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ABSTRACT

Transfer learning is an inherent aspect of human learning. When humans learn to perform a

task, we rarely start from scratch. Instead, we recall relevant knowledge from previous learning

experiences and apply that knowledge to help us master the new task more quickly.

This principle can be applied to machine learning as well. Machine learning often addresses

single learning tasks in isolation. Even though multiple related tasks may exist in a domain, many

algorithms for machine learning have no way to utilize thoserelationships. Algorithms that al-

low successful transfer from one task (the source) to another task (the target) are necessary steps

towards making machine learning as adaptable as human learning.

This thesis investigates transfer methods for reinforcement learning (RL), where an agent takes

series of actions in an environment. RL often requires substantial amounts of nearly random explo-

ration, particularly in the early stages of learning. The ability to transfer knowledge from previous

tasks can therefore be an important asset for RL agents. Transfer from related source tasks can

improve the low initial performance that is common in challenging target tasks.

I focus on transferring relational knowledge that guides action choices. Relational knowledge

typically uses first-order logic to express information about relationships among objects. First-

order logic, unlike propositional logic, can use variablesthat generalize over classes of objects.

This greater generalization makes first-order logic more effective for transfer.

This thesis contributes six transfer algorithms in three categories: advice-based transfer, macro

transfer, and MLN transfer. Advice-based transfer uses source-task knowledge to provide advice

for a target-task learner, which can follow, refine, or ignore the advice according to its value.



xvi

Macro-transfer and MLN-transfer methods use source-task experience to demonstrate good be-

havior for a target-task learner.

I evaluate these transfer algorithms experimentally in thecomplex reinforcement-learning do-

main of RoboCup simulated soccer. All of my algorithms provide empirical benefits compared to

non-transfer approaches, either by increasing initial performance or by enabling faster learning in

the target task.
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Chapter 1

Introduction

Transfer learningis an inherent aspect of human learning. When humans learn to perform a

task, we rarely start from scratch. Instead, we recall relevant knowledge from previous learning

experiences and apply that knowledge to help us master the new task more quickly [27].

Human transfer learning is often studied in the context of education, where transfer could be

seen as the ultimate goal. The hierarchical curricular structure of schools is based upon the belief

that learning tasks can share common stimulus-response elements [99]. The focus on abstract

problem-solving methods is based on the idea that learning tasks can share general underlying

principles [9, 30].

Another area of human activity in which transfer learning isoften studied is that of language,

or more precisely, multilingualism. Knowledge of one language can affect learning in a second

language, and vice versa [61, 111]. In both of these areas, transfer can be a powerful method of

facilitating human learning.

This principle can be applied tomachine learningas well. Machine learning often addresses

single learning tasks in isolation. Even though multiple related tasks may exist in a domain, many

algorithms for machine learning have no way to utilize thoserelationships. Algorithms that allow

successful transfer are steps towards making machine learning as adaptable as human learning.

In human learning, the goal of transfer research is typically to determine what conditions facil-

itate transfer. Educators hope to activate and maximize thepre-existing mechanisms for transfer

learning in students’ brains. In machine learning, however, the goal of transfer research is to design

effective mechanisms for transfer. This thesis contributes several transfer mechanisms for one type

of machine learning.
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Given

Data

Source-Task
Knowledge

Learn

Target Task

Figure 1.1: Transfer learning is machine learning with an additional source of information apart from the
standard training data: knowledge from one or more related tasks.

1.1 Thesis Topic

Transfer in machine learning can be illustrated by Figure 1.1. A typical machine-learning

problem can be characterized as:

GIVEN Training data for taskT

DO Learn taskT

A typical transfer-learning problem can be characterized as:

GIVEN Training data for taskT AND knowledge from related task(s)S

DO Learn taskT

HereS represents one or moresource tasksthat were previously learned, andT represents

a new and relatedtarget task. The goal of transfer is to improve learning in a target task using

knowledge acquired in source tasks.

Transfer is desirable in many types of machine learning. My work focuses on transfer in

reinforcement learning(RL), where an agent takes series of actions in an environment [87]. RL

often requires substantial amounts of nearly random exploration, particularly in the early stages of

learning. The ability to transfer knowledge from previous tasks can therefore be an important asset

for RL agents. Transfer can reduce the long initial period oflow performance that is common in

challenging tasks.

Many types of knowledge can be transferred between RL tasks.My work focuses on trans-

ferring relational knowledgethat guides action choices. Relational knowledge typically usesfirst-

order logic to express information about relationships between objects [68]. First-order logic,
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unlike propositional logic, can use variables that generalize over classes of objects. This greater

generalization makes first-order logic more effective for transfer.

1.2 Thesis Statement

This thesis investigates the following claims:

Transfer learning can improve learning in reinforcement learning tasks. Source-task

knowledge can guide learners’ action choices in related target tasks to produce better

performance than random exploration. This guidance can allow learners to perform

better while learning the target task than they would otherwise. Relational learning

can provide effective and interpretable transfer knowledge for reinforcement learners.

1.3 Thesis Contributions

This thesis presents research onrelational transfer in reinforcement learning. It contributes six

major RL transfer algorithms, which are listed in Table 1.1.

The material is organized as follows. Background information needed for later chapters is in

Chapter 2. Chapter 3 gives a survey of transfer learning on a wide scale, covering both inductive

learning and reinforcement learning. Chapters 4, 5, and 6 present my original research. Conclu-

sions and suggestions for future research are in Chapter 7. The Appendices contain additional

information set aside from the chapters for the purposes of readability.

The first chapter of original research, Chapter 4, presents two algorithms foradvice-based

transfer. They express source-task knowledge as advice for the target-task learner, which uses an

advice-taking RL algorithm. This approach can produce faster learning in the target task.

The second chapter of original research, Chapter 5, presentstwo algorithms formacro-operator

transfer. They express source-task knowledge with relational finite-state machines, which the

target-task learner uses to demonstrate good behavior. This approach can produce high initial

performance in the target task.
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Table 1.1: A list of major algorithms contributed by this thesis.

Transfer Algorithm 1: Policy Transfer via Advice Table 4.1
Transfer Algorithm 2: Skill Transfer via Advice Table 4.3
Transfer Algorithm 3: Single-Macro Transfer via Demonstration Table 5.1
Transfer Algorithm 4: Multiple-Macro Transfer via Demonstration Table 5.7
Transfer Algorithm 5: MLNQ-Function Transfer Table 6.1
Transfer Algorithm 6: MLN Policy Transfer Table 6.5

The third chapter of original research, Chapter 6, presents two algorithms fortransfer via

Markov Logic Networks. They express source-task knowledge with a statistical-relational model,

which the target-task learner uses to evaluate actions. This approach also can produce high initial

performance in the target task. I also show that Markov LogicNetworks can improve performance

in the source task from which they are learned.

I evaluate all of these transfer algorithms experimentallyin a complex reinforcement-learning

domain: RoboCup simulated soccer [59]. RoboCup is a much more complex domain than many

typical testbeds for RL, which include maze worlds, games, and simple control problems such

as balancing poles and accelerating cars up hills. Stone andSutton [81] introduced RoboCup as a

challenging RL domain due to its large, continuous state space and nondeterministic action effects.

This complexity also makes it a challenging domain for transfer, which is important for realistic

evaluation of my proposed methods.
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Chapter 2

Background

This chapter provides background information that lays theframework for the rest of the dis-

sertation. Section 2.1 reviews reinforcement learning (RL) and introduces the RL domain and the

RL algorithm I use in experiments. Section 2.2 explains the way I report results and the statistical

methods I use to compare algorithms. Section 2.3 reviews inductive logic programming, a method

of learning relational concepts that I use extensively for relational transfer. Section 2.4 reviews

Markov Logic Networks, which I use in several transfer approaches as a more detailed way to

represent relational concepts.

2.1 Reinforcement Learning

In reinforcement learning [87], an agent operates in an episodic sequential-control environ-

ment. It senses thestateof the environment and performsactionsthat change the state and also

trigger rewards. Its objective is to learn apolicy for acting in order to maximize its cumulative

reward during an episode. This involves solving a temporal credit-assignment problem, since an

entire sequence of actions may be responsible for a single immediate reward.

A typical RL agent behaves according to the diagram in Figure2.1. At time stept, it observes

the current statest and consults its current policyπ to choose an action,π(st) = at. After taking

the action, it receives a rewardrt and observes the new statest+1, and it uses that information to

update its policy before repeating the cycle. Often RL consists of a sequence ofepisodes, which

end whenever the agent reaches one of a set of ending states.
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Environment

Agent

s0 a0 r0 s1 a1 r1… … time

Figure 2.1: A reinforcement learning agent interacts with its environment: it receives information about its
state (s), chooses an action to take (a), receives a reward (r) and a new state, learns from that
information, and so on.

Formally, a reinforcement learning domain has two underlying functions that determine imme-

diate rewards and state transitions. The reward functionr(s, a) gives the reward for taking action

a in states, and the transition functionδ(s, a) gives the next state the agent enters after taking

actiona in states. If these functions are known, the optimal policyπ⋆ can be calculated directly

by maximizing thevalue functionat every state. The value functionVπ(s) gives the discounted

cumulative reward achieved by policyπ starting in states:

Vπ(st) = rt + γrt+1 + γ2rt+2 + ... (2.1)

The discount factorγ ∈ [0, 1]. Settingγ < 1 gives later rewards less impact on the value function

than earlier rewards, which may be desirable for tasks without fixed lengths.

During learning, the agent must balance betweenexploitingthe current policy (acting in areas

that it knows to have high rewards) andexploringnew areas to find higher rewards. A common

solution is theǫ-greedy method, in which the agent takes random exploratoryactions a small

fraction of the time (ǫ << 1), but usually takes the action recommended by the current policy.

Often the reward and transition functions are not known, andtherefore the optimal policy

cannot be calculated directly. In this situation, one appropriate RL technique isQ-learning [110],

which involves learning aQ-function instead of a value function. TheQ-functionQ(s, a) estimates

the discounted cumulative reward starting in states and taking actiona and following the current

policy thereafter. Given the optimalQ-function, the optimal policy is to take the highest-valued

action,argmaxaQ(st, a), at each step.
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RL agents in deterministic worlds can begin with an inaccurate Q-function and recursively

update it after each step:

Q(st, at)←− rt + γ maxa Q(st+1, a) (2.2)

Thus the current estimate of aQ-value on the right is used to produce a new estimate on the left.

Under certain conditions,Q-learning is guaranteed to converge to an accurateQ-function [110].

Even when these conditions are violated, the method can still produce successful learning in prac-

tice.

In the SARSA variant ofQ-learning, the new estimate uses the actualat+1 instead of thea with

the highestQ-value; this takes exploration steps into account during updates. In non-deterministic

worlds, a learning rateα ∈ (0, 1] is used to form a weighted average between the old estimate and

the new one; this allows theQ-function to converge despite non-deterministic effects.With these

two changes, the update equation becomes:

Q(st, at)←− (1− α) Q(st, at) + α (rt + γ Q(st+1, at+1)) (2.3)

While these equations give update rules that look just one step ahead, tost+1, it is also possible

to perform updates over multiple steps. In temporal-difference learning [86], agents can combine

estimates over multiple lookahead distances.

When there are small finite numbers of states and actions, theQ-function can be represented

in tabular form. However, some RL domains have states that are described by very large feature

spaces, or even infinite ones due to continuous-valued features, making a tabular representation

infeasible. A solution is to use a function approximator to represent theQ-function (e.g., a neural

network). Function approximation has the additional benefit of providing generalization across

states; that is, changes to theQ-value of one state affect theQ-values of similar states, which can

speed up learning.
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2.1.1 Implementing RL with Support Vector Regression

For experiments in this thesis, I use a form ofQ-learning called SARSA(λ), which is the

SARSA form of temporal-difference learning. The algorithmI use is RL via support-vector re-

gression [48] (RL-SVR). It represents the state with a set ofnumeric features and approximates

the Q-function for each action with a weighted linear sum of thosefeatures. It finds the feature

weights by solving a linear optimization problem, minimizing the following quantity:

ModelSize+ C × DataMisfit

HereModelSizeis the sum of the absolute values of the feature weights, andDataMisfit is the

disagreement between the learned function’s outputs and the training-example outputs (i.e., the

sum of the absolute values of the differences for all examples). The numeric parameterC specifies

the relative importance of minimizing disagreement with the data versus finding a simple model.

Most Q-learning algorithms make incremental updates to theQ-functions after each step the

agent takes. However, completely re-solving the above optimization problem after each data point

would be too computationally intensive. Instead, agents perform batches of 25 full episodes at a

time and re-solve the optimization problem after each batch.

Formally, for each action, the RL-SVR algorithm finds an optimal weight vectorw that has

one weight for each feature in the feature vectorx. The expectedQ-value of taking an action from

the state described by vectorx is wx + b, whereb is a scalar offset. Agents follow theǫ-greedy

exploration method, taking the highest-valued action in all but a small set of random steps.

To compute the weight vector for an action, the RL-SVR algorithm finds the subset of training

examples in which that action was taken and places those feature vectors into rows of a data matrix

A. WhenA becomes too large for efficient solving, it begins to discardepisodes randomly; the

probability of discarding an episode increases with the ageof the episode. Using the current model

and the actual rewards received in the examples, it computesQ-value estimates and places them

into an output vectory. The optimal weight vector is then described by Equation 2.4.

Aw + b−→e = y (2.4)
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Here−→e denotes a vector of ones. The matrixA contains 75% exploitation examples, in which

the action is the one recommended by the current policy, and 25% exploration examples, in which

the action is chosen randomly. The purpose of including the exploration examples is to ensure

that bad moves are not forgotten. When there are not enough exploration examples, the RL-SVR

algorithm creates synthetic ones by randomly choosing exploitation steps and using the current

model to score random actions for those steps.

In practice, it is preferable to have non-zero weights for only a few important features in order

to keep the model simple and avoid overfitting the training examples. Furthermore, an exact linear

solution may not exist for any given training set. The RL-SVRalgorithm therefore includesslack

variabless that allow inaccuracies on some examples, and a penalty parameterC for trading off

these inaccuracies with the complexity of the solution. Theresulting minimization problem is

min
(w,b,s)

||w||1 + ν|b|+ C||s||1

s.t. −s ≤ Aw + b−→e − y ≤ s.
(2.5)

where| · | denotes an absolute value,|| · ||1 denotes the one-norm (a sum of absolute values), and

ν is a penalty on the offset term. By solving this problem, the RL-SVR algorithm produces a

weight vectorw for each action that compromises between accuracy and simplicity. The tradeoff

parameterC decays exponentially over time so that solutions may be morecomplex later in the

learning process.

Several other parameters also decay exponentially over time: the temporal-difference param-

eterλ, so that earlier episodes combine more lookahead distancesthan later ones; the learning

rateα, so that earlier episodes tend to produce largerQ-value updates than later ones; and the

exploration rateǫ, so that agents explore less later in the learning process.

2.1.2 RoboCup: A Challenging Reinforcement Learning Domain

One motivating domain for transfer in reinforcement learning is RoboCup simulated soccer.

The RoboCup project [59] has the overall goal of producing robotic soccer teams that compete on

the human level, but it also has a software simulator for research purposes. Stone and Sutton [81]
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KeepAway BreakAway MoveDownfield

Figure 2.2: Snapshots of RoboCup soccer tasks. In KeepAway, one team passes the ball to prevent the other
team from taking possession of it. In BreakAway, one team attempts to score a goal against
another team. In Movedownfield, one team attempts to maneuveracross a line while another
team attempts to take possession of the ball.

introduced RoboCup as an RL domain that is challenging because of its large, continuous state

space and nondeterministic action effects.

Since the full game of soccer is quite complex, researchers have developed several smaller

games in the RoboCup domain (see Figure 2.2). These are inherently multi-agent games, but a

standard simplification is to have only one agent (the one in possession of the soccer ball) learning

at a time using a model built with data combined from all the players on its team.

The first RoboCup task isM -on-N KeepAway [81], in which the objective of theM reinforce-

ment learners calledkeepersis to keep the ball away fromN hand-coded players calledtakers.

The keeper with the ball may choose either to hold it or to passit to a teammate. Keepers without

the ball follow a hand-coded strategy to receive passes. Thegame ends when an opponent takes

the ball or when the ball goes out of bounds. The learners receive a +1 reward for each time step

their team keeps the ball. I have also developed a version of KeepAway in which move actions are

allowed [103], but I use the standard version in this thesis.

The KeepAway state representation was designed by Stone andSutton [81]. Appendix A lists

all the features and actions. The keepers are ordered by their current distance to the learnerk0, as

are the takers.

A second RoboCup task isM -on-N MoveDownfield, where the objective of theM reinforce-

ment learners calledattackersis to move across a line on the opposing team’s side of the fieldwhile

maintaining possession of the ball. The attacker with the ball may choose to pass to a teammate or
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to move ahead, away, left, or right with respect to the opponent’s goal. Attackers without the ball

follow a hand-coded strategy to receive passes. The game ends when they cross the line, when an

opponent takes the ball, when the ball goes out of bounds, or after a time limit of 25 seconds. The

learners receive symmetrical positive and negative rewards for horizontal movement forward and

backward.

The MoveDownfield features and actions are also listed in Appendix A. The attackers are

ordered by their current distance to the learnera0, as are the defenders.

A third RoboCup task isM -on-N BreakAway, where the objective of theM attackers is to

score a goal againstN − 1 hand-codeddefendersand a hand-codedgoalie. The attacker with the

ball may choose to pass to a teammate, to move ahead, away, left, or right with respect to the

opponent’s goal, or to shoot at the left, right, or center part of the goal. Attackers without the ball

follow a hand-coded strategy to receive passes. The game ends when they score a goal, when an

opponent takes the ball, when the ball goes out of bounds, or after a time limit of 10 seconds. The

learners receive a +1 reward if they score a goal, and zero reward otherwise.

The BreakAway features and actions are also listed in Appendix A. The attackers are ordered

by their current distance to the learnera0, as are the non-goalie defenders.

Stone and Sutton [81] found that learning in KeepAway is verydifficult with only the continu-

ous features listed. They proposetiling to overcome this difficulty. Tiling discretizes each feature

into intervals, each of which is associated with a Boolean feature. For example, the tile denoted

by distBetween(a0, a1)[10,20] takes value1 whena1 is between 10 and 20 units away froma0 and

0 otherwise. I follow this approach and add to the feature space 32 tiles per continuous feature in

all of the RoboCup tasks.

Some parameters in RL-SVR, including many that decay exponentially, need to be set appro-

priately for the domain. I use the following settings for RoboCup tasks. The temporal-difference

parameterλ = exp(−age/100) where theage of an episode is the number of episodes the learner

trained on before that episode. The learning rateα has an initial value of0.5 and a half-life of 1000

episodes, and the exploration rateǫ has an initial value of0.025 and a half-life of 2500 episodes.
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The offset penaltyν = 100, and the complexity penaltyC has an initial value of1000 with a half-

life of 2500 games. I tuned these values for RL-SVR, and I use the tuned settings for the transfer

algorithms in this thesis.

The three RoboCup games have substantial differences in features, actions, and rewards. The

goal, goalie, and shoot actions exist in BreakAway but not inthe other two tasks. The move actions

do not exist in KeepAway but do in the other two tasks. Rewardsin KeepAway and MoveDownfield

occur for incremental progress, but in BreakAway the rewardis more sparse. These differences

mean the solutions to the tasks may be quite different. However, some knowledge should clearly

be transferable between them, since they share many features and some actions, such as thepass

action. Furthermore, since these are difficult RL tasks, speeding up learning through transfer would

be desirable.

2.2 Learning Curves and Statistical Comparisons

The performance of a reinforcement learner is typically illustrated with alearning curve. A

reasonable learning curve displays increased performance(on they-axis) as training progresses

(on thex-axis). In this thesis, the figures for experimental resultscontain several learning curves:

one for RL-SVR, and one for each transfer algorithm being compared.

I use a consistent methodology to display these curves. Because the RoboCup domain has

high variance across RL runs, each curve is an average of 25 separate runs. Furthermore, because

RoboCup games have high variance across batches within a run,each point on a curve is an average

over the last ten batches (250 games). These two kinds of averaging smooth the curves to facilitate

visual and statistical comparisons.

For transfer experiments, there is an additional source of variance: the source run used for

transfer. To account for differences across source runs, I use five independent source-task runs,

and from each of these, I do five target-task runs, producing the total of 25 runs. RL-SVR curves

are simply 25 independent runs.

For all experiments, thex-axis shows the number of training games in the target task, which

starts at 0 and ends at 3000 for RoboCup games; 3000 games is just long enough for all the
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RoboCup games to reach an asymptote. They-axis shows an appropriate measure of performance

in the target task, which depends on the game. In BreakAway, it is the probability that the agents

will score a goal in a game. In MoveDownfield, it is the averagenet distance traveled towards the

right edge during a game. In KeepAway, it is the average length of a game before the opponents

take possession of the ball.

I do not show any information about source-task learning when reporting experimental results

for transfer algorithms. Source tasks are always learned with RL-SVR for 3000 games. I re-use

source runs for all transfer algorithms; for example, in allexperiments that involve transfer from

2-on-1 BreakAway, I use the same five 2-on-1 BreakAway sourceruns.

The learning-curve figures can give visual insight into the question of whether one transfer al-

gorithm is better than another. Qualitatively speaking, ifcurveA is above curveB, then algorithm

A is better. However, there are some cases where curveA is above curveB at the beginning but

below it further down thex-axis. Qualitative conclusions may still be possible in cases like these if

one has a preference for earlier or later performance. If not, a single performance measure is use-

ful to make a quantitative comparison between algorithms. Even if curveA is consistently above

curve B, a quantitative comparison is needed to evaluate whether the difference is statistically

significant.

The measure I use to express the total performance of a run is the area under its curve, which

is approximated by a sum of columns:

area =
120
∑

i=1

25× yi (2.6)

where each column heightyi is they-value at batchi, the column width 25 is the constant size of

each batch, and there are 120 batches for a total of 3000 games.

To determine whether the area for runs in groupA is significantly different from the area for

runs in groupB, I use a randomization test [13] (see Table 2.1). The test starts by calculating

the actualt-statistic for the group of runs inA versus the group of runs inB. Then it shuffles all

the runs together, chooses two new groups from them randomlywith replacement, and measures a

newt-statistic. It repeats this randomization step many times (I user = 100, 000) to produce a list
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Table 2.1: A randomization test to judge whether one group of numbers issignificantly higher than another,
based on Cohen [13].

Input: array of numbersA = (a1, a2, ..., an) // In my experiments, these are areas under curves in group A
array of numbersB = (b1, b2, ..., bn) // In my experiments, these are areas under curves in group B

Let Ā = average(a1, a2, ..., an) andσ2
A = variance(a1, a2, ..., an)

Let B̄ = average(b1, b2, ..., bn) andσ2
B = variance(b1, b2, ..., bn)

Let t = Ā−B̄
√

2

n

r

σ2
A

+σ2
B

2

// The actualt-statistic

Let T = ∅ // The eventual set ofr randomizedt-statistics
For i = 0 to r

ShuffleA andB randomly intoAi andBi

CalculateĀi, B̄i, σ2
Ai

, σ2
Bi

Calculateti with thet-statistic equation above
T ← T ∪ ti

If t < 0 let p be the fraction ofti ∈ T more negative thant
If t > 0 let p be the fraction ofti ∈ T more positive thant
If p < 0.05 then the difference betweenA andB is significant

of randomizedt-statistics. Finally it estimates ap-value: the proportion of randomizedt-statistics

that have larger magnitude than the actual one. This is illustrated in Figure 2.3.

The idea behind this test is as follows. Thet-statistic is a measure of how different two groups

are. If A andB are truly different, mixing them randomly will not maintainthat difference, and

the great majority of the randomizedt-statistics will have lower magnitude than the actual one.

On the other hand, ifA andB are not very different, mixing them will have less of an effect, and

the proportion of randomizedt-statistics that exceed the actual one will be higher. As thep-value

becomes higher, one becomes less confident thatA andB are significantly different. Convention

dictates that one can conclude the difference betweenA andB is significant whenp < 0.05.

To determine how different the areas forA andB are, I use another randomization test (see

Table 2.2) that calculates a confidence interval for the difference between the areas [13]. This

test randomly resamples runs fromA with replacement, and likewiseB, calculates the average

areas for the new groups, and finds the new difference. It repeats this randomization step many

times (I user = 100, 000) to produce a list of resampled differences. Finally it estimates a 95%
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Table 2.2: A randomization test to estimate a 95% confidence interval forthe difference between two
groups of numbers, based on Cohen [13].

Input: array of numbersA = (a1, a2, ..., an) // In my experiments, these are areas under curves in group A
array of numbersB = (b1, b2, ..., bn) // In my experiments, these are areas under curves in group B

Let D = ∅ // The eventual set ofr resampled differences̄A− B̄

For i = 0 to r

ResampleA randomly with replacement to getAi

ResampleB randomly with replacement to getBi

Let Āi = average(a1, a2, ..., an)
Let B̄i = average(b1, b2, ..., bn)
Let di = Āi − B̄i

D ← D ∪ di

SortD in increasing order
Let lower be the2.5th percentile ofD
Let upper be the97.5th percentile ofD
Return interval[lower, upper]

confidence interval: the lower bound is the2.5th percentile of the list, and the upper bound is the

97.5th percentile. This is also illustrated in Figure 2.3.

While a confidence interval is not particularly meaningful inisolation, it can be useful to com-

pare intervals across different experiments. For example,if the interval between algorithmA and

RL-SVR is [5, 10] and the interval between algorithmB and RL-SVR is[50, 100], then theprac-

tical difference provided byB is greater than that provided byA, even if they both provide a

statisticaldifference.

For each comparison between an algorithmA and an algorithmB that I make in this disser-

tation, I report thep-value and the 95% confidence interval for area(A) - area(B). If p < 0.05,

I indicate that the difference between the algorithms is statistically significant, and I note which

algorithm won the comparison.
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Figure 2.3: Illustrations of the statistical tests in Tables 2.1 and 2.2. (a) The dots represent randomized
t-statistics for algorithmsA andB, and thep-value captures how many are more extreme than
the actualt. (b) The dots represent resampled differences between areasunder curvesA andB,
and the 95% confidence interval encompasses 95% of these values.

2.3 Inductive Logic Programming

Inductive logic programming (ILP) is a technique for learning classifiers in first-order logic [68].

Most of my transfer algorithms use ILP to extract knowledge from the source task. To make these

algorithms understandable, this section provides a brief overview of ILP.

2.3.1 What ILP Learns

An ILP algorithm learns a set of first-order clauses, which must usually be definite clauses. A

definite clause has ahead, which is a literal that evaluates totrue or falsebased on abody, which

is a conjunction of other literals. Literals describe relationships between objects in the world,

referring to objects either as constants (lower-case) or variables (upper-case). In Prolog notation,

the head and body are separated by the symbol :- denoting implication, and commas separate the

literals in the body, denoting conjunction.

As an example, consider applying ILP to learn a clause describing when an object in an agent’s

world is at the bottom of a stack of objects. The world always contains the objectfloor, and may

contain any number of additional objects. The configurationof the world is described by predicates

stackedOn(Obj1, Obj2), whereObj1andObj2are variables that can be instantiated by the objects,

such as:

stackedOn(chair, floor).
stackedOn(desk, floor).
stackedOn(book, desk).
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Suppose the ILP algorithm needs to learn a clause with the head isBottomOfStack(Obj)that is

true whenObj = deskbut false whenObj∈ {floor, chair, book}. Given those positive and negative

examples, it might learn the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor),
stackedOn(OtherObj, Obj).

That is, an object is at the bottom of the stack if it is on the floor and there exists another

object on top of it. On its way to discovering the correct clause, the ILP algorithm would probably

evaluate the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor).

This clause correctly classifies 3 of the 4 objects in the world, but incorrectly classifieschair

as positive. In domains with noise, a partially correct clause like this might be optimal, though in

this case the concept can be learned exactly.

Note that the clause must be first-order to describe the concept exactly: it must include the

variablesObj andOtherObj. First-order logic can posit the existence of an object and then refer

to properties of that object. ILP is one of few classificationalgorithms that use this powerful and

natural type of reasoning. Most machine learning algorithms use the equivalent ofpropositional

logic, which does not allow variables.

In many domains, the correct concept is disjunctive, meaning that multiple clauses are nec-

essary to describe the concept fully. ILP algorithms therefore typically attempt to learn a set of

clauses rather than just one. The entire set of clauses is called a theory.

2.3.2 How ILP Learns

There are several types of algorithms for producing a set of first-order clauses. This section

focuses on the Aleph system [80], which I use in my algorithms.

Aleph constructs a ruleset through sequential covering. Itperforms a search for the rule that

best classifies the positive and negative examples (according to a user-specified scoring function),
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adds that rule to the theory, optionally removes the positive examples covered by that rule, and

repeats the process on the remaining examples.

The search for a rule is essentially a search for a good set of literals. Literals may either be

grounded, likestackedOn(chair, floor), or variablized, likestackedOn(Obj, floor). Legal literals

must be defined for Aleph before the search, and are of course task-specific. Aleph also takes

a parameter limiting the maximum clause length, which impacts the running time of the search.

In my experiments, I use a maximum clause length of seven literals, which I found to produce

reasonable running times given the RoboCup dataset sizes andto allow sufficiently expressive

rules.

The default procedure Aleph uses in each iteration is a heuristic search. It randomly chooses a

positive example as theseedfor its search for a single rule. Then it lists all the literals in the world

that are true for the seed. This list is called thebottom clause, and it is typically too specific, since it

describes a single example in great detail. Aleph conducts asearch to find a more general clause (a

subset of the literals in the bottom clause) that maximizes the scoring function. The search process

is top-down, meaning that it begins with an empty rule and adds literals one by one to maximize a

scoring function (see Figure 2.4).

A second Aleph procedure that I also use israndomized rapid restart[113]. This also uses

a seed example and generates a bottom clause, but it begins byrandomly drawing a legal clause

of lengthN from the bottom clause. It then makes local moves by adding and removing literals

to maximize a scoring function. It performsM local moves for each ofK random restarts. This

method often finds better candidate clauses than the heuristic search does.

The rule-scoring function I use is theF measure, which is based on the two basic measures of

precisionandrecall. The precision of a rule is the fraction of examples it calls positive that are

truly positive, and the recall is the fraction of truly positive examples that it correctly calls positive.

TheF measure combines the two in a harmonic mean:

F (β) =
(1 + β2)× Precision×Recall

β2 × Precision + Recall
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IF         true
THEN   p

IF         q
THEN   p

IF         r
THEN   p

…

IF         r, q
THEN   p

IF         r, s
THEN   p

…

…

… …

Figure 2.4: An illustration of a top-down ILP search for a clause to express the conceptp using candidate
literalsq, r, s, .... The body of the clause starts empty. The first step considers each literal and
chooses the best (herer) to add. It then considers adding another and chooses the best (hereq),
and so on. Literals are shown here without arguments for simplicity, but in a real ILP search
literals might have both grounded and variable arguments.

By default I useβ = 1, in which precision and recall are weighted equally. However, in some

algorithms I see fit to weight them unequally;β > 1 puts more weight on recall, and0 < β < 1

puts more weight on precision.

Aleph produces a theory for each concept, but I do not use these theories directly in my al-

gorithms. Instead, I use a system called Gleaner [35] to create an ensemble of clauses. Gleaner

divides the recall range into intervals[0, 0.1], [0.1, 0.2], etc; it examines the clauses that Aleph en-

counters during its search and saves those with the highest precision in each recall interval. This

method produces a greater diversity of potential clauses than the Aleph theory does.

When a single rule is needed, I use only the best clause that Gleaner saves. When multiple rules

are needed, I select a final ruleset from the Gleaner clauses that attempts to maximize an overall

F measure. This produces a higher-quality ruleset for my purposes, and the procedure is further

described in later sections.

2.4 Markov Logic Networks

The Markov Logic Network (MLN) is a model developed by Richardson and Domingos [70]

that combines first-order logic and probability. It expresses concepts with first-order rules, as ILP
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does, but unlike ILP it puts weights on the rules to indicate how important they are. While ILP

rulesets can only predict a concept to be true or false, an MLNcan estimate the probability that a

concept is true, by comparing the total weight of satisfied rules to the total weight of violated rules.

This type of probabilistic logic therefore conveys more information than pure logic. It is also less

brittle, since world states that violate some rules are not impossible, just less probable.

Formally, a Markov Logic Network is a set of first-order logicformulasF , with associated

real-valued weightsW , that provides a template for a Markov network. The network contains a

binary node for each possible grounding of each predicate ofeach formula inF , with groundings

determined by a set of constantsC. Edges exist between nodes if they appear together in a possible

grounding of a formula. Thus the graph contains a clique for each possible grounding of each

formula inF .

The classic example from Richardson and Domingos [70] follows. Suppose the formulas are:

∀y Smokes(y)⇒ Cancer(y)

∀y, z Friends(y, z)⇒ (Smokes(y)⇔ Smokes(z))

These rules assert that smoking leads to cancer and that friends have similar smoking habits.

These are both good examples of MLN formulas because they areoften true, but not always; thus

they will have finite weights (not shown). Given constantsAnnaandBob that may be substituted

for the variablesy andz, this MLN produces the ground Markov network in Figure 2.5. (Note that

the convention for capitalization is opposite here from in ILP; variables here are lower-case and

constants are upper-case.)

Let X represent all the nodes in this example, and letX = x indicate that among the possible

worlds (the true/false settings of those nodes),x is the actual one. The probability distribution

represented by the Markov network is:

P (X = x) =
1

Z
exp

∑

i∈F

wini(x) (2.7)

HereZ is a normalizing constant,wi is the weight of formulai ∈ F , andni(x) is the number

of true groundings of formulai in the world x. Based on this equation, one can calculate the
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Cancer(Anna)

Smokes(Anna)Friends(Anna,Anna)

Friends(Bob,Anna)

Smokes(Bob)

Friends(Anna,Bob)

Cancer(Bob)

Friends(Bob,Bob)

Figure 2.5: The ground Markov network produced by the MLN described in thissection. This example
and this image come from Richardson and Domingos [70]. Each clique in this network has a
weight (not shown) derived from the formula weights.

probability of any node in the network givenevidenceabout the truth values of some other nodes.

This network inference problem is typically solved by an approximate-inference algorithm called

MC-SAT [21] because solving it exactly is usually computationally intractable. However, in my

experiments, the arrangement of the evidence makes an exactsolution feasible, which I explain

later.

Given a set of positive and negative examples of worlds, the formula weights can be learned

rather than specified manually. There are several algorithms for weight learning; the current state-

of-the-art is a method calledpreconditioned scaled conjugate gradient[46]. This is the default

algorithm in the Alchemy software package [40], which I use for my experiments. Alchemy also

provides an algorithm for structure learning (i.e. learning the formulas), which I do not use since I

already have methods for learning rulesets via ILP.
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Chapter 3

Survey of Research on Transfer Learning

This chapter provides an introduction to the goals, settings, and challenges of transfer learning.

It surveys current research in this area, giving an overviewof the state of the art and outlining the

open problems. The survey covers transfer in both inductivelearning and reinforcement learning,

and discusses the issues of negative transfer and task mapping in depth. There are no original

research contributions in this chapter, but my categorization of transfer methods is novel. This

chapter is based on published work [101].

3.1 Transfer in General

The transfer of knowledge from one task to another is a desirable property in machine learning.

Our ability as humans to transfer knowledge allows us to learn new tasks quickly by taking advan-

tage of relationships between tasks. While many machine-learning algorithms learn each new task

from scratch, there are alsotransfer-learningalgorithms that can improve learning in atarget task

using knowledge from a previously learnedsource task.

A typical machine-learning problem can be characterized as:

GIVEN Training data for taskT

DO Learn taskT

A typical transfer-learning problem can be characterized as:

GIVEN Training data for taskT AND knowledge from related task(s)S

DO Learn taskT
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Here S is one or more source tasks(S1, S2, ...). This broad definition of transfer learning

allows any type of machine-learning algorithm for learningthe target taskT . It also allows for

the knowledge from the source tasksS to take any form. Figure 1.1 has already illustrated this

problem formulation.

Transfer methods tend to be highly dependent on the algorithm used to learn the target task,

and many transfer algorithms are simply extensions of traditional learning algorithms. Others are

entirely new algorithms based on enabling transfer learning.

Some work in transfer learning is in the context of inductivelearning, and involves extending

well-known classification and inference algorithms such asneural networks, Bayesian networks,

and Markov Logic Networks. Another major area is transfer inthe context of reinforcement learn-

ing, which involves extending algorithms such as Q-learning and policy search. This chapter sur-

veys these areas separately in Sections 3.2 and 3.3.

The goal of transfer learning is to improve learning in the target task by leveraging knowledge

from the source task. There are three common measures by which transfer might improve learning.

First is the initial performance achievable in the target task using only the transferred knowledge,

before any further learning is done, compared to the initialperformance of an ignorant agent.

Second is the amount of time it takes to fully learn the targettask given the transferred knowledge

compared to the amount of time to learn it from scratch. Thirdis the final performance level

achievable in the target task compared to the final level without transfer. Figure 3.1 illustrates

these three measures.

If a transfer method actually decreases performance, thennegative transferhas occurred. One

of the major challenges in developing transfer methods is toproduce positive transfer between

appropriately related tasks while avoiding negative transfer between tasks that are less related.

Section 3.4 discusses approaches for avoiding negative transfer.

When an agent applies knowledge from one task in another, it isoften necessary to map the

characteristics of one task onto those of the other to specify correspondences. In much of the work

on transfer learning, a human provides thismapping, but some work investigates ways to perform

mapping automatically. Section 3.5 discusses work in this area.
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Figure 3.1: A standard learning curve displays increased performance as training progresses. With transfer,
the curve may start higher, increase faster, or reach a higher asymptote. Any of these properties
could be desired outcomes of transfer learning.

Finally, a small set of theoretical studies about transfer learning is presented in Section 3.6. This

work addresses problems like defining task relatedness and setting bounds on transfer performance

and efficiency.

I make a distinction between transfer learning andmulti-task learning[11], in which several

tasks are learned simultaneously (see Figure 3.2). Multi-task learning is closely related to transfer,

but it does not involve designated source and target tasks; instead the learning agent receives infor-

mation about several tasks at once. In transfer learning, the agent knows nothing about a target task

(or even that there will be a target task) when it learns a source task. This is my own definition, not

a universally accepted one, but it is a useful distinction because multi-task learning approaches are

not always applicable to transfer learning.

3.2 Transfer in Inductive Learning

In an inductive learning task, the objective is to induce a predictive model from a set of training

examples [57]. Often the goal is classification, i.e. assigning class labels to examples. Examples of

classification systems are artificial neural networks [73] and symbolic rule-learners [68]. Another

type of inductive learning involves modeling probability distributions over interrelated variables,

usually with graphical models. Examples of these systems are Bayesian networks [38] and Markov

Logic Networks [70].
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Source 
Task

Target 
Task
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Task   
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Task   
3

Task   
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Transfer Learning Multi-task Learning

Figure 3.2: As I define transfer learning, the information flows in one direction only, from the source task
to the target task. In multi-task learning, information canflow freely among all tasks.

The predictive model constructed by an inductive learning algorithm should make accurate

predictions not just on the training examples, but also on future examples that come from the same

distribution. In order to produce a model with this generalization capability, a learning algorithm

must have aninductive bias[57] – a set of assumptions about the training data and the function

that produced it.

The bias of an algorithm determines thehypothesis spaceof possible models that it considers.

For example, the hypothesis space of the Naive Bayes model islimited by the assumption that

example characteristics are conditionally independent given the class of an example. The bias also

determines the algorithm’s search process through the hypothesis space, which controls the order in

which hypotheses are considered. For example, rule-learning algorithms typically construct rules

one constraint at a time, which reflects the assumption that constraints contribute significantly to

example coverage by themselves rather than in pairs or more.

Transfer in inductive learning typically works by allowingsource-task knowledge to affect the

target task’s inductive bias. It is usually concerned with improving the speed with which a model

is learned, or with improving its generalization capability. The next subsection discusses inductive

transfer in general, and the following ones elaborate on three specific and popular settings.

There is some related work that is not discussed here becauseit specifically addresses multi-

task learning. For example, Niculescu-Mizil and Caruana [58] learn Bayesian networks simultane-

ously for multiple related tasks by biasing learning towardsimilar structures for each task. While

this is clearly related to transfer learning, it is not directly applicable to the scenario in which a

target task is encountered after one or more source tasks have already been learned.
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Allowed Hypotheses

Inductive Learning

Search

Inductive Transfer

All Hypotheses

Allowed Hypotheses
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Figure 3.3: Inductive learning can be viewed as a directed search through a hypothesis space [57]. Inductive
transfer uses source-task knowledge to adjust the inductive bias, which could involve changing
the hypothesis space or the search steps.

3.2.1 Inductive Transfer

In inductive transfermethods, the target-task inductive bias is chosen or adjusted based on the

source-task knowledge (see Figure 3.3). The way this is donevaries depending on which inductive

learning algorithm is used to learn the source and target tasks. Some transfer methods narrow the

hypothesis space, limiting the possible models, or remove search steps from consideration. Other

methods broaden the space, allowing the search to discover more complex models, or add new

search steps.

Baxter [5] frames the transfer problem as that of choosing one hypothesis space from a family

of spaces. By solving a set of related source tasks in each hypothesis space of the family and

determining which one produces the best overall generalization error, he selects the most promising

space in the family for a target task.

Thrun and Mitchell [100] look at solving Boolean classification tasks in a lifelong-learning

framework, where an agent encounters a collection of related problems over its lifetime. They learn

each new task with a neural network, but they enhance the standard gradient-descent algorithm with

slope information acquired from previous tasks. This speeds up the search for network parameters

in a target task and biases it towards the parameters for previous tasks.

Silver at al. [77] use a single neural network to learn multiple tasks, using context inputs to

specify which task an example belongs to. This causes knowledge transfer between tasks through



27

shared parameters in the network. They show that this approach is effective for neural-network

learners but not for some other learners, such as decision trees and suppor-vector machines.

Mihalkova and Mooney [56] perform transfer between Markov Logic Network models. Given

a learned MLN for a source task, they learn an MLN for a relatedtarget task by starting with the

source-task one and diagnosing each formula, adjusting ones that are too general or too specific in

the target domain. The hypothesis space for the target task is therefore defined in relation to the

source-task MLN by the operators that generalize or specifyformulas.

Hlynsson [36] phrases transfer learning in classification as a minimum description length prob-

lem given source-task hypotheses and target-task data. That is, the chosen hypothesis for a new

task can use hypotheses for old tasks but stipulate exceptions for some data points in the new task.

This method aims for a tradeoff between accuracy and compactness in the new hypothesis.

Ben-David and Schuller [7] propose a transformation framework to determine how related

two Boolean classification tasks are. They define two tasks asrelated with respect to a class of

transformations if they are equivalent under that class– that is, if a series of transformations can

make one task look exactly like the other.

3.2.2 Bayesian Transfer

One common scenario for inductive transfer is in Bayesian learning methods. Bayesian learn-

ing involves modeling probability distributions and taking advantage of conditional independence

among variables to simplify the model. An additional aspectthat Bayesian models often have is

a prior distribution, which describes the assumptions one can make about a domainbefore seeing

any training data. Given the data, a Bayesian model makes predictions by combining it with the

prior distribution to produce aposterior distribution. A strong prior can significantly affect these

results (see Figure 3.4). This serves as a natural way for Bayesian learning methods to incorporate

prior knowledge – in the case of transfer learning, source-task knowledge.

Marx et al. [53] use a Bayesian transfer method for tasks solved by a logistic regression clas-

sifier. The usual prior for this classifier is a Gaussian distribution with a mean and variance set

through cross-validation. To perform transfer, they instead estimate the mean and variance by
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Figure 3.4: Bayesian learning uses a prior distribution to smooth the estimates from training data. Bayesian
transfer may provide a more informative prior from source-task knowledge.

averaging over several source tasks. Raina et al. [69] use a similar approach for multi-class classi-

fication by learning a multivariate Gaussian prior from several source tasks.

Dai et al. [15] apply a Bayesian transfer method to a Naive Bayes classifier. They set the

initial probability parameters based on a single source task, and revise them using target-task data.

They also provide some theoretical bounds on the predictionerror and convergence rate of their

algorithm.

3.2.3 Hierarchical Transfer

Another popular setting for transfer in inductive learningishierarchical transfer. In this setting,

solutions to simple tasks are combined or provided as tools to produce a solution to a more complex

task (see Figure 3.5). This can involve many tasks of varyingcomplexity, rather than just a single

source and target. The target task might use entire source-task solutions as parts of its own, or it

might use them in a more subtle way to improve learning.

Sutton and McCallum [84] begin with a sequential approach where the prediction for each task

is used as a feature when learning the next task. They then proceed to turn the problem into a

multi-task learning problem by combining all the models andapplying them jointly, which brings

their method outside our definition of transfer learning, but the initial sequential approach is an

example of hierarchical transfer.
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Figure 3.5: An example of a concept hierarchy that could be used for hierarchical transfer, in which so-
lutions from simple tasks are used to help learn a solution toa more complex task. Here the
simple tasks involve recognizing lines and curves in images, and the more complex tasks in-
volve recognizing surfaces, circles, and finally pipe shapes.

Stracuzzi [82] looks at the problem of choosing relevant source-task Boolean concepts from

a knowledge base to use while learning more complex concepts. He learns rules to express con-

cepts from a stream of examples, allowing existing conceptsto be used if they help to classify the

examples, and adds and removes dependencies between concepts in the knowledge base.

Taylor et al. [93] propose a transfer hierarchy that orders tasks by difficulty, so that an agent

can learn them in sequence via inductive transfer. By putting tasks in order of increasing difficulty,

they aim to make transfer more effective. This approach may be more applicable to the multi-task

learning scenario, since by our definition of transfer learning the agent may not be able to choose

the order in which it learns tasks, but it could be applied to help choose from an existing set of

source tasks.

3.2.4 Transfer with Missing Data or Class Labels

Inductive transfer can be viewed not only as a way to improve learning in a standard supervised-

learning task, but also as a way to offset the difficulties posed by tasks that involve semi-supervised

learning [115] or small datasets. That is, if there are smallamounts of data or class labels for a

task, treating it as a target task and performing inductive transfer from a related source task can

lead to more accurate models. These approaches therefore use source-task data to enhance target-

task data, despite the fact that the two datasets are assumedto come from different probability

distributions.



30

The Bayesian transfer methods of Dai et al. [15] and Raina et al. [69] are intended to compen-

sate for small amounts of target-task data. One of the benefits of Bayesian learning is the stability

that a prior distribution can provide in the absence of largedatasets. By estimating a prior from

related source tasks, these approaches can reduce the overfitting that would tend to occur with

limited data.

Dai et al. [16] address transfer learning in a boosting algorithm using large amounts of data

from a previous task to supplement small amounts of new data.Boosting is a technique for learn-

ing several weak classifiers and combining them to form a stronger classifier [31]. After each

classifier is learned, the examples are reweighted so that later classifiers focus more on examples

the previous ones misclassified. Dai et al. extend this principle by also weighting source-task ex-

amples according to their similarity to target-task examples. This allows the algorithm to leverage

source-task data that is applicable to the target task whilepaying less attention to data that appears

less useful.

Shi et al. [76] look at transfer learning in unsupervised andsemi-supervised settings. They

assume that a reasonably-sized dataset exists in the targettask, but it is largely unlabeled due to the

expense of having an expert assign labels. To address this problem they propose an active learning

approach, in which the target-task learner requests labelsfor examples only when necessary. They

construct a classifier with labeled examples, including mostly source-task ones, and estimate the

confidence with which this classifer can label the unknown examples. When the confidence is too

low, they request an expert label.

3.3 Transfer in Reinforcement Learning

There are several categories of reinforcement learning algorithms, and transfer learning ap-

proaches vary between these categories. Some types of methods are only applicable when the

agent knows its environment model (the reward function and the state transition function). In

this case, dynamic programming can solve directly for the optimal policy without requiring any
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interaction with the environment. In most RL problems, however, the model is unknown.Model-

learning approaches use interaction with the environment to build anapproximation of the true

model.Model-freeapproaches learn to act without ever explicitly modeling the environment.

Temporal-differencemethods [86] operate by maintaining and iteratively updating value func-

tions to predict the rewards earned by actions. They begin with an inaccurate function and update

it based on interaction with the environment, propagating reward information back along action se-

quences. One popular method isQ-learning [110], which involves learning a functionQ(s, a) that

estimates the cumulative reward starting in states and taking actiona and following the current

policy thereafter. Given the optimalQ-function, the optimal policy is to take the action correspond-

ing toargmaxaQ(st, a). When there are small finite numbers of states and actions, theQ-function

can be represented explicitly as a table. In domains that have large or infinite state spaces, a func-

tion approximator such as a neural network or support-vector machine can be used to represent the

Q-function.

Policy-searchmethods, instead of maintaining a function upon which a policy is based, main-

tain and update a policy directly. They begin with an inaccurate policy and update it based on

interaction with the environment. Heuristic search and optimization through gradient descent are

among the approaches that can be used in policy search.

Transfer in RL is typically concerned with speeding up the learning process, since RL agents

can spend many episodes doing random exploration before acquiring a reasonableQ-function. I

divide RL transfer into five categories that represent progressively larger changes to existing RL

algorithms. The subsections below describe those categories and present examples from published

research.

3.3.1 Starting-Point Methods

Since all RL methods begin with an initial solution and then update it through experience,

one straightforward type of transfer in RL is to set the initial solution in a target task based on

knowledge from a source task (see Figure 3.6). Compared to therandom or zero setting that RL

algorithms usually use at first, thesestarting-point methodscan begin the RL process at a point
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Figure 3.6: Starting-point methods for RL transfer set the initial solution based on the source task, starting
at a higher performance level than the typical initial solution would. In this example, a Q-
function table is initialized to a source-task table, and the target-task performance begins at a
level that is only reached after some training when beginning with a typical all-zero table.

much closer to a good target-task solution. There are variations on how to use the source-task

knowledge to set the initial solution, but in general the RL algorithm in the target task is unchanged.

Taylor et al. [96] use a starting-point method for transfer in temporal-difference RL. To perform

transfer, they copy the final value function of the source task and use it as the initial one for

the target task. As many transfer approaches do, this requires a mapping of features and actions

between the tasks, and they provide a mapping based on their domain knowledge.

Tanaka and Yamamura [89] use a similar approach in temporal-difference learning without

function approximation, where value functions are simply represented by tables. This greater

simplicity allows them to combine knowledge from several source tasks: they initialize the value

table of the target task to the average of tables from severalprior tasks. Furthermore, they use the

standard deviations from prior tasks to determine priorities between temporal-difference backups.

Approaching temporal-difference RL as a batch problem instead of an incremental one allows

for different kinds of starting-point transfer methods. Inbatch RL, the agent interacts with the

environment for more than one step or episode at a time beforeupdating its solution. Lazaric et

al. [44] perform transfer in this setting by finding source-task samples that are similar to the target

task and adding them to the normal target-task samples in each batch, thus increasing the available

data early on. The early solutions are almost entirely basedon source-task knowledge, but the

impact decreases in later batches as more target-task data becomes available.
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Figure 3.7: Imitation methods for RL transfer follow the source-task policy during some steps of the target
task. The imitation steps may all occur at the beginning of thetarget task (a), or they may be
interspersed with steps that follow the developing target-task policy (b).

Moving away from temporal-difference RL, starting-point methods can take even more forms.

In a model-learning Bayesian RL algorithm, Wilson et al. [112] perform transfer by treating the

distribution of previous MDPs as a prior for the current MDP.In a policy-search genetic algo-

rithm, Taylor et al. [97] transfer a population of policies from a source task to serve as the initial

population for a target task.

3.3.2 Imitation Methods

Another class of RL transfer methods involves applying the source-task policy to choose some

actions while learning the target task. While they make no direct changes to the target-task solu-

tion the way that starting-point methods do, theseimitation methodsaffect the developing solution

by producing different function or policy updates. Comparedto the random exploration that RL

algorithms typically do, decisions based on a source-task policy can lead the agent more quickly

to promising areas of the environment. There are variationsin how the source-task policy is repre-

sented and in how heavily it is used in the target-task RL algorithm (see Figure 3.7).

One method is to follow a source-task policy only during exploration steps of the target task,

when the agent would otherwise be taking a random action. Madden and Howley [51] use this

approach in tabularQ-learning. They represent a source-task policy as a set of rules in propositional

logic and choose actions based on those rules during exploration steps.

Fernandez and Veloso [29] instead give the agent a three-waychoice between exploiting the

current target-task policy, exploiting a past policy, and exploring randomly. They introduce a
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second parameter, in addition to theǫ of ǫ-greedy exploration, to determine the probability of

making each choice.

I developed an imitation method calleddemonstration, in which the target-task agent follows

a source-task policy for a fixed number of initial episodes, and then reverts to normal RL [104].

In the early steps of the target task, the current policy can be so ill-formed that exploiting it is

no different than exploring randomly. This approach aims toavoid that initial uncertainty and to

generate enough data to create a reasonable target-task policy by the time the demonstration period

ends. My original research in Chapters 5 and 6 uses the demonstration method.

3.3.3 Hierarchical Methods

A third class of RL transfer includeshierarchical methods. These view the source as a subtask

of the target, and use the solution to the source as a buildingblock for learning the target. Methods

in this class have strong connections to the area of hierarchical RL, in which a complex task is

learned in pieces through division into a hierarchy of subtasks (see Figure 3.8).

An early approach of this type is to compose several source-task solutions to form a target-task

solution, as is done by Singh [78]. He addresses a scenario inwhich complex tasks are temporal

concatenations of simple ones, so that a target task can be solved by a composition of several

smaller solutions.

Mehta et al. [54] have a transfer method that works directly within the hierarchical RL frame-

work. They learn a task hierarchy by observing successful behavior in a source task, and then use

it to apply the MaxQ hierarchical RL algorithm [18] in the target task. This uses transfer to remove

the burden of designing a task hierarchy.

Other approaches operate within the framework ofoptions, which is a term for temporally-

extended actions in RL [65]. An option typically consists ofa starting condition, an ending condi-

tion, and an internal policy for choosing lower-level actions. An RL agent treats each option as an

additional action along with the original lower-level ones(see Figure 3.8).

In some scenarios it may be useful to have the entire source-task policy as an option in the

target task, as Croonenborghs et al. [14] do. They learn a relational decision tree to represent the
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Figure 3.8: (a) An example of a task hierarchy that could be used to train agents to play soccer via hier-
archical RL. Lower-level abilities like kicking a ball and running are needed for higher-level
abilities like passing and shooting, which could then be combined to learn to play soccer.
(b) The mid-level abilities represented as options alongside the low-level actions.

source-task policy and allow the target-task learner to execute it as an option. Another possibility

is to learn smaller options, either during or after the process of learning the source task, and offer

them to the target. Asadi and Huber [3] do this by finding frequently-visited states in the source

task to serve as ending conditions for options.

3.3.4 Alteration Methods

The next class of RL transfer methods involves altering the state space, action space, or reward

function of the target task based on source-task knowledge.Thesealteration methodshave some

overlap with option-based transfer, which also changes theaction space in the target task, but they

include a wide range of other approaches as well.

One way to alter the target-task state space is to simplify itthrough state abstraction. Walsh et

al. [107] do this by aggregating over comparable source-task states. They then use the aggregate

states to learn the target task, which reduces the complexity significantly.

There are also approaches that expand the target-task statespace instead of reducing it. Taylor

and Stone [94] do this by adding a new state variable in the target task. They learn a decision list

that represents the source-task policy and use its output asthe new state variable.
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While option-based transfer methods add to the target-task action space, there is also some

work in decreasing the action space. Sherstov and Stone [75]do this by evaluating in the source

task which of a large set of actions are most useful. They thenconsider only a smaller action

set in the target task, which decreases the complexity of thevalue function significantly and also

decreases the amount of exploration needed.

Reward shaping is a design technique in RL that aims to speed up learning by providing im-

mediate rewards that are more indicative of cumulative rewards. Usually it requires human effort,

as many aspects of RL task design do. Konidaris and Barto [41]do reward shaping automatically

through transfer. They learn to predict rewards in the source task and use this information to create

a shaped reward function in the target task.

3.3.5 New RL Algorithms

A final class of RL transfer methods consists of entirely new RL algorithms. Rather than mak-

ing small additions to an existing algorithm or making changes to the target task, these approaches

address transfer as an inherent part of RL. They incorporateprior knowledge as an intrinsic part of

the algorithm.

Price and Boutilier [67] propose a temporal-difference algorithm in which value functions are

influenced by observations of expert agents. They use a variant of the usual value-function update

calculation that includes an expert’s experience, weighted by the agent’s confidence in itself and in

the expert. They also perform extra backups at states the expert visits to focus attention on those

areas of the state space.

There are several algorithms for case-based RL that accomodate transfer. Sharma et al. [74]

propose one in whichQ-functions are estimated using a Gaussian kernel over stored cases in a

library. Cases are added to the library from both the source and target tasks when their distance

to their nearest neighbor is above a threshold. Taylor et al.[91] use source-task examples more

selectively in their case-based RL algorithm. They use target-task cases to make decisions when

there are enough, and only use source-task examples when insufficient target examples exist.
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Figure 3.9: A representation of how the degree of relatedness between the source and target tasks translates
to target-task performance when conducting transfer from the source task. With aggressive
approaches, there can be higher benefits at high degrees of relatedness, but there can also be
negative transfer at low levels. Safer approaches may limit negative transfer at the lower end,
but may also have fewer benefits at the higher end.

My original research in Chapter 4 uses an algorithm for advicetaking in RL that also falls into

this category.

3.4 Avoiding Negative Transfer

Given a target task, the effectiveness of any transfer method depends on the source task and

how it is related to the target. If the relationship is strongand the transfer method can take advan-

tage of it, the performance in the target task can significantly improve through transfer. However, if

the source task is not sufficiently related or if the relationship is not well leveraged by the transfer

method, the performance with many approaches may not only fail to improve – it may actually de-

crease. This section examines work on preventing transfer from negatively affecting performance.

Ideally, a transfer method would produce positive transferbetween appropriately related tasks

while avoiding negative transfer when the tasks are not a good match. In practice, these goals

are difficult to achieve simultaneously. Approaches that have safeguards to avoid negative transfer

often produce a smaller effect from positive transfer due totheir caution. Conversely, approaches

that transfer aggressively and produce large positive-transfer effects often have less protection

against negative transfer (see Figure 3.9).
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For example, consider the imitation methods for RL transfer. On one end of the range, an

agent imitates a source-task policy only during infrequentexploration steps, and on the other end

it demonstrates the source-task policy for a fixed number of initial episodes. The exploration

method is very cautious and therefore unlikely to produce negative transfer, but it is also unlikely

to produce large initial performance increases. The demonstration method is very aggressive; if

the source-task policy is a poor one for the target task, following it blindly will produce negative

transfer. However, when the source-task solution is a decent one for the target task, it can produce

some of the largest initial performance improvements of anymethod.

3.4.1 Rejecting Bad Information

One way of approaching negative transfer is to attempt to recognize and reject harmful source-

task knowledge while learning the target task. The goal in this approach is to minimize the impact

of bad information, so that the transfer performance is at least no worse than learning the target

task without transfer. At the extreme end, an agent might disregard the transferred knowledge

completely, but some methods also allow it to selectively reject parts and keep other parts.

Option-based transfer in reinforcement learning (e.g. Croonenborghs et al. [14]) is an example

of an approach that naturally incorporates the ability to reject bad information. Since options are

treated as additional actions, the agent can choose to use them or not to use them; inQ-learning, for

example, agents learnQ-values for options just as for native actions. If an option regularly produces

poor performance, itsQ-values will degrade and the agent will choose it less frequently. However,

if an option regularly leads to good results, itsQ-values will grow and the agent will choose it

more often. Option-based transfer can therefore provide a good balance between achieving positive

transfer and avoiding negative transfer.

The advice-taking algorithm that I use for algorithms in Chapter 4 is an approach that incor-

porates the ability to reject bad information. It is based onthe RL-SVR algorithm, which approx-

imates theQ-function with a support-vector machine, and it includes advice from the source task

as a soft constraint. Since theQ-function trades off between matching the agent’s experience and

matching the advice, the agent can learn to disregard advicethat disagrees with its experience.
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Figure 3.10: (a) One way to avoid negative transfer is to choose a good source task from which to transfer.
In this example, Task 2 is selected as being the most related.(b) Another way to avoid negative
transfer is to model the way source tasks are related to the target task and combine knowledge
from them with those relationships in mind.

Rosenstein et al. [71] present an approach for detecting negative transfer in naive Bayes clas-

sification tasks. They learn a hyperprior for both the sourceand target tasks, and the variance of

this hyperprior is proportional to the dissimilarity between the tasks. It may be possible to use a

method like this to decide whether to transfer at all, by setting an acceptable threshold of similarity.

3.4.2 Choosing a Source Task

There are more possibilities for avoiding negative transfer if there exists not just one source

task, but a set of candidate source tasks. In this case the problem becomes choosing the best source

task (see Figure 3.10). Transfer methods without much protection against negative transfer may

still be effective in this scenario, as long as the best source task is at least a decent match.

An example of this approach is the previously-mentioned transfer hierarchy of Taylor et al. [93],

who order tasks by difficulty. Appropriate source tasks are usually less difficult than the target task,

but not so much simpler that they contain little information. Given a task ordering, it may be pos-

sible to locate the position of the target task in the hierarchy and select a source task that is only

moderately less difficult.
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Talvitie and Singh [88] use a straightforward method of selecting a previous Markov decision

process to transfer. They run each candidate MDP in the target task for a fixed length of time

and order them by their performance. Then they select the best one and continue with it, only

proceeding down the list if the current MDP begins performing significantly worse than it origi-

nally appeared. This trial-and-error approach, though it may be costly in the aggregate number of

training episodes needed, is simple and widely applicable.

Kuhlmann and Stone [42] look at finding similar tasks when each task is specified in a formal

language. They construct a graph to represent the elements and rules of a task. This allows them

to find identical tasks by checking for graph isomorphism, and by creating minor variants of a

target-task graph, they can also search for similar tasks. If they find an isomorphic match, they

conduct value-function transfer.

Eaton and DesJardins [25] propose choosing from among candidate solutions to a source task

rather than from among candidate source tasks. Their setting is multi-resolution learning, where

a classification task is solved by an ensemble of models that vary in complexity. Low-resolution

models are simple and coarse, while higher-resolution models are more complex and detailed.

They reason that high-resolution models are less transferrable between tasks, and select a resolu-

tion below which to share models with a target task.

3.4.3 Modeling Task Similarity

Given multiple candidate source tasks, it may be beneficial to use several or all of them rather

than to choose just one (see Figure 3.10). Some approaches discussed in this chapter do this

naively, without evaluating how the source tasks are related to the target. However, there are some

approaches that explicitly model relationships between tasks and include this information in the

transfer method. This can lead to better use of source-task knowledge and decrease the risk of

negative transfer.

Carroll and Seppi [10] develop several similarity measures for reinforcement learning tasks,

comparing policies, value functions, and rewards. These are only measurable while the target task

is being learned, so their practical use in transfer scenarios is limited. However, they make the



41

relevant point that task similarity is intimately linked with a particular transfer method, and cannot

be evaluated independently.

Eaton et al. [26] construct a graph in which nodes represent source tasks and weighted arcs

represent a transferability metric. Given a new inductive learning task, they estimate parameters

by fitting the task into the graph and learning a function thattranslates graph locations to task

parameters. This method not only models the relationships between tasks explicitly, but also gives

an algorithm for the informed use of several source tasks in transfer learning.

Gao et al. [32] propose that task similarity can be a local measure rather than a global measure.

They estimate similarities in the neighborhood of each testexample individually. These local

consistency estimates become weights for the source tasks,and are used in a weighted ensemble

to classify the test example.

Ruckert and Kramer [72] look at inductive transfer via kernel methods. They learn a meta-

kernel that serves as a similarity function between tasks. Given this and a set of kernels that

perform well in source tasks, they perform numerical optimization to construct a kernel for a target

task. This approach determines the inductive bias in the target task (the kernel) by combining

information from several source tasks whose relationshipsto the target are known.

Zhang et al. [114] model task relatedness through shared latent variables. Each task in their

model includes some task-specific variables and some sharedvariables that provide common struc-

ture.

3.5 Automatically Mapping Tasks

An inherent aspect of transfer learning is recognizing the correspondences between tasks.

Knowledge from one task can only be applied to another if it isexpressed in a way that the

target-task learner understands. In some cases, the representations of the tasks are assumed to

be identical, or at least one is a subset of the other. Otherwise, amappingis needed to translate

between task representations (see Figure 3.11).

Many transfer approaches do not address the mapping problemdirectly and require that a

human provide this information, including the algorithms in this thesis. However, there are some



42

Property 1

…

Property 2

Property N

Source Task Target Task

Property 1

…

Property 2

Property 3

Property M

Figure 3.11: A mapping generally translates source-task properties into target-task properties. The num-
bers of properties may not be equal in the two tasks, and the mapping may not be one-to-one.
Properties include entries in a feature vector, objects in arelational world, RL actions, etc.

transfer approaches that do address the mapping problem. This section discusses some of this

work.

3.5.1 Equalizing Task Representations

For some transfer scenarios, it may be possible to avoid the mapping problem altogether by

ensuring that the source and target tasks have the same representation. If the language of the

source-task knowledge is identical to (or a subset of) the language of the target task, it can be

applied directly with no translation. Sometimes a domain can be constructed so that this occurs

naturally, or a common representation that equalizes the tasks can be found.

Relational learning is useful for creating domains that naturally produce common task repre-

sentations. First-order logic represents objects in a domain with symbolic variables, which can

allow abstraction that the more typical propositional feature vector cannot. Driessens et al. [24]

show how relational reinforcement learning can simplify transfer in RL.

Another framework for constructing a domain relationally is that of Konidaris and Barto [41],

who express knowledge in two different spaces. Inagent spacethe representation is constant

across tasks, while inproblem spaceit is task-dependent. They transfer agent-space knowledge

only because its common representation makes it straightforward to transfer.
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Pan et al. [62, 63] take a mathematical approach to finding a common representation for two

separate classification tasks. They use kernel methods to find a low-dimensional feature space

where the distributions of source and target data are similar, and project a source-task model into

this smaller space for transfer.

3.5.2 Trying Multiple Mappings

One straightforward way of solving the mapping problem is togenerate several possible map-

pings and allow the target-task agent to try them all. The candidate mappings can be an exhaustive

set, or they can be limited by constraints on what elements are permissible matches for other ele-

ments. Exhaustive sets may be computationally infeasible for large domains.

Taylor et al. [92] perform an exhaustive search of possible mappings in RL transfer. They

evaluate each candidate using a small number of episodes in the target task, and select the best

one to continue learning. Mihalkova et al. [55] limit their search for mappings in MLN transfer,

requiring that mapped predicates have matching arity and argument types. Under those constraints,

they conduct an exhaustive search to find the best mapping between networks.

Soni and Singh [79] not only limit the candidate mappings by considering object types, but also

avoid a separate evaluation of each mapping by using optionsin RL transfer. They generate a set

of possible mappings by connecting target-task objects to all source-task objects of the matching

type. With each mapping, they create an option from a source MDP. The options framework gives

an inherent way to compare multiple mappings while learninga target MDP without requiring

extra trial periods.

3.5.3 Mapping by Analogy

If the task representations must differ, and the scenario calls for choosing one mapping rather

than trying multiple candidates, then there are some methods that construct a mapping by anal-

ogy. These methods examine the characteristics of the source and target tasks and find elements

that correspond. For example, in reinforcement learning, actions that correspond produce similar

rewards and state changes, and objects that correspond are affected similarly by actions.
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Analogical structure mapping [28] is a generic procedure based on cognitive theories of anal-

ogy that finds corresponding elements. It assigns scores to local matches and searches for a

global match that maximizes the scores; permissible matches and scoring functions are domain-

dependent. Several transfer approaches use this frameworksolve the mapping problem. Klenk and

Forbus [39] apply it to solve physics problems that are written in a predicate-calculus language

by retrieving and forming analogies from worked solutions written in the same language. Liu and

Stone [45] apply it in reinforcement learning to find matching features and actions between tasks.

There are also some approaches that rely more on statisticalanalysis than on logical reasoning

to find matching elements. Taylor and Stone [95] learn mappings for RL tasks by running a small

number of target-task episodes and then training classifiers to characterize actions and objects. If

a classifier trained for one action predicts the results of another action well, then those actions

are mapped; likewise, if a classifier trained for one object predicts the behavior of another object

well, those objects are mapped. Wang and Mahadevan [108] translate datasets to low-dimensional

feature spaces using dimensionality reduction, and then perform a statistical shaping technique

called Procrustes analysis to align the feature spaces.

3.6 Theory of Transfer Learning

Most transfer methods are evaluated experimentally ratherthan theoretically, including the

algorithms in this thesis. The small amount of work on theoretical evaluation of transfer algorithms

focuses on highly restricted transfer scenarios where the relationships between the source and

target tasks are mathematically well-defined. For more complex tasks, such as reinforcement-

learning tasks, current research does not contain any theoretical analyses.

Baxter [4] uses the Probably Approximately Correct (PAC) framework to give bounds on the

number of source tasks and examples to learn an inductive bias for transfer between classification

tasks. The PAC framework ensures that with high probability, the learner will find an inductive

bias that produces a solution with low error in the target task. He also evaluates Bayesian transfer

in classification tasks, showing the inverse relationship between the amount of target-task data

needed and the number of source tasks and examples.
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Baxter [5] also shows that transfer learning can improve generalization in classification tasks.

He derives bounds on the generalization capability of a target-task solution given the number of

source tasks and examples in each task.

While most of the work cited in this chapter involves experimental evaluation, some also in-

cludes some theoretical analysis. For example, Dai et al. [16] provide some theoretical bounds in

their work on transfer via boosting. They derive bounds on the prediction error and convergence

rate of their algorithm.

Abernethy et al. [1] provide some theoretical results in thecontext of sequential problem-

solving with expert advice. Their goal is to learn a forecaster for sequential problems of multiple

tasks that performs well compared to the bestm experts, where the experts are assumed to perform

similarly on related tasks. They prove an exponential boundon the exact solution to this problem,

and they propose a probabilistic algorithm to solve it approximately.

Obozinski et al. [60] provide some theoretical results in the context of feature selection in

multitask learning. They use an optimization problem to assign weights to each feature in each

task. They show that an exact solution is computationally difficult, and propose a probabilistic

method to solve it approximately.

Ben-David and Schuller [7], instead of defining task relatedness through statistical distribu-

tions as Baxter does, propose a transformation framework todetermine how related two Boolean

classification tasks are. They define two tasks as related with respect to a class of transformations

if they are equivalent under that class; that is, if a series of transformations can make one task look

exactly like the other. They provide conditions under whichlearning related tasks concurrently

requires fewer examples than single-task learning.

Ando and Zhang [2] provide theoretical justification for using multiple source tasks in transfer

learning. They learn predictors for multiple related source tasks and analyze them to find common

structures, which they then use in a target task. They prove that using more source tasks leads to

better estimation of the shared hypothesis space for the tasks.
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3.7 Recap of Contributions

At this point, I recap my contributions to the field of transfer learning, and situate them within

the categories provided by this chapter. I focus on transferin reinforcement learning, so my algo-

rithms belong primarily to Section 3.3.

My transfer algorithms 3, 4, 5, and 6 are imitation methods, belonging to Section 3.3.2. They

involve representing the source-task policy in a useful wayand then applying it in the target task via

demonstration: the target-task learner follows the source-task policy for a fixed number of initial

episodes, and then continues learning with normal RL. Chapters 5 and 6 present these algorithms,

which differ only in their representation of the source-task policy.

My transfer algorithms 1 and 2 use an RL algorithm that inherently enables transfer, belonging

to Section 3.3.5. This new algorithm performs advice-taking, accepting source-task knowledge in

the form of logical rules and combining this advice with target-task experience. Chapter 4 presents

these algorithms, which only differ in the way they construct advice from the source task.

The techniques from Chapter 4 are also relevant to Section 3.4because they contain protection

against negative transfer. By treating advice as a soft constraint, they are able to reject informa-

tion that disagrees with target-task experience. These algorithms therefore also belong in part to

Section 3.4.1.
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Chapter 4

Advice-Based Transfer Methods

Advice is a set of instructions about a task solution that may not be complete or perfectly

correct. Advice-taking algorithms allow advice to be followed, refined, or ignored according to its

value. Traditionally, advice comes from humans.

I use advice in a novel way to perform transfer: by using source-task knowledge to provide

advice for a target task. In an advice-taking algorithm, this advice is followed if it leads to positive

transfer, but refined or ignored if it leads to negative transfer.

The transfer methods in this section are essentially different ways of producing transfer advice

from source-task knowledge. Some of my transfer methods also allow human-provided advice in

addition to transfer advice, providing a natural and powerful way for humans to contribute to the

transfer process.

This chapter introduces advice taking and explains how it isimplemented within the RL-SVR

algorithm, and then presents two advice-based transfer methods for reinforcement learning. One

of these is the only algorithm in this thesis that does not usefirst-order logic, and the other is the

first of several relational methods. This chapter is based onpublished work [49, 50, 103, 105, 106].

4.1 Advice Taking

Advice taking can be viewed as learning with prior knowledgethat may not be complete or

perfectly correct. It focuses on taking advantage of the useful aspects of prior knowledge without

depending on it completely. Research in this area typicallyassumes the knowledge comes from

humans, though in my work it can also be extracted from a source task by an algorithm.
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Algorithms for advice taking exist for both reinforcement learning and inductive learning. Paz-

zani and Kibler [64] describe a rule-learning system that takes existing background knowledge

into account. Maclin and Shavlik [47] accept rules for action selection and incorporate them

into a neural-networkQ-function model using the knowledge-based neural network framework.

Driessens and Dzeroski [23] use behavior traces from an expert to learn a partial initialQ-function

for relational RL. Kuhlmann et al. [43] accept rules that give a small boost to theQ-values of

recommended actions.

The advice-taking algorithm I use in this thesis is called Knowledge-Based Kernel Regression

(KBKR). It was designed by Mangasarian et al. [52], and colleagues and I applied it to the RL-SVR

algorithm [48].

In KBKR, advice is treated as a set of soft constraints on theQ-function. For example, here is

some advice about passing in soccer:

IF an opponent is near me
AND a teammate is open
THEN passhas a higherQ-value thanhold

In this example, there are two conditions describing the state of the agent’s environment: an

opponent is nearby and an unblocked path to a teammate exists. These form theIF portion of the

rule. TheTHEN portion gives a constraint on theQ-function that the advice indicates should hold

when the environment matches the conditions.

An agent can follow advice, only follow it approximately (which is like refining it), or ignore

it altogether. This is accomplished by extending the RL-SVRoptimization problem from Equa-

tion 2.5 to include terms for the advice. Each advice rule creates a new constraint on theQ-function

solution in addition to the constraints from the training data.

In particular, since I use a version of KBKR called Preference-KBKR [49], my advice rules

give conditions under which one action is preferred over another action. Advice therefore can be

expressed using two arraysB andd that define the conditions on the statex as follows:

Bx ≤ d =⇒ Qp(x)−Qn(x) ≥ β, (4.1)
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This can be read as:

If the current state satisfies the inequalityBx ≤ d, then theQ-value of the preferred
actionp should exceed that of the non-preferred actionn by at leastβ.

For example, consider the soccer rule above. Suppose that “an opponent is near me” is true

when a distance featuref1 ≤ 5, and that “a teammate is open” is true when an angle feature

f4 ≥ 30, and that there are five features in the environment. In this case, Equation 4.1 would

become Equation 4.2 below. Note that(f4 ≥ 30) is equivalent to(−f4 ≤ −30)).
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=⇒ Qpass(x)−Qhold(x) ≥ β, (4.2)

The KBKR system is designed to work with a standard RL algorithm that uses a fixed-length

feature vector. As such, it only accepts rules in propositional logic, not in first-order logic as one of

the algorithms in this chapter generates. Thus first-order rules must currently be grounded before

being provided to KBKR.

There is also a variant of Preference-KBKR called ExtenKBKR[50] that incorporates advice

in a way that allows for faster problem-solving. I will not present this variant in detail here, but I

do use it for transfer when there is more advice than Preference-KBKR can efficiently handle.

4.2 Policy Transfer via Advice

Policy transfer via advice taking, my Transfer Algorithm 1, is a transfer method that advises

following the source-task policy in the target task. That is, it advises the target-task learner to give

the highestQ-value to the action that a source-task agent would take in a comparable situation,

without specifying exactly what theQ-values of the actions should be. This section is based on

published work [106].
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Policy transfer assumes that a human provides a mapping of features and actions between

tasks, so that theQ-functions for the source task can be translated to the target task. One possible

transfer method would be simply to use these translatedQ-functions in the target task. However, if

the target task has a different reward function than the source task, theirQ-functions could be quite

different even if the actions they recommend are similar. For example, in both KeepAway and

BreakAway it is often good to pass the ball if an opponent is too close, butQ-values in BreakAway

are in the range [0,1] whileQ-values in KeepAway are in a larger range [0,maxGameLength].

Instead of applying potentially inappropriateQ-values directly in the target task, policy transfer

compares theQ-functions for pairs of actions to produce advice rules saying when one action

should be preferred over the other.

Table 4.1 gives the algorithm for policy transfer. It requires as input the action and feature

spaces of the tasks, a mapping between these spaces, the finalsource-taskQ-function for each

action, and average observed values for source-task features. It consists of three steps: translating

the source-taskQ-functions into terms usable in the target task, generatingadvice that compares

each pair of translatedQ-functions and advises preferring the higher-valued action, and learning

the target task with this advice as described above in Section 4.1. The sections below describe the

first two steps in more detail.

4.2.1 Translating Q-Functions

The first step of the policy-transfer algorithm in Table 4.1 begins with a set of source-task

Q-functions and ends with a set of translatedQ-functions that would be usable in the target task.

These are needed in order to generate advice that is meaningful for the target task.

The key to this translation is the human-provided mapping (Mactions, Mfeatures). First consider

the simplest possible type of mapping, in which each source-task action is mapped to one and

only one target-task action, and each source-task feature is mapped to one and only one target-task

feature. This can be expressed as:

For eacha ∈ As there exists a uniquea′ ∈ At such thatMactions(a) = a′

For eachf ∈ Fs there exists a uniquef ′ ∈ Ft such thatMfeatures(f |∗) = f ′
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Table 4.1: Transfer Algorithm 1: Policy Transfer via Advice

INPUT REQUIRED

Source-task actionsAs = (a1, a2, ...) and featuresFs = (f1, f2, ...)
Target-task actionsAt = (b1, b2, ...) and featuresFt = (g1, g2, ...)
MappingsMactions : As → At andMfeatures : Fs|At → Ft

Final source-taskQ-function for each actiona: Qa = w1f1 + w2f2 + ...
Average observed valuēf for each source-task featuref ∈ Fs

TRANSLATE Q-FUNCTIONS FROM SOURCE TO TARGET

Let T = ∅ // This will be the set of translatedQ-functions
For each actiona ∈ As

For each actionb such thatMactions(a) = b // Build a translatedQ-function forb
Start withQb = 0
For each featurefi ∈ Fs

If existsgj such thatMfeatures(b, fi) = (b, gj)
SetQb ← Qb + wigj // Here there is a matching feature

Else
SetQb ← Qb + wif̄i // Here there is no matching feature

SetT ← T ∪Qb

GENERATE ADVICE

Let V = ∅ // This will be the set of advice rules
For each pair of translatedQ-functions(Qbi

, Qbj
) ∈ T

Let advice ruleR be: IF Qbi
−Qbj

≥ ∆ THEN preferbi to bj

SetV ← V ∪R

LEARN TARGET TASK

For all episodes: Perform RL via ExtenKBKR using advice rulesV
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The∗ indicates that the feature mappings hold for all target-task actions; soon I will discuss

the use of this argument to allow more complex mappings. For now, with this simple mapping,

the translation step is a straightforward substitution of features. For example, assume these are the

source-taskQ-functions:

Qa1
= w1f1 + w2f2

Qa2
= w3f3 + w4f4 + w5f5

The translatedQ-functions would then be:

Qa′

1
= w1f

′

1 + w2f
′

2

Qa′

2
= w3f

′

3 + w4f
′

4 + w5f
′

5

However, the mappings need not be one-to-one.Mactions(a) may have no values, or it may

have several values. In the former case, policy transfer creates no translatedQ-function for a,

because no corresponding action exists in the target task. In the latter case, policy transfer creates

multiple translatedQ-functions fora′, a′′, and so on, because multiple corresponding actions exist

in the target task. Furthermore, each of these functions mayuse different feature substitutions.

This is the reason thatMfeatures is a function of both a feature and an action; it allows features to

be mapped differently under different action mappings.

For example, consider transferring from 2-on-1 BreakAway,which has a single pass action

passto a1, to 3-on-2 BreakAway, which has two pass actionspassto a1 and passto a2. If

passto a1 could be mapped only once, it could only provide informationabout one of the two

target-task pass actions. By allowing multiple mappings, policy transfer can create translatedQ-

functions for both target-task pass actions. Forpassto a1, it should use obvious feature mappings

like distBetween(a0,a1)→ distBetween(a0,a1). Forpassto a2, it should instead use feature map-

pings likedistBetween(a0,a1)→ distBetween(a0,a2).

In some cases, a source-task featuref may have no correspondingf ′. For example, there is a

KeepAway feature distBetween(k0, fieldCenter) that has no meaningful correspondence with any

feature in BreakAway. In this case, there is no appropriate substitution forf in the translatedQ-

functions. Simply dropping terms involving this feature could change theQ-functions significantly,
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since they are linear sums. Instead, policy transfer substitutes the average value off as observed

in the source task, which better maintains the integrity of theQ-function.

The algorithm does require thatMactions not map multiple source-task actions to the same

target-task action, because this would produce multiple translatedQ-functions for a single target-

task action, making theQ-values for that action ill-defined.

4.2.2 Generating Advice

The second step of the policy-transfer algorithm in Table 4.1 starts with the translatedQ-

functions and generates advice. For each pair of target-task actions(bi, bj), it forms an advice

rule that states when to preferbi to bj. Table 4.1 shows the high-level rule format:

IF Qbi
−Qbj

≥ ∆

THEN preferbi to bj

Suppose the translatedQ-functions are as in the previous section:

Qa′

1
= w1f

′

1 + w2f
′

2

Qa′

2
= w3f

′

3 + w4f
′

4 + w5f
′

5

Given these, the final advice format would be:

IF (w1f
′

1 + w2f
′

2)− (w3f
′

3 + w4f
′

4 + w5f
′

5) ≥ ∆

THEN prefera′1 to a′2

This advice says to preferbi to bj in states where the translatedQ-functions give a significantly

higher value tobi. Essentially, this means preferring actions that a source-task agent would take if

it found itself in the target task. I set∆ to approximately 1% of the target task’s Q-value range so

that the advice does not apply when values are very similar.

4.2.3 Experimental Results for Policy Transfer

To test the policy-transfer approach, I perform transfer between several RoboCup tasks in both

close transferanddistant transferscenarios. Close transfer is between closely related tasks,such

as KeepAway with different team sizes. I perform close-transfer experiments for all three RoboCup
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Table 4.2: Results of statistical tests on the differences between areas under the curve in policy transfer
vs. RL-SVR for several source/target pairs. Forp < 0.05, the difference is significant and the
winning algorithm is shown; otherwise, the difference is not statistically significant.

Source Target p-value Significance (Winner) 95% interval

2-on-1 BreakAway 3-on-2 BreakAway 0.001 Yes (Policy transfer) [38, 160]
3-on-2 MoveDownfield 3-on-2 BreakAway 0.402 No [-53, 70]
3-on-2 KeepAway 3-on-2 BreakAway 0.030 Yes (Policy transfer) [1, 121]
3-on-2 MoveDownfield 4-on-3 MoveDownfield 0.020 Yes (Policy transfer) [118, 2510]
3-on-2 KeepAway 4-on-3 KeepAway 0.004 Yes (Policy transfer) [90, 510]

tasks. Distant transfer is between less similar tasks, suchas KeepAway and BreakAway. I perform

distant-transfer experiments from the easier RoboCup tasks, KeepAway and MoveDownfield, to

the more difficult task of BreakAway. The mappings I use for these scenarios are documented in

Appendix B.

Figures 4.1, 4.2, and 4.3 show the performance of policy transfer compared to RL-SVR. These

results show that policy transfer can have a small overall positive impact in both close and distant

transfer scenarios. Policy-transfer curves converge withRL-SVR by the end of the learning curve.

The statistical analysis in Table 4.2 indicates that the difference between policy transfer and

RL-SVR is significant in most cases. However, the figures showthat the difference is too small to

be practically significant.

Policy transfer produces a large amount of complex advice – so much that it needs to use Ex-

tenKBKR [50], the variant of Preference-KBKR that handles high advice volumes. Furthermore,

this method relies on the low-level, task-specificQ-functions to perform transfer. Other methods

in this thesis instead transfer relational knowledge, leading to larger performance gains.

4.3 Skill Transfer via Advice

Skill transfer via advice, my Transfer Algorithm 2, is a transfer method that providesadvice

about when to take certain actions. It is designed to capturegeneral knowledge from the source

task and filter out specific knowledge. Instead of transferring an entire policy, this method only
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Figure 4.1: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR and policy transfer from
2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) and 3-on-2 KeepAway (KA).
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Figure 4.2: Average total reward in 4-on-3 MoveDownfield with RL-SVR and policy transfer from 3-on-2
MoveDownfield.
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Figure 4.3: Average game length in 4-on-3 KeepAway with RL-SVR and policy transfer from 3-on-2 Keep-
Away.
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transfers advice about theskills that the source and target tasks have in common. This sectionis

based on published work [103, 105].

Skills are rules in first-order logic that describe good conditions under which to take an action.

I use first-order logic for these rules because variables allow them to be more general than propo-

sitional rules. For example, the rulepass(Teammate)is likely to capture the essential elements of

the passing skill better than rules for passing to specific teammates. These common skill elements

can transfer better to new tasks.

Table 4.3 gives the algorithm for skill transfer. It requires as input the states encountered

during source-task learning, the final source-taskQ-function for each action, a mapping between

objects in the two tasks, a list of skills that should be transferred, the desired outcomes of actions,

and (optionally) an extra set of human-provided advice. It consists of three steps: learning skills,

translating them into advice usable in the target task, and learning the target task with this advice

as described above in Section 4.1. The sections below describe the first two steps in more detail.

4.3.1 Learning Skills

The first step of the skill-transfer algorithm in Table 4.3 learns skills that describe when one

action is preferable to other actions based on source-task examples. Skills may represent both

grounded actions, likepass(a1), and variablized actions, likepass(Teammate).

To learn skills, the algorithm requires positive and negative examples of action preferences. In

some source-task states no action is strongly preferred, either because multiple actions are good

or because no actions are good. The algorithm prevents thesestates from being used as examples

because of their ambiguity.

In positive examples for actiona, of coursea must be the action taken. The algorithm also

requires thata was strongly preferred, by enforcing reasonableQ-value thresholds as shown in

Table 4.3. Furthermore, it requires that the outcome of action a was the desired outcome, as

defined in the source task. For example, the desired outcome of pass(a1)in BreakAway is that the

playera1 gains possession of the ball.
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Table 4.3: Transfer Algorithm 2: Skill Transfer via Advice

INPUT REQUIRED

StatesS from the source-task learning process
ActionsA for which skills should be transferred and the finalQa for eacha ∈ A

The desired source-task outcomedesired(a) for each actiona ∈ A

MappingM from source-task objects to target-task objects
Optional human-provided advice rulesH

LEARN SKILLS

Let K = ∅ // This will be the set of rules describing skills
For each actiona ∈ A

Let Pa = ∅ // These will be positive examples fora

Let Na = ∅ // These will be negative examples fora

Let avg(a) be the average value ofQa(s) over all states ins ∈ S

Let tenth(a) be the tenth percentile ofQa(s) over all states ins ∈ S

For each states ∈ S

If the actionb taken ins is equal toa
If the outcome ofb wasdesired(a)

If Qa(s) > tenth(a) and∀c 6= a Qa(s) > 1.05×Qc(s)
SetPa ← Pa ∪ s // Positive example

Else rejects for ambiguity
Else setNa ← Na ∪ s // Negative example type 1

Else ifQb(s) > tenth(b) andQa(s) < 0.95×Qb(s) andQa(s) < avg(a)
SetNa ← Na ∪ s // Negative example type 2

Else rejects for ambiguity
Learn rules with Aleph and Gleaner to distinguishPa from Na

Let R be the rule with highestF (1) score
SetK ← K ∪R

TRANSLATE SKILLS

For each skillR ∈ K // Map objects
For each source-task objectos appearing inR

Replaceos with the mapped target-task objectM(os)
For each human-provided advice ruleI ∈ H // Add human-provided advice

If a ruleR ∈ K represents the same skill asI

Add the literals inI to the ruleR
Else setK ← K ∪ I

Let V = ∅ // This will be the set of advice rules
For each skillR ∈ K

Let a be the action represented byR and letL be the literals in the body ofR
For each target-task actionb 6= a

Let advice ruleT be: IF L THEN prefera to b

SetV ← V ∪ T

LEARN TARGET TASK

For all episodes: Perform RL via Pref-KBKR using advice rulesV
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Negative examples for actiona have two types. The first are states in whicha was the action

taken but the desired outcome did not occur (e.g., an opponent gained possession of the ball instead

of a1). The second are states in which another actionb was taken and was strongly preferred over

a, again using reasonableQ-value thresholds as shown in Table 4.3.

The skill-transfer algorithm uses Aleph [80] to search for first-order logical rules that approxi-

mately separate positive examples from negative examples.It uses Gleaner [35] to record a variety

of rules encountered during the search, and in the end selects one rule with the highestF (1) score.

These methods are described in Section 2.3, with only the necessary additional details provided

here.

Each legal literal for this search specifies a constraint on asource-task feature. In order to

ensure that the rules are applicable in the target task, the literals may only give constraints on

features that also exist in the target task. For example, theMoveDownfield task has a feature dist-

ToRightEdge(Attacker). This feature can be used in rules for transfer from 3-on-2 MoveDownfield

to 4-on-3 MoveDownfield, but not for transfer from MoveDownfield to BreakAway, since Break-

Away has no such feature.

Note that for real-valued, continuous features, the possible constraints must be limited to a

finite set through discretization. I approach this problem by allowing constraints that say a feature

is greater than or less than one of a set of threshold values. For RoboCup tasks, I set thresholds for

distance features at every 3 yards and thresholds for angle features at every 5 degrees. Thus, for

example, possible literals involving distToRightEdge(Attacker) are:

distToRightEdge(Attacker)≤ 3

distToRightEdge(a0)≥ 6

distToRightEdge(a1)≤ 9

distToRightEdge(a2)≥ 12

...

Here is an example of skill learning in practice. For transfer from 3-on-2 MoveDownfield to

4-on-3 MoveDownfield, the skill-transfer algorithm learnsthe following rule for thepass(Teammate)

skill:
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IF distBetween(a0, Teammate)≥ 15

AND distBetween(a0, Teammate)≤ 27

AND distToRightEdge(Teammate)≤ 10

AND angleDefinedBy(Teammate, a0, minAngleDefender(Teammate)) ≥ 24

AND distBetween(a0, Opponent)≥ 4

THEN pass(Teammate)

This rule states that passing to a teammate is preferable if (1) the teammate is between 15 and

27 yards away, (2) the teammate is within 10 yards of the finishline, (3) the teammate has an open

passing angle of at least 24 degrees, and (4) no opponent is closer than 4 yards away.

4.3.2 Translating Skills and Adding Human-Provided Advice

The second step of the skill-transfer algorithm in Table 4.3translates skills into advice for the

target task. Just as in policy transfer, this requires a human-provided mappingM . However, the

nature of the mapping is different than in policy transfer. Since only shared actions are transferred

and only shared features are used to describe skills, the only elements that require mapping are

logical objects, such as the player objects in RoboCup. For example,k0 in KeepAway should

map toa0 in BreakAway, and a variable representingKeeperobjects should map to a variable

representingAttackerobjects.

Thus a human teacher provides a mapping to facilitate the translation of source-task skills for

use in the target task. However, note that there is importantinformation that such a mapping

lacks: knowledge about new skills in the target task. It alsoomits knowledge about how shared

skills might differ between the tasks. A human teacher mighthave these types of knowledge, and

the advice-taking system provides a way to accommodate it. The skill-transfer method therefore

accepts optional human-provided advice to be combined withthe skills it transfers automatically.

For example, consider transferring from KeepAway to BreakAway, where the only shared skill

is pass(Teammate). As learned in KeepAway, this skill will make no distinctionbetween passing

toward the goal and away from the goal. Since the new objective is to score goals, players should

prefer passing toward the goal. A human could provide this guidance by adding an additional

constraint to thepass(Teammate)skill:
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distBetween(a0, goal) - distBetween(Teammate, goal)≥ 1

Even more importantly, there are several actions in this transfer scenario that are new in the

target task, such asshootandmoveAhead. A human could write simple rules to approximate these:

IF distBetween(a0, GoalPart)< 10

AND angleDefinedBy(GoalPart, a0, goalie)> 40

THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter)> 10

THEN prefer moveAhead over moveAway and the shoot actions

Given a combined set of learned and provided skills, the algorithm in Table 4.3 forms final

advice rules. Each skill generates advice rules saying whento prefer one action over all the others.

4.3.3 Experimental Results for Skill Transfer

To test the skill-transfer approach, I perform transfer between several RoboCup tasks. I present

results from the same close and distant transfer scenarios as for policy transfer in Section 4.2.3.

The mappings I use for these scenarios are documented in Appendix C.

I use appropriate subsets of the user-advice examples in Section 4.3.2 for all of these experi-

ments. That is, from KeepAway to BreakAway I use all of it, from MoveDownfield to BreakAway

I use only the parts advisingshoot, and for close-transfer experiments I use none.

Figures 4.4, 4.5, and 4.6 show the performance of skill transfer compared to RL-SVR and

policy transfer. These graphs show that skill transfer can have a substantial positive impact in both

close-transfer and distant-transfer scenarios.

The statistical analysis in Table 4.4 indicates that the difference between skill transfer and

policy transfer is significant in some cases. The figures showthat this difference also has more

practical significance.

Skill transfer has several advantages over policy transfer. It produces fewer items of advice,

allowing the use of standard Preference-KBKR instead of ExtenKBKR, the high-volume version.

The advice it transfers is human-readable, and therefore also allows users to edit and add to it with

ease. Finally, it produces significantly higher performance gains than policy transfer. This result is
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Figure 4.4: Left: Probability of scoring a goal 3-on-2 BreakAway with RL-SVR and skill transfer from
2-on-1 BreakAway (BA), 3-on-2 MoveDownfield (MD) and 3-on-2 KeepAway (KA). Right:
Figure 4.1 reproduced to show the corresponding policy-transfer results.
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Figure 4.5: Left: Average total reward in 4-on-3 MoveDownfield with RL-SVR and skill transfer from 3-
on-2 MoveDownfield. Right: Figure 4.2 reproduced to show the corresponding policy-transfer
results.
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Figure 4.6: Left: Average game length in 4-on-3 KeepAway with RL-SVR and skill transfer from 3-on-2
KeepAway. Right: Figure 4.3 reproduced to show the corresponding policy-transfer results.
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Table 4.4: Results of statistical tests on the differences between areas under the curve in skill transfer vs.
policy transfer for several source/target pairs. Forp < 0.05, the difference is significant and the
winning algorithm is shown; otherwise, the difference is not statistically significant.

Source Target p-value Significance (Winner) 95% interval

2-on-1 BreakAway 3-on-2 BreakAway 0.134 No [-25, 91]
3-on-2 MoveDownfield 3-on-2 BreakAway < 0.001 Yes (Skill transfer) [155, 258]
3-on-2 KeepAway 3-on-2 BreakAway < 0.001 Yes (Skill transfer) [128, 225]
3-on-2 MoveDownfield 4-on-3 MoveDownfield < 0.001 Yes (Skill transfer) [2250, 5230]
3-on-2 KeepAway 4-on-3 KeepAway 0.118 No [-421, 95]

the primary basis for my claim that relational transfer is desirable for RL. The rest of the transfer

methods in this thesis are also relational.

4.4 Testing the Boundaries of Skill Transfer

In this section I consider the impact of two factors on the effectiveness of skill transfer: quality

of learning in the source task, and quality of human-provided advice.

So far I have performed transfer without paying any attention to the source-task learning curve.

However, it might be interesting to know if some types of source-task learning curves produce

better or worse transfer. If one had a choice of source runs tochoose from, one could then choose

a run with high expected target-task performance.

Figure 4.7 plots the normalized average area under the curvein the target task with skill transfer

against the normalized area under the curve in the source task from which transfer was performed.

The correlation coefficient is 0.21, which indicates a smallcorrelation between source-task and

target-task area. Therefore it may be only slightly helpfulto choose source runs with higher area

under the curve.

The second factor I consider is how the quality of human-provided advice affects skill transfer.

So far I have simply given reasonable, non-optimized advicefor new skills in skill-transfer experi-

ments. Now I investigate the results produced using reasonable variants that another person could

easily have chosen instead.
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Figure 4.7: A plot showing how area under the learning curve in the targettask correlates with area under
the learning curve in the source task. The dashed line shows a 45-degree angle for visual
reference.

To look at one example, I examine skill transfer from KeepAway to BreakAway with several

variants on the original human-provided advice. Variant 1 encourages the players to shoot more

often by increasing the maximum distance and decreasing theminimum angle:

IF distBetween(a0, GoalPart)< 15

AND angleDefinedBy(GoalPart, a0, goalie)> 35

THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter)> 15

THEN prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, Value), Value≥ 1

Variant 2 prevents the players from shooting as often by decreasing the maximum distance and

increasing the minimum angle:

IF distBetween(a0, GoalPart)< 5

AND angleDefinedBy(GoalPart, a0, goalie)> 45

THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter)> 5

THEN prefer moveAhead over moveAway and shoot

Add to pass(Teammate): diffGoalDistance(Teammate, Value), Value≥ 1
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Figure 4.8: Probability of scoring a goal 3-on-2 BreakAway, with RL-SVR and with skill transfer from
3-on-2 KeepAway, using the original human-provided adviceand using two variants described
above.

Figure 4.8 indicates that these changes in the human-provided advice do affect the performance

of skill transfer, but that reasonable variants still do well. This robustness means that users need not

worry about providing perfect advice in order for the skill-transfer method to work. Furthermore,

even approximate advice can significantly improve the performance.

One might also wonder about the effect of having no human-provided advice at all. To look

at one example, I examine transfer from MoveDownfield to BreakAway without any extra advice.

Figure 4.9 shows that skill transfer still performs significantly better than RL-SVR even without

human-provided advice, although the gain is smaller. The addition of human-provided advice

produces another significant gain. This means that while it is not necessary to provide extra advice

in order for the skill-transfer method to work, doing so can be worthwhile.

4.5 Summary of Advice-Based Transfer

Transfer via advice can produce performance gains in reinforcement learning. In my exper-

iments, giving a few pieces of relational advice produced better performance than giving many
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Figure 4.9: Probability of scoring a goal in 3-on-2 BreakAway, with RL-SVRand with skill transfer from
3-on-2 MoveDownfield, with and without human-provided advice.

pieces of propositional advice. I also found simple human-provided advice to produce additional

benefits.

Advice-based transfer has both advantages and disadvantages compared to other transfer meth-

ods described in Chapter 3. The most notable advantage is its built-in protection against negative

transfer, which allows it to be applied to a wide range of transfer scenarios. The most notable

disadvantage is that the performance gains do not appear immediately and are relatively modest.

Later methods in this thesis will sacrifice protection against negative transfer in order to produce

larger performance gains in certain transfer scenarios.

The methods in this chapter are limited to transferring information about individual decisions

in a task. That is, they provide knowledge about the relativevalues of actions at single moments

in time. The next chapter presents methods that go a step further and transfer information about

sequencesof decisions.
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Chapter 5

Macro-Operator Transfer

Reinforcement learning is often described as solving a Markov decision process [6]. Typically

it is a first-order decision process, meaning that decisionsare made with respect to the current

environment, without reference to previous actions or previous environments. However, if one

observes successful RL agents after they have learned taskslike BreakAway, one can see common

action sequences that they have learned to execute. These sequences are emergent behavior; the

agents do not intentionally execute patterns of actions, but in many tasks patterns spontaneously

appear.

This observation begs the question of whether transferred knowledge could contain more struc-

ture than the rules in Chapter 4. Perhaps transferring information about action sequences rather

than about individual actions could produce faster successin a target task. The transfer of struc-

tured knowledge could be a powerful method, though it would come with a price: it would be

less applicable to distant-transfer scenarios, since action sequences are likely to be common only

among closely related tasks.

In the planning field, action sequences are known asmacro-operators[8, 12]. Learning action

sequences is an example ofstructured learning, a branch of machine learning in which the goal is

prediction of complex structured outputs rather than numeric values. The structures represent sets

of output variables that have mutual dependencies or constraints. Other examples of structured

learning include learning parse trees for natural-language utterances [37] and learning alignments

for gene or protein sequences [90].

I use macro-operators to perform transfer by providing action-sequence knowledge from a

source task to a target task. Because I have already established the value of relational knowledge
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by comparing skill transfer to policy transfer in Chapter 4, Idesign these structures to capture

relational information. I refer to them in shorthand asrelational macrosor justmacros.

A relational macro describes a strategy that is successful in the source task. There are several

ways I could use this information to improve learning in a related target task. One possibility is

to treat it as advice, as in Chapter 4, or as an option with its own Q-value, as in some methods

reviewed in Chapter 3. The primary benefit of these approachesis their protection against negative

transfer.

Instead, I introduce a method calleddemonstration, in which the target-task agent executes

the transferred strategy for an initial period before continuing with RL-SVR. The benefit of this

approach is that it can achieve good target-task performance very quickly. The disadvantage is that

it is more aggressive, carrying more risk for negative transfer. However, if the tasks are closely

related, the potential benefits can outweigh that risk.

This chapter introduces relational macros and the demonstration method, and then presents two

methods for macro transfer. One method transfers a single macro, and the other transfers multiple

macros. This chapter is based in part on published work [104].

5.1 Relational Macro-Operators and Demonstration

This section describes the structure of a relational macro and its use, via demonstration, in the

target task. The following sections describe the problem oflearning a macro from source-task data.

The purpose of a macro is to serve as a decision-control mechanism for a demonstration of

good behavior. Therefore, macros are based on finite-state machines [34]. A finite-state machine

(FSM) models a control process in the form of a directed graph. The nodes of the graph represent

states of the system, and in this case they represent internal states of the agent in which different

policies apply.

The policy of a node can be to take a single action, such asmove(ahead)or shoot(goalLeft),

or to choose from a class of actions, such aspass(Teammate). In the latter case, a node has first-

order logical clauses to decide which grounded action to choose (in this case, whichTeammate
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move(Direction)pass(Teammate) shoot(goalRight) shoot(goalLeft)

Figure 5.1: A macro for the RoboCup game BreakAway, in which the agent attempts to score a goal. Each
node and arc has an attached ruleset (not shown) for choosingactions and deciding transitions.

argument). An FSM begins in a start node and has conditions for transitioning between nodes. In

a relational macro, these conditions are also sets of first-order logical clauses.

Formally, a macro consists of:

• A linear set of nodesN = (n1, n2, ...) with associated rulesetsRaction(ni)

• Arcs between adjacent nodes with associated rulesetsRtrans(ni, ni+1)

• Arcs that form self-loops for each node

The nodes form a linear structure, as shown in Figure 5.1. An agent executing a macro begins

in noden1, which in the figure is thepass(Teammate)node. In the first state of an episode, it uses

the rulesetRaction(n1) to choose an action. In the second state of the episode, it uses the ruleset

Rtrans(n1, n2) to decide whether to transition to noden2 or default to the self-arc to remain in

n1; then it uses the appropriateRaction ruleset to choose an action. This continues until either the

episode ends or anRaction ruleset fails to choose an action, in which case the agent abandons the

macro and uses its currentQ-function to choose actions instead.

Since a ruleset for a node or arc can contain an arbitrary number of rules, there are disjunctive

conditions for decisions in a macro. When multiple rules match, the agent obeys the rule that has

the highest score. In my design, the score of a rule is the probability that following it will lead to a

successful game, as estimated from the source-task data.

Target-task agents use macros this way for an initialdemonstration period. The length of

this period is a task-dependent design decision. For RoboCuptasks, I found 100 games to be an

appropriate length.

During the demonstration, reinforcement learning does occur, with normal updates to theQ-

functions. In RL-SVR, this means re-learningQ-functions as usual after each batch of 25 games.
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However, theQ-functions only start being used after the demonstration period ends, at which point

the target-task agent reverts to standard RL-SVR. If transfer is effective, its performance level at

that point is much higher than it would have been after 100 episodes of nearly random exploration.

5.2 Single-Macro Transfer via Demonstration

Single-macro transfer via demonstration, my Transfer Algorithm 3, is a transfer method that

learns one relational macro from a source task, and allows target-task agents to follow the macro

for an initial demonstration period. This allows the target-task agents to avoid the slow process

of random exploration that traditionally occurs at the beginning of RL. This section is based on

published work [104].

The macro-transfer algorithm uses Aleph [80] and Gleaner [35] to construct a relational macro

from source-task data. Furthermore, it separates the problem of learning a macro into several

independent ILP problems. One is to learn the structure (thenode sequence), while others learn

rulesets to govern transitions between nodes and action-argument choices.

This is not the only possible approach; some or all of these problems could be combined,

requiring a joint solution. However, doing so would significantly increase the run time required

for ILP to produce accurate solutions. For this practical reason, I treat each decision problem

independently.

Table 5.1 gives the algorithm for single-macro transfer. Itrequires as input the games played

during source-task learning, a definition of which games are“good” and which are “bad,” and the

length of the demonstration period. It consists of four steps: learning the structure, learning rulesets

to govern transitions between nodes, learning rulesets to govern actions taken in variablized nodes,

and learning the target task as described above in Section 5.1. The sections below describe the first

three steps in more detail, and they are also illustrated in Figure 5.2.

5.2.1 Single-Macro Structure Learning

The first step of the macro-transfer algorithm in Table 5.1 isthe structure-learning phase. The

objective is to find a sequence of actions that distinguishessuccessful games from unsuccessful
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Table 5.1: Transfer Algorithm 3: Single-Macro Transfer via Demonstration

INPUT REQUIRED

GamesG from the source-task learning process
A definition of high-reward and low-reward games in the source task
A demonstration-period lengthD

LEARN STRUCTURE

Learn rulesR according to Table 5.2
Let L be the set of Gleaner rules with the maximal number of literals
Let S be the rule inL with the highestF (1) score // This is the chosen macro structure
Let Macro = ∅ // This will consist of nodes and rulesets
For each literal inS representing(Action,ActionArg)

Create a noden of typeAction(ActionArg)
Add noden to Macro

LEARN TRANSITIONS

For each adjacent pair of nodesni, ni+1 of Macro

Learn rulesT according to Table 5.3
Select rulesRtrans from T according to Table 5.5
AttachRtrans to Macro as the transition ruleset for nodesni, ni+1

LEARN ACTIONS

For each noden of Macro that represents a variablizedAction(ActionArg)
Learn rulesU according to Table 5.4
Select rulesRaction from U according to Table 5.5
AttachRaction to Macro as the action ruleset for noden

LEARN TARGET TASK

ForD episodes: Perform RL but useMacro to choose actions
For remaining episodes: Perform RL normally

Table 5.2: Algorithm for learning one or more macro structures, given gamesG from the source task.

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each gameg ∈ G

If g is a high-reward game in the source task
SetP ← P ∪ g // Positive examples are good games

Else ifg is a low-reward game in the source task
SetN ← N ∪ g // Negative examples are bad games

Learn rulesR with Aleph and Gleaner to distinguishP from N

ReturnR
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Table 5.3: Algorithm for learning rules to control the transition between a pair of nodesni, ni+1 in a macro
Macro, given gamesG from the source task. Data for this task can come from any gamethat
contains the sequence represented byMacro or some prefix or suffix of that sequence. For
example, in a macro with nodes(n1, n2, n3, n4), prefixes include games matching(n1, n2) and
suffixes include games matching(n2, n3, n4).

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each gameg ∈ G that matchesMacro or a prefix or suffix

If g is a high-reward game in the source task
Let x be the state ing after the transitionni → ni+1

SetP ← P ∪ x // A state that transitions is positive
Let Y be any states ing after the transitionni−1 → ni but before the transitionni → ni+1

SetN ← N ∪ Y // States that loop are negative
Else ifg is a low-reward game in the source task

Let z be the state ing after the transitionni → ni+1

If z ends the game
SetN ← N ∪ z // A state that ends the game early is negative

Learn rulesR with Aleph and Gleaner to distinguishP from N

ReturnR

Table 5.4: Algorithm for learning rules to control the action choice ina noden of a macro that represents
the actionAction with the variable argumentActionArg, given gamesG from the source task.
Data for this task can come from any game, and most comes from those that contain the sequence
represented byMacro or some prefix or suffix of that sequence. For example, in a macro with
nodes(n1, n2, n3, n4), prefixes include games matching(n1, n2) and suffixes include games
matching(n2, n3, n4).

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each gameg ∈ G

If g is a high-reward game in the source task andg matchesMacro or a prefix or suffix
Let X be theActionArg choices taken for any states in noden of g

SetP ← P ∪X // An action taken in a good game is positive
Let Y be theActionArg choicesnot taken for any states in noden of g

SetN ← N ∪ Y // An action not taken in a good game is negative
Else ifg is a low-reward game in the source task andg ends withAction

Let z be theActionArg choice at the end ofg
SetN ← N ∪ z // An action that ends the game early is negative

Learn rulesR with Aleph and Gleaner to distinguishP from N

ReturnR
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IF        condition
THEN  transitionIF         condition

THEN  action

Aleph
Good games

Bad games

Aleph

Examples of
going to next state

Examples of not
going to next state

Examples of
correct action

Examples of
incorrect action

Aleph

First step: learning nodes

Second step: learning rulesets for transitions
(This example: node 2 to node 3)

Third step: learning rulesets for nodes
(This example: node 1)

Figure 5.2: A visual depiction of the first three steps of the single-macrotransfer algorithm in Table 5.1.

games in the source task. The sequence captures only an action pattern, ignoring properties of

states that control transitions between nodes; these are added in later steps. It performs this learning

task using all the games from the source-task learning process.

The details of the ILP task for this step are as follows. Let the literalactionTaken(G,S1, A, R,

S2) denote that actionA with argumentR was taken in gameG at stepS1 and repeated until step

S2. The algorithm asks Aleph to construct a clausemacroSequence(G)with a body that contains

a combination of only these literals. The first literal may introduce two new variables,S1 andS2,

but the rest must use an existing variable forS1 while introducing another new variableS2. In this

way Aleph finds a connected sequence of actions that translates directly to a linear node structure.

The algorithm provides Aleph with sets of positive and negative examples, where positives are

games with high overall reward and negatives are games with low overall reward. In BreakAway,

for example, this is a straightforward separation of scoring and non-scoring games. For tasks with

more continuous rewards, it requires finding upper and lowerpercentiles on the overall reward

acquired during a game.

The algorithm uses Gleaner to save the best clauses that Aleph encounters during its search

that have a minimum of 50% precision and 25% recall. These requirements are high enough

to ensure that the structure it chooses is valuable and not unusual, but low enough to allow it
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move(ahead) pass(Teammate) shoot(GoalPart)

Figure 5.3: The node structure corresponding to the sample macro clause below.

to consider many structures. After this stage, it will improve the precision of the chosen macro

through ruleset-learning.

Given the Gleaner output, the algorithm needs to choose a single structure. The problem here is

that the structures with the highestF (1) scores tend to be rather short; they classify the source-task

games well, but they do not provide an entire strategy for a target-task game. The objective here

is not just to discriminate between source-task games, but to generate a good strategy for future

games. Since the scores will be improved in the ruleset-learning stage, the algorithm compromises

here and chooses the longest macro structure that meets the Gleaner requirements. If there are

multiple longest structures, it takes the one with the highestF (1) score.

To make the structure-learning task more concrete, supposethat the scoring BreakAway games

consistently look like these examples:

Game 1: move(ahead), pass(a1), shoot(goalRight)
Game 2: move(ahead), move(ahead), pass(a2), shoot(goalLeft)

Assuming that the non-scoring games have different patterns than the examples above do,

Aleph might learn the following clause to characterize a scoring game:

IF actionTaken(Game, StateA, move, ahead, StateB)
AND actionTaken(Game, StateB, pass, Teammate, StateC)
AND actionTaken(Game, StateC, shoot, GoalPart, gameEnd)
THEN macroSequence(Game)

The macro structure corresponding to this sequence is shownin Figure 5.3. The policy in

the first node will be to take a single action,move(ahead). In the second node the policy will be

to consider multiplepassactions, and in the third node the policy will be to consider multiple

shootactions. The conditions for choosing an action, and for taking transitions between nodes, are

learned next.
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5.2.2 Single-Macro Ruleset Learning

The second and third steps of the macro-transfer algorithm in Table 5.1 are for ruleset learning.

The objective is to learn control rules for navigating within the macro (i.e. when to transition

between nodes, and which argument to choose in a variablizednode). Each control decision is

based on the RL agent’s environment when it reaches that point in the macro.

The details of the ILP tasks for this step are as follows. The legal literals are the same ones

described for skill transfer in Section 4.3.1. To describe the conditions on stateS under which a

transition should be taken, Aleph must construct a clausetransition(S)with a body that contains

a combination of only these literals. To describe the conditions under which an action argument

should be chosen, Aleph must construct a clauseaction(S, Action, ActionArgs)with a similarly

constituted body.

Aleph may learn some action rules in which the action arguments are grounded, as well as

rules in which the action arguments remain variablized:action(S, move, ahead)is an example of

the former, whileaction(S, pass, Teammate)is an example of the latter. In the case of themove

action in BreakAway the action arguments in a rule are alwaysgrounded, since the original state

features do not include useful references to move directions. Note that it is still possible to have

a statemove(Direction)for taking multiple move actions, but the rules for choosinga grounded

move action will use only grounded arguments. Rules forpassandshootmay use either grounded

or variable arguments.

The algorithm provides Aleph with sets of positive and negative examples as described in

Table 5.1. They are selected from both low-reward games and high-reward games. I found that

requiring the complete macro structure to appear in games led to data scarcity in the final nodes,

and ruled out many games that appear to contain useful data for those nodes. To address this issue,

I allow games that include prefixes and suffixes of the macro sequence to contribute examples

as well. For example, in a macro with nodes(n1, n2, n3, n4), prefixes include games matching

(n1, n2) and suffixes include games matching(n2, n3, n4).

To make the example selection criteria more concrete, consider the sample macro structure in

Figure 5.3. Figure 5.4 illustrates some hypothetical examples for the argument choice in thepass
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pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

move(ahead) pass(a2) shoot(goalLeft)

move(right) pass(a1)

Game 1 (scored goal)

Game 3 (did not score)

Game 2 (scored goal)

move(ahead) pass(a1) shoot(goalRight)

Game 4 (did not score)

positive

positive

negative

move(ahead)

Figure 5.4: Training examples (states circled) forpass(Teammate)rules in the second node of the pictured
macro. The pass states in Games 1 and 2 are positive examples. The pass state in Game 3 is
a negative example; the pass action led directly to a negative game outcome. The pass state in
Game 4 is ambiguous because another step may have been responsible for the bad outcome;
the algorithm does not use states like these.

pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

move(ahead)

Game 1 (scores)

Game 2 (scores)

move(ahead) pass(a1) shoot(goalCenter)

Game 3 (does not score)

move(ahead)

positive

negative

move(right) pass(a1) shoot(goalLeft)

Figure 5.5: Training examples (states circled) for the transition frommoveto passin the pictured macro.
The pass state in Game 1 is a positive example. The move state in Game 2 is a negative example;
the game follows the macro but remains in themovenode in the state circled. The pass state
in Game 3 is ambiguous because another step may have been responsible for the bad outcome;
the algorithm does not use states like these.
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node. Figure 5.5 illustrates some hypothetical examples for the transition from themovenode to

thepassnode.

Again, the algorithm uses Gleaner to save the best clauses that Aleph encounters during its

search that have a minimum of 50% precision and 10% recall. These requirements are high enough

to ensure that the rules it considers are valuable and representative, but low enough to allow it to

consider many rules. Instead of selecting a single clause asit did in the previous phase, it constructs

a final ruleset by selecting from the Gleaner clauses. This final ruleset should have a high F score,

meaning that it has both good precision and good recall.

I found that it is more important to weight for recall when constructing rulesets, so I use the

F(10) score here. Furthermore, since it would be expensive to find the highest-scoring subset

exactly, I use a greedy procedure for maximizing the F(10) score. The algorithm sorts the rules by

decreasing precision and walks through the list, adding rules to the final ruleset if they increase its

F(10) score. This procedure is summarized in Table 5.5.

Table 5.5 also shows how the algorithm scores rules. Each rule has an associated score that is

used to decide which rule to obey if multiple rules match while executing the macro. The score

is an estimate of the probability that following the rule will lead to a successful game. The agent

determines this estimate by collecting training-set gamesthat followed the rule and calculating the

fraction of these that ended successfully.

5.2.3 Experimental Results for Single-Macro Transfer

To test the single-macro transfer approach, I learn macros from data acquired while training

2-on-1 BreakAway and transfer them to both 3-on-2 and 4-on-3BreakAway. I use the same source

runs of 2-on-1 BreakAway as in our advice-based transfer experiments. Note that I do not test the

distant-transfer scenarios from that chapter, since the macro-transfer method is not designed for

distant transfer. The mappings I use for these scenarios aredocumented in Appendix C.

The macros learned from the five source runs had similar structures. Three of them were

essentially identical, and their structure is the one in Figure 5.1, with between 30 and 130 rules in

each ruleset (not shown). In the other two, the first two nodesare replaced by two groundedmove
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Table 5.5: Algorithm for selecting and scoring the final ruleset for one transition or action. Rules are added
to the final set if they increase the overallF (10) measure.

Let S = Gleaner rules sorted by decreasing precision on the training set
Let T = ∅ // This will be the final ruleset
For each ruler ∈ S // Select rules

Let U = T ∪ {r}
If the F (10) of U > theF (10) of T

Then setT ← U

For each ruler ∈ T // Score rules
Let G = ∅ // These will be the games that followedr
For each source-task gameg

If any states in g matches the literals inr and takes the actionr recommends
SetG← G ∪ g

Let H = the subset of games inG that are high-reward
Setscore(r) = |H|+10

|G|+20
// This is anm-estimate of|H|

|G| with m = 10

ReturnT

nodes. The ordering ofshoot(goalRight)andshoot(goalLeft)also varied, as would be expected in

the symmetrical BreakAway domain.

The presence of twoshootnodes may seem counterintuitive, but it appears that the RL agent

uses the first shot as a feint to lure the goalie in one direction, counting on a teammate to intercept

the shot before it reaches the goal. When it does, the teammatein possession of the ball becomes

the learning agent and performs the second shot, which is actually intended to score. Thus the first

shot is really a type of pass. This tendency of agents to use actions in creative ways is a positive

aspect of RL, but it can make human interpretation of policies difficult.

Figures 5.6 and 5.7 show the performance of single-macro transfer in 3-on-2 and 4-on-3 Break-

Away compared to RL-SVR and skill transfer. These results show that macro transfer produces

qualitatively different behavior in the target task than advice-based transfer. Rather than giving a

gradual and long-lasting performance increase, macro transfer gives a large, immediate advantage

at the beginning. Both methods converge with RL-SVR by the end of the learning curve, with

macro transfer converging sooner than skill transfer.

The reason for this difference is that skill transfer provides a constant subtle influence on the

target-task solution, while macro transfer provides an entire temporary solution that is reasonably
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Figure 5.6: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,skill transfer from 2-on-1
BreakAway, and single-macro transfer from 2-on-1 BreakAway. The thin vertical line marks
the end of the demonstration period.
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Figure 5.7: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,skill transfer from 2-on-1
BreakAway, and single-macro transfer from 2-on-1 BreakAway. The thin vertical line marks
the end of the demonstration period.
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Table 5.6: Results of statistical tests on the differences between areas under the curve in single-macro trans-
fer vs. skill transfer for several source/target pairs. Forp < 0.05, the difference is significant
and the winning algorithm is shown; otherwise, the difference is not statistically significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.168 No [-88, 31]
2-on-1 BreakAway 4-on-3 BreakAway 0.090 No [-12, 126]

(but not perfectly) good for the target task. In order to reach the asymptotic solution, the target-task

agent must explore its new environment, and it takes some time to explore beyond the immediate

neighborhood of the macro due to the bias that the macro provides. Thus the macro is both a help

and a hindrance; its bias is quite helpful for early performance, but in a sense it is a local maximum

that must be unlearned in order to reach the true asymptote inthe target task.

The statistical analysis in Tables 5.6 indicates that the difference between single-macro transfer

and skill transfer is not statistically significant in the global sense, though local differences are

visually evident. Whether one method is better than the otherdepends on how much priority is

placed on early performance.

It is also interesting to evaluate the performance of a 2-on-1 BreakAway macro when used in

2-on-1 BreakAway, in what I refer to asself-transfer. This experiment provides some insight on

how well a single macro describes successful behavior in thesource task. On average, the macros

in my experiments score in 32% of episodes in 2-on-1 BreakAway episodes. In comparison, a

random policy scores in less than 1% of episodes, and a fully learned 2-on-1 BreakAway policy

scores in 56% of episodes. A single macro therefore capturesa large portion of the successful

behavior, but does not describe it completely.

5.3 Multiple-Macro Transfer via Demonstration

Multiple-macro transfer via demonstration, my Transfer Algorithm 4, is a transfer method that

learns multiple macros from a source task, and allows target-task agents to use them for an initial
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demonstration period. It is similar to single-macro transfer, except that instead of learning one

overall strategy from the source task, it learns several smaller interacting strategies.

My motivation for developing this variant of the macro transfer method is that single macros

do not fully capture the source-task behavior. One reason may be that they have a strict linear form

describing a single plan, which may be brittle in complex, non-deterministic RL domains. Multiple

macros can provide information on what to do when the initialstrategy must be abandoned. This

ability has particular value for transfer, since the environment in a target task is likely to change in

unexpected ways, violating the source-task assumptions built into the macro.

In the multiple-macro method, an agent can abandon its current strategy at any point and switch

to a new one. A potential advantage of this structure is greater adaptability. A potential disadvan-

tage is more frequent abandonment of macros, which could prevent steady progress towards game

objectives.

Table 5.7 gives the algorithm for multiple-macro transfer.It requires the same input as single-

macro transfer and consists of similar steps. The sections below describe the first three steps in

more detail.

5.3.1 Multiple-Macro Structure and Ruleset Learning

The first step of the macro-transfer algorithm in Table 5.7 isthe structure-learning phase. It

performs the same ILP structure search as for single-macro transfer (see Section 5.2.1). However,

instead of choosing just one structure, it now includes all the action sequences saved by Gleaner.

It still requires these sequences to have a minimum of 50% precision, but it decreases the recall

requirement to 10% to allow for more structures. The set of sequences should vary in length and

in quality at this stage. Overall, the result looks like the diagram in Figure 5.8.

The second and third steps of the macro-transfer algorithm in Table 5.7 are for ruleset learning.

The objective is the same as before: to learn control rules for navigating within each macro based

on the RL agent’s environment when it reaches that point.

However, the control decisions needed are now slightly changed. In single-macro transfer,

agents automatically entered the macro at the start of each game. Since there are now multiple
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Table 5.7: Transfer Algorithm 4: Multiple-Macro Transfer via Demonstration

INPUT REQUIRED

GamesG from the source-task learning process
A definition of high-reward and low-reward games in the source task
A demonstration-period lengthD

LEARN STRUCTURE

Learn rulesR according to Table 5.2
Let Macros = ∅ // This will be a list of macros
For each ruleS ∈ R // EachS represents one macro structure

Create an empty macroMacro = ∅ // This will be a set of nodes and rulesets
For each literal inS representing(Action,ActionArg)

Create a noden of typeAction(ActionArg)
Add noden to Macro

SetMacros←Macros ∪Macro

LEARN ENTRIES

For each macroM ∈Macros

For each noden of M

Learn rulesT according to Table 5.8
Select rulesRentry from T according to Table 5.5
AttachRentry to M as the entry ruleset for noden

LEARN LOOPS

For each macroM ∈Macros

For each noden of M

Learn rulesU according to Table 5.8
Select rulesRloop from U according to Table 5.5
AttachRloop to M as the loop ruleset for noden

LEARN TARGET TASK

ForD episodes: Perform RL but useMacros to choose actions
For remaining episodes: Perform RL normally
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Table 5.8: Algorithm for learning rules to control the entry arc of a noden of a macro, given gamesG from
the source task. Data for this task can come from any game, andmost comes from those that
contain the sequence represented byMacro or some prefix of that sequence. For example, in a
macro with nodes(n1, n2, n3, n4), prefixes include games matching(n1, n2).

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each gameg that is high-reward in the source task and matchesS or a prefix ofS

Let x be the first state in noden of g

SetP ← P ∪ x // States that enter are positive
If n is the first node ofM

Let Y be any states ing that enter other macros
SetN ← N ∪ Y // States that could enter but do not are negative

Else
Let z be any state ing that abandons the macro after noden− 1
SetN ← N ∪ z // States that abandon the macro are negative

Learn rulesR with Aleph and Gleaner to distinguishP from N

ReturnR

Table 5.9: Algorithm for learning rules to control the loop arc of a noden of a macro, given gamesG from
the source task. Data for this task can come from any game, andmost comes from those that
contain the sequence represented byMacro or some prefix of that sequence. For example, in a
macro with nodes(n1, n2, n3, n4), prefixes include games matching(n1, n2).

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each gameg that is high-reward in the source task and matchesS or a prefix ofS

Let X be any states ing that remain in noden after entering it in a previous state
SetP ← P ∪X // States that loop are positive
Let y be any state ing that abandons the macro after noden

SetN ← N ∪ y // States that abandon the macro are negative
Learn rulesR with Aleph and Gleaner to distinguishP from N

ReturnR
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Use
Q-function

Figure 5.8: A structural diagram of the knowledge captured by the multiple-macro transfer method. An
agent starts in a default node using theQ-function, and it can choose to enter any macro. At
any point in that macro, it can choose to abandon and return tothe default node. There it can
choose to enter a new macro, or if none seem appropriate, it can fall back on theQ-function to
choose an action.

structures, agents need to evaluate conditions for entering a structure, so they can determine the

most appropriate macro for their current situation. Furthermore, at each node, agents need to

decide explicitly whether to continue, loop, or abandon. These decisions are made in the following

order:

1. Should I enter the next node or not?

2. If not, should I loop in the current node or abandon this macro?

This changes my original definition of a macro in Section 5.1.Now, a macro consists of:

• A linear set of nodesN = (n1, n2, ...)

• Arcs for entering each node from the previous one with associated rulesetsRentry(ni)

• Arcs that form self-loops for each node with associated rulesetsRloop(ni)

The rulesetRentry(ni) is used to answer the first question above, and the rulesetRloop(ni) is

used to answer the second question. Note that there is no separate ruleset for choosing actions

within nodes; theRentry andRloop rulesets now incorporate that decision.

The details of the ILP tasks for this step are as follows. To describe the conditions on stateS

under which the agent should enter a node, Aleph must construct a clauseenter(S)for a single-

action node orenter(S, ActionArgs)for a variablized-action node. To describe the conditions under
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which the agent should loop in a node, Aleph must construct a clauseloop(S)for a single-action

node orloop(S, ActionArgs)for a variablized-action node. As before, in variablizedpassandshoot

nodes, some rules leaveActionArgsvariablized while other rules apply only to specific arguments.

All the examples in this algorithm are states from high-reward games. This is another difference

from single-macro transfer, which also gleans some negative examples from low-reward games. It

would also be a reasonable design decision to include such examples here. However, I found that

doing so complicates the algorithm without providing noticeable benefits, since the high-reward

games provide enough negative examples already to learn good rulesets.

For an entry ruleset, the positive examples are states that entered the node, and the negative

examples are states that looped in the previous node or abandoned the macro after the previous

node. An exception is the first node in the macro, in which negative examples are states that

entered a different macro. For a loop ruleset, the positive examples are states that looped in the

node, and the negative examples are states that abandoned after the node. The algorithm uses the

same procedures as before for selecting final rulesets and scoring rules.

5.3.2 Experimental Results for Multiple-Macro Transfer

To test the multiple-macro transfer approach, I learn sets of macros from the same 2-on-1

BreakAway source runs as for single macros, and transfer them to 3-on-2 and 4-on-3 BreakAway.

Each source run produced a similar set of 8 to 10 macros, ranging in length from one node to four

nodes. Figure 5.9 shows the actual set for one of the source runs.

Figures 5.10 and 5.11 show the performance of multiple-macro transfer in 3-on-2 and 4-on-3

BreakAway compared to RL-SVR, skill transfer, and single-macro transfer. These results show

that multiple-macro transfer produces a learning curve similar in shape to single-macro transfer,

but with an overall improvement in some cases. The improvement is not drastic, which indicates

that the BreakAway task may not have a large number of necessary macros, but clearly allowing

more than just one macro can be useful.
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pass(Teammate) move(ahead)

pass(Teammate) move(right) shoot(goalLeft)

move(right) move(left) shoot(goalLeft) shoot(goalRight)

move(left) shoot(goalLeft) shoot(goalRight)

move(ahead) move(right) shoot(goalLeft) shoot(goalRight)

move(away) shoot(goalLeft) shoot(goalRight)

move(right) shoot(goalLeft) shoot(goalRight)

shoot(goalLeft) shoot(goalRight)

shoot(GoalPart)

Figure 5.9: The actual list of macros learned for one source run in my experiments with multiple-macro
transfer. Only the nodes, and not the rulesets, are shown.
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Figure 5.10: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,skill transfer from 2-on-1
BreakAway, single-macro transfer from 2-on-1 BreakAway, and multiple-macro transfer from
2-on-1 BreakAway. The thin vertical line marks the end of the demonstration period.
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Figure 5.11: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,skill transfer from 2-on-1
BreakAway, single-macro transfer from 2-on-1 BreakAway, and multiple-macro transfer from
2-on-1 BreakAway. The thin vertical line marks the end of the demonstration period.
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Table 5.10:Results of statistical tests on the differences between areas under the curve in multiple-macro
transfer vs. single-macro transfer for several source/target pairs. Forp < 0.05, the difference
is significant and the winning algorithm is shown; otherwise,the difference is not statistically
significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.004 Yes (Multiple) [21, 116]
2-on-1 BreakAway 4-on-3 BreakAway 0.452 No [-56, 48]

The statistical analysis in Table 5.10 indicates that the difference between multiple-macro trans-

fer and single-macro transfer is significant in 3-on-2 BreakAway, though not in 4-on-3 BreakAway.

Multiple macros may provide fewer benefits as the source and target tasks grow further apart.

In a 2-on-1 BreakAway self-transfer test, multiple macros score in 43% of episodes, com-

pared to 32% for single macros and 56% at the asymptote of the learning curve. Multiple macros

therefore capture more of the successful behavior than single macros do, though they still do not

describe it completely.

5.4 Testing the Boundaries of Macro Transfer

One shortcoming of relational macros may be their ad-hoc method of making decisions. Recall

that when multiple rules match, they simply follow the single rule with the highest score. Thus they

are essentially making decisions based on one rule in the set. An agent may be able to make better

decisions by taking information from all the rules into account, instead of just the highest-scoring

one. This section describes further experiments with macrotransfer along these lines.

When an agent reaches a decision point in a macro, its current environment will likely satisfy

some of the rules in the relevant ruleset and not satisfy others. I now wish to employ a classifier that

uses all of that information to make the final decision, and preferably one that handles relational

features. My solution is to use a Markov Logic Network (MLN),a statistical-relational model de-

scribed in Section 2.4, which interprets first-order statements as soft constraints with weights [70].

I describe and test this method in the context of single macros for simplicity. For each ruleset

in the macro, I use the rules as formulas for an MLN. However, rather than expressing them
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angle(a1, a0, d0) > 30 

pass(Teammate)  AND  distance(Teammate, goal) < 12

angle(a2, a0, d0) > 30 

distance(a1, goal) < 12 distance(a2, goal) < 12 

pass(a1) 

pass(a2) 

pass(Teammate)  AND  angle(Teammate, a0, d0) > 30

Figure 5.12: A small ruleset (with rule weights not shown) and the ground Markov network it would pro-
duce. Each grounded literal becomes a node in the MLN. When literals appear together in
clauses, their nodes are linked. Groups of linked nodes formcliques, which have potential
functions (not shown) describing their joint probabilities. To use this MLN to choose between
pass(a1)andpass(a2), an agent infers their conditional probabilities and takesthe higher one.

as implications, I express them as conjuncts, since this is recommended by MLN experts [20].

Figure 5.12 shows a simple hypothetical ruleset in this conjunct form instead of the usualIF...THEN

form. It also shows what the ground Markov network would looklike in 3-on-2 BreakAway.

I learn formula weights with the Alchemy MLN software [40], using the same data for positive

and negative examples as the original algorithm did when learning the rulesets. Each ruleset is

therefore replaced by an MLN. Here again, weight learning across multiple rulesets from different

arcs in a macro could be treated as a combined problem requiring a joint solution. However, to

maintain consistency and to avoid large problem sizes, I continue to treat each ruleset indepen-

dently.

As described in Figure 5.12, a target-task agent uses an MLN like this to make decisions by

inferring the conditional probabilities of the nodes representing its choices and taking the choice

whose node has highest probability. Since the MLN captures the distribution of source-task choices

at one point in a macro, this means taking the action the source-task policy would most likely take.

Inference is normally accomplished by an approximation algorithm. However, the particular

structure of my MLNs allows for efficient exact inference. I now describe this calculation, using

the example of choosing an action in Figure 5.12.
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Recall that each MLN formulafi ∈ F , with weightwi, has a numberni(x) of true groundings

in each possible worldx, and that the probability that the worldx is the correct one is, from

Equation 2.7 in Section 2.4:

P (X = x) =
1

Z
exp

∑

i∈F

wini(x) (5.1)

The nodes forpass(a1)andpass(a2)in Figure 5.12 are conditionally independent. Intuitively,

the reason is that these decision nodes are only connected toevidence nodes whose truth values

are known, so they do not affect each other’s values. For a formal proof, see Appendix D. The

result of this conditional independence is that when calculating the probability forpass(a1), only

two worlds need to be considered:X = 1 wherepass(a1)is true, andX = 0 wherepass(a1)is

false.

Since the formulas are in conjunct form, the only true groundings of formulas forpass(a1)are

those in whichpass(a1)is true. This means thatni(0) = 0, and that:

P (X = 0) =
1

Z
exp

∑

i∈F

wini(0) =
1

Z
exp(0) =

1

Z
(5.2)

Recall thatZ is just a normalizing factor so that the probabilities of both worlds sum to1:

P (X = 0) + P (X = 1) = 1 (5.3)

1

Z
+

1

Z
exp

∑

i∈F

wini(1) = 1 (5.4)

The value ofZ is therefore:

Z = exp
∑

i∈F

wini(1) + 1 (5.5)

SubstitutingZ back into Equation 5.1 gives:
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P (X = 1) =

exp
∑

i∈F

wini(1)

1 + exp
∑

i∈F

wini(1)
(5.6)

This is the solution for the conditional probability of thepass(a1)node. Note that it is a logistic

function, which confirms the point made by Domingos and Richardson [22] that logistic regression

can be considered a special case of Markov Logic Networks.

To evaluate the use of MLNs for decision-making in macros, I take the macros learned from

2-on-1 BreakAway in single-macro transfer and construct MLNs for them as described above. I

then transfer these enhanced macros to 3-on-2 and 4-on-3 BreakAway.

I found it important to tune one Alchemy parameter in this approach. This parameter, called

priorStdDevin Alchemy, governs the width of the Gaussian prior distribution of each formula

weight (centered at zero). I found that the default setting of 2 was too high for some runs, allow-

ing formula weight magnitudes to grow too large, and producing overfitting (the untuned MLNs

perform much worse on a tuning set than on the training data).I addressed this by choosing from

values of{2, 1, 0.5, 0.1, 0.05, 0.01} with a validation set of source-task data. The appropriate

setting was 0.05 for most runs.

Figures 5.13 and 5.14 show the performance of this method in 3-on-2 and 4-on-3 BreakAway

compared to RL-SVR and the original single-macro transfer approach. These results show that at

best, this method produces no significant difference in performance, and at worst, as the distance

between the source and target task grows, it actually decreases performance.

The statistical analysis in Table 5.11 indicates that the difference between MLN-enhanced

macros and regular macros is not statistically significant for 3-on-2 BreakAway, though it is for

4-on-3 BreakAway. This method may become more harmful as thesource and target tasks grow

further apart.

In a 2-on-1 BreakAway self-transfer test, MLN-enhanced macros score in 43% of episodes,

compared to 32% for single macros, 43% for multiple macros, and 56% at the asymptote of the

learning curve. The addition of MLNs for decision-making therefore does improve the description
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Figure 5.13: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,single-macro transfer from
2-on-1 BreakAway, and single-macro transfer with MLNs from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.
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Figure 5.14: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,single-macro transfer from
2-on-1 BreakAway, and single-macro transfer with MLNs from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.
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Table 5.11:Results of statistical tests on the differences between areas under the curve in single-macro
transfer with MLNs vs. regular single-macro transfer for several source/target pairs. Forp <

0.05, the difference is significant and the winning algorithm is shown; otherwise, the difference
is not statistically significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.068 No [-92, 10]
2-on-1 BreakAway 4-on-3 BreakAway 0.002 Yes (Regular) [29, 163]

of successful source-task behavior. However, this source-task improvement does not carry over

into target-task improvement the way that it did for multiple macros.

The reason for this result appears to be that the MLNs improveclassification accuracy, com-

pared to the original rulesets, primarily by decreasing thenumber of false positives. In many sce-

narios, this would be a desirable change. However, in the specific case of macro decision-making,

the result is that the MLNs decide to take fewer transitions and consider fewer action arguments.

This produces over-cautious behavior that misses opportunities, particularly in transfer scenarios

when the environment does not look exactly as it would in the source task.

Macros perform better when they base their decisions on important similarities between source

and target environments, rather than making a complete comparison. Taking all the rules into ac-

count puts too much focus on the differences between the tasks and does not allow the macro to

take advantage of the similarities. Within macro transfer,the seemingly ad-hoc method of fol-

lowing the highest-scoring rule is superior in my experiments to the theoretically more principled

MLN method.

This result is an example of a phenomenon that is related to overfitting. The traditional sense

of overfitting is that modeling training data too closely causes a learner to treat spurious patterns as

important, which means the model does not generalize well even to data drawn from the same dis-

tribution. If this traditional kind of overfitting occurredin transfer, then the source-task knowledge

would produce low performance in self-transfer. However, source-task knowledge can produce

high performance in self-transfer while failing to generalize well to target tasks, especially as they

grow more distant from the source. I call this phenomenonoverspecialization.
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5.5 Summary of Macro Transfer

Since standard RL has to act mostly randomly in the early steps of a task, a good macro strategy

can provide a large immediate advantage. The performance level of the demonstrated strategy is

unlikely to be as high as the target-task agent can achieve with further training, unless the two tasks

have identical strategies. However, through further learning the agent can improve its performance

from the level of the demonstration up to its asymptote.

The macro is both a help and a hindrance; its bias is quite helpful for early performance, but

in a sense it is a local maximum that must be unlearned in orderto reach the true asymptote in the

target task. This is one reason that my demonstration approach stops using transferred knowledge

abruptly instead of smoothly decaying its use, which would also be a reasonable design choice.

Extending the use of the transferred knowledge might only delay the unlearning and relearning

process in the target task.

Transferring multiple macros rather than a single macro provides a more flexible strategy, and

can produce better performance. Macros perform well with the simple method of following the

highest-scoring rule, and more sophisticated methods of decision-making that improve classifi-

cation accuracy actually decrease performance due to decreased flexibility and overly cautious

behavior. This is an example of overspecialization to a source task, which can hurt performance in

a target task.

Demonstration has both advantages and disadvantages compared to advice taking. The most

notable disadvantage is its lack of protection against negative transfer, which makes it appropriate

only for close-transfer scenarios. A more subtle disadvantage is the time that it takes to adjust the

macro strategy appropriately to the target task. However, if there is limited time and the target task

cannot be trained to its asymptote, then the immediate advantage that macros can provide may be

quite valuable in comparison to advice-taking methods.

Although I found that using Markov Logic Networks in conjunction with macros was not de-

sirable, the MLN remains a powerful relational model in its own right that could be used as a

structure for knowledge transfer. The next chapter presents methods for transfer via MLNs.
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Chapter 6

Transfer via Markov Logic Networks

Statistical relational learning (SRL) is a type of machine learning designed to operate in do-

mains that have both uncertainty and rich relational structure [33]. It focuses on combining the

two powerful paradigms of first-order logic, which generalizes among the objects in a domain, and

probability theory, which handles uncertainty.

An SRL model could therefore capture relational information about a task in a more flexible

way than the ILP-based techniques I have discussed so far. One of the realistic aspects of the

RoboCup domain is its non-determinism, and ILP techniques, which only express that concepts

are true or false, do not capture non-determinism. SRL techniques can express that concepts are

true with certain probabilities, which makes them potentially a more powerful type of model for

transfer.

One recent and popular SRL formalism is the Markov Logic Network (MLN), described in

Section 2.4, which interprets first-order statements as soft constraints with weights [70]. Where

skill transfer captured single actions, and macro transfercaptured common sequences of actions,

MLNs can capture an entireQ-function or policy. Like macro transfer, my MLN transfer methods

are appropriate only for close-transfer scenarios becausethey sacrifice protection against negative

transfer in order to produce large initial benefits.

This chapter presents two methods for performing transfer with MLNs. One method expresses

the source-taskQ-function with an MLN, and the other expresses the source-task policy. This

chapter is based in part on published work [102].
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6.1 MLN Relational Q-Function Transfer

MLN relational Q-function transfer, my Transfer Algorithm 5, is a transfer method that learns

an MLN to express the source-taskQ-function relationally, and allows target-task agents to use it

for an initial demonstration period. Like the macro-transfer methods, this allows the target-task

agents to avoid the slow process of random exploration that traditionally occurs at the beginning

of RL. This section is based on published work [102].

An MLN Q-function is potentially more expressive than a macro, because it is not limited to

one action sequence. Furthermore, due to its relational nature, it provides better generalization to

new tasks than a propositional value-function transfer method could.

This method uses an MLN to define a probability distribution for the Q-value of an action,

conditioned on the state features. It chooses a source-taskbatch and uses its training data to learn

an MLN Q-function for transfer. The choice of which source-task batch has an impact, as I will

discuss.

In this scenario, an MLN formula describes some characteristic of the RL agent’s environment

that helps determine theQ-value of an action in that state. For example, assume that there is a

discrete set ofQ-values that a RoboCup action can have (high, medium, andlow). In this simplified

case, one formula in an MLN representing theQ-function for BreakAway could look like the

following:

IF distBetween(a0, GoalPart)> 10

AND angleDefinedBy(GoalPart, a0, goalie)< 30

THEN levelOfQvalue(move(ahead), high)

The MLN could contain multiple formulas like this for each action. After learning weights

for the formulas from source-task data, one could use this MLN to infer, given a target-task state,

whether actionQ-values are most likely to be high, medium, or low.

Note thatQ-values in RoboCup are continuous rather than discrete, so I do not actually learn

rules classifying them as high, medium, or low. Instead, thealgorithm discretizes the continuous

Q-values into bins that serve a similar purpose.
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Table 6.1: Transfer Algorithm 5: MLN RelationalQ-Function Transfer

INPUT REQUIRED

A set of batchesB = (b1, b2, ...) to consider for transfer
TheQ-functionQb for each batchb ∈ B

The set of gamesG(b) that trained theQ-function for each batchb ∈ B

A parameterǫ determining distance between bins
A demonstration-period lengthD
A validation-run lengthV

CREATE Q-VALUE BINS // This is a hierarchical clustering procedure
For each batchb ∈ B

For each source-task actiona
Determinebins(b, a) for actiona in batchb using Table 6.2
(Provide inputsG(b) andǫ)

LEARN FORMULAS // This accomplishes MLN structure learning
For each batchb ∈ B

For each source-task actiona
For eachbin ∈ bins(b, a)

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each states in a gameg ∈ G(b)

If s used actiona andQb
a(s) falls into bin

SetP ← P ∪ g // Examples that fall into the bin are positive
Else ifs used actiona andQb

a(s) does not fall intobin
SetN ← N ∪ g // Examples that fall outside the bin are negative

Learn rules with Aleph and Gleaner to distinguishP from N

Let M(b, a, bin) be the ruleset chosen by the algorithm in Table 5.5
Let M(b, a) be the union ofM(b, a, bin) for all bins

LEARN FORMULA WEIGHTS

For each batchb ∈ B

For each source-task actiona
Learn MLN weightsW (b, a) for the formulasM(b, a) using Alchemy
DefineMLN(b, a) as (M(b, a),W (b, a))

DefineMLN(b) as the set of MLNsMLN(b, a)

CHOOSE A BATCH // Do a validation run in the source task to pick the best batch
For each batchb ∈ B

ForV episodes: UseMLN(b) as shown in Table 6.3 to choose actions in a new source-task run
Let score(b) be the average score in this validation run

Choose the highest-scoringb∗ ∈ B = argmaxb score(b)

LEARN TARGET TASK

ForD episodes: Perform RL but useMLN(b∗) to choose actions as shown in Table 6.3
For remaining episodes: Perform RL normally
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Table 6.1 gives the algorithm for MLNQ-function transfer. It requires as input a set of batches

from which to attempt transfer, theQ-function learned after each batch and the games used to train

it, a parameter determining the number of bins, the length ofthe demonstration period, and the

length of a validation run that is used to choose a batch. It consists of five steps: creatingQ-value

bins, learning formulas for the MLNs, learning weights for the formulas, using a validation run to

choose the best batch, and learning the target task via demonstration. The sections below describe

these steps in more detail.

6.1.1 Learning an MLN Q-function from a Source Task

The first step of the MLNQ-function transfer algorithm in Table 6.1 is to divide theQ-values

for an action into bins, according to the procedure in Table 6.2. The training exampleQ-values

could have any arbitrary distribution, so it uses a hierarchical clustering algorithm to find good

bins. Initially every training example is its own cluster, and it repeatedly joins clusters whose

midpoints are closest until there are no midpoints closer thanǫ apart. The final cluster midpoints

serve as the midpoints of the bins.

Table 6.2: Algorithm for dividing theQ-values of an actiona into bins, given training data from gamesG

and a parameterǫ determining distance between bins.

For each statei in a gameg ∈ G that takes actiona
Create clusterci containing only theQ-value of examplei

Let C = sorted list ofci for all i
Let m = min distance between two adjacentcx, cy ∈ C

While m < ǫ // Join clusters until too far apart
Join clusterscx andcy into cxy

C ← C ∪ cxy − {cx, cy}
m←min distance between two new adjacentc′x, c′y ∈ C

Let B = ∅ // These will be the bins for actiona
For each final clusterc ∈ C // Center one bin on each cluster

Let bin b have midpoint̄c, the average of values inc
Set the boundaries ofb at adjacent midpoints orQ-value limits
SetB ← B ∪ b

ReturnB
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The value ofǫ should be domain-dependent. For BreakAway, which hasQ-values ranging from

approximately 0 to 1, I useǫ = 0.1. This leads to a maximum of about 11 bins, but there are often

less because training examples tend to be distributed unevenly across the range. I experimented

with ǫ values ranging from 0.05 to 0.2 and found very minimal differences in the results; the

approach appears to be robust to the choice ofǫ within a reasonably wide range.

The second step of the MLNQ-function transfer algorithm in Table 6.1 performs structure-

learning for the MLN. The MLN formulas are rules that assign training examples into bins. The

algorithm creates these rulesets with the same ILP techniques described in previous chapters. Some

examples of bins learned forpassin 2-on-1 BreakAway, and of rules learned for those bins, are:

IF distBetween(a0, GoalPart)≥ 42

AND distBetween(a0, Teammate)≥ 39

THEN pass(Teammate) has aQ-value in the interval [0, 0.11]

IF angleDefinedBy(topRightCorner, goalCenter, a0)≤ 60

AND angleDefinedBy(topRightCorner, goalCenter, a0)≥ 55

AND angleDefinedBy(goalLeft, a0, goalie)≥ 20

AND angleDefinedBy(goalCenter, a0, goalie)≤ 30

THEN pass(Teammate) has aQ-value in the interval [0.11, 0.27]

IF distBetween(Teammate, goalCenter)≤ 9

AND angleDefinedBy(topRightCorner, goalCenter, a0)≤ 85

THEN pass(Teammate) has aQ-value in the interval [0.27, 0.43]

The third step of the algorithm learns weights for the formulas using Alchemy’s conjugate

gradient-descent algorithm, as described in Section 2.4. The fourth step of the algorithm selects the

best batch from among the set of candidates. I found that the results can vary widely depending on

the source-task batch from which the algorithm transfers. It selects a good batch using a validation

set of source-task data.

6.1.2 Applying an MLN Q-function in a Target Task

The final step of the MLNQ-function transfer algorithm in Table 6.1 is to learn the target task

with a demonstration approach. During the demonstration period, the target-task learner queries
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Table 6.3: Algorithm for estimating theQ-value of actiona in target-task states using the MLNQ-
function. This is a weighted sum of bin expected values, wherethe expected value of a bin
is estimated from the training data for that bin.

Provide states to the MLN as evidence
For each binb ∈ [1, 2, ..., n]

Infer the probabilitypb thatQa(s) falls into binb

Collect training examplesT for whichQa falls into binb

Let E[Qa|b] be the average ofQa(t) for all t ∈ T

ReturnQa(s) =
∑

b(pb ∗ E[Qa|b])

the MLN to determine the estimatedQ-value of each action, and it takes the highest-valued action.

Meanwhile, it learnsQ-functions after each batch, and after the demonstration ends, it begins using

thoseQ-functions.

The algorithm in Table 6.3 shows how to estimate aQ-value for an action in a new state using

an MLN Q-function. It begins by performing inference in the MLN to estimate the probability,

for each action and bin, thatlevelOfQvalue(action, bin)is true. As when I used MLNs within

macros, it can do exact inference because the only non-evidence nodes are the query nodes (see

Section 5.4).

For each actiona, the algorithm infers the probabilitypb that theQ-value falls into each binb.

It then uses these probabilities as weights in a weighted sumto calculate theQ-value ofa:

Qa(s) =
∑

b

pbE[Qa|b]

whereE[Qa|b] is the expectedQ-value given thatb is the correct bin, estimated as the average

Q-value of the training data in that bin.

The probability distribution that an MLN provides over theQ-value of an action could look like

one of the examples in Figure 6.1. This approach has links to Bayesian reinforcement learning [83],

which also learns distributions over values rather than single values. By explicitly representing

uncertainty overQ-values through distributions, Bayesian RL can balance exploitation and explo-

ration in principled ways rather than using theǫ-greedy heuristic. I have not included Bayesian
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Figure 6.1: Examples of probability distributions overQ-value of an action that an MLNQ-function might
produce. On the left, the MLN has high confidence that theQ-value falls into a certain bin,
and the action will get a highQ-value. In the center, the MLN is undecided between several
neighboring bins, and the action will still get a highQ-value. On the right, there is a high
likelihood of a high bin but also a non-negligible likelihood of a low bin, and the action will
get a lowerQ-value.

exploration in MLNQ-function transfer because the short demonstration periodmakes it unlikely

to produce noticeable differences. However, I discuss potential uses of an MLNQ-function for

Bayesian exploration in the future-work section.

6.1.3 Experimental Results for MLN Q-function Transfer

To test MLNQ-function transfer, I learn MLNs from the same 2-on-1 BreakAway source tasks

as in previous chapters and transfer them to 3-on-2 and 4-on-3 BreakAway. I focus on close-

transfer scenarios for the same reasons as in macro transfer. The mappings I use for these scenarios

are documented in Appendix C. As in Section 5.4, I use a validation set of source-task data to tune

the Alchemy parameterpriorStdDev.

Figures 6.2 and 6.3 show the performance of MLNQ-function transfer in 3-on-2 and 4-on-3

BreakAway compared to RL-SVR and multiple-macro transfer.These results show that MLNQ-

function transfer is less effective than multiple-macro transfer, which was the best macro-transfer

method.

The statistical analysis in Table 6.4 indicates that the difference between MLNQ-function

transfer and multiple-macro transfer is statistically significant.

In a 2-on-1 BreakAway self-transfer test, MLNQ-functions score in 59% of episodes, com-

pared to 43% for multiple macros and 56% at the asymptote of the learning curve. This indicates
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Figure 6.2: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,macro transfer from 2-on-
1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin verticalline
marks the end of the demonstration period.
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Figure 6.3: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,macro transfer from 2-on-
1 BreakAway, and MLNQ-function transfer from 2-on-1 BreakAway. The thin verticalline
marks the end of the demonstration period.
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Table 6.4: Results of statistical tests on the differences between areas under the curve in MLNQ-function
transfer vs. multiple-macro transfer for several source/target pairs. Forp < 0.05, the difference
is significant and the winning algorithm is shown; otherwise,the difference is not statistically
significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.004 Yes (Macro) [24, 132]
2-on-1 BreakAway 4-on-3 BreakAway 0.001 Yes (Macro) [41, 154]

that MLN Q-functions capture the source-task behavior more thoroughly than multiple macros do.

However, this source-task improvement does not carry over into target-task improvement.

One reason that MLNQ-functions are less effective than multiple macros may be that they

transfer information aboutQ-values rather than about policy. As I discussed in Section 4.2 in the

context of advice-based policy transfer, it is likely that theQ-values in the two tasks are different

even in cases where their action choices would be the same. Applying that argument here suggests

a different method of MLN transfer, which I address in the next section.

6.2 MLN Relational Policy Transfer

MLN relational policy transfer, my Transfer Algorithm 6, is a method that learns an MLN to

express the source-task policy, and allows target-task agents to use it for an initial demonstration

period. This approach is closely related to MLNQ-function transfer, but it has the potential to

transfer more effectively by focusing on policy rather thanQ-values.

Instead of needing to create bins for continuousQ-values, MLN policy transfer learns an MLN

that simply predicts the best action to take. This may be moredirectly comparable to macro

transfer. It is also simpler than MLNQ-function transfer in that it does not need to choose a batch

from which to transfer, which was a significant tuning step inthe previous method.

Table 6.5 gives the algorithm for MLNQ-function transfer. It requires the same input as the

macro-transfer algorithms. It consists of three steps: learning formulas for the MLN, learning

weights for the formulas, and learning the target task via demonstration. The section below de-

scribes these steps in more detail.
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Table 6.5: Transfer Algorithm 6: MLN Relational Policy Transfer

INPUT REQUIRED

GamesG from the source-task learning process
A definition of high-reward and low-reward games in the sourcetask
The demonstration-period lengthD

LEARN FORMULAS

Let G be the set of high-reward source-task games
For each source-task actiona

Let P = ∅ // These will be the positive examples
Let N = ∅ // These will be the negative examples
For each states in a gameg ∈ G

If g is a high-reward game in the source task ands used actiona
SetP ← P ∪ s // States that use the action are positive

Else ifg is a high-reward game in the source task ands used actionb 6= a

SetN ← N ∪ s // States that use a different action are negative
Learn rules with Aleph and Gleaner to distinguishP from N

Let M be the ruleset chosen by the algorithm in Table 5.5

LEARN FORMULA WEIGHTS

Learn MLN weightsW for the formulasM using Alchemy
DefineMLN by (M, W )

LEARN TARGET TASK

ForD episodes: Perform RL but choose the highest-probability action according toMLN

For remaining episodes: Perform RL normally
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6.2.1 Learning and Using an MLN Policy

The first and second steps of the MLN policy-transfer algorithm in Table 6.5 perform structure-

learning and weight-learning for the MLN. However, the formulas simply predict when an action

is the best action to take, rather than predicting aQ-value bin for an action as they do in MLN

Q-function transfer.

Examples for this learning task come from high-reward gamesthroughout the learning curve;

as in multiple-macro transfer, it would be possible to gleanadditional negative examples from

low-reward games, but I found it unnecessary. The positive examples for an action are states in

high-reward games in which that action was taken. The negative examples are states in high-reward

games in which a different action was taken.

Note that this ILP task is a simplified version of the skill-transfer ILP task in Section 4.3. It

produces similar rules, though instead of just one per action, there are many. Some examples of

rules learned forpassin 2-on-1 BreakAway are:

IF angleDefinedBy(topRightCorner, goalCenter, a0)≤ 70

AND timeLeft≥ 98

AND distBetween(a0, Teammate)≥ 3

THEN pass(Teammate)

IF distBetween(a0, GoalPart)≥ 36

AND distBetween(a0, Teammate)≥ 12

AND timeLeft≥ 91

AND angleDefinedBy(topRightCorner, goalCenter, a0)≤ 80

THEN pass(Teammate)

IF distBetween(a0, GoalPart)≥ 27

AND angleDefinedBy(topRightCorner, goalCenter, a0)≤ 75

AND distBetween(a0, Teammate)≥ 9

AND angleDefinedBy(Teammate, a0, goalie)≥ 25

THEN pass(Teammate)

The rulesets produced by my usual search and selection procedures become formulas in the

MLN policy. Weights for the formulas are learned as before, using Alchemy’s conjugate-gradient

descent algorithm.
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The final step of the MLN policy-transfer algorithm in Table 6.5 learns the target task with

a demonstration approach. During the demonstration period, the target-task learner queries the

MLN to determine the probability that each action is best, and it takes the highest-probability

action. Meanwhile, it learnsQ-functions after each batch, and after the demonstration ends, it

begins using thoseQ-functions.

6.2.2 Experimental Results for MLN Policy Transfer

To test MLN policy transfer, I learn MLNs from the same 2-on-1BreakAway source tasks as in

MLN Q-function transfer and transfer them to 3-on-2 and 4-on-3 BreakAway. As in Section 5.4, I

use a validation set of source-task data to tune the Alchemy parameterpriorStdDev.

Figures 6.4 and 6.5 show the performance of MLN policy transfer in 3-on-2 and 4-on-3 Break-

Away compared to RL-SVR, multiple-macro transfer, and MLNQ-function transfer. These results

show that transferring an MLN policy is more effective than transferring an MLNQ-function, and

is comparable to multiple-macro transfer. The statisticalanalysis in Table 6.6 indicates that the area

under the curve for MLN policy transfer is significantly higher than for MLNQ-function transfer.

In a 2-on-1 BreakAway self-transfer test, MLN policies score in 65% of episodes, compared

to 43% for multiple macros, 59% for MLNQ-functions, and 56% at the asymptote of the learning

curve. This indicates that an MLN policy is a substantial improvement over the source-task pol-

icy from which it was learned, which is an interesting achievement beyond the context of transfer

learning. As I will discuss later, it suggests that MLN policies could be used to improve reinforce-

ment learning.

As hypothesized, transferring policy information rather thanQ-value information does lead to

better MLN transfer. However, despite the fact that MLN policies clearly capture more source-

task knowledge than multiple macros do, they both lead to similar transfer results. This does not

appear to be overspecialization, because the closer source-task fit is not hurting performance in the

target task. However, it does indicate that transfer can have diminishing returns. After a point,

transferring more accurate detail about the source-task solution no longer helps in the target task

because the tasks are different.
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Figure 6.4: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,multiple-macro transfer from
2-on-1 BreakAway, MLNQ-function transfer from 2-on-1 BreakAway, and MLN policy trans-
fer from 2-on-1 BreakAway. The thin vertical line marks the end of the demonstration period.
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Figure 6.5: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,multiple-macro transfer from
2-on-1 BreakAway, MLNQ-function transfer from 2-on-1 BreakAway, and MLN policy trans-
fer from 2-on-1 BreakAway. The thin vertical line marks the end of the demonstration period.
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Table 6.6: Results of statistical tests on the differences between areas under the curve in MLN policy trans-
fer vs. MLN Q-function transfer for several source/target pairs. Forp < 0.05, the difference
is significant and the winning algorithm is shown; otherwise,the difference is not statistically
significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.023 Yes (Policy) [4, 105]
2-on-1 BreakAway 4-on-3 BreakAway 0.029 Yes (Policy) [1, 119]

6.3 Testing the Boundaries of MLN Policy Transfer

In this section I evaluate two aspects of MLN policy transfer. First, I examine the benefit of

using an MLN at all, when the ILP rulesets alone could providea policy. Second, I test whether it

is useful to include action-sequence information in MLN policy rules, which in a sense enhances

MLNs with a property of macros, just as the previous chapter attempted to enhance macros with

MLNs.

An MLN policy could be viewed as a macro that contains just onenode in which every action

is possible. As in a normal macro node, there is a ruleset for each possible action. In a macro, I

found that allowing the best satisfied rule to choose the action performed better than using an MLN

to choose an action based on all the rules. It is therefore a reasonable question whether an MLN is

necessary at all in MLN policy transfer; perhaps using the rulesets directly would perform as well

or better.

To answer this question, I score each rule in the MLN policy rulesets in the same way that I

score rules in macros, according to Table 5.5. At each step inthe target task, I have my agents

check all the rules, and instead of consulting an MLN to determine actions, they simply take the

action recommended by the highest-scoring satisfied rule.

Figures 6.6 and 6.7 show the performance of this approach in 3-on-2 and 4-on-3 BreakAway,

compared with RL-SVR and regular MLN policy transfer. Theseresults show that MLN policy

transfer does outperform ruleset policy transfer. The statistical analysis in Table 6.7 indicates that
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Figure 6.6: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,regular MLN policy transfer
from 2-on-1 BreakAway, and ruleset MLN policy transfer from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.
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Figure 6.7: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,regular MLN policy transfer
from 2-on-1 BreakAway, and ruleset MLN policy transfer from 2-on-1 BreakAway. The thin
vertical line marks the end of the demonstration period.
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Table 6.7: Results of statistical tests on the differences between areas under the curve in ruleset policy
transfer vs. regular MLN policy transfer for several source/target pairs. Forp < 0.05, the
difference is significant and the winning algorithm is shown;otherwise, the difference is not
statistically significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.014 Yes (Regular) [8, 94]
2-on-1 BreakAway 4-on-3 BreakAway 0.382 No [-56, 40]

the area under the curve decreases slightly in 3-on-2 BreakAway and remains equivalent in 4-

on-3. In a 2-on-1 BreakAway self-transfer test, the rulesetpolicy scores in 53% of the episodes,

compared to 65% for the regular MLN policy.

I conclude that MLNs do provide an additional benefit over ILPin the scenario of relational

policy transfer, in both the source and target task. The reason they are beneficial in this context but

not in macros is that there is no structure here for them to hinder. In both contexts, MLNs produce

higher classification accuracy compared to their rulesets,primarily by decreasing the number of

false positives. In macros, this caused too much caution in progressing through the strategy, but

here all actions are possible from the same “node,” so that interference does not occur.

This experiment also provides insight on the use of advice ina demonstration setting. These

rulesets contain clauses that are comparable to the advice in the skill-transfer method of Chapter 4;

the only difference is that there are more of them. Skills applied via demonstration would produce

a target-task learning curve of similar shape. However, if Iused only one clause per skill as I did

in skill transfer, the initial performance would be lower due to lower coverage.

MLN policy transfer assumes the Markov property, in which the action choice depends only

on the current environment and is independent of previous environments and actions. However, it

need not do so; the MLN formulas for action choices could use such information. I examine the

benefit of doing so by adding predicates to the ILP hypothesisspace that specify previous actions.

I add predicates for one, two, and three steps back in a game. Like macros, this approach allows

transfer of both relational information and multi-state reasoning.
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In these experiments, Aleph only chose to use the predicate for one step back, and never used

the ones for two and three steps. This indicates that it is sometimes informative to know what the

immediately previous action was, but beyond that point, action information is not useful. Aleph

primarily used action predicates in rules formoveawayand the shoot actions, both of which are

sensible. Moving away can cause agents to go out of bounds, soit makes sense to consider that

action only after other actions that bring the players further infield. Two consecutive shoot ac-

tions are typical of successful BreakAway games, so it makessense that rules for shooting make

reference to previous shoot actions.

Figures 6.8 and 6.9 show the performance of multi-step MLN policy transfer in 3-on-2 and

4-on-3 BreakAway, compared with RL-SVR and regular MLN policy transfer. These results show

that adding action-sequence information does not improve MLN policy transfer. The statistical

analysis in Table 6.8 indicates that the area under the curvedecreases slightly in 3-on-2 BreakAway

and remains equivalent in 4-on-3. In a 2-on-1 BreakAway self-transfer test, the multi-step MLN

policy scores in 64% of the episodes, compared to 65% for the regular MLN policy.

This result indicates that the Markov property is a valid assumption in the BreakAway domain.

While action patterns do exist, and the macro approach takes advantage of them, there is apparently

enough information in the current state to make action choices independently. A multi-step MLN

policy is therefore unnecessary in this domain, though it could be helpful in different domains

where the Markov property does not hold.

Table 6.8: Results of statistical tests on the differences between areas under the curve in multi-step MLN
policy transfer vs. regular MLN policy transfer for several source/target pairs. Forp < 0.05,
the difference is significant and the winning algorithm is shown; otherwise, the difference is not
statistically significant.

Source Target p-value Significance (Winner) 95% CI

2-on-1 BreakAway 3-on-2 BreakAway 0.047 Yes (Regular) [-71, 3]
2-on-1 BreakAway 4-on-3 BreakAway 0.158 No [-82, 25]
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Figure 6.8: Probability of scoring a goal in 3-on-2 BreakAway with RL-SVR,regular MLN policy transfer
from 2-on-1 BreakAway, and multi-step MLN policy transfer from 2-on-1 BreakAway. The
thin vertical line marks the end of the demonstration period.
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Figure 6.9: Probability of scoring a goal in 4-on-3 BreakAway with RL-SVR,regular MLN policy transfer
from 2-on-1 BreakAway, and multi-step MLN policy transfer from 2-on-1 BreakAway. The
thin vertical line marks the end of the demonstration period.
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6.4 Summary of MLN Transfer

MLN transfer via demonstration can give the learner a significant head start in the target task.

As in macro transfer, the performance level of the demonstrated strategy is unlikely to be as high

as the target-task agent can achieve with further training,but the learner can improve its perfor-

mance from the level of the demonstration up to its asymptote. As in macro transfer, the demon-

stration method lacks protection against negative transfer, which makes it appropriate only for

close-transfer scenarios.

Transferring a policy with an MLN is a more natural and effective method than transferring

a Q-function. Rulesets expressing a policy can be demonstrated effectively as well, but using an

MLN to combine the rulesets provides additional benefits. AnMLN captures complete enough

information about the source task that adding knowledge about actions previously taken provides

no additional benefit.

The advantage that MLN transfer has over related propositional methods is that it makes use

of relational information present in the domain. It “lifts”the transferred information to the level

of first-order logic, even if the source task was learned at a lower level. This makes the transferred

knowledge more general and thus more easily applicable in some target tasks, and may be respon-

sible for the lack of overspecialization seen in these experiments, despite the high level of detail

that MLN models capture in the source task.

A potential reason to choose MLN transfer over relational-macro transfer given their compara-

ble performance is that MLNs provide well-defined opportunities for refinement in the target task.

Existing work on revision of MLNs, such as that of Mihalkova et al. [55], could be applied to this

problem.

In my experiments with MLN transfer, I made an unexpected discovery: an MLN policy can

outperform the source-task policy from which it was learned. There are two potential explanations

for this surprising result. One is that learning the MLN policy from high-reward episodes across

the entire learning curve provides additional training from a wide range of episodes. Another is

that the relational nature of an MLN allows it to pool data across related actions and symmetrical
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features, making it an inherently more powerful model that can get more leverage out of less data.

This result suggests that MLN policies could be used outsidethe context of transfer learning to

improve standard RL, which I will discuss as future work.



114

Chapter 7

Conclusions and Future Work

This thesis presents original research evaluating three types of relational transfer for reinforce-

ment learning: advice-based transfer, macro transfer, andMLN transfer. It contributes the six

transfer algorithms listed in Table 1.1. Each algorithm produces a significant improvement over

standard RL in experiments in the RoboCup simulated soccer domain.

Advice-based transfer methods use source-task knowledge to provide advice for a target-task

learner, which can follow, refine, or ignore the advice according to its value. Relational advice

is preferable to propositional advice because it increasesgenerality. Human-provided advice can

produce additional benefits. The most notable advantage of advice-based transfer is its built-in

protection against negative transfer, which allows it to beapplied to a wide range of transfer sce-

narios. The most notable disadvantage is that the performance gains do not appear immediately

and are relatively modest.

Macro-transfer methods use source-task experience to forma macro-operator that demonstrates

good behavior for a target-task learner. Since standard RL has to act mostly randomly in the early

steps of a task, a good macro strategy can provide a large immediate advantage. Multiple macros

may perform better than a single macro in some domains. The most notable disadvantage of macro

transfer is its lack of protection against negative transfer. A more subtle disadvantage is the time

that it takes to adjust the macro strategy appropriately to the target task. However, if there is

limited time and the target task cannot be trained to its asymptote, then the immediate advantage

that macros can provide may be worth the risk.
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MLN-transfer methods use source-task experience to learn aMarkov Logic Network that

demonstrates good behavior for a target-task learner. An MLN that represents the source-task pol-

icy is an effective vehicle for transfer. MLN transfer produces performance comparable to macro

transfer, with similar advantages and disadvantages. A potential reason to prefer MLN transfer is

that it provides well-defined opportunities for refinement in the target task.

For the demonstration-based transfer methods, I found it interesting to test the relational model

learned from the source task in a new run of the source task itself (self-transfer). Figure 7.1 shows

the self-transfer scores of several macro-transfer and MLN-transfer methods together.

At first self-transfer was merely a debugging tool, but it turned out to highlight several interest-

ing issues. One is the discovery that one of my relational models is powerful enough to outperform

the source-task policy from which it is learned, which inspired one of the future-work areas later

in this chapter. Another is the phenomenon ofoverspecialization, a transfer-learning issue that is

related to the general machine-learning issue of overfitting. Source-task knowledge that produces

high performance in self-transfer can be overspecialized to a source task, meaning that it does not

generalize well to target tasks, especially as they grow more distant from the source.
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7.1 Algorithm Comparison

Given a transfer scenario, which algorithm from Table 1.1 should be used? Advice-based

methods have the lowest initial performance in the target task, but their learning curves are steepest,

and they are robust to negative transfer. Macro-transfer and MLN-transfer methods can have higher

initial performance, but in doing so they sacrifice protection against negative transfer.

In close-transfer scenarios, such as the 2-on-1 BreakAway to 3-on-2 BreakAway experiment,

a reasonable goal is to provide the best initial performancepossible. To achieve this goal, the

more aggressive demonstration-based approaches should befavored. Figure 7.2 shows the order

in which I would recommend my transfer algorithms in such cases.

In distant-transfer scenarios, such as the KeepAway to BreakAway experiment or with even

more distinct source and target tasks, a high initial performance is unlikely to be possible. Instead,

a reasonable goal is to shorten the period of initial low performance as much as possible, while

avoiding negative transfer. Here the more cautious advice-based approaches should be favored.

Figure 7.3 shows the order in which I would recommend my transfer algorithms in such cases.

Some transfer scenarios could fall in between close and distant transfer, where it is less clear

which algorithm would perform best. Currently, our own discretion as human facilitators of trans-

fer is the only way to decide such cases. Better prediction ofthe relative performance of transfer

algorithms is an important area of future work in transfer learning. A related important area is

increasing the autonomy of transfer algorithms; that is, reducing the reliance on human input for

choosing source tasks and providing mappings.

Algorithm 4:
Multiple Macro

Algorithm 6:
MLN Policy

Algorithm 3:
Single Macro

Algorithm 5:
MLN Q-Function

Algorithm 2:
Skill Transfer

Algorithm 1:
Policy Transfer

= =

≥≥ ≥

Figure 7.2: A recommended ordering of my transfer algorithms in close-transfer scenarios. Demonstration-
based algorithms will likely perform better than advice-based ones. Within each type, the more
strongly relational and general algorithms will likely perform better.



117

Algorithm 4:
Multiple Macro

Algorithm 6:
MLN Policy

Algorithm 3:
Single Macro

Algorithm 5:
MLN Q-Function

Algorithm 2:
Skill Transfer

Algorithm 1:
Policy Transfer
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≥≥ ≥

Figure 7.3: A recommended ordering of my transfer algorithms in distant-transfer scenarios. Advice-based
algorithms will likely perform better than demonstration-based ones. As before, however,
within each type the more strongly relational and general algorithms will likely perform better.

7.2 Potential Extensions of My Research

At this point, I pause the reflection on future directions fortransfer learning in general to dis-

cuss some specific extensions to this thesis that could be addressed by future research.

Transfer from Multiple Source Tasks

My experiments have focused on learning a target task with transferred knowledge from a sin-

gle source task. An extension of interest might be to combineknowledge from multiple tasks. In

some contexts, such as skill transfer and multiple-macro transfer, this could be a straightforward

combination of relational knowledge. In other contexts, such as MLN policy transfer, it is less

clear how to combine knowlege from multiple sources in the most effective way.

Negative Transfer and Overspecialization

My macro-transfer and MLN-transfer approaches behave similarly because they both use the

demonstration method in a target task. In that sense, they could both be considered subtypes of

demonstration-basedtransfer methods, which stand in contrast to advice-based methods. Demon-

stration is an aggressive method that can benefit greatly from the detailed policy knowledge that

both macros and MLNs capture. However, it does not provide protection against negative transfer.

Macros and MLNs could be used in different ways that would provide such protection. The

options framework [65], in which a macro or MLN would be treated as an alternative action with its

own Q-value, is one possibility. Another potential approach would be interleaving demonstration

with learning and decreasing the amount of demonstration over time. This might sacrifice some
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initial performance, but it could increase learning speed as well as providing protection against

negative transfer.

Transfer methods that capture detailed knowledge from a source task may be susceptible to

overspecialization. Protection against negative transfer in the target task can limit the negative

effects of overspecialization. However, it could also be addressed more directly earlier in the

transfer process, during the extraction of knowledge from the source task. Relational learning is

one approach that may help to prevent overspecialization since it produces more general knowl-

edge. Future work in this area could develop other approaches.

Theoretical Results

This thesis evaluates transfer algorithms experimentally. While this is an important form of

evaluation, it would also be valuable to determine the theoretical bounds of their performance, as

some of the work in Section 3.6 does. Bounds of interest include the following properties of a

target-task learner with transfer (as compared to without transfer):

• The initial target-task performance

• The rate of improvement over time

• The number of episodes required to reach the asymptote

To answer questions like these, it will first be necessary to define a precise relationship between

a source task and a target task. Furthermore, a rigorous analysis is likely to require a simpleQ-

learning algorithm and a simple domain, just as existing theoretical results for inductive transfer

require simple Boolean classification tasks.

Joint Learning and Inference in Macros

In Chapter 5, the algorithms for learning macros perform independent ILP runs for structure

and ruleset learning. As I note in that chapter, this is not the only possible approach. Some or all

of these problems could be combined, requiring a joint solution.

There are some arguments in favor of a joint method. It strongly favors the development of

a coherent, global plan. The value of joint inference for solving interdependent problems has
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been established in other areas, most notably in natural language processing (NLP). Often NLP

tasks are solved by a pipeline of local steps, each one passing output to the next, but recent work

has shown that joint inference can improve overall performance. For example, Sutton et al. [85]

simultaneously perform the two tasks of tagging parts of speech and chunking noun phrases. Other

applications of joint inference in NLP include Dietterich and Bao [19], who jointly infer the topics

of emails and documents given the likely relationships revealed by attached documents, and Poon

and Domingos [66], who perform joint inference to make unsupervised coreference resolution

competitive with supervised.

In the context of macro learning, there are several levels ofjoint inference that could be con-

sidered. At one extreme, a single ILP search could be conducted through a possible space of

macro clauses. This is probably infeasible, because the allowed clause length would need to be

much larger, and the ILP search would take an overwhelming amount of time. A more practi-

cal method would be to still learn a macro structure separately, but then learn rulesets jointly. In

MLN-enhanced macros, weights could also be learned jointly.

There is one important difference between NLP problems and the macro problem that affects

joint-inference solutions: the element of time. When performing tagging and chunking in a test

example, Sutton et al. [85] receive an entire sentence at a time; when executing a macro, a target-

task learner receives information one state at a time. Thus decisions at early states cannot depend

on decisions at later states. In a sense, joint learning in macros would need to be partially ordered.

Refinement of Transferred Knowledge

The demonstration-based algorithms in this thesis currently use transferred knowledge for only

a fixed period of time in the target task. After the demonstration period, the target-task learners

abruptly ignore their macros or MLNs and conduct standard RL. While it is certainly worthwhile to

do further learning in the target task, it may be possible to do so instead by incrementally revising

the source-task knowledge.

In macros, there are three levels of possible revision: the structure, the rulesets, and the rule

scores. In MLNs, there are two levels: the formulas and the weights. A reasonable approach would
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be to make frequent revisions of lower-level knowledge, like weights and rule scores, and make

less frequent revisions of higher-level knowledge, like first-order logical rules.

There is potentially a difference between revising rules and relearning them. Performing ILP

searches frequently is quite inefficient, though it may be good to do occasionally. However, in-

cremental changes to rules can be made efficiently without using ILP. For example, Mihalkova et

al. [55] propose an algorithm for finding clauses that are toogeneral or too specific and considering

additions and deletions of literals in those clauses.

The speed of learning in the target task, compared to standard RL, would depend on the ef-

fectiveness of these revision strategies. The asymptotic performance, compared to standard RL,

would depend on the type of transferred knowledge. A single macro is unlikely to reach asymptotic

performance, no matter how well revised, but an MLN policy may.

Even if refinement of transferred knowlege does not produce tangible benefits in target-task

learning, it may provide interesting information. Differences between the original knowledge and

the refined knowledge could essentially define the differences between the source and target tasks.

Relational Reinforcement Learning

The problem of refining relational knowledge in a target taskis closely related to the more

general problem of relational reinforcement learning. Domains like RoboCup could benefit from

relational RL, which would provide substantial generalization over objects and actions.

At first glance, the most logical candidate to serve as a basisfor relational RL appears to be

the MLN Q-function. An MLN could be used as aQ-function approximator instead of the more

typical propositional model. It could be employed in a batchalgorithm similar to RL-SVR, where

agents play batches of games and relearn the MLN after every batch.

One interesting difference from RL-SVR is that the MLNQ-function provides a probability

distribution over theQ-values of actions, rather than providing just a single value. As I noted pre-

viously, this property makes it related to Bayesian reinforcement learning [83]. If one used MLN

Q-functions as the basis for relational RL, there would be opportunities for using the distribution

information to conduct exploration in a more sophisticatedway than theǫ-greedy method.
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However, some preliminary experiments indicate that the MLN Q-function may not be a good

basis for relational RL due to some limitations in its regression accuracy. Consider a training

examples used to learn the MLN for the current batch. LetQa(s) be theQ-value in the previous

batch for actiona in states. Let α be the learning-rate parameter, and letT (s) be the temporal-

difference value for states, which is a function of the rewards received after states. The training

output for states in the current batch is:

Q′

a(s) = (1− α)×Qa(s) + α× T (s) (7.1)

If Q′

a(s) became more accurate over time, as it does in RL-SVR, this would be an effective

algorithm. However, it does not appear to do so, and this prevents the algorithm from learning

effectively. The reason is that theQ-value estimates of an MLNQ-function are not precise, because

of the binning and weighted-averaging strategy the algorithm uses.

In practice, an MLN typically assigns a high probability to the correctQ-value bin and low

probabilities to the other bins, as in the example on the leftin Figure 6.1. Thus it is performing

good classification of examples intoQ-value bins, and it ranks actions reliably for the first batch.

However, since theQ-values are weighted averages, they are strongly biased towards the expected

value of the correct bin. Rather than ranging across theQ-value space as they naturally would, they

become essentially fixed near one value per bin. Thus the MLN is not performing good regression

for Q-values, which prevents effective learning in subsequent batches.

Increasing the number of bins leads to some smoothing ofQ-values, but it also makes the

classification into bins more difficult, and the overall performance does not improve. The number

of bins required to achieve high accuracy inQ-values cannot be supported by the amount of data

available, especially early in the learning curve.

Another inherent modeling issue with bins is that the overall range of possibleQ-values shrinks

with each chunk. With its weighted average calculation, an MLN cannot produce aQ-value higher

than the expected value of the rightmost bin (or lower than the expected value of the leftmost bin).

Thus each model has a smaller possibleQ-value range than the last, which is not a natural dynamic
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for Q-learning. While scaling could keep the range from shrinking, the correct behavior would

actually be for the range to increase by some unknown amount.

RelationalQ-learning therefore appears to require a model that can perform regression nat-

urally, without losing information via binning. One possibility might be the recently proposed

Hybrid MLN [109], which can contain real-valued nodes. Alternatively, moving away fromQ-

learning, relational RL could be approached with a policy-search algorithm based on macros from

Section 5.3 or MLN policies from Section 6.2. Regardless of the method, the main challenge to

overcome in performing relational RL in a complex domains isthe computational cost of repeated

stages of symbolic learning.

Bootstrapping Reinforcement Learning and Self-Training

The discovery that an MLN policy can outperform the source-task policy from which it was

learned suggests that MLNs could be used to improve reinforcement learning outside the con-

text of transfer. In a bootstrapping approach, one could alternate standard RL and MLN policy

demonstration to speed up RL within a single task.

There are two conditions that must hold in order for an approach of this type to be effective.

First, an MLN policy must provide benefits near the beginningof the source-task learning process

and not only near the asymptote. Second, the source-task learner must be able to take advantage

of short demonstrations efficiently.

MLN policies might also be useful in self-training [98], where an agent improves by playing

games against a version of itself. Learning an MLN policy from an earlier version, rather than

using the earlier version exactly, would give an agent an immediate advantage.

7.3 The Future of Transfer Learning

The challenges discussed in this thesis will remain relevant in future work on transfer learning

in general. Humans appear to have natural mechanisms for deciding when to transfer informa-

tion, for selecting appropriate sources of knowledge, and for determining the appropriate level
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of abstraction. It is not always clear how to make these decisions for a single machine learning

algorithm, much less in general.

One general challenge for future work is to enable transfer between more diverse tasks. Davis

and Domingos [17] provide a potential direction for this in their work on MLN transfer. They

perform pattern discovery in the source task to find second-order formulas, which represent uni-

versal abstract concepts like symmetry and transitivity. When learning an MLN for the target task,

they allow the search to use the discovered formulas in addition to the original predicates in the

domain. This approach is recognizeable as inductive transfer, but the source-task knowledge is

highly abstract, which allows the source and target tasks todiffer significantly.

Yet another general challenge is to perform transfer in complex testbeds. Particularly in rein-

forcement learning, it can become much more difficult to achieve transfer as the source and target

tasks become more complex. Since practical applications ofreinforcement learning are likely to be

highly complex, it is important not to limit research on RL transfer to simple domains. RoboCup

is an important step toward realistic domains, but it is not afinal step.

Transfer learning has become a sizeable subfield in machine learning. It has ideological bene-

fits, because it is seen as an important aspect of human learning, and also practical benefits, because

it can make machine learning more efficient. As computing power increases and researchers apply

machine learning to more and more complex problems, abilities like knowledge transfer can only

become more desirable.
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NOMENCLATURE

This is a glossary of useful terms. Some terms have specific meanings in the context of this thesis,
and may have other significance elsewhere.

Advice:a set of instructions about a task solution that may not be complete or perfectly correct.

Advice-based transfer:my term for a set of transfer algorithms that use source-taskknowledge
as advice in a target task.

Alchemy:an implementation of Markov Logic Networks by the group of Pedro Domingos at the
University of Washington.

Aleph: an implementation of inductive logic programming by AshwinSrinivasan.

Alteration methods:my term for transfer methods in reinforcement learning thatchange the state
space, action space, or reward function of a target task based on source-task knowledge.

Agent:a term used interchangeably withlearner.

Batch: a set of episodes in the RL-SVR reinforcement-learning algorithm that are performed
sequentially with the same policy; the policy is updated after each batch.

Bayesian reinforcement learning:a type of reinforcement learning that models distributionsof
values, and to which MLNQ-functions are related.

BreakAway:a reinforcement-learning subtask in the RoboCup simulated soccer domain.

Classification:a mapping from a feature space to a set of labels.

Clause:a disjunction of literals; in this thesis I use Horn clauses,which contain a head implied
by a conjunction of non-negated literals.

Close transfer:transfer between closely related tasks.

Demonstration:my term for transfer methods that use a source-task policy for an initial period in
a target task.

Distant transfer:transfer between less similar tasks.
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ǫ-greedy:a popular method of balancing exploration and exploitationin reinforcement learning,
where the learner mostly exploits its current policy but explores randomly in a small fraction
(ǫ) of steps.

Episode:a segment of training in reinforcement learning that has a defined beginning and end.

Exploitation: when a reinforcement learner takes the action recommended by its current policy
in order to maximize its reward.

Exploration:when a reinforcement learner takes an action not recommended by its current policy
in order to discover new information.

ExtenKBKR:a variant of Preference-KBKR that is designed to handle manypieces of advice.

F -measure:a scoring function for clauses that balances recall and precision.

Feature: in this thesis, refers to one of a set of properties that describe a state in a reinforcement
learner’s environment.

First-order logic: a system for representing logical statements that, unlike propositional logic,
allows the use of quantified variables.

Formula: in this thesis, one of a set of statements in first-order logicin a Markov Logic Network.

Gleaner:a system that extracts a wide range of useful clausesencountered during an Aleph search.

Head: a literal implied by other literals in a Horn clause.

Hierarchical learning: any type of learning that involves simpler tasks combined tolearn more
complex tasks.

Imitation methods:my term for transfer methods in reinforcement learning thatapply a source-
task policy to choose some actions while learning the targettask.

Inductive bias:the set of assumptions that an inductive learner makes aboutthe concept it induces.

Inductive learning:a type of machine learning in which a predictive model is induced from a set
of training examples.

Inductive logic programming (ILP):a set of methods for learning classifiers in first-order logic.

KBKR: knowledge-based kernel regression, a method for solving a regression problem that in-
cludes advice, upon which my advice-based transfer algorithms depend.

KeepAway:a reinforcement-learning subtask in the RoboCup simulated soccer domain.

Learning curve:a plot reporting the performance of a reinforcement learnerover time.
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Literal: a statement of a property of the world that may be either true or false.

Macro-operator (macro):a composition of primitive actions into a useful group; in this thesis,
a relational macro is a relational finite-state machine thatdescribes a successful action se-
quence in a task.

Macro transfer:my term for a set of transfer algorithms that learn successful source-task action
sequences for use in a target task.

Mapping:a description of the correspondences between source and target tasks in transfer learn-
ing or analogical reasoning.

Markov Logic Network (MLN):a model that expresses concepts with first-order clauses butthat
also indicates probability by putting weights on clauses.

MLN policy transfer:my term for my proposed Transfer Algorithm 6 6.2.

MLN Q-function transfer:my term for my proposed Transfer Algorithm 5 6.1.

MLN transfer: my term for a set of transfer algorithms that learn Markov Logic Networks to
express source-task knowledge for use in a target task.

Model-free:a type of reinforcement learning in which the environment isnot modeled.

Model-learning:a type of reinforcement learning in which the environment ismodeled.

MoveDownfield:a reinforcement-learning subtask in the RoboCup simulated soccer domain.

Multi-task learning:methods in machine learning that learn multiple tasks simultaneously.

Multiple-macro transfer:my term for my proposed Transfer Algorithm 4 5.3.

Negative transfer:a decrease in learning performance in a target task due to transfer learning.

Node:one of a sequence of internal states in a macro.

Option: a high-level action in reinforcement learning that involves several lower-level actions.

Overfitting:when a machine-learning algorithm models its training datatoo closely, thus treating
spurious patterns as important and not generalizing well even to data drawn from the same
distribution.

Overspecialization:my term for when a transfer algorithm models a source task tooclosely, thus
not generalizing well to target tasks that differ from the source.

p-value: a statistic that measures how confident one can be that two sets of numbers are signifi-
cantly different.
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Policy: the mechanism by which a reinforcement-learning agent chooses which action to execute
next.

Policy-search:a type of reinforcement learning in which a policy is directly and iteratively up-
dated.

Policy transfer:my term for my proposed Transfer Algorithm 1 4.2.

Precision:the fraction of examples a classifier calls positive that aretruly positive.

Preference-KBKR:an advice-taking system based on KBKR that accepts advice saying to prefer
one action over another.

Propositional logic: a system for representing logical statements that, unlike first-order logic,
does not allow the use of quantified variables.

Q-function: a function incrementally learned by a reinforcement learner to predict the expected
long-term reward after taking an action in a state.

Q-learning: a popular algorithm for reinforcement learning that involves learning aQ-function.

Q-value: the expected long-term reward for a reinforcement learner after taking an action in a
state.

Recall: the fraction of truly positive examples that a classifier correctly calls positive.

Regression:a mapping from a feature space to a real value.

Reinforcement learning (RL):a type of machine learning in which an agent learns through expe-
rience to navigate through an environment, choosing actions in order to maximize rewards.

Relational knowledge:information about relationships between objects, expressed in first-order
logic.

Relational reinforcement learning:a type of reinforcement learning in which states are expressed
in first-order logic rather than in fixed-length feature vectors.

Reward:a real-valued reinforcement received by a reinforcement learner when it takes an action.

RoboCup:a simulated soccer domain that has been adapted for reinforcement learning.

RL-SVR:an algorithm used to implement reinforcement learning via support-vector regression.

SARSA:a variant of Q-learning that takes exploration steps into account during updates.

Self-transfer:transfer learning when the source and target task are the same, often used in this
thesis as a way to measure the completeness of transferred knowledge.
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Single-macro transfer:my term for my proposed Transfer Algorithm 3 5.2.

Skill: a rule in first-order logic that describe good conditions under which to take an action.

Skill transfer:my term for my proposed Transfer Algorithm 2 4.3.

Source task:a task that a learner has already learned and from which it transfers knowledge.

Starting-point methods:my term for transfer methods in reinforcement learning thatset the initial
solution in the target task based on knowledge from a source task.

State: in this thesis, refers to one of many possible settings of thefeatures in a reinforcement
learner’s environment.

Statistical-relational learning:a type of machine learning that combines paradigms of logic and
probability.

Support-vector machine:a classification approach that constructs a hyperplane to separate data
into classes by maximizing the margin between the training data; also a regression approach
that fits a hyperplane to the training data by related methods.

Target task:a task in which learning is improved through knowledge transfer.

Temporal-difference methods:algorithms for reinforcement learning that iteratively update value
functions.

Theory:a set of clauses learned by inductive logic programming to describe a concept.

Tiling: discretizing continuous features into intervals and adding these intervals as additional
Boolean features to enhance the description of a reinforcement-learning environment.

Transfer learning:methods in machine learning that improve learning in a target task by trans-
ferring knowledge from one or more related source tasks.

Value function:a function incrementally learned by a reinforcement learner to predict the value
of a state or action.
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APPENDIX
A. RoboCup Feature and Action Spaces

This appendix provides information that was omitted from earlier chapters for readability: the

features and actions for the RoboCup tasks.

Table A.1 shows the action spaces for KeepAway, MoveDownfield, and BreakAway, the three

RoboCup tasks used for experiments in this thesis, and Table A.2 shows the feature spaces.

Player objects are numbered in order of increasing current distance to the player with the ball.

The functionsminDistTaker(Keeper)and minAngleTaker(Keeper)evaluate to the player objects

t0, t1, and so on that are currently closest in distance and angle respectively to the given Keeper

object. Similarly, the functionsminDistDefender(Attacker)andminAngleDefender(Attacker)each

evaluate to one of the player objectsd0, d1, etc.

Note that I present these features as predicates in first-order logic. Variables are capitalized

and typed (Player, Keeper, etc.) and constants are uncapitalized. For simplicity I indicate types

by variable names, leaving out implied terms likeplayer(Player), keeper(Keeper), etc. Since I

am not using fully relational reinforcement learning, the literals are actually grounded and used as

propositional features during learning. However, since I am transferring relational information, I

represent them in a relational form here for convenience.
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Table A.1: RoboCup task action spaces.

KeepAway actions

pass(Teammate) Teammate∈ {k1, k2, ...}
holdBall

MoveDownfield actions

pass(Teammate) Teammate∈ {a1, a2, ...}
move(Direction) Direction∈ {ahead, away, left, right}

BreakAway actions

pass(Teammate) Teammate∈ {a1, a2, ...}
move(Direction) Direction∈ {ahead, away, left, right}
shoot(GoalPart) GoalPart∈ {goalRight, goalLeft, goalCenter}

Table A.2: RoboCup task feature spaces.

KeepAway features

distBetween(k0, Player) Player∈ {k1, k2, ...} ∪ {t0, t1, ...}
distBetween(Keeper, minDistTaker(Keeper)) Keeper∈ {k1, k2, ...}
angleDefinedBy(Keeper, k0, minAngleTaker(Keeper)) Keeper ∈ {k1, k2, ...}
distBetween(Player, fieldCenter) Player∈ {k0, k1, ...} ∪ {t0, t1, ...}
MoveDownfield features

distBetween(a0, Player) Player∈ {a1, a2, ...} ∪ {d0, d1, ...}
distBetween(Attacker, minDistDefender(Attacker)) Attacker∈ {a1, a2, ...}
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker)) Attacker∈ {a1, a2, ...}
distToRightEdge(Attacker) Attacker∈ {a0, a1, ...}
timeLeft (in tenths of seconds)

BreakAway features

distBetween(a0, Player) Player∈ {a1, a2, ...} ∪ {d0, d1, ...}
distBetween(Attacker, minDistDefender(Attacker)) Attacker∈ {a1, a2, ...}
angleDefinedBy(Attacker, a0, minAngleDefender(Attacker)) Attacker∈ {a1, a2, ...}
distBetween(Attacker, GoalPart) Attacker∈ {a0, a1, ...}
distBetween(Attacker, goalie) Attacker∈ {a0, a1, ...}
angleDefinedBy(Attacker, a0, goalie) Attacker∈ {a1, a2, ...}
angleDefinedBy(GoalPart, a0, goalie) GoalPart∈ {goalRight, goalLeft, goalCenter}
angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft (in tenths of seconds)
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APPENDIX
B. Propositional Mappings

This appendix provides information that was omitted from earlier chapters for readability: the

mappings I provide for policy transfer between RoboCup tasks.

Mappings for policy transfer, as introduced in Section 4.2,match up propositional features and

actions between the source and target. As described in Section 4.2.1, actions may have zero, one,

or multiple mappings. For each mapped source-target actionpair, each source-task feature may

map to a single target-task feature, or it may map to a constant.

Tables B.1, B.2, and B.3 show the propositional mappings I use for close-transfer scenarios,

where the target task is the same as the source task except with different numbers of players.

In these scenarios, the target-task action space is the source-task action space plus an additional

passaction for the new teammate, and the feature space is the source-task feature space plus

some additional angles and distances for the new teammate. Thus every source-task action and

feature has at least one mapping, and onepassaction has multiple mappings in order to provide

information for all of the target-task actions.

Tables B.4 and B.5 show the propositional mappings I use for distant-transfer scenarios, where

the source and target tasks differ. In these scenarios, there are some actions in the source-task action

space that do not have mappings, and there are some source-task features that map to constants

because they have no matching target-task features. Also ofnote are features that refer to the

furthest opponent (d1 or t1 in the source tasks), which I map to features that refer to thefurthest

opponent in the target tasks (d2 or t2).
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Table B.1: Propositional mappings from 2-on-1 BreakAway to 3-on-2 BreakAway, used in policy transfer.

Source: 2-on-1 BreakAway Target: 3-on-2 BreakAway

Actions Mapped actions

move(ahead) move(ahead)
move(away) move(away)
move(left) move(left)
move(right) move(right)
shoot(goalCenter) shoot(goalCenter)
shoot(goalLeft) shoot(goalLeft)
shoot(goalRight) shoot(goalRight)
pass(a1) pass(a1)

Features Mapped features for the above actions

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, goalie) distBetween(a0, goalie)
distBetween(a1, goalie) distBetween(a1, goalie)
angleDefinedBy(a1, a0, goalie) angleDefinedBy(a1, a0, goalie)
distBetween(a0, goalLeft) distBetween(a0, goalLeft)
distBetween(a0, goalRight) distBetween(a0, goalRight)
distBetween(a0, goalCenter) distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie) angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie) angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie) angleDefinedBy(goalCenter, a0, goalie)
angleDefinedBy(topRightCorner, goalCenter, a0)angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft timeLeft

Actions with additional mappings Mapped actions

pass(a1) pass(a2)

Features Mapped features for the above actions

distBetween(a0, a1) distBetween(a0, a2)
distBetween(a0, goalie) distBetween(a0, goalie)
distBetween(a1, goalie) distBetween(a2, goalie)
angleDefinedBy(a1, a0, goalie) angleDefinedBy(a2, a0, goalie)
distBetween(a0, goalLeft) distBetween(a0, goalLeft)
distBetween(a0, goalRight) distBetween(a0, goalRight)
distBetween(a0, goalCenter) distBetween(a0, goalCenter)
angleDefinedBy(goalLeft, a0, goalie) angleDefinedBy(goalLeft, a0, goalie)
angleDefinedBy(goalRight, a0, goalie) angleDefinedBy(goalRight, a0, goalie)
angleDefinedBy(goalCenter, a0, goalie) angleDefinedBy(goalCenter, a0, goalie)
angleDefinedBy(topRightCorner, goalCenter, a0)angleDefinedBy(topRightCorner, goalCenter, a0)
timeLeft timeLeft
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Table B.2: Propositional mappings from 3-on-2 MoveDownfield to 4-on-3 MoveDownfield, used in policy
transfer.

3-on-2 MoveDownfield 4-on-3 MoveDownfield

Actions Mapped actions

move(ahead) move(ahead)
move(away) move(away)
move(left) move(left)
move(right) move(right)
pass(a1) pass(a1)
pass(a2) pass(a2)

Features Mapped features for the above actions

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d2)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(a1, a0, minAngleDefender(a1))angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2))angleDefinedBy(a2, a0, minAngleDefender(a2))
distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(a1) distToRightEdge(a1)
distToRightEdge(a2) distToRightEdge(a2)
timeLeft timeLeft

Actions with additional mappings Mapped actions

pass(a2) pass(a3)

Features Mapped features for the above actions

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a3)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d2)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a3, minDistDefender(a3))
angleDefinedBy(a1, a0, minAngleDefender(a1))angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2))angleDefinedBy(a3, a0, minAngleDefender(a3))
distToRightEdge(a0) distToRightEdge(a0)
distToRightEdge(a1) distToRightEdge(a1)
distToRightEdge(a2) distToRightEdge(a3)
timeLeft timeLeft
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Table B.3: Propositional mappings from 3-on-2 KeepAway to 4-on-3 KeepAway, used in policy transfer.

3-on-2 KeepAway 4-on-3 KeepAway

Actions Mapped actions

holdBall holdBall
pass(k1) pass(k1)
pass(k2) pass(k2)

Features Mapped features for the above actions

distBetween(k0, k1) distBetween(k0, k1)
distBetween(k0, k2) distBetween(k0, k2)
distBetween(k0, t0) distBetween(k0, t0)
distBetween(k0, t1) distBetween(k0, t2)
distBetween(k1, minDistKeeper(k1)) distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2)) distBetween(k2, minDistKeeper(k2))
angleDefinedBy(k1, k0, minAngleKeeper(k1)) angleDefinedBy(k1, k0, minAngleKeeper(k1))
angleDefinedBy(k2, k0, minAngleKeeper(k2)) angleDefinedBy(k2, k0, minAngleKeeper(k2))
distBetween(k0, fieldCenter) distBetween(k0, fieldCenter)
distBetween(k1, fieldCenter) distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter) distBetween(k2, fieldCenter)
distBetween(t0, fieldCenter) distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter) distBetween(t2, fieldCenter)

Actions with additional mappings Mapped actions

pass(k2) pass(k3)

Features Mapped features for the above actions

distBetween(k0, k1) distBetween(k0, k1)
distBetween(k0, k2) distBetween(k0, k3)
distBetween(k0, t0) distBetween(k0, t0)
distBetween(k0, t1) distBetween(k0, t2)
distBetween(k1, minDistKeeper(k1)) distBetween(k1, minDistKeeper(k1))
distBetween(k2, minDistKeeper(k2)) distBetween(k3, minDistKeeper(k3))
angleDefinedBy(k1, k0, minAngleKeeper(k1)) angleDefinedBy(k1, k0, minAngleKeeper(k1))
angleDefinedBy(k2, k0, minAngleKeeper(k2)) angleDefinedBy(k3, k0, minAngleKeeper(k3))
distBetween(k0, fieldCenter) distBetween(k0, fieldCenter)
distBetween(k1, fieldCenter) distBetween(k1, fieldCenter)
distBetween(k2, fieldCenter) distBetween(k3, fieldCenter)
distBetween(t0, fieldCenter) distBetween(t0, fieldCenter)
distBetween(t1, fieldCenter) distBetween(t2, fieldCenter)
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Table B.4: Propositional mappings from 3-on-2 MoveDownfield to 3-on-2 BreakAway, used in policy
transfer.

3-on-2 MoveDownfield 3-on-2 BreakAway

Actions Mapped actions

move(ahead) move(ahead)
move(away) move(away)
move(left) move(left)
move(right) move(right)
pass(a1) pass(a1)
pass(a2) pass(a2)

Features Mapped features for the above actions

distBetween(a0, a1) distBetween(a0, a1)
distBetween(a0, a2) distBetween(a0, a2)
distBetween(a0, d0) distBetween(a0, d0)
distBetween(a0, d1) distBetween(a0, d0)
distBetween(a1, minDistDefender(a1)) distBetween(a1, minDistDefender(a1))
distBetween(a2, minDistDefender(a2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(a1, a0, minAngleDefender(a1))angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(a2, a0, minAngleDefender(a2))angleDefinedBy(a2, a0, minAngleDefender(a2))
distToRightEdge(a0) distBetween(a0, goalCenter)
distToRightEdge(a1) distBetween(a1, goalCenter)
distToRightEdge(a2) distBetween(a2, goalCenter)
timeLeft timeLeft
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Table B.5: Propositional mappings from 3-on-2 KeepAway to 3-on-2 BreakAway, used in policy transfer.

3-on-2 KeepAway 3-on-2 BreakAway

Actions Mapped actions

holdBall
pass(k1) pass(a1)
pass(k2) pass(a2)

Features Mapped features for the above actions

distBetween(k0, k1) distBetween(a0, a1)
distBetween(k0, k2) distBetween(a0, a2)
distBetween(k0, t0) distBetween(a0, d0)
distBetween(t0, t1) distBetween(a0, d0)
distBetween(k1, minDistTaker(k1)) distBetween(a1, minDistDefender(a1))
distBetween(k2, minDistTaker(k2)) distBetween(a2, minDistDefender(a2))
angleDefinedBy(k1, k0, minAngleTaker(k1)) angleDefinedBy(a1, a0, minAngleDefender(a1))
angleDefinedBy(k2, k0, minAngleTaker(k2)) angleDefinedBy(a2, a0, minAngleDefender(a2))
distBetween(k0, fieldCenter) 15
distBetween(k1, fieldCenter) 15 // No match in target, so use
distBetween(k2, fieldCenter) 15 // average value in source
distBetween(t0, fieldCenter) 10
distBetween(t1, fieldCenter) 10
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APPENDIX
C. Object Mappings

This appendix provides information that was omitted from earlier chapters for readability: the

mappings I provide for relational transfer between RoboCup tasks.

Mappings for relational transfer, as described in Section 4.3, match up objects in the source

and target tasks. These mappings also apply to macro transfer in Chapter 5 and to MLN transfer in

Chapter 6. In RoboCup, the objects are players and goal parts.

For 2-on-1 BreakAway to 3-on-2 BreakAway and 4-on-2 BreakAway, I map all objects to

objects of the same name:

a0 −→ a0
a1 −→ a1
goalie −→ goalie
goalLeft −→ goalLeft
goalRight −→ goalRight
goalCenter −→ goalCenter

For 3-on-2 MoveDownfield to 4-on-3 MoveDownfield, I map most objects to objects of the

same name, but the furthest teammate and opponent (a2 andd1 in the source) have different names

in the target task (a3 andd2):

a0 −→ a0
a1 −→ a1
a2 −→ a3
d0 −→ d0
d1 −→ d2
minDistDefender(a1) −→ minDistDefender(a1)
minDistDefender(a2) −→ minDistDefender(a3)
minAngleDefender(a1) −→ minAngleDefender(a1)
minAngleDefender(a2) −→ minAngleDefender(a3)
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For 3-on-2 KeepAway to 4-on-3 KeepAway, the situation is similar:

k0 −→ k0
k1 −→ k1
k2 −→ k3
t0 −→ t0
t1 −→ t2
minDistTaker(k1) −→ minDistTaker(k1)
minDistTaker(k2) −→ minDistTaker(k3)
minAngleTaker(k1) −→ minAngleTaker(k1)
minAngleTaker(k2) −→ minAngleTaker(k3)

For 3-on-2 MoveDownfield to 3-on-2 BreakAway, I map most objects to objects of the same

name, but I map the second opponentd1 to d0 instead of the goalie because the goalie behaves

quite differently from a mobile defender:

a0 −→ a0
a1 −→ a1
a2 −→ a2
d0 −→ d0
d1 −→ d0
minDistDefender(a1) −→ minDistDefender(a1)
minDistDefender(a2) −→ minDistDefender(a2)
minAngleDefender(a1) −→ minAngleDefender(a1)
minAngleDefender(a2) −→ minAngleDefender(a2)

For 3-on-2 KeepAway to 3-on-2 BreakAway, the situation is similar:

k0 −→ a0
k1 −→ a1
k2 −→ a2
t0 −→ d0
t1 −→ d0
minDistTaker(k1) −→ minDistDefender(a1)
minDistTaker(k2) −→ minDistDefender(a2)
minAngleTaker(k1) −→ minAngleDefender(a1)
minAngleTaker(k2) −→ minAngleDefender(a2)
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APPENDIX
D. Conditional Independence Proof

This appendix supplies a proof that decision nodes in my MLNsare conditionally independent

given evidence at all other nodes. This is important becauseit allows the larger problem of in-

ferring the probabilities of multiple decision nodes to be split into independent problems. I prove

conditional independence for two nodes, specifically the two in Figure 5.12 from the thesis, but

it holds true in general for any number of decision nodes thathave direct links only to evidence

nodes.

Recall that each MLN formulafi ∈ F , with weightwi, has a numberni(x) of true groundings

in each possible worldx, and that the probability that the worldx is the correct one is, from

Equation 2.7 in Section 2.4:

P (X = x) =
1

Z
exp

∑

i∈F

wini(x) (D.1)

Consider calculating the probabilities of thepass(a1)andpass(a2)nodes in Figure 5.12 given

evidence at all the other nodes. Letx = (x1, x2) represent a possible world, wherex1 represents

the truth value for thepass(a1)node andx2 represents the truth value for thepass(a2)node. The

four possible worlds are{(0, 0), (0, 1), (1, 0), (1, 1)}.
If x1 andx2 are conditionally independent, then the following is true:

P (X = (x1, x2)) = P (X1 = x1)P (X2 = x2) (D.2)

Because the evidence literals are all known, the countni(x) can be divided into two separate

counts. These areni(x1), the number of true groundings given thatTeammate = a1, andni(x2),

the number of true groundings given thatTeammate = a2. Inserting these into Equation D.1 gives:
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P (X = (x1, x2)) =
1

Z
exp

∑

i∈F

wi[ni(x1) + ni(x2)] (D.3)

=
1

Z
exp

∑

i∈F

wini(x1) exp
∑

i∈F

wini(x2) (D.4)

Because the formulas are conjuncts that include at most one decision node, some of the counts

are known to be zero. Note thatni(x1) = 0 whenx1 = 0, since there are no true groundings with

Teammate = a1if Teammate 6= a1, and likewiseni(x2) = 0 whenx2 = 0. This means that

Equation D.4 can be simplified for the following worlds:

P (X = (0, 0)) =
1

Z
exp(0) exp(0) =

1

Z
(D.5)

P (X = (0, 1)) =
1

Z
exp

∑

i∈F

wini(x2) (D.6)

P (X = (1, 0)) =
1

Z
exp

∑

i∈F

wini(x1) (D.7)

Recall thatZ is just a normalizing factor so that the probabilities of both worlds sum to1:

P (X = (0, 0)) + P (X = (0, 1)) + P (X = (1, 0)) + P (X = (1, 1)) = 1 (D.8)

By substituting Equations D.4, D.5, D.6, and D.7 into Equation D.8, the value ofZ can be

calculated as:

Z =

(

1 + exp
∑

i∈F

wini(x1)

)(

1 + exp
∑

i∈F

wini(x2)

)

(D.9)

SubstitutingZ back into Equation D.4 gives:
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P (X = (x1, x2)) =

exp
∑

i∈F

wini(x1)

1 + exp
∑

i∈F

wini(x1)

exp
∑

i∈F

wini(x2)

1 + exp
∑

i∈F

wini(x2)
(D.10)

Equation D.10 is equivalent to the independence assertion:

P (X = (x1, x2)) = P (X1 = x1)P (X2 = x2) (D.11)

This completes the proof that the decision nodes are conditionally independent.


