

Computer
Sciences
Department

MCDASH: Refinement-Based Property Verification for Machine
Code

Akash Lal
Junghee Lim
Thomas Reps

Technical Report #1659

June 2009

MCDASH: Refinement-Based Property Verification
for Machine Code∗

Akash Lal Junghee Lim Thomas Reps
University of Wisconsin

{akash, junghee, reps}@cs.wisc.edu

Abstract
This paper presentsMCDASH, a refinement-based model checker
for machine code. While model checkers such asSLAM, BLAST,
and DASH have each made significant contributions in the field
of verification/flaw-detection, their use has been restricted to pro-
grams for which source code is available. This paper discusses sev-
eral challenges that arise when working with machine code, and ex-
plains how they are addressed inMCDASH. Unlike previous model
checkers,MCDASH does not require the usual preprocessing steps
of (a) building control-flow graphs, and (b) performing points-to
analysis (or alias analysis); nor doesMCDASH require type infor-
mation to be supplied. The paper also describes how we extended
MCDASH to check properties of self-modifying code.

MCDASH is built using language-independent meta-tools that
generate the implementations of the required analysis components
from descriptions of an instruction set’s syntax and semantics. It
has been instantiated for Intel x86 and PowerPC.

1. Introduction
Recent research in programming languages, software engineering,
and computer security has led to new kinds of tools for analyzing
programs for bugs and security vulnerabilities [33, 25, 36,19, 13,
8, 5, 11, 26, 16, 1]. In these tools, program analysis is used to
determine a conservative answer to the question “Can the program
reach a bad state?” Many impressive results have been achieved,
and some of this work has already been transitioned to commercial
products [8, 4, 15, 12].

However, these tools all focus on analyzingsource code. Un-
fortunately, most programs that an individual user will install on
his computer, and many commercial off-the-shelf programs that a
company will purchase, are delivered as machine code. If an indi-
vidual or company wishes to vet such programs for bugs, security
vulnerabilities, or malicious code (e.g., back doors, timebombs, or
logic bombs) the availability of good source-code-analysis prod-
ucts is irrelevant. For instance, because device-driver developers
rarely make their source code available, we can onlytrust that they
have run Microsoft’s Static Driver Verifier (SDV) [4] on their code
and fixed the bugs that were found; we are not in a position to run
SDV ourselves because it does not work on machine code.

∗ The research was supported by NSF under grants CCF-0540955,CCF-
0524051, and CCF-0810053, and by AFRL under contract FA8750-06-C-
0249.

[Copyright notice will appear here once ’preprint’ option is removed.]

Although establishing execution properties at the machine-code
level is a challenging task, the problem of analyzing machine code
has been receiving increased attention [28, 17, 2, 9, 22, 7].More-
over, it can be a useful complement to source-code analysis,even
when source code is available:
• The compilation from source code to machine code can intro-

duce subtle but important differences between what a program-
mer intended and what is actually executed by the processor.
However, source-code analyses are blind to the choices made
by the compiler. The effects of compilation can only be detected
by examining the machine code emitted by the compiler.

• In addition to the machine code that a programmer creates by
compiling his source code, additional machine code is linked in
either statically or dynamically from libraries. Often thesource
code for these libraries is not available, and thus cannot be
analyzed by a source-code-analysis tool. However, a machine-
code-analysis tool can analyze a library’s machine code.

For these reasons, we have developed a model checker for ma-
chine code, calledMCDASH. The work onMCDASH addresses
the problem of creating a model checker that is (i) capable ofver-
ifying properties of machine-code programs, and (ii) can beretar-
geted easily to different instruction sets automatically.In particu-
lar, MCDASH is built using language-independent meta-tools that
generate the implementations of the required analysis components
from descriptions of an instruction set’s syntax and semantics. To
date, versions ofMCDASH have been instantiated for the Intel x86
and PowerPC instruction sets.

Previous model checkers, such asSLAM [5] (the core com-
ponent of SDV),BLAST [26], MAGIC [10], andDASH [6], have
each made significant contributions in the field of verification/flaw-
detection; however, their use has been restricted to source-code pro-
grams written C. Although C is already quite low-level, there are a
number of issues that arise in the analysis of machine code that are
not handled by the model checkers mentioned above.

Pointers and Types: SLAM, BLAST, andMAGIC use points-
to analysis as a preprocessing step before starting the verification
process proper. They rely on the points-to analysis to be efficient
and reasonably precise to get good overall performance. Current
versions of these tools use a flow-insensitive (and possiblyfield-
sensitive) points-to analysis that makes unsound assumptions about
pointer arithmetic—they either ignore pointer arithmeticaltogether
(SLAM) or assume that the result of an arithmetic operation on a
pointer is always contained inside the object that the pointer pointed
to originally (BLAST andMAGIC).

The latter approach amounts to making an unchecked assump-
tion that the program is ANSI C compliant. The consequence is
that such model checkers do not account for behaviors that are al-
lowed by some compilers (e.g., arithmetic is performed on point-
ers that are subsequently used for indirect function calls;pointers
move off the ends of structs or arrays, and are subsequently deref-
erenced; etc.) There can be good reasons why a program uses such
features—e.g., as a way to simulate subclassing in C [35]—but they
can also lead to bugs and security vulnerabilities.

1 2009/6/4

Existing model checkers also typically depend on some form
of type information, e.g., to distinguish array variables from scalar
variables, or to ensure that dereferences of an address-valued quan-
tity are compatible with the type of the objects to which it refers.

For machine-code programs, making such assumptions is un-
reasonable: (i) An access on a local variable is compiled to an
instruction operand that dereferences a computed address.For
instance, if local variablex is at offset –12 from the activation
record’s frame pointer (registerebp), an access onx would typi-
cally be turned into an operand [ebp–12], which dereferences the
computed addressebp–12. (ii) Type information may not be avail-
able for the objects to which an address-valued quantity refers.

DASH does not require a preprocessing step of points-to anal-
ysis, and it does handle pointer arithmetic to some extent. How-
ever, it still requires type information to distinguish pointer vari-
ables from scalar variables. In addition, equality and disequality
constraints between pointer values are used to identify analias-
ing conditionrelevant to a specific property in a specific state. The
use of such aliasing conditions is central toDASH’s ability to per-
form verification in the absence of a separate points-to analysis: the
aliasing conditions are acquired “on-the-fly”—during the course of
verification—instead of ahead of time.

In machine code, int-valued quantities and address-valuedquan-
tities are indistinguishable at runtime, and arithmetic onaddresses
is used extensively. This makes it challenging to define the appro-
priate notion of “aliasing condition” for use inMCDASH.

Byte-Addressable Memory: In x86 machine code, memory is
byte-addressable, and a sound analysis must be able to handle non-
aligned addresses.

Variables and Arrays: For source-level tools, an access to a
stack-allocated variable is not modeled as a dereference ofa mem-
ory address. Programs in which the property of interest can be
proven while reasoning about only stack variables provide easy
cases for source-level tools. In machine code, however, such pro-
grams are not as easy because every access on a stack-allocated
variable is performed via a memory dereference.

One shortcoming ofDASH vis à vis machine code is that it treats
array accesses unsoundly (the waySLAM does). This allows the
DASH tool to avoid using the theory of arrays inside its theorem
prover (which improves the tool’s scalability). However, at the
machine-code level, memory looks like one large array.

For both of these reasons, it is challenging for a machine-code
model checker to achieve the same degree of scalability as a source-
code model checker.

Control Flow : Most front ends for processing a language’s
source code provide a reasonably accurate description of a pro-
gram’s control flow (using points-to-analysis results to supply miss-
ing information about the callees of an indirect function call).

For machine-code analysis, there are several reasons why recov-
ering control flow is challenging.
• The branch condition is often not explicit: many instruction sets

provide separate instructions for (i) setting flags (based on some
condition that is tested) and (ii) subsequent branching according
to the values held by one or more flags.

• It is often difficult to identify the targets of indirect jumps and
indirect function calls [3].

MCDASH. MCDASH is based on theDASH algorithm of Beck-
man et al. [6].DASH uses concrete testing along with symbolic
reasoning to find either a test input that definitely causes a (bad)
target state to be reached, or a proof that the bad state can never be
reached. (The third possibility is thatDASH may fail to terminate.)

In the MCDASH implementation, we use a technique due to
Lim et al. [30] to generate automatically some of the key primitives
from a description of the concrete semantics of an instruction set.
This creates (a) an emulator for running tests, (b) a primitive for

performing symbolic execution, and (c) a primitive for performing
weakest-liberal-precondition (WLP).

This provided a starting point for our work, but to create
MCDASH we still had to address all of the challenges discussed
above. In doing so, we restricted ourselves to use only language-
independent techniques. Consequently, the overall systemacts as
a “Yacc-like” tool for creating versions ofMCDASH for different
machine-code instruction sets: given a description of an instruc-
tion set, aMCDASH-based model checker is generated automati-
cally. This infrastructure has been used to generate two such model
checkers:MCDASH/x86 andMCDASH/PowerPC.

For a given instruction set, we can actually create three different
kinds ofMCDASH model checkers:
MCDASH-ICFG: This version is useful in contexts in which it

is possible to create an accurate interprocedural control-flow
graph (ICFG)—that is, when source code, a cooperative com-
piler, and/or symbol-table/debugging information are available.
In particular,MCDASH-ICFG uses the ICFG to build its initial
abstraction of the program’s state space. (In essence, it abstracts
states based on the value of the program counter.)

MCDASH-ICFG: Because it is not possible, in general, to build an
accurate ICFG for machine-code programs without assistance
from the compiler,MCDASH-ICFG uses an initial abstraction
of the state space that is coarser than the ICFG. It consists of
three abstract states defined by the predicates “PC = start”,“PC
= target”, and “PC6= start∧ PC 6= target” (where “PC” denotes
the program counter).MCDASH-ICFG refines this abstraction
during the course of state-space exploration.

MCDASH-SMC: This version is capable of verifying (or detecting
flaws in) self-modifying code (SMC). (Self-modifying code is
used in runtime code generation, code-encryption schemes,and
OS boot loading. It is also used in malware.)

The work described in the paper makes the following contributions:
1. MCDASH extendsDASH in several ways.

(a) MCDASH does not require any preprocessing analysis, such
as points-to analysis, alias analysis, and control-flow anal-
ysis; nor does it require information that identifies the pro-
gram’s variables or their types.

(b) We developed a language-independent way forMCDASH to
identify the aliasing condition relevant to a specific property
in a specific state.

(c) We developed a way to speed upMCDASH—without im-
pacting soundness—using a technique from concolic execu-
tion: some symbolic values are replaced with concrete val-
ues taken from the concrete state. This reduces the size and
complexity of the formulas sent to the theorem prover.

(d) We introduced several optimizations to regain some of the
scalability lost by moving to a low-level language.

2. We extendedMCDASH to deal with self-modifying code
(SMC). This is not possible with most other model checkers
because they make a premature—and, in general, unsound—
commitment to the ICFG as an abstraction of a program’s state
space. As far as we know,MCDASH-SMC is the first model
checker to address verifying (or detecting flaws in) SMC.

Organization. The remainder of the paper is organized as fol-
lows: §2 reviews theDASH algorithm for model checking source-
code.§3 describesMCDASH-ICFG, our simplest approach to ex-
tending theDASH algorithm to work on machine code.§4 de-
scribesMCDASH-ICFG, which can be used when it is not pos-
sible to start with an accurate ICFG of a machine-code program.
§5 presentsMCDASH-SMC, which addresses self-modifying code.
§6 describes how a language-independentMCDASH implementa-
tion was created.§7 presents some experiments carried out with
MCDASH/x86.§8 discusses related work.

2 2009/6/4

Algorithm 1 SingleDASH Iteration
Input: An abstract graphG with start andtargetnodes.
Input: A set of concrete tracesT .

1: if targethas a witness inT then
2: return reachable
3: end if
4: Find a pathτ in G from start to target.
5: if no path existsthen
6: return not reachable
7: end if
8: Find the last edge(n,m) of τ such thatn has a witnessc in T .
9: Let I be the instruction on edge(n,m).

10: Symbolically execute the concrete trace toc and thenI .
11: LetS be the symbolic state obtained.
12: if S is feasiblethen
13: Find program input fromS, run test, and add trace toT .
14: else
15: RefineG at noden.
16: end if

2. Background onDASH

This section provides an overview of how theDASH algorithm [6]
operates on source code. Given a program and a target label (a
particular control location in the program),DASH either returns
a test case whose execution leads to the target, or a proof that the
target is unreachable (orDASH does not terminate).

While DASH is running, it maintains an approximation of the
program’s state space. The approximation is represented asa graph
with edges labeled with program statements or program conditions,
and nodes labeled with formulas. We call such a graph anabstract
graph. One of the nodes in the graph is designated to be the start
node (where program execution starts) and another node is desig-
nated as the target (representing the target label).DASH also stores
a set of concrete tracesT that are obtained from running tests. A
concrete state inT is said to be awitnessfor a noden in the abstract
graph if it satisfies the formula that labels noden.

DASH proceeds iteratively. During each iteration, it either runs
a test (in an attempt to reach the target) or refines the abstract graph
by splitting nodes and removing certain edges (in an attemptto
prove that the target is not reachable). If the graph has no path from
start to target, thenDASH has proved that target is unreachable, and
the abstract graph serves as the proof. An informal description of a
singleDASH iteration is shown in Alg. 1.

We will explain the algorithm using the program shown in
Fig. 1(a) as an example, and describe howDASH proves or dis-
proves the reachability of each of the labelsL1, L2, andL3. First,
suppose that the target isL1. DASH starts with an abstract graph
G that is the control-flow graph (CFG) offoo, shown in Fig. 1(b),
and all nodes are labeled with the formulatrue. It initializesT by
running a random test. For our example, the only input to the pro-
gram is the value ofx. DASH chooses a random value forx, say10,
and runs a test. This produces a trace of concrete states thatwitness
nodes ofG. The presence of a witness for a node ofG is shown in
Fig. 1(b) as an “×” inside the node.

In the first iteration, step1 does not find a witness forL1. Next,
step4 finds the pathτ = foo start

y=x+1
−−−−−→ n1

y==1
−−−−→ L1. In

steps8 and9, the noden isn1, andI is assume(y == 1). Step10
performs symbolic execution.

A symbolic state has two components: apath constraintand a
symbolic map. The initial symbolic state has path constrainttrue
and a symbolic map that assigns a symbolic constant to the input:
[x 7→ x0]. Symbolic execution proceeds by building formulas
and expressions over the symbolic constants. The executionof the

assignmenty = x + 1 does not change the path constraint, but
changes the symbolic map to[x 7→ x0, y 7→ x0 + 1]. The next
statement gathers up a path constraint: it equates the current value
of y with 1, leading to the constraintx0 + 1 == 1, which is
conjoined to the existing path constraint.

Thus, in step11, the symbolic state has path constraintx0 +
1 == 1 and map[x 7→ x0, y 7→ x0 + 1]. A symbolic state is
feasible if and only if its path constraint is feasible. In this case, it
is feasible under the assignmentx0 = 0. This provide a new test
case, andfoo is executed withx initialized to0. During the second
iteration, step1 finds thatL1 has a witness: the test reachesL1.

Now suppose that the target isL2. As before,DASH starts with
G as the CFG offoo and runs a random test with, say,x assigned to
10 again (so that Fig. 1(b) still describes the initial situation). In the
first iteration,τ is the (unique) path fromfoo start toL2. In steps
8 and9, DASH considers the frontier(n3, assume(z == 0), L2).
Symbolic execution yields the path constraint(x0+1 6= 1∧2x0 =
0), which is unsatisfiable (assuming integer arithmetic, to keep the
discussion simple). In this case,DASH refinesG. Next, we explain
how DASH carries out its refinement, in general, and will then
continue with our example.

The triple (n, I,m), where noden and instructionI are the
ones chosen in steps8 and9, andm is the successor node ofI ,
is called thefrontier: noden is the last place (along the currently
chosen path) at which a concrete witness has been seen, andDASH

tries to push a test beyondI in the hope that it might lead to the
target. When this is not possible, the abstract graphG is refined
by splitting noden into n′ andn′′, as shown in Fig. 1(c). The
refinement operation allows somenon-connectivityinformation to
be represented inG; in particular, refinement is performed in such
a way that the refined graph records thatn′ is not connected tom
(see Fig. 1(c)).

Let ψ be the formula that labelsm, c be the concrete witness
of n, andSn be the symbolic map obtained from the symbolic
execution ofτ up to n. DASH chooses a formulaρ, called the
refinement predicate, and splits noden inton′ andn′′ to distinguish
the cases whenn is reached with a concrete state that satisfiesρ
(n′′) and when it is reached with a state that satisfies¬ρ (n′). This
predicate is chosen such that
(i) no state that satisfies¬ρ can lead to a state that satisfiesψ after

the execution ofI , and
(ii) the symbolic mapSn satisfies¬ρ.
The first condition ensures that the edge fromn′ to m can be
removed, and the second condition rules out the possibilityof
extending the current path alongI (forcing the search to explore
different paths). It also ensures thatc is now a witness forn′ and
not n′′ (becausec satisfiesSn)—and thus the frontier during the
next iteration must be different. One possibility for the refinement
predicate is to choose the weakest liberal precondition (WLP) ofψ
with respect toI . Other possibilities are discussed below.

Returning to the example of how noden3 is refined across the
frontier (n3, assume(z == 0), L2), DASH chooses the refinement
predicate(z == 0)∧ true, which simplifies toz == 0. This leads
to the abstract graph shown in Fig. 1(d). (The concrete witnesses
are again shown as×’s.)

This case, whenI is of the formassume(ϕ), is one in which
DASH chooses a refinement predicate other thanρ1

def
= WLP(I, ψ)

(where ψ is the formula that labelsm). The reason is that
WLP(assume(ϕ), ψ) equalsϕ ⇒ ψ [29]. For instance, in the
example above,ρ1 would be WLP(assume(z == 0), true) =
((z == 0)⇒ true), which simplifies totrue. However, in keeping
with condition (i) above—i.e., states that cannot satisfyψ after the
execution ofI should satisfy¬ρ—we use the stronger refinement
predicateρ2

def
= (ϕ ∧ ψ). This shifts all states that satisfy¬ϕ to the

refined node labeled with¬ρ2 (e.g.,na
3 in Fig. 1(d)). For instance,

3 2009/6/4

void foo(int x) {

y = x + 1;

if(y == 1) L1: return;

z = 2 * x;

if(z == 0) L2: return;

y = bar(y);

if(x != y) L3: return;

}

int bar(int a) {

return (a-1);

}

foo_start

n1: true

L1 : true

n2 : true

n3 : true

L2 : true

n4 : true

n5 : true

L3 : true

y = x + 1

y != 1

y == 1

z = 2 * x

z == 0

z != 0

y = bar(y)

x != y

¥

¥

¥

¥

¥

¥

n’ : � ∧ ¬�

k

n : �

m : �

¥

k

n’’ : � ∧ �

m : �

I

¥

⟹

I

foo_start

n1: true

n2 : true

n3
a : z ≠ 0

L2 : truen4 : true

y = x + 1

y != 1

z = 2 * x

z == 0z != 0

¥

¥

¥

¥

¥

n3
b : z == 0

z = 2 * x

z != 0

foo_start

n1: true

n2
a : x ≠ 0

n3
a: z ≠ 0

L2 : truen4 : true

y = x + 1

y != 1

z = 2 * x

z == 0z != 0

¥

¥

¥

¥

¥

n3
b: z == 0

z = 2 * x

z != 0

n2
b : x == 0

y != 1

foo_start

n1
b: y == 1

∨ x ≠ 0

n2
a : x ≠ 0

n3
a: z ≠ 0

L2 : truen4 : true

y = x + 1

y != 1

z = 2 * x

z == 0z != 0

¥

¥

¥

¥

¥

n3
b : z == 0

z = 2 * x

z != 0

n2
b : x == 0

n1
b: y ≠ 1

∧ x ==0

y != 1

(a) (b) (c) (d) (e) (f)

Figure 1. (a) An example program. (b) Initial abstract graph created by DASH, with witnesses shown using “×”. (c) GeneralDASH

refinement. (d)–(f) The abstract graphs after different iterations ofDASH. (To reduce clutter, nodes that cannot reachL2 are omitted.)

in Fig. 1(d) all states that satisfyz 6= 0 are excluded from nodenb
3.

Becausena
3 is not connected toL2, refinement viaρ2 = (ϕ∧ψ) al-

lows the refined abstract graph to represent more information about
non-connectivity of states than it would have viaρ1 = (ϕ⇒ ψ).

In the next iteration, τ is chosen to be
[foo start, n1, n2, n

b
3, L2], and the frontier is at noden2.

While performing symbolic execution, the formulas that label
the nodes are picked up in the path constraint: i.e., if the current
symbolic map isS andφ is the formula on the current node, then
φ is evaluated (similar to a branch condition) and conjoined in the
path constraint. In our example, the formula that labelsnb

3 will be
picked up, leading to the same path constraint as before (which
means that the current path cannot produce a concrete witness for
nb

3). Refinement is performed atn2, leading to the graph shown
in Fig. 1(e). This continues, finally leading to the graph shown in
Fig. 1(f). (In the last iteration, the refinement predicate turns out to
be false, and nodes labeled withfalseare deleted from the abstract
graph.) This graph proves thatL2 is unreachable.
Refinement Predicate.In the presence of pointers, choosing the
right refinement predicate is the key. Suppose that the frontier
(n, I,m) has statementI = *p = 5 and that the formula onm
isψ = (x + y == 10). Then WLP(ψ, I) is

p == &x ∧ p == &y ∧ (5 + 5 == 10)
∨ p == &x ∧ p 6= &y ∧ (5 + y == 10)
∨ p 6= &x ∧ p == &y ∧ (x + 5 == 10)
∨ p 6= &x ∧ p 6= &y ∧ (x + y == 10)

This formula has four disjuncts, each for a differentaliasing con-
dition. DASH defines an aliasing conditionα as a conjunction
of equality and disequality constraints between addressesthat are
written to when executing the program statement (i.e.,p) and ones
that are used in the formula (i.e.,&x and&y).

In general, if the statement writes to just one address but the
formula hasn addresses, then there are2n possible aliasing con-
ditions. The key insight that allowsDASH to operate efficiently in
the presence of pointers is that it chooses the refinement predicate
based on aliasing conditions that actually arise in the program ex-
ecution. It looks atSn, which represents a collection of concrete
states that actually arise during program execution, and derivesα
from it. The intuition behind this approach is that one does not ex-
pect too many aliasing conditions to arise at a particular point in the
program. Thus, considering them lazily makes the overall process
efficient.

In the example above, suppose thatSn is [p 7→ &x, · · ·], and the
addresses ofx andy are distinct. Thenα = (p == &x∧p 6= &y).

DASH chooses the refinement predicate WLPα(I, ψ) = ¬α∨(α∧
WLP(I, ψ)). The latter term(α ∧ WLP(I, ψ)) selects only one
conjunct from WLP out the the exponentially many that it may
have. This allowsDASH to avoid the exponential blowup. One can
verify that WLPα is a valid refinement predicate.
Interprocedural Analysis. Now suppose that the target isL3.
DASH operates as before, except when the frontier is a call state-
ment. In its first iteration,DASH splits noden5 using the refine-
ment predicatex 6= y. In the next iteration, the frontier is the call
to procedurebar.

At a frontier,DASH essentially needs to determine whether a
test could go beyond the frontier. Thus, in this case, it needs to
find out if the execution ofbar can produce a concrete state that
satisfies the formulaψ = (x 6= y). It does this by recursively
calling itself on procedurebar: the target is set to be the WLP of
ψ across the assignment of the return value ofbar to y, which is
ψ′ = (x 6= a). This is done by splitting the exit node ofbar into
two nodes, one labeled withψ′ and the other with¬ψ′. The former
node is set as the target node. The constraints on parametersof
bar are obtained from the symbolic stateSn4

that is obtained from
symbolically executing the concrete trace up to noden4.

Thus, the recursive call toDASH is obligated to start from a
state[a 7→ x0 + 1, x 7→ x0] with (x0 + 1 6= 1 ∧ 2x0 6= 0), and
must prove or disproveψ′ at the end ofbar. If this call to DASH

returns a test case, then the frontier insidefoo can be extended
using the same test; otherwise, it proves thatψ′ cannot be reached,
in which case a refinement is performed at the frontier infoo. The
refinement predicate is obtained from the proof that is returned by
DASH (see [6] for details). In our example, the refinement predicate
would be(x 6= y + 1).

During interprocedural analysis, additional care has to betaken
because there are now two targets: the split exit node labeled with
ψ′, as well as the global analysis target. On a given iteration,DASH

may use a path in the abstract graphG to either target.
Checking Safety Properties.We have only describedDASH for
when the goal is to test the reachability of a given program location.
However,DASH can handle general safety properties as well: if
one wants to verify if the formulaϕ is ever violated during the
execution of the program, then all nodes of the initial abstract graph
are split into two, one labeled withϕ and the other labeled with¬ϕ.
All nodes labeled withϕ are treated as the target node.MCDASH

is also able to do the same, but we limit the discussion to properties
that check the reachability of a single program location.

4 2009/6/4

3. MCDASH-ICFG

We now describe how to extend theDASH algorithm to work
on machine code. The starting point is Alg. 1, which has four
requirements:
1. access to an interprocedural control-flow graph (ICFG), which

is used to build the initial abstract graph
2. a method to perform concrete execution of the program for

running tests
3. a method to perform symbolic execution of a given program

path (a sequence of program statements)
4. a method to compute WLPα, which is used when refining the

abstract graph.
In our first version ofMCDASH, calledMCDASH-ICFG, we as-
sume that the ICFG of the machine-code program is provided
to us. In particular, theMCDASH-ICFG implementation uses the
CodeSurfer/x86 front end to build CFGs. (This assumption is
dropped in§4 and§5.)

3.1 A Language-Independent Approach to WLPα

Lim et al. showed how to create primitives for concrete execution
and symbolic execution of machine code [30]. Their work provides
items 2 and 3 listed above. They also showed how to create a
primitive for weakest liberal precondition (WLP), but thatprimitive
causes the predicates that label the nodes of the abstract graph to
explode.

In this section, we describe our language-independent approach
to identifying “aliasing condition”α, as well as the WLPα primi-
tive that goes along with it.

3.1.1 α and WLPα

As mentioned in§1, there are two challenges in defining an appro-
priate notion ofaliasing conditionfor use with machine code.
• int-valued quantities and address-valued quantities are indistin-

guishable at runtime, and
• arithmetic on addresses is used extensively.

Suppose that the frontier is(n, I,m), ψ is the formula onm,
andS is the symbolic state for the path up ton. For source code,
aliasing conditionα can be derived by looking at the relationship,
in S, between the addresses written to by instructionI and the
ones used inψ [6]. However, this way of computingα is language-
dependentbecause the semantics of the language of instructions
must be incorporated into the algorithm, to determine “the ad-
dresses written to by instructionI”.

In contrast, we developed an alternative, language-independent
approach both to identifyingα and computing WLPα. For the mo-
ment, to simplify the discussion, suppose that a concrete machine-
code state is represented using two mapsM : INT → INT and
R : REG→ INT. MapM represents memory, and mapR repre-
sents the values of machine registers. (A more realistic definition
of memory is considered in§3.1.2.)

We use the standard theory of arrays to describe updates and
accesses on maps, e.g.,update(M,k, d) denotes the mapM with
index k updated with the valued, andaccess(M,k) is the value
stored at indexk in M . We also use the standard axiom from the
theory of arrays:

access(update(M,k1, d), k2) = ite(k1 = k2, d, access(M,k2)),
(1)

where ite is an if-then-elseterm. We use the notationR(r) as a
shorthand foraccess(R, r).

Consider the following machine-code example, which is similar
to the source-code example discussed in§2. Suppose thatI is
“mov [eax], 5” (which corresponds to*eax = 5 in source-code
notation), andψ is (M(R(ebp)− 8) +M(R(ebp)− 12) = 10).

Also, suppose that under the symbolic stateS, R(eax) equals
R(ebp)− 8.1

First, we symbolically executeI starting from the identity sym-
bolic stateSid = [M 7→ M0, R 7→ R0]. This results in the sym-
bolic stateS′ = [M 7→ update(M0, R0(eax), 5), R 7→ R0]. Next,
we evaluateψ underS′—i.e., perform the substitutionψ[M ←
S′(M), R ← S′(R)]. For instance, the termM(R(ebp) − 8)
evaluates to the contents of memory at addressR(ebp) − 8, i.e.,
access(M,R(ebp)− 8), which equals

access(update(M0, R0(eax), 5), R0(ebp)− 8).

From the axiom for arrays, this simplifies to

ite(R0(eax) = R0(ebp)− 8, 5,M0(R0(ebp)− 8)).

Thus, the evaluation ofψ underS′ yields

ite(R0(eax) = R0(ebp)− 8,
5,M0(R0(ebp)− 8))

+ ite(R0(eax) = R0(ebp)− 12,
5,M0(R0(ebp)− 12))

= 10 (2)

This formula equals WLP(I, ψ) [30].
The process described above illustrates a general property: for

any instructionI and formulaψ,

WLP(I, ψ) = ψ[M ← S
′(M), R← S

′(R)],

whereS′ = SEJIKSid and SEJ·K denotes symbolic execution [30].
The next steps are to identifyα and to create a simplified for-

mulaψ′ that weakens WLP(I, ψ). These are carried out simulta-
neously during a traversal of WLP(I, ψ). We illustrate this on the
example discussed above. Because theite-terms in Eqn. (2) were
generated from array accesses,ite-conditions represent the desired
aliasing conditions. We traverse Eqn. (2), and for each termof the
form ite(ϕ, t1, t2), if ϕ holds in symbolic stateS, then it is con-
joined toα, and the term is simplified tot1. Otherwise, if¬ϕ holds
in S, then¬ϕ is conjoined toα and the term is simplified tot2. If
neither case holds, then theite term andα are left untouched.

In our example,R0(eax) equalsR0(ebp)− 8 in symbolic state
S; hence, applying the process described above to Eqn. (2) yields

ψ′ = (5 +M0(R0(ebp)− 12) = 10)

α =

(

(R0(eax) = R0(ebp)− 8)
∧ (R0(eax) 6= R0(ebp)− 12)

)

(3)

The formula¬α ∨ ψ′ (i.e., α ⇒ ψ′) is the desired refinement
predicate WLPα(I, ψ).

This approach is language-independentbecause it isolates the
consideration of the semantics of the instruction set to thecompu-
tation of S′ = SEJIKSid in WLP(I, ψ). All remaining steps are
performed solely on formulas.2

It is true that the algorithm described above computes WLP(I, ψ)
explicitly. However, this step alone does not cause an explosion in
formula size—explosion is a consequence of repeated application
of WLP. In our approach, the formula obtained via WLP(I, ψ) is
immediately simplified to create firstψ′ = α ∧ WLP(I, ψ) and
thenα⇒ ψ′.

1 In x86, ebp is the frame pointer, so if program variablex is at offset –8
andy is at offset –12, this corresponds to the example discussed in§2, with
eax playing the role of variablep.
2DASH andMCDASH need the symbolic-execution primitive SEJIK any-
way for other steps of state-space exploration. Moreover, an implementa-
tion of SEJIK can be generated from a description of the semantics of an
instruction set [30]; consequently, an implementation of WLPα(I, ψ) can
be generated as well.

5 2009/6/4

3.1.2 Byte-Addressable Memory

In the above discussion, we assumed that the memory map has type
INT → INT. In x86 machine code, memory is byte-addressable,
so the actual type of the memory map isINT32 → INT8. This
complicates matters because accessing (updating) a32-bit quantity
in memory under the little-endian storage convention translates
into four contiguous8-bit accesses (updates); for instance, a32-bit
access can be expressed as follows:

access32 8 LE 32(m, a) =
let v1 = Int8To32ZE(m(a))
v2 = Int8To32ZE(m(a+ 1))� 8
v3 = Int8To32ZE(m(a+ 2))� 16
v4 = Int8To32ZE(m(a+ 3))� 24

in (v4 | v3 | v2 | v1)

(4)

whereInt8To32ZEconverts anINT8 to an INT32 by padding the
high-order bits with zeros, and “|” denotes bitwise-or.

Let update32 8 LE 32 denote the similar operation for updat-
ing a map of typeINT32→ INT8 under the little-endian storage
convention. Note that when1 ≤ |k1 −INT32 k2| ≤ 3, we no longer
have the property

access32 8 LE 32(update32 8 LE 32(M, k1, d), k2)
= access32 8 LE 32(M, k2).

and hence it is invalid to simplify formulas by the rule

access32 8 LE 32(update32 8 LE 32(M, k1, d), k2)
⇒ ite(k1 = k2, d, access32 8 LE 32(M, k2)).

However, the four single-byte accesses onm in Eqn. (4) (i.e.,m(a),
m(a+1),m(a+2), andm(a+3)), areaccessoperations for which
it is valid to apply Eqn. (1).

Returning to the example discussed in§3.1.1, whereR0(eax)
equalsR0(ebp)−8 in symbolic stateS, we perform the same steps
as before. First, the symbolic execution ofI = mov [eax], 5
starting from the identity symbolic stateSid = [M 7→ M0, R 7→
R0] results in the symbolic state

S
′ = [M 7→ update32 8 LE 32(M0, R0(eax), 5), R 7→ R0].

The formulaψ is now written as follows:

access32 8 LE 32(M,R(ebp)− 8)
+ access32 8 LE 32(M,R(ebp)− 12)
= 10.

To obtain WLP(I, ψ), we evaluateψ underS′, which yields the
formula shown in Fig. 2—where for brevity we have introduced
the notational shorthandsp = R0(eax), x = R0(ebp) − 8, y =
R0(ebp)−12, ∗x = M0(R0(ebp)−8), ∗y = M0(R0(ebp)−12),
etc. The formula shown in Fig. 2 is the analog of Eqn. (2).

The step that uses symbolic stateS to identify α and create a
simplified formulaψ′ that weakens WLP(I, ψ) is now applied to
the formula shown in Fig. 2, and produces

ψ
′ def
= 5 +

224 ∗ Int8To32ZE(∗(y + 3))
| 216 ∗ Int8To32ZE(∗(y + 2))
| 28 ∗ Int8To32ZE(∗(y + 1))
| Int8To32ZE(∗y)

= 10,

and α is the conjunction of the disequalities collected from the
formula shown in Fig. 2:

α
def
= x+ 3 6= p+ 3 ∧ . . . x+ 3 6= p ∧ . . . x 6= p+ 3 ∧ . . . x 6= p
∧ y + 3 6= p+ 3 ∧ . . . y + 3 6= p ∧ . . . y 6= p+ 3 ∧ . . . y 6= p.

These are the analogs of Eqn. (3).
As before, the formula¬α ∨ ψ′ (i.e.,α ⇒ ψ′) is the desired

refinement predicate WLPα(I, ψ).

3.2 Local Variables

In this section, we describe an optimization necessary to improve
the scalability ofMCDASH-ICFG. Consider the program shown
in Fig. 3. WhenDASH is executed on the source code to test
reachability of the labelERR, it will perform refinement in its
first two iterations. Next, it recursively calls itself on procedure
bar with the target predicateφ1

src = (g + l1 = 5). Insidebar,
the first iteration again performs refinement to build the formula
φ2

src = (g + l1 + l2 = 5).
The story changes when dealing with machine code. When we

run MCDASH-ICFG on procedurefoo, it does some refinements
to build the formulaφ1

mc = (M(cg) + M(ebp − 4) = 5) at the
corresponding point toφ1

src (which is just after the call tobar).
Here,cg is the (constant) global address of the variableg.

Next, MCDASH-ICFG, like DASH, recursively calls itself on
bar. Ignoring the return instruction, the first iteration wouldhave
the instruction “pop ebp” as the frontier, and would need to refine.
The semantics of this instruction are that it assignsebp the value
M(esp) and then incrementsesp by 4. Performing WLPα onφ1

mc

results in(M(cg) +M(M(esp) − 4) = 5). The formula created
at the point corresponding toφ2

src would be(M(cg) + M(ebp −
4) +M(M(ebp)− 4) = 5).

Note that the formula generated byMCDASH has a double
memory dereference, even though the source code contains only
ordinary accesses on variables. The reason for this is thatMCDASH

does not know thatebp is a callee-saved register in this program:
at thepop instruction, it does not know that the value ofebp is
restored to its value before the call tobar.

To reduce the complexity of the formulas that arise, we extend
the notion of “α” to include the values ofesp and ebp. If the
frontier is (n, I,m) with Sn as the symbolic state, then in the
computation of WLPα we checkSn to see if the values ofesp and
ebp are concrete (they may be symbolic). If they are concrete—
saycs and cb—then we conjoin the constraint(R(esp) = cs ∧
R(ebp) = cb) to α, and replace these registers with their constant
values in the refinement predicate. Thus,φ1

mc would become

(R(ebp) = (cstk− 4))⇒ (M(cg) +M(cstk− 8) = 5),

wherecstk is the starting value ofesp. The result of WLPα on this
formula across thepop instruction is:

(R(esp) = cstk− 60) ∧ (M(cstk− 60) = cstk− 4)⇒
(g +M(cstk− 8) = 5)

The refinement predicate at the point corresponding toφ2
src is:

(R(ebp) = cstk− 60) ∧ (M(cstk− 60) = cstk− 4)⇒
(M(cg) +M(cstk− 64) +M(cstk− 8) = 5)

By this means, the double memory dereference goes away, and the
refinement predicate looks more likeφ2

src, except that it has an extra
constraint on the program stack.

The intuition behind using the concrete values ofesp andebp is
similar to the intuition behind using aliasing conditionα in WLPα:
the program is not expected to generate too many different aliasing
conditions at a given program point, and its use greatly simplifies
the refinement predicates. Similarly, at a particular program point
in a given calling context,esp and ebp should not take on too
many different values—in particular, in well-behaved programs
they should each take on only a single value.

4. MCDASH-ICFG

In some cases, especially for stripped binaries, it is not possible to
build an accurate description of the CFG of the program, without a
full reasoning of the program’s semantics. Difficulties such as indi-
rect jumps and indirect calls also show up in high-level languages.

6 2009/6/4

224 ∗ Int8To32ZE(ite(x+ 3 = p+ 3, 0, ite(x+ 3 = p+ 2, 0, ite(x+ 3 = p+ 1, 0, ite(x+ 3 = p, 5, ∗(x+ 3))))))
| 216 ∗ Int8To32ZE(ite(x+ 2 = p+ 3, 0, ite(x+ 2 = p+ 2, 0, ite(x+ 2 = p+ 1, 0, ite(x+ 2 = p, 5, ∗(x+ 2))))))
| 28 ∗ Int8To32ZE(ite(x+ 1 = p+ 3, 0, ite(x+ 1 = p+ 2, 0, ite(x+ 1 = p+ 1, 0, ite(x+ 1 = p, 5, ∗(x+ 1))))))
| Int8To32ZE(ite(x = p+ 3, 0, ite(x = p+ 2, 0, ite(x = p+ 1, 0, ite(x = p, 5, ∗x)))))

+

224 ∗ Int8To32ZE(ite(y + 3 = p+ 3, 0, ite(y + 3 = p+ 2, 0, ite(y + 3 = p+ 1, 0, ite(y + 3 = p, 5, ∗(y + 3))))))
| 216 ∗ Int8To32ZE(ite(y + 2 = p+ 3, 0, ite(y + 2 = p+ 2, 0, ite(y + 2 = p+ 1, 0, ite(y + 2 = p, 5, ∗(y + 2))))))
| 28 ∗ Int8To32ZE(ite(y + 1 = p+ 3, 0, ite(y + 1 = p+ 2, 0, ite(y + 1 = p+ 1, 0, ite(y + 1 = p, 5, ∗(y + 1))))))
| Int8To32ZE(ite(y = p+ 3, 0, ite(y = p+ 2, 0, ite(y = p+ 1, 0, ite(y = p, 5, ∗y)))))

= 10

Figure 2. The formula for WLP(I, ψ), whereψ is update32 8 LE 32(M,R(ebp) − 8) + update32 8 LE 32(M,R(ebp) − 12) = 10,
obtained by evaluatingψ on the symbolic stateS′ = [M 7→ update32 8 LE 32(M0, R0(eax), 5), R 7→ R0]. For brevity, the following
notational shorthands are used in the formula:p = R0(eax), x = R0(ebp) − 8, y = R0(ebp) − 12, ∗x = M0(R0(ebp) − 8),
∗y = M0(R0(ebp)− 12), etc.

int g = 0;
void foo() {

v1 = 10;
bar();

g += v1;
if(g == 5)
ERR: return;

}

void bar() {
int v2 = 20;

g += v2;
}

procedure foo
. push ebp ; save frame ptr on stack

. mov ebp, esp ; ebp = esp

. sub esp, 56 ; make space for locals

. mov [ebp-4], 10 ; v1 = 10

. call bar ; bar ()

. mov eax, g ; eax = g

. add eax, [ebp-4]; eax += v1

. mov g, eax ; g = eax

. cmp g, 5 ; g == 5?

. jnz short loc 5D; jump if g != 5

. ERR: nop ; skip

. loc 5D:
mov esp, ebp ; restore stack ptr

. pop ebp ; restore frame ptr

. retn ; return to callee

procedure bar
. push ebp ; save frame ptr on stack

. mov ebp, esp ; ebp = esp

. sub esp, 56 ; make space for locals

. mov [ebp-4], 20 ; v2 = 20

. mov eax, g ; eax = g

. add eax, [ebp-4]; eax += v2

. mov g, eax ; g = eax

. mov esp, ebp ; restore stack ptr

. pop ebp ; restore frame ptr

. retn ; return to callee

Figure 3. An example program and its compiled x86 binary.

However, more acute is the problem of identifying procedures, be-
cause a binary need not follow any standard calling convention. For
example, a program can use a return instruction to simulate apro-
cedure call, and vice versa. For this reason,MCDASH-ICFG does
not use a front-end for building a CFG.

One standard approach in the model-checking literature is to
treat the program counter (PC) as data and use the CFG shown in
Fig. 4(a), where opany denotes any possible instruction (it stands
for an abstraction of all possible instructions). However,using this
approach withDASH has two difficulties: (i) A path in the abstract
graph only conveys information about the number of instructions
executed, not what those instructions are. Thus, during symbolic
execution, if the PC value becomes a symbolic expression, then one
would need to symbolically executeall of the possible instructions
at PCs represented by the symbolic expressions. This can easily
overwhelm the tool. (ii) The entire program would be treatedas a
single procedure. The interprocedural aspect ofDASH is important
for its scalability. We show how to solve each of these problems,
in turn. For the first one, we show how one can make use of a
technique from concolic execution [34, 21].

4.1 Stealing Concrete Values

In concolic techniques for state-space exploration, the symbolic
execution of a pathτ can steal values from a concrete execution
of τ to simplify the symbolic state. This has previously been used
as a heuristic in tools for boosting test coverage. We show how to
adapt the technique to work in a verification context. We explain
the concept in source-level terms.

DASH uses symbolic execution to learn an under-approximation
of the program’s behavior. We observe that one can relax the re-
quirements of symbolic execution. Consider step11 of Alg. 1, and
suppose thatτ is the path (sequence of instructions) that the con-
crete execution took to reach statec. Let SEJτKSid be the symbolic
state obtained after symbolically executing the pathτ from the ini-
tial identity symbolic state. TheDASH algorithm remains correct,
while ensuring progress, if the following two properties are satis-
fied: (i)S = SEJτKSid generalizesc, i.e., there is some assignment
to the input symbolic constants for whichS equalsc, and (ii) if
S′ = SEJτ ; IKSid is feasible then the pathτ ; I must be executable.
The first property ensures that if refinement is performed, then the
frontier changes in the next iteration. (In particular, it ensures that
c is not a witness forn′ in Fig. 1(c).) The second property ensures
that if S′ is feasible, and we run a test using the input obtained
from S′, then the test must follow(τ ; I)—and thus make progress
towards the target. Next, we show how stealing concrete values still
preserves these two properties.
Example.Suppose thatI ′ = (z = x << y) has to be symbolically
executed, where<< is the bitwise left-shift operator. If the current
symbolic state has path constraintϕ and symbolic mapSbefore =
[x 7→ f(inp), y 7→ g(inp)], for some functionsf andg over the
input symbolic constants, then the result of executingI updates the
value ofz to (f(inp)<<g(inp)).

In concolic execution, one avoids creating complex symbolic
expressions (because the theorem prover has to later check for
satisfiability of formulas over these expressions) by usingconcrete
information. Suppose that we wish to avoid having a symbolic
value for the shift-argument of<<. Then, if the concrete state before
the execution ofI ′ is [y 7→ 2, · · ·], concolic execution techniques
would “steal” the value ofy from the concrete state [34] and
simplify the resulting symbolic map to:

Safter = [x 7→ f(inp), y 7→ g(inp), z 7→ f(inp)<<2]

This technique does not satisfy the latter of the two properties
mentioned above: ifinp has just one symbolic constants0, f =
(s0 + 1), g = s0, ϕ = true, I ′ was the last instruction ofτ , andI
is a branch that tests(z == 4), then executingI on the symbolic
stateScon results in the path constraint(s0 + 1)<<2 == 4, which
is satisfiable withs0 == 0. Running a test with this input would
result in the concrete statecbefore = [x 7→ 1, y 7→ 0] beforeI ′

7 2009/6/4

PC = start

PC ≠ start ∧

PC ≠ target

PC = target

opany

opany

opany

PC ≠ start ∧
PC ≠ target ∧

ctxt(start)

opcall
opcall

PC = start ∧
ctxt(start)

PC = target ∧
ctxt(start)

opint

opint

opcall opint

PC ≠ ve ∧

ctxt(ve)

opcall
opcall

PC = ve ∧

ctxt(ve)

� ∧

ctxt(ve)

opint

opint

opret

opret

opany opcall

opint

(a) (b) (c)

Figure 4. Abstract graphs created byMCDASH-ICFG

(obtained by substituting0 for s0 in Sbefore). After the execution of
I ′, the branchI cannot be taken.

For MCDASH, we change the process of stealing concrete val-
ues. Whenever the concrete value of a variabley is stolen, say it is
cy, then the symbolic map is updated as before, but the constraint
y == cy is symbolically evaluated and added to the path con-
straint. In the above example, the constrainty == 2 evaluates to
s0 == 2 underSbefore, and is conjoined toϕ. The reader can verify
that the execution ofI will result in an infeasible state. The basic
idea behind our approach is to treat the process of stealing con-
crete values as if there was a fictitious branch conditiony == cy
in the path. The concrete execution certainly satisfies thisbranch
and proceeds through it, and the symbolic execution picks upthe
appropriate constraint, which also allows it to simplify its symbolic
map.

For MCDASH-ICFG, the symbolic execution keeps stealing the
value of the PC from the concrete state at every step. This ensures
that the symbolic map always has a concrete value for the PC, hence
it only has to symbolically execute a single fixed instruction at each
step.

4.2 Interprocedural without CFGs

The abstract graphs constructed byDASH at any stage only refer to
nodes of a single procedure. This allows it to keep these graphs
to a manageable size. In the absence of any information about
procedures,MCDASH-ICFG would have to use a single graph to
capture the abstraction of an entire program.

We avoid this problem by definingprocedural contexts(CTXTs),
which serve as a substitute for the notion for a procedure. There is
one contextCTXT(v) for each possible valuev of the PC. The
contextCTXT(v) roughly serves as a procedure identifier for the
one that begins at PC= v. The concrete state of the program is
instrumented with a stack ofCTXTs that is manipulated by the
concrete execution. We usec.stk to refer to the stack associated
with concrete statec.

If a test has to be started from statec, and PC(c) = v, thenc.stk
is initialized to [CTXT(v)]. If the execution of a call instruction
takes statec1 to c2 then c2.stk = push(CTXT(PC(c2)), c1.stk).
If the execution of a return instruction takes statec3 to c4 then
c4.stk = pop(c3.stk), providedc3.stk has at least two elements.
In all other cases, the stack is left unchanged. (For well-behaved
programs, this stack identifies the current procedure alongwith its
calling context.) Similar manipulation is performed for symbolic
execution. We add an additional type of constraint in our logic:
ctxt(v), which is satisfied by a concrete statec only when the top
element ofc.stk is CTXT(v).

The initial abstract graph constructed byMCDASH-ICFG is
shown in Fig. 4(b). In the graph, opcall is an abstraction of all call in-
structions, opret is an abstraction of all return instructions, and opint

is all other instructions. Thus,MCDASH-ICFG knows theCTXT-
stack manipulations that each of the three kinds of instructions can
perform.

During the execution ofMCDASH-ICFG, suppose that the fron-
tier has opcall as the instruction, the formula on its target isϕ, and
the concrete state at its source isc. The first step is to identify the
procedure being called. If the next instruction executed byc is not
a call instruction, then we refine using the predicate PC== vc,
wherevc is the PC value ofc. This refinement will result in the re-
moval of the opcall edge (because no call instruction can fire from a
state that satisfies PC== vc). Otherwise, letve be the PC after the
call instruction is executed atc. We steal the PC valueve using the
method discussed in the previous section. Next,MCDASH-ICFG

calls itself recursively on the abstract graph shown in Fig.4(c) to
see ifϕ is reachable or not. In essence, we use call and return in-
structions to figure out contexts thatMCDASH should verify in iso-
lation.

5. MCDASH-SMC

For self-modifying code (SMC), the association of a PC valuewith
the instruction at that PC is no longer fixed. We extendedMCDASH

to incorporate the decoding relationship between a sequence of
bytes in memory and the instruction that those bytes represent.
To do this two strategies were possible; however, with the present
MCDASH implementation we were only able to try the first:
1. Similar to MCDASH-ICFG, we simplify the cases when the

PC value or the bytes in memory at that PC are symbolic
expressions. During symbolic execution, we steal the PC value
as well as the memory bytes at that PC from the concrete state.
This preserves soundness, and ensures that symbolic execution
only has to execute a fixed instruction at each step (i.e., if
MCDASH-SMC returns a proof that a property holds, then it
indeed holds).

2. The alternative is to only steal the PC values, but allow the in-
struction to be symbolic. To accomplish this, the decoding re-
lationship (byte-sequence to instruction), as well as the instruc-
tion semantics would need to be expressed symbolically so that
symbolic execution can form expressions and constraints over
them. We leave this approach for future work.
Except for the above change, theMCDASH-SMC algorithm is

identical toMCDASH-ICFG.
MCDASH-SMC can verify the compiled version of the C code

shown in Fig. 53. The variableinp is the input to the program. The
array code stores the binary encoding of the instructions shown
in comments above it. This code increments the value of register
ecx. main calls this code, and after it returns,code is modified to
change the immediate argument of theadd instruction to−1. Thus,
the next timecode is executed, the value ofecx is decremented by
1.

MCDASH-SMC is able to verify that target labelERR is not
reachable. InMCDASH-ICFG, predicates of the form(PC == v)
help it learn control-flow information because nodes of the abstract
graph that have such a constraint only have fixed successors (unless
the instruction at that PC is call, return or an indirect jump). Simi-
larly, in MCDASH-SMC, the predicates that help build control-flow
information are of the form(PC== v) ∧ decode(v, I), where the
latter is a constraint that the contents of the memory at location v
represent instructionI . For the example in Fig. 5,MCDASH-SMC

is able to pick up the constraints(PC == c) ∧ decode(c, “add
ecx, 1”) and(PC== c)∧decode(c, “add ecx, -1”), allowing
it to explore the possibility of executing different instructions at the
same PC.

3 This example is adapted from the one described inhttp://www.acm.
org/src/Joy/joy.htm

8 2009/6/4

/*

* add ecx, 1;
* retn;

*/
unsigned char code[] = {0x83,

0xc1, 0x01, 0xc3};

void main(int inp) {
int old = inp;
asm { mov ecx, inp }
((void(*)())code)();
code[2]=0xff;

((void(*)())code)();
asm { mov inp, ecx }
if(inp != old) {
ERR: return;

}

Figure 5. Self-Modifying Code

6. Implementation
The MCDASH implementation has been structured so that it can
be retargeted to different languages easily. The core components of
the system are language-independent in two different dimensions:
1. TheMCDASH driver implements Alg. 1. It is structured so that

one only needs to provide an implementation of the concrete
and symbolic execution of a language, and a few other primi-
tives (e.g., WLPα). Consequently, this component of the system
can be used for source-level languages or for machine-code lan-
guages.

2. For machine-code languages, we have used two tools thatgen-
eratethe required implementation of the concrete semantics and
the symbolic-analysis primitives from descriptions of thesyn-
tax and semantics of an instruction set of interest.
The abstract syntax and concrete semantics of an instruc-

tion set are specified using a language calledTSL (Transformer
SpecificationLanguage) [31]. Decoding (i.e., translation of binary-
encoded instructions to abstract syntax trees) is specifiedusing
a tool calledISAL (InstructionSet ArchitectureLanguage).4 The
relationship betweenISAL andTSL is similar to the relationship be-
tween Flex and Bison. With Flex and Bison, a Flex-generated lexer
passes tokens to a Bison-generated parser. In our case, theTSL-
defined abstract syntax serves as the formalism for communicating
values—namely, instructions’ abstract syntax trees—between the
two tools.

Compared with other specification languages for instruction
sets,TSL has one unique feature: from asingle specification of
the concrete semantics of an instruction set amultiplicity of static-
analysis, dynamic-analysis, and symbolic-analysis components can
begenerated automatically. TheTSL system consists of two parts:
• The TSL language for specifying an instruction set’s abstract

syntax and concrete semantics.TSL is a strongly typed, first-
order functional language with a datatype-definition mecha-
nism for defining recursive datatypes, plus deconstructionby
means of pattern matching.

• The TSL compiler, which translates a specification to a com-
mon intermediate representation (CIR). The CIR generated for
a givenTSL specification is a C++ template that can be used to
create multiple analysis components by instantiating the tem-
plate in different ways.
TSL has two classes of users: (1) instruction-set specifiers, and

(2) analysis developers. The former use theTSL language to spec-
ify the concrete semantics of different instruction sets; the latter
create new analyses by instantiating the CIR in different ways.
Specifying an Instruction Set.Much of what an instruction-set
specifier writes in aTSL specification is similar to writing an in-
terpreter for an instruction set in first-order ML [24]. One specifies
(i) the abstract syntax of the instruction set, by defining the con-

4 ISAL also handles other kinds of concrete syntactic issues, including (a)
encoding(abstract syntax trees to binary-encoded instructions), (b) parsing
assembly(assembly code to abstract syntax trees), and (c)assembly pretty-
printing (abstract syntax trees to assembly code).

structors for a (reserved, but user-defined) typeinstruction; (ii) a
type for concrete states, by defining—e.g., for 32-bit Intelx86—
the typestateas a triple of maps:

state: State(INT32→ INT8, reg32→ INT32, flag→ BOOL);

whereINT32 and INT8 refer to 32-bit and 8-bit integers, respec-
tively, and reg32 andflag refer to a type for the names of 32-bit
registers and a type for the names of condition-codes, respectively;
and (iii) the concrete semantics of each instruction by writing aTSL

function

state interpInstr(instructionI, stateS) { . . . };

Semantic Reinterpretation. Each analysis is defined by rein-
terpreting the constructs of theTSL meta-language.TSL’s meta-
language supports a fixed set of base-types; a fixed set of arithmetic,
bitwise, relational, and logical operators; and a facilityfor defining
map-types. An analysis developer defines a new analysis compo-
nent by (i) redefining (in C++) theTSL base-types (INT32, INT8,
BOOL, etc.), and (ii) redefining (in C++) the primitive operations
on base-types (+INT32, +INT8, etc.). These are used to instantiate the
CIR template. This implicitly defines an alternative interpretation
of each expression and function in an instruction-set’s concrete se-
mantics (includinginterpInstr), and thereby yields an alternative
semantics for an instruction set from its concrete semantics.

ForMCDASH, TSL is used to create several useful reinterpreta-
tions of an instruction set:
• By instantiating the CIR with a reinterpretation that performs

the standard interpretation (in C++) of the TSL operators, we
obtain the instruction interpreter for concrete execution.

• By instantiating the CIR with a reinterpretation that instantiates
INT32, INT16, and INT8 as the types of symbolic expressions
that denote 32-bit, 16-bit, and 8-bit values, respectively, in the
input language of an SMT solver, and operations (such as+,
*, ==, etc.) as simplifying constructors5 we obtain a semantics
suitable for symbolic execution. (In our implementation, we
used the Yices input language [18].)

• A third reinterpretation creates a primitive for performing WLP
[30]. (As explained in§3.1, WLP is used a subroutine in the
implementation of WLPα.)

These reinterpretations are used as subroutines inMCDASH’s com-
ponents for concrete execution, symbolic execution, and WLP
computation.

In MCDASH-ICFG, decoding of instructions is done all at once,
at ICFG-construction time. InMCDASH-ICFG andMCDASH-SMC,
decoding of instructions is performed instruction-by-instruction, as
concrete or symbolic execution proceeds.

7. Experiments
We designed our experiments to test how competitiveMCDASH is
against source-level tools. We compared againstDASH on exam-
ples from [23]6 on which an earlier version ofDASH was tested.
These are hand-crafted examples designed to illustrate various as-
pects of theDASH algorithm. The later version ofDASH [6] was
tested on device drivers. We could not use these examples because
we did not have the harnesses and the OS stubs for the drivers.

The examples are all written in C. We compiled them and ran
MCDASH-ICFG and MCDASH-ICFG on the resulting object file
(without using the symbol-table information). The source code
does not use pointers, but the compiled binary manipulates ad-
dresses to access local variables from the stack. The results are

5 Straightforward simplifications are performed; e.g.,a == a simplifies to
true, etc.
6 These are available from that paper’s author’s homepagehttp://www.
cse.iitb.ac.in/~bhargav/synergy.

9 2009/6/4

shown in Fig. 6. Comparing with the timing numbers in [23],
MCDASH is in the same range, except for a couple of examples.
Moreover, surprisingly,MCDASH-ICFG was sometimes faster than
MCDASH-ICFG. This was because the absence of a CFG forced its
search to proceed in a different manner thanMCDASH-ICFG. And,
as a result, it got lucky in finding the desired loop invariants faster.

8. Related Work
Machine-Code Analyzers Targeted at Finding Vulnerabilities.
A substantial amount of work has been carried out on analysis
techniques to detect security vulnerabilities by analyzing source
code for a variety of languages [36, 11, 32, 37]. Less work has
been done on vulnerability detection for machine code. Kruegel
et al. [27] developed a system for automating mimicry attacks.
Their tool uses symbolic execution of x86 machine code to discover
attacks that can give up and regain execution control by modifying
the contents of the data, heap, or stack so that the application is
forced to return control to injected attack code at some point after a
system call has been performed. Cova et al. [14] used this platform
to apply symbolic execution to the problem of detecting security
vulnerabilities in x86 executables.

Both Godefroid et al. [22] and Brumley et al. [7] have cre-
ated tools for performing concolic execution on x86 machinecode.
Concolic execution combines concrete execution and symbolic ex-
ecution with the goal of finding inputs that increase test coverage.
Calls to an SMT solver are used to obtain inputs that force previ-
ously unexplored branch directions to be taken. In contrast, DASH

andMCDASH combine concrete execution and symbolic execution
with abstraction; they are goal-directed: they try to refute the claim
that there is no path from program entry to a given goal state.

In addition, the implementations of the other machine-codeana-
lyzers cited above are x86-specific, whereas our work can be retar-
geted to a new instruction set merely by writing aTSL specification
and applying theTSL compiler.
Self-Modifying Code. The work onMCDASH-SMC addresses a
problem that has been almost entirely ignored by the PL research
community. There is one paper on SMC by Gerth from 1991 [20],
and one recent paper by Cai et al. [9]. However, both of those papers
concern proof systems for reasoning about SMC.

In contrast,MCDASH-SMC can analyze SMC automatically.
As far as we know,MCDASH-SMC is the first model checker to
address verifying (or detecting flaws in) SMC. It is also possible to
generate versions ofMCDASH-SMC for different instruction sets
from descriptions of an instruction set’s syntax and semantics.

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, P. Hawkins, and B. Hackett.

An overview of the Saturn project. InPASTE, 2007.

[2] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. InCC, pages 5–23, 2004.

[3] G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN
Executables. InVMCAI, 2007.

[4] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,C. Mc-
Garvey, B. Ondrusek, S. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. InEuroSys, 2006.

[5] T. Ball and S. Rajamani. The SLAM toolkit. InCAV, 2001.

[6] N. Beckman, A. Nori, S. Rajamani, and R. Simmons. Proofs from
tests. InISSTA, 2008.

[7] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam,
D. Song, and H. Yin. Automatically identifying trigger-based
behavior in malware. In W. Lee, C. Wang, and D. Dagon, editors,
Botnet Analysis and Defense, pages 65–88. Springer, 2008.

[8] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic programming errors.Software: Practice and Experience,

30:775–802, 2000.

[9] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In
Prog. Lang. Design and Impl., 2007.

[10] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. InICSE, 2003.

[11] H. Chen and D. Wagner. MOPS: An infrastructure for examining
security properties of software. InCCS, pages 235–244, Nov. 2002.

[12] CodeSonar, GrammaTech, Inc., www.grammatech.com/products/codesonar.

[13] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,
and H. Zheng. Bandera: Extracting finite-state models from Java
source code. InICSE, pages 439–448, 2000.

[14] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection of
vulnerabilities in x86 executables. InACSAC, 2006.

[15] Coverity Prevent. www.coverity.com/products/prevent analysisengine.html.

[16] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. InPLDI, 2002.

[17] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable
code. InPOPL, pages 12–24, 1998.

[18] B. Dutertre and L. de Moura. Yices: An SMT solver, 2006.
http://yices.csl.sri.com/.

[19] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, pages 1–16, 2000.

[20] R. Gerth. Formal verification of self modifying code. InY. Liu and
X. Li, editors,Proc. Int. Conf. for Young Computer Scientists, pages
305–311, Beijing, China, 1991. Int. Acad. Pub.

[21] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. InProg. Lang. Design and Impl., 2005.

[22] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz
testing. InNDSS, 2008.

[23] B. Gulavani, T. Henzinger, Y. Kannan, A. Nori, and S. Rajamani.
SYNERGY: A new algorithm for property checking. InFSE, 2006.

[24] E. Harcourt, J. Mauney, and T. Cook. Functional specification and
simulation of instruction set architectures. InProc. Int. Conf. on Sim.
and Hardw. Desc. Langs.SCS Press, 1994.

[25] K. Havelund and T. Pressburger. Model checking Java programs
using Java PathFinder.STTT, 2(4), 2000.

[26] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Princ. of Prog. Lang., pages 58–70, 2002.

[27] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In USENIX
Sec. Symp., 2005.

[28] J. Larus and E. Schnarr. EEL: Machine-independent executable
editing. InPLDI, pages 291–300, 1995.

[29] K. R. M. Leino. Efficient weakest preconditions.Inf. Proc. Let.,
93(6):281–288, 2005.

[30] J. Lim, A. Lal, and T. Reps. Symbolic analysis via semantic
reinterpretation. InSpin Workshop, 2009.

[31] J. Lim and T. Reps. A system for generating static analyzers for
machine instructions. InCC, 2008.

[32] B. Livshits and M. Lam. Finding security vulnerabilities in Java
applications with static analysis. InUSENIX Sec. Symp., 2005.

[33] R. Lo, K. Levitt, and R. Olsson. MCF: A malicious code filter.
Computers & Society, 14(6):541–566, 1995.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. InFSE, 2005.

[35] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping
with type casts in C. InFSE, 1999.

[36] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first steptowards
automated detection of buffer overrun vulnerabilities. InNDSS, 2000.

10 2009/6/4

Program ICFG Available ICFG Not Available
Name #Instrs. Outcome CE SE Ref time CE SE Ref time

barber 196 proof 2 14 94 21.6 1 23 59 2.8
berkeley 75 proof 5 7 22 50.1 4 37 81 3.7
cars 108 proof 4 10 91 16.1 3 33 87 6.2
efm 133 test 10 49 325 128.8 7 81 371 72.0
fig6 17 proof 2 4 13 5.6 2 20 31 9.0
fig7 17 test 2 1 0 0.1 2 6 5 0.2
fig8 61 proof 2 3 13 0.6 1 4 5 0.7
fig9 16 proof 1 3 13 1.4 1 14 25 3.0
prog2 21 proof 1 3 17 1.0 1 23 38 3.2
prog3 18 proof 1 3 14 0.7 1 20 32 2.0
prog4 38 proof 2 6 30 5.8 2 36 63 21.0
prog5 22 proof 1 3 18 1.0 1 24 40 3.1
test1 23 proof 2 5 27 4.2 2 30 86 9.8
test2 32 proof 2 9 48 4.8 2 46 138 19.8

Figure 6. MCDASH experiments. The columns, in order, are: the number of instructions (#Instrs); whetherMCDASH returned a proof or a
counterexample (Outcome); the number of concrete executions (CE); the number of symbolic executions (SE), which also equals the number
of calls to the theorem prover; the number of refinements (Ref), which also equals the number of WLPα computations; and the total time
taken in seconds. The experiments were run on a Intel P43.2GHz machine with3.3GB RAM.

[37] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. InUSENIX Sec. Symp., 2006.

11 2009/6/4

