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ABSTRACT
Recent proposals have argued for data-centric mechanisms
that decouple data delivery from the sources of the data and
the transfer protocols. We take this idea to its logical com-
pletion and argue for enabling content distribution schemes
to name and query directly for the underlying information.
The motivation for this information-aware design is that we
see a proliferation of diverse producers of multimedia con-
tent offering varying presentation modes and significant het-
erogeneity in the operating conditions of Internet-enabled
devices that seek access to such multimedia content.

In addition to decoupling content from available sources
and transfer protocols, information-aware names, or InfoN-
ames, explicitly decouple the information from content pre-
sentation. Thus, it enhances availability and allows users to
maximally leverage sources of multimedia content offering
diverse presentation formats. Further, users and providers
benefit from having additional flexibility to dynamically adapt
content delivery depending on application and network con-
straints.

In this report, we address the first challenge to realizing
this idea - How should we name information in multimedia
content in a way that is invariant across presentation formats
and can be consistently generated/verified without relying
on a centralized authority? We leverage techniques from the
multimedia and computer vision communities, and propose
a set of algorithms for naming, and comparing InfoNames.
An extensive evaluation of the proposed schemes on a con-
trolled dataset of images and videos is presented. In addi-
tion, an ‘in-the-wild’ study with a set of videos download
from Youtube is also described.

1. INTRODUCTION
Multimedia content is now a dominant fraction of Inter-

net usage. Some of the most popular Web sites today are
video hosting services such as Hulu and YouTube. Similarly,
Asian and American access ISPs are seeing rapid growth in
Video-on-Demand (VOD) subscriptions. The goal of this
project is to design mechanisms and interfaces to enable
flexible retrieval of multimedia content.

Multimedia access today is characterized by three key trends
that point to the need for ground-up design of retrieval mech-
anisms. First, modern media players are fairly sophisticated
with cross-platform players (e.g., VLC) can read and render
audio and video in almost any format. Second, any partic-
ular media item is available from multiple hosting locations
and in many formats and resolutions. Third, there is sig-
nificant heterogeneity among users’ device (screen resolu-
tion, media capabilities) and network capabilities. Conse-
quently, users are more interested in the media than in a spe-
cific source or even format, and furthermore in dynamically
adapting these aspects to match their operating constraints.
The host-centric model of the Internet cannot support these
requirements. Even data-centric architectures [22, 21, 23]
that point out that users care more about data than where it
comes from, cannot provide such capabilities to flexibly se-
lect from alternate presentations (Section 3).

Our position is that flexible multimedia retrieval requires
mechanisms that allow users to directly name, and query
for, the underlying information. Information is a percep-
tual entity that captures the content’s defining or most sig-
nificant features. Multimedia objects that correspond to the
same source but differ in their resolutions, frame rates, and
formats carry the same information although they differ at
the bit-level. Using information-aware naming and query-
ing schemes, users can retrieve different portions of me-
dia from multiple sources in different presentation formats,
thereby increasing availability and enabling greater flexibil-
ity in adapting their multimedia transfers to meet current op-
erating conditions.

Two key mechanisms lie at the core of the design and anal-
ysis of such an information-aware framework.

1. Approaches for deriving information fingerprints or In-
foNames for multimedia content.

2. An interface for building information-aware applica-
tions that enables clients to leverage this increased flex-
ibility and availability.

In this report, we address the first question, viz., the de-
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sign and analysis of an information-based naming scheme
for multimedia content. Details about the information-aware
framework for leveraging InfoNames as well as the advan-
tages and applications of InfoNames can be found in [?].

Designing InfoNames is more complex than traditional
hash-based naming in data-centric architectures (e.g., [19]).
The key challenge lies in ensuring that InfoNames are pre-
sentation invariant and bound to the information. Like data-
centric names, InfoNames must be unique across dissimilar
content and compact relative to content size.

Our central contribution is in synthesizing ideas from the
image and video processing literature (e.g., [12, 20, 3, 5,
17]) to design InfoNames for image/video content offering
these properties (Section 5). Matching InfoNames to iden-
tify if the underlying contents are similar is also more in-
volved than simple string matching. There are inherent mi-
nor variations in InfoNames across similar content from dif-
ferent sources, resolutions, etc. Thus, we also need suitable
matching algorithms with practical parameters. We use con-
trolled datasets to explain how the parameters for the InfoN-
ame generation and matching algorithms can be selected in
practice (Section 6).

We also present a more in-depth “in-the-wild” study using
a collection of videos from YouTube. We validate that our
algorithms provide zero false positives (i.e., never mark dis-
similar content as being similar or identical) and also achieve
close-to-optimal performance in identifying similar content.

2. PRELIMINARIES AND PROPERTIES OF
INFONAMES

Given that the intention is to identify and name the ‘infor-
mation’ present in the multimedia content, the questions that
naturally arise are - how do we define and isolate the infor-
mation, when do we say that two pieces of information are
identical, how do we convert the information into a signa-
ture, what are the properties of that signature, and when do
we say that two signatures represent the same information?
In this section, we address some of these questions to set the
stage for the discussion on the design of InfoNames.

2.1 Definitions
We introduce some informal definitions for clarity. Infor-

mation refers to an abstract “perceptual entity” that is veri-
fiable and consistent, i.e, invariant across different presenta-
tion formats. The InfoName is a perceptual signature/fingerprint
that captures this Information and has certain properties. The
Content refers to the collective of the Information along with
the presentation and other ‘meta-factors’ that are rendered
by higher layer applications. The Data refers to the plain

raw bits as stored on machines, with no semantics attached
to them. E.g. suppose we have two ‘same videos’ Avatar.flv
and Avatar.avi. They are the same information but they are
not the same content, since their formats are different. Obvi-
ously they aren’t the same data either since they will differ
at the bit level. Note that InfoNames is not meant to solve
computer vision problems of identifying the same ‘objects’
or semantic notions of equivalence, but rather machine gen-
erated and verified signatures that capture and exploit per-
ceptual equivalence.

2.2 Properties of InfoNames
The requirements of InfoNames have natural analogs in

the data-centric world. The key difference is that InfoNames
additionally require “information-binding”. For complete-
ness, we state these below:

1. Information binding: For two contents C1 and C2

that have identical “information”, i.e., Information(C1)
= Information(C2), but may differ in their presentation
formats, we want InfoName(C1) = InfoName(C2).

2. Decentralized operation: Given the proliferation of
content sources and producers, we want InfoName gen-
eration and verification to be decentralized and not de-
pend on a single point-of-trust.

3. Compactness: InfoNames serve as “keys” to retrieve
content. Thus, they must be much smaller than the
actual content they represent.

4. Uniqueness: If Information(C1) 6= Information(C2),
then, InfoName(C1) 6= InfoName(C2) with high prob-
ability, since, due to the compactness requirement, the
InfoName cannot be comparable in size to the content
itself.

5. Ease of computation and checking: Given some con-
tent C, it should be computationally ‘easy’ to generate
its InfoName. Also, given an InfoName I , it should be
‘easy’ to check if I = InfoName(C).

6. Integrity and pollution resistance: If a user down-
loads some content and the InfoName matches that given
by the information producer, we want to guarantee that
the user was not served bogus/malicious content. In
other words, InfoNames should be resistant to attacks
where adversaries can generate fake content (e.g., “rick-
rolling”) with a specific InfoName.

Before we proceed to discussing how to identify informa-
tion and generate InfoNames, there are some other consider-
ations that need to be understood:

• Who generates InfoNames?: We think the naming
architecture should be agnostic to this. The InfoName
generation scheme can be used either by the original
content producer (e.g. a movie studio, a home user,
etc.), or independent content creators (e.g. distributors,
shops, etc.) or even third-party hosting services (e.g.
Youtube, Flickr, etc.)
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• What is the granularity of InfoNames?: This is an
important consideration. One could generate an ‘In-
foName’ for the whole content or have separate InfoN-
ames for various chunks of the content. This decision
affects the identification and retrieval of the content.
We provide further details of this when we discuss our
InfoName scheme.

2.3 Taxonomy of Information in Multimedia
We now get to the details of what we define as ‘identical

information’ in the specific context of images and videos.
This informal taxonomy is motivated by the following im-
portant use case scenario - suppose while a user watches a
video, the system in the background fetches one chunk from
one source, and the next from another source, based on some
conditions. The intention is that a user shouldn’t perceive
any ‘sudden difference’ in the video viewing. For example,
if the next chunk is brighter, a user might be annoyed by
the difference. However, the system can make lightweight
changes to the video display, like altering display resolution
(without altering the video), etc. We thus apply such high
level insights into user perception to concretely classify vari-
ations to solve our problem.

For images, if there is any ‘perceptual’ difference based
on the actual pixel values displayed, then they are not con-
sidered identical. In this context, if the differences are only
in format and/or resolution (provided they do not degrade the
perceptual ‘quality’ too much), they qualify as ‘identical’
information. Changes to format and resolution (size) pre-
serve the information, while changes that alter say, bright-
ness, contrast, color tinges, grayscaling, etc. are said to al-
ter the information, since they affect the pixel values that a
person sees. We consider the latter category of alterations
to have made the new image ‘similar’ to the original one,
but not ‘identical’. Some other kinds of changes like crop-
ping, rotation, shear, windowboxing/letterboxing, insets, etc.
are considered to have altered the image significantly to be
called ‘different’. Of course, images that are not perceptu-
ally same to begin with are also considered ‘different’. Note
that this definition of identity is strict enough to satisfy the
use case scenarios mooted earlier.

A video can be viewed as basically being a sequence of
images. But it has several other ‘meta-factors’ than just for-
mat and resolution. These include frame rate, aspect ratio,
bit rate, etc. Also, it has audio, and possibly, sub titles.
Moreover, ‘format’ of a video comprises of the container for-
mat for the video file as well as the codec used for data com-
pression. Ignoring the other factors for now, we can extend
the definition of image information identity to two videos by
applying that definition to every frame of the videos. But that
would work only if the two videos have the same number of
frames, which might become too restrictive. This is because

a person seeing a video will most likely not be able to dis-
cern between two frame rates. Hence, we relax the definition
by extending the ‘perceptual entity’ to a consistent matching
‘time slice’ of the videos. In other words, it is necessary
that any consistent time slice of two videos, which will be
two images, match as per the definition of image informa-
tion ‘identity’ for the two video to be considered ‘identical’.
Else, if all such time slices match at least as per the defi-
nition of image information ‘similarity’, the videos can be
considered ‘similar’. Later on, we relax this definition even
further by changing the granularity at which we operate from
a whole video to ‘chunks of information’ within the video.
We discuss details of this change in Section 5.3.

We define Metadata of a video to be its format (codec),
resolution and frame rate. We ignore bit rate, and assume
that aspect ratio is the same as the resolution’s width to height
ratio. For now, we ignore sub titles and a similar taxonomy
for audio, and they are subjects of future research. Of course,
it is also necessary that the audios in the videos are identical
and we describe what we do later in our proposed scheme.

3. STRAWMAN APPROACHES FOR GEN-
ERATING INFONAMES

The next natural question to consider is - how do we con-
vert the information into a signature? In other words, how do
we generate these InfoNames? We now discuss a few ‘nat-
ural solutions’ for naming information and highlight their
limitations.

3.1 Content creation timestamps
We can ensure uniqueness and compactness by specify-

ing when/where the content was created; e.g., timestamp
and MAC address. However, this fails the ease of checking
and decentralized requirements–we need a global database
mapping “information” to these. Further, it does not provide
information-binding because the same information produced
by two sources will be different.

3.2 Unique “filenames”
Several naming architectures extend the filename inter-

face through a heirarchy [1]. For example, we can imagine
using the IMDB title-id as an InfoName for movies. Unfor-
tunately, this requires a logically centralized entity to guar-
antee uniqueness and for verifying the name. So, cross-
producer availability of content cannot be exploited by this.
Also, such an approach would burden the content producer
to manually identify and ‘name’ the file to meet the infor-
mation binding requirement, which is nearly impossible to
achieve.
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3.3 Extending Data-Centric Names
One approach to retro-fit information-binding into data-

centric names is as follows. We normalize all content to a
baseline representation (e.g. images in 100x100 resolution
and BMP format), and use the cryptographic hash of this rep-
resentation. This appears as a promising alternative at first.
However, this notion of information-binding is at the same
time both restrictive and insufficient. We used a small im-
age dataset and ran different transforms to try this Strawman
solution using SHA-11 on the baseline (Table 1). We see
that any lossy transformation unidentifiably alters the name.
Thus, it reduces availability for clients who are flexible to
lossy formats and slight variations in content quality. Also,
this only ensures that the content is similar at the baseline
representation (i.e., weak integrity assurance).

Image Transform
Source Lossless format Lossy format Resolution Aspect

(e.g., bmp) (e.g., jpg) Ratio
Lossless (bmp)

√
× × ×

Lossy (jpg)
√

× × ×

Table 1: Evaluating the strawman extension of data-
centric naming solutions across different transforms.

3.4 Layering Information-Awareness on Data-
Centric Names

Another solution is to simply use keywords. We use a
search infrastructure (e.g., Google) to bind keywords to con-
tent, possibly using the very algorithms we describe in the
next section. Keyword searches return the matching data-
centric names. Users select one of the search results and
use data-centric retrieval. This provides limited late-binding
in that it delays committing to a specific data source, but
not to the presentation format/quality. At the same time, the
search results provided will only be as fresh/relevant as the
frequency with which the content is being indexed. Further,
Table 1 shows that data-centric names are not robust across
lossy representations, which is typical of multimedia con-
tent. Thus, this search infrastructure needs to explicitly ac-
count for all possible combinations of formats, codecs, and
encoders (e.g., different MPEG generation tools can result
in different data representation for same video quality). Fi-
nally, this does not satisfy the decentralized operation re-
quirement. Thus, the scope of applications it can enable is
limited; e.g., this would not be useful in a personal comput-
ing scenario.

The key property of data-centric names is that the name
(the cryptographic hash) is directly tied to the data that it
names. In the same vein, we believe that InfoNames should

1We could alternatively use locality sensitive hashing tech-
niques [13]. Using a domain-specific hashing algorithm only con-
firms the need for information-aware naming!

be based on approaches that tie in to the “information” that
the content represents. The above discussion shows the limi-
tations of trying to retrofit information-awareness into exist-
ing naming solutions. Rather than come up with such incre-
mental and ad hoc solutions, we want to start from first prin-
ciples and ask a fundamental question: how can we name
what we really want, the information?

4. A MULTIMEDIA/VISION APPROACH TO
INFONAMES

There exists a rich body of work in the Multimedia and
Computer Vision worlds that solve the problems of detect-
ing duplicates, copyright violations, song identification etc
[6]. Most of them assume that the content themselves are
available, but some of them extract a ‘signature’ out of the
content and compare based on that signature.

The first category includes database-based approaches for
copyright detection, wherein the scheme identifies if a given
video content ‘matches’ any in a set of existing contents in
the video database. It is believed that Youtube uses one such
scheme [9]. However, this is not applicable to our problem
due to two reasons. Firstly, we do not compare informa-
tion/content but rather InfoNames. Of course, one can argue
that the ‘information’ can be used as such for a ‘name’ while
comparing, but that will be very inefficient and unnecessary
if one wants to do the comparison remotely. E.g. if we want
to check if two images are identical, we could simply com-
pare their raw RGB pixel values. But raw pixel values cannot
qualify as a ‘name’. Similarly, for comparing two videos,
we could decode them to sequence of images and compare
them. Again, such a ‘name’ will be very clumsy and several
folds larger than the data itself. Morevoer, the intermediate
data structures that occur in such approaches where contents
are directly compared are generally too huge and detailed to
qualify as InfoNames. Secondly, these approaches are tai-
lored to adhere to a much looser definition of ‘similarity’,
since their aim is to capture any kind of transformations to
a piece of content. E.g, these schemes want to capture al-
terations like windowboxing, cropping, color changes, rota-
tions etc., and not just resolution, frame rate, etc., since the
‘object’ in such transformed contents is still the same. But
as per our taxonomy, which is stricter, such alterations are
considered to have altered the information itself.

The second category includes a number of commerical
(proprietary) and a few open-source schemes that convert the
‘perceptual entity’ in the content to a signature [5]. We ex-
plored a few such schemes as candidates [17, 16, 5] for our
InfoNames but realized that each of them has specific issues
which makes them inapplicable for our problem directly as
stand alone schemes. We discuss them in the context of im-
ages to start with.
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4.1 Spatial Moments
The first family of approaches utilizes edge histograms or

spatial moments [16] in the image to get a signature. For in-
stance, GIST [17] converts an image into a sequence of 512
floats, which is its signature. The distance between two sig-
natures is their L1-norm. But we found that it cannot discern
between a color and a grayscale image, which is bad in case
color is used to convey ‘information’ (e.g. many national
flags might appear identical in grayscale). We also learnt
that the general aim of such signature schemes is ‘object
recognition’ in terms of defining features, and not ‘percep-
tual naming’ which we want [17]. Moreover this approach
is not robust to resolution changes which can affect the spa-
tial moments in the image. Hence it fails on both uniqueness
and information binding.

4.2 Color Histograms
Another family of approaches utilizes color histograms

obtained from the image and uses that to compare. Obvi-
ously, the flaw with this is that it will not be unique enough.
E.g. consider a white-black strip will be ‘named the same
as a black-white strip. There do exist applications that use
this as one of its components. E.g. it is believed that Google
Similar Images uses a variant of one such scheme. However,
color histogram alone as an InfoName will violate unique-
ness, another key property.

4.3 Frequency Components
The last, and most important family of approaches use

the frequency components of an image signal to represent it.
Mostly, they use the Discrete Cosine Transform [10] which
converts the pixel values to frequency values. One such
scheme is [5], which is based on a DCT-based algorithm
proposed in [12]. The key idea is that the lower frequencies
represent the ‘perceptual entity’ of the image at a high-level
since the high frequencies represent fast variations in the im-
age, which the human eye is not good at capturing. This is
also the basis for the JPEG compression standard [2]. The
scheme here outputs a 64 bit number as the image’s signa-
ture. However it doesn’t directly qualify as our InfoName.
This is because it doesn’t satisfy the taxonomy as it consid-
ers all ‘similar’ images as per our definition to be ‘identi-
cal’ to the original image. Also, it is not robust enough to
discern low ‘quality’ images as it discards higher frequen-
cies. Hence this also fails on uniqueness but not as badly as
the other approaches since it can tell apart ‘different’ images
from ‘similar’ and ‘identical’ ones. Also, it satisfies all the
other properties for an InfoName fully. Hence, we decided
that this is the most promising start for an InfoName.

Figure 1: InfoName generation algorithm for images.
We scale down the image to a baseline resolution and
then convert into its YCbCr representation. Then
for each of these components, we generate compact
summaries to create the image InfoName.

5. OUR INFONAME SCHEME FOR IMAGES
AND VIDEOS

We build on existing techniques from the multimedia com-
munity and synthesize suitable algorithms to solve our prob-
lem. We then evaluate their feasibility and robustness on
real-world datasets. We acknowledge that there might be
other candidate InfoName generation algorithms; it is not
possible to exhaustively enumerate and evaluate these. Our
goal is not to discover an “optimal” InfoName. Rather, we
seek to demonstrate a practical and feasible design that sat-
isfies the properties listed out earlier. First, we discuss how
we generate InfoNames for images and then describe how
we generate InfoNames for videos.

5.1 InfoName for Images
Figure 1 gives an overview of how we generate the InfoN-
ame for an image. First, we scale the image to a baseline res-
olution of 128× 128. We chose this resolution because this
is lower than most commonly used image/video resolutions,
but high enough to allow us to discern detailed structures.
(It is square only because it is convenient to apply DCT on
square matrices; this is not strictly necessary.) In the second
step, we convert this scaled image to the YCbCr representa-
tion [8]. The Y value, the luma component, corresponds to
the image in grayscale. Cb and Cr are chroma components
that capture the blue and red distributions. (We do not need
a green component because that is linearly dependent on Y,
Cb, and Cr). The rationale for choosing the YCbCr represen-
tation instead of the more conventional RGB representation
is as follows. Doing a DCT on the R, G, and B matrices scat-
ters the high energy coefficients in the frequency domain.
Thus, we require more coefficients to capture a sufficient
amount of signal energy. But with the YCbCr representa-
tion, almost all the energy is concentrated in the first few
low frequency coefficients in the case of Cb and Cr. Hence
we can get a more compact summary for the InfoName.

Starting from the DCT coefficients FY, FCb, and FCr,
we create the InfoName with five components: (LumLow,
LumHash, LumHigh, ChromBlue, ChromRed). Intuitively,
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LumLow and LumHash provide a coarse-grained fingerprint,
while LumHigh, ChromBlue, and ChromRed capture more
fine-grained properties. We describe these below:

LumLow: We extract the lower end 9× 9 submatrix of FY
to get the LumLow component of the InfoName. The low-
frequency components capture most of the signal energy. In-
stead of a fixed 9×9 matrix, we could pick the smallest sub-
matrix that captures some fraction (say 95%) of the energy.
However, the size of such a submatrix varies significantly in
practice. This would result in variable length complicating
the match process. Later on, we will show an evaluation of
the variation of energy with the length across a large image
corpus and justify why this length is justified.

LumHash: Additionally, we use a 64-bit summarization of
LumLow [12]. We start with LumLow and get the rank-
ordered median of its coefficients. Then, we “quantize” each
coefficient to 0 or 1 indicating whether it is higher or lower
than the median. (We need not explicitly add this field be-
cause it can be computed from LumLow. We add it because
it provides a simple check to speed up the matching process.)

LumHigh: However, discarding the higher frequency com-
ponents of FY loses the ability to distinguish high and low
quality images. Thus, we use LumHigh to summarize the
remaining coefficients of FY. We do this by computing the
sum of the absolute values of the lower left, lower right, and
upper right square submatrices of FY.

ChromBlue and ChromRed: These are the lower end 3×3
submatrices of the FCb and FCr. We choose a smaller slice
for these (compared to LumLow) because we saw that most
of the signal energy in these lies in the first 2-3 frequencies.

5.2 Matching Image InfoNames
Figure 2 shows how we match two image InfoNames. As

discussed earlier, LumHash lets us immediately distinguish
two different images. If two InfoNames’ LumHashes do not
match, the images are likely very different. We compute the
Hamming distance between the two 64-bit values and check
if it exceeds a threshold.

If the LumHash fields match, we match the other compo-
nents. Each of these can be treated as a vector. Thus, we
use the L1-norm of the difference between two vectors as
the distance metric. We use component-wise thresholds for
each of these L1-norm differences to check if the two InfoN-
ames match. However, we check the DC coefficient (zero-th
frequency) of LumLow separately. (The DC coefficients are
typically much larger than the other coefficients and hence
can skew the L1-norm computation.) We currently omit the
DC component of ChromBlue and ChromRed while match-
ing, because this does not add much value in terms of dis-

Figure 2: Matching two image InfoNames

tinguishing images. However, from a completeness perspec-
tive (and for better integrity), one can check these two for a
match too.

If these differences are small (based on some preset thresh-
olds), we declare that the images are identical; otherwise,
we classify them as being similar. We explain our thresh-
olds later during the evaluation.

5.3 InfoName for Video
Next, we discuss how we can extend the image InfoName

to video content. A video can essentially be viewed as a se-
quence of images or frames. The naive solution would be
to simply concatenate InfoName for each frame and use it
as the video InfoName. This naive solution has two draw-
backs. Firstly, the InfoName becomes very large, possibly
comparable to the size of the video itself, thus, violating the
compactness requirement. Secondly, image level processing
and generation of the InfoName for each frame is compu-
tationally expensive, thus violating the ease of computation
requirement.

Also, it is well known that videos have significant redun-
dancy across frames, i.e., successive frames do not carry
much “new” information. This is exploited in video en-
coding schemes like MPEG [4]. Thus, a natural next step
is to exploit this temporal redundancy for the video InfoN-
ame. One could use a sampling-based approach, e.g., the
3-D DCT scheme proposed by Sankur et al [12] determinis-
tically samples 1-in-k frames and applies a low-pass filter on
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them. However, these approaches are inherently sensitive to
minor variations in timing and frame rates.

The alternative is to choose ‘distinct’ frames, logically
‘chunk’ the video using these as boundary markers, and pro-
cess only this subset. Similar to robust data-aware chunk-
ing [14, 18], we believe that chunking should be information-
aware. That is, rather than imposing artificial chunking bound-
aries (e.g., bytes or time durations), we want the boundaries
to be derived from the information itself. Such information-
aware chunking will be robust to time-shifts (e.g., credits
missing), minor edits, and other effects (e.g., embedded con-
tent, mashups).

There is a rich literature on scene/shot detection [11] that
can serve this purpose. Basically, these identify keyframes,
where the image changes significantly (measured in terms
of a suitable feature). One of the most common features
is the color histogram [15]. However, we found that this
has two drawbacks. Firstly, it generates inconsistent chunk
boundaries across many tranforms (e.g., format, resolution
and quality changes). Secondly, it requires expensive per-
frame processing, which extremely slow for high-resolution
videos.

In order to obtain consistent chunk boundaries, we need
to choose image features that are invariant across common
transforms. Thus, we consider two ‘representative’ features
of the image InfoName itself - LumLow and LumHash as
candidates. (Recall that LumHigh, ChromBlue, and Chrom-
Red only capture fine-grained variations.) We analyzed how
these features varied across frames within a video for a con-
trolled dataset. We realized that LumHash was too sensitive
to tranforms and also created keyframes even when scenes
did not change. That is, we could not choose an appropri-
ate threshold on LumHash for generating consistent chunk
boundaries. In contrast, we found that choosing chunk bound-
aries by calculating the variation in the DC (zero frequency)
component of LumLow yielded more consistent boundaries
across transforms. We compute the relative distance be-
tween two successive frames i and i + 1 thus:

DistSeq(i) =
|LumLow[0]i+1 − LumLow[0]i|

min(LumLow[0]i+1, LumLow[0]i)

and check if this value crosses a threshold ChunkThresh .
(We take the relative distance since it is more meaningful
than the absolute value.) Note that we can get LumLow[0]
directly from the YCbCr representation–this is simply the
amplitude of the signal; we do not need to compute the en-
tire per-frame DCTs. Hence it is a very ‘lightweight’ feature.
As an illustration, Figure ?? plots the DistSeq of a video and
a transform of its, where the format is altered.

Additionally, in the chunking process, we impose a mini-
mum chunk size of 0.5 seconds. This ensures that the chunk

Figure 3: InfoName generation for videos. This builds on
the image InfoName algorithm. We start with the YCbCr
representation for each frame and chunk the video. Then
for each chunk, we compute the image InfoNames of the
start and end frames. We keep a summary of the varia-
tion within this chunk for integrity checks.

sizes are practical, i.e., the query/lookup overhead are low
compared to the time to transfer the chunk. In doing so, we
tradeoff a slight decrease in availability, e.g., neighboring
boundaries might become ambiguous. In the next section,
we explain our choice of ChunkThresh and also show the
distribution of chunk sizes in a large real-world set of videos.

Figure 3 summarizes how we generate InfoNames for a
video. We start with the YCbCr representation for each
frame. Then, we detect chunk boundaries using the Dist-
Seq values. Then for each chunk, we compute the image
InfoName of its first and last frames. Additionally, we in-
clude a compact summary of the other frames within this
chunk.2 Thus, the InfoName for each chunk has three com-
ponents: Istart , Iend , and ChunkSummary . The last field
serves as an additional integrity check in adversarial settings;
e.g., inserting bogus frames within the chunk or randomly
dropping some frames (see Section 6.5). For some appli-
cation scenarios in Section ??, we can ignore this compo-
nent; e.g., synchronizing trusted personal devices. We can
leverage any lightweight image InfoName feature to serve
this purpose. Again, the candidates are the DC of LumLow
and the LumHash. We evaluated both features on a con-
trolled video data set to determine which would be better.
Our current algorithm uses the LumHashes of each frame in
the chunk. Later on, while discussing the evaluation of these
algorithms, we explain why we picked this. We also include
two auxiliary fields: T , the duration AH , the InfoName for
the audio track (see Section 5.5). These serve as additional
integrity checks and also help speed up the matching process
described next.
2This makes the InfoName proportional to the video length. Note,
however, that the InfoNames are the same size for videos with the
same duration and frame rate.
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Figure 4: Matching two video InfoNames

5.4 Matching video InfoNames:
Figure 4 describes how we match two video InfoNames.

First, we mark two chunks as different if either the time dif-
ference is too high or the audio InfoNames do not match. In
practice, we want the time difference threshold to be much
smaller than the minimum chunk size; we currently set it to
0.25 seconds. Then, we run the image InfoName match al-
gorithm on the start and end frames. If these match (either
similar/identical), we proceed to the next step. We next de-
scribe how we match the sequence of LumHashes values in
the InfoName.

Now, we need to match the sequences of LumHashes. We
use the following heuristic. The high-level idea is to map
points from the longer sequence into the shorter sequence.
Consider two sequences, |S1| = l1, and |S2| = l2, with
l1 > l2. We map the ith index in S1 to a very small win-
dow around the j = i ∗ l2

l1
-th index in S2. The window

basically provides some tolerance while matching videos of
different frame rates; we currently set it at 3. We take the
pairwise Hamming distance between that LumHash in S1

to each LumHash of S2 in the window, and take the min-
imum among these. Repeating this for every LumHash in
S1, we get a sequence D of Hamming distances. If the se-
quences are the same length, we do a one-to-one mapping,
rather than use a tolerance window to get D. The idea is
that if the videos do indeed have identical information, these
distances should all be low. Hence, we check if the maxi-
mum value across these, the MaxLumHash, is greater than a

threshold.

5.5 InfoName for Audio
To create InfoNames for audio content, we currently lever-

age an off-the-shelf fingerprinting algorithm [3]. This scheme
first normalizes the audio data into a common format (e.g.,
mono, 8000Hz sampled) and generates the frequency do-
main representation for each frame (roughly 1 sec) of au-
dio. The frequency spectrum for each frame is split into
Bark bands (related to human hearing) and a linear regres-
sion fit is computed for the power spectra of each band. The
coefficients in the linear regressions for the various bands
for different audio frames (per second) are packed into a
424-byte fingerprint for each audio chunk. Our experiments
with a personal music collection showed that this fingerprint
was robust across different types of transforms (e.g., format,
quality) (not shown).

The only issue here is ensuring that the audio chunk bound-
aries coincide with the video chunk boundaries, when we
compute the AH component of the video InfoName. Note
that this is necessary only in a streaming context. For bulk-
transfer applications, we can download the video and audio
tracks separately, and merge them during playback.

6. EVALUATING INFONAME ALGORITHMS
Here, we present a set of experiments designed to config-

ure and evaluate the InfoNames. Also, a measurement study
is done on videos collected from the wild.

6.1 Configuring Image InfoNames
First, we address the following question:

Can we configure suitable thresholds to distinguish identi-
cal, similar, and different images?

Ideally, we want a scheme with zero false positives (i.e.,
never identifies two distinct contents as being similar) and
zero false negatives (i.e., may mark two images that are sim-
ilar as different). In practice though, this might not always
be possible. Thus it might be okay to suffer a smal loss in
availability (increase false negatives) in favor of guarantee-
ing correctness (no false positives).

For this study, we used the Univ. of Washington image
dataset [7]. This contains roughly 150 images with diverse
real-world scenes (e.g., nature, people, events, plants etc.)
in JPEG format. For each image, we applied the following
transforms: (1) changing format (to BMP,PNG), (2) chang-
ing resolution (scaled to one-third), (3) changing the aspect
ratio (converting to 1:1), (4) increasing brightness, (5) alter-
ing the color by increasing the red-component, (6) increas-
ing contrast, and (6) converting the image to grayscale. We
consider format, resolution and aspect ratio changes as iden-
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tity - preserving transforms, and the remaining as similarity
- preserving transforms.
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Figure 5: Comparing the Hamming distances of the
LumHash field across transformed versions of images
and distinct images

Our first goal is to determine the threshold for LumHash
to distinguish completely different images. Figure 5(a) plots
the Hamming distances of the LumHash across transformed
versions of the images. Figure 5(b) does the same for every
pair of different images, taking the minimum across all other
images. We can visually verify a clear boundary separating
the transformed versions from the different images. We pick
ThreshLumHash = 11. This minimizes the false negative
rate (i.e., maximizes availability) while giving a zero false
positive rate. This ensures that we can check if two images
are different or similar/identical. Next, we proceed to more
fine-grained classification of similar vs. identical images.

Next, we want to pick a set of thresholds across the re-
maining InfoName components to differentiate similar vs.
identical images. The LumLow0, LumLow, ChromBlue and
ChromRed components are the features useful for this and
they constitute the feature vector for the threshold estimation
process. Figure 6 shows the plots of the features for the vari-
ous transforms mentioned. The LumHigh component is used
for integrity checks, as explained later. Note that the goal
for the threshold estimation algorithm is to minimize false
negatives (i.e., classifying a identity-preserving transform as
similar), subject to zero false positives (i.e., classifying a
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Figure 6: Finer-grained components of the image InfoN-
ame that help distinguish between similar and identical
images. For our discussion, we treat format, resolution,
and aspect ratio changes as identity-preserving and the
remaining as only similarity-preserving.
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similarity transform as identical). We employed an iterative
exhaustive search on the four dimensional search space of
feature vector with appropriate lower bounds (zero) and up-
per bounds (the maximum value on each individual feature).
At each point, the false positive and false negative rates were
computed. Surprisingly, this process yielded a significantly
large ‘perfect’ solution region, i.e., a space where the false
positive and false negative rates were both zero. Hence,
the usual technique of subset division and cross-validation
across the subsets doesn’t make sense here. We thus, picked
a point in the approximate center of this perfect solution re-
gion, and the specific threshold are - ThreshLumLow0 =
0.06, ThreshLumLow = 45, and ThreshChromBlue =
ThreshChromRed = 15.

Validation: We also validated our choice of thresholds on a
completely different set of 250 images from the same corpus.
We apply the same transforms as before and used the above
thresholds in the matching algorithm. The false-positive rate
was zero (i.e., dissimilar images were clearly marked as such),
and the false-negative rate was 1.3%.

6.2 Variation of Energy Captured
Next, we ascertain if the length chosen for LumLow is

justified. For this, we analyze the variation of the captured
signal energy. The signal energy is defined as the squared
magnitude the frequency vector (the full DCT of the image).
The idea is that, the more signal energy we capture, the more
integrity we have in the name. A smaller LumLow submatrix
captures lower energy. The larger the LumLow, the greater
will be the strictness of the match, improving the accuracy.
But this also makes the InfoName less compact. Moreover,
LumHigh summarizes the higher frequencies, which means
that too many terms in LumLow is perhaps not that useful.
To capture this tradeoff, we plot the fraction of signal energy
captured against the length of the LumLow matrix, based on
the same image data set as before. We also plot the fractional
energy captured per coefficient to reflect the ‘usefulness’ of
each coefficient. Note that the size of LumLow increases
quadratically with length. Figure 7 shows these two graphs.

The plot shows that roughly 80% of the signal energy re-
sides in the DC coefficient alone. Subsequently, it increases
slowly with the length. The energy per coefficient drops
drastically and then flattens with a long tail. For our cho-
sen length of 9, the energy per coefficient is slightly above
1% and the fraction of signal energy captured is about 89%.
Thus, our chosen length seems to be a reasonable operating
point, since, beyond this, more coefficients do not provide
much utility - the curve reaches 90% only at length 14, with
energy per coefficient at 0.4%. However, it might also be
okay to choose a lower length, say, 4 or 5, which happen to
be at the ‘knee of the curve’. This would make the InfoName
more compact, but it might also reduce the accuracy of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

F
ra

ct
io

n 
of

 S
ig

na
l E

ne
rg

y 
C

ap
tu

re
d

Length of LumLow Matrix

Fraction of Signal Energy Captured Vs Length of LumLow Matrix

Fraction of Energy
Fraction of Energy Per Coefficient

Figure 7: Variation of captured signal energy with length
of LumLow matrix

match, though it is tricky to quantify this. We leave further
analysis of this for future work.

6.3 Video InfoNames: Controlled DataSet
We use a controlled dataset of 50 videos (trailers from

YouTube) and apply two transforms (changing format and
bitrate). Using this setup, we answer the following ques-
tions:

• What is a suitable threshold for the chunk boundary
detection?
• Is our chunking mechanism consistent across different

transforms?

Threshold Mean chunk size 25%le match rate
0.2 3.1 0.90
0.5 5.9 0.82
1.0 10 0.75

Table 2: Tradeoffs in chunking threshold

Selecting the Chunking Threshold: There are three key
factors in choosing a suitable threshold for determining chunk
boundaries: chunk size, InfoName generation time, and the
effective match rate. Smaller chunks provide higher match
rates in detecting the same content across transforms, but in-
crease generation time as we need to process more frames
to generate their image InfoNames. Larger chunks have low
generation time, but are more likely to result in misses if
there are slight variations within the chunk. At the same
time, we do not want the chunk size to be too small, as the
query/lookup overhead per-chunk will become impractical
for applications. Table 2 shows three candidate thresholds
for the ChunkThresh from Section 5. We pick ChunkThresh =
0.5 to balance this tradeoff. In the next section, we confirm
that this choice yields practical chunk sizes on a larger real-
world dataset.

Are chunks consistent? For each video, we measure the
match ratio in terms of the number of chunks and total du-
ration of match between the source and tranformed version.
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For brevity, we only show the results with the intra-chunk
MaxLumHash check for integrity disabled because it had
a negligible effect on the match rates in the controlled set-
ting. Here, we count only identical matches (i.e., the last
row in Table 3). Figure 8(a) shows the CDF of the match
ratio when we change the presentation format (from flv to
avi). We see that format changes have minimal impact; the
match rate is ≥ 95% for more than 95% of the videos, both
in terms of time and number of chunks. Similarly, in Fig-
ure 8(b), the match rates exceed 80% (time and # chunks),
more than 80% of the videos for the quality change case.
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Figure 8: Distribution of match ratio (time/# chunks)
w.r.t transformed versions of the video

For completeness, we give a breakdown across different
scenarios that can occur in the video matching process in
Table 3. At a high-level, there are three categories where
two chunks can be different, similar, or identical. They can
can be different if either the time length or image matches
for the start/end frames fail. We mark two chunks as similar
if the image matches for one of start/end pair marks them as
similar (refer Figure 4). If we relax the notion of match from
identical to identical or similar, we get a marginal (7%) im-
provement in the match rate for the bitrate change case. In-
terestingly, the dominant sources of misses is when the start
and end frames are marked as different. Intrigued by this,
we analyzed the specific frames where this occurred. We
noticed that many of the LumLow) values are quite close to
0. (This typically occurs for monochromatic images; e.g.,
blank screens.) In this case, the LumHash becomes less sta-

ble and the Hamming distances between similar frames be-
comes high. In fact, the original proposal for LumHash [12]
also considers this as a corner case of this quantization pro-
cedure. We believe that it is easy to treat this effect as a
special case, but leave it for future work.

Category Result Bitrate Format
Time difference Different 0.012 0.004
Start/End frames differ Different 0.052 0.013
Start/End similar Similar 0.008 0.004
Start/End identical/similar Similar 0.076 0.001
Start/End identical Identical 0.848 0.981

Table 3: Breakdown of the different categories (in terms
of chunk match ratio) in the video InfoName matching
algorithm using the controlled dataset.

To further understand how chunking affects the match rate,
we disable chunking and do a per-frame match. We found
that the chunk-level and frame-level match ratios are very
close (less than 0.5% difference in total match rate). This
augurs well for our measurement study in the next section.
That dataset is much larger and running the frame-level anal-
ysis is expensive, especially for high-resolution videos. Be-
cause the chunk-level match rates closely follow the frame-
level match rates, we are not biasing our content similarity
estimates because of chunking.

6.4 Video InfoNames: Measurement Study
So far, we evaluated our algorithms on controlled datasets.

Next, we analyze how our video InfoName algorithm per-
forms “in-the-wild”. We start with a collection of 80 distinct
URLs of movie trailers from YouTube. For each URL, we
download the video it serves and the top-20 related videos
listed on this page. Our goal is to see if there is reasonable
overlap in similar/identical content among related videos.
This gives a rough bound on the availability of this content–
we are ignoring other versions of the video and its segments
within Youtube (that did not appear in the related list) and
on other video hosting services. As in our previous setup,
we only report the numbers with the MaxLumHash check
disabled for brevity since it did not affect the results signifi-
cantly.

Are the observed chunk sizes practical and useful? Fig-
ure 9 shows the distribution of the chunk sizes, measured in
terms of seconds across the different videos in the YouTube
dataset using ChunkThresh = 0.5. We see that the median
chunk duration is 2 seconds and the 90%ile value is around
10 seconds. Assuming a streaming rate of 400Kbps (typical
low quality stream in YouTube), these translate to 100KB
and 500KB respectively. As a point of comparison, the typi-
cal chunk sizes recommended for data-centric applications is
128-512KB [], to amortize per-chunk overheads. This result
confirms that chunk sizes in an information-centric setting
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are practical for common application contexts.
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Figure 9: Observed distribution of chunk sizes. We mea-
sure chunk size in terms of time to normalize across dif-
ferent resolutions and bitrates.
Detecting identical/similar content: Next, we look at how
much repeated content we find in our dataset. For this, we
compute pair-wise chunk matches within the videos down-
loaded from the same URL. For each chunk, we count the
number of other chunks that match it (either identical or sim-
ilar). Figure 10 shows the distribution of number of matches
per chunk, for identical, similar, and identical+similar matches.
We notice that relaxing the definition to include similarity
matches boosts the match ratio. (Unfortunately, we do not
have ground truth to verify if these were different versions
of the same content.) We also see significant diversity in the
distribution; many of the chunks have zero matching chunks,
while a few have more than 10 matches. We noticed that
some URLS had high-levels of content similarity, while oth-
ers had close to zero similar content in the related videos.
One possible avenue for future work is to correlate the match
rates with content popularity; we hypothesize that the match
rates will be better if we target popular content.
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Comparison to data-centric naming: A natural question is
if the overlap identified using InfoNames would have been
detected by data-centric schemes. We compare the pair-wise
chunk match ratio from the above analysis to a data-centric
naming solution []. We show this result for a subset of 20
URLs from the larger dataset in Figure 11. Each point on
the x-axis represents one such URL. For each URL, we sum-

marize the distribution of the number of identical chunks
detected using InfoNames and data-centric names. In the
InfoNames case, we restrict to identical matches for a fair
comparison. We use a box-and-whiskers plot to summarize
this match distribution: each box shows the median, 25%ile,
and 75%ile of the number of identical chunks found, and
the whiskers show the complete distribution (excluding out-
liers). The plot also marks the outliers in each case. As
discussed earlier, many URLs have a median match rate of
zero both in the InfoNames and data-centric case.

We make two main observations. First, InfoNames is strictly
better than the data-centric approach in each URL. (We con-
firmed this for the remaining 60 URLs as well but do not
show this for brevity.) Second, in many cases, the content
overlap can only be exploited using InfoNames. That is, the
median value for the data-centric is zero, but much higher
for the InfoNames case.
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Figure 11: Comparing chunk match ratios of data-
centric and information-centric naming mechanisms.

6.5 InfoName Integrity
Next, we study the robustness of our image and video In-

foNames against a spectrum of integrity attacks and explain
if/how the specific components of the InfoName can guard
against these. A rigorous understanding of information in-
tegrity is outside the scope of the paper; we use these pre-
liminary results to represent the kinds of integrity attacks we
expect in practice.

Images: Table 4 summarizes the different types of integrity
checks we evaluate. Note that these are quality attacks; the
altered versions of the images are still similar to the source
image. (If it is substantially different, then LumHash com-
ponent will detect the change.) Our current set of InfoN-
ame features protect against inset, quantization, and resize
attacks. Our features/thresholds do not detect more sub-
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Attack Description Protection?
Inset embedding bogus con-

tent into image
LumLow changes

Quantization making quality really
poor; e.g., large pixels

ChromBlue, ChromRed change

Resize rescale image and
blow it up

LumHigh changes

Sharpness making pictures hazy none
Subtitles adding random subti-

tles at base
none

Table 4: Different types of integrity attacks against the
image InfoName

tle changes: e.g, subtitles or transforms that make the im-
age hazy. We believe that the types of attacks can be cor-
rected/compensated using existing image restoration tech-
niques.

Videos: Since our video InfoName uses the image InfoN-
ame for the start/end frames, it inherits the robustness and
integrity properties described above. The only concern then
is with respect to integrity of frames within the chunk. We
consider three types of integrity attacks: (1) frame insertion:
a embedding bogus frames (e.g., advertisements), (2) frame
replay: denying service by repeating the same start/end frame,
and (3) frame permutation: disturbing user experience ran-
domly swapping frames.

Figure 12 shows the effectiveness of the MaxLumHash
in this context. We compare the MaxLumHash observed
across transformed versions (Figure 12(a)) with that observed
in the above integrity attacks (Figure 12(b)). As the plot
shows, it is feasible to use a threshold to distinguish between
the two. E.g, a threshold of 8 gives an effective false nega-
tive rate of 17% and ‘false positive rate’ of 17% too. How-
ever, most of the ‘false positive’ cases (where the attacks’
MaxLumHash is near zero) in Figure 12(b) arise from the
replay/permutation attacks. We discovered that in these in-
stances the video itself had multiple instances of the same
frame repeated over the chunk. For example, these chunks
had multiple blank screen or MPAA rating notice frames.
Thus, replay or permutations of the frames effectively re-
sults in the same content, and are not really attacks. These
can be handled as special cases but we leave it for future re-
search.

In contrast, we found that the other candidate for the fea-
ture ChunkSummary , viz., LumLow0 is not suited for this
purpose. The match algorithm for HashSeq can be extended
to this sequence of LumLow0 values. After the mapping
stage, we can think of taking the Cosine Similarity Index
(CSI) across the two equal length ‘vectors’ of frequencies.
Ideally, for transforms, the CSI should be close to 1, while
for integrity attacks, it should be close to 0. Figure 13 shows
the actual plot for a set of video chunks, across their attacked
versions. It shows that the points are all very close to 1. This
shows that this feature is not viable as ChunkSummary for
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Figure 12: Using the LumHash sequence as an integrity
check for videos

integrity purposes. Further analysis can be done with differ-
ent metrics and features for ChunkSummary. But we leave a
more comprehensive analysis of the integrity aspects of In-
foNames as a subject of future research.
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tacked versions of chunks shows the inefficacy of Lum-
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