

Computer
Sciences
Department

BCE: Extracting Botnet Commands from Bot Executables

Junghee Lim
Thomas Reps

Technical Report #1668

February 2010

BCE: Extracting Botnet Commands from Bot Executables

Junghee Lim

Comp. Sci. Dept., Univ. of Wisconsin
junghee@cs.wisc.edu

Thomas Reps

Comp. Sci. Dept., Univ. of Wisconsin
reps@cs.wisc.edu

Abstract—Botnets are a major threat to the security of
computer systems and the Internet. An increasing number of
individual Internet sites have been compromised by attacks
from all across the world to become part of various kinds of
malicious botnets. The Internet security research community
has made significant efforts to identify botnets, to collectdata
on their activities, and to develop techniques for detection,
mitigation, and disruption. One way of analyzing the behavior
of bots is to run the bot executables and observe their actions.
For this to be possible, one needs proper input commands that
trigger malicious behaviors. However, it is difficult and time-
consuming to manually infer botnet commands from binaries.
In this paper, we present a tool calledBCE for automatically
extracting botnet-command information from bot executables.

Our experiments showed that the new search strategies
developed forBCE yielded both substantially higher coverage of
the parts of the program relevant to identifying bot commands,
as well as lowered run-time.

Keywords-botnet analysis; bot-command analysis; directed
test generation; control dependence

I. I NTRODUCTION

An increasing number of individual Internet sites have
been compromised by attacks from all across the world to
become part of various kinds of malicious botnets. Botnets
seriously undermine computer security and reliability by
conducting illegitimate activities, such as performing large-
scale distributed denial-of-service attacks; identity theft;
sending spam, trojans, and phishing emails; distributing
pirated media; and performing click fraud. Moreover, botnets
can quickly grow by using worms to attack vulnerable
systems. During the time between an announcement of a
vulnerability and a patch for the vulnerability, the potential
for bot infiltration is particularly high.

The Internet security research community has made sig-
nificant efforts to identify botnets, to collect data on their
activities, and to develop techniques for detection, miti-
gation, and disruption. Some bots try to avoid detection
by using slow-spreading infection techniques. Some use
multiple levels of indirection to make it harder to understand
the botnet’s structure. Some research on botnet detection
is based on network-traffic analysis. The work of Stinson
and Mitchell [29] is based on observing differences in
how bots and benign programs behave in response to data
received from the network. It also uses host-based dynamic
analysis: performing taint analysis (where data received

over the network is considered to be tainted), applying
library-call-level taint propagation, and checking for tainted
arguments to selected system calls. The methods described
in references [16], [17], [20], [22], [30], [33] use flow-based
detection by monitoring network traffic (C&C control activi-
ties). Temporal/spatial behavior statistics are also used. Such
network-based and behavior-based approaches have several
drawbacks: the approaches are (i) costly (runtime overhead
to monitor network traffic, space overhead for storing packet
logs, etc.), (ii) easily evaded, and (iii) not able to recover the
structure of a botnet. Some detection techniques [15] rely
on well-known bot communication signatures. (A lot of bot
code is reused, and thus the commands and authentication
mechanisms are widely known.) However, attackers can
easily modify the command-and-control language used by
their bots to raise the bar for detection and control.

Botnet-Command Extractor (BCE). We have developed a
tool calledBCE for extracting botnet-command information
from bot executables.BCE aims to provide useful infor-
mation from analysis of bot executables by automatically
extracting proper inputs that trigger malicious behavior.
Applications of the information recovered include observing
and analyzing malicious behaviors, as well as identifying
and mitigating botnets.

A typical way to analyze the behavior of a bot is to
run the executable and observe its actions. To carry this
out, however, one needs proper inputs to trigger malicious
behaviors. Some widely known commands are often used
for this purpose. However, most attackers change their
commands to evade such dynamic analysis. Also, it is a hard
problem to obtain such inputs by manually stepping through
the executable.BCE automates the extraction of information
about botnet commands and the arguments to commands.

The work described in the paper makes the following
contributions:

1) BCE automatically extracts botnet-command informa-
tion from bot executables, without source code or
symbol-table/debugging information. The extracted in-
formation includes (a) constant command strings that
trigger API-level behaviors, (b) relationships, including
type relationships, between the input command string
and the actual parameters of an API call, and (c)
constraints on the actual parameters of an API call.

...
else if(strcmp(cmd,‘‘:!p’’)==0) {

// (1)
}
else if(strcmp(cmd,‘‘:!p2’’)==0) {

// (2)
}
else if(strcmp(cmd,‘‘:!ppp’’)==0) {

// (3)
}

(a)

...
else if(*cmd++ == ‘:’

&& *cmd++ == ‘!’
&& *cmd++ == ‘p’) {

if(*cmd == 0)
// (1)

else if(*cmd == ‘2’)
// (2)

else if(*cmd++ == ‘p’
&& *cmd++ == ‘p’)

// (3)
}

(b)

procedure foo
. push offset aP1; ‘‘:!p’’
. lea eax, [ebp+arg_0]
. push eax
. call strcmp
. add esp, 0Ch
. or eax, eax
. jnz short loc_402210
. ... // (1)
. push offset aP1; ‘‘:!p2’’
. lea eax, [ebp+arg_0]
. push eax
. call strcmp
. add esp, 0Ch
. or eax, eax
. jnz short loc_402210
. ... // (2)
. push offset aP1; ‘‘:!ppp’’
. lea eax, [ebp+arg_0]
. push eax
. call strcmp
. add esp, 0Ch
. or eax, eax
. jnz short loc_402210
. ... // (3)

(c)

Figure 1. (a) A snippet of the EvilBot source code, (b) alternative
source code, (c) the assembly code of (a).

The information obtained viaBCE can be used to
build up proper input commands that trigger API-level
behaviors.

2) BCE is able to provide a specification of the API-level
behaviors of a bot program without running the bot.

Along with the input-command strings extracted from
a bot program,BCE also provides a sequence of API
calls controlled by each command, which can help the
user understand the API-level behavior.

3) BCE is not based on signatures. Some recent approaches
to finding out botnet commands are based on pattern-
matching techniques. Many bot programs use standard
string-library functions to process the input command
string, as shown in Fig. 1(a). The assembly code of
Fig. 1(a) obtained using the IDAPro disassembler is
shown in Fig. 1(c). One can find a pattern in the
assembly code: there are twopush instructions, one
of which is for a constant string that IDApro readily
identifies, followed by a call tostrcmp. However,
such a technique is ad hoc and can be easily evaded,
e.g., by changing the code in Fig. 1(a) to use byte-
by-byte comparison instead of using standard library
functions, as shown in Fig. 1(b).

4) BCE uses directed test generation [13], enhanced with
a new search technique that uses control-dependence
information [11] to direct the search. Our experiments
show that the method provides higher coverage of
the parts of the program relevant to identifying bot
commands, as well as lowered run-time.

5) We performed experiments with four real bot programs.
Our preliminary results show thatBCE is able to
effectively extract bot-command information.

Organization. The remainder of the paper is organized as
follows: §II discusses what kind of informationBCE extracts,
and how one can make use of the information to trigger
potentially malicious behaviors from a bot.§III presents
background on directed test generation [13].§IV presents
the enhanced techniques for exploring program paths that
we developed for use inBCE. §V describes the use of
nondeterminism inBCE, which is used for writing “har-
ness” code to model possible client environments, possible
inputs, and possible return values from library functions or
system calls.§VI discusses additional information thatBCE

recovers, which combines the recovered information about
constraints on inputs with type information for the target
API calls. §VII describes how a language-independentBCE

implementation was created.§VIII presents experimental
results.§IX discusses the limitations ofBCE. §X discusses
related work.§XI concludes.

II. B OTNET-COMMAND EXTRACTOR (BCE)

In this section, we first discuss what informationBCE

relies on to extract botnet commands. We then summarize
the kind of information thatBCE provides, and how one
can make use of such information to generate proper input
commands.

2

A. WhatBCE Relies On

1. API prototypes:BCE relies on information about func-
tion prototypes of API functions. For example, the
prototype ofShellExecuteis as follows:

HINSTANCE ShellExecute(
HWND hwnd,
LPCTSTR lpOperation,
LPCTSTR lpFile,
LPCTSTR lpParameters,
LPCTSTR lpDirectory,
INT nShowCmd

);
lpDirectory: [in] A pointer to a null-terminated

string that specifies the default (working)
directory for the action.

The function prototypes are used to construct reason-
able input commands given the command specification
extracted byBCE.

2. Control-Dependence Graph:BCE makes use of the
control-dependence graph for a bot binary to optimize
its state-space-exploration algorithm. We discuss the
use of control dependences in more detail in§IV.

B. What BCE Recovers and How to Use the Recovered
Information

1. Constant command strings that control a bot.For
example, there are three nested if-statements in the
code shown in Fig. 2(a). Two API calls are invoked
when the three branch conditions are satisfied. Suppose
thatcmd has been tokenized into three null-terminated
strings. Fig. 2(b) is the command string constructed
based on the information extracted byBCE. This
information is obtained from conditional branches
where a portion of the command string is compared
against some constants, as the three strings (“hello”,
“,”, and “world”) in the example.

2. A sequence of API calls controlled by each command.
Along with each command,BCE provides a sequence
of API calls that are controlled by the command. For
example, the code executed when the command string
shown in Fig. 2(b) is issued subsequently invokes
WinExec and ShellExecute. This information can be
directly used to get an idea of the API-level behavior
of a bot without actually executing it.

3. Information about the actual arguments of each API call.
In addition to a sequence of API calls,BCE provides
information about the arguments to each API
call, such as constant values for an argument,
symbolic expressions, and constraints on the symbolic
expressions, as shown in Fig. 2(e), (f), and (g),
respectively.

cmd ← char* for command string
token[] ← tokenization of cmd

if (strcmp(token[0], ‘‘hello’’) == 0) {
if (strcmp(token[1], ‘‘,’’) == 0) {

if (strcmp(token[2], ‘‘world’’) == 0) {
WinExec(‘‘login.exe’’);
ShellExecute(..., token[3], ...);

}
}

}

(a) a simple example� � � � � � � � � � ��� �� �� �� �� �� �� �� �� �� �� �� �� ��	
��
��� 	
��
��� 	
��
���
(b) constant command string������� ������������

The fifth argument is from the
fourth token of the command,

and its type is LPCTSTR.

The argument is a
constant “login.exe”

(c) a sequence of API calls

void foo(char* cmd) {
int n = atoi(cmd);
if (n > 0) {
if (n < 25) {

ApiCall(n);
}

}
}

(d)� !"#$!%&'() *+$,-./ 0 123 & �.4 *+$,-�/ 0 123
(e)

555
(f)

 !"#$!%&'(6 .77 !"#$!%&'(8 9:
(g)

;; <;; =.;;>;; =.;;
Figure 2. (a) A simple example program; (b) the command
string constructed based on the information obtained fromBCE;
(c) a sequence of API calls obtained fromBCE; (d) another
simple example; (e) constant examples provided byBCE; (f) the
symbolic expression obtained fromBCE for the argumentn; (g) the
constraint obtained fromBCE.

• Constant arguments:In many cases, API calls take
constant arguments that one can statically extract
from binaries. For example, the first argument of
WinExecin Fig. 2(a) is a constant string “login.exe”.
In addition to the sequence of API calls, information
about argument values enables one to get a better
idea of the API-level behavior of a bot without
running it.

• Symbolic expressions in the input-state vocabulary:

3

BCE also provides a symbolic expression for each
actual parameter of an API call, along with its
type information, as long as the argument is related
to some part of the input command. For example,
ShellExecutein Fig. 2(a) takes the fourth token
of the input command as its fifth argument.BCE

automatically extracts a symbolic expression that has
one symbolic term,token[3], along with its type
LPCTSTR. The type information is obtained from
the prototype of the API call. The type information
is used to come up with a proper input string. Given
the information that the fourth token is supposed to
be a null-terminated string that specifies a working
directory name, one can build up a complete com-
mand string as follows:

"hello , world C:\temp"

Fig. 2(f) shows another example of a symbolic ex-
pression thatBCE provides. Fig. 2(f) is the symbolic
expression obtained forn in Fig. 2(d). In Fig. 2(d),
the input command string is a numeral, which is
converted into a number by callingatoi; the num-
ber is then passed into an API call as an argument.
The symbolic expression is in theinput vocabulary
in that the symbols (cmd[0] and cmd[1]) that
appear in it represent individual byte values of the
input command string. We discuss how the symbolic
expression is generated in§III.

• Constraints on symbolic expressions:BCE also pro-
vides constraints on the symbolic expressions ex-
tracted for each actual parameter of an API call, if
any. For example,BCE extracts the constraint shown
in Fig. 2(g) for the actual parametern to the API
call in Fig. 2(d).

This constraint is obtained from the two conditional
branches that guard the API call.BCE finds out
the conditional branches on which the API call
transitively depends. It only collects branches whose
predicates constrain the given symbolic expression.

The obtained constraints also play an important
role for building up proper input commands.BCE

provides some concrete examples forn, as shown in
Fig. 2(e): the numeral strings “17” and “3” satisfy
the two branch predicates (n > 0 and n < 25).
Therefore, these input strings cause the API call to
be invoked, and thus can be directly used to run
the bot program. However, there are cases when
the automatically generated concrete examples fail
to trigger observable behavior of a bot. For example,
suppose the API in Fig. 2(d) is some API that
takes an IP address and sets up a connection to
the server (e.g.,httpserver of SpyBot). Because
concrete examples are randomly selected to satisfy
the constraints collected during symbolic execution,

it is not likely that BCE finds out a reasonable IP
address unless there are conditional branches where
it can extract proper constraints on the command.
Therefore, in some cases, the user is responsible for
making use of the extracted constraints to construct
reasonable inputs.

§VI discusses other kinds of information about the bot’s
commands thatBCE provides—in particular, information
that combines the recovered symbolic information about
inputs with type information for the target API calls.

III. OVERVIEW

This section provides background ondirected test gen-
eration [13], which collects path constraints and uses them
to explore new paths systematically. In applying directed
test generation inBCE to the problem of extracting bot
commands, we developed new techniques to explore pro-
gram paths, which differ from conventional directed-test-
generation techniques. We discuss our enhanced search
algorithms in§IV.

One example of a directed test-generation tool isSAGE

[14], which is a whitebox fuzz-testing tool, an advance on
fuzz testing based on random mutations.SAGE records an
actual run of a program under test, starting with a well-
formed input, then symbolically evaluates the recorded trace
and generates constraints that capture how the program uses
its inputs. The generated constraints are then systematically
modified and solved with a constraint solver to produce new
inputs that cause the program to follow different control-flow
paths. The process is repeated with a coverage-maximizing
heuristic designed to find defects as fast as possible. Fig. 4
shows a simple example taken from [14]. There are 5 values
leading to the error out of28∗4 possible values for 4 bytes.
Therefore, the probability of hitting the error with random
testing is about1/232. In contrast, whitebox dynamic test
generation can find the error in at most24 = 16 iterations
(4 valid path constraints are collected during the exploration
process).

Alg. 1 shows the basic search step of theBCE algorithm.
The outline of the algorithm is similar to typical directed-
test-generation techniques, which can be roughly summa-
rized as repeatedly applying the following three steps:1

(1) Concrete execution.Perform concrete execution along
some pathπ. The concrete-execution loop repeatedly
takes a concrete program state and returns an updated
state that captures the semantics of each instruction. A
program state keeps the values of (i) registers, (ii) flags,
and (iii) memory locations.

1The first step (concrete execution) and the second step (symbolic
execution) can be done simultaneously, which is sometimes called concolic
execution[27]. In concolic execution, concrete values from the concrete
execution state are sometimes used to simplify the symbolicstates created
during symbolic execution.

4

?? @? @? @
ABAC ADAE
FGFH FIFJ

Figure 3. A trace tree.P1, P2, P3, and P4 denote the branch
constraints obtained during the symbolic execution of the path
shown in bold.

(2) Symbolic execution.Perform symbolic execution along
the same pathπ. Symbols represent values in the input
state and the input command. Symbolic execution is
similar to concrete execution except that values may
be symbolic terms or formulas over the input symbols.
At each branch nodeB, the branch condition is sym-
bolically evaluated and then constrained to the Boolean
value needed to follow the branch direction taken by
π at the current instance ofB. This yields a branch
constraint forB.

For the symbolic memory state, we use a map
from concrete scalars (i.e., addresses) to symbolic ex-
pressions. In machine code, int-valued quantities and
address-valued quantities are indistinguishable at run-
time, and arithmetic on addresses is used extensively.
Therefore, at a program point, the address for either
a memory-access or memory-update operation may be
a symbolic expression. TheBCE algorithm concretizes
such symbolic expressions using the value for the ad-
dress calculated from the concrete state at the program
point.

(3) Exploring a new path. To explore a new path, the al-
gorithm chooses some branch nodeB in the concrete
trace, and conjoins all the branch-constraint formulas
encountered on the prefix ofπ from the root node
to to B. In place of the branch-constraint formulaϕ
for B itself, ¬ϕ is used. For example, if one wants to
explore the path toward the true branch ofN4 in Fig. 3,
the following path-constraint formula is passed to the
constraint solver:

P1 ∧ P2 ∧ P3 ∧ ¬P4.
The constraint solver determines whether the path-
constraint formula is satisfiable, and, if it is satisfiable,
returns a satisfying assignment for it, which is used to
generate a new concrete input state for use in the next
round of exploration.

BCE maintains a trace tree that is expanded during the
process of symbolic execution. Each node in a trace tree
represents a different execution instance of a branch instruc-

Algorithm 1 SingleBCE Iteration
Require: A concrete stateS.
Require: A trace treeT

1: Concretely execute the program with the concrete state
S.

2: Let CT be the concrete trace obtained from the concrete
execution.

3: Symbolically execute the traceCT .
4: Let T ′ be the trace tree augmented by the symbolic

execution.
5: if at least one API call is encountered in the concrete

tracethen
6: Based on the symbolic state obtained in the symbolic

execution, collect information about the command
tokens that appear in the arguments to each API call.

7: end if
8: repeat
9: Choose a new pathπ in the trace treeT .

10: Let ϕ be the path-constraint formula obtained by
conjoining the branch constraints alongπ.

11: until ϕ is satisfiable
12: Let M be the model obtained by calling the constraint

solver withϕ.
13: Create the new concrete stateS′ updated with the

assignments from the modelM .

void top(char input[4]) {
int cnt = 0;
if (input[0] == ‘b’) cnt++;
if (input[1] == ‘a’) cnt++;
if (input[2] == ‘d’) cnt++;
if (input[3] == ‘!’) cnt++;
if (cnt >= 4) abort();

}

Figure 4. An example for whitebox fuzz testing

tion in the program. Each node can have two children, one of
which represents the first branch node encountered along the
path through the true successor, the other of which is the first
branch node along the path through the false successor. The
path from the root node to a leaf node represents the branch
instructions of a concrete trace. Each edge holds a branch
constraint obtained from symbolic execution. Each time a
branch is symbolically executed (to follow the direction
taken by a previous concrete execution), the trace tree is
extended appropriately.

IV. PROGRAM EXPLORATION USING

CONTROL-DEPENDENCEINFORMATION

This section presents the enhanced techniques for ex-
ploring program paths that we developed for use inBCE.
MineSweeper [5] and the work of Moser et al. [25] have
shown the potential for carrying out better exploration in

5

malware. Other tools, such asSAGE, have addressed the
problem of path explosion by introducing heuristics to
improve coverage [14].SAGE uses so-calledgenerational
search designed to partially explore the state spaces of
large applications with the aim of finding bugs faster. As
in most of other directed-test-generation tools,SAGE aims
to improve test coverage. Unlike bug-finding tools or tools
that aim to improve coverage, inBCE we are interested in
goal-directed techniquesaimed at extracting bot commands.

The characteristics of how the bot code parses the trans-
mitted commands and takes actions depending on the parsed
commands can be used to come up with better exploration
strategies that avoid possible explosion and obtain more
complete specifications about the command structure. We
incorporated the following path-exploration strategies into
BCE:

• Choose as a candidate for the new path the branches
that have a possibility of leading to API calls.2

• Prune the search performed byBCE so that each path
includes a limited number of API calls if a candidate
branch for extending the path is independent of the
branches involved with the API calls already found in
the path.

The exploration strategies are based on the fact that our goal
is to identify as many feasible input commands as possible
that lead to API calls of interest.

To identify branches that have a possibility of encoun-
tering API calls, we usecontrol-dependence information.
§IV-A discusses control-dependence information. In§IV-B
and§IV-C, we present how control-dependence information
is used inBCE.

A. Control Dependence

The control dependencerelation is one of the fundamen-
tal relationships among statements or instructions used in
compilers and optimizers. For instance, control-dependence
information is used in compilers to determine whether it
is safe to reorder or parallelize statements [11]. A control
dependence holds when the decision made at a branch
X controls whether another statement or instructionY is
executed.

Control dependence is defined in terms of the post-
domination relation.

Definition 4.1: NodeZ post-dominatesnodeX iff Z 6=
X and all paths fromX to the end of the procedure include
Z. (Note that by this definition a node does not post-
dominate itself.)

Definition 4.2: NodeY is directly control dependent on
nodeX iff

1) there exists a pathπ: X →+ Y such thatY post-
dominates every node inπ different fromX , and

2BCE is parameterized to take a list of interesting API entry points of
interest.

if (a > 0) { // (b1)
b = 1; // (s1)
if (a < 25) { // (b2)
c = 2; // (s2)

}
}
else {

d = 3; // (s3)
}
e = 4; // (s4)

Figure 5. An example to show control dependences.

2) X is not post-dominated byY .
We useC to denote the direct-control-dependence relation.

Control dependences can be broken down more finely into
dependences on the true branch or false branch of a branch-
nodeX , as follows:

Definition 4.3: Node Y is directly control-dependent on
edgeX → W iff

1) there exists a pathπ: W →∗ Y such thatY post-
dominates every node inπ different fromX , and

2) X is not post-dominated byY .
We say that the relationCt(X, Y) holds whenX is a branch
node andY is directly control dependent onX ’s true branch.
Cf is defined similarly.

Each branch node is associated with two sets of CFG
nodes: one consists of the transitive control-dependence
successors for its true branch (denoted byCtC∗); the other
consists of the transitive control-dependence successorsfor
its false branch (denoted byCfC∗).

CtC∗ : True control successors
CfC∗ : False control successors

For example, in Fig. 5, the statements(s1) and(s2)
are transitively control dependent on the true branch ofb1;
statement(s3) is transitively control dependent on the false
branch ofb1. Statement(s4) is not transitively control
dependent on any branch in this example. (Henceforth, we
will abbreviate “transitive control dependence” by “control
dependence”.)

In the next section, we discuss a novel usage of control-
dependence information inBCE.

B. Choosing Interesting Branches using Control-
Dependence Information

BCE uses control-dependence information (CDI) to anno-
tate the trace tree. If there is at least one API call inCtC∗ (or
CfC∗) of a branch node, the node is marked asNt (or Nf).
Any branch that has a call to a function that contains at least
oneNt or Nf in CtC∗ (CfC∗) is also marked asNt (or Nf).
BCE only chooses one of the nodes marked withNt or Nf as
a candidate for the new path. Fig. 6 compares an exploration
strategy that uses control-dependence information (CDI) to
one that does not. The solid lines in the figures indicate

6

(a)

(b)

Figure 6. Two trace trees; (a) A trace tree without CDI; (b) a
trace tree with CDI; the circles represent branch nodes; thesolid
arrows represent possible paths to explore; the half-shaded circles
represent nodes labeled as eitherNf or Nt.

[1] char* p1; // input;
[2] char p2[] = "bot.execute";
[3] int v;
[4] char c1;
[5] do {
[6] c1 = *p1++;
[7] c2 = *p2++;
[8] v = (unsigned)c1 - (unsigned)c2;
[9] if(v ! = 0)
[10] break;
[11] } while(c1 ! = ’\0’);
[12]
[13] if(v == 0)
[14] APICall

Figure 7. An example in which it is necessary to choose an
alternative candidate as a new path; the source code ofstrcmp
is inlined in this example.

the paths that have previously been explored. One chooses
as the next candidate one of the nodes (on the solid lines
in Fig. 6) that has a solid edge to only one child. Such
choices are marked with arrows. There are fewer candidates
to explore in Fig. 6(b) than in Fig. 6(a). The degree of the
improvement by using CDI depends on the percentage of
nodes marked withNt or Nf . We discuss how the approach
works out with real bot programs in§VIII.

Algorithms. Alg. 2 and Alg. 3 describe the path-exploration
algorithm of BCE. In Alg. 2, BCE chooses a noden in the
trace tree marked asNf or Nt whose corresponding branch

Algorithm 2 ChooseNewPath
Require: A trace treeT
Ensure: Formulaϕ

1: Let Frontier be the branch node inT that is either
marked asNf and does not have a false child inT ,
or marked asNt and does not have a true child inT ,
and has the shortest path from the root node.

2: Let ϕ be the formula conjoined with all the formulas
associated with the branches on the path from Frontier
back to the root node.

3: Returnϕ

Algorithm 3 GenerateNewConcreteState
Require: A trace treeT
Ensure: A concrete state CS′

1: ϕ = ChooseNewPath(T)
2: Call the constraint solver with the formulaϕ
3: if ϕ is feasiblethen
4: Let M be the model from the constraint solver
5: Let CS be a random concrete state
6: Let CS′ be CS updated with all the assignments in

M
7: Return CS′

8: else
9: Let T ′ be T augmented with a dummy node at the

previously selected node
10: GenerateNewConcreteState(T ′)
11: end if

is not in the trace tree.BCE then conjoins all the formulas
of the branches on the path fromn back to the root node.
Alg. 3 takes that formula and calls a constraint solver to
obtain a model. If the formula for the path thatBCE chose
to explore is feasible, it generates a new concrete state that
gets used in the next round of exploration. Otherwise, it
augments the trace tree so that the previously explored path
is never selected again, and calls itself recursively.

Fig. 8(a) is an example in which the number of possible
execution paths is exponential in the number of branches:
each of the 5if-statements is independent of each other.
For this code fragment,BCE takes 8 iterations when it uses
CDI,3 of Alg. 1 to identify 2 different paths (one toward
the API call inside the secondif-statement, and the other
toward the fifth statement) whereas without CDI it exhibits
exponential behavior.

Indirect control-dependence.In some cases, it is possible
that a candidate node marked asNt or Nf has a branch
predicate, the negation of which causes the path constraint

3The body ofstrcmp includes some branches to compare an individual
character of the first argument with one constant character from the second
argument. To get to the two API call sites,BCE needs several trials for
each.

7

[1] if(strcmp(c[0], "aaa")==0) {
[2] n = atoi(c[5]);
[3] }
[4] if(strcmp(c[1], "bbb")==0) {
[5] APICall1(...);
[6] }
[7] if(strcmp(c[2], "ccc")==0) {
[8] n = atoi(c[5]);
[9] }
[10] if(strcmp(c[3], "ddd")==0) {
[11] n = atoi(c[5]);
[12] }
[13] if(strcmp(c[4], "eee")==0) {
[14] APICall2(...);
[15] }

(a)

[1] if(strcmp(c[0], "aaa")==0) {
[2] n = atoi(c[5]);
[3] }
[4] else if(strcmp(c[1], "bbb")==0) {
[5] APICall1(...);
[6] }
[7] else if(strcmp(c[2], "ccc")==0) {
[8] n = atoi(c[5]);
[9] }
[10] else if(strcmp(c[3], "ddd")==0) {
[11] n = atoi(c[5]);
[12] }
[13] else if(strcmp(c[4], "eee")==0) {
[14] APICall2(...);
[15] }

(b)

Figure 8. (a) An example with independentif-statements (and thus
an exponential number of paths). (b) An example more typicalof
bot code (with a linear number of paths).

to be infeasible, that does not help program exploration. For
example, in Fig. 7,p1 points to the input character array,
andp2 points to the constant string"bot.execute". The
branch on line [13] is marked asNt because its true branch
contains an API call. Suppose that in the initial concrete
state, the first input byte pointed to byp1 is something
different from ’b’, and thus the loop in lines [5]–[11]
terminates at line [9] after one iteration with the condition
v != 0, and the false branch of line [13] is executed. In
the subsequent symbolic execution in which the character
array pointed to byp1 is treated as a list of symbols, the
path constraint toward the true branch at line [13] is

(Sc1 − Cb 6= 0) ∧ (Sc1 − Cb = 0),

whereSc1 is a symbol that represents the first input byte,
andCb is a constant symbol. This formula is infeasible. In
such cases, as a heuristic,BCE chooses branches prior to the
candidate node on the trace as an alternative candidate. In
this example, the false branch at line [9] is chosen as a new
path so that from the path constraint

Sc1 − Cb = 0,

KLMN MLKN MO PQRRRSSSS RRRTUUV WX: API call
encountered!YZ Y[\] \^_] \`_^ aaaabc bcdefgbh difgbjkl kmno: API call

encountered!

(a) (b) (c) (d)

Figure 9. (a) A control-dependence graph; (b) a trace tree when sub-
trees are pruned using control-dependence graph (a); (c) another
control-dependence graph; (d) the trace tree when sub-trees are
pruned using control-dependence graph (c).

the constraint solver can provide a new test input in which
the first input byte equals′b′.

When a situation occurs like the one described for
line [13], a command-line flag controls how many prior
branches to try.

C. Pruning the Trace Tree using Control-Dependence Infor-
mation

CDI helps to direct program exploration toward API call
sites. However, even when some candidate branches are ex-
cluded by CDI, there is still the possibility of combinatorial
explosion. For example, in Fig. 8(a), there are 24 paths
in total that invoke the API call(s): there are 8 paths that
invoke each call (and not the other) and an additional 8
that invoke both. When the branches controlled by different
commands are independent of each other, it means that
multiple commands can be combined to produce different
sequences of API calls. In other words, if there aren
independentif-statements involved with API calls, the total
number of possible paths that invoke at least one API call
is 2n.

To avoid such combinatorial explosion, we limit the
exploration performed byBCE so that each path includes
a limited number of API calls if a candidate branch for
extending the path is independent of the branches involved
with the API calls already found in the path. In particular, the
path exploration inBCE only findsn paths when there are
n independentif-statements involved with API calls. The
information obtained in this way is still useful to a user,
although it shifts the burden onto the user to identify the
API-level behaviors of a bot by trying various combinations
of the n extracted commands. For the example in Fig. 8(a),
BCE only extracts

“bbb” for the second token of cmd
“eee” for the fifth token of cmd

and the user can try running the bot with the three
combinations—“bbb”, “eee”, and “bbb” + “eee”—to observe
possibly different behaviors.

The heuristic for avoiding combinatorial explosion is per-
formed by pruning the trace tree dynamically. The following

8

code illustrates what is involved in dynamically pruning the
trace tree. Fig. 3(a) is the control-dependence graph of the
code, and Fig. 3(b) is the corresponding trace tree.

if (strcmp(token[0], ‘‘hello’’) == 0) { // b1

APICall1(...) // s1

if (atoi(token[1]) > 0) // b2

... // s2

... // s3

}

An API call is invoked immediately in the true branch
of b1. In this case,BCE considers pruning the sub-tree ST
of the trace tree starting fromb2. The control-dependence
information is used to determine whether the sub-tree ST is
to be excluded from further exploration. ST can be excluded
if it does not include any node marked asNt or Nf that is
control dependent on nodeb2 (see Fig. 9(b)). If there is at
least one other API call ins2, as shown in Fig. 9(c) and (d),
the true branch remains as a candidate to explore because
the secondif-statement is control dependent on the first
one.

In practice, many bot programs are written as shown in
Fig. 8(b), where eachif-statement is dependent on other
ones. However, even if when they are rewritten in the form
of Fig. 8(a), the pruning technique is effective in practice.

V. OS STATE

Many formalisms for symbolic analysis of programs
support the use of nondeterminism, which is useful for
writing “harness code” (code that models the possible client
environments from which the code being analyzed might
be called), as well as for modeling the possible inputs to
a program. A common approach is to provide a primitive
that returns an arbitrary value of a given type. Examples
include theSdvMakeChoice primitive of SLAM [3] and
the havoc(x) primitive of BoogiePL [4].

In some cases, a value returned from a system call or a
Windows-API call is used in a branch condition, as shown
in the following example. IfGetCurrentDirectoryreturns
a value greater than0, APICall1 is invoked; otherwise,
APICall2 is invoked.

for (i = 0; i < 3; i + +) {
int n = GetCurrentDirectory(...);
if (n > 0) {
APICall1(...)

}
else {
APICall2(...)

}
}

In the current version ofBCE, concrete execution and
symbolic execution do not go into system calls and Windows
API functions. Instead,BCE keeps a sequence of random
numbers (RandSeq) for concrete execution, and a sequence

Algorithm 4 ExtractTypeInformation
Require: A function prototypeT
Require: A symbolic stateS
Require: The current stack addresssp
Ensure: Updated database

1: Let N be the number of arguments of function typeT
2: for i = 0 to N − 1 do
3: Let Ti be the type of theith argument of function type

T
4: addri = sp + i ∗ param size
5: CollectTypeInformation(Ti, addri)
6: end for

of symbols (RandSeq) for symbolic execution. During con-
crete execution and symbolic execution, the successive val-
ues inRandSeqand RandSeq, respectively, are used as the
successive return values from API call sites. In the above
example, there are three calls toGetCurrentDirectory in
a trace because the loop is executed three times. Each of
the three return values comes from successive elements of
RandSeqand RandSeq. In this way, we model the state of
the operating system. Network inputs are modeled similarly.

VI. EXTRACTING TYPE INFORMATION

§II briefly discussed how one can use the information
extracted from BCE to understand a bot program and
construct proper input commands. This section discusses
some additional information thatBCE provides to help users
understand the recovered information about the botnet’s
commands, based on combining the recovered symbolic
information about inputs with type information for the target
API calls.

Some extracted constant command strings can be directly
used to trigger interesting API-level behaviors of a bot
program in cases where there are no additional arguments
to a command. However, some of the information extracted
about a command is in the form ofsymbolic expressions. A
symbolic expression captures the semantics of all the instruc-
tions on a specific path from the starting point to the API
call site. In some cases, the extracted symbolic expression
simply represents a sub-string of the command, whereas
there are other cases when the command is converted to
another form. A typical action is to convert part of the input
string, using the standard library functionatoi, into a number
that is passed to the API call. In other words, the input string
holds numerals, whereas the API call receives a number.

OnceBCE extracts a symbolic expression for an argument
to an API call, it is the user’s responsibility to choose
a proper input with which to run the bot based on the
symbolic expression. To help in this step,BCE extracts
type information for each symbolic expression using the
algorithms shown in Alg. 4 and Alg. 5.

9

Algorithm 5 CollectTypeInformation
Require: A type T
Require: An addressaddr
Require: A symbolic stateS
Ensure: Updated database

1: if T is a pointer typeT ′∗ then
2: Let sym exprbe the symbolic expression obtained by

looking upaddr in S.
3: Insert the mapping (sym expr, T ′∗) into the database
4: Let addr′ be the symbolic expression at address

sym expr in S
5: if addr′ is a scalarthen
6: CollectTypeInformation(T ′, addr′)
7: end if
8: else if T is a basetypethen
9: Let sym exprbe the symbolic expression obtained by

looking upaddr in S.
10: Insert the mapping (sym expr, T) into the database
11: else if T is a structure typethen
12: for all Ti a field type ofT do
13: CollectTypeInformation(Ti, addr + offseti)
14: end for
15: end if

Alg. 4 and Alg. 5 are pseudo-code for collecting type
information for each extracted symbolic expression. Our
approach uses information about the function prototypes
of API calls, as well as a database of OS and network-
related types. For example, Fig. 10(a) shows the prototype
of getaddrinfo and thestruct typesADDRINFO and
sockaddr_in. ADDRINFO is the type of the third and
fourth arguments ofgetaddrinfo, andsockaddr_in
is the type of one of the fields ofADDRINFO.

For each API call site,BCE collects type information
by calling ExtractTypeInformation(Alg. 4). Along with
such information,ExtractTypeInformationtakes the sym-
bolic state at the API call site, and the symbolic expres-
sion that represents the current stack pointer. For example,
Fig. 10(b) is an example that includes a call to the system
call getaddrinfo. The first token of the command is
converted to a numeric value throughatoi to be used as
sin_zero for the sockaddr_in object, and the second
token is used asai_canonname for the ADDRINFO
object. BCE calls CollectTypeInformationwith the actual
arguments—ADDRINFO* and the current stack pointer—for
the third argument ofgetaddrinfo.

For each argument to the API call, it calculates the
address of the corresponding stack location, and passes it to
CollectTypeInformation(Alg. 5), along with the argument
type from the function prototype and the symbolic state.
CollectTypeInformationis a recursive function that tries
to associate each type with the corresponding symbolic
expression on the stack. Depending on the type, the actions

int getaddrinfo (
char* nodename;
char* servname;
ADDRINFO* hints;
ADDRINFO* res;

};

struct {
....
char* ai_canonname;
sockaddr_in* ai_addr;
....

} ADDRINFO;

struct {
....
unsigned long sin_zero;

} sockaddr_in;
(a)

sockaddr_in* s = ...; // malloc
s->sin_zero = atoi(cmd_token[0]);
ADDRINFO* a = ...; // malloc
a->ai_canonname = ...; // malloc
strcpy(a->ai_canonname,

cmd_token[1]);
a->ai_addr = s;
getaddrinfo(..., ..., a, ...);

(b)

Figure 10. (a) The prototypes ofgetaddrinfo, ADDRINFO, and
sockaddr_in; (b) an example code fragment.

are slightly different:

• In the case of a pointer typeT ∗, BCE first adds the
mapping (sym expr, T ∗) to the database, and looks
up the corresponding value in the symbolic state, and
recursively callsCollectTypeInformation, passing the
value along with the typeT of the object referred
to. For example,CollectTypeInformation(ADDRINFO*,
sp) recursively calls

CollectTypeInformation(ADDRINFO, S(sp)4)

• In the case of a basetypeT , BCE looks up the cor-
responding value (sym expr) in the symbolic state,
and it adds the mapping (sym expr, T). For example,
the first token of the command is used for the field
sin_zero of sockaddr_in in Fig. 10, which is of
base-typeunsigned long. In this case,BCE collects
the information that the associated symbolic expression
is of typeunsigned long.

• In the case of a structure type, such asstruct or
class, BCE iterates over the structure’s fields, calling
CollectTypeInformationwith each type and the address
of the corresponding field. For example,CollectType-
Information(ADDRINFO, S(sp)) recursively callsCol-

4S(sp) denotes a lookup ofsp in symbolic stateS.

10

lectTypeInformation(char*, S(sp) + offset1), Collect-
TypeInformation(sockaddr_in*, S(sp) + offset2),
and so forth, where offseti is the corresponding offset
for each field.

VII. I MPLEMENTATION

The BCE implementation has been structured so that it
can be retargeted to different languages easily. The core
components of the system are language-independent in two
different dimensions:

1) The BCE driver implements Alg. 1. It is structured
so that one only needs to provide an implementation
of concrete execution and symbolic execution of a
language. Consequently, this component of the system
can be used for source-level languages or for machine-
code languages.

2) For machine-code languages, we have used two tools
that generatethe required implementations of concrete
execution and symbolic execution from descriptions
of the syntax and semantics of an instruction set of
interest.

The abstract syntax and concrete semantics of an in-
struction set are specified using a language calledTSL

(TransformerSpecificationLanguage) [23]. Decoding (i.e.,
translation of binary-encoded instructions to abstract syntax
trees) is specified using a tool calledISAL (InstructionSet
ArchitectureLanguage).5 The relationship betweenISAL and
TSL is similar to the relationship between Flex and Bison.
With Flex and Bison, a Flex-generated lexer passes tokens
to a Bison-generated parser. In our case, theTSL-defined
abstract syntax serves as the formalism for communicat-
ing values—namely, instructions’ abstract syntax trees—
between the two tools.

Compared with other specification languages for instruc-
tion sets,TSL has one unique feature: from asinglespecifi-
cation of the concrete semantics of an instruction set amul-
tiplicity of static-analysis, dynamic-analysis, and symbolic-
analysis components can begenerated automatically. The
TSL system consists of two parts:

• TheTSL language for specifying an instruction set’s ab-
stract syntax and concrete semantics.TSL is a strongly
typed, first-order functional language with a datatype-
definition mechanism for defining recursive datatypes,
plus deconstruction by means of pattern matching.

• The TSL compiler, which translates a specification
to a common intermediate representation (CIR). The
CIR generated for a givenTSL specification is a C++
template that can be used to create multiple analysis
components by instantiating the template in different
ways.

5ISAL also handles other kinds of concrete syntactic issues, including (a)
encoding(abstract syntax trees to binary-encoded instructions), (b) parsing
assembly(assembly code to abstract syntax trees), and (c)assembly pretty-
printing (abstract syntax trees to assembly code).

TSL has two classes of users: (1) instruction-set speci-
fiers, and (2) analysis developers. The former use theTSL

language to specify the concrete semantics of different in-
struction sets; the latter create new analyses by instantiating
the CIR in different ways.

Specifying an Instruction Set.Much of what an instruction-
set specifier writes in aTSL specification is similar to writing
an interpreter for an instruction set in first-order ML [18].
One specifies (i) the abstract syntax of the instruction set,by
defining the constructors for a (reserved, but user-defined)
type instruction; (ii) a type for concrete states, by defining—
e.g., for 32-bit Intel x86—the typestateas a triple of maps:

state: State(INT32→ INT8, reg32→ INT32, flag→ BOOL);

where INT32 and INT8 refer to 32-bit and 8-bit integers,
respectively, andreg32andflag refer to a type for the names
of 32-bit registers and a type for the names of condition-
codes, respectively; and (iii) the concrete semantics of each
instruction by writing aTSL function

state interpInstr(instructionI, stateS) { . . . };

Semantic Reinterpretation. Each analysis is defined by
reinterpreting the constructs of theTSL meta-language.TSL’s
meta-language supports a fixed set of base-types; a fixed
set of arithmetic, bitwise, relational, and logical operators;
and a facility for defining map-types. An analysis developer
defines a new analysis component by (i) redefining (in C++)
the TSL base-types (INT32, INT8, BOOL, etc.), and (ii)
redefining (in C++) the primitive operations on base-types
(+INT32, +INT8, etc.). These are used to instantiate the CIR
template. This implicitly defines an alternative interpretation
of each expression and function in an instruction-set’s con-
crete semantics (includinginterpInstr), and thereby yields an
alternative semantics for an instruction set from its concrete
semantics.

For BCE, TSL is used to create several useful reinterpre-
tations of an instruction set:

• By instantiating the CIR with a reinterpretation that
performs the standard interpretation (in C++) of the
TSL operators, we obtain the instruction interpreter for
concrete execution.

• By instantiating the CIR with a reinterpretation that
translates operations to the input language of an SMT
solver, we obtain a semantics suitable for symbolic
execution. (In our implementation, we used the Yices
input language [10].)

Control-Dependence Information. The control-
dependence information used for the systematic path-
exploration ofBCE is collected from the control-dependence
graph for a bot program.BCE uses CodeSurfer/x86 [2] to
obtain the control-dependence graph for a bot program.

API Call Prototypes. BCE uses IDApro [19] and its Fast
Library Identification and Recognition Technology (FLIRT)

11

[12] to identify calls to library functions. It then uses
a database of function prototypes and OS and network-
related types to extract type information from the recovered
symbolic information, as described in§VI.

Library Functions. In BCE, each library-function call is
replaced with a simplified model on which concrete and
symbolic execution are performed as with other user func-
tions.

VIII. E XPERIMENTS

We performed experiments on four bot programs. The
bots are from different families, and they have different sets
of commands. Fig. 11 summarizes the experimental results.
The table first shows the size of each program in terms of the
number of instructions, and the percentage of the branches
marked asNf or Nt for each program.

The four column listed under “Results” shows the number
of traces ending with at least one API call, the total number
of iterations performed byBCE,6 and the number of the
command strings that expect one or more arguments.BCE

provides a symbolic expression for such arguments, as
discussed in§VI.

For dBot and AgoBot, we had source code and we were
able to compare the extracted commands with the commands
that one can obtain from the source code. In case of AgoBot,
there are two commands—“bot.quit” and “bot.die”—that are
not counted in the trace numbers, but are actually commands.
This is because they are not involved with any Windows
API call. Those commands modify some values to change
the state of the bot. Even thoughBCE was able to identify
those strings,BCE did not mark them as commands because
BCE requires some API call to be controlled by an input
string for the string to be classified as a command. Each
complete command string, such as “bot.die\0”, is extracted
through multipleBCE iterations as follows:

“bot.d”
“bot.di”
“bot.die”

“bot.die\0”

If there is no indication that the extracted string is a com-
mand (i.e., it controls no API calls), such as “bot.die”, there
needs to be some manual interpretation ofBCE’s results,
such as whether one should consider an array of bytes in the
input that ends with a delimiter (e.g.,\0 in case ofstrcmp)
to be a command.

We also performed an experiment to determine how well
the two state-space-exploration strategies that we introduced
in §IV-B and§IV-C perform: one strategy chooses a path that
has the possibility of encountering API calls (denoted as “w/

6An iteration means one run of the basic search step of theBCE
algorithm (Alg. 1); on each iteration, a new path is found that leads to
a new concrete state.

CDI”); the other stops further exploration along the current
path once the trace encounters an API call (denoted as “w/
Pruning”).

The results are shown in Fig. 12. We compared the
number of traces ending with API calls and the total number
of iterations under the configuration “w/ CDI” and “w/
Pruning” with three other configurations—(i) “w/o CDI” and
“w/ Pruning”, (ii) “w/ CDI” and “w/o Pruning”, and (iii)
“w/o CDI” and “w/o Pruning”.BCE performs best using the
configuration “w/ CDI” and “w/ Pruning”.

One other way in which the four configurations differed
is in their ability to report whether all commands had been
found. Only the configuration “w/ CDI” and “w/ Pruning”
is able to do this; i.e., it exhausted its (pruned) search space
and hence could report that there was nothing more to be
found. With the other configurations,BCE did not finish even
if it had identified all the commands.

As explained in§IV-C, the user must bear in mind that
the commands identified are really command fragments, and
various combinations of the command fragments must be
tried.

IX. L IMITATIONS

BCE currently has the following limitations:

1. Plain (unpacked) binaries.BCE only handles unpacked
binaries. In principle, directed test generation is appli-
cable even for packed binaries by invoking a decoder
on the fly during concrete execution. However, the
current implementation ofBCE need a preprocessing
step to obtain control-dependence information, which
our implementation obtains from a pre-built control-
flow graph. One would need some heuristics other than
control-dependence information as an alternative for
avoiding combinatorial explosion.

2. Manual identification of the right starting point.BCE

starts its exploration from some command-processing
function other than main. This allows relatively short
traces for both concrete execution and symbolic
execution, resulting in better overall performance
of BCE. Typically, there is some initialization code
between the beginning of the main function and the
command-processing function that is not relevant to
extracting input commands. However, this can be
problematic if the initialization code affects concrete
execution in significant ways. Finding a way to start
BCE from the very beginning of a program with low
cost is left for future work.

3. Approximation.BCE currently approximates some library
function calls by using some simplified models. For
example, dBot usessnprintf as follows to generate
a string in a specific format for the purpose of sending
a log to the bot-master.

12

Bot Program Results Time
Name # Instrs. % Nf/Nt # Traces # SymExprs # Iterations Trace Leng Avg.CE Total.CE Avg.SE Total.SE Avg.PE Total.PE Total

dBot 32168 19% 18 7 89 1893 2.6 231.4 4.8 427.3 0.9 831.3 1489.9
AgoBot 54641 36% 17 8 123 4167 7.9 979.1 12.5 1538.7 16.8 2067.6 4585.4
SpyBot 8360 40% 31 10 279 1290 3.9 1074.2 7.2 2003.2 8.5 2374.3 5451.7
EvilBot 2917 29% 17 4 133 2476 2.5 333.8 4.4 589.2 2.5 328.5 1251.5

Figure 11. BCE experiments. The columns, in order, are: the number of instructions (#Instrs); the percentage of nodes marked as eitherNf or Nt; the
number of unique traces ending with at least one API call; thenumber of commands for whichBCE provides symbolic expressions; the total number of
iterations to identify the traces; the average trace length; the average time taken for concrete execution; the total time taken for concrete execution; the
average time taken for symbolic execution; the total time taken for symbolic execution; the average time taken for path exploration; the total time taken
for path exploration; and the total time taken in seconds. The experiments were run on a Intel P41.79GHz machine with1.49GB RAM.

Bot Program Configuration
Name w/ CDI & w/ Pruning w/o CDI & w/ Pruning w/ CDI & w/o Pruning w/o CDI & w/o Pruning

dBot 18/89 (20%) 18/101+ (<18%) 18/99+ (<18%) 11/142+ (<8%)
AgoBot 17/123 (14%) 17/172+ (<10%) 17/158+ (<11%) 13/167+ (<8%)
SpyBot 31/279 (11%) 28/281+ (<10%) 27/420+ (<6%) 25/528+ (<5%)
EvilBot 17/133 (13%) 14/206+ (<7%) 17/163+ (<10%) 11/308+ (<4%)

Figure 12. BCE experiments. The table reports results for four configurations ofBCE: (1) “w/ CDI” and “w/ Pruning”, (2) “w/o CDI” and “w/ Pruning”,
(3) “w/ CDI” and “w/o Pruning”, and (4) “w/o CDI” and “w/o Pruning”. The numbers reported in each column are the number of unique traces ending
with API call(s), the total number of iterations, and the percentage of iterations that resulted in a trace ending with API calls. The experiments were run
on a Intel P41.79GHz machine with1.49GB RAM; the symbol “+” after the number of iterations means that BCE with the configuration did not finish
(i.e., program exploration could continue infinitely even if all possible commands had been identified.)

snprintf(buf, sizeof(buf), ‘‘%s %s\r\n’’,
..., a[x+1]);

wherea[x+1] is one of the command tokens.

A portion of the command is copied intobuf in
snprintf. The buf is then passed as a parameter
to an API call.
If concrete execution and symbolic execution go inside
of snprintf, BCE can obtain a symbolic expression
for buf that contains symbols from the input command.
Instead of doing that, to simplifyBCE’s handling of
calls tosnprintf, we modelsnprintf as a copy
operator so that the input command symbola[x+1] is
copied into the bufferbuf ignoring the format string.

4. Obfuscation on branch conditions.BCE relies on branch
conditions to explore a program. Therefore, if the
branch conditions are obfuscated by encryption, it
preventsBCE from exploring program paths correctly.
For example, fragment (a) below is a normal branch
condition that checks a byte value against a constant.
As proposed by Sharif et al. [28], the code can be
obfuscated as shown in fragment (b). Because it is
difficult to invert the hash function, it is infeasible to
find c givenHc.

if (X == c) {
B

}

(a)

if (Hash(X) == Hc) {
run Decrypt(BE, c)

}
// where Hc = Hash(c), BE = Encrypt(B, c)

(b)

X. RELATED WORK

Dynamic Techniques. J. Caballero et al. proposed tech-
niques that can be used to extract the format of the protocol
messages sent from a bot-master by analyzing bot binaries
[6]. They introduced a technique calledbuffer deconstruction
that builds the message field tree of a sent message by
analyzing how the output buffer is constructed. Furthermore,
they used type-inference-based techniques to find out the
type information of each field of the extracted structure
by monitoring how the received (or sent) data is used at
places where the types are known, such as system calls.
Their technique focuses on extracting message formats given
proper inputs that trigger malicious actions, whereasBCE

aims to extract such proper inputs.
Machine-Code Analyzers Targeted at Finding Vulnera-
bilities. A substantial amount of work exists on techniques to
detect security vulnerabilities by analyzing source code (for
a variety of languages) [31], [24], [32]. Less work exists on
vulnerability detection for machine code. Kruegel et al. [21]
developed a system for automating mimicry attacks. They
used symbolic execution of x86 machine code to discover
attacks that can give up and regain execution control by
modifying the contents of the data, heap, or stack so that
the application is forced to return control to injected attack
code at some point after the execution of a system call. Cova
et al. [9] used that platform to detect security vulnerabilities
in x86 binaries via symbolic execution.

MineSweeper [5], the work of Moser et al. [25], andSAGE

have been already discussed in§IV.
Machine-Code Model Checkers.AIR (“Assembly Iterative
Refinement”) [8] is a model checker for PowerPC.AIR

decompiles an assembly program to C, and then checks if

13

the resulting C program satisfies the desired property by
applying COPPER [7], a predicate-abstraction-based model
checker for C source code.

[MC]SQUARE [26] is a model checker for microcontroller
assembly code. It uses explicit-state model-checking tech-
niques (combined with a degree of abstraction) to check
CTL properties.

Balakrishnan et al. developed two machine-code model
checkers, CodeSurfer/x86 [2] and DDA/x86 [1]. Nei-
ther system uses symbolic execution; they are based on
abstract-interpretation methods (e.g., numeric abstractdo-
mains and a form of abstraction refinement).BCE makes
use of CodeSurfer/x86 to obtain the control-dependence
graph for a bot program; however, for efficiency reasons,
CodeSurfer/x86 was run in a mode in which many of its
advanced analysis features were turned off.

XI. CONCLUSION

We developed a tool calledBCE that automatically ex-
tracts botnet-command information from bot executables,
without using source code or symbol-table/debugging infor-
mation. The information obtained usingBCE can be used
to build up proper input commands that trigger API-level
behaviors.BCE furnishes other kinds of information about
a bot’s commands, in particular, information that combines
the recovered symbolic information about inputs with type
information for the target API calls.BCE also provides a
sequence of API calls controlled by each command, which
helps users to understand the bot’s API-level behaviors.

BCE performs directed test generation on executables
and incorporates a new search technique based on control-
dependence information. Our experiments showed that the
new search strategies developed forBCE yielded both
substantially higher coverage of the parts of the program
relevant to identifying bot commands, as well as lowered
run-time.

Acknowledgements

This research was supported by NSF under grants CCF-
0540955, CCF-0810053, and CCF-0904371, by ONR under
grants N00014-09-1-0510 and N00014-09-1-0776, by ARL
under grant W911NF-09-1-0413, and by AFRL under grants
FA8750-06-C-0249 and FA9550-09-1-0279. Junghee Lim
was supported by a Symantec Research Labs Graduate
Fellowship.

REFERENCES

[1] G. Balakrishnan and T. Reps. Analyzing stripped device-
driver executables. InTACAS, 2008.

[2] G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Mel-
ski, R. Gruian, S. Yong, C.-H. Chen, and T. Teitelbaum.
Model checking x86 executables with CodeSurfer/x86 and
WPDS++. InCAV, 2005.

[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Au-
tomatic predicate abstraction of C programs. InPLDI, New
York, NY, 2001. ACM Press.

[4] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino.
Boogie: A modular reusable verifier for object-oriented pro-
grams. 2005.

[5] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. Automatically
identifying trigger-based behavior in malware. InBotnet
Detection. Springer, 2008.

[6] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Bidirectional protocol reverse engineering: Message format
extraction and field semantics inference. Tech. rep. 2009-57,
EECS, UC-Berkeley, 2009.

[7] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman,and
K. Yorav. Efficient verification of sequential and concurrent C
programs.Formal Methods in System Design, 25(2–3), 2004.

[8] S. Chaki and J. Ivers. Software model checking without
source code. InProc. of the First NASA Formal Methods
Symposium, 2009.

[9] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static
detection of vulnerabilities in x86 executables. InACSAC,
2006.

[10] B. Dutertre and L. de Moura. Yices: An SMT solver, 2006.
http://yices.csl.sri.com/.

[11] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization.Trans. on Prog.
Lang. and Syst., 3(9):319–349, 1987.

[12] Fast Library Identification and Recognition
Technology, DataRescue sa/nv, Liège, Belgium,
http://www.datarescue.com/idabase/flirt.htm.

[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InPLDI, 2005.

[14] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox
fuzz testing. InNDSS, 2008.

[15] J. Goebel. Rishi: Identify bot contaminated hosts by irc
nickname evaluation. InUSENIX Sec. Symp., 2007.

[16] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection. InUSENIX Sec. Symp.2008.

[17] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet
command and control channels in network traffic. InNetwork
and Dist. Syst. Security. 2008.

[18] E. Harcourt, J. Mauney, and T. Cook. Functional specification
and simulation of instruction set architectures. InProc. Int.
Conf. on Sim. and Hardw. Desc. Langs.SCS Press, 1994.

[19] IDAPro disassembler, http://www.datarescue.com/idabase/.

14

[20] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet
detection and characterization. InHotBots’07: Proceedings
of the first conference on First Workshop on Hot Topics in
Understanding Botnets. USENIX Association, 2007.

[21] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In
USENIX Sec. Symp., 2005.

[22] Y. Kugisaki, Y. Kasahara, Y. Hori, and K. Sakurai. Bot
detection based on traffic analysis. InIntelligent Pervasive
Computing, 2007.

[23] J. Lim and T. Reps. A system for generating static analyzers
for machine instructions. InCC, 2008.

[24] B. Livshits and M. Lam. Finding security vulnerabilities in
Java applications with static analysis. InUSENIX Sec. Symp.,
2005.

[25] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. InIEEE Symposium
on Security and Privacy, 2007.

[26] B. Schlich.Model Checking of Software for Microcontrollers.
PhD thesis, RWTH Aachen University, Germany, 2008.

[27] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. InFSE, 2005.

[28] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding malware
analysis using conditional code obfuscation. InNetwork and
Dist. Syst. Security. 2008.

[29] E. Stinson and J. C. Mitchell. Characterizing bots’ remote
control behavior. InIn Lecture Notes in Computer Science,
page 4579. Springer, 2007.

[30] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas.Botnet
Detection Based on Network Behavior. Springer US, 2008.

[31] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabilities.
In NDSS, 2000.

[32] Y. Xie and A. Aiken. Static detection of security vulnerabil-
ities in scripting languages. InUSENIX Sec. Symp., 2006.

[33] J. Zhuge, T. Holz, XinhuiHan, J. Guo, and W. Zou. Charac-
terizing the IRC-based botnet phenomonon. Tech. rep., Reihe
Informatik, 2007.

15

