Computer
Sciences

Department

BCE: Extracting Botnet Commands from Bot Executables

Junghee Lim
Thomas Reps

Technical Report #1668

February 2010




BCE: Extracting Botnet Commands from Bot Executables

Junghee Lim

Comp. Sci. Dept., Univ. of Wisconsin
junghee@cs.wisc.edu

Abstract—Botnets are a major threat to the security of
computer systems and the Internet. An increasing number of
individual Internet sites have been compromised by attacks
from all across the world to become part of various kinds of
malicious botnets. The Internet security research commury
has made significant efforts to identify botnets, to collectlata
on their activities, and to develop techniques for detectio,
mitigation, and disruption. One way of analyzing the behavor
of bots is to run the bot executables and observe their actian
For this to be possible, one needs proper input commands that
trigger malicious behaviors. However, it is difficult and time-
consuming to manually infer botnet commands from binaries.
In this paper, we present a tool calledBCE for automatically
extracting botnet-command information from bot executabks.

Our experiments showed that the new search strategies
developed forBCE yielded both substantially higher coverage of
the parts of the program relevant to identifying bot commands,
as well as lowered run-time.

Keywords-botnet analysis; bot-command analysis; directed
test generation; control dependence

I. INTRODUCTION

Thomas Reps

Comp. Sci. Dept., Univ. of Wisconsin
reps@cs.wisc.edu

over the network is considered to be tainted), applying
library-call-level taint propagation, and checking fointad
arguments to selected system calls. The methods described
in references [16], [17], [20], [22], [30], [33] use flow-teb
detection by monitoring network traffic (C&C control activi
ties). Temporal/spatial behavior statistics are also .uSadh
network-based and behavior-based approaches have several
drawbacks: the approaches are (i) costly (runtime overhead
to monitor network traffic, space overhead for storing packe
logs, etc.), (ii) easily evaded, and (iii) not able to reaahe
structure of a botnet. Some detection techniques [15] rely
on well-known bot communication signatures. (A lot of bot
code is reused, and thus the commands and authentication
mechanisms are widely known.) However, attackers can
easily modify the command-and-control language used by
their bots to raise the bar for detection and control.

Botnet-Command Extractor (BCE). We have developed a
tool calledBcE for extracting botnet-command information
from bot executablesBCE aims to provide useful infor-
mation from analysis of bot executables by automatically

An increasing number of individual Internet sites haveextracting proper inputs that trigger malicious behavior.
been compromised by attacks from all across the world t(}B\pplications of the information recovered include obsegvi

become part of various kinds of malicious botnets. Botnets, analyzing malicious behaviors, as well as identifying
seriously undermine computer security and reliability by, 4 mitigating botnets

conducting illegitimate activities, such as performinggk A typical way to analyze the behavior of a bot is to
scale distributed denial-of-service attacks; identitgfth run the executable and observe its actions. To carry this

s_endlng spgm, trojans, apd p_hlshlng emails; d|str|but|n%ut’ however, one needs proper inputs to trigger malicious
pirated med|a, and performmg click fraud. Moreover, bt#ne o ayiors. Some widely known commands are often used
can QUICkB/ growhby_usmg worms to attack vulnerablfefor this purpose. However, most attackers change their
systems._. uring the time between an a_n.nouncement O Bommands to evade such dynamic analysis. Also, it is a hard
vulnera_bll!ty and a patch for the yulnerabll|ty, the poiaht problem to obtain such inputs by manually stepping through
for bot infiltration is particularly high. the executableBCE automates the extraction of information

The Internet security research community has made Siggp, ot potnet commands and the arguments to commands.
nificant efforts to identify botnets, to collect data on thei

activities, and to develop techniques for detection, miti- 1h€ work described in the paper makes the following
gation, and disruption. Some bots try to avoid detectiorFontributions:

by using slow-spreading infection techniques. Some use 1) BCE automatically extracts botnet-command informa-
multiple levels of indirection to make it harder to undensta tion from bot executables, without source code or
the botnet’s structure. Some research on botnet detection symbol-table/debugging information. The extracted in-
is based on network-traffic analysis. The work of Stinson formation includes (a) constant command strings that
and Mitchell [29] is based on observing differences in trigger API-level behaviors, (b) relationships, incluglin

how bots and benign programs behave in response to data
received from the network. It also uses host-based dynamic
analysis: performing taint analysis (where data received

type relationships, between the input command string
and the actual parameters of an API call, and (c)
constraints on the actual parameters of an API call.



éi;se if(strecnmp(cend,
/1 (1)

p'')==0) {

el se if(strcmp(cnd,
Il (2)

Ci1p2rt)==0) {

}
else if(strecmp(cnd, “°
/1 (3)

(lppp’ ) ==0) {

(@)

el se if(*cnd++
&& *cnd++
&& *cnd++
if(+xcmd 0)
11 (1)
else if(xcnd == '2")
11 (2)
el se if(*cnd++
&& *cmd++
Il (3)

p
‘p)

(b)

procedure foo
push of fset aP1; lp
| ea eax, [ebp+arg_0]
push eax
call strcnp
add esp, 0Ch
or eax, eax
jnz short |oc_402210
Il (1)
push of fset aP1; '*‘:!p2"’
| ea eax, [ebp+arg_0]
push eax
call strcnp
add esp, 0Ch
or eax, eax
jnz short |oc_402210
oo 1 (2)
push of fset aP1;
| ea eax,
push eax
call strcnp
add esp, 0Ch
or eax, eax
jnz short |oc_402210
Il (3)
(©)

Figure 1. (a) A snippet of the EvilBot source code, (b) alternative
source code, (c) the assembly code of (a).

I 1

11 ppp'
[ ebp+arg_0]

The information obtained viedBCE can be used to
build up proper input commands that trigger API-level
behaviors.

2) BcE is able to provide a specification of the API-level

behaviors of a bot program without running the bot.

Along with the input-command strings extracted from
a bot programBcE also provides a sequence of API
calls controlled by each command, which can help the
user understand the API-level behavior.

3) BCE is not based on signatures. Some recent approaches
to finding out botnet commands are based on pattern-
matching techniques. Many bot programs use standard
string-library functions to process the input command
string, as shown in Fig. 1(a). The assembly code of
Fig. 1(a) obtained using the IDAPro disassembler is
shown in Fig. 1(c). One can find a pattern in the
assembly code: there are tvpush instructions, one

of which is for a constant string that IDApro readily
identifies, followed by a call tost r cnp. However,
such a technique is ad hoc and can be easily evaded,
e.g., by changing the code in Fig. 1(a) to use byte-
by-byte comparison instead of using standard library
functions, as shown in Fig. 1(b).

4) BcCE uses directed test generation [13], enhanced with
a new search technique that uses control-dependence
information [11] to direct the search. Our experiments
show that the method provides higher coverage of
the parts of the program relevant to identifying bot

commands, as well as lowered run-time.

5) We performed experiments with four real bot programs.
Our preliminary results show thaBCE is able to

effectively extract bot-command information.

Organization. The remainder of the paper is organized as
follows: §ll discusses what kind of informatidBCE extracts,

and how one can make use of the information to trigger
potentially malicious behaviors from a bdilll presents
background on directed test generation [18) presents
the enhanced techniques for exploring program paths that
we developed for use iBCE. §V describes the use of
nondeterminism inBCE, which is used for writing “har-
ness” code to model possible client environments, possible
inputs, and possible return values from library functions o
system calls§VI discusses additional information thBCEe
recovers, which combines the recovered information about
constraints on inputs with type information for the target
API calls. §VII describes how a language-independBot
implementation was createdVIIl presents experimental
results.§1X discusses the limitations dBCE. §X discusses
related work.§XI concludes.

Il. BOTNET-COMMAND EXTRACTOR (BCE)

In this section, we first discuss what informati®@ce
relies on to extract botnet commands. We then summarize
the kind of information thaBCcE provides, and how one
can make use of such information to generate proper input
commands.



A. WhatBcE Relies On

1. API prototypesBCE relies on information about func-
tion prototypes of API functions. For example, the
prototype ofShellExecutds as follows:

HI NSTANCE Shel | Execut e(
HWAD hwnd,
LPCTSTR | pOper ati on,
LPCTSTR | pFi | €,
LPCTSTR | pPar anet er s,
LPCTSTR | pDi rectory,
I NT nShowCnd
);
| pDi rectory: [in] A pointer to a null-terminated
string that specifies the default (working)
directory for the action.

The function prototypes are used to construct reason-
able input commands given the command specification
extracted byBCE.

2. Control-Dependence GraphBce makes use of the
control-dependence graph for a bot binary to optimize
its state-space-exploration algorithm. We discuss the
use of control dependences in more detaigli.

B. What Bce Recovers and How to Use the Recovered
Information

1. Constant command strings that control a bBbr
example, there are three nested if-statements in the
code shown in Fig. 2(a). Two API calls are invoked

when the three branch conditions are satisfied. Suppose

thatcnd has been tokenized into three null-terminated
strings. Fig. 2(b) is the command string constructed

cmd «— char* for command string
t oken[] « tokenization of cnd

if (strcnp(token[0], ‘‘hello ') == 0) {
if (strenp(token[1], “*,"") == 0) {
if (strcenp(token[2], ‘‘world ') == 0) {
W nExec(‘ ‘1l ogin.exe ');

Shel | Execute(..., token[3], ...);
}
}
(a) a simple example
h e 1 1 o > w o r 1 d

token[0] token[1] token[2]

(b) constant command string

WinExec I:>
The argument is a|
constant “login.exe”

(c) a sequence of API calls

ShellExecute

The fifth argument is from th
fourth token of the command,
and its type is LPCTSTR.

void foo(char* cnmd) {
int n = atoi(cnd);
if (n>0) {
if (n < 25) {
Api Cal I (n);
}

(d)

K . . 1 7 \0 n_sym_expr

_based on the mfor_matlon extracteq_ BCcE. This e Z (cmd[@] - 48) x 10 n_sym_expr > ©
information is obtained from conditional branches - + (cmd[1] - 48) && n_sym expr < 25
where a portion of the command string is comparet :

against some constants, as the three strings (“hello © ® ©

“", and “world”) in the example. Figure 2. (a) A simple example program; (b) the command

2. A sequence of API calls controlled by each command. string constructed based on the information obtained fEDE;

; ; (c) a sequence of API calls obtained froBcg; (d) another
A:Ogglwmlll e;cf][ Commar:cBI::IZ %rO\;lr:jes a Sequgnlc:e simple example; (e) constant examples providedBiog; (f) the
o calls that are controlied by the command. 9' symbolic expression obtained froBcE for the argument; (g) the
example, the code executed when the command strir constraint obtained fror8cE.

shown in Fig. 2(b) is issued subsequently invoke:
WinExecand ShellExecute This information can be
directly used to get an idea of the API-level behavioi
of a bot without actually executing it.

3. Information about the actual arguments of each API ca
In addition to a sequence of API callBCE provides
information about the arguments to each API
call, such as constant values for an argumen
symbolic expressions, and constraints on the symbol
expressions, as shown in Fig. 2(e), (f), and (g)
respectively.

« Constant argumentdn many cases, API calls take
constant arguments that one can statically extract
from binaries. For example, the first argument of
WinExecin Fig. 2(a) is a constant string “login.exe”.

In addition to the sequence of API calls, information
about argument values enables one to get a better
idea of the API-level behavior of a bot without
running it.

« Symbolic expressions in the input-state vocabulary:



BcE also provides a symbolic expression for each it is not likely that BCe finds out a reasonable IP

actual parameter of an API call, along with its address unless there are conditional branches where
type information, as long as the argument is related it can extract proper constraints on the command.

to some part of the input command. For example, Therefore, in some cases, the user is responsible for
ShellExecutein Fig. 2(a) takes the fourth token making use of the extracted constraints to construct

of the input command as its fifth argumemce reasonable inputs.

automatically extracts a symbolic expression that hagVI discusses other kinds of information about the bot’s
one symbolic termt oken[ 3], along with its type commands thaBBce provides—in particular, information
LPCTSTR. The type information is obtained from that combines the recovered symbolic information about
the prototype of the API call. The type information inputs with type information for the target API calls.

is used to come up with a proper input string. Given

the information that the fourth token is supposed to lll. OVERVIEW

be a null-terminated string that specifies a working This section provides background alirected test gen-
directory name, one can build up a complete com-gration [13], which collects path constraints and uses them
mand string as follows: to explore new paths systematically. In applying directed

"hello , world C \tenp” test generation irBCE to the problem of extracting bot
Fig. 2(f) shows another example of a symbolic ex-commands, we developed new techniques to explore pro-
pression thaBcE provides. Fig. 2(f) is the symbolic gram paths, which differ from conventional directed-test-
expression obtained for in Fig. 2(d). In Fig. 2(d), generation techniques. We discuss our enhanced search
the input command string is a numeral, which is algorithms in§IV.
converted into a number by callirgf oi ; the num- One example of a directed test-generation tooBissE
ber is then passed into an API call as an argument14], which is a whitebox fuzz-testing tool, an advance on
The symbolic expression is in theput vocabulary fuzz testing based on random mutatioB8GE records an
in that the symbolsdnd[ O] and cnd[ 1] ) that actual run of a program under test, starting with a well-
appear in it represent individual byte values of theformed input, then symbolically evaluates the recordecktra
input command string. We discuss how the symbolicand generates constraints that capture how the program uses
expression is generated §fll. its inputs. The generated constraints are then systertatica

] ) ] modified and solved with a constraint solver to produce new
Constraints on symbolic expressiorCe also pro-  inpyts that cause the program to follow different controifl
vides constraints on the symbolic expressions expaths. The process is repeated with a coverage-maximizing
tracted for each actual parameter of an API call, if heyristic designed to find defects as fast as possible. Fig. 4
any. For exampleBCE extracts the constraint shown gnoys 4 simple example taken from [14]. There are 5 values
in Fig. 2(g) for the actual parameter to the APl |a5ding to the error out a®** possible values for 4 bytes.
call in Fig. 2(d). Therefore, the probability of hitting the error with random

This constraint is obtained from the two conditional testing is aboutl /2%2. In contrast, whitebox dynamic test

branches that guard the API caBCE finds out  generation can find the error in at mast = 16 iterations

the conditional branches on which the API call (4 yalid path constraints are collected during the expiorat
transitively depends. It only collects branches Whoseprocess).

predicates constrain the given symbolic expression.
The obtained constraints also play an importanLl_
role for building up proper input commandBCE

Alg. 1 shows the basic search step of Bee algorithm.
he outline of the algorithm is similar to typical directed-
provides some concrete examples foras shown in tgst—genera‘uon techmque;, which can be roughly su.mma-
Fig. 2(e): the numeral stringsl™” and “3" satisfy rized as repeatedly applying the following three steps:
the two branch predicates: (> 0 andn < 25). (1) Concrete executionPerform concrete execution along
Therefore, these input strings cause the APl call to ~ some pathr. The concrete-execution loop repeatedly
be invoked, and thus can be directly used to run takes a concrete program state and returns an updated
the bot program. However, there are cases when state that captures the semantics of each instruction. A
the automatically generated concrete examples fail ~ program state keeps the values of (i) registers, (ii) flags,
to trigger observable behavior of a bot. For example, and (iii) memory locations.
suppose the API in Fig. 2(d) is some API that
takes an IP address and sets up a connection toThe first step (concrete execution) and the second step (digmb
the server (e.ght t pser ver of SpyBot). Because execution) can be done simultaneously, which is sometiraksdconcolic

o : ._.execution[27]. In concolic execution, concrete values from the ceter
concrete examples are randomly selected to satisf

) A h ) ¥xecution state are sometimes used to simplify the symbtiies created
the constraints collected during symbolic execution,during symbolic execution.

4



Algorithm 1 Single BCE Iteration

Require: A concrete states.
Require: A trace treeT’

Figure 3. A trace tree.P1, P», P;, and P, denote the branch
constraints obtained during the symbolic execution of th¢hp
shown in bold.

(2) Symbolic executionPerform symbolic execution along

the same path. Symbols represent values in the input 7:
state and the input command. Symbolic execution is s:
similar to concrete execution except that values may o:
be symbolic terms or formulas over the input symbols. 10:

At each branch nodé3, the branch condition is sym-

bolically evaluated and then constrained to the Booleamn 1:
value needed to follow the branch direction taken by 12:

m at the current instance aB. This yields a branch
constraint forB.

1

Concretely execute the program with the concrete state
S.

Let C'T be the concrete trace obtained from the concrete
execution.

Symbolically execute the trac@T'.

4: Let T’ be the trace tree augmented by the symbolic

a

13:

For the symbolic memory state, we use a map

execution.
if at least one API call is encountered in the concrete
tracethen
Based on the symbolic state obtained in the symbolic
execution, collect information about the command
tokens that appear in the arguments to each API call.
end if
repeat
Choose a new path in the trace tred.
Let ¢ be the path-constraint formula obtained by
conjoining the branch constraints along
until ¢ is satisfiable
Let M be the model obtained by calling the constraint
solver with .
Create the new concrete staff updated with the
assignments from the modéy.

from concrete scalars (i.e., addresses) to symbolic ex=

pressions. In machine code, int-valued quantities and void top(char input[4]) {

address-valued quantities are indistinguishable at run- int cnt = O;

time, and arithmetic on addresses is used extensively. if (input[0] == ‘b’) cnt++;
Therefore, at a program point, the address for either if (input[1] == a:) cnt ++;

a memory-access or memory-update operation may be : I E: QSEE { g% . ? )) ccnrlt::;

a symbolic expression. TH&CE algorithm concretizes if (cnt >= 4) abort 0; '

such symbolic expressions using the value for the ad- }

drgsts calculated from the concrete state at the program Figure 4. An example for whitebox fuzz testing
point.

(3) Exploring a new path. To explore a new path, the al-
gorithm chooses some branch noBein the concrete

encountered on the prefix of from the root node
to to B. In place of the branch-constraint formufa

explore the path toward the true branch’éf in Fig. 3,

constraint solver:
P A P, AN Py A =Py

constraint formula is satisfiable, and, if it is satisfiable,

tion in the program. Each node can have two children, one of
trace, and conjoins all the branch-constraint formulaswhich represents the first branch node encountered along the
path through the true successor, the other of which is the firs
branch node along the path through the false successor. The
for B itself, -y is used. For example, if one wants to path from the root node to a leaf node represents the branch
instructions of a concrete trace. Each edge holds a branch
the following path-constraint formula is passed to theconstraint obtained from symbolic execution. Each time a
branch is symbolically executed (to follow the direction
taken by a previous concrete execution), the trace tree is
The constraint solver determines whether the pathextended appropriately.

returns a satisfying assignment for it, which is used to
generate a new concrete input state for use in the next

round of exploration.

IV. PROGRAM EXPLORATION USING
CONTROL-DEPENDENCEINFORMATION

This section presents the enhanced techniques for ex-

BCE maintains a trace tree that is expanded during theloring program paths that we developed for useBiTE.
process of symbolic execution. Each node in a trace tre®lineSweeper [5] and the work of Moser et al. [25] have
represents a different execution instance of a branchuiistr shown the potential for carrying out better exploration in



if (a>0) {// (bl)

malware. Other tools, such &aGE, have addressed the b=1 //

) : . o =1 (s1)
problem of path explosion by introducing heuristics to if (a <25 {// (b2)
improve coverage [14]SAGE uses so-calledjenerational c =2 /] (s2)
search designed to partially explore the state spaces of }
large applications with the aim of finding bugs faster. As
in most of other directed-test-generation to@GE aims el 39:{3_ /1 (s3)
to improve test coverage. Unlike bug-finding tools or tools } '
that aim to improve coverage, BBCE we are interested in e =4; [/ (s4)

goal-directed techniquesimed at extracting bot commands.
The characteristics of how the bot code parses the trans-

mitted commands and takes actions depending on the parsed

commands can be used to come up with better explorationy x s not post-dominated by

strategies that avoid possible explosion and obtain morgye yseC' to denote the direct-control-dependence relation.
complete specifications about the command structure. We

incorporated the following path-exploration strategigtoi
P 9p P giat dependences on the true branch or false branch of a branch-

BCE:
. nodeX, as follows:
» Choose as a candidate for the new path the branches Definition 4.3: Node Y is directly control-dependent on

that have a possibility of leading to API cafls. edaeX — W iff

« Prune the search performed BgE so that each path 1g h - 'It the W —* Y h thaty ¢
includes a limited number of API calls if a candidate ) doer;?n:'zgz Sevzryrl)?loae ” Jﬁerenf:‘]r((:)mXa andpos i
branch for extending the path is independent of the 2) X is not post-dominated by’

branches involved with the API calls already found i ) :
ranches nvolved wi © calls aready Tountin e say that the relatio@(X,Y") holds whenX is a branch

the path. o ,
The exploration strategies are based on the fact that odir go od_e and_/ IS dlr_ec_tly control dependent olf's true branch.
+ is defined similarly.

is to identify as many feasible input commands as possibl

that lead to API calls of interest. Each branch node is associated with two sets of CFG
To identify branches that have a possibility of encoun-nodes: one consists of the transitive control-dependence

tering API calls, we useontrol-dependence information successors for its true branch (denoted®y’'); the other

§IV-A discusses control-dependence information.§IN-B consists of the transitive control-dependence succe$sors

and§IV-C, we present how control-dependence informationits false branch (denoted by ;C).

is used inBCE.

Figure 5. An example to show control dependences.

Control dependences can be broken down more finely into

C;Cx : True control successors

A. Control Dependence CyCx : False control successors

The control dependenceelation is one of the fundamen- ~ For example, in Fig. 5, the statemerfts1) and(s2)
tal relationships among statements or instructions used ia'e transitively control dependent on the true branchIof
compilers and optimizers. For instance, control-depecelen statemen s3) is transitively control dependent on the false
information is used in compilers to determine whether itbranch ofbl. Statement(s4) is not transitively control
is safe to reorder or parallelize statements [11]. A controdependent on any branch in this example. (Henceforth, we
dependence holds when the decision made at a brandill abbreviate “transitive control dependence” by “caitr
X controls whether another statement or instructioris ~ dependence”.)
executed. In the next section, we discuss a novel usage of control-
Control dependence is defined in terms of the postdependence information iBCE.
domination relation.
Definition 4.1: Node Z post-dominatesiode X iff Z #£
X and all paths fromX to the end of the procedure include

Z. (Note that by this definition a node does not post- BCE uses control-dependence information (CDI) to anno-
dominate itself.) tate the trace tree. If there is at least one API call'ic’s (or

CyCx) of a branch node, the node is markedNas(or Ny).

Any branch that has a call to a function that contains at least

oneN; or N in C;Cx (C;C=) is also marked ad, (or Ny).

BcE only chooses one of the nodes marked withor N as

a candidate for the new path. Fig. 6 compares an exploration
2BCE is parameterized to take a list of interesting API entry tmiof strategy that uses control-dependence information (C®l) t

interest. one that does not. The solid lines in the figures indicate

B. Choosing Interesting Branches using Control-
Dependence Information

Definition 4.2: NodeY is directly control dependent on
nodeX iff
1) there exists a path: X —T Y such thatY post-
dominates every node im different from X, and



Algorithm 2 ChooseNewPath
Require: A trace treeT’
Ensure: Formulayp

1: Let Frontier be the branch node ih that is either
marked asN; and does not have a false child i,
or marked asV; and does not have a true child 1,
and has the shortest path from the root node.

2: Let ¢ be the formula conjoined with all the formulas
associated with the branches on the path from Frontier
back to the root node.

3. Returngy

Algorithm 3 GenerateNewConcreteState
Require: A trace treeT’
Ensure: A concrete state CS
1: ¢ = ChooseNewPatfi()
2: Call the constraint solver with the formula
3: if ¢ is feasiblethen

(b) 4. Let M be the model from the constraint solver

Figure 6. Two trace trees; (a) A trace tree without CDI; (b) a 5 Let CS be a random concrete state . .

trace tree with CDI; the circles represent branch nodessthie 6: Let CS be CS updated with all the assignments in

arrows represent possible paths to explore; the half-shanleles M

represent nodes labeled as eitér or V. 7. Return C$

_ 8: else

[%] cnar* 21; I "'b”pUt? 9: Let T’ be T augmented with a dummy node at the

{3} icn?rv,p [1 = "bot.execute"; previously selected node

[4] char cl: 10:  GenerateNewConcrete Stefé(

[5] do { 11: end if

[ 6] cl = xpl++;

[7] C2 = *p2++;

8 v = (unsigned)cl - (unsigned)c2; . . -

{9} i f(v(! — Og); ) ( gned) is not in the trace treeéBCE then conjoins all the formulas

[ 10] br eak; of the branches on the path fromback to the root node.

[11] } while(cl = "\0"); Alg. 3 takes that formula and calls a constraint solver to

[15] Ctov == 0 obtain a model. If the formula for the path tHate chose

% 14% ! (XPI_EaI f to explore is feasible, it generates a new concrete state tha
gets used in the next round of exploration. Otherwise, it
augments the trace tree so that the previously explored path

Figure 7. An example in which it is necessary to choose aniS Never selected again, and calls itself recursively.

alternative candidate as a new path; the source code ptnp Fig. 8(a) is an example in which the number of possible

is inlined in this example. execution paths is exponential in the number of branches:

each of the 5 f -statements is independent of each other.
For this code fragmenBcCE takes 8 iterations when it uses
the paths that have previously been explored. One choos&DI 3 of Alg. 1 to identify 2 different paths (one toward
as the next candidate one of the nodes (on the solid lineghe API call inside the seconidf -statement, and the other
in Fig. 6) that has a solid edge to only one child. Suchtoward the fifth statement) whereas without CDI it exhibits
choices are marked with arrows. There are fewer candidateskponential behavior.
to explore in Fig. 6(b) than in Fig. 6(a). The degree of theI

, N direct control-dependence.Iln some cases, it is possible
improvement by using CDI depends on the percentage qﬂ

. . at a candidate node marked &% or N; has a branch
nodes ma”‘?d With\; or Ny. We d|§cuss how the approach predicate, the negation of which causes the path constraint
works out with real bot programs igVIIl.

Algorithms. Alg. 2 and Alg. 3 describe the path-exploration The body ofst r cnp includes some branches to compare an individual
| ithm of BeE. In Ald. 2. BCE chooses a node in the character of the first argument with one constant charanten fhe s_econd
algori . 9. 4 argument. To get to the two API call siteBCE needs several trials for

trace tree marked a¥; or NV, whose corresponding branch each.



[1] if(strcnp(c[0], "aaa")==0) { 51 APl cal 51 AP call
[ 2] n = at 0| ( C[ 5] ) ' 3 encountered! ; encountered!

[4] i}%(strcrrp(c[l], "bbb")==0) {
[ 5] APICal I 1(...);

[7] i};‘(strcrrp(c[Z], "ccc")==0) {
[ 8] n = atoi(c[5]);

(© (d)

[ 9]
[10] if(strcnp(c[3], "ddd")==0) { Figure 9. (a) A control-dependence graph; (b) a trace tree when sub-
[11] n = atoi(c[5]); trees are pruned using control-dependence graph (a); (themn
[12] } control-dependence graph; (d) the trace tree when sub-aee
[13] if(strcnp(c[4], "eee")==0) { pruned using control-dependence graph (c).
[ 14] APl Cal I 2(...);
[15] }

(a) the constraint solver can provide a new test input in which

the first input byte equal®d’.

[1] if(strenp(c[0], "aaa")==0) { When a situation occurs like the one described for

{:2,)% } n = atoi (c[51); line [13], a command-line flag controls how many prior
[4] elseifstrcnp(c[1], "bbb")==0) { branches to try.

[ 5] APICal I 1(...);

[6] 1} C. Pruning the Trace Tree using Control-Dependence Infor-
[7] elseif{strcnp(c[2], "ccc")==0) { mation

[ 8] n = atoi(c[5]); . .

[9] } CDI helps to direct program exploration toward API call
[10] elseifstrcnp(c[3], "ddd")==0) { sites. However, even when some candidate branches are ex-
{ i%} n = atoi(c[5]); cluded by CDI, there is still the possibility of combinatri

;o explosion. For example, in Fig. 8(a), there are 24 paths
Hi} elst::((s:;lrlch.(.c.[)A,_] . "eee’)==0) { in total that invoke the API call(s): there are 8 paths that
[15] } ' invoke each call (and not the other) and an additional 8

(b) that invoke both. When the branches controlled by different
Figure 8. (a) An example with independenf -statements (and thus commands are independent of each other, it means that

an exponential number of paths). (b) An example more tym¢al Multiple commands can be combined to produce different
bot code (with a linear number of paths). sequences of API calls. In other words, if there are

independent f -statements involved with API calls, the total

) ) ) number of possible paths that invoke at least one API call
to be infeasible, that does not help program exploration. Fojg on_

example, in Fig. 7p1 points to the input character array, 1o avoid such combinatorial explosion, we limit the
andp2 points to the constant strifigoot . execut e”. The  exploration performed byBCE so that each path includes
branch on line [13] is marked &S, because its true branch 5 jimited number of API calls if a candidate branch for
contains an API call. Suppose that in the initial concreteextending the path is independent of the branches involved
state, the first input byte pointed to byl is something  ith the API calls already found in the path. In particulae t
different from ' b", and thus the loop in lines [S]-{11] path exploration irBcE only findsn paths when there are
terminates at line [9] after one iteration with the conditio ,, independent f -statements involved with API calls. The
v 1= 0, and the false branch of line [13] is executed. Ininformation obtained in this way is still useful to a user,
the subsequent symbolic execution in which the charactegithough it shifts the burden onto the user to identify the
array pointed to byp1 is treated as a list of symbols, the Ap-level behaviors of a bot by trying various combinations
path constraint toward the true branch at line [13] is of the n extracted commands. For the example in Fig. 8(a),

(Ser — Cy #£0) A (Se1 — Cp = 0), BCE only extracts

where S,; is a symbol that represents the first input byte, “bbb” for the second token of cmd

andC, is a constant symbol. This formula is infeasible. In “eee” for the fifth token of cmd

such cases, as a heurisB8CE chooses branches prior to the gng the user can try running the bot with the three
candidate node on the trace as an alternative candidate. fymbpinations—“bbb”, “eee”, and “bbb” + “eee”—to observe
this example, the false branch at line [9] is chosen as a neWossibly different behaviors.

ath so that from the path constraint - - . . L
P P The heuristic for avoiding combinatorial explosion is per-

Se1 — Cp =0, formed by pruning the trace tree dynamically. The following



code illustrates what is involved in dynamically pruning th Algorithm 4 ExtractTypelnformation
trace tree. Fig. 3(a) is the control-dependence graph of thBequire: A function prototypel’

code, and Fig. 3(b) is the corresponding trace tree. Require: A symbolic stateS
Require: The current stack addresg
it (strcnp(token[0], ‘‘hello’’) ==0) {// b1 Ensure: Updated database
APICal 1 1(...) /] sl 1: Let N be the number of arguments of function type
if (atoi(token[1]) >0) // b2 2. fori=0to N —1do
: )///332 3. LetT; be the type of the™ argument of function type
P S T
}

4: addr, = sp + i x param size
An API call is invoked immediately in the true branch 5. CollectTypelnformatiori;, addr;)
of b1. In this caseBCE considers pruning the sub-tree ST 4. end for
of the trace tree starting fro2. The control-dependence
information is used to determine whether the sub-tree ST is
to be excluded from further exploration. ST can be exclude
if it does not include any node marked &% or N; that is
control dependent on node (see Fig. 9(b)). If there is at
least one other API call in2, as shown in Fig. 9(c) and (d),
the true branch remains as a candidate to explore becau
the second f -statement is control dependent on the first
one.

%f symbols RandSepfor symbolic execution. During con-
crete execution and symbolic execution, the successive val
ues inRandSeaqnd RandSegrespectively, are used as the
successive return values from API call sites. In the above
3§ample, there are three calls @etCurrentDirectoryin
a trace because the loop is executed three times. Each of
the three return values comes from successive elements of
In practice, many bot programs are written as shown irRandSecand RandSeq|In this way, we model the state of
Fig. 8(b), where eachf -statement is dependent on other the operating system. Network inputs are modeled similarly
ones. However, even if when they are rewritten in the form

of Fig. 8(a), the pruning technique is effective in practice VI. EXTRACTING TYPE INEORMATION

V. OS SrATE §ll briefly discussed how one can use the information
extracted fromBCE to understand a bot program and
Many formalisms for symbolic analysis of programs construct proper input commands. This section discusses
support the use of nondeterminism, which is useful forsome additional information th&ce provides to help users
writing “harness code” (code that models the possible tlienynderstand the recovered information about the botnet's
environments from which the code being analyzed mightommands, based on combining the recovered symbolic
be called), as well as for modeling the possible inputs tqnformation about inputs with type information for the tatg
a program. A common approach is to provide a primitiveap| calls.
that returns an arbitrary value of a given type. Examples gome extracted constant command strings can be directly
include theSdvMakeChoi ce primitive of SLAM [3] and  ysed to trigger interesting API-level behaviors of a bot
the havoc(x) primitive of BoogiePL [4]. program in cases where there are no additional arguments
In some cases, a value returned from a system call or g 3 command. However, some of the information extracted
Windows-API call is used in a branch condition, as shownghout a command is in the form efmbolic expressioné\
in the following example. IfGetCurrentDirectoryreturns  symbolic expression captures the semantics of all theiostr
a value greater tha, API Cal | 1 is invoked; otherwise, tions on a specific path from the starting point to the API

API Cal | 2 is invoked. call site. In some cases, the extracted symbolic expression
for (i=0; i<3; i++) { simply represents a sub-string of the command, whereas
int n = GetCQurrentDirectory(...); there are other cases when the command is converted to

if (n>0 { another form. A typical action is to convert part of the input

APLGalTL(. ) string, using the standard library functiatoi, into a number

el se { that is passed to the API call. In other words, the input gtrin
APl Cal | 2(...) holds numerals, whereas the API call receives a number.

} OnceBcE extracts a symbolic expression for an argument

} to an API call, it is the user's responsibility to choose

In the current version oBCE, concrete execution and a proper input with which to run the bot based on the
symbolic execution do not go into system calls and Windowssymbolic expression. To help in this steBCE extracts
API functions. InsteadBCE keeps a sequence of random type information for each symbolic expression using the
numbers RandSejjfor concrete execution, and a sequencealgorithms shown in Alg. 4 and Alg. 5.



Algorithm 5 CollectTypelnformation int hget addrinfo ( ] -
Require: A type T char nodenane;

. char * servnarne;
Require: An addressaddr ADDRI NFO* hints:
Require: A symbolic stateS ADDRI NFO* res;

Ensure: Updated database h

1: if T is a pointer typ€el”* then struct {
2:  Let sym exprbe the symbolic expression obtained by o

looking upaddrin S. char ai _canonnane;
3:  Insert the mappingsfym expr, 7"x) into the database sockaddr _i n* ai _addr;
4: Let addr be the symbolic expression at address

symexprin S } ADDRINFQ,
5. if addr is a scalathen struct {
6: CollectTypelnformatiori(’, addr) o
7. endif unsi gned |l ong sin_zero;
8: else if T is a basetyp¢hen } sockaddr _in;
9: Letsym exprbe the symbolic expression obtained by (a)

looking upaddrin S. )

sockaddr _inx s = ...; // malloc

10: Insert the mappingsyym expr, T') into the database s->sin_zero = atoi (cm_token[0]):

11: else if T is a s;ructure typehen ADDRINFO- a = ...: // malloc
12:  for all T; a field type ofT" do a->ai canonname = ...: // malloc
13: CollectTypelnformatiori(;, addr + offsef) strcpy(a->ai _canonnane,
14:  end for C add cnd_t oken[ 1] ) ;
. . a->al _addr = s;
15: end if getaddrinfo(..., ..., a, ...);
(b)

Alg. 4 and Alg. 5 are pseudo-code for collecting type _
information for each extracted symbolic expression. OufFigure 10. (@) The prototypes ajet addr i nf o, ADDRI NFO, and
. . ; sockaddr _i n; (b) an example code fragment.
approach uses information about the function prototypes
of API calls, as well as a database of OS and network-
related types. For example, Fig. 10(a) shows the prototyp
of get addr i nf o and thest r uct typesADDRI NFOand ) _
sockaddr _i n. ADDRI NFO is the type of the third and  * !N the case of a pointer typ&x, BCE first adds the
fourth arguments ofjet addr i nf o, andsockaddr _i n mapping éym_ecxpr, Tx) to the database, and looks
is the type of one of the fields &¥DDRI NFQ. up the_ corresponding value in the symbohc_state, and
For each API call siteBCE collects type information recursively caII.sCoIIectTypeInformatlon_passmg the
by calling ExtractTypelnformation(Alg. 4). Along with value along with the typel’ of the object referred
such information,ExtractTypelnformatiortakes the sym- to. For exampleCollectTypelnformatiofADDRI NFO-
bolic state at the API call site, and the symbolic expres-  5P) recursively calls _
sion that represents the current stack pointer. For example CollectTypelnformatioADDRI NFO, S(sp)*)
Fig. 10(b) is an example that includes a call to the system « In the case of a basetygE, BCE looks up the cor-

Sre slightly different:

call get addri nf o. The first token of the command is responding value sym_expr) in the symbolic state,
converted to a numeric value throughoi to be used as and it adds the mappingygm_expr, T). For example,

si n_zer o for thesockaddr _i n object, and the second the first token of the command is used for the field
token is used asi _canonnamne for the ADDRI NFO si n_zero of sockaddr _i n in Fig. 10, which is of
object. BCE calls CollectTypelnformationwith the actual base-typainsi gned | ong. In this caseBcCE collects
arguments-ADDRI NFOx and the current stack pointer—for the information that the associated symbolic expression
the third argument ofet addri nf o. is of typeunsi gned | ong.

For each argument to the API call, it calculates the , | the case of a structure type, such sisr uct or
address of the corresponding stack location, and passes itt  ¢| ass, BCE iterates over the structure’s fields, calling

CollectTypelnformatior{Alg. 5), along with the argument CollectTypelnformatiomvith each type and the address
type from the function prototype and the symbolic state.  of the corresponding field. For exampl@pllectType-
CollectTypelnformationis a recursive function that tries Information(ADDRI NFO, S(sp)) recursively callsCol-

to associate each type with the corresponding symbolic
expression on the stack. Depending on the type, the actions*s(sp denotes a lookup cfpin symbolic stateS.

10



lectTypelnformatiofchar =, S(sp) + offset), Collect-
Typelnformatiofsockaddr _i nx, S(sp) + offset),
and so forth, where offsgts the corresponding offset
for each field.

VII. | MPLEMENTATION

The BCeE implementation has been structured so that it
can be retargeted to different languages easily. The corg

TsL has two classes of users: (1) instruction-set speci-
fiers, and (2) analysis developers. The former useTibie
language to specify the concrete semantics of different in-
struction sets; the latter create new analyses by instangia
the CIR in different ways.

Specifying an Instruction Set.Much of what an instruction-
set specifier writes in &sL specification is similar to writing
n interpreter for an instruction set in first-order ML [18].

components of the system are language-independent in "Yne specifies (i) the abstract syntax of the instructionkset,

different dimensions:
1) The BcEe driver implements Alg. 1. It is structured
so that one only needs to provide an implementatio
of concrete execution and symbolic execution of

defining the constructors for a (reserved, but user-defined)
typeinstructior (ii) a type for concrete states, by defining—

;E.g., for 32-bit Intel x86—the typstateas a triple of maps:

language. Consequently, this component of the systeratate: StatéINT32 — INT8, reg32— INT32 flag— BOOL);

can be used for source-level languages or for machine-

code languages.
2) For machine-code languages, we have used two to

that generatethe required implementations of concrete
execution and symbolic execution from descriptions
of the syntax and semantics of an instruction set 01!

interest.

The abstract syntax and concrete semantics of an i
struction set are specified using a language called
(TransformerSpecificationL anguage) [23]. Decoding (i.e.,
translation of binary-encoded instructions to abstraotay
trees) is specified using a tool calléshL (InstructionSet
Architecturel anguagey. The relationship betwedsAL and

TsL is similar to the relationship between Flex and Bison.

With Flex and Bison, a Flex-generated lexer passes toke
to a Bison-generated parser. In our case, Tise-defined

abstract syntax serves as the formalism for communica
ing values—namely, instructions’ abstract syntax trees—

between the two tools.

Compared with other specification languages for instruc

tion sets,TsL has one unique feature: fromsangle specifi-
cation of the concrete semantics of an instruction seu&

tiplicity of static-analysis, dynamic-analysis, and symbolic-

analysis components can lgenerated automaticallyThe
TsL system consists of two parts:

« TheTsL language for specifying an instruction set’s ab-

stract syntax and concrete semantitst is a strongly

typed, first-order functional language with a datatype-
definition mechanism for defining recursive datatypes,

plus deconstruction by means of pattern matching.
o The TsL compiler, which translates a specification

to a common intermediate representation (CIR). The

CIR generated for a givemsL specification is a C++

template that can be used to create multiple analysi§ontrol-Dependence

where INT32 and INT8 refer to 32-bit and 8-bit integers,

Olrsespectively, andeg32andflagrefer to a type for the names

Of 32-bit registers and a type for the names of condition-
codes, respectively; and (iii) the concrete semantics ofi ea
nstruction by writing aTsL function

state interpinstfinstruction I, stateS) { ... };

"Semantic Reinterpretation. Each analysis is defined by

reinterpreting the constructs of thisL meta-languagd.sL’s
meta-language supports a fixed set of base-types; a fixed
set of arithmetic, bitwise, relational, and logical operat

and a facility for defining map-types. An analysis developer
defines a new analysis component by (i) redefining (in C++)
the TsL base-typesINT32 INT8 BOOL etc.), and (ii)

ns

redefining (in C++) the primitive operations on base-types
(+inT32, +INTS, €1C.). These are used to instantiate the CIR
template. This implicitly defines an alternative interptin

of each expression and function in an instruction-set’s con

crete semantics (includirigterpinstr), and thereby yields an

alternative semantics for an instruction set from its ceter

semantics.

For BCE, TsL is used to create several useful reinterpre-
tations of an instruction set:

« By instantiating the CIR with a reinterpretation that
performs the standard interpretation (in C++) of the
TsSL operators, we obtain the instruction interpreter for
concrete execution.

« By instantiating the CIR with a reinterpretation that
translates operations to the input language of an SMT
solver, we obtain a semantics suitable for symbolic
execution. (In our implementation, we used the Yices
input language [10].)

control-

Information. The

components by instantiating the template in differentdependence information used for the systematic path-

ways.

5ISAL also handles other kinds of concrete syntactic issuesjding (a)
encoding(abstract syntax trees to binary-encoded instructiomg)pdrsing
assemblyassembly code to abstract syntax trees), anagsgmbly pretty-
printing (abstract syntax trees to assembly code).

11

exploration ofBCE is collected from the control-dependence
graph for a bot programBcE uses CodeSurfer/x86 [2] to
obtain the control-dependence graph for a bot program.

API Call Prototypes. BCE uses IDApro [19] and its Fast
Library Identification and Recognition Technology (FLIRT)



[12] to identify calls to library functions. It then uses CDI"); the other stops further exploration along the cutren
a database of function prototypes and OS and networkpath once the trace encounters an API call (denoted as “w/
related types to extract type information from the recostere Pruning”).

symbolic information, as described §vI. The results are shown in Fig. 12. We compared the
Library Functions. In BCE, each library-function call is number of traces ending with API calls and the total number

replaced with a simplified model on which concrete andOf iterations under the configuration “w/ CDI" and *w/
symbolic execution are performed as with other user funcPruning” with three other configurations—(i) “w/o CDI" and

tions. “w/ Pruning”, (ii) “w/ CDI” and “w/o Pruning”, and (jii)
“w/o CDI” and “w/o Pruning”.BCE performs best using the
VIIl. EXPERIMENTS configuration “w/ CDI” and “w/ Pruning”.

We performed experiments on four bot programs. The One other way in which the four configurations differed
bots are from different families, and they have differerisse is in their ability to report whether all commands had been
of commands. Fig. 11 summarizes the experimental resultéound. Only the configuration “w/ CDI” and “w/ Pruning”
The table first shows the size of each program in terms of thé able to do this; i.e., it exhausted its (pruned) searckespa
number of instructions, and the percentage of the branchedd hence could report that there was nothing more to be
marked as\; or N; for each program. found. With the other configurationBcE did not finish even

The four column listed under “Results” shows the numbeiif it had identified all the commands.
of traces ending with at least one API call, the total number As explained in§lIV-C, the user must bear in mind that
of iterations performed byBcE,® and the number of the the commands identified are really command fragments, and
command strings that expect one or more argumés.  various combinations of the command fragments must be
provides a symbolic expression for such arguments, a#fied.
discussed irgVI.

For dBot and AgoBot, we had source code and we were
able to compare the extracted commands with the commands Bce currently has the following limitations:
that one can obtain from the source code. In case of AgoBo
there are two commands—"bot.quit” and “bot.die"—that are
not counted in the trace numbers, but are actually commands.
This is because they are not involved with any Windows
API call. Those commands modify some values to change
the state of the bot. Even thou@cTE was able to identify
those stringsBcE did not mark them as commands because
BCE requires some API call to be controlled by an input
string for the string to be classified as a command. Each
complete command string, such as “bot\@& is extracted
through multipleBcE iterations as follows:

IX. LIMITATIONS

&. Plain (unpacked) binariesBCE only handles unpacked
binaries. In principle, directed test generation is appli-
cable even for packed binaries by invoking a decoder
on the fly during concrete execution. However, the
current implementation oBCE need a preprocessing
step to obtain control-dependence information, which
our implementation obtains from a pre-built control-
flow graph. One would need some heuristics other than
control-dependence information as an alternative for
avoiding combinatorial explosion.

2. Manual identification of the right starting poinBCE

“bOt-d." starts its exploration from some command-processing
“bot.di” function other than main. This allows relatively short
“bot.die” traces for both concrete execution and symbolic
“bot.die\0” execution, resulting in better overall performance
If there is no indication that the extracted string is a com- ~ Of BCE. Typically, there is some initialization code
mand (i.e., it controls no API calls), such as “bot.die” rthe between the beginning of the main function and the
needs to be some manual interpretationBafe’s results, command-processing function that is not relevant to
such as whether one should consider an array of bytes in the ~ €xtracting input commands. However, this can be
input that ends with a delimiter (e.9,0 in case ot r cnp) problematic if the initialization code affects concrete
to be a command. execution in significant ways. Finding a way to start

Bce from the very beginning of a program with low

We also performed an experiment to determine how well ;
cost is left for future work.

the two state-space-exploration strategies that we intred o . )
in §1V-B and §IV-C perform: one strategy chooses a path that3- Approximation.BCE currently approximates some library

has the possibility of encountering API calls (denoted ak “w function calls by using some simplified models. For
example, dBot usesnpri nt f as follows to generate

6An iteration means one run of the basic search step of BeE a string in a specific format for the purpose of sending
algorithm (Alg. 1); on each iteration, a new path is foundt teads to a |Og to the bot-master
a new concrete state. )

12



Bot Program Results Time
Name | # Instrs.| % Nf/INt || # Traces| # SymExprs| # Iterations| Trace Leng| Avg.CE | Total.CE | Avg.SE | Total.SE | Avg.PE | Total.PE| Total
dBot 32168 19% 18 7 89 1893 2.6 231.4 4.8 427.3 0.9 831.3| 1489.9
AgoBot | 54641 36% 17 8 123 4167 7.9 979.1 12.5| 1538.7 16.8| 2067.6| 4585.4
SpyBot | 8360 40% 31 10 279 1290 3.9 1074.2 7.2| 2003.2 8.5| 2374.3| 5451.7
EvilBot | 2917 29% 17 4 133 2476 25 333.8 4.4 589.2 25 328.5| 12515

Figure 11. BCE experiments. The columns, in order, are: the number ofuotms (#Instrs); the percentage of nodes marked as eNheor N;; the
number of unique traces ending with at least one API call;niaber of commands for whicBCE provides symbolic expressions; the total number of
iterations to identify the traces; the average trace lenih average time taken for concrete execution; the tataé tiaken for concrete execution; the
average time taken for symbolic execution; the total timletafor symbolic execution; the average time taken for pathiogation; the total time taken
for path exploration; and the total time taken in second® &kperiments were run on a Intel R49GHz machine withl.49GB RAM.

Bot Program Configuration
Name w/ CDI & w/ Pruning | w/o CDI & w/ Pruning | w/ CDI & w/o Pruning | w/o CDI & w/o Pruning
dBot 18/89 (20%) 18/101+ k18%) 18/99+ <18%) 11/142+ 8%)
AgoBot 17/123 (14%) 17/172+ £10%) 17/158+ 11%) 13/167+ &8%)
SpyBot 31/279 (11%) 28/281+ £10%) 27/420+ 6%) 25/528+ 5%)
EvilBot 17/133 (13%) 14/206+ K7%) 17/163+ £10%) 11/308+ &4%)

Figure 12. BCE experiments. The table reports results for four configaratiof BCE: (1) “w/ CDI” and “w/ Pruning”, (2) “w/o CDI” and “w/ Pruning;
(3) “w/ CDI” and “w/o Pruning”, and (4) “w/o CDI” and “w/o Prung”. The numbers reported in each column are the number igfuentraces ending
with API call(s), the total number of iterations, and theqgeeitage of iterations that resulted in a trace ending with ¢&ls. The experiments were run
on a Intel P41.79GHz machine with1.49GB RAM; the symbol “+" after the number of iterations meanattBCE with the configuration did not finish
(i.e., program exploration could continue infinitely evérali possible commands had been identified.)

4. Obfuscation on branch conditionBCE relies on branch

snprintf(buf, sizeof(buf),

., a[x+1]);

oY Us\r\n'’, X. RELATED WORK

wherea[ x+1] is one of the command tokens Dynamic Techniques.J. Caballero et al. proposed tech-
- ) ) ) - niques that can be used to extract the format of the protocol
A portion of the command is copied intbuf in  Legsages sent from a bot-master by analyzing bot binaries
snprintf. Thebuf is then passed as a parameter|g) They introduced a technique callbdffer deconstruction
toan APl call. _ _ __ that builds the message field tree of a sent message by
If concrete execution and symbolic execution go inside,na1y7ing how the output buffer is constructed. Furthegmor
of snpri ntf, BCE can obtain a symbolic expression they" ysed type-inference-based techniques to find out the
forbuf that contains symbols from the input command.yyne information of each field of the extracted structure
Instead of doing that, to simpliffgCe’s handling of v monitoring how the received (or sent) data is used at
calls tosnprintf, we modelsnprintf as acopy piaces where the types are known, such as system calls.
operator so that the input command symapk+1] iS  Theijr technique focuses on extracting message formata give
copied into the buffebuf ignoring the format string. proper inputs that trigger malicious actions, wher&as
aims to extract such proper inputs.
conditions to explore a program. Therefore, if the Machine-Code Analyzers Targeted at Finding Vulnera-
branch conditions are obfuscated by encryption, ithjlities. A substantial amount of work exists on techniques to
preventsBCE from exploring program paths correctly. detect security vulnerabilities by analyzing source cdde (
For example, fragment (a) below is a normal branchy variety of languages) [31], [24], [32]. Less work exists on
condition that checks a byte value against a constant,ulnerability detection for machine code. Kruegel et all][2
As proposed by Sharif et al. [28], the code can bedeveloped a system for automating mimicry attacks. They
obfuscated as shown in fragment (b). Because it igised symbolic execution of x86 machine code to discover
difficult to invert the hash function, it is infeasible to attacks that can give up and regain execution control by
find ¢ givenH,. modifying the contents of the data, heap, or stack so that
if (X c) { the application is forced to return control to injected elta
) B code at some point after the execution of a system call. Cova
@) et al. [9] used that platform to detect security vulneraieti
in x86 binaries via symbolic execution.
if (Hash(X) He) | MineSweeper [5], the work of Moser et al. [25], aBeGE
run Decrypt (Bg, have been already discussedsiv.
Machine-Code Model CheckersAIrR (“Assembly Iterative
Refinement”) [8] is a model checker for PowerP&IR
decompiles an assembly program to C, and then checks if

c)

}
/1 where Hc Hash(c),

(b)

Be Encrypt (B, c)

13



the resulting C program satisfies the desired property by[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Au-
applying CopPPER [7], a predicate-abstraction-based model  tomatic predicate abstraction of C programs.PhDI, New
checker for C source code. York, NY, 2001. ACM Press.

[MC]SQUARE [26] is a modgl f:hecker for microcoqtroller [4] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. lein
assembly code. It uses explicit-state model-checking-tech ™~ googie: A modular reusable verifier for object-oriented-pro
niques (combined with a degree of abstraction) to check  grams. 2005.

CTL properties.

Balakrishnan et al. developed two machine-code modell3] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
checkers, CodeSurfer/x86 [2] and DDA/x86 [1]. Nei- iPdenFt)i?;iflgmt(ﬁgqg'er%as?e?jn%éhzc?orl_:ﬁ EgiwaréA‘Utan;?r:Eta”y
ther system uses symbolic execution; they are based on  pgtection Springer, 2008.
abstract-interpretation methods (e.g., numeric abstlaet
mains and a form of abstraction refinemerBLeE makes [6] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
use of CodeSurfer/x86 to obtain the control-dependence Bidirectional protocol reverse engineering: Message &irm
graph for a bot program; however, for efficiency reasons, extraction and field semantics inference. Tech. rep. 2009-5
CodeSurfer/x86 was run in a mode in which many of its EECS, UC-Berkeley, 2009.

advanced analysis features were turned off. [7] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichnzamd
K. Yorav. Efficient verification of sequential and concurrén
XI. CONCLUSION programs.Formal Methods in System Desig2b(2—3), 2004.

We developed a tool calleBCE that automatically €x-  [g] s Chaki and J. Ivers. Software model checking without
tracts botnet-command information from bot executables,  source code. IfProc. of the First NASA Formal Methods
without using source code or symbol-table/debugging infor Symposium2009.
mation. The information obtained usir8cE can be used 9] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static
to bu”.d up proper_lnput comma_\nds th"‘?t trlgger_ APl-level detection of vulnerab?litiés in x86 executables. gAﬁ:SAC
behaviors BCe furnishes other kinds of information about 2006.

a bot's commands, in particular, information that combines
the recovered symbolic information about inputs with type[10] B. Dutertre and L. de Moura. Yices: An SMT solver, 2006.
information for the target API callsBCE also provides a http:/lyices.csl.sri.com/.
sequence of API calls controlled by each command, which _
helps users to understand the bot's API-level behaviors. [11] J. Ferrante, K. Ottenstein, and J. Warren. The program
Bce performs directed test generation on executables ﬂependence graph qnd its USe in optimizatans. on Prog.
g ‘ ang. and Syst.3(9):319-349, 1987.
and incorporates a new search technique based on control-
dependence information. Our experiments showed that thg2] Fast Library Identification and Recognition
new search strategies developed fBce yielded both Technology,  DataRescue sa/nv, Liege, Belgium,
substantially higher coverage of the parts of the program  Nitp://www.datarescue.com/idabase/flirt.htm.
relevant to identifying bot commands, as well as Iowered[13]

. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
run-time.

automated random testing. FPLDI, 2005.

Acknowledgements [14] P. Godefroid, M. Levin, and D. Molnar. Automated whiteb
This research was supported by NSF under grants CCF-  fuzz testing. INNDSS 2008.

0540955, CCF-0810053, and CCF-0904371, by ONR und

grants N00014-09-1-0510 and N00014-09-1-0776, by ARL

under grant W911NF-09-1-0413, and by AFRL under grants

FA8750-06-C-0249 and FA9550-09-1-0279. Junghee Lin16] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clus-

was supported by a Symantec Research Labs Graduate tering analysis of network traffic for protocol- and struetu
Fellowship. independent botnet detection. USENIX Sec. Sym2008.

15] J. Goebel. Rishi: Identify bot contaminated hosts by ir
nickname evaluation. IVSENIX Sec. Symp2007.

REFERENCES [17] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting bbtne
command and control channels in network traffic Network
[1] G. Balakrishnan and T. Reps. Analyzing stripped device- and Dist. Syst. Security2008.
driver executables. ITACAS 2008.
[18] E. Harcourt, J. Mauney, and T. Cook. Functional spedtifon

[2] G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Mel- and simulation of instruction set architectures. Aroc. Int.
ski, R. Gruian, S. Yong, C.-H. Chen, and T. Teitelbaum. Conf. on Sim. and Hardw. Desc. Lan@CS Press, 1994.
Model checking x86 executables with CodeSurfer/x86 and
WPDS++. InCAV, 2005. [19] IDAPro disassembler, http://www.datarescue.coatiise/.

14



[20] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scadériet
detection and characterization. HotBots'07: Proceedings
of the first conference on First Workshop on Hot Topics in
Understanding BotnetdJSENIX Association, 2007.

[21] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna
Automating mimicry attacks using static binary analysis. |
USENIX Sec. Symp2005.

[22] Y. Kugisaki, Y. Kasahara, Y. Hori, and K. Sakurai. Bot
detection based on traffic analysis. limelligent Pervasive
Computing 2007.

[23] J. Lim and T. Reps. A system for generating static aratyz
for machine instructions. I€C, 2008.

[24] B. Livshits and M. Lam. Finding security vulnerabiés in
Java applications with static analysis. SSENIX Sec. Symp.
2005.

[25] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. IBEE Symposium
on Security and Privacy2007.

[26] B. Schlich.Model Checking of Software for Microcontrollers
PhD thesis, RWTH Aachen University, Germany, 2008.

[27] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. IfrSE 2005.

[28] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding maliea
analysis using conditional code obfuscation.Natwork and
Dist. Syst. Security2008.

[29] E. Stinson and J. C. Mitchell. Characterizing bots’ oden
control behavior. Inin Lecture Notes in Computer Science
page 4579. Springer, 2007.

[30] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livad&otnet
Detection Based on Network Behavi@pringer US, 2008.

[31] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnertedi
In NDSS 2000.

[32] Y. Xie and A. Aiken. Static detection of security vuladil-
ities in scripting languages. I@SENIX Sec. Symp2006.

[33] J. Zhuge, T. Holz, XinhuiHan, J. Guo, and W. Zou. Charac-

terizing the IRC-based botnet phenomonon. Tech. rep.,eReih
Informatik, 2007.

15



