

Computer
Sciences
Department

The Design, Modeling, and Evaluation of the Relax Architectural
Framework

Marc de Kruijf
Shuou Nomura
Karthikeyan Sankaralingam

Technical Report #1672

April 2010

The Design, Modeling, and Evaluation of the Relax Architectural
Framework

Marc de Kruijf, Shuou Nomura, Karthikeyan Sankaralingam

Vertical Research Group
University of Wisconsin – Madison

{dekruijf, nomura, karu}@cs.wisc.edu

Abstract

As transistor technology scales ever further, hardware reliability is becoming harder to manage. The
effects of soft errors, variability, wear-out, and yield are intensifying to the point where it becomes dif-
ficult to harness the benefits of deeper scaling without mechanisms for hardware fault detection and
correction. We observe that the combination of emerging applications and emerging many-core ar-
chitectures makes software recovery a viable and interesting alternative to traditional, hardware-based
fault recovery. Emerging applications tend to havefew I/O and memory side-effects, which limits the
amount of information that needs checkpointing, and they allowdiscarding individual sub-computations
with typically minimal qualitative impact. Software recovery can harness these properties in ways that
hardware recovery cannot. Additionally, emerging many-core architectures comprised of many simple,
in-order cores pay heavily in terms of power and area for hardware checkpointing resources. Software
recovery can be more efficient while it simultaneously simplifies hardware design complexity.

In this paper, we describe Relax, an architectural framework for software recovery of hardware faults.
We describe Relax’s language, compiler, ISA, and hardware support, develop analytical models to project
performance, and evaluate an implementation of the framework on the compute kernels of seven emerg-
ing applications. Applying Relax to counter the effects of process variation, we find that Relax can
enable a 20% energy efficiency improvement for more than 80% of an application’s execution with only
minimal source code changes.

1 Introduction

As CMOS technology scales, individual transistor components will soon consist of only a handful of atoms.

At these sizes, transistors are extremely difficult to control in terms of their individual power and perfor-

mance characteristics, their susceptibility to soft errors caused by particle strikes, the rate at which their

performance degrades over time, and their manufacturability – concerns commonly referred to asvariabil-

ity, soft errors, wear-out, andyield, respectively. Already, the illusion that hardware is perfect is becoming

hard to maintain at the VLSI circuit design, CAD, and manufacturing layers. Moreover, opportunities for

energy efficiency are lost due to the conservative voltage and frequency assumptions necessary to overcome

unpredictability.

1

This trend towards increasingly unreliable hardware has led to an abundance of work on hardware fault

detection [19, 22, 24, 30, 33] and recovery [3, 7, 29, 35]. Additionally, researchers have explored architec-

tural pruning [23] and timing speculation [10, 12, 13] as ways to mitigate chip design and manufacturing

constraints. However, in all cases these proposals have focused on conventional applications running on

conventional architectures, with a typical separation of hardware and software concerns.

In this paper, we observe two complementary trends in emerging applications and emerging architectures

that favor a new overall architectural vision: hardware faults recovered in software. Below, we explain these

trends, articulate the challenges in designing an architecture with software recovery, and finally outline the

design, modeling, and evaluation of our proposed framework, Relax.

Emerging applications – applications that continue to drive increases in chip performance – include

computer vision, data mining, search, media processing, and data-intensive scientific applications. Many of

these applications have two distinct characteristics that make them interesting from a reliability perspective.

First, and a key observation unique to this work, is that many havefew memory side-effectsat the core

of their computation. In particular, state-modifying I/O operations are rare and memory operations are

primarily loads, because the compute regions of these applications perform reductions over large amounts

of data. Second, for many emerging applications, a perfect answer is not attainable due to the inherent

computational complexity of the problem and/or noisy input data. Therefore, they employ approximation

techniques to maximize the qualitative “usefulness” of their output. This suggests that these applications

might beerror tolerant, which has been observed in prior work as well [5, 9, 20, 21, 39]. In this paper, we

specifically explore the phenomenon that the application candiscardcomputations in the event of an error.

The concurrent architecture trend is that massively multi-core architectures are emerging to meet the

computational demands of emerging applications [11, 14, 17]. These architectures often employ simple, in-

order cores to maximize throughput and energy efficiency with little or no support for speculative execution

or buffering. Hence, the paradigm that hardware misspeculation-recovery mechanisms can be repurposed for

error recovery does not apply for these architectures. The valuable chip real estate that would otherwise be

devoted to hardware recovery resources could be better spent elsewhere if software recovery were efficient.

Overall, the combination of limited side-effects and error tolerance that exists in large portions of emerg-

ing applications renders hardware recovery inflexible, unnecessarily conservative, and too expensive for

emerging many-core architectures. Figure 1 shows the evolutionary path to software recovery considering

2

Figure 1: The evolution of hardware, architecture, and applications in the context of Relax.

these trends in hardware, architecture, and applications. Historically, traditional applications running on

traditional superscalar processor architectures built with perfect CMOS devices required no recovery (Fig-

ure 1(a)). Even with imperfect CMOS, these applications still work best utilizing hardware recovery when

running on traditional processor architectures (Figure 1(b)). However, with emerging applications running

on emerging many-core architectures, hardware recovery introduces the inefficiencies we have described

(Figure 1(c)). In the future, while hardware substrates will be unreliable, we require mechanisms that pro-

vide flexibility to software and keep the architecture simple. An architecture that exposes hardware errors

to allow software recovery enables synergy between applications and architectures as shown in Figure 1(d).

The design of a system architecture that allows software recovery of hardware faults involves many

important questions and challenges. The first and most obvious question is whether changes to the ISA are

necessary. To answer this question, we refer to prior studies that show application tolerance to arbitrary

instruction-level errors is very poor [5, 9, 21, 20, 39]. Operations relating to control flow and memory

accesses are failure prone and constitute a large percentage of application operations. For an architecture

to allow reasonably fine-grained software recovery without ISA changes, it would be necessary for the

hardware to somehow distinguish these “critical” operations from the “non-critical” operations as it executes

code. To date, no one has proposed an efficient way to do this. Hence, ISA support appears necessary.

The next logical question concerns what form ISA support should take. Software recovery of hard-

ware faults has been proposed before in the context of software detection, using compiler-automated triple-

modular redundancy (TMR) [7]. TMR makes sense when the overhead of detection is already very high, as

is the case with comprehensive software detection. However, it is expensive and does not allow the applica-

tion to exploit error tolerance. A more efficient solution that allows an application to choose its own form

of recovery is closer to ideal.

Yet still more questions follow: How might the application writer express software recovery in the appli-

3

cation? How can applications be designed to behave predictably when errors occur non-deterministically?

Are there ways in which the software development process can be automated or assisted? What should be

the hardware organization – should all cores have no recovery support, or just some cores? Are there special

considerations for the hardware microarchitecture?

In this paper, we propose a holistic architectural framework, called Relax, that provides specific answers

to each of these questions. We divide Relax into three core components: (1) an ISA extension, (2) hardware

support to implement the Relax ISA, and (3) software support for applications to use the Relax ISA. We

discuss each component in a separate section:

• ISA extension: In Section 2, we describe the Relax ISA extension, which enables software to register

a fault handler for a region of code. The extension allows applications to encode behavior similar

to the try/catchbehavior found in modern programming languages. The ISA behavior is intuitive

to programmers, and the compiler and hardware combine to make guarantees about the state of the

program as the region is executed. We also provide a rigorous definition of the ISA’s semantics.

• Hardware support: We cover the hardware support for Relax in Section 3. The Relax ISA’s se-

mantics allow hardware design simplification and provide energy efficiency by relaxing the reliability

constraints of the hardware. We describe support for fault detection and discuss hardware organiza-

tions that support Relax. We show that mechanisms such as aggressive voltage scaling, frequency

overclocking, and turning off recovery mechanisms provide adaptive support for Relax. We also

consider statically heterogeneous architectures, where cores are constructed with different reliability

guarantees at design time.

• Software support: In Section 4, we develop a C/C++ language-level recovery construct to expose the

Relax ISA extension to developers. We propose two key ideas:relax blocksto mark regions that may

experience a hardware fault, and optionalrecover blocksto specify recovery code if a fault occurs.

Our results indicate promise for alternative forms of application support as well, such as automated

support through compiler static analysis or profile-guided compilation.

To support Relax, we develop performance models to guide the development of “relaxed” applications.

The models, discussed in Section 5, determine the efficiency of Relax based on application and architecture

characteristics and can be used to compute the achievable efficiency improvements for a given application,

4

recovery behavior, and architecture combination. We evaluate Relax in Sections 6 and 7, where we apply

our language construct and Relax compiler to real applications, and simulate how Relax enables energy

efficiency gains using process variation as a case study. We discuss related work in Section 8, and we

conclude in Section 9.

2 ISA Support

In this section, we discuss the ISA component of the Relax framework. In Section 2.1, we describe the Relax

ISA extension and briefly introduce our language-level construct, which we use to illustrate how high-level

recovery behavior is mapped onto the ISA. In Section 2.2 we describe the ISA semantics in detail.

2.1 ISA & Compiler Support

We sketch a simple C function example to motivate and explain software recovery, and use this example

to introduce Relax’s ISA extension. Code Listing 1 shows a simple C function and how it is augmented

with Relax support and compiled to a sequence of instructions. Listing 1(a) shows the simple summation

function and Listing 1(b) shows this function augmented to use Relax. The function uses ourrelax/recover

construct, which is analogous to thetry/catchconstruct of high-level languages that support exceptions. For

the purposes of the example, the next paragraph provides a brief overview of the construct. Section 4 gives

more details and uses.

In Code Listing 1(b), all code except the return statement is wrapped in arelax block. Code inside a

relax block is susceptible to failure, where a hardware fault detected inside the block constitutes failure. The

optional variablerate specifies a relax block’s probability of failure. Without it, the hardware dictates this

probability independent of the application. In some situations, this variable is important to make reasonable

guarantees about the quality of an application’s output. If a failure occurs, control transfers to therecover

block. In this case, the recover block contains a retry statement, which causes re-execution of the relax

block.

To support this behavior through the ISA, Code Listing 1(c) shows the assembly code for this function

with the Relax additions highlighted. For readability, we use symbolic register names rather than numbered

registers. A single instruction (rlx) communicates the start and end of relax blocks to the hardware. When

used to enter a relax block, therlx instruction optionally reads a general purpose register containing the

5

Code Listing 1 A simple summation function (a) modified to use Relax (b) and the assembly output
produced by the compiler (c). For (c), the Relax additions are in bold. TheRECOVERlabel can be folded
away but is included for clarity.

int sum(int * list, int len) {
int sum = 0;
for (int i = 0; i < len; ++i) {

sum += list[i];
}
return sum;

}

(a)

int sum(int * list, int len) {
relax (rate) {

int sum = 0;
for (int i = 0; i < len; ++i) {

sum += list[i];
}

} recover { retry ; }
return sum;

}

(b)

ENTRY:
rlx $ {rate }, RECOVER # Relax on
mv 0 -> $sum
ble $len, 0, EXIT

LOOP_PREHEADER:
mv 0 -> $i

LOOP:
sll $i, 2 -> $tmp
ld [$list + $tmp] -> $tmp
add $sum, $tmp -> $sum
add $i, 1 -> $i
blt $i, $len, LOOP

EXIT:
rlx 0 # Relax off
ret $sum

RECOVER: # Relax automatically off
jmp ENTRY

(c)

desired failure rate, as well as the offset of the PC address to the recovery block, to which the hardware

automatically transfers control on failure. The same instruction with a PC offset of 0 signals the end of

the relax block. Within the relax block, the execution semantics of the hardware are relaxed. A rigorous

definition of what this means follows in Section 2.2.

Compiler support for Relax is relatively straightforward. The compiler sets up the recovery block and

adds compensating code to save or recover state if necessary. In the case of the example function, the

function has no side-effects and therefore has no state, beyond its input state, that needs to be restored in the

event of a failure. If a failure occurs inside the function, it is sufficient to simply jump back to the beginning

of the function, as Code Listing 1(c) demonstrates, with the guarantee that the input registers have not been

overwritten. The compiler transparently enforces this guarantee simply by knowing that such a control path

exists, thereby effectively implementing a software checkpoint. The checkpoint is extremely lightweight:

the compiler only saves state that is strictly required. In this case, the two inputs,list and len , must

either be saved to the program stack or must occupy available registers. Five physical registers are needed

to store all the live variables in this function. If five are available, Relax adds no software overhead.

6

2.2 ISA Semantics

Relax allows instructions to commit potentially erroneous state, while the compiler ensures that this state

is either discarded or overwritten after the fault is discovered and recovery is initiated. For the compiler to

ensure recovery from the fault, the resulting error must be aLocally Correctable Error(LCE), as defined

by Sridharan et al. [36]. Hence, the error must be spatially and temporally contained, which forces the

following hardware constraints:

1. Errors must be spatially contained to the target resources of a relax block’s execution. In other words,

an instruction must not commit corrupted state to a register or memory location not written to by other

instructions in the relax block. For stores, this means that a store must not commit if its destination

address is corrupt, or if the store is reached through erroneous control flow. A simple (but high

overhead) way to handle this is to stall on the error detection logic prior to committing a store. For

other instructions that write only to registers, a tight coupling between the detection logic of the

destination register datapath and the instruction commit logic enables rapid resolution of writes to

incorrect destination registers.

2. The contents of memory locations must not spontaneously change, e.g. due to a particle strike. Relax

depends on traditional mechanisms such as ECC to protect memories, caches, and registers from soft

errors. Other errors that cannot be temporally contained to the scope of a relax block, such as most

faults in the cache coherence or cache writeback logic, are also not recoverable by Relax.

3. Arbitrary control flow is not allowed. Control flow must follow the program’s static control flow

edges. Note that faulty controldecisionsare still acceptable since the static control flow is not violated.

4. Hardware exceptions must not trigger until hardware detection ensures that the exception is not the

result of an undetected hardware fault.

5. Specifically under retry behavior (as in the example of Code Listing 1), an instruction may not store

to a volatile address: on re-execution, the store might write to a different address and the initial store

is then an irreversible data corruption. Atomic read-modify-write operations, such as an atomic incre-

ment, are also problematic to handle under retry behavior without violating the atomicity constraint.

For this reason, relax blocks using retry may not currently contain any atomic read-modify-write

operations.

7

RECOVER:√
rlx ${1/rate}, RECOVER√
mv 0 -> $sum√
ble $len, 0, EXIT

X mv 0 -> $i
sll $i, 2 -> $tmp

? ld [$list + $tmp] -> $tmp

Figure 2: An example illustrating Relax’s execution behavior.

Execution may leave a relax block once the hardware detection guarantees error-free execution. In the

event of an error, the hardware must trigger recovery at some point before execution leaves the relax block.

An example that illustrates Relax’s ISA semantics in action is shown in Figure 2. It uses the instruction

stream from Code Listing 1(c). Therlx , mv, andble instructions all complete and commit successfully

but a fault occurs executing the secondmv that is initially undetected and so the instruction commits as

normal. Next, the result of thesll instruction is pipeline bypassed to theld instruction. When theld

executes it triggers a page fault exception due to its corrupted input address. Before the exception is handled,

the hardware waits for the detection to catch up. The fault from themv is detected and execution jumps back

to theRECOVERlabel.

3 Hardware Support

In this section, we present the hardware component of Relax. The Relax ISA’s main hardware benefits

are design simplification and energy efficiency, while the key hardware requirement is fault detection. We

first discuss Relax’s hardware benefits, followed by the hardware detection support. We conclude with a

description of the overall hardware organization.

3.1 Hardware Simplification

Relax provides sevaral hardware benefits. First, the hardware need not provide support for buffering, check-

pointing, or rollback for software-recoverable errors. Second, complicated techniques to combat parameter

variations and wear-out, such as fine-grained body biasing [37], are less useful under Relax because, by

design, variations are more tolerable. Finally, Relax reduces hardware design complexity because design

margins to account for silicon uncertainity can be relaxed. This also potentially further improves energy

8

efficiency, as it allows hardware to be designed for correct and efficient operation under common case con-

ditions, but with possible failures under dynamically worst case conditions. The overall result is hardware

that is error-prone, but is easier to design and potentially more energy efficient. In Section 7, we consider

timing faults from process variations and show how Relax provides energy efficiency and design complexity

benefits.

3.2 Hardware Detection

Relax requires support for low-latency fault detection in hardware. Two viable alternatives are Argus [22]

and redundant multi-threading (RMT) [24]. Argus provides comprehensive error detection specifically tar-

geted at simple cores, and RMT runs two copies of a program on separate hardware threads and compares

their outputs to detect faults. In addition, Razor [10] describes support for adaptive failure rate monitoring

for timing faults. Relax requires a similar mechanism to ensure the fault rate remains stable if therlx

instruction’s target fault rate input is specified.

3.3 Hardware Organization

While hardware that implements Relax everywhere and has no recovery support at all is the ideal, it is

disruptively different from existing hardware and requires complete software support. Other configurations

that partially implement Relax can be incrementally built into existing hardware organizations. In this

section, we consider in detail three such organizations with both relaxed hardware and normal hardware,

where relax blocks execute on relaxed hardware and other code executes on normal hardware.

Whether hardware is relaxed or not can be configured either statically or dynamically. In the static case,

two types of cores are used: relaxed cores and normal cores. Relax blocks are off-loaded to relaxed cores

and other code executes on normal cores. The relaxed cores can use less design guardband and do not need

any hardware recovery mechanism. In the dynamic case, circuit techniques like voltage scaling or frequency

over-clocking are used to execute relaxed blocks with improved overall efficiency and/or hardware recovery

support can be adaptively disabled.

The type of hardware organization affects the performance of Relax. In particular, two costs dictated by

the hardware are important: (1) the cost in cycles to detect and initiate recovery, and (2) the cost in cycles

to transition into and out of relax blocks. Table 1 gives estimates for these two costs for three different

9

Relaxed Hardware Recover Transition
Implementation Cost Cost

Fine-grained tasks 5 5
DVFS 5 50
Architectural core salvaging 50 0

Table 1: Parameters for three alternative relaxed hardware designs.

hardware alternatives we examine.

The first alternative is a statically configured architecture with support for fine-grained parallelism, where

relax blocks are enqueued on a neighboring, unreliable core with low latency (e.g. Carbon [17]). The cost

to recover is the cost of a pipeline flush, approximated at 5 cycles for a simple in-order core, and the cost

to transition is the time to enqueue a task, which we estimate at 5 cycles. The second alternative is a

dynamically configured architecture that uses dynamic frequency and voltage scaling (DVFS) to enter and

exit relax blocks (e.g. Paceline [12]). The cost to recover is again just the cost of a pipeline flush, and we

approximate the cost of DVFS at 50 cycles, which the work of Kim et al. suggests is reasonable for on-chip

DVFS [15]. Finally, we consider an organization where hardware recovery is adaptively disabled and a

thread swap occurs with a neighboring core in the event of a fault (e.g. Architectural Core Salvaging [28]).

We assume the cost of a thread swap to recover is 50 cycles, with no cost to transition. We revisit the values

in Table 1 when we discuss performance models in Section 5.

4 Software Support

In this section, we use the recovery construct introduced in Section 2.1 to demonstrate how Relax enables

the implementation of flexible and efficient recovery policies in software through a series of example use

cases. Our use cases derive from the code shown in Code Listing 2, adapted from thex264 video encoding

application. The listing shows a C function returning thesum of absolute differencesover the array inputs

left andright . It provides an example of a computation that is well suited for software-level recovery.

Although this example is taken fromx264, many modern, computationally-intensive applications em-

ploy computation such as this, i.e. reduction, at the core of their execution.x264 uses a two-dimensional ver-

sion of this function to search for a predicted frame macroblock’s most similar reference frame macroblock.

The function measures similarity by performing a pixel by pixel comparison over two macroblocks. A high

10

Code Listing 2 Thesum of absolute differencescode example that is the basis for all use cases.

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
return sum;

}

similarity presents redundancy that can be exploited to minimize the amount of information encoded. The

overall process is called motion estimation, which allows for better data compression. The four use cases

we explore each perform a different type of recovery over this function. We consider two high-level recov-

ery behaviors: retry (RE) and discard (DI), furthermore distinguished by their granularities: coarse-grained

(CO) and fine-grained (FI). Table 2 illustrates the resulting taxonomy.

Use Case 1: Coarse-Grained Retry (CORE). Relax and recover blocks can be used to implement coarse-

grained retry (CORE) as shown in the upper-left quadrant of Table 2. This case is the same as shown for the

example presented in Section 2.1. Just like thesum function, thesad function has no memory side-effects

and therefore execution can simply jump back to the beginning of the function if a fault occurs, provided

the inputs are still available. The Relax compiler performs a control flow analysis over the relax block, sets

up the recovery code, and adds compensating code to save or recover state if necessary.

Use Case 2: Coarse-Grained Discard (CODI). Three difficulties with CORE are that it (1) potentially

requires saving and restoring software state, (2) requires a retry mechanism that can deflect recurring fail-

ures, and (3) can hurt performance predictability. For error-tolerant applications, particularly those with

real-time constraints, a potentially better alternative is to simply abort the function and return a value that

indicates the function output should be disregarded. The code in the upper-right quadrant of Table 2 explores

this alternative. In the case ofx264, returning a maximum integer value effectively tells the application to

disregard this macroblock pair and continue looking. Similar to CORE, this use case operates at a coarse

granularity.

Use Case 3: Fine-Grained Retry (FI RE). Another alternative to CORE is to retry at a finer granularity

to minimize the amount of wasted work on failure. This can be done simply by moving the relax block into

the loop as shown in the lower-left quadrant of Table 2. In this case, each individual accumulation is retried

11

Retry Discard
C

oa
rs

e-
gr

ai
ne

d
int sad(int * left, int * right, int len) {

relax (rate) {
int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
} recover { retry ; }
return sum;

}

Use Case 1 (CORE)

int sad(int * left, int * right, int len) {
relax (rate) {

int sum = 0;
for (int i = 0; i < len; ++i)

sum += abs(left[i] - right[i]);
} recover { return INT_MAX; }
return sum;

}

Use Case 2 (CODI)

F
in

e-
gr

ai
ne

d

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

relax (rate) {
sum += abs(left[i] - right[i]);

} recover { retry ; }
return sum;

}

Use Case 3 (FI RE)

int sad(int * left, int * right, int len) {
int sum = 0;
for (int i = 0; i < len; ++i)

relax (rate) {
sum += abs(left[i] - right[i]);

}
return sum;

}

Use Case 4 (FI DI)

Table 2: Our four use cases classified by granularity and recovery behavior.

on failure. Since the last instruction of the relax block is the accumulation ontosum, the old value ofsum

can be immediately overwritten as the block terminates.

Use Case 4: Fine-Grained Discard (FI DI). For functions that allow approximate output, individual

accumulation values can be discarded as shown in the lower-right quadrant of Table 2. Note that there is

only a single relax block and no recover block. The resulting behavior is as if there was a recover block that

was empty (omitting it enhances readability). Without the recover block, the variablesum has two possible

values at the end of the relax block: either it has been updated with the new value, or it is unchanged. This

achieves the desired behavior: on failure, the accumulation value is discarded.

4.1 Nesting and Error Propagation

The disadvantage of FIRE and FIDI over CORE and CODI is the reduced coverage over the function; i.e.

fewer instructions are relaxed. Nesting can overcome this as shown in Code Listing 3. It shows the nesting

of FIRE inside CORE.

The behavior for nested relax blocks should be a straightforward extension of the normal behavior: exe-

cution inside relax blocks is relaxed even when nested inside another relax block, and failures cause control

12

Code Listing 3 FIRE nested inside CORE.

int sad(int * left, int * right, int len) {
relax (rate1) {

int sum = 0;
for (int i = 0; i < len; ++i) {

relax (rate2) {
sum += abs(left[i] - right[i]);

} recover { retry ; }
}

} recover { retry ; }
return sum;

}

to transfer to the end of the innermost relax block. Architecturally, the only requirement to implement

this behavior is micro-architectural support for a stack-like structure to store the stack of failure destination

addresses, akin to the Return Address Stack (RAS) in modern microprocessors.

In our current design, recover blocks nested inside relax blocks are not relaxed to allow for the case

where recover blocks are required to execute correctly to communicate meta-information, such as where the

failure occurred, upward. The capability to propagate failures upward we have left as future work.

5 Analytical Models

Relax provides hardware energy efficiency improvements by removing the need for hardware recovery sup-

port while still allowing hardware faults to occur. However, there are software overheads associated with

Relax. In the case of retry behavior, there is the potential cost of saving and restoring state, and also the

overhead of the wasted time spent executing failed relax block executions. In the case of discard behavior,

failed relax block executions reduce the application’s output quality (e.g. image sharpness). To compensate,

the application must be configured at a higher quality setting (e.g. more iterations) to achieve the same

output quality. This introduces execution time overhead.

In this section, we develop a set of analytical models to help developers reason about the various effi-

ciency considerations. One of the key outcomes of our models is that, depending on application, recovery

behavior (e.g. retry vs. discard), and architecture characteristics, we can determine the specific fault rate that

maximizes overall efficiency. The models are extended from the probabilistic models for the performance

overhead of backward error recovery developed by De Kruijf et al. [8]. We focus on energy efficiency

13

and specifically energy-delay product (EDP), although our methodology can be trivially extended to other

metrics.

5.1 The Optimal Fault Rate for Retry

The efficiency of retry behavior is dictated by the improved efficiency of the hardware executing with faults,

tempered by the overhead of re-executing after each fault. For the overhead of re-execution, De Kruijf et al.

develop a probabilistic model for the performance overhead of a backward error recovery solution given a

per-cycle error rate [8]. The model uses two input parameters:cycles, which denotes the execution time in

cycles between checkpoints, andrestore, which denotes the cost in cycles of restoring the checkpoint and

initiating re-execution.

As a beginning step, the model defines two functions:failures, which denotes the number of failed

attempts to execute over a checkpoint, andwaste, which denotes the number of wasted execution cycles

that must be discarded when an error occurs. Both functions take as input the per-cycle error rate,rate. The

two functions combine to give the overhead of error recovery as follows:

overhead(rate) = failures(rate) · (waste(rate) + restore) (1)

De Kruijf et al. apply probability theory to resolve the functionsfailures andwaste to:

failures(rate) =
1

(1− rate)cycles
− 1

waste(rate) =
∑cycles

k=1 k(1− rate)k−1rate

1− (1− rate)cycles

In applying this model to Relax, we equate a relax block with a checkpoint interval, and redefinecycles

to be the execution time of a relax block. We also assume there is no overhead to set up a software checkpoint

so thatrestore is fully determined by the hardware’s latency to initiate recovery. Finally, we introduce an

additional input,transition, to denote the cost of transitions into and out of relax blocks. The transition cost

is paid once when the relax block is initially executed, and then once again for each re-execution, where the

number of re-executions corresponds withfailures. Hence, we produce the overhead function for Relax,

overhead′, which is:

14

overhead′(rate) = overhead(rate) + transition · (1 + failures(rate)) (2)

With the functionoverhead′, the relative execution time of retry behavior relative to without retry be-

havior,exec time, is computed as follows:

exec time(rate) =
cycles + overhead′(rate)

cycles
(3)

We now have a model to mathematically compute the overheads of the recovery mechanism. With a

function that gives the energy efficiency of the hardware executing at a given error rate, we can compute the

overall efficiency of retry behavior at the different error rates, relative to error-free execution. As previously

mentioned, we assume the efficiency goal is to minimize theenergy delayof the system, measured as the

energy-delay product, which we abbreviate asEDP , whereEDP = power · delay2. For software, retry

behavior affectsdelay proportionally to the change in execution time, represented by Equation 3. For the

hardware, we assume we have some functionEDPhw that maps hardware fault rate to relative change in

hardwareEDP . With these definitions, the overall change inEDP of the system using retry behavior

(EDPretry) is given by the equation below. Solving for the derivative of this equation set to zero yields the

fault rate that minimizesEDP .

EDPretry(rate) = EDPhw(rate) · exec time(rate)2 (4)

Usage Example. Equation 7 allows us to plotrate vs. EDP for different configurations ofcycles,

restore, andtransition. For a relax block wherecycles is roughly 1170, Figure 3 shows a graph evaluating

each of the three hardware-specific values forrestore andtransition given in columns 2 and 3 of Table 1.

The solid curve shows a hypotheticalEDPhw mapping, which represents the ideal case. The derivation

of this mapping is given in Section 6.4. The dotted curve considers fine-grained tasks, the dash-dotted curve

considers DVFS, and the dashed curve considers architectural core salvaging.

The figure shows that, for these three hypothetical design points, Relax provides an approximately 21.9%,

18.8%, and 22.1% optimal EDP reduction for each, respectively. The optimal fault rates are in the range

1.5e−5 to 3.0e−5 faults per cycle.

15

10
−4

10
−6

10
−8

10
−10

10
−12

10
−14

Hardware per-cycle fault rate (rate)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
e
la
ti
v
e
e
n
e
rg
y
-d
e
la
y
p
ro
d
u
c
t
(E

D
P
) EDPhw

EDPretry, recover = 5, transition = 5

EDPretry, recover = 5, transition = 50

EDPretry, recover = 50, transition = 0

Figure 3: A mapping from fault rate to EDP for different architectural parameters.

5.2 The Optimal Fault Rate for Discard

The challenge with discard behavior is that an application’s output quality (e.g. image sharpness) is no

longer just a function of the application’s input quality setting (e.g. number of iterations), but also of the

relax block fault rate. The efficiency function for discard behavior,EDPdiscard, has the same hardware

efficiency function as for retry, but the execution time function is different as follows. We use the same

variables as defined in Section 5.1.

Let the random variableX denote the number of cycles executed before an error occurs.X has a

geometric distribution withP (X = k) = (1 − rate)k−1rate. If we let psucc denote the probability of an

error-free execution between checkpoints, thenpsucc = P (X > cycles) = (1 − rate)cycles. For discard

behavior, execution succeeds with probabilitypsucc and fails with probability1 − psucc. On success, the

execution time contribution istransition + cycles and on failure it istransition + waste(rate). Hence,

we define:

costsucc = transition + cycles

costfail(rate) = transition + waste(rate)

16

Then, as with Equation 3 from Section 5.1, the relative execution time of retry behavior relative to without

retry behavior is:

exec time(rate) =
psucc · costsucc + (1− psucc) · (costfail(rate))

cycles
(5)

However, this equation does not consider quality degradation. To control for quality, we define a function,

quality, that maps an input quality and an error rate to an output quality for a given application. That is,

for a target output qualityqo and an input quality settingqi, quality(qi, rate) = qo. Then, the constraint

quality(qi, rate) = quality(qibase
, 0) for input qualitiesqi andqibase

ensures that output quality remains

constant with Relax (left-hand side) relative to without Relax (right-hand side). With quality held constant,

we next define a function,visits, that maps a quality input setting to the number of times the relax block is

executed at that setting. Our use of this function assumes that the quality setting controls the number of times

a relax block is executed, which is true for all applications we studied. With the quality constraint in place

andvisits defined, a refined version ofexec time that holds quality constant,exec time′, is computed as

follows:

exec time′(qi, rate) =
visits(qi) · exec time(rate)

visits(qibase
)

(6)

Using the same analysis and the sameEDPhw hardware efficiency function as in Section 5.1, the func-

tion for the overall energy efficiency of discard behavior,EDPdiscard, is as follows:

EDPdiscard(rate) = EDPhw(rate) · exec time′(rate)2 (7)

Usage Example. A second application we consider in our evaluation,canneal, is particularly well be-

haved under discard behavior and is a good candidate to demonstrate how Equation 6 can be used. Like

x264, canneal uses a sum-of-absolute-differences computation, which it uses to compute routing costs

between elements in a hardware netlist. The particular block we consider hascycles of roughly 2840.

The quality function for canneal is not known in advance. Figures 4(a) and 4(b) illustrate a method

for computing it. Figure 4(a) shows on thex-axis a range of input settings that adjust the quality of the

application’s output. (e.g.{qi1 , . . . , qi60}). For each of these input settings, the application is run over a

17

0 10 20 30 40 50 60
Input quality setting (qi)

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64
O

u
tp

u
t

q
u
a
lit

y
 (
q o

)

10 20 30 40 50
0.00005

0.00010
0.00015

0.00020
0.00025

0.57
0.58
0.59
0.60
0.61
0.62
0.63

10-410-610-810-1010-1210-14

Hardware per-cycle fault rate (rate)

0.9

1.0

1.1

1.2

1.3

1.4

V
is

it
s

to
 c

o
m

p
e
n
sa

te
 (
vi
si
ts

(q
))

10-410-610-810-1010-1210-14

Hardware per-cycle fault rate (rate)

0.7

0.8

0.9

1.0

1.1

1.2

R
e
la

ti
v
e
 e

n
e
rg

y
-d

e
la

y
 (
E
D
P

) EDPhw

EDPdiscard, trans.=5

EDPdiscard, trans.=50

(a) (b) (c) (d)

Figure 4: Graphs (a) and (b) show the quality function for canneal. Graphs (c) and (d) show rate vs. visits
and rate vs. EDP , respectively, for the pairings of rate and qi indicated by the black striped line in (b).

range of target fault rates. For the data shown, we chose a sampling of ten fault rates distributed around

the optimalrate predicted forEDPretry, and averaged across five samples for each. Each run produces an

output which is fed to an application-specificquality evaluator[5, 20] to produce an output quality value,

qo. Figure 4(a) shows these output qualities interpolated to produce a curve for each fault rate. Finally,

Figure 4(b) shows each of these curves interpolated in the fault rate dimension to producequality(qi, rate).

With quality defined, the programmer can specify the target output quality. For the sake of example,

we set it to 0.60 so that the constraintquality(qi, rate) = quality(qibase
, 0.0) = 0.60 is set. With this

constraint,qibase
is 53.8, and the matching pairs ofqi and rate are shown by the black striped line in

Figure 4(b). For eachqi, the programmer uses performance profiling information to findvisits(qi) and

generate the mapping ofrate to visits for each matchingrate, as shown in Figure 4(c). With this mapping,

the programmer can computeEDPdiscard(qi, rate), shown in Figure 4(d). For this relax block and using

values fortransition of 5 and 50 as in Section 5.1, Relax provides an approximately 20.8%, 19.7% optimal

EDP reduction, respectively. Both optimal points are at a fault rate of approximately1.1e−5.

5.3 Summary

Once an application writer determines the relax blocks, he or she can use these models to estimate efficiency

gains using Relax. The models also allow sensitivity analyses of the application and architecture parameters

(restore andtransition) that affect overall application efficiency. This framework allows rapid evaluation

of relax block alternatives and, in the case of discard behavior, also a method to build the mapping for the

quality function using fault injection.

18

6 Evaluation Methodology

While several phenomena can cause faults to occur in the hardware, we evaluate one specific case here. The

scenario we consider is Relax in the context of process variations where the hardware is designed to ignore

these variations, resulting in some timing faults. This section discusses our evaluation methodology and the

next section presents experimental results.

We implemented language support for relax and recover blocks in C/C++ programs using the LLVM

compiler infrastructure [18]. We apply the compiler to applications and simulate them using instruction-level

fault injection to estimate the potential energy efficiency gains of Relax when coupled with hardware that

runs more efficiently in the presence of faults. In Section 6.1 we describe our methodology for evaluating

applications using discard behavior specifically. In Section 6.2 we describe our fault injection methodology

and in Section 6.3 we discuss performance metrics. Finally, in Section 6.4 we derive a hardware efficiency

function to model the impact of allowing errors due to process variations on hardware energy efficiency.

6.1 Evaluating Discard Behavior

Prior work evaluating application-level error tolerance has employed application-specific quality metrics to

assess the degree of output quality deterioration [5, 9, 20, 21]. These studies attempt to hold execution time

relatively constant while using the error rate to vary output quality. The difficulty with this approach is that

it is fundamentally hard to quantify and evaluate variations in output quality.

We provide a novel solution to this problem by taking the converse approach of holding output quality

constant while using the error rate to vary execution time. For each application using discard behavior, we

define a function that maps an input quality setting and a fault rate to an output quality, and we use it to

adjust the input quality setting as we adjust the fault rate to hold output quality constant. The function is the

quality function discussed in Section 5.2, and it allows an apples-to-apples comparison across applications.

6.2 Fault Injection

To perform detailed quality analysis for discard behavior as described above, we required a simulation

framework that would allow us to run relaxed applications to completion on large, representative input

data. To meet this challenge, we developed an LLVM instrumentation pass to perform instruction-level

19

Application CPL

barneshut 3.07
bodytrack 0.90
canneal 6.05
ferret 0.72
kmeans 0.44
raytrace 0.79
x264 0.28

Table 3: Cycles per LLVM instruction.

fault injection for rapid simulation. We chose LLVM because its virtual ISA closely matches both the x86

and SPARC V9 instruction sets [2], while instrumenting LLVM bytecode is straightforward and flexible.

Compared to native execution, our simulation slowdown is less than two-fold in all cases on commodity x86

Linux hardware.

For fault injection, each LLVM instruction inside a relax block is surrounded by code that probabilisti-

cally injects an error into the output of that instruction. Although we inject only single-bit errors, the nature

of the error is in practice not relevant since corrupted output is ultimately either discarded or overwritten,

and hence is never used. If an error occurs in the address computation of a store instruction, the store does

not commit and execution immediately jumps to the recovery destination. If an error occurs in any other

instruction, the instruction commits and execution continues as normal, but a recovery flag is set to indicate

that an error occurred. When control reaches the end of the relax block, execution jumps to the recov-

ery destination if the recovery flag is set. This behavior is consistent with the ISA semantics described in

Section 2.2.

6.3 Performance Metrics

We use execution cycles to measure performance overheads and energy efficiency improvements. To com-

pute execution cycles we record the number of dynamic LLVM instructions executed (not including instruc-

tions added for fault instrumentation) and multiply by the CPL (cycles per LLVM instruction) of the relax

block. We similarly divide the per-instruction fault rate by the the CPL to compute the per-cycle fault rate.

Table 3 shows the CPL for each application. Cycle counts were measured running applications natively on

a 2.53 GHz Core 2 Duo processor.

The validity of using CPL to produce cycle-accurate performance numbers depends on our ability to

20

assert that CPL does not change when relax blocks are augmented with retry or discard behavior. Below, we

explain why the two factors that might affect CPL,instruction mixandmemory latency, are not adversely

affected by these behaviors. First, all relax blocks we consider have a largely homogeneous instruction mix.

Therefore, partial execution of a relax block has a CPL very close to the overall CPL of the block, and

certainly averaged over many millions of executions, the CPL will tend towards the CPL of the whole block.

Second, for memory latency, we note that retry behavior will re-execute over data that is already cached, and

therefore our measured CPL will be anoverestimate, while for discard behavior, any early termination will

place more weight on up-front loads that bring in potentially uncached compute data, yielding anunder-

estimate. We accept the overestimating factor and our results for retry behavior are therefore conservative.

For discard behavior, we observe that none of our applications are structured with up-front loads since the

relax blocks are in all cases iterating over simple array structures. We assert that the overestimating effect is

therefore negligible.

6.4 Hardware Efficiency Model

Process variations are forcing conservative voltage and timing margins in future technology nodes. Timing

speculation can relax these margins providing energy efficiency at the risk of hardware errors. The VAR-

IUS model provides a model for process variations [32] and De Kruijf et al. extend the model to provide

estimations for the efficiency of hardware allowing timing faults, providing results for a simple processor

core design [8]. The resulting model outputs the relative energy efficiency of a given processor design as

the error rate is varied.

We applied the methodology from De Kruijf et al. to develop our hardware efficiency function,EDPhw,

using delay-aware simulation of the OpenRISC processor with Synopsys VCS and the Synopsys 90nm

technology library to measure path delay distributions. We use0.051µ as the standard deviation in path

delays (σpath delay = 0.051µ). This value models predicted variations in 11nm CMOS technology using

high-performance transistors with fine-grained body biasing applied at each pipeline stage.

7 Results

This sections presents results using and evaluating the Relax framework. In Section 7.1 we show evidence

for theerror tolerancephenomenon by identifying applications from the PARSEC benchmark suite that are

21

Application Benchmark Application Input Quality Quality Evaluator
Name Suite Domain Parameter

barneshut Lonestar Physics Distance before SSDa over body positions, relative
(fluidanimate) (PARSEC) modeling approximation to maximum quality output
bodytrack PARSEC Computer Number of simultaneous Application-internal likelihood

vision body particles estimate
canneal PARSEC Optimization: Number of iterations Change in output cost, relative

local search to maximum quality output
ferret PARSEC Image search Maximum number of SSDa over top 10 ranking, relative

iterations to maximum quality output
kmeans NU-MineBench Data mining: Number of iterations Application-internal validity
(streamcluster) (PARSEC) clustering metric
raytrace PARSEC Real-time Rendering resolution PSNR of upscaled image,

rendering relative to high resolution output
x264 PARSEC Media Motion estimation Encoded output file size relative

encoding search depth to maximum quality output

aSSD = Sum of squared differences

Table 4: The seven applications modified to use Relax.

tolerant to errors. We then show in Section 7.2 the results applying our language constructs to each of these

applications. We show that relax block regions account for large portions of application execution times,

and that the phenomenon oflimited memory side-effectsallows Relax to work with essentially no software

overhead. Using our efficiency mapping driven by process variations, we evaluateEDP improvement using

Relax in Section 7.3. Finally, we validate the analytical models against experimental data in Section 7.4.

7.1 Evidence for Error Tolerance

We identified seven applications from the PARSEC benchmark suite [6] employing approximation tech-

niques. However, two applications,fluidanimate andstreamcluster, did not have an easily identifiable

input quality parameter for discard behavior. Since this was merely an artifact of their implementation,

we replaced them with more straightforward alternatives from the same application domain. We replaced

fluidanimate with barneshut, a physics application from the Lonestar Benchmark Suite [16], andstream-

cluster with kmeans, a clustering application from NU-MineBench [26]. Table 4 shows the details for

each application. Columns 1-3 show the application name, benchmark suite, and application domain, re-

spectively. Columns 4-5 concern evaluation of discard behavior only, and show the input quality parameter

used to configure output quality and the quality evaluator used to evaluate output quality, respectively.

22

Application Function Function %
Name Name Exec. Time

barneshut RecurseForce >99.9
bodytrack InsideError 21.9
canneal swapcost 89.4
ferret isOptimal 15.7
kmeans euclid dist 2 83.3
raytrace IntersectTriangleMT 49.4
x264 pixel sad16x16 49.2

Table 5: Application functions and percentage of execution time inside each function.

Application Relax Block Length Percentage of Source Lines Checkpoint Size
Name in Cycles Function Relaxed Modified (Register Spills)

CORE CODI FI RE FI DI CORE / FI RE / CORE / FI RE / CORE FI RE

CODI FI DI CODI FI DI

barneshut N/A N/A 98 98 N/A 70.6 N/A 6 N/A 0
bodytrack 775 812 25 25 76.3 47.8 2 2 0 0
canneal 2837 2837 115 115 99.8 62.0 2 8 0 0
ferret 4024 4077 12 11 99.6 72.3 2 4 0 0
kmeans 81 81 4 4 99.5 65.8 2 2 0 0
raytracea 2682 2682 136 136 96.5 67.7 2 6 0 0
x264a 1174 1174 4 4 99.9 76.2 2 2 0 0

aSSE is emulated forx264 andraytrace

Table 6: Details for each application’s function and the various use cases implemented.

7.2 Application Relaxation

The seven applications were modified to implement the four use cases described in Section 4. For each

application, we modified only a single, dominant function to use Relax. More functions existed, but eval-

uating all of them was beyond the scope of this work. Table 5 identifies each application’s function and

the percentage of execution time spent inside the function. Percentages were measured using the Google

Performance Tools CPU profiler [1] running applications natively on a 2.53 GHz Core 2 Duo processor and

include time spent in external library calls.

Six of the seven applications were evaluated for all four use cases FIRE, CORE, FIRE, and FIDI. Bar-

neshut could only support the two fine-grained use cases FIRE and FIDI. Table 6 shows detailed statistics

for each application. Columns 2-5 show the length of each relax block in cycles, which corresponds to

the variablecycles used in our models from Section 5. Columns 6 and 7 show the percentage of executed

LLVM instructions affected by Relax for each use case. Combined with the data from Table 5, we see that

for three applications more than 70% of the application is relaxed, for two others roughly 50% is relaxed,

23

10
−6

10
−5

10
−4

10
−3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N/ACORE

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−6

10
−5

10
−4

10
−3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

F IRE

10
−4

10
−3

10
−2

10
−1

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10
−5

10
−4

10
−3

10
−2

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

10
−3

10
−2

10
−1

1

2

3

4

5

6

7

8

9

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

10
−5

10
−4

10
−3

10
−2

0.8

1.0

1.2

1.4

1.6

1.8

10
−3

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

10

10
−6

10
−5

10
−4

10
−3

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N/ACODI

insensitive

10
−7

10
−6

10
−5

10
−4

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
ideal

10
−7

10
−6

10
−5

10
−4

10
−3

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ideal

10
−6

10
−5

10
−4

10
−3

0

1

2

3

4

5

6

7
ideal

10
−7

10
−6

10
−5

10
−4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
ideal

input

dependent

(see text)

insensitive

10
−7

10
−6

10
−5

10
−4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

F IDI

ideal

barneshut

10
−5

10
−4

10
−3

10
−2

10
−1

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
insensitive

bodytrack

10
−6

10
−5

10
−4

10
−3

0.5

1.0

1.5

2.0

2.5

3.0
ideal

canneal

10
−4

10
−3

10
−2

10
−1

1

2

3

4

5

6

7
ideal

ferret

10
−5

10
−4

10
−3

10
−2

0

5

10

15

20

25
ideal

kmeans

10
−7

10
−6

10
−5

10
−4

10
−3

0.8

1.0

1.2

1.4

1.6

1.8
ideal

raytrace

10
−3

10
−2

10
−1

2.0

2.5

3.0

3.5

4.0

4.5

5.0
insensitive

x264

Figure 5: Solid curves plot analytically predicted rate (x-axis) versus EDP (y-axis) for each application and
use case combination, with empirical data shown using stars. Dashed curves plot rate versus exec time
only, with empirical data shown using triangles.

and for the last two less than 20% is relaxed. Columns 8 and 9 show the number of C/C++ source code lines

modified or added. In all cases, the number of changes is very low. Relax blocks do not appear to obstruct

code readability and are in most cases straightforward to implement. Finally, columns 10 through 11 show

the number of register spills needed to set up a software checkpoint for retry behavior. The numbers assume

an architecture with 16 general purpose integer registers and 16 floating point registers. In all cases, there is

no software checkpointing overhead; the functions are side-effect free, and simple enough that there is in-

sufficient register pressure to force additional register spills to save input state. Even with register pressure,

the measured number of extra registers needed is in the range of zero to two registers.

7.3 Execution Time and Energy Efficiency

Figure 5 shows execution time andEDP for each application and use case relative to execution without Re-

lax. We model hardware with fine-grained task support and hence set both of the analytical model variables

restore andtransition to 5 cycles. Execution time is measured using our methodology from Section 6.3.

EDP is measured applying theEDPhw function computed in Section 6.4 to the square of the execution

24

time. The triangles plot fault rate versus execution time and the stars plot fault rate versusEDP . Using the

models described in Sections 5.1 and 5.2, the dotted curves plotrate versus predictedexec time and the

solid curves plotrate versus predictedEDP . The x-axis ranges are centered around the predicted optimal

fault rate.

For retry behavior, the results show that a 20% reduction inEDP is common for CORE, and that CORE

tends to perform better than FIRE. In some cases, execution time with FIRE is very high, as withkmeans

andx264. For these applications the fine-grained relax block size is only 4 cycles, and the 5 cycle transition

cost (transition) enforces a lower bound of 2.25 to relative execution time.

For discard behavior, we see two flavors of results:ideal andinsensitive. The graphs are annotated with

these labels. In theidealcases, changing the input quality setting and/or injecting errors into the application

affects behavior in a way that is very regular and consistent. As a result, the discard behavior results for

CODI and FIDI closely mirror those for CORE and FIRE. The two differences are that (1) in some cases

discard behavior cannot support a fault rate quite as high as retry behavior, and (2) the resulting data are

slightly more noisy. However, discard behavior will still be the more desirable alternative in situations where

performance predictability is more important than output predictability, as might be the case with a real-time

ray tracer or an online data clustering algorithm.

Theinsensitivediscard behavior cases arebodytrack andx264. Forbodytrack, the algorithm effectively

only has two outputs: either the tracked body position is close, or it is off because the algorithm has lost a

handle on the body position. For the quality settings we used, the algorithm did not lose the body position

at fault rates of less than1e−3 for CODI and2e−2 for FIDI. Hence, any lower fault rate setting produced

effectively equivalent output quality, and, due to the nature of discard behavior, the execution time of the

program was shortened by the faults andEDP improved. Forx264 the story is slightly different. For

x264 with the reference input we used, it was very difficult to affect the output quality by adjusting the

input quality at all. Even at the lowest setting, with a 40% reduction in execution time, the change in output

quality was still only extremely minor. Although there was sufficient variation that thequality function

could capture it for FIDI, the range was too narrow for CODI. Even for FIDI, the function was very noisy.

We expect that different data input might lead to different results, but we cannot confirm at this time.

25

7.4 Model Validation

For retry behavior, the predicted curves and measured data are very close. The cases where there are notice-

able discrepancies are for FIRE with high error rates, where the discretization of cycles in our simulation is

different from what is modeled. For example, two fault in a single cycle only count as one fault in our simu-

lation, while the model considers each separately. For discard behavior, the predicted curves and measured

data are also generally close, although variability and noise in thequality mappings for some applications

produces some discrepancies, as with FIDI for canneal andx264.

8 Related work

We discuss related work in error recovery, full-system solutions to hardware errors, and application error

tolerance.

Error Recovery. Sorin provides a complete treatment of error recovery solutions [34]. He describes two

primary approaches to error recovery:backward error recovery(BER) andforward error recovery(FER).

Relax provides BER under retry behavior, and a restricted form of FER under discard behavior. We consider

each separately below.

For BER, Relax is distinct from other mechanisms in that it is both software based and has a small sphere

of recoverability. Other software approaches have larger spheres of recoverability [27, 38] which comes at

a substantial cost to performance. Hardware approaches have both large [29, 35] and small [3, 25] spheres

of recoverability. However, hardware checkpoints consume substantial chip resources, and may not even

be feasible when dealing with highly error-prone environments, where the checkpointing logic and storage

itself cannot be made relatively immune to errors. Relax’s fine-grained recovery in software is a good fit

for an anticipated future with high fault rate systems running emerging applications that have few memory

side-effects and can recover in software with low overhead.

On the FER side, the main competing approach is triple-modular redundancy (TMR). With discard be-

havior, Relax does not add any redundancy to implement FER, but rather allows the programmer to exploit

the redundancy inherent in the application.

26

Recovery
Detection Hardware Software

Hardware RSDT[4] Relax
SWAT [19, 31]

Software SWAT [19, 31] Liberty [7, 30]

Table 7: A taxonomy of full-system solutions.

Full-System Solutions. Table 7 classifies other full-system proposals for managing error-prone hardware.

SWAT [19, 31] uses lightweight symptom- and invariant-based detection techniques combined with heavy-

weight hardware checkpoints to recover from failure. SWAT optimizes for the modern-day common case of

failure-free execution with a primary focus on reducing detection overhead while latency is not a concern

as long as recovery remains possible. Our work is distinct from SWAT in anticipating a future where, for

efficiency reasons, failure is much more common, and we shift priorities accordingly. Additionally, Relax

is a software recovery framework that utilizes hardware detection, in contrast to SWAT’s hybrid hardware-

software detection with hardware recovery.

The Resilient-System Design Team (RSDT) attempts to manage faults entirely in hardware by adding

mechanisms for testing, monitoring, and adaptive recovery [4]. While effective for general-purpose comput-

ing systems, this approach is overly restrictive for emerging applications with few side-effects and ignores

application error tolerance.

Finally, the Liberty Research Group proposes transparent software-based detection and recovery through

compiler instrumentation [7, 30]. This software-only approach can be readily deployed in commodity hard-

ware but has high performance overheads.

Application Error Tolerance. A variety of studies have attempted to quantify application tolerance to

errors [5, 9, 20, 21, 39]. In contrast to Relax, they allow errors to affect program state rather than discard

them. However, the general findings are that control flow and memory operations, which together constitute

a large percentage of these applications, remain intolerant to errors. As a result, these studies ultimately

advocate for various forms of detection and/or recovery. The only technique that incorporates neither detec-

tion or recovery involves manually identifying “soft” computations and allowing only the backwards slice

of these computations to fail [21]. These instructions can in some cases account for more than half of an

application’s dynamic instruction stream, but in general the technique by itself does not scale well beyond

fault rates of more than1e−6, and even this technique would still require changes to the ISA and compiler

27

for the software to communicate information on what is a soft computation to the hardware. The evident

conclusion is that arbitrary and uncontrolled failure is not generally feasible.

9 Conclusion

As CMOS technology scales, hardware reliability is becoming a primary design constraint. While lan-

guages, ISAs, and microarchitectures continue to maintain the illusion of the transistor as a perfect switch,

VLSI circuits, CAD, and manufacturing layers of the silicon stack are under tremendous pressure to main-

tain this illusion. Emerging applications provide an opportunity to mitigate these CMOS scaling constraints

by relaxing the burden of fault recovery on hardware.

This paper presented the Relax framework, which relaxes architectural semantics to help simplify CMOS

scaling by removing the illusion of perfect hardware. Specifically, we proposed a handful of simple exten-

sions to the programming language, compiler, ISA, and microarchitecture levels that simplify hardware

design by enabling efficient software-level recovery of hardware faults. We constructed a spectrum of lan-

guage models combining retry and discard behaviors with coarse and fine recovery granularities to enable

flexible application handling of errors.

We showed that PARSEC applications are easily relaxed for more than 70% of their execution with only

a handful of source-line modifications required, and that significant further opportunity exists. Applying

the framework to allow timing errors due to process variations, we show that, applications are up to 20%

more energy-efficient. Most importantly, the correctness requirements of hardware are reduced. Overall,

the Relax framework enables flexible and efficient handling of hardware reliability through multiple levels

of the system stack, instead of placing all the burden on hardware alone.

References

[1] Google performance tools. http://code.google.com/p/google-perftools/.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A low-level virtual instruction set
architecture. InMICRO ’03, pages 205–216.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: Towards scalable large
instruction window processors. InMICRO ’03, pages 423–434.

28

[4] T. Austin, V. Bertacco, S. Mahlke, and Y. Cao. Reliable systems on unreliable fabrics.IEEE Design
& Test of Computers, 25(4):322–332, 2008.

[5] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and A. Adl-Tabatabai. Error resilient system
architecture (ERSA) for probabilistic applications. InSELSE ’07.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization and
architectural implications. InPACT ’08, pages 72–81.

[7] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-level software-only recovery. InDSN
’06, pages 83–92.

[8] M. de Kruijf, S. Nomura, and K. Sankaralingam. A unified model for timing speculation: Evaluating
the impact of technology scaling, CMOS design style, and fault recovery mechanism. InDSN ’10.

[9] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerging workloads and silicon relia-
bility trends. InSELSE ’09.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge. Razor: A low-power pipeline based on circuit-level timing speculation. InMICRO ’03,
pages 7–18.

[11] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R. Mark. Toward a multicore architec-
ture for real-time ray-tracing. InProceedings of the 41st International Symposium on Microarchitec-
ture, pages 176–187, 2008.

[12] B. Greskamp and J. Torrellas. Paceline: Improving single-thread performance in nanoscale CMPs
through core overclocking. InPACT ’07, pages 213–224.

[13] B. Greskamp, L. Wan, U. Karpuzcu, J. Cook, J. Torrellas, D. Chen, and C. Zilles. Blueshift: Designing
processors for timing speculation from the ground up. InHPCA ’09, pages 213–224.

[14] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S. Lumetta, M. I.
Frank, and S. J. Patel. Rigel: An architecture and scalable programming interface for a 1000-core
accelerator. InISCA ’09, pages 140–151.

[15] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-core DVFS using
on-chip switching regulators. InHPCA ’08, pages 213–224.

[16] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic parallelism
requires abstractions. InPLDI ’07, pages 211–222.

[17] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural support for fine-grained parallelism on
chip multiprocessors. InISCA ’07, pages 162–173.

[18] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. InCGO ’04, pages 75–88.

[19] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. Understanding the
propagation of hard errors to software and implications for resilient system design. InASPLOS ’08,
pages 265–276.

[20] X. Li and D. Yeung. Application-level correctness and its impact on fault tolerance. InHPCA ’07,
pages 181–192.

29

[21] X. Li and D. Yeung. Exploiting soft computing for increased fault tolerance. InWorkshop on Archi-
tectural Support for Gigascale Integration, 2006.

[22] A. Meixner, M. E. Bauer, and D. J. Sorin. Argus: Low-cost comprehensive error detection in simple
cores.IEEE Micro, 28(1):52–59, 2008.

[23] F. Mesa-Martinez and J. Renau. Effective optimistic-checker tandem core design through architectural
pruning. InMICRO ’07, pages 236–248.

[24] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed design and evaluation of redundant multi-
threading alternatives. InISCA ’02, pages 99–110.

[25] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead execution: an alternative to very large instruc-
tion windows for out-of-order processors. InHPCA ’03, pages 129–140.

[26] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. Minebench: A benchmark
suite for data mining workloads. InISWC ’06, pages 182–188.

[27] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing.IEEE Trans. on Parallel and Distributed
Systems, 9(10):972–986, 1998.

[28] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core salvaging in a multi-core
processor for hard-error tolerance. InISCA ’09, pages 93–104.

[29] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. InISCA ’02, pages 111–122.

[30] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S. Mukherjee. Software-
controlled fault tolerance.ACM Trans. on Architecture and Code Optimization, 2(4):366–396, 2005.

[31] S. Sahoo, M.-L. Li, P. Ramachandran, S. Adve, V. Adve, and Y. Zhou. Using likely program invariants
to detect hardware errors. InDSN ’08, pages 70–79, 2008.

[32] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. VARIUS: A model
of process variation and resulting timing errors for microarchitects.IEEE Trans. on Semiconductor
Manufacturing, 21(1):3–13, 2008.

[33] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion: Complexity-effective multicore redun-
dancy. InMICRO ’06, pages 223–234.

[34] D. J. Sorin.Fault Tolerant Computer Architecture. Morgan & Claypool, 2009.

[35] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet: improving the availability of
shared memory multiprocessors with global checkpoint/recovery. InISCA ’02, pages 123–134.

[36] V. Sridharan, D. A. Liberty, and D. R. Kaeli. A taxonomy to enable error recovery and correction in
software. InWorkshop on Quality-Aware Design, 2008.

[37] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, and V. De. Adaptive
body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor
frequency and leakage.IEEE Journal of Solid-State Circuits, 37(11):1396–1402, 2002.

[38] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpointing and its applications. In
FTCS ’95, page 22.

[39] V. Wong and M. Horowitz. Soft error resilience of probabilistic inference applications. InSELSE ’06.

30

