Computer
Sciences
Department

Algorithms and Software for Convex Mixed Integer Nonlinear
Programs

Pierre Bonami
Mustafa Kilinc
Jeff Linderoth

Technical Report #1664

October 2009

ALGORITHMS AND SOFTWARE FOR CONVEX MIXED
INTEGER NONLINEAR PROGRAMS

PIERRE BONAMI*, MUSTAFA KILING!, AND JEFF LINDEROTH?!

Abstract. This paper provides a survey of recent progress and software for solving
mixed integer nonlinear programs (MINLP) wherein the objective and constraints are
defined by convex functions and integrality restrictions are imposed on a subset of the
decision variables. Convex MINLPs have received sustained attention in very years. By
exploiting analogies to the case of well-known techniques for solving mixed integer linear
programs and incorporating these techniques into the software, significant improvements
have been made in our ability to solve the problems.

Key words. Mixed Integer Nonlinear Programming; Branch and Bound;

AMS(MOS) subject classifications.

1. Introduction. Mixed-Integer Nonlinear Programs (MINLP) are
optimization problems where some of the variables are constrained to take
integer values and the objective function and feasible region of the problem
are described by nonlinear functions. Such optimization problems arise in
many real world applications. Integer variables are often required to model
logical relationships, fixed charges, piecewise linear functions, disjunctive
constraints and the non-divisibility of resources. Nonlinear functions are
required to accurately reflect physical properties, covariance, and economies
of scale.

In all its generality, MINLP forms a particularly broad class of chal-
lenging optimization problems as it combines the difficulty of optimizing
over integer variables with handling of nonlinear functions. Even if we
restrict our model to contain only linear functions, MINLP reduces to a
Mixed-Integer Linear Program (MILP), which is an NP-Hard problem [56].
On the other hand, if we restrict our model to have no integer variable but
allow for general nonlinear functions in the objective or the constraints,
then MINLP reduces to a Nonlinear Program (NLP) which is also known
to be NP-Hard [91]. Combining both integrality and nonlinearity can lead
to examples of MINLP that are undecidable [68].

*Laboratoire d’Informatique Fondamentale de Marseille, CNRS, Aix-Marseille Uni-
versités, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy - Case
901, F-13288 Marseille Cedex 9, France, pierre.bonami@lif.univ-mrs.fr. Supported
by ANR grand BLANO06-1-138894

fDepartment of Industrial and Systems Engineering, University of Wisconsin-
Madison, 1513 University Ave., Madison, WI, 53706, kilinc@wisc.edu

tDepartment of Industrial and Systems Engineering, University of Wisconsin-
Madison, 1513 University Ave., Madison, WI, 53706, linderoth@wisc.edu, The work
of the second and third authors is supported by the US Department of Energy un-
der grants DE-FG02-08ER25861 and DE-FG02-09ER25869, and the National Science
Foundation under grant CCF-0830153.

2 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

In this paper, we restrict ourselves to the class of MINLP where the
objective function to minimize is convex and the feasible set is a convex
region. Convex MINLP is still NP-hard since it contains MILP as a special
case. Nevertheless, it can be solved much more efficiently than general
MINLP since the problem obtained by dropping the integrity requirements
is a convex NLP for which there exist efficient algorithms. Further, the
convexity of the objective function and feasible region can be used to design
specialized algorithms.

There are many diverse and important applications of convex MINLPs.
A small subset of these applications includes portfolio optimization [21, 69],
block layout design in the manufacturing and service sectors [33, 99], net-
work design with queuing delay constraints [27], integrated design and con-
trol of chemical processes [54], drinking water distribution systems security
[74], minimizing the environmental impact of utility plants [47], and multi-
period supply chain problems subject to probabilistic constraints [76].

Even though convex MINLP is NP-Hard, there are exact methods
for solving convex MINLPs—methods that terminate with a guaranteed
optimal solution or prove that no such solution exists. In this survey, our
main focus is on such exact methods and their implementation.

In the last 40 years, at least five different algorithms have been pro-
posed for solving convex MINLP to optimality. In 1965, Dakin remarked
that the branch-and-bound method did not require linearity and could be
applied to convex MINLP. In the early 70’s, Geoffrion [57] generalized Ben-
ders decomposition to make an exact algorithm for convex MINLP. In the
80’s, Gupta and Ravindran studied the application of branch-and-bound
[63]. At the same period, Duran and Grossmann [44] introduced the Outer
Approximation decomposition algorithm. This latter algorithm was subse-
quently improved in the 90’s by Fletcher and Leyffer [52] and also adapted
to the branch-and-cut framework by Quesada and Grossmann [97]. In the
same period, a related method called the Extended Cutting Plane method
was proposed by Westerlund and Pettersson [111]. Section 3 of this paper
will be devoted to reviewing in more details all these methods.

Two main ingredients of the above mentioned algorithms are solving
MILP and solving NLP. In the last decades, there has been enormous ad-
vances in our ability to solve these two important subproblems of convex
MINLP.

We refer the reader to [101, 93] and [113] for in-depth analysis of the
theory of MILP. The advances in the theory of solving MILP have led to
the implementation of solvers both commercial and open-source which are
now routinely used to solve many industrial problems of large size. [22]
demonstrate that advances in algorithmic technology alone have resulted
in MILP instances solving more than 300 times faster than a decade ago.
There are effective, robust commercial MILP solvers such as CPLEX [67],
XPRESS-MP [48], and Gurobi [64]. Noncommercial MILP solvers include
MINTO [94], SCIP [3] and several open-source software included in COIN-

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 3

ORJ[36, 85].

There has also been steady progress over the past 30 years in the devel-
opment and successful implementation of algorithms for NLPs. We refer the
reader to [13] and [95] for a detailed recital of nonlinear programming tech-
niques. Theoretical developments have led to successful implementations
in software such as SNOPT [58], filterSQP [53], CONOPT [43], IPOPT
[107], LOQO [104], and KNITRO [32]. Waltz [108] states that the size of
instance that is solvable by NLP is growing nearly an order magnitude a
decade.

Of course, solution algorithms for convex MINLP have benefit from the
technological progress made in solving MINLP and NLP. However, in the
realm of MINLP, the progress has been far more modest, and the dimension
of solvable convex MINLP by current solvers is small when compared to
MILPs and NLPs. In this work, our goal is to give a brief introduction to
the techniques which are in state-of-the-art solvers for convex MINLPs. We
survey basic theory as well as recent advances that have made their way
into software. We also attempt to make a fair comparison of all algorithmic
approaches and their implementations.

The remainder of the paper can be outlined as follows. A precise de-
scription of a MINLP and algorithmic building blocks for solving MINLPs
are given in Section 2. Section 3 outlines five different solution techniques.
In Section 4, we describe in more detail some advanced techniques imple-
mented in the latest generation of solvers. Section 5 contains descriptions of
several state-of-the-art solvers that implement the different solution tech-
niques presented. Finally, in Section 6 we present a short computational
comparison of those software.

2. MINLP. The focus of this section is to mathematically define a
MINLP and describe important special cases. Basic elements of MINLP
algorithms and subproblems related to MINLP are also introduced.

2.1. MINLP Problem Classes. A mixed integer nonlinear program
may be expressed in algebraic form as follows:

ZMINLP = minimize f(.’[')
subject to g;(z) <0 VjeJ, (MINLP)
re X, x5€ Zm,

where X is a polyhedral subset of R (e.g. X = {z |z € R}, Az < b}).
The functions f : X — R and g; : X — R are sufficiently smooth func-
tions. (The algorithms presented here only require continuously differen-
tiable functions, but in general algorithms for solving continuous relax-
ations converge much faster if functions are twice-continuously differen-
tiable). The set J is the index set of nonlinear constraints, I is the index
set of discrete variables and C is the index set of continuous variables, so

IucC ={1,...,n}.

4 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

For convenience, we assume that the set X is bounded; in particular
some finite lower bounds L; and upper bounds U; on the values of the
integer variables are known. In most applications, discrete variables are
restricted to 0-1 values, i.e.. 2; € {0,1} Vi € I. In this survey, we focus on
the case where the functions f and g; are convex. Thus, by relaxing the
integrality constraint on z, a convex program, minimization of a convex
function over a convex set, is formed. We will call such problems convez
MINLPs. From now on, unless stated, we will refer convex MINLPs as
MINLPs.

There are a number of important special cases of MINLP. If f(z) =
2TQx +d"x + h, is a (convex) quadratic function of 2, and there are only
linear constraints on the problem (J =), the problem is known as a mixed
integer quadratic program (MIQP). If both f(x) and g;(x) are quadratic
functions of x for each j € J, the problem is known as a mixed integer
quadratically constrained program (MIQCP). Significant work was been
devoted to these important special cases [88, 29, 21].

If the objective function is linear, and all constraints have the form
g;j(z) = ||Az + b||2 — ¢’z — d, then the problem is a mixed integer second-
order cone program (MISOCP). Through a well-known transformation,
MIQCP can be transformed into a MISOCP. In fact, many different types
of sets defined by nonlinear constraints are representable via second-order
cone inequalities. Discussion of these transformations is out of the scope of
this work, but the interested reader may consult [16]. Relatively recently,
commercial software packages such as CPLEX [67], XPRESS-MP [48], and
Mosek [89] have all been augmented to include specialized algorithms for
solving these important special cases of convex MINLPs. In what follows,
we focus on general convex MINLP and software available for its solution.

2.2. Basic Elements of MINLP Methods. The basic concept un-
derlying algorithms for solving (MINLP) is to generate and refine bounds
on its optimal solution value. Lower bounds are generated by solving a
relaxation of (MINLP), and upper bounds are provided by the value of
a feasible solution to (MINLP). Algorithms differ in the manner in which
these bounds are generated and the sequence of subproblems that are solved
to generate these bounds. However, algorithms share many basic common
elements, which are described next.

Linearizations : Since the objective function of (MINLP) may be non-
linear, its optimal solution may occur at a point that is interior to the
convex hull of its set of feasible solutions. It is simple to transform the
instance to have a linear objective function by introducing an auxiliary
variable n and moving the original objective function into the constraints.

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 5

Specifically, (MINLP) may be equivalently stated as

Zyinpp = Minimize 7
subject to f(x) <n
g;(x) <0 Vjel (MINLP-1)
re X, xr€ AR

Many algorithms rely on linear relaxations of (MINLP), obtained by
linearizing the objective and constraint functions. Since f and g; are convex
and differentiable, the inequalities

f@)+ V@) (z—2) < fla),
i (%) + Vg;(2)" (x — &) < g;(),

f@) + V@) (z—2) <n, (2.1)
9;(&) + Vg;(2)T (z —2) <0 (2.2)

are valid for (MINLP-1). Linearizations of g;(x) outer-approximate the
feasible region, and linearizations of f(x) underestimate the objective func-
tion. We often refer to (2.1)-(2.2) as outer approximation constraints.

Subproblems : One important subproblem used by a variety of algo-
rithms for (MINLP) is formed by relaxing the integrity requirements and
restricting the bounds on the integer variables. Given bounds (I;,u;) =
{(l;,w;) | Vi € T}, the NLP relazation of (MINLP) is

Zuier(l,w) = Minimize f(x)
subject to g;(xz) <0 VjeJ, (NLPR(Iy, ur))
reX; ly<z;<uj.

The value zypr(1,u) is @ lower bound on the value of zyunip that can be
obtained in the subset of the feasible region where the bounds ¢/; < z; <
uy are imposed. Specifically, if (I;,ur) are the lower and upper bounds
(L1, Ur) for the original instance, then zxrpr(z,,v;) Provides a lower bound
Oon ZyiINLP-

In the special case that all of the integer variables are fixed (I = u; =
Zr), the fized NLP subproblem is formed:

ZNLP(z,) = Minimize f(z)
subject to g;(x) <0, VjeJ (NLP(z1))
reX;, xy=2j.

6 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

If #; € ZI! and (NLP(&7)) has a feasible solution, the value ZNLP(#;) PrO-
vides an upper bound to the problem (MINLP). If (NLP(Z;)) is infeasible,
NLP software typically will deduce infeasibility by solving an associated
feasibility subproblem. One choice of feasibility subproblem employed by
NLP solvers is

ZNLPF(3;) = minimize ijgj (z)*
=1
st.z€X, @r=4dr, (NLPF(21))

where g;(z)" = max{0, g;(z)} measures the violation of the nonlinear con-
straints and w; > 0. This problem can be interpreted as the minimization
of a weighted ¢;-norm of the constraint violation.

3. Algorithms for Convex MINLP. With elements of algorithms
defined, attention can be turned to describing common algorithms for
solving MINLPs. The algorithms share many general characteristics with

the well-known branch-and-bound or branch-and-cut methods for solving
MILPs.

3.1. NLP-Based Branch and Bound. Branch and bound is a divide-l
and-conquer method. The dividing (branching) is done by partitioning the
set of feasible solutions into smaller and smaller subsets. The conquering
(fathoming) is done by bounding the value of the best feasible solution in
the subset and discarding the subset if its bound indicates that it cannot
contain an optimal solution.

Branch and bound was first applied to MILP by Land and Doig [75].
The method (and its enhancements such as branch-and-cut) remain the
workhorse for all of the most successful MILP software. Dakin [39] real-
ized that this method does not require linearity of the problem. Gupta
and Ravindran [63] suggested an implementation of the branch-and-bound
method for convex MINLPs and investigated different search strategies.
Other early works related to NLP-Based branch-and-bound (NLP-BB for
short) for convex MINLP include [92], [28], and [79].

In NLP-BB, the lower bounds come from solving the subproblems
(NLPR(I;, uz)). Initially, the bounds (L, Ur) (the lower and upper bounds
on the integer variables in (MINLP)) are used, so the algorithm is initialized
with a continuous relaxation the solution of which provides a lower bound
on zymwLp- The bounds are successively refined until the subregion can
be fathomed. Continuing in this manner yields a tree £ of subproblems.
A node N of the search tree is characterized by the bounds enforced on

its integer variables to define its subregion: N def (Ir,ur). Lower and
upper bounds on the optimal solution value zy, < zynep < 2y are updated
through the course of the algorithm. Algorithm 1 gives pseudocode for the
NLP-BB algorithm for solving (MINLP).

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 7

Algorithm 1 The NLP-Based Branch-and-Bound Algorithm

0. Initialize.
L — {(L[, U])}. Zuy = OQ. z* «+— NONE.
1. Terminate?
Is £ = ()7 If so, the solution z* is optimal.
2. Select.
Choose and delete a problem N® = (I%,u%) from L.
3. Evaluate.
Solve NLPR(l%, u%). If the problem is infeasible, go to step 1, else
let ZxLpr(lhul) be its objective function value and #* be its solution.

4. Prune.
If Zyipr(liui) = 2U, 8O to step 1. If 2" is fractional, go to step 5,

else let 2y — Zypprq: x* « 2, and delete from L all problems

sub)r
with zJL > zy. Go to step 1.

5. Divide.
Divide the feasible region of N? into a number of smaller feasi-
ble subregions, creating nodes N, N% ... Ni. For each j =
1,2,...,k, let 27 « Zyier(3 ui) and add the problem Niito L. Go
to 1.

As described in Step 4 of Algorithm 1, if NLPR(l}, u}) yields an
integral solution (all discrete variables take integer value), then 2y pg(: yi)
gives an upper bound for MINLP. Fathoming of nodes occurs when the
lower bound for a subregion obtained by solving NLPR(l%, u}) exceeds the
current upper bound zy, when the subproblem is infeasible, or when the
subproblem provides a feasible integral solution. If none of these conditions
is met, the node can not be pruned and the subregion is divided to create
new nodes. This Divide step of Algorithm 1 may be performed in many
ways. In most successful implementations, the subregion is divided by
dichotomy branching. Specifically, the feasible region of N? is divided into
subsets by changing bounds on one integer variable based on the solution
&' to NLPR(l}, u%). An index j € I such that &; ¢ Z is chosen and two
new children nodes are created by adding the bound z; < [Z; | to one child
and z; > [&;] to the other child. The tree search continues until all nodes
are fathomed, at which point z* is the optimal solution.

The description makes it clear that there are various choices to be
made during the course of the algorithm. Namely, how do we select which
subproblem to evaluate, and how do we divide the feasible region? A partial
answer to these two questions will be provided in Sections 4.2 and 4.3.
The NLP-based Branch-and-Bound algorithm is implemented in solvers
MINLP-BB [78], SBB [30], and Bonmin [24].

3.2. Outer Approximation. The Outer Approximation (OA) method]]
for solving (MINLP) was first proposed by Duran and Grossmann [44]. The

8 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

fundamental insight behind the algorithm is that (MINLP) is equivalent
to a mixed integer linear program (MILP) of finite size. The MILP is con-
structed by taking linearizations of the objective and constraint functions
about the solution to the subproblem NLP(z;) or NLPF(&;) for various
choices of &. Specifically, for each integer assignment &; € Proj, (X yNZH|
(where Proj,, (X)) denotes the projection of X onto the space of integer con-
strained variables), let T € argmin NLP(Z;) be an optimal solution to the
NLP subproblem with integer variables fixed according to &;. If NLP(Z;)
is not feasible, then let T € arg min NLPF(Z;) be an optimal solution to its
corresponding feasibility problem. Since Proj, (X) is bounded by assump-
tion, ther are a finite number of subproblems NLP(Z;). For each of these
subproblems, we choose one optimal solution, and let K be the (finite) set
of these optimal solutions. Using these definitions, an outer-approximating
MILP can be specified as

Zoa =min 7

st.n> f(@)+ Vi@ ' (x—-7) TEK, (MILP-OA)
9;(@) +Vgj(@) " (x—7) <0 jeJTEK,
re X, x5€ 7T

The equivalence between (MINLP) and (MILP-OA) is specified in the
following theorem:

THEOREM 3.1. [44, 52, 24] If X # 0, f and g are convez, continuously
differentiable, and a constraint qualification holds for each x* € K then
2umLe = Zoa- All optimal solutions of (MINLP) are optimal solutions of
(MILP-OA).

From a practical point of view it is not relevant to try and formulate
explicitly (MILP-OA) to solve (MINLP)—to explicitly build it, one would
have first to enumerate all solutions to MINLP. The OA method uses an
MILP relaxation (MP(K)) of (MINLP) that is built in a manner similar to
(MILP-OA) but where linearizations are only taken at a subset K of K:

Zyup(k) =min - 7
st.n> f(@)+ V@) (x—2) €K, (MP(K))
9;(%) + Vg;(2)"(x —2) <0 jeJzek,
re X, x5€ VAR

We call this problem the OA-based reduced master problem. The solu-
tion value of the reduced master problem (MP(K)), zyp(ik), gives a lower
bound to (MINLP), since C K. The OA method proceeds by iteratively
adding points to the set K. Since function linearizations are accumulated
as iterations proceed, the reduced master problem (MP(K)) yields a non-
decreasing sequence of lower bounds.

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 9

OA typically starts by solving (NLPR(L;,Ur)). Linearizations about
the optimal solution to (NLPR(I;, uy)) are used to construct the first re-
duced master problem (MP(K)). Then, (MP(K)) is solved to optimality to
give an integer solution, Z. This integer solution is then used to construct
the NLP subproblem (NLP(Z;)). If (NLP(&;)) is feasible, linearizations
about the optimal solution of (NLP(Z;)) are added to the reduced mas-
ter problem. These linearizations eliminate the current solution & from
the feasible region of (MP(K)). Also, the optimal solution value zxpp(z,)
yields an upper bound to MINLP. If (NLP(Z;)) is infeasible, the feasibility
subproblem (NLPF(Z)) is solved and linearizations about the optimal so-
lution of (NLPF(Z;)) are added to the reduced master problem (MP(K)).
The algorithm iterates until the lower and upper bounds are within a spec-
ified tolerance e. Algorithm 2 gives pseudocode for the method. Theorem
3.1 guarantees that this algorithm can not cycle and terminates in a finite
number of steps.

Note that the reduced master problem need not be solved to optimality.
In fact, given the upper bound UB and a tolerance e, it is sufficient to
generate any new & with f(Z) < UB — e. This can usually be achieved by
setting a cutoff value or adding the constraint 7 < UB —e. In this case, the
OA iterations are terminated when the OA master problem has no feasible
solution. OA is implemented in the software packages DICOPT [61] and
Bonmin [24].

Algorithm 2 The Outer Approximation Algorithm

0. Imitialize.
2y — 400. 21, «— —00. £* < NONE. Let z° be the optimal solution
of (NLPR(L[,U]))
K« {fo} . Choose a convergence tolerance e.
1. Terminate?
Is zy — 2z, < € or (MP(K)) infeasible? If so, z* is e—optimal.
2. Lower Bound
Let zmp(ky be the optimal value of MP(K) and (), %) its optimal
solution.
2L <= ZMP(K)
3. NLP Solve
Solve (NLP(Zy)).
Let Z° be the optimal (or minimally infeasible) solution.
4. Upper Bound?
Is 7 feasible for (MINLP) and f(z') < zy? If so, 2* « @' and
zu — f(T).
5. Refine
K Ku{z'} and i+ i+ 1.
Go to 1.

10 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

3.3. Generalized Benders Decomposition. Benders Decomposi-
tion was introduced by Benders [17] for the problems that are linear in the
“easy” variables, and nonlinear in the “complicating® variables. Geoffrion
[57] introduced the Generalized Benders Decomposition (GBD) method for
MINLP. The GBD method is very similar to the OA method, differing only
in the definition of the MILP master problem. Specifically, instead of us-
ing linearizations for each nonlinear constraint, GBD uses duality theory
to derive one single constraint which combines the linearizations derived
from all the original problem constraints.

In particular, let Z be the optimal solution to (NLP(Z)) for a given
integer assignment Z; and be the corresponding optimal Lagrange mul-
tipliers. The following generalized Benders cut is valid for (MINLP)

1 2f(@) + (Vif(@) + 7" Vig(@)" (1 — &) (BC(2))

Note that Z; = 2, since the integer variables are fixed. In (BC(%)), V7
refers to the gradients of functions f (or g) with respect to discrete vari-
ables. The inequality (BC(&)) is derived by building a surrogate of the
OA constraints using the multipliers @ and simplifying the result using the
Karush-Kuhn-Tucker conditions satisfied by z.

If there is no feasible solution to (NLP(Z;)), a feasibility cut can be
obtained similarly by using the solution T to (NLPF(Z;)) and corresponding
multipliers \:

—T _ _ . N
X [9@) + Vig@)" (w1 — 1)) < 0. (FCY ()
In this way, a relaxed master problem similar to (MILP-OA) can be
defined as:

Zapp(KFS,KIS) = min 7
st n > f(@)+ (Vif(@) + 75" Vig(@)" (21 —T;) VT € KFS,

XN [9@) + Vig@ (@ — 7)) <0 Yz € KFS,
(RM-GBD)

z e X, xIEZI,

where KFS is the set of solutions to feasible subproblems (NLP(Z;)) and
KIS is the set solutions to infeasible subproblems (NLPF(zr)).

The inequalities used to create the master problem (RM-GBD) are
aggregations of the inequalities used for (MILP-OA). As such, the lower
bound obtained by solving a reduced version of (RM-GBD) (where only
a subset of constraint is considered) can be significantly weaker than for
(MP(K)). This may explain why there is no available solver that uses
solely the GBD method for solving convex MINLP. Abhishek, Leyffer and
Linderoth [1] suggest to use the Benders cuts to aggregate inequalities in
an LP/NLP-BB algorithm (see Section 3.5).

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 11

3.4. Extended Cutting Plane. Westerlund and Pettersson [111]
proposed the Extended Cutting Plane (ECP) method for convex MINLPs,
which is an extension of Kelley’s cutting plane method [71] for solving
convex NLPs. The ECP method was further extended to handle pseudo-
convex function in the constraints [109] and in the objective [112] in the
a-ECP method. Since this is beyond our definition of (MINLP), we give
only here a description of the ECP method when all functions are convex.
The reader is invited to refer to [110] for an up-to-date description of this
enhanced method. The main feature of the ECP method is that it does not
rely on the use of any NLP solvers. The algorithm is based on the iterative
solution of a reduced master problem (RM-ECP(K)). Linearizations of
the most violated constraint at the optimal solution of (RM-ECP(K)) are
added at every iteration. The ECP method successively adds linearizations
by evaluating gradients instead of solving NLP subproblems. The MILP
reduced master problem (RM-ECP(K)) is defined as:

Zgop(k) = Min 7
st.n>f(@)+ V@) (x—2) 7€k (RM-ECP(K))
9;(%) + Vgj(#) (x —2) <0 jeJK) zek
re X, x5€ 7!

where J(K) o {j € argmaxjcyg;(Z)} is the index set of most violated
constraints for each solution z € K, the (finite) set of solutions to (RM-
ECP(K)). It is also possible to add linearizations of all violated constraints
to (RM-ECP(K)). In that case, J(K) = {j | g;(z) > 0}}. Algorithm 3 gives
the pseudo-code for the ECP algorithm.

The optimal values zycp(ic) of (RM-ECP(K)) generate a non-decreasin
sequence of lower bounds. Convergence of the algorithm is achieved when
the maximum constraint violation is smaller than a specified tolerance. The
ECP method may require a large number of iterations since the lineariza-
tions are not coming from solutions to NLP subproblems. Convergence can
often be accelerated by solving NLP subproblems (NLP(Z;)) and adding
the corresponding linearizations, as in the OA method. The Extended
Cutting Plane algorithm is implemented in the a-ECP software [110].

3.5. LP/NLP-Based Branch-and-Bound. The LP/NLP-Based Branch-Jj
and-Bound algorithm (LP/NLP-BB) was first proposed by Quesada and
Grossmann [97]. The method is an extension of the OA method outlined in
Section 3.2, but instead of solving a sequence of master problems (MP(K)),
the master problem is dynamically updated in a single branch-and-bound
tree that closely resembles the branch-and-cut method for MILP.

We denote by LP(K, ¢4, u%) the LP relaxation of (MP(K)) obtained
by dropping the integrity requirements and setting the lower and upper
bounds on the zy variables to I; and uj respectively. The LP/NLP-BB
method starts by solving the NLP relaxation (NLPR(L;,Ur)), and sets up

12 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

Algorithm 3 The Extended Cutting Plane Algorithm

0. Initialize.
Choose convergence tolerance €. K « ().

1. Lower Bound
Let (7,Z") be the optimal solution to (RM-ECP(K)).

2. Terminate?
Is g;(z%) < eVj € J and f(&') — 7 < €? If so, T is optimal with
e—feasibility.

3. Refine
K« KU {z'},t € argmax; g;(z?), and J(K) « J(K) U {t}
i+—1i+1. Goto l.

the reduced master problem (MP(K)). A branch-and-bound enumeration
is then started for (MP(K)) using its LP relaxation. The branch-and-
bound enumeration generates linear programs LP(K, ¢}, u}) at each node
N? = (¢4, u}) of the tree. Whenever an integer solution is found at a node,
the standard branch-and-bound is interrupted and (NLP(Z;)) is solved by
fixing integer variables to solution values at that node. The linearizations
from the solution of (NLP(Zy)) are then used to update the reduced master
problem (MP(K)). The branch-and-bound tree is then continued with the
updated reduced master problem. The main advantage of LP/NLP-BB
over OA is that the need of restarting the tree search is avoided and only a
single tree is required. Algorithm 4 gives the pseudo-code for LP/NLP-BB.
Adding linearizations dynamically to the reduced master problem (MP (X))}
is a key feature of LP/NLP-BB. Note, however that the same idea could
potentially be applied to both the GBD and ECP methods. The LP/NLP-
BB method commonly significantly reduces the total number of nodes to
be enumerated when compared to the OA method. However, the trade-off
is that the number of NLP subproblems might increase. As part of his
Ph.D. thesis, Leyffer implemented the LP/NLP-BB method and reported
substantial computational savings [77]. The LP/NLP-Based Branch-and-
Bound algorithm is implemented in solvers Bonmin [24] and FiIMINT [1].

4. Implementation Techniques for Convex MINLP. Seasoned
algorithmic developers know that proper engineering and implementation
can make a large positive impact on the final performance of software. In
this section, we present techniques which have proven useful in efficiently
implementing the convex MINLP algorithms of Section 3.

The algorithms for solving MINLP we presented share a great deal in
common and with algorithms for solving MILP. NLP-BB is similar to a
branch and bound for MILP, simply solving a different relaxation at each
node. The LP/NLP-BB algorithm can be viewed as a branch-and-cut algo-
rithm from MILP, where the refining linearizations are an additional class
of cuts used to approximate the feasible region. An MILP solver is used as

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 13

Algorithm 4 The LP/NLP-Based Branch-and-Bound Algorithm

0. Imitialize.
L — {(L[, U])} 2y «— +oo. z* «— NONE.
Let T be the optimal solution of (NLPR(I;, ur)).
1. Terminate?
Is £ = ()7 If so, the solution z* is optimal.
2. Select.
Choose and delete a problem N = (I}, u}) from L.
3. Evaluate.
Solve LP(K, I%, u%). If the problem is infeasible, go to step 1, else
let zypric i uiy De its objective function value and (77", &) be its
solution.
4. Prune.
If Zawer(li ui) = 2U, 80 to step 1. If 2 is fractional, go to step 5.
5. NLP Solve?
Is &% integer? If so, solve (NLP(Z%)), otherwise go to Step 8.
Let Z° be the optimal (or minimally infeasible) solution.
6. Upper bound?
Is 7 feasible for (MINLP) and f(z) < 2p? If so, 2% « 7', z2iy «

@).

7. Refine.
Let K «— KU (z%). Go to step 3.

8. Divide.
Divide the feasible region of N? into a number of smaller feasi-
ble subregions, creating nodes N N% ... Ni. TFor each j =
1,2,...,k, let zZL7 — ZMPR(K, 1 i) and add the problem N% to L.
Go to step 1.

a subproblem solver in the iterative algorithms (OA, GBD, ECP). In prac-
tice, all the methods spend most of their computing time doing variants
of the branch-and-bound algorithm. As such, it stands to reason that ad-
vances in techniques for the implementation of branch-and-bound for MILP
should be applicable and have a positive impact for solving MINLP. The
reader is referred to the recent survey paper [84] for details about modern
enhancements in MILP software.

First we discuss improvements to the Refine step of LP/NLP-BB,
which may also be applicable to the GBD or ECP methods. We then pro-
ceed to the discussion of the Select and Divide steps which are important
in any branch-and-bound implementation. The section contains an intro-
duction to classes of cutting planes that may be useful for MINLP and
reviews recent developments in heuristics for MINLP.

We note that in the case of iterative methods OA and ECP, some

14 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

of these aspects are automatically taken care of by using a “black-box”
commercial MILP solver to solve (MP(K)) as a component of the algorithm.
In the case of NLP-BB and LP/NLP-BB, one has to more carefully take
these aspects into account (in particular if one wants to be competitive in
practice with methods employing MILP solvers as components).

4.1. Linearization Generation. In the OA Algorithm 2, the ECP
Algorithm 3, or the LP/NLP-BB Algorithm 4, a key step is to Refine the
approximation of the nonlinear feasible region by adding linearizations of
the objective and constraint functions (2.1) and (2.2). For convex MINLPs,
linearizations may be generated at any point and still give a valid outer-
approximation of the feasible region, so for all of these algorithms, there is
a mechanism for enhancing algorithm by adding many linear inequalities.
The situation is similar to the case of a branch-and-cut solver for MILP,
where cutting planes such as Gomory cuts [60], mixed-integer-rounding
cuts [86], and disjunctive (lift and project) cuts [10] can be added to ap-
proximate the convex hull of integer solutions, but care must be taken in a
proper implementation to not overwhelm the software used for solving the
relaxations by adding too many cuts. Thus, key to an effective refinement
strategy in many algorithms for convex MINLP is a policy for deciding
when inequalities should be added and removed from the master problem
and at which points the linearizations should be taken.

Cut Addition: In the branch-and-cut algorithm for solving MILP,
there is a fundamental implementation choice that must be made when
confronted with an infeasible (fractional) solution: should the solution be
eliminated by cutting or branching? Based on standard ideas employed
for answering this question in the context of MILP, we offer three rules-of-
thumb that are likely to be effective in the context of linearization-based
algorithms for solving MINLP. First, linearizations should be generated
early in the procedure, especially at the very top of the branch-and-bound
tree. Second, the incremental effectiveness of adding additional lineariza-
tions should be measured in terms of the improvement in the lower bound
obtained. When the rate of lower bound change becomes too low, the
refinement process should be stopped and the feasible region divided in-
stead. Finally, care must be taken to not overwhelm the solver used for the
relaxations of he master problem with too many linearizations.

Cut Removal: One simple strategy for limiting the number of linear
inequalities in the continuous relaxation of the master problem (MP(K)) is
to only add inequalities that are violated by the current solution to the lin-
ear program. Another simple strategy for controlling the size of (MP(K))
is to remove inactive constraints from the formulation. One technique is
to monitor the dual variable for the row associated with the linearization.
If the value of the dual variable is zero, implying that removal of the in-
equality would not change the optimal solution value, for many consecutive
solutions, then the linearization is a good candidate to be removed from

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 15

the master problem.

Linearization Point Selection. A fundamental question in any linearization-Ji
based algorithm (like OA, ECP, or LP/NLP-BB) is at which points should
the linearizations be taken. Each algorithm specifies a minimal set of points
at which linearizations must be taken in order to ensure convergence to the
optimal solution. However, the algorithm performance may be improved by
additional linearizations. Abhishek, Leyffer, and Linderoth [1] offer three
suggestions for choosing points about which to take linearizations.

The first method simply linearizes the functions f and g about the
fractional point & obtained as a solution to a relaxation of the master
problem. This method does not require the solution of an additional (non-
linear) subproblem, merely the evaluation of the gradients of objective and
constraint functions at the (already specified) point. (The reader will note
the similarity to the ECP method).

A second alternative is to obtain linearizations about a point that is
feasible with respect to the nonlinear constraints. Specifically, given a (pos-
sibly fractional) solution &, the nonlinear program (NLP(Z)) is solved to
obtain the point about which to linearize. This method has the advan-
tage of generating linearization about points that are closer to the feasible
region than the previous method, at the expense of solving the nonlinear
program (NLP(Z;)).

In the third point-selection method, no variables are fixed (save those
that are fixed by the nodal subproblem), and the NLP relaxation (NLPR(I,
uy)) is solved to obtain a point about which to generate linearizations.
These linearizations are likely to improve the lower bound by the largest
amount when added to the master problem since the bound obtained after
adding the inequalities is equal to z,1pr(i;,u;), Put it can be time-consuming
to compute the linearizations.

These three classes of linearizations span the trade-off spectrum of
time required to generate the linearization versus the quality/strength of
the resulting linearization. There are obviously additional methodologies
that may be employed, giving the algorithm developer significant freedom
to engineer linearization-based methods.

4.2. Branching Rules. We now turn to the discussion of how to
split a subproblem in the Divide step of the algorithms. As explained in
Section 2.1, we consider here only branching by dichotomy on the variables.
Suppose that we are at node N? of the branch-and-bound tree with current
solution #*. The goal is to select an integer-constrained variable z; € I
that is not currently integer feasible (i; ¢ 7) to create two subproblems
by imposing the constraint z; < |#%] (branching down) and z; > [}]
(branching up) respectively. Ideally, one would want to select the variable
that leads to the smallest enumeration tree. This of course can not be
performed exactly, since the variable which leads to the smallest subtree
cannot be know a priori (without actually building the whole tree).

16 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

A common heuristic reasoning to choose the branching variable is to
try to estimate how much one can improve the lower bound by branching on
each variable. Because, a node of the branch-and-bound tree is fathomed
whenever the lower bound for the node is above the current upper bound,
one should want to increase the lower bound as much as possible. Suppose
that for each variable x;, we have estimates D;-_ and D;- - on the increase in
lower bound obtained by branching respectively down and up. A reasonable
choice would be to select the variable for which both D§7 and D; , are large.
Usually, D;-_ and D; 4 are combined in order to compute a score for each
variable and the variable of highest score is selected. A usual formula for
computing this score is:

,LLmiIl(D;_,D;'_I,.) +(1—p) max(D;-_, D§+)

(where p € [0,1] is a prescribed parameter usually bigger than 1).

As for the evaluation or estimation of D;_ and D; 4, two main methods
have been proposed: pseudo-costs[18] and strong-branching [67, 7]. Next,
we will present these two methods and how they can be combined.

4.2.1. Strong-Branching. Strong-branching consists in computing
the values D;_ and D; 4 by performing the branching on variable x; and
solving the two associated sub-problems. For each variable x; currently
fractional in 2%, we solve the two subproblem N? and N}, obtained by
branching down and up respectively on variable j. Because N;ff and/or
N JZ 4 may be proven infeasible, depending on their status, different decision
may be taken.

o If both sub-problems are infeasible: the node N’ is infeasible and
is fathomed.

o If one of the subproblems is infeasible: the bound on variable x; can
be strengthened. Usually after the bound is modified, the node is
reprocessed from the beginning (going back to the Evaluate step).

e If both subproblems are feasible, their values are used to compute
D;_ and D;- L

Strong-branching can very significantly reduce the number of nodes
in a branch-and-bound tree, but is often slow overall due to the added
computing cost of solving two subproblems for each fractional variable. To
reduce the computational cost of strong branching, it is often efficient to
solve the subproblems only approximately. If the relaxation at hand is an
LP (for instance in LP/NLP-BB) it can be done by limiting the number of
dual simplex iterations when solving the subproblems. If the relaxation at
hand is an NLP, it can be done by solving an approximation of the problem
to solve. Two possible relaxations that have been recently suggested [23, 81]
are the LP relaxation obtained by constructing an Outer Approximation
or the Quadratic Programming approximation given by the last Quadratic
Programming sub-problem in a Sequential Quadratic Programming (SQP)

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 17

solver for nonlinear programming. (for background on SQP solvers see [95]
for example).

4.2.2. Pseudo-Costs. The pseudo-cost method consists in keeping
the history of the effect of branching on each variable and utilizing this
historical information to select good branching variables. For each variable
x;, we keep track of the number of times the variable has been branched on
(1;) and the total per-unit degradation of the objective value by branching
down and up respectively P;,_ and P;;. Each time variable j is branched
on, P;_ and Pj; are updated by taking into account the change of bound
at that node:

S i St _ i
Pj_ = LTZL +Pj_, and Pj+ = i—iflL +Pj+,
J J

where z; is the branching variable, N* and N% denote the nodes from
the down and up branch, 2% (resp. zf and zf) denote the lower bounds
computed at node N’ (resp. N’ and Ni), and f; = 2% — [&’] denotes
the fractional part of 50; Whenever a branching decision has to be made,
estimates of D;_, D; . are computed by multiplying the average of observed
degradations with the current fractionality:
_ P , P
D:_ = f;#, and D}, = (1 — f;)TJTf,

Note that contrary to strong-branching, pseudo-costs require very little
computation since the two values P]ﬁ and sz‘ . are only updated once
the values zi_ and z?‘ have been computed (by the normal process of
branch-and-bound). Thus pseudo-costs have a negligible computational
cost. Furthermore, statistical experiments have shown that pseudo-costs
often provide reasonable estimates of the objective degradations caused by
branching [83].

Two difficulties arise with pseudo-costs. The first one, is how to update
the historical data when a node is infeasible. This matter is not settled.
Typically, the pseudo-cost update is simply ignored if a node is infeasible.

The second question is how the estimates should be initialized. For
this, it seems that the agreed upon state of the art is to combine pseudo-
costs with strong branching. Strong-branching and pseudo-costs form a
natural combination to solve each of the two methods drawbacks: strong-
branching is to slow to be performed at every node of the tree, and pseudo-
costs need to be initialized. The main idea is to use strong-branching
at the beginning of the tree search, and once all pseudo-costs have been
initialized revert to using pseudo-costs. Several variants of this scheme
have been proposed. A popular one is reliability branching [5]. This rule
depends on a reliability parameter x (usually a natural number between 1
and 8), pseudo-costs are trusted for a particular variable only after strong-
branching has been performed times on this variable.

18 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

Finally, we note that while we have restricted ourselves in this dis-
cussion to dichotomy branching, one can branch in many different ways.
Most state-of-the-art solvers allow branching on SOS constraint [15]. More
generally, one could branch on split disjunctions of the form (77x; <
7o) V (nTxr > mo + 1) (where (m,m) € Z""1). Although promising re-
sults have been obtained in the context of MILP[70, 38], as far as we know,
these methods have not been used yet in the context of MINLPs. Fi-
nally, methods have been proposed to branch efficiently in the presence
of symmetries [87, 96]. Again, although they would certainly be useful,
these methods have not yet been adapted and made their ways yet into the
state-of-the-art for MINLPs, though some preliminary work is being done
in this direction [82].

4.3. Node Selection Rules. The other important strategic decision
left unspecified in Algorithms 1 and 4 is which node to choose in the Select
step. Here two goals needs to be considered: decreasing the global upper
bound 2V by finding good feasible solutions, and proving the optimality of
the current incumbent x* by increasing the lower bound as fast as possible.
Two classical node selection strategies are depth-first-search and best-first
(or best-bound). As its name suggest, depth first search select at each
iteration the deepest node of the enumeration tree (or the last node put in
L). Best-first follows an opposite strategy of picking the open node with
the smallest 2¢ (the best lower bound).

Both these strategies have their inherent strengths and weaknesses.
Depth-first has the advantage of keeping the size of the list of open-nodes
as small as possible. Furthermore, the changes from one subproblem to
the next are minimal which can be very advantageous when an active set
method is used for solving the subproblems. Also, depth-first search is
usually able to find feasible solutions early in the tree search. On the
other hand, depth-first can exhibit extremely poor performance if no good
upper bound is known or found: it may explore many nodes with lower
bound higher than the actual optimal solution. Best-bound has the op-
posite strengths and weakness. Its strength is that, for a fixed branching
rule, it minimizes the number of nodes explored (independently of the up-
per bound). Its weaknesses are that it may require significant memory to
store the list £ of active nodes, and that it usually does not find integer fea-
sible solutions before the end of the search. This last property may not be
a shortcoming if the goal is to prove optimality but, as many applications
are too large to be solved to optimality, it is particularly undesirable that
a solver based only on best-first aborts after several hours of computing
time without producing one feasible solution.

It should seem natural that good strategies are trying to combine both
best-first and depth first. Two main approaches are two-phase methods
[55, 14, 45, 83| and diving methods[83, 22].

Two-phase methods start by doing depth-first to find one (or a small

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 19

number of) feasible solution. The algorithm then switches to best-first in
order to try to prove optimality (if the tree grows very large, the method
may switch back to depth-first to try to keep the size of the list of active
nodes under control).

Diving methods are also two-phase methods in a sense. The first phase
called diving does depth-first search until a leaf of the tree (either an integer
feasible or an infeasible one) is found. When a leaf is found, the next node
is selected by backtracking in the tree for example to the node with best
lower bound, and another diving is performed from that node. The search
continues by iterating diving and backtracking.

Many variants of these two methods have been proposed in the liter-
ature. Sometimes, they are combined with estimations of the quality of
integer feasible solutions that may be found in a subtree computed using
pseudo-costs (see for example [83]). Computationally, it is not clear which
of these variants performs better. A variant of diving performs reasonably
well was described by Bixby and Rothberg [22] as probed diving. Instead of
conducting a pure depth-first search in the diving phase, the probed diving
method explores both children of the last node, continuing the dive from
the best one of the two (in terms of bounds).

4.4. Cutting Planes. Adding inequalities to the formulation so that
its relaxation will more closely approximate the convex hull of feasible
solutions was a major reason for the vast improvement in MILP solution
technology [22]. To our knowledge, very few, if any MINLP solvers add
inequalities that are specific to the nonlinear structure of the problem.
Here we outline a few of the techniques that have been developed. Most of
the techniques for inequalities for MINLPs have been adapted from known
methods in the MILP case. We refer the survey to [37] for a recent survey
on cutting planes for MILP.

4.4.1. Gomory Cuts. The earliest cutting planes for mixed integer
linear programs were Gomory Cuts [59, 60]. For simplicity of exposition,
we assume a pure Integer Linear Program (ILP): I = {1,...,n}, with
linear constraints given in matrix form as Az < b. The idea underly-
ing the inequalities is to choose a set of non-negative multipliers u € R
and form the surrogate constraint u” Az < u”b. Since z > 0, the in-
equality ZjeNLuTaijj < uTh is valid, and since [u”a;]z; is an integer,
the right-hand side may also be rounded down to form the Gomory cut
djeN |luTaj]z; < |uTb]. This simple procedure suffices to generate all
valid inequalities for an ILP [35]. Gomory cuts can be generalized to Mized
Integer Gomory (MIG) cuts which are valid for MILPs. After a period of
not being used in practice to solve MILPs, Gomory cuts made a resurgence
following the work of Balas et al. [11], which demonstrated that when used
in combination with branch-and-bound, MIG cuts were quite effective in
practice.

For MINLP, Cezik and Iyengar [34] demonstrate that if the nonlinear

20 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

constraint set g;(x) < 0 Vj € J can be described using conic constraints
Tx =x b, then the Gomory procedure is still applicable. Here K, is a
homogeneous, self-dual, proper, convex cone, and the notation xz >, y de-
notes that (x —y) € K. Each cone K has a dual cone K* with the property

that K* % {u]| uTz > 0Vz € K} . The extension of the Gomory proce-
dure to the case of conic integer programming is clear from the following
equivalence:

Az = b < uwlAz > uTbVu = 0.

Specifically, elements from the dual cone v € K* can be used to perform
the aggregation, and the regular Gomory procedure applied. To the au-
thors’ knowledge, no current MINLP software employs conic Gomory cuts.
However, most solvers generate Gomory cuts from the existing linear in-
equalities in the model. Further, as pointed out by Akrotirianakis, Maros,
and Rustem [6], Gomory cuts may be generated from the linearizations
(2.1) and (2.2) used in the OA, ECP, or LP/NLP-BB methods. Most
linearization-based software will by default generate Gomory cuts on these
linearizations.

4.4.2. Mixed Integer Rounding. Consider the simple two variable
set X = {(z1,22) € Z xRy | 21 < b+ x2}. It is easy to see that the
mized integer rounding inequality z; < |b] + ﬁx% where f = b — [b]
represents the fractional part of b, is a valid inequality for X. Studying the
convex hull of this simple set and some related counterparts have generated
a rich classes of inequalities that may significantly improve the ability to
solve MILPs [86]. Key to generating useful inequalities for computation
is to combine rows of the problem in a clever manner and to use variable
substitution techniques.

Atamtiirk and Narayan [8] have extended the concept of mixed inte-
ger rounding to the case of mixed integer second-order cone programming
(MISOCP). For the conic mixed integer set

T{(Il,IQ,Ig)EZXR2| (zlb)2+$%§z3}

the following simple conic mized integer rounding inequality

VIA = 2f) (@1 — (b)) + f12 + 23 < o

helps to describe the convex hull of T. They go on to show that employing
these inequalities in a cut-and-branch procedure for solving MISOCPs is
significantly beneficial. To the authors’ knowledge, no available software
employs this technology, so this may be a fruitful line of computational
research.

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 21

4.4.3. Disjunctive Inequalities. Stubbs and Mehrotra [102], build-
ing on the earlier seminal work of Balas [9] on disjunctive programming
and its application to MILP (via lift and project cuts) of Balas, Ceria and
Cornuéjols [10], derive a lift and project cutting plane framework for convex
(0-1) MINLPs. Consider the feasible region of the continuous relaxation
of MINLP-1) R = {(z,n) | f(z) <1, gj(z) <0Vj e J z € X}. The
procedure begins by choosing a (branching) dichotomy z; =0 V z; = 1

for some ¢ € I. The convex hull of the union of the two (convex) sets

R; o {(z,n) € R | =0}, R = {(x,n) € R | #; = 1} can be repre-

sented in a space of dimension 3n + 5 as

AT + ATt
AT 4+ AT,
+AT=1,A">0, AT >0
7)€ Ry, (xt,nt) e Rf

MZ(R): (:L‘7’r]7"1777’r]7’x+777+7)\77>\+)

T
n
A
(-
One possible complication with the convex hull description M, (R) is caused
by the nonlinear, nonconvex relationships x = A"z~ + ATa2t and n =
A™n~ + ATnT. However, this description can be transformed to an equiva-
lent description /\;IZ(R) with only convex functional relationships between
variables using the perspective function [102, 66].

Given some solution (z,7) ¢ conv(R; U R]), the lift and project
procedure operates by solving a separation problem

~_ min) d(z,n). (4.1)
(zn, 2=, 7, 7,7, A7 AT)eEM,(R)

The lift-and-project inequality
& (@—2)+& (-1 >0 (42)

separates (Z,7) from conv(R; UR]), where ¢ is a subgradient of d(x,n) at
the optimal solution of (4.1).

An implementation and evaluation of some of these ideas in the context
of MISOCP has been done by Drewes [42]. Cezik and Iyengar [34] had
also stated that the application of disjunctive cuts to conic-IP should be
possible.

A limitation of disjunctive inequalities is that in order to generate a
valid cut, one must solve an auxiliary (separation) problem that is twice
the size of the original relaxation. In the case of MILP, clever intuition of
Balas and Perregaard [12] have eliminated the need to solve such a problem
to generate cuts. No such extension is known in the case of MINLP. Zhu
and Kuno [114] have suggested to replace the true nonlinear convex hull
by a linear approximation taken about the solution to a linearized master
problem like MP(KC).

Kiling et al. [72] have recently made the observation that a weaker
form of the lift and project inequality (4.2) can be obtained from branching

22 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

dichotomy information. Specifically, given values 7); = min{n|(z,n) € R; }
and ;" min{n|(x,n) € R}, the strong branching cut

is valid for MINLP, and is a special case of (4.2). Note that if a strong
branching is used to determine the branching variable, then the values
;. ﬁ;r are produced as a byproduct.

4.5. Heuristics. Here we discuss heuristics methods which are aimed
at finding integer feasible solutions to MINLP with no guarantee neither
of optimally nor of success. Heuristics are usually fast algorithms. In a
branch-and-bound algorithm they are typically run right after the Evalu-
ate step. Depending on the actual running time of the heuristic, it may
be called at every node, every n' node, or only at the root node. In
linearization-based methods like OA, ECP, or LP/NLP-BB, heuristics may
be run in the Upper Bound and Refine step, especially in the case when
NLP(&y) is infeasible. Heuristics are very important because by improving
the upper bound zy, they help in the Prune step of the branch-and-bound
algorithm or in the convergence criterion of the other algorithms. From a
practical point of view, heuristics are extremely important when the algo-
rithm can not be carried out to completion, so that a feasible solution may
be returned to the user.

Many heuristics methods have been devised for MILP, we refer the
reader to [20] for a recent and fairly complete review. For convex MINLP,
two heuristic principles that have been used are diving heuristics and the
feasibility pump.

We note that several other heuristic principles could be used such as
RINS [40] or Local Branching [50] but as far as we know, these have not
been applied yet to (convex) MINLPs and we will not cover them here.

4.5.1. Diving heuristics. Diving heuristics are very related to the
diving strategies for node selection presented in Section 4.3. The basic
principle is to simulate a dive from the current node to a leaf of the tree
by fixing variables (either one at a time or several variables at a time).

The most basic scheme is, after the NLP relaxation has been solved,
to fix the variable which is the least integer infeasible in the current so-
lution to the closest integer and resolve. Iterating until either the current
solution is integer feasible or the NLP relaxation becomes infeasible. Many
variants of this scheme have been proposed for MILP (see [20] for a good
review). These differ mainly in the the number of variables fixed, the way
to select variables to fix, and in the possibility of doing a certain amount
of backtracking (unfixing previously fixed variables). The main difficulty
when one tries to adapt these scheme to MINLP is that instead of having
to resolve an LP with modified bound at each iteration (an operation which
is typically done extremely efficiently by state-of-the-art LP solvers) one

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 23

has to solve an NLP (where warm-starting methods are usually much less
efficient).

Bonami and Gongalves [26] have adapted the basic scheme to MINLPs
in two different manners. First in a straightforward way, but trying to
limit the number of NLPs to solve by trying to fix more variables at each
iterations and backtracking if the fixings induce infeasibility. The second
adaptation tries to reduce the problem to a MILP by fixing all the variables
that appear in a nonlinear term in the objective or the constraints (integer
variables are rounded and continuous variables are simply fixed to their
value in the NLP relaxation).

4.5.2. Feasibility Pump(s). The feasibility pump is another heuris-
tic principle for quickly finding feasible solution. It was initially proposed
by Fischetti, Glover and Lodi [49] for MILP, and can be extended to convex
MINLP in several manners.

First we present the feasibility pump in its most trivial extension to
MINLP. The basic principle of the Feasibility Pump consists of generat-

ing a sequence of points Z°, ..., Z" that satisfy the continuous relaxation
NLPR(L;,U;). Associated with the sequence Z°, ..., Z¥ of integer infeasi-
ble points is a sequence &', ..., 2*T1, of points which are integer feasible

but do not necessarily satisfy the other constraints of the problem. Specif-
ically, #° is the optimal solution of NLPR(L;,Us). Each £*! is obtained
by rounding f; to the nearest integer for each j € I and keeping the others
components equal to ;. The sequence T’ is generated by solving a nonlin-
ear program whose objective function is to minimize the distance of = to
&% on the integer variables according to the L; norm:

ZFP-NLP(3,) = minimize Y |z; — &
iel
subject to g;(x) <0Vj e J, (FP-NLP(Zj))
re Xl <2y <uy.

The two sequences have the property that at each iteration the distance
between Z' and #'*! is non-increasing. The procedure stops whenever an
integer feasible solution is found (or ¥ = Z*). This basic procedure may
cycle or stall without finding a integer feasible solution and randomization
has been suggested to restart the procedure [49]. Several variants of this
basic procedure have been proposed in the context of MILP [19, 4, 51]. In
the context of MINLP, the authors of [2, 26] have shown that the basic prin-
ciple of Feasibility Pump can also find good solutions in short computing
time.

Another variant of the Feasibility Pump for convex MINLPs was pro-
posed by Bonami et al. [25]. Like in the basic FP scheme two sequences
are constructed with the same properties: Z°,...,Z" are points in X that

24 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

satisfy ¢(Z') < b but not & ¢ Z/l and z',..., #%*! are points that do
not necessarily satisfy g(i?) < b but satisfy #* € Z/I. The sequence 7' is
generated in the same way as before but the sequence 4* is now generated
by solving MILPs. The MILP to solve for finding 2t is constructed by
building an outer approximation of the constraints of the problem with
linearizations taken in all the point of the sequence Z°, ..., Z*. Then, #*+!
is found as the point in the current outer approximation of the constraints
that is closest to Z' in L; norm in the space of integer constrained variables:

ZPPM :minimizez |z; — E;|
i€l
st. (@) + V@) (x —7) <0 1=1,...,i (M-FP?)
reX, x5€ 7!

Unlike the procedure of Fischetti, Glover and Lodi, the Feasibility
Pump for MINLP cannot cycle and it is therefore an exact algorithm:
either it finds a feasible solution or it proves that none exists. This variant
of the FP principle can also be seen as a variant of the Outer- Approximation
decomposition scheme presented in Section 3.2. In [25], it was also proposed
to iterate the FP scheme by integrating the linearization of the objective
function in the constraint system of (M-FP?) turning the feasibility pump
into an exact iterative algorithm which finds solutions of better and better
cost until eventually proving optimality. Abhishek et al. [2] have also
proposed to try and integrate this Feasibility Pump into a single tree search
(in the same way as Outer Approximation decomposition can be integrated
in a single tree search when doing the LP/NLP-BB).

5. Software. There are a number of modern software packages im-
plementing the algorithms of Section 3 that employ many of the modern
enhancements described in Section 5. In this section, we describe the fea-
tures of six different packages. The focus is on solvers for general convex
MINLPs, not only special cases such as MIQP, MIQCP, or MISOCP.

5.1. a-ECP. o-ECP [110] is a solver based on the ECP method de-
scribed in Section 3.4. Problems to be solved may be specified in a text-
based format, as user-supplied subroutines, or via the GAMS algebraic
modeling language. The software is designed to solve convex MINLP, but
problems with a pseudo-convex objective function and pseudo-convex con-
straints can also be solved to global optimality with a—ECP. A significant
feature of the software is that no nonlinear subproblems are required to
be solved. (Though recent versions of the code have included an option
to occasionally solve NLP subproblems, which may improve performance,
especially on pseudo-convex instances. An NLP solver is called whenever
the same integer solution is encountered repeatedly and at the end of the

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 25

algorithm by default.) Recent versions of the software also include en-
hancements so that each MILP subproblem need not be solved to global
optimality. a-ECP requires a (commercial) MILP software to solve the
reduced master problem (RM-ECP(K)), and CPLEX, XPRESS-MP, or
Mosek may be used for this purpose.

In the computational experiment of Section 6, a-ECP (v1.75.03) is
used with CPLEX (v12.1) as MILP solver, CONOPT (v3.24T) as NLP
solver and a-ECP is run via GAMS. Since all instances are convex, setting
the ECPstrategy option to 1 instructed a-ECP to not perform algorithmic
steps relating to the solution of pseudo-convex instances.

5.2. Bonmin. Bonmin is an open-source MINLP solver and frame-
work with implementations of algorithms NLP-BB, OA, and two differ-
ent LP/NLP-BB algorithms with different default parameters. Source
code and binaries of Bonmin are available from COIN-OR (http://www.
coin-or.org). Bonmin may be called as a solver from both the AMPL
and GAMS modeling languages or be used via a web interface on NEOS
(http://www-neos.mcs.anl.gov).

Bonmin interacts with the COIN-OR software Cbc to manage the
branch-and-bound trees of its various algorithms. To solve NLP subprob-
lems, Bonmin may be instrumented to use either Ipopt [107] or FilterSQP
[63]. Bonmin uses the COIN-OR software Clp to solve linear programs,
and may use Cbc or Cplex to solve MILP subproblems arising in its vari-
ous algorithms.

The Bonmin NLP-BB algorithm features a range of different heuris-
tics, advanced branching techniques such strong branching or pseudo-cost
branching, and five different choices for node selection strategy. The Bon-
min Hybrid methods use row management, cutting planes, and branching
strategies from Cbc. A distinguishing feature of Bonmin is that one may
instruct Bonmin to use a (time-limited) OA or feasibility pump heuristic
at the beginning of the optimization.

In the computational experiments, Bonmin (v1.1) is used with Cbc
as the MILP solver, Ipopt as NLP solver, and Clp is used as LP solver.
For Bonmin, the algorithms, NLP-BB (denoted as B-BB) and LP/NLP-BB
(denoted as B-Hyb) are tested. The default search strategies of dynamic
node selection (mixture of depth-first-search and best-bound) and strong
branching were employed.

5.3. DICOPT. DICOPT is a software implementation of the OA
method described in Section 3.2. DICOPT may be used as a solver from the
GAMS modeling language. Although OA has been designed to solve convex
MINLP, DICOPT may often be used successfully as a heuristic approach
for nonconvex MINLP, as it contains features such as equality relaxation
[73] and augmented penalty methods [106] for dealing with nonconvexities.
DICOPT requires solvers for both NLP subproblems and MILP subprob-
lems, and it uses available software as a “black-box” in each case. For NLP

26 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

subproblems, possible NLP solvers include CONOPT [43], MINOS [90]
and SNOPT [58]. For MILP subproblems, possible MILP solvers include
CPLEX [67] and XPRESS [48]. DICOPT contains a number of heuristic
(inexact) stopping rules for the OA method that may be especially effective
for nonconvex instances.

In our computational experiment, the DICOPT that comes with GAMSH
v23.2.1 is used with CONOPT (v3.24T) as the NLP solver and Cplex
(v12.1) as the MILP solver. In order to ensure that instances are solved to
provable optimality, the GAMS/DICOPT option stop was set to value 1.

5.4. FiIMINT. FilMINT [1] is a non-commercial solver for convex
MINLPs based on the LP/NLP-BB algorithm. FilMINT may be used
through the AMPL language and also via a web interface at NEOS (http:
//wwu-neos.mcs.anl.gov).

FiIMINT uses the MINTO [94] a branch-and-cut framework for MILP
to solve the restricted master problem (MP(K)) and filterSQP [53] to solve
nonlinear subproblems. FiIMINT uses the COIN-OR LP solver Clp or
CPLEX to solve linear programs.

FilMINT by default employs nearly all of MINTO’s enhanced MILP
features, such as cutting planes, primal heuristics, row management, and
enhanced branching and node selection rules. By default, pseudo-cost
branching is used as branching strategy and best estimate is used as node
selection strategy. An NLP-based Feasibility Pump can be run at the be-
ginning of the optimization as a heuristic procedure. The newest version of
FilMINT has been augmented with the simple strong-branching disjunctive
cuts described in Section 4.4.3.

In the computational experiments of Section 6, FiIMINT v0.1 is used
with Clp as LP solver. Two versions of FiIMINT are tested—the default
version and a version including the strong branching cuts (Filmint-SBC).

5.5. MINLP_BB. MINLP_BB [78] is an implementation of the NLP-
BB algorithm equipped with different node selection and variable selection
rules. Instances can be specified to MINLP_BB through an AMPL inter-
face, and there is an interface to MINLP_BB through the NEOS server.

MINLP_BB contains its own tree-manager implementation, and NLP
subproblems are solved by FilterSQP [53]. Node selection strategies avail-
able in MINLP_BB include depth-first-search, depth-first-search with back-
track to best-bound, best-bound and best-estimated solution. For branch-
ing strategies, MINLP_BB contains implementations of most fractional
branching, strong branching, approximate strong branching using second-
order information, pseudo-costs branching and reliability branching. MINLP_BBJ
is written in FORTRAN. Thus, there is no dynamic memory allocation, and
the user must specify a maximum memory (stack) size at the beginning of
algorithm.

For the computational experiments with FilterSQP, different levels
of stack sizes were tried in an attempt to use the entire available mem-

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 27

ory for each instance. The default search strategies of depth-first-search
with backtrack to best-bound and pseudo-costs branching were employed
in MINLP_BB (v20090811).

5.6. SBB. SBB [30] is a NLP-Based Branch-and-Bound solver that
is available through the GAMS modeling language. The NLP subproblems
can be solved by CONOPT [43], MINOS [90] and SNOPT [58]. Pseudo-cost
branching is an option as a branching rule. As a node selection strategy,
depth-first-search, best-bound, best-estimate or combination of these three
can be employed. Communication of subproblems between the NLP solver
and tree manager is done via files, so SBB may incur some extra overhead
when compared to other solvers.

In our computational experiments, we use the version of SBB shipped
with GAMS v23.2.1. CONOPT is used as NLP solver, and the SBB default
branching and node variable selection strategies are used.

6. Computational Study.

6.1. Problems. The test instances used in the computational exper-
iments were gathered from the MacMINLP collection of test problems [80],
the GAMS collection of MINLP problems [31], the collection on the website
of IBM-CMU research group [100], and instances created by the authors.
Characteristics of the instances are given in Table 1, which lists whether
or not the instance has a nonlinear objective function, the total number of
variables, the number of integer variables, the number of constraints, and
how many of the constraints are nonlinear.

BatchS: The BatchS problems [98, 105] are multi-product batch plant
design problems where the objective is to determine the volume of the
equipment, the number of units to operate in parallel, and the locations of
intermediate storage tanks.

CLay: The CLay problems [99] are constrained layout problems where
non overlapping rectangular units must be placed within the confines of
certain designated areas such that the cost of connecting these units is
minimized.

FLay: The FLay problems [99] are farmland layout problems where
the objective is to determine the optimal length and width of a number of
rectangular patches of land with fixed area, such that the perimeter of the
set of patches is minimized.

fo-m-o0: These are block layout design problems [33], where an orthog-
onal arrangement of rectangular departments within a given rectangular
facility is required. A distance-based objective function is to be minimized,
and the length and width of each department should satisfy given size and
area requirements.

RSyn: The RSyn problems [99] concern retrofit planning, where one
would like to redesign existing plants to increase throughput, reduce energy
consumption, improve yields, and reduce waste generation. Given limited

28

PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

TABLE 1

Test set statistics

Problem NonL Obj | Vars | Ints | Cons | NonL Cons
BatchS121208M Vv 407 203 1510 1
BatchS151208M Vv 446 203 1780 1
BatchS201210M N4 559 251 2326 1

CLay0303H 100 21 114 36
CLay0304H 177 36 210 48
CLay0304M 57 36 58 48
CLay0305H 276 55 335 60
CLay0305M 86 55 95 60

FLay04H 235 24 278 4

FLay05H 383 40 460 5

FLay05M 63 40 60 5

FLay06M 87 60 87 6

fo72 115 42 197 14

fo7 115 42 197 14

fo8 147 56 257 16

m6 87 30 145 12

m7 115 42 197 14

o072 115 42 197 14
RSyn0805H 309 37 426 3
RSyn0805M02M 361 148 763 6
RSyn0805M03M 541 222 1275 9
RSyn0805M04M 721 296 1874 12
RSyn0810M02M 411 168 854 12
RSyn0810M03M 616 252 1434 18

RSyn0820M 216 84 357 14

RSyn0830M04H 2345 | 496 4156 80

RSyn0830M 251 94 405 20

RSyn0840M 281 104 456 28
SLay06H V4 343 60 435 0
SLay07H N4 477 84 609 0
SLay08H Vv 633 112 812 0
SLay09H Vv 811 144 1044 0

SLay09M Vv 235 144 324 0

SLay10M Vv 291 180 405 0

sssd-10-4-3 69 52 30 12

sssd-12-5-3 96 75 37 15

sssd-15-6-3 133 108 45 18

Syn15M04M 341 120 762 44
Syn20M03M 316 120 657 42
Syn20M04M 421 160 996 56
Syn30M02M 321 120 564 40
Syn40MO3H 1147 | 240 1914 84
Syn40M 131 40 198 28
tls4 106 89 60 4

tls5 162 136 85 5
uflquad-20-150 Vv 3021 20 3150 0
uflquad-30-100 V4 3031 30 3100 0
uflquad-40-80 Vv 3241 40 3280 0

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 29

capital investments to make process improvements and cost estimations
over a given time horizon, the problem is to identify the modifications that
yield the highest economic improvement which is defined as the income
from product sales minus the cost of raw materials, energy, and process
modifications.

SLay: The SLay problems [99] are safety layout problems where opti-
mal placement of a set of units with fixed width and length is determined
such that the Euclidean distance between their center point and a prede-
fined “safety point” is minimized.

sssd: The sssd instances [46] are stochastic service system design prob-
lems. Servers are modeled as M/M/1 queues, and a set of customers must
be assigned to the servers which can be operated at different service levels.
The objective is to minimize assignment and operating costs.

Syn: The Syn instances [44, 103] are synthesis design problems dealing
with the selection of optimal configuration and parameters for a processing
system selected from a superstructure containing alternative processing
units and interconnections.

trimloss: The trimloss problems [65] are cutting stock problems where
one would like to determine how to cut out a set of product paper rolls from
raw paper rolls such that the trim loss as well as the overall production is
minimized.

uflquad: The uflquad problems [62] are (separable) quadratic uncapac-
itated facility location problems where a set of customer demands must be
satisfied by open facilities. The objective is to minimize the sum of the fixed
cost for operating facilities and the shipping cost which is proportional to
the square of the quantity delivered to each customer.

All test problems are available in AMPL and GAMS formats and are
available from the authors upon request. In our experiments, a—ECP,
DICOPT, and SBB are tested through the GAMS interface, while Bonmin,
FilMINT and MINLP_BB are tested through AMPL.

6.2. Computational Results. The computational experiments have
been run on a cluster of identical 64-bit Intel Xeon microprocessors clocked
at 2.67 GHz, each with 3 GB RAM. All machines run the Red Hat En-
terprise Linux Server 5.3 operating system. A three hour time limit is
enforced. The computing times used in our comparisons are the real times
(including system time). All runs were made on processors dedicated to
the computation. Real times were used to accurately account for system
overhead incurred by file I/O operations required by the SBB solver. For
example, on the problem FLay05M, SBB reports a solution time of 0.0
seconds for 92241 nodes, but the real time spent is more than 17 minutes.

Table 3 summarizes the performance of the solvers on the test set.
The table lists for each solver the number of times the optimal solution
was found, the number of times the time limit was exceeded, the number
of times the node limit exceeded, the number of times an error occurred

30 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

(other than time limit or memory limit), the number of times the solver
is fastest, and the arithmetic and geometric means of solution times in
seconds. When reporting aggregated solution times, unsolved or failed in-
stances are accounted for with the time limit of three hours. A performance
profile [41] of solution time is given in Figure 1.

There are a number of interesting observations that can be made from
this experiment. First, for the instances that they can solve, the solvers
DICOPT and a-ECP tend to be very fast. Also, loosely speaking, for each
class of instances, there seems to be one or two solvers whose performance
dominates the others, and we have listed these in Table 2.

TABLE 2
Subjective Rating of Best Solver on Specific Instance Families

Instance Family Best Solvers

Batch DICOPT

CLay, FLay, sssd FiIMINT, MINLP_BB
Fo, RSyn, Syn DICOPT, a-ECP
SLay MINLP_BB

uflquad Bonmin (B-BB)

In general, the variation between in solver performance on different
instance families indicates that a “portfolio” approach to solving convex
MINLPs is still required. Specifically, if the performance of a specific solver
is not satisfactory, one should try other software on the instance as well.

7. Conclusions. Convex Mixed Integer Nonlinear Programs (MINLP)sjj
can be used to model many decision problems involving both nonlinear
and discrete components. Given their generality and flexibility, They have
been proposed for many diverse and important scientific applications. Al-
gorithms and software are evolving so that instances of these important
models can often be solved in practice. The main advances are being made
along two fronts. First, new theory is being developed. Second, theory and
implementation techniques are being translated from the more-developed
arena of mixed integer linear programming into MINLP. We hope this sur-
vey has provided readers the necessary background to delve deeper into
this rapidly evolving field.

REFERENCES

[1] K. ABHISHEK, S. LEYFFER, AND J. T. LINDEROTH, FilMINT: An outer-
approximation-based solver for nonlinear mized integer programs, Preprint
ANL/MCS-P1374-0906, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 2006.

2] , Feasibility pump heuristics for mized integer nonlinear programs. Un-
published working paper, 2008.

[3] T. ACHTERBERG, SCIP solving constraint integer programs, Mathematical Pro-
gramming Computations, 1 (2009), pp. 1-41.

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 31

TABLE 3
Solver statistics on the test set

Solver Opt. Time | Mem. Error | Fastest Arith. Geom.
Limit Limit Mean Mean

a-ECP 37 9 0 2 4 2891.06 105.15
Bonmin-BB 35 5 8 0 4 4139.60 602.80
Bonmin-Hyb 32 0 15 1 1 3869.08 244.41
Dicopt 30 16 0 2 21 4282.77 90.79
Filmint 41 7 0 0 4 2588.79 343.47
Filmint-SBC 43 5 0 0 3 2230.11 274.61
MinlpBB 35 3 7 3 12 3605.45 310.09
Sbb 18 23 6 1 0 7097.49 2883.75

[4] T. ACHTERBERG AND T. BERTHOLD, Improving the feasibility pump, Technical
Report ZIB-Report 05-42, Zuse Institute Berlin, September 2005.

[5] T. ACHTERBERG, T. KOCH, AND A. MARTIN, Branching rules revisited, Opera-
tions Research Letters, 33 (2004), pp. 42-54.

[6] I. AKROTIRIANAKIS, I. MAROS, AND B. RUSTEM, An outer approzimation based
branch-and-cut algorithm for convex 0-1 MINLP problems, Optimization
Methods and Software, 16 (2001), pp. 21-47.

[7] D. APPLEGATE, R. BixBY, V. CHVATAL, AND W. COOK, On the solution of trav-
eling salesman problems, in Documenta Mathematica Journal der Deutschen
Mathematiker-Vereinigung, International Congress of Mathematicians, 1998,
pp. 645-656.

[8] A. ATAMTURK AND V. NARAYANAN, Conic mized integer rounding cuts, Mathe-
matical Programming, 122 (2010), pp. 1-20.

[9] E. BALAS, Disjunctive programming, in Annals of Discrete Mathematics 5: Dis-
crete Optimization, North Holland, 1979, pp. 3-51.

[10] E. BaLas, S. CERIA, AND G. CORNEUJOLS, A lift-and-project cutting plane al-
gorithm for mized 0-1 programs, Mathematical Programming, 58 (1993),
pp. 295-324.

[11] E. Baras, S. CERIA, G. CORNUEJOLS, AND N. R. NATRAJ, Gomory cuts revisited,
Operations Research Letters, 19 (1999), pp. 1-9.

[12] E. BaLas AND M. PERREGAARD, Lift-and-project for mized 0-1 programming:
recent progress, Discrete Applied Mathematics, 123 (2002), pp. 129-154.

[13] M. S. BAZARAA, H. D. SHERALI, AND C. M. SHETTY, Nonlinear Programming:
Theory and Algorithms, John Wiley and Sons, New York, second ed., 1993.

[14] E. M. L. BEALE, Branch and bound methods for mathematical programming
systems, in Discrete Optimization II, P. L. Hammer, E. L. Johnson, and
B. H. Korte, eds., North Holland Publishing Co., 1979, pp. 201-219.

[15] E. W. L. BEALE AND J. A. TOMLIN, Special facilities in a general mathematical
programming system for non-convex problems using ordered sets of variables,
in Proceedings of the 5th International Conference on Operations Research,
J. Lawrence, ed., 1969, pp. 447-454.

[16] A. BEN-TAL AND A. NEMIROVSKI, Lectures on Modern Convexr Optimization,
SIAM, 2001. MPS/SIAM Series on Optimization.

[17] J. F. BENDERS, Partitioning procedures for solving mized variable programming
problems, Numerische Mathematik, 4 (1962), pp. 238-252.

[18] M. BENICHOU, J. M. GAUTHIER, P. GIRODET, G. HENTGES, G. RIBIERE, AND
O. VINCENT, Ezxperiments in mized-integer linear programming, Mathemat-
ical Programming, 1 (1971), pp. 76-94.

[19] L. BERTACCO, M. FISCHETTI, AND A. LoDI, A feasibility pump heuristic for gen-
eral mized-integer problems, Discrete Optimization, 4 (2007), pp. 63-76.

[20] T. BERTHOLD, Primal Heuristics for Mized Integer Programs, Master’s thesis,

32

(21]

(22]

(23]

(30]

(31]

(32]

(33]

(38]

(39]

[40]

PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

Technische Universitdt Berlin, 2006.

D. BIENSTOCK, Computational study of a family of mized-integer quadratic pro-
grammang problems, Mathematical Programming, 74 (1996), pp. 121-140.

R. BixBY AND E. ROTHBERG, Progress in computational mized integer program-
ming. A look back from the other side of the tipping point, Annals of Oper-
ations Research, 149 (2007), pp. 37—41.

P. BoNAMI, Branching strategies and heuristics in branch-and-bound for con-
vex MINLPs, November 2008. Presentation at IMA Hot Topics Workshop:
Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applica-
tions.

P. Bonawmi, L. T. BIEGLER, A. R. ConNN, G. CorNUEJOLS, I. E. GROSSMANN,
C. D. LARD, J. LEE, A. Lobi, F. MARGOT, N. SAWAYA, AND A. WACHTER,
An algorithmic framework for convexr mized integer nonlinear programs, Dis-
crete Optimization, 5 (2008), pp. 186-204.

P. BoNaMI, G. CORNUEJOLS, A. LobpIi, AND F. MARGOT, A feasibility pump for
mized integer nonlinear programs, Mathematical Programming, 119 (2009),
pp. 331-352.

P. BoNaMI AND J. GONGALVES, Primal heuristics for mized integer nonlinear
programs, research report, IBM T. J. Watson Research Center, Yorktown,
USA, September 2008.

R. BOORSTYN AND H. FRANK, Large-scale network topological optimization, IEEE
Transactions on Communications, 25 (1977), pp. 29-47.

B. BORCHERS AND J. E. MITCHELL, An improved branch and bound algorithm
for mized integer nonlinear programs, Computers & Operations Research,
21 (1994), pp. 359-368.

—— A computational comparison of branch and bound and outer approxi-
mation algorithms for 0-1 mixed integer nonlinear programs, Computers &
Operations Research, 24 (1997), pp. 699-701.

M. R. BUSSIECK AND A. DRUD, Sbb: A new solver for mized integer nonlinear
programming, talk, OR 2001, Section ” Continuous Optimization”, 2001.

M. R. BUSSIECK, A. S. DRUD, AND A.MEERAUS, MINLPLib — a collection of
test models for mixzed-integer nonlinear programming, INFORMS Journal on
Computing, 15 (2003).

R. H. BYrD, J. NOCEDAL, AND R. A. WALTZ, KNITRO: An integrated package
for nonlinear optimization, in Large Scale Nonlinear Optimization, 3559,
2006, Springer Verlag, 2006, pp. 35-59.

I. CastiLLo, J. WESTERLUND, S. EMET, AND T. WESTERLUND, Optimization
of block layout deisgn problems with unequal areas: A comparison of milp
and minlp optimization methods, Computers and Chemical Engineering, 30
(2005), pp. 54-69.

M. T. CEzIK AND G. IYENGAR, Cuts for mized 0-1 conic programming, Mathe-
matical Programming, 104 (2005), pp. 179-202.

V. CHVATAL, Edmonds polytopes and a heirarchy of combinatorial problems, Dis-
crete Mathematics, 4 (1973), pp. 305-337.

COIN-OR: Computational Infrastructure for Operations Research, 2004. http:
//www.coin-or.org.

M. ConNrorTI, G. CORNUEJOLS, AND G. ZAMBELLI, Polyhedral approaches to
mized integer linear programming, in 50 Years of Integer Programming
1958—2008, M. Jiinger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. Wolsey, eds., Springer, 2009.

G. CORNUEJOLS, L. LIBERTI, AND G. NANNICINI, Improved strategies for branch-
ing on general disjunctions, tech. rep., Carnegie Mellon University, July 2008.
Available at http://integer.tepper.cmu.edu.

R. J. DAKIN, A tree search algorithm for mized programming problems, Computer
Journal, 8 (1965), pp. 250-255.

E. DANNA, E. ROTHBERG, AND C. LEPAPE, Ezploring relazation induced neigh-

[41]
42]
[43]

[44]
[45]
[46]
[47]
[48]
(49]
[50]
[51]
[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]
[60]

[61]

[62]

[63]

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 33

borhoods to improve MIP solutions, Mathematical Programming, 102 (2005),
pp- 71-90.

E. DoLAN AND J. MORE, Benchmarking optimization software with performance
profiles, Mathematical Programming, 91 (2002), pp. 201-213.

S. DREWES, Mized Integer Second Order Cone Programming, PhD thesis, Tech-
nische Universitdat Darmstadt, 2009.

A. S. DrRuD, CONOPT - a large-scale GRG code, ORSA Journal on Computing,
6 (1994), pp. 207-216.

M. A. DURAN AND I. GROSSMANN, An outer-approximation algorithm for a class
of mized-integer nonlinear programs, Mathematical Programming, 36 (1986),
pp- 307-339.

J. ECKSTEIN, Parallel branch-and-bound algorithms for general mized integer pro-
gramming on the CM-5, SIAM Journal on Optimization, 4 (1994), pp. 794—
814.

S. ELHEDHLI, Service System Design with Immobile Servers, Stochastic Demand,
and Congestion, Manufacturing & Service Operations Management, 8 (2006),
pp. 92-97.

A. M. ELICECHE, S. M. CORVALAN, AND P. MARTINEZ, Environmental life cycle
impact as a tool for process optimisation of a utility plant, Computers and
Chemical Engineering, 31 (2007), pp. 648-656.

FAIR IsAAC CORPORATION, XPRESS-MP Reference Manual, 2009. Release 2009.

M. FiscHETTI, F. GLOVER, AND A. LobpI, The feasibility pump, Mathematical
Programming, 104 (2005), pp. 91-104.

M. FI1SCHETTI AND A. LobpI, Local branching, Mathematical Programming, 98
(2003), pp. 23-47.

M. FISCHETTI AND D. SALVAGNIN, Feastbility pump 2.0, tech. rep., University of
Padova, 2008.

R. FLETCHER AND S. LEYFFER, Solving mized integer nonlinear programs by outer
approzimation, Mathematical Programming, 66 (1994), pp. 327-349.

, User manual for filterSQP, 1998. University of Dundee Numerical Anal-
ysis Report NA-181.

A. FLORES-TLACUAHUAC AND L. T. BIEGLER, Simultaneous mized-integer dy-
namic optimization for integrated design and control, Computers and Chem-
ical Engineering, 31 (2007), pp. 648-656.

J. J. H. ForresT, J. P. H. HirsT, AND J. A. TOMLIN, Practical solution of
large scale mixed integer programming problems with UMPIRE, Management
Science, 20 (1974), pp. 736-773.

M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979.

A. GEOFFRION, Generalized Benders decomposition, Journal of Optimization
Theory and Applications, 10 (1972), pp. 237-260.

P. E. GiL, W. MURRAY, AND M. A. SAUNDERS, SNOPT: An SQP algorithm
for large—scale constrained optimization, SIAM Journal on Optimization, 12
(2002), pp. 979-1006.

R. E. GOoMORY, Outline of an algorithm for integer solutions to linear programs,
Bulletin of the American Mathematical Monthly, 64 (1958), pp. 275-278.

—— An algorithm for the mized integer problem, Tech. Rep. RM-2597, The
RAND Corporation, 1960.

I. GROSSMANN, J. VISWANATHAN, A. V. R. RamMmAN, aAND E. KALVELAGEN,
GAMS/DICOPT: A discrete continuous optimization package, Math. Meth-
ods Appl. Sci, 11 (2001), pp. 649-664.

O. GUNLUK, J. LEE, AND R. WEISMANTEL, MINLP strengthening for separaable
conver quadratic transportation-cost ufl, Tech. Rep. RC24213 (W0703-042),
IBM Research Division, March 2007.

O. K. GurTta AND A. RAVINDRAN, Branch and bound experiments in convez

34

(84]

(85]

(86]

PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

nonlinear integer programming, Management Science, 31 (1985), pp. 1533~
1546.

GUROBI OPTIMIZATION, Gurobi Optimizer Reference Manual, 2009. Version 2.

I. HARJUNKOSKI, R. PORN, AND T. WESTERLUND, MINLP: Trim-loss problem,
in Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, eds.,
Springer, 2009, pp. 2190-2198.

J.-B. HIRIART-URRUTY AND C. LEMARECHAL, Convexr Analysis and Minimiza-
tion Algorithms I: Fundamentals (Grundlehren Der Mathematischen Wis-
senschaften), Springer, October 1993.

IBM, Using the CPLEX Callable Library, Version 12, 2009.

R. JErOsLOw, There cannot be any algorithm for integer programming with
quadratic constraints, Operations Research, 21 (1973), pp. 221-224.

N. J. JossT, M. D. HORNIMAN, C. A. Lucas, AND G. MITRA, Computational
aspects of alternative portfolio selection models in the presence of discrete
asset choice constraints, Quantitative Finance, 1 (2001), pp. 489-501.

M. KARAMANOV AND G. CORNUEJOLS, Branching on general disjunctions, tech.
rep., Carnegie Mellon University, July 2005. Revised August 2009. Available
at http://integer.tepper.cmu.edu.

J. E. KELLEY, The cutting plane method for solving convex programs, Journal of
SIAM, 8 (1960), pp. 703-712.

M. KiuiNg, J. LINDEROTH, J. LUEDTKE, AND A. MILLER, Disjunctive strong
branching inequalities for mized integer nonlinear programs.

G. R. Kocis AND I. E. GROSSMANN, Relazation strategy for the structural opti-
mization of process flowheets, Industrial Engineering Chemical Research, 26
(1987), pp. 1869-1880.

C. D. LARrD, L. T. BIEGLER, AND B. VAN BLOEMEN WAANDERS, A mized integer
approach for obtaining unique solutions in source inversion of drinking water
networks, Journal of Water Resources Planning and Management, Special
Issue on Drinking Water Distribution Systems Security, 132 (2006), pp. 242—
251.

A. H. LAND AND A. G. Do1G, An automatic method for solving discrete program-
ming problems, Econometrica, 28 (1960), pp. 497-520.

M. LEJEUNE, A wunified approach for cycle service levels, tech. rep.,
George Washington University, 2009. Available on Optimization Online
http://www.optimization-online.org/DB_HTML/2008/11/2144.html.

S. LEYFFER, Deterministic Methods for Mized Integer Nonlinear Programming,
PhD thesis, University of Dundee, Dundee, Scotland, UK, 1993.

, User manual for MINLP-BB, 1998. University of Dundee.

, Integrating SQP and branch-and-bound for mized integer nonlinear pro-

gramming, Computational Optimization & Applications, 18 (2001), pp. 295—

309.

, MacMINLP: Test problems for mized integer monlinear programming,

2003. http://www.mcs.anl.gov/~leyffer/macminlp.

, Nonlinear branch-and-bound revisited, August 2009. Presentation at 20th
International Symposium on Mathematical Programming.

L. LIBERTI, Reformulations in mathematical programming: Symmetry, Mathe-
matical Programming, (2009). To appear.

J. T. LINDEROTH AND M. W. P. SAVELSBERGH, A computational study of search
strategies in mized integer programming, INFORMS Journal on Computing,
11 (1999), pp. 173-187.

A. Lob1i, MIP computation and beyond, in 50 Years of Integer Programming
1958—2008, M. Jiinger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. Wolsey, eds., Springer, 2009.

R. LOUGEE-HEIMER, M. SALTZMAN, AND T. RALPHS, ‘COIN’ of the OR Realm,
OR/MS Today, (2004).

H. MARCHAND AND L. A. WOLSEY, Aggregation and mized integer rounding to

(87)
(88]
[89]
(90]

[91]

(92]
(93]

[94]

[95]
[96]

[97]

(98]

9]

[100]

[101]

[102]

[103)

[104]

[105]

[106]

[107)

[108]

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP 35

solve MIPs, Operations Research, 49 (2001), pp. 363-371.

F. MARGOT, Ezploiting orbits in symmetric ILP, Mathematical Programming,
Series B, 98 (2003), pp. 3-21.

R. D. McBRIDE AND J. S. YORMARK, An implicit enumeration algorithm for
quadratic integer programming, Management Science, 26 (1980), pp. 282—
296.

Mosek ApS, 2009. www.mosek.com.

B. MURTAGH AND M. SAUNDERS, MINOS 5.4 user’s guide, Report SOL 83-20R,
Department of Operations Research, Stanford University, 1993.

K. G. MURTY AND S. N. KABADI, Some NP-complete problems in quadratic and
nonlinear programming, Mathematical Programming, 39 (1987), pp. 117-
129.

S. NABAL AND L. SCHRAGE, Modeling and solving nonlinear integer programming
problems. Presented at Annual AIChE Meeting, Chicago, 1990.

G. NEMHAUSER AND L. A. WOLSEY, Integer and Combinatorial Optimization,
John Wiley and Sons, New York, 1988.

G. L. NEMHAUSER, M. W. P. SAVELSBERGH, AND G. C. S1GISMONDI, MINTO, a
Mized INTeger Optimizer, Operations Research Letters, 15 (1994), pp. 47—
58.

J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer-Verlag, New
York, 1999.

J. OsTROWSKI, J. LINDEROTH, F. ROSsI, AND S. SMRIGLIO, Orbital branching,
Mathematical Programming, (2009). To appear.

1. QUEsADA AND I. E. GROSSMANN, An LP/NLP based branch—and—bound algo-
rithm for convexr MINLP optimization problems, Computers and Chemical
Engineering, 16 (1992), pp. 937-947.

D. E. RAVEMARK AND D. W. T. RIPPIN, Optimal design of a multi-product batch
plant, Computers & Chemical Engineering, 22 (1998), pp. 177 — 183.

N. Sawava, Reformulations, relaxations and cutting planes for generalized
disjunctive programming, PhD thesis, Chemical Engineering Department,
Carnegie Mellon University, 2006.

N. Sawaya, C. D. Larp, L. T. BIEGLER, P. Bonami, A. R. CONN,
G. CornuEJoLs, I. E. GROSSMANN, J. LEE, A. Lopi, F. MARGOT, AND
A. WACHTER, CMU-IBM open source MINLP project test set, 2006. http:
//egon.cheme.cmu.edu/ibm/page.htm.

A. SCHRUVER, Theory of Linear and Integer Programming, Wiley, Chichester,
1986.

R. STUBBS AND S. MEHROTRA, A branch-and-cut method for 0-1 mized convex
programming, Mathematical Programming, 86 (1999), pp. 515-532.

M. TURKAY AND I. E. GROSSMANN, Logic-based minlp algorithms for the opti-
mal synthesis of process networks, Computers & Chemical Engineering, 20
(1996), pp. 959 — 978.

R. J. VANDERBEI, LOQO: An interior point code for quadratic programming,
Optimization Methods and Software, (1998).

A. VECCHIETTI AND I. E. GROSSMANN, LOGMIP: a disjunctive 0-1 non-linear
optimizer for process system models, Computers and Chemical Engineering,
23 (1999), pp. 555 — 565.

J. VISWANATHAN AND I. E. GROSSMANN, A combined penalty function and outer—
approximation method for MINLP optimization, Computers and Chemical
Engineering, 14 (1990), pp. 769-782.

A. WACHTER AND L. T. BIEGLER, On the implementation of a primal-dual inte-
rior point filter line search algorithm for large-scale nonlinear programming,
Mathematical Programming, 106 (2006), pp. 25-57.

R. WavLrz, Current challenges in mnonlinear optimization, 2007. Presen-
tation at San Diego Supercomputer Center: CIEG Spring Orientation
Workshop, available at www.sdsc.edu/us/training/workshops/2007sac_

36 PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

studentworkshop/docs/SDSCO7 . ppt.

[109] T. WESTERLUND, H., I. HARJUNKOSKI, AND R. PORN, An extended cutting plane
method for solving a class of non-convexr minlp problems, Computers and
Chemical Engineering, 22 (1998), pp. 357-365.

[110] T. WESTERLUND AND K. LUNDQVIST, Alpha-ECP, version 5.101. an interactive
manlp-solver based on the extended cutting plane method, in Updated version
of Report 01-178-A, Process Design Laboratory, Abo Akademi Univeristy,
2005.

[111] T. WESTERLUND AND F. PETTERSSON, A cutting plane method for solving con-
ver MINLP problems, Computers and Chemical Engineering, 19 (1995),
pp. s131-s136.

[112] T. WESTERLUND AND R. PORN, . a cutting plane method for minimizing pseudo-
convex functions in the mized integer case, Computers and Chemical Engi-
neering, 24 (2000), pp. 2655-2665.

[113] L. A. WOLSEY, Integer Programming, John Wiley and Sons, New York, 1998.

[114] Y. Zuu AND T. KuNo, A disjunctive cutting-plane-based branch-and-cut algo-
rithm for 0-1 mized-integer convex nonlinear programs, Industrial and En-
gineering Chemistry Research, 45 (2006), pp. 187-196.

ALGORITHMS AND SOFTWARE FOR CONVEX MINLP

Comparison of running times (in seconds) for the solvers a- ECP(a ECP), Bonmin-
BB(B-BB), Bonmin-LP/NLP-BB(B-Hyb), DICOPT, FiMINT(Fil), FilMINT with
strong branching cuts(Fil-SBC), MINLP_BB(M-BB) and SBB (bold face for best run-
ning time). If the solver could mot provide the optimal solution, we state the reason
with following letters: “t” states that the 8 hour time limit is hit, “m” states that the 3
GB memory limit is passed over and “f” states that the solver has failed to find optimal

TABLE 4

solution without hitting time limit or memory limit

Problem a«ECP| B-BB|B-Hyb|Dicopt Fil|Fil-SBC| M-BB| Sbb
BatchS121208M 384.8 47.8 43.9 6.9 31.1 14.7 128.7| 690.1
BatchS151208M 297.4 139.2 71.7 9.3| 124.5 42.8| 1433.5| 138.3
BatchS201210M | 137.3 188.1 148.8 9.5| 192.4 101.9| 751.2| 463.8
CLay0303H 7.0 21.1 13.0 33.2 2.0 1.4 0.5 14.0
CLay0304H 22.1 76.0 68.9 t 21.7 8.7 7.3| 456.6
CLay0304M 16.2 54.1 50.4 t 5.0 5.0 6.2 192.4
CLay0305H 88.8| 2605.5 125.2| 1024.3| 162.0 58.4 87.6|1285.6
CLay0305M 22.71 775.0 46.1| 2211.0| 10.3 32.9 31.9| 582.6
FLay04H 106.0 48.1 42.2 452.3 8.3 8.6 12.5 41.9
FLay05H t| 2714.0 m t(1301.2 1363.4|1237.8(4437.0
FLay05M 5522.3 596.8 m t| 698.4 775.4 57.5|1049.2
FLay06M t m m t t t|2933.6 t
fo7_2 16.5 m 104.5 t| 271.9 200.0| 964.1 t
fo7 98.9 t 285.2| 4179.6|1280.1 1487.9 f t
fo8 447.4 t m t|3882.7 7455.5 m t
mé6 0.9 79.4 31.1 0.2 89.0 29.8 7.1]/2589.9
m7 4.6| 3198.3 75.4 0.5| 498.6 620.0 215.9 t
072 728.4 m m t|3781.3 7283.8 m t
RSyn0805H 0.6 4.0 0.1 0.1 0.5 3.4 2.0 4.3
RSyn0805M02M 9.8| 2608.2 m 3.4| 485.0 123.8| 806.1 t
RSyn0805M03M 16.6| 6684.6|10629.9 7.2| 828.2 668.3| 4791.9 t
RSyn0805M04M 10.5|10680.0 m 8.1(1179.2 983.6| 4878.8 m
RSyn0810M02M 10.1 t m 4.6 (7782.2 3078.1 m m
RSyn0810M03M 43.3 m m 10.8 t 8969.5 m m
RSyn0820M 1.4| 5351.4 11.8 0.3| 232.2 231.6| 1005.1 t
RSyn0830M04H 19.9| 320.4 30.5 5.6 78.7 193.7 f f
RSyn0830M 2.2 m 7.4 0.5| 375.7 301.1| 1062.3 m
RSyn0840M 1.6 m 13.7 0.4]3426.2 2814.7 m m
SLay06H 316.8 3.4 34.4 7.5] 186.6 5.0 1.3| 731.9
SLay07H 2936.0 7.6 46.6 39.8| 385.0 81.5 5.6 t
SLay08H 8298.0 12.5 178.1 1015.0 156.0 9.7 t
SLay09H t 25.6 344.0| 3152.5|7461.5 1491.9 55.0 t
SLay09M t 8.6 63.0 t| 991.7 41.8 2.1|1660.7
SLayl0M t 108.4 353.7 t t 3289.6 43.3(2043.7
sssd-10-4-3 2.4 16.8 31.2 2.8 3.7 3.0 1.0 t
sssd-12-5-3 f 56.1 m f 9.6 13.3 5.7 t
sssd-15-6-3 f| 163.4 m f| 36.9 1086.4 41.6 t
Syn15M04M 2.9] 379.5 8.5 0.2 39.5 47.5 60.4] 278.0
Syn20M03M 2.9 9441.4 16.2 0.1|1010.3 901.9| 1735.0 t
Syn20M04M 3.9 m 22.6 0.2(7340.9 5160.4 m t
Syn30M02M 3.0 t 13.6 0.4|2935.5 3373.8| 8896.1 t
Syn40M03H 8.3 18.9 3.9 1.1 6.5 87.9 f| 19.7
Syn40M 1.8 877.7 0.6 0.1| 108.1 110.7 101.4 t
tls4 377.7 t f t| 383.0 336.7| 1281.8 t
tls5 t m m t t t m m
uflquad-20-150 t] 422.2 m t t t t t
uflquad-30-100 t| 614.5 m t t t t t
uflquad-40-80 t| 9952.3 m t t t t t

PIERRE BONAMI AND MUSTAFA KILING AND JEFF LINDEROTH

38

Proportion of problems solved

alphaecp
bonmin-bb
bonmin-hyb ---

dicopt
filmint

10 100 1000 10000

not more than x-times worst than best solver

Fic. 1. Performance Profile Comparing Convex MINLP Solvers

