γ(Tf )

|aij |.

Proof We first derive an expression for mcgapH [b](x) for any x ∈ H:

mcgapH [b](x) =
X

(i,j)∈E

|aij |
`
min{xi, xj} −max{xi + xj − 1, 0}´ . (10)
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Indeed,

mcgapH [b](x) = mcuH [b](x)−mclH [b](x)

=
X

(i,j)∈E+

aij min{xi, xj}+
X

(i,j)∈E−
aij max{xi + xj − 1, 0}

−
0
@ X

(i,j)∈E+

aij max{xi + xj − 1, 0}+
X

(i,j)∈E−
aij min{xi, xj}

1
A

=
X

(i,j)∈E

|aij |(min{xi, xj} −max{xi + xj − 1, 0})

Now, if (i, j) ∈ γ(T1), and hence i, j ∈ T1, then min{xi, xj} = max{xi +xj −1, 0} = 1. If (i, j) ∈ δ(T1, Tf ), then

min{xi, xj} = max{xi + xj − 1, 0} = 1/2. If (i, j) ∈ γ(Tf ), then xi = xj = 1/2 and hence min{xi, xj} = 1/2

and max{xi, xj − 1, 0} = 0. Finally, in all other cases for (i, j), min{xi, xj} = max{xi, xj − 1, 0} = 0. Thus, the

result follows from (10). ut

Lemma 4 Let x ∈ Rn be {0, 1/2, 1}-valued and let T1 = {i ∈ N | xi = 1} and Tf = {i ∈ N | xi = 1/2}. Then,

vexH [b](x) ≤ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))− 1

4(χ(G)− 1)
a+(γ(Tf )) (11)

and

cavH [b](x) ≥ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))− 1

4(χ(G)− 1)
a−(γ(Tf )). (12)

Proof First, observe that for every vertex xk of H, if we let Sk = {i | xk
i = 1} then b(xk) =

P
(i,j)∈E aijx

k
i xk

j =P
(i,j)∈γ(Sk) aij = a(γ(Sk)). Thus, we can rewrite the LP (6) defining vexH [b](x) as follows:

vexH [b](x) = min
λ∈∆2n

X

S∈S
a(γ(S))λS (13a)

s.t.
X

S∈Si

λS = xi, i = 1, . . . , n. (13b)

Now, let C = δ(U1, U2) be a maximum weight cut in the subgraph Gf of G induced by the nodes Tf , where

U1 and U2 are the node sets defining the cut (U1 ∪U2 = Tf and U1 ∩U2 = ∅). Since the coloring number of Gf

will be no larger than the coloring number of G, Lemma 2 implies

a(C) ≥ 1

2
a(γ(Tf )) +

1

2(χ(G)− 1)
a+(γ(Tf )). (14)

Now, let S1 = T1 ∪ U1 and S2 = T1 ∪ U2, and construct a solution to (13) by letting λS1 = λS2 = 1/2, and

λS = 0 otherwise. Clearly, λ ∈ ∆2n . Also, if i ∈ T1 then i ∈ S1 ∩ S2, so
P

S∈Si
λS = λS1 + λS2 = 1 = xi. If

i ∈ Tf , then i is in either S1 or S2, so
P

S∈Si
λS = 1/2 = xi. Otherwise, i is in neither S1 nor S2, and hence

(13b) is satisfied as well. Thus, because λ is one feasible solution to (13),

vexH [b](x) ≤ 1

2

`
a(γ(S1)) + a(γ(S2))

´
. (15)

Next, recalling the definitions of S1 and S2, we observe that for i = 1, 2

a(γ(Si)) = a(γ(Ui)) + a(δ(T1, Ui)) + a(γ(T1)).
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Then, observing that a(δ(T1, U1))+a(δ(T1, U2)) = a(δ(T1, Tf )) and a(γ(U1))+a(γ(U2)) = a(γ(Tf ))−a(δ(U1, U2)) =

a(γ(Tf ))− a(C) yields

a(γ(S1)) + a(γ(S2))

= 2a(γ(T1)) + a(δ(T1, Tf )) + a(γ(Tf ))− a(C)

≤ 2a(γ(T1)) + a(δ(T1, Tf )) +
1

2
a(γ(Tf ))− 1

2(χ(G)− 1)
a+(γ(Tf ))

where the inequality follows from (14). Using this in (15) yields (11).

The proof of (12) is similar except that we use Lemma 2 to show there exists a cut C− such that

a(C−) ≤ 1

2
a(γ(Tf )) +

1

2(χ(G)− 1)
a−(γ(Tf )).

This cut can then be used to construct a feasible solution to the maximization problem defining cavH [b](x) with

objective value equal to the lower bound in (12). ut

3.2.2 Bilinear functions with positive weights

In this section, we consider bilinear functions having positive weights: aij > 0 for all (i, j) ∈ E. We first state

the main result.

Theorem 6 Let G = (N, E) have a coloring of size χ, and let b(x) be a bilinear function of the form (9) with

aij > 0 for all (i, j) ∈ E. Then if χ is even,

mcgapH [b](x) ≤
„

2− 2

χ

«
chgapH [b](x) ∀x ∈ H,

and if χ is odd,

mcgapH [b](x) ≤
„

2− 2

χ + 1

«
chgapH [b](x) ∀x ∈ H.

Note that the theorem implies the result that for bipartite graphs (graphs with coloring of size two) the

McCormick envelopes provide the convex lower and upper envelopes, which was first proved in [5].

Proof We prove the case where χ is even. The case where χ is odd is an immediate consequence since if the

coloring number χ(G) of a graph is odd, then it has an even coloring of size χ(G) + 1. Let K = 2− 2
χ . We need

to prove

min
x∈H

˘
K chgapH [b](x)−mcgapH [b](x)

¯ ≥ 0. (16)

Next, because aij > 0 for all (i, j) ∈ E, Theorem 3 applies and hence cavH [b](x) = mcuH [b](x). Using this, the

definitions of chgapH [b] and mcgapH [b], and expanding the definition of mclH [b](x), the minimization problem

in (16) is equivalent to:

min
n

(K − 1) cavH [b](x)−K vexH [b](x) +
X

(i,j)∈E

aijyij

˛̨
˛ (x, y) ∈ P

o

where P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀(i, j) ∈ E} is as defined in Theorem 4.

Then, because cavH [b](x) and − vexH [b](x) are concave functions, the above problem is a concave minimization

problem over a polytope, and hence achieves its minimum at an extreme point. Theorem 4 then implies that it

is sufficient to prove

K chgapH [b](x)−mcgapH [b](x) ≥ 0 (17)
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for all {0, 1/2, 1} vectors x.

Therefore, let x be an arbitrary {0, 1/2, 1}-valued vector, and let T1 = {i ∈ N | xi = 1} and Tf = {i ∈
N | xi = 1/2}. Since aij > 0 for all (i, j) ∈ E Lemma 3 then implies

mcgapH [b](x) =
1

2

X

(i,j)∈γ(Tf )

|aij | = 1

2
a(γ(Tf )). (18)

Next, again using Theorem 3,

cavH [b](x) = mcuH [b](x) =
X

(i,j)∈E

aij min{xi, xj}

= a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

2
a(γ(Tf )),

where the last equality follows because min{xi, xj} = 1 for (i, j) ∈ γ(T1), min{xi, xj} = 1/2 for (i, j) ∈
γ(Tf ) ∪ δ(T1, Tf ), and min{xi, xj} = 0 otherwise. Combining this with (11) from Lemma 4 and (18) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x) ≥ 1

4

„
1 +

1

χ− 1

«
a(γ(Tf ))

=
χ

2(χ− 1)
mcgapH [b](x)

where in using (11) we have also used a+(γ(Tf )) = a(γ(Tf )) since here aij ≥ 0 for all (i, j). Rearranging yields

mcgapH [b](x) ≤ 2(χ− 1)

χ
chgapH [b](x) =

„
2− 2

χ− 1

«
chgapH [b](x)

and so indeed (17) holds. ut

3.2.3 General bilinear functions

In this section, we consider bilinear functions that may have both positive and negative coefficients on the

bilinear terms. We first state the main result.

Theorem 7 Let G = (N, E) have a coloring of size χ, and let b(x) be a bilinear function of the form (9) over

x ∈ H. Then if χ is even,

mcgapH [b](x) ≤ 2(χ− 1) chgapH [b](x) ∀x ∈ H, (19)

and if χ is odd,

mcgapH [b](x) ≤ 2χ chgapH [b](x) ∀x ∈ H.

Proof As in the proof of Theorem 6, we restrict attention to the case where χ is even. First, for xi, xj ∈ [0, 1]

observe that

min{xi, xj} −max{xi + xj − 1, 0} = min{xi, xj}+ min{1− xi − xj , 0}
= min{xi + min{1− xi − xj , 0}, xj + min{1− xi − xj , 0}
= min{xi, xj , 1− xi, 1− xj}.
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Thus, using this in (10) we can write mcgapH [b](x) as

mcgapH [b](x) =
X

(i,j)∈E

|aij |min{xi, xj , 1− xi, 1− xj}

= max
n X

(i,j)∈E

|aij |zij

˛̨
˛ (x, z) ∈ Q

o

where Q = {x ∈ H, z ∈ R|E| | zij + xi ≤ 1, zij + xj ≤ 1, zij ≤ xi, zij ≤ xj ,∀(i, j) ∈ E}. All the constraints of

Q are of the form zij − xi ≤ 0 or zij + xi ≤ 1, and hence have the form of the constraint matrix of a 2-SAT

problem. Thus, the results of [10] imply that all vertices of Q are {0, 1/2, 1}-valued.

Now, we need to prove

min
x∈H

˘
2(χ− 1) chgapH [b](x)−mcgapH [b](x)

¯ ≥ 0.

This minimization problem is equivalent to:

min
n

2(χ− 1) chgapH [b](x)−
X

(i,j)∈E

|aij |zij

˛̨
˛ (x, z) ∈ Q

o

Since chgapH [b](x) is a concave function of x, this is a concave minimization problem over the polyhedron Q,

and hence has an extreme point optimal solution. Thus, just as in the proof of Theorem 6, it is sufficient to

show that (19) holds for {0, 1/2, 1}-valued x.

Thus, let x be any {0, 1/2, 1}-valued vector. Using Lemma 4 to bound both vexH [b](x) and cavH [b](x) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x)

≥ 1

4(χ− 1)

“
a+(γ(Tf ))− a−(γ(Tf ))

”

=
1

4(χ− 1)

X

(i,j)∈E

|aij | = 1

2(χ− 1)
mcgapH [g](x)

by Lemma 3, completing the proof. ut

The bound in Theorem 7 is significantly weaker than Theorem 6 which provides a constant approximation

guarantee; in this case, the approximation factor can be as bad as 2n. In §4 we present numerical examples

that suggest this bound is not tight, and we leave it as an open question whether there is a constant factor

approximation. However, for bipartite graphs, in which the coloring number is 2, the result yields a constant

factor 2 which is tight.

Example 1 Consider the bipartite graph with n = 4 nodes and edge set E = {(1, 3), (1, 4), (2, 3), (2, 4)} with

weights a14 = −1 and aij = 1 otherwise, and consider the point x = (1/2, 1/2, 1/2, 1/2). Then mcgapH [b](x) =

(1/2)
P

(i,j)∈E |aij | = 2. For cavH [b](x), the optimal value sets λ{1,3} = λ{2,4} = 1/2 and achieves value

(1/2)(a13 + a24) = 1 and for vexH [b](x) the optimal value sets λ{1,4} = λ{2,3} = 1/2 and achieves the value

(1/2)(a14 + a23) = 0. Thus, 2 chgapH [b](x) = 2 = mcgapH [b](x).

Theorems 6 and 7 both provide a worst-case approximation guarantee that increases with the coloring

number of the graph underlying a bilinear function. Since graphs with small coloring number tend to be less

dense, this suggests that the McCormick relaxation gap will generally be closer to the convex hull relaxation

gap for sparser graphs. The next result provides further support for this intuition. Given a graph G = (V, E)
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and weights aij for (i, j) ∈ E, for any E′ ⊆ E we denote bE′ as the bilinear function using only the terms in E′:

bE′(x) =
X

(i,j)∈E′
aijxixj .

Theorem 8 Let E′ ⊆ E. Then, for any x ∈ H,

mcgapH [bE′ ](x)− chgapH [bE′ ](x) ≤ mcgapH [bE ](x)− chgapH [bE ](x).

Proof We will prove the equivalent inequality:

mcgapH [bE ](x)−mcgapH [bE′ ](x) ≥ chgapH [bE ](x)− chgapH [bE′ ](x). (20)

We prove the result holds for E′ = E \ {(k, l)} where (k, l) is an arbitrary edge in E, which implies the result

for any E′ ⊆ E by an inductive argument.

First suppose akl > 0. Then, mcuH [bE ](x) −mcuH [bE′ ](x) = akl max{xk + xl − 1, 0} and mclH [bE ](x) −
mclH [bE′ ](x) = akl min{xk, xl}. Hence, mcgapH [bE ](x) − mcgapH [bE′ ](x) = akl

`
max{xk + xl − 1, 0} −

min{xk, xl}
´
. Similarly, if akl < 0, then mcgapH [bE ](x) − mcgapH [bE′ ](x) = −akl

`
max{xk + xl − 1, 0} −

min{xk, xl}
´
. Thus, for any akl,

mcgapH [bE ](x)−mcgapH [bE′ ](x) = |akl| (max{xk + xl − 1, 0} −min{xk, xl}) . (21)

Now, suppose again akl > 0 and consider the linear program defining cavH [bE ](x):

cavH [bE ](x) = max
λ∈∆2n

X

S∈S
a(γE(S))λS (22a)

s.t.
X

S∈Si

λS = xi, i = 1, . . . , n (22b)

where we have the made dependence on the edge set E explicit: γE(S) = {(i, j) ∈ E | i ∈ S, j ∈ S}. Let λE

be an optimal solution to (22). Clearly, λE is also a feasible solution to the problem (22) when E′ replaces E.

Thus,

cavH [bE ](x)− cavH [bE′ ](x) ≤
X

S∈S
a(γE(S))λE

S −
X

S∈S
a(γE′(S)

”
λE

S

=
X

S∈S:(k,l)∈γE(S)

λE
S

“
a(γE(S))− a(γE′(S))

”

=
X

S∈Sk∩Sl

aklλ
E
S .

But, (22b) implies
P

S∈Sk∩Sl
λE

S ≤ xk and
P

S∈Sk∩Sl
λE

S ≤ xl and hence,

cavH [bE ](x)− cavH [bE′ ](x) ≤ akl min{xk, xl}. (23)

Now let λE be an optimal solution to the linear program defining vexH [bE ](x), which is (22) with max

replaced by min. As λE is also feasible to the LP defining vexH [bE′ ](x), we have, similar to the argument for
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cavH ,

vexH [bE ](x)− vexH [bE′ ](x) ≥
X

S∈S
a(γE(S))λE

S −
X

S∈S
a(γE′(S)

”
λE

S

=
X

S∈Sk∩Sl

aklλ
E
S .

Next, (22b) implies

xk + xl =
X

S∈Sk

λE
S +

X

S∈Sl

λE
S =

X

S∈Sk∪Sl

λE
S +

X

S∈Sk∩Sl

λE
S ≤ 1 +

X

S∈Sk∩Sl

λE
S .

Since also λE
S ≥ 0 this implies

vexH [bE ](x)− vexH [bE′ ](x) ≥
X

S∈Sk∩Sl

aklλ
E
S ≥ akl max{xk + xl − 1, 0}.

Combining this with (23) implies

chgapH [bE ](x)− chgapH [bE′ ](x)

= cavH [bE ](x)− vexH [bE ](x)−
“
cavH [bE′ ](x)− vexH [bE′ ](x)

”

≤ akl (max{xk + xl − 1, 0}+ min{xk, xl})
= mcgapH [bE ](x)−mcgapH [bE′ ](x).

The argument for akl < 0 is similar, with the only difference being that the inequality
P

S∈Sk∩Sl
λE

S ≤
min{xk, xl} is needed to bound vexH [bE ](x) − vexH [bE′ ](x) and the inequality

P
S∈Sk∩Sl

λE
S ≥ max{xk +

xl − 1, 0} is needed to bound cavH [bE ](x)− cavH [bE′ ](x).

ut

4 Numerical experiments

In this section we present some numerical examples that illustrate and complement the theory we presented in

the previous sections.

First we look at some experiments related to the approximation results for bilinear functions. We are

interested in understanding how tight our results are for both the positive coefficients case (Theorem 6) and the

mixed sign coefficients case (Theorem 7). Also, inspired by Theorem 8, we are interested in the effect the graph

density has on the quality of the McCormick relaxation compared to the convex hull relaxation.

In our first experiment, we fixed the dimension at n = 7 and randomly generated 4000 graphs with varying

density. We consider two cases for the coefficients on the bilinear terms appearing in the corresponding bilinear

function: (1) all coefficients are positive one, and (2) coefficients have mixed sign, having ‘+1’ with probability

3/4 and ‘-1’ with probability 1/4. For each random graph, we computed the maximum ratio between the

McCormick relaxation gap and the convex hull relaxation gap of the corresponding bilinear function. Specifically,

we calculated: maxx∈H {mcgapH [b](x)/ chgapH [b](x)} . This maximum was found by calculating mcgapH [b](x)

and chgapH [b](x) for all 37 {0, 1/2, 1}-valued points in H.

Table 1 displays the results summarized by coloring number. For each coloring number from 2−7, we report

the average, maximum, and mode of the maximum ratio taken over all graphs that had that coloring number.

For the mode, we also report the percentage of the graphs that achieved that quantity. These results show

that the bound of Theorem 6 is tight for coloring number up to 7. Also, the vast majority of the randomly
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Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

χ avg max mode(%) avg max mode(%)
2 1.000 1.000 1.000(100) 1.111 2.000 1.000(88.7)
3 1.487 1.500 1.500(94.9) 1.706 2.250 1.500(41.5)
4 1.500 1.500 1.500(100) 1.902 2.500 2.000(63.0)
5 1.667 1.667 1.667(99.8) 2.051 2.600 2.000(41.4)
6 1.667 1.667 1.667(100) 2.205 3.000 2.500(54.1)
7 1.750 1.750 1.750(100) 2.294 3.000 2.500(61.4)

Table 1 Maximum gap ratio for random graphs of size 7, summarized by coloring number.

generated graphs achieved this worst-case bound. In contrast, when the coefficients have mixed-sign, the bound

of Theorem 7 does not appear tight, except for the case of coloring number 2, which we have already seen is tight

in Example 1. In addition, even for χ = 2, although we did generate a graph that achieved the bound of 2, the

majority of graphs still had worst-case ratio of 1. As χ increases, the worst-case ratio, while exceeding 2, does

not appear to grow linearly with χ as suggested in Theorem 7, suggesting that a constant-factor approximation

may also be possible for bilinear functions having mixed-sign coefficients.

We also summarized our results by graph density in Table 2. The average, maximum, and mode of the

worst-case ratios is uniformly increasing as the graph density increases. These results reinforce the intuition

provided by Theorem 8 that the McCormick relaxation becomes relatively worse compared to the convex hull

relaxation for denser graphs.

Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

density avg max mode(%) avg max mode(%)
0.0–0.1 0.000 0.000 0.000(100) 0.000 0.000 0.000 (100)
0.1–0.2 1.000 1.000 1.000(100) 1.000 1.000 1.000 (100)
0.2–0.3 1.049 1.500 1.000(90.1) 1.090 2.000 1.000 (83.5)
0.3–0.4 1.365 1.500 1.500(67.6) 1.544 2.000 1.500 (55.3)
0.4–0.5 1.494 1.500 1.500(98.4) 1.758 2.250 2.000 (41.1)
0.5–0.6 1.499 1.667 1.500(99.5) 1.859 2.250 2.000 (57.5)
0.6–0.7 1.507 1.667 1.500(95.8) 1.918 2.500 2.000 (86.2)
0.7–0.8 1.542 1.667 1.500(74.9) 1.970 2.500 2.000 (63.1)
0.8–0.9 1.637 1.667 1.667(81.9) 2.032 3.000 2.000 (51.7)
0.9–1.0 1.717 1.750 1.750(60.1) 2.264 3.000 2.500 (57.5)

Table 2 Maximum gap ratio for random graphs of size 7, summarized by density.

Next, we illustrate the results of Theorems 6 and 7 graphically. Consider the following two bilinear functions

defined on x ∈ [0, 1]7, the first having all positive coefficients and the second having mixed-signs:

b1(x) =x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + x2x3 + x2x4 + x2x5 + x3x4

+ x3x5 + x4x5 + x4x6 + x5x7 + x6x7,

b2(x) =x1x2 − x1x3 + x1x4 + x1x5 + x1x6 + x2x3 − x2x4 − x2x5 + x3x4

+ x3x5 − x4x5 + x4x6 − x5x7 + x6x7.

For each of these functions, we randomly generated 5000 points uniformly in [0, 1]7 and for each

point xk calculated mcgapH [b](xk) and chgapH [b](xk). We then construct a scatter plot of the points

(mcgapH [b](xk), chgapH [b](xk)), k = 1, . . . , 5000. These plots are shown in Figure 1. Since mcgapH [b](x) ≥
chgapH [b](x) always holds, all of these points lie below the line of slope one originating at the origin. Moreover,
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Fig. 1 Scatter plots of McCormick gap vs. convex hull gap for random points in [0, 1]7 for a bilinear function having
positive coefficients (left) and mixed-sign coefficients (right).
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Fig. 2 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to the convex
hull relaxation gap for the function φ defined over [1, 2]5.

in both cases, all points generated lie above a line having smaller slope, illustrating the worst-case approximation

ratio. In fact, it was by looking at these plots that we first conjectured that such an approximation result would

hold.

We next consider multilinear functions having terms with more than two variables defined over [`, u]. We

conducted some numerical experiments to see how the convex hull relaxation compares to two weaker relaxations:

(1) the recursive McCormick relaxation, obtained by independently applying recursive McCormick to each of the

terms, and (2) the term-by-term relaxation, obtained by using the concave and convex envelopes of each of the

terms. Corollary 3 states that if ` ≥ 0 and the coefficients on all terms are positive, the concave overestimator

given by the term-by-term relaxation is equal to the concave envelope. We are interested in seeing how the

recursive McCormick and term-by-term relaxations perform more generally. As an example, we consider the

following function:

φ(x) = x1x2x3x4x5 + x1x2x3x4 + x1x3x4x5 + x2x3x5 + x1x3x5 + x4x5 + x1x2,

which has multiple terms of different sizes, all with positive coefficients. We compare the term-by-term relaxation

and recursive McCormick relaxations to the convex hull relaxation of the function over two different domains:

[1, 2]5 and [−1, 2]5. Figure 2, for the [1, 2]5 case, shows scatter plots comparing the term-by-term relaxation gap

to the convex hull relaxation gap (on the left) and the McCormick relaxation gap to the convex hull relaxation

gap (on the right) for 5000 randomly generated points in [1, 2]5. Figure 3 shows the same plots for the domain

[−1, 2]5. In both cases, the term-by-term relaxation appears significantly better than the recursive McCormick

relaxation, since in the latter case the distribution of the points is shifted significantly away from the ideal case

of the line with slope one.
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Fig. 3 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to the convex
hull relaxation gap for the function φ defined over [−1, 2]5.

The most interesting of these plots is the term-by-term scatter plot for the case of domain [1, 2]5 in Figure

2. Recall that when ` ≥ 0, Corollary 3 applies and hence we know the term-by-term upper relaxation yields

the concave envelope. However, we have no theory suggesting the overall gap should be close to the convex

hull gap. Nevertheless, the term-by-term scatter plot has the same form as the scatter plots in Figure 1 for the

bilinear case, in fact with an even tighter band, suggesting that such a result might hold. In contrast, as we

would expect based on the examples in Section 2.3, the results for the recursive McCormick relaxation do not

suggest any such bound. Furthermore, in Figure 3 with domain [−1, 2]5, Theorem 3 does not apply, and thus it

is not surprising that the term-by-term relaxation does significantly worse than the convex hull.

To further explore the strength of the term-by-term relaxation when ` ≥ 0 and all coefficients are positive,

we generated 200 random multiterm multilinear functions of dimension 6, and estimated the maximum ratio of

term-by-term gap to convex hull gap for each of these. We estimated this ratio by calculating the ratio at 50000

random points in the domain [0, 1]6 and taking the maximum of these. The largest estimate of the maximum

ratio we found was about 1.21. This experiment, along with images like Figure 2, leads us to the following

conjecture, which we have not been able to prove.

Conjecture 1 For multilinear functions with positive coefficients defined over [`, u] with ` ≥ 0, the ratio between

the term-by-term gap and the convex hull gap is uniformly bounded above by a constant.

5 Concluding remarks

We have studied the relationship between the convex hull relaxation of a multilinear function and the McCormick

relaxation, obtained by relaxing individual bilinear terms. For a single product term of possibly more than

two variables, we found a new condition when these relaxations are equivalent, but found that in general the

McCormick relaxation can be significantly larger than the convex hull relaxation. For bilinear functions, we

demonstrated that the gap between the upper and lower estimators from the McCormick relaxation is always

within a constant factor of the gap between the concave and convex envelopes. Moreover, the maximum relative

difference decreases as the coloring number of the associated graph decreases. These results, along with a result

showing that the difference in these gaps is always smaller for sparser graphs, suggest that the extra benefit from

using a relaxation stronger than the McCormick relaxation is likely to be most beneficial when the associated

graph is dense.

This work leaves some additional theoretical and computational questions open. On the theoretical side,

we believe that the approximation ratio we have provided for general bilinear functions (having both positive

and negative coefficients on the terms) is not as tight as is possible when the coloring number of the associated
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graph is larger than two. We have also conjectured that using the convex hull of every term in a multilinear

function having positive coefficients on all terms will yield an approximation with a gap that is within a constant

factor of the gap between the concave and convex envelopes. This would be a generalization of our result for

bilinear functions. On the computational side, it would be interesting to build on the ideas of [2] and use the

insights gained from this paper to devise a relaxation approach for multilinear functions that yields some of the

potential improvement in relaxation quality that the convex hull formulation yields while keeping the relaxation

size manageable.

6 Appendix

6.1 Proof of Corollary 1

We only need to prove Proj(x,y1)

`
RMC(X[0,u])

´ ⊆ conv(X[0,u]). Let (x, y1) ∈ Proj(x,y1)

`
RMC(X[0,u])

´
, y1 =`Qn

i=1 ui

´−1
y1, and Du = Diag(u). We claim that

`
D−1

u x, y1

´ ∈ Proj(x,y1) (RMC(XH)). Clearly, D−1
u x ∈ H. Let

y2, . . . , yn be such that (x, y) ∈ RMC(X[0,u]) and let yi = yi

`Qn
j=i uj

´−1
, i = 1, . . . , n. Then, it is easy to check that

(D−1
u x, y) ∈ RMC(XH). Then, because (D−1

u x, y1) ∈ Proj(x,y1) (RMC(XH)) Theorem 1 implies there exists λ ∈ ∆2n

such that
P

k λk(xk, yk) = (D−1
u x, y1) where xk, k = 1, . . . , 2n are the vertices of XH and yk = f(xk). This implies

x =
P

k λkDuxk, and y =
P

k λkf(xk)
Qn

i=1 ui. Since Duxk ∈ [0, u] and f(Duxk) = f(xk)
Qn

i=1 ui for all k this implies

(x, y) can be written as a convex combination of points in X[0,u]. ut

6.2 Proof of Lemma 1

First suppose x1 = 1. Then, because x2 ∈ [−1, 1], max{−x1− x2− 1, x1 + x2− 1} = x1 + x2− 1 = x2 and min{x1− x2 +

1,−x1 + x2 + 1} = −x1 + x2 + 1 = x2. Similarly, if x1 = −1, max{−x1 − x2 − 1, x1 + x2 − 1} = −x1 − x2 − 1 = −x2 and

min{x1 − x2 + 1,−x1 + x2 + 1} = x1 − x2 + 1 = −x2. An identical argument works if x2 ∈ {−1, 1} proving the first part

of the claim.

Now suppose x1 ∈ (−1, 1) and x2 ∈ (−1, 1). First suppose x1 + x2 > 0. Then, max{−x1 − x2 − 1, x1 + x2 − 1} =

x1 +x2−1 < x1 < x1−x2 +1 and and also max{−x1−x2−1, x1 +x2−1} = x1 +x2−1 < x2 < −x1 +x2 +1 and hence

max{−x1−x2− 1, x1 +x2− 1} < min{x1−x2 +1,−x1 + x2 +1}. If x1 +x2 ≤ 0, then max{−x1−x2− 1, x1 +x2− 1} =

−x1 − x2 − 1 < −x2 < x1 − x2 + 1 and also max{−x1 − x2 − 1, x1 + x2 − 1} = −x1 − x2 − 1 < −x1 < −x1 + x2 + 1 and

hence again max{−x1 − x2 − 1, x1 + x2 − 1} < min{x1 − x2 + 1,−x1 + x2 + 1}. ut

6.3 Proof of Corollary 4

Define b′ : H → R by

b′(x′) = φ
`
Diag(u− `)x′ + `

´
=

X

(i,j)∈E

aij

`
(ui − `i) x′i + `i

´ `
(uj − `j) x′j + `j

´

= f ′(x′) + L(x′),

where f ′(x′) =
P

(i,j)∈E aij (ui − `i) (uj − `j) x′ix
′
j is a bilinear function having positive coefficients, and L(x′) =P

(i,j)∈E aij

ˆ
`j(ui − `i)x

′
i + `i(uj − `j)x

′
j + `i`j

˜
is an affine function of x′. Thus,

cavH [b′](x′) = cavH [f ′](x′) + L(x′)

=
X

(i,j)∈E

aij (ui − `i) (uj − `j)min{x′i, x′j}+ L(x′)

where the second equality follows Theorem 3 and the last equality follows because for f(x1, x2) = x1x2, cav[0,1]2 [f ](x1, x2) =

min{x1, x2}. It is not hard to show that also

cavH [b′](x′) = cav[`,u][φ](Diag(u− `)x′ + `).
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Now, let x ∈ [`, u] and let x′ = Diag(u− `)−1(x− `) ∈ H. Then,

cav[`,u][b](x) = cavH [b′](x′)

=
X

(i,j)∈E

aij (ui − `i) (uj − `j)min{x′i, x′j}+ L(x′)

=
X

(i,j)∈E

aij min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j}

where the last equation follows because for each (i, j) ∈ E,

(ui − `i) (uj − `j)min{x′i, x′j}+ `j(ui − `i)x
′
i + `i(uj − `j)x

′
j + `i`j

= min{(uj − `j)(xi − `i), (ui − `i)(xj − `j)}+ `j(xi − `i) + `i(xj − `j) + `i`j

= min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j}.

ut
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