

Computer
Sciences
Department

Forwardflow: Scalable, RAM-Based Dataflow Execution

Dan Gibson
David Wood

Technical Report #1656

September 2009

Forwardflow: Scalable, RAM-Based Dataflow Execution

Dan Gibson and David Wood

{gibson,david}@cs.wisc.edu
University of Wisconsin-Madison

Abstract

Power (and thermal) limits have forced an industry-wide shift from increasingly complex uniprocessors
to multicore chips with 4, 8, and even 16 simpler processor cores. Yet Amdahl’s Law suggests that these cores
should not be too simple, lest they exacerbate even a parallel application’s sequential bottlenecks. Further-
more, running all cores at full speed will soon exceed the chip’s power envelope. Ideally, future CMPs should
use cores that trade-off power and performance, allowing the system to scale up a core’s instruction-level par-
allelism (ILP) and memory-level parallelism (MLP) to improve sequential performance.

This work presents the Forwardflow microarchitecture, which executes instructions out-of-order using
RAM-based structures in lieu of non-scalable CAM- or matrix-based mechanisms. Forwardflow dynamically
builds an explicit internal dataflow representation from a conventional ISA, using forward dependence point-
ers to guide instruction wakeup, selection, and issue. Because all of Forwardflow’s major data structures are
RAM-based, the instruction window scales large enough to tolerate long memory access times.

1 Introduction
The last several years have witnessed a paradigm shift in the microprocessor industry, from chips holding one

increasingly complex out-of-order core to chips holding 4, 8, and even 16 simpler cores [1, 12, 32]. While Moore’s law

continues to promise more transistors [7], power and thermal concerns have driven the industry to focus on more

power-efficient multicore designs [14]. By focussing on thread-level parallelism (TLP), rather than primarily instruc-

tion-level parallelism (ILP) within a single thread, microarchitects hope to improve applications’ overall power effi-

ciency. Some researchers project that this trend will continue until chips have a thousand cores [3].

But at least two fundamental problems undermine this vision. First, limiting power dissipation to fit the chip’s

target power envelope means limiting transistor switching (and leakage). Chakraborty, et al. show that the Simultane-

ously Active Fraction (SAF)—i.e., the fraction of active transistors—decreases with each technology generation [4].

This implies that on future chips (if not current ones), all cores cannot be simultaneously computing at full speed.

Second, Amdahl’s Law still applies. Even well-parallelized applications have sequential bottlenecks that limit

their parallel speedup (and most applications are not currently parallel at all). A thousand simple cores may maximize

performance in an application’s parallel section, but simple cores exacerbate the sequential bottleneck by providing

limited ILP. Hill and Marty’s multicore model [11] leads to the conclusion that “researchers should seek methods of

increasing core performance even at high cost.” In other words, rather than simply double the number of simple cores

when the transistor count doubles, architects should use some of the additional transistors to increase core complex-

ity and thus single-thread performance instead.

Together, these two problems suggest that future CMPs will need scalable cores, that is, cores that can trade off

power and performance. Heterogeneous CMPs scale cores statically, provisioning some cores with more resources

and some with less [19]. Composable core designs scale power and performance by dynamically merging two or more
1

cores into a larger core [15, 13]. By appropriately mapping threads and enabling cores, both approaches represent ini-

tial steps towards a truly scalable core design.

Scaling core performance means scaling core resources to extract additional ILP, either by statically provisioning

cores differently or by dynamically (de-)allocating core resources. And as memory latencies continue to dominate

performance, it also means scaling memory-level parallelism (MLP) to service multiple cache misses concurrently [8].

Scaling MLP requires increasing a core’s lookahead, the number of instructions it examines for independent memory

operations [5]. Conventional core microarchitectures do not scale well because latency, complexity, and power limit

their instruction windows and hence their lookahead. Alternative microarchitectures such as runahead microarchi-

tectures achieve significant MLP, but at the expense of sacrificing ILP [5, 21].

Achieving both scalable ILP and MLP requires a novel core microarchitecture. To achieve sufficient lookahead,

the core must avoid using a conventional broadcast-based instruction scheduler—where each instruction’s comple-

tion wakes up all dependent instructions in a single cycle. Broadcast-based instruction schedulers waste power

because over 80% of results wakeup zero or one dependent instructions [24, 27]. Instead, scalable core microarchitec-

tures should leverage explicit successor representations [23, 24, 34], that explicitly identify dependent instructions and

enable directed wakeup.

This work presents the Forwardflow core micro-

architecture, which exploits the synergy between

explicit successor representation and single-successor

dominance to build a highly-scalable instruction win-

dow. As illustrated in Figure 1, Forwardflow

��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

�����������������
����������������
	�
��������������
�����������������

Figure 1. Dataflow Queue example

 repre-

sents inter-instruction dependences via forward

pointers. Instructions directly identify the first succes-

sor; subsequent successors are represented via a linked list distributed throughout the Dataflow Queue (DQ). For-

ward pointers order instruction wakeup by true data dependence first and program order second, allowing data-

independent operations to execute out-of-order. Forwardflow pipelines pointer accesses, yielding no performance

loss when issuing the first consumer of a particular value, and delaying subsequent successors (if any) proportional to

their position in the value chain. This optimizes the common case of singleton successor instructions, but adds some

overhead for high fan-out values. Forwardflow co-locates operand values and scheduling data in the DQ, but splits

the DQ into multiple banks to limit wire length and increase execution parallelism using limited ports. Forwardflow

naturally scales power and performance depending upon how many DQ banks a specific core provisions, enables, and

utilizes.

2 Background and Related Work
Forwardflow is motivated by earlier work on static and dynamic heterogeneous CMPs. Kumar et al. demonstrate

that dynamically mapping threads to statically scaled cores can reduce power consumption [17] and improve perfor-

mance of multiprogrammed workloads [18]. Core Fusion [13] dynamically fuses largely conventional cores, but relies

on non-scalable result broadcast between cores. Like Forwardflow, TFlex eliminates broadcast using forward point-
2

ers, but requires a novel ISA and compiler to produce them [15], while Forwardflow generates pointers dynamically

from a conventional ISA.

Forwardflow builds on earlier research on exploiting ILP and MLP to improve (processor) core performance [6,

10, 21, 22, 24, 27, 28, 30, 34, 35]. Briefly, these systems examine a predicted future instruction stream—the instruction

window—to locate independent operations and memory accesses to execute in parallel. The instruction scheduler

determines when an instruction is ready to execute (wakeup) and when to actually execute it (selection). In general,

instruction windows are scalable because they are RAM-based, while most instruction schedulers are not because

they rely on CAM-based [35] or matrix-based [10, 27] broadcast for wakeup and priority encoders for selection.

A non-scalable instruction scheduler limits how much ILP a core can exploit, due to a phenomenon called IQ

(scheduler) Clog [33] where the scheduler fills with instructions dependent on a long-latency operation such as a

cache miss. Various optimizations attack this problem by steering dependent instructions into queues [22], moving

dependent instructions to a separate buffer [20, 26, 30], and tracking dependences on only one source operand [16].

These proposals ameliorate, but do not eliminate, the poor scalability of traditional instruction schedulers.

Figure 2. Cumulative Distribution Function of Consumers per Value in 128-entry and 512-entry Windows

�

���

���

���

���

�

���

� � � � � �

�������	�
��
�����

�
�
�

�
�

�
�
��
�

�
�
�
�
�
�

���� �!

���� �!

�"��
�	

#��$�	

Fundamentally, broadcast-based instruction schedulers waste power because most instructions have few succes-

sors [24, 27]. Figure 2 plots the CDF of the average number of dependent instructions for 128-entry and 512-entry

CAM-based schedulers, averaged over the SPEC CPU 2006 benchmarks. The figure also shows the CDF of the

libquantum (leslie3d) benchmark, which have the greatest (least) average value fanout. Notably, for essentially

all workloads, more than 80% of all produced values wakeup zero or one dependent instructions. This single-con-

sumer dominance argues against broadcast-based schedulers for power-constrained systems like future CMPs.

Forwardflow builds upon previous pointer-based scheduling approaches [23, 24, 34]. Forwardflow is most

closely related to Direct Wakeup [24], which uses pointers to optimize the single successor case but falls back to a

matrix-like approach for instructions with multiple successors. Forwardflow takes a holistic approach and uses point-

ers to represent all dependences. Furthermore, by replacing the physical register file with the highly-banked DQ, For-

wardflow enables highly scalable very-large-window designs.
3

Other microarchitectures eliminate the scheduler scalability problem by focusing on MLP, at the expense of ILP.

Runahead Execution [6, 5, 21] uses a checkpoint/restore mechanism to speculatively commit instructions dependent

on a long-latency cache miss and speculatively execute independent instructions, discarding all speculative state when

the miss completes. Runahead dramatically increases lookahead, and thus memory-level parallelism, but wastes sig-

nificant power by re-executing true-path instructions multiple times. In contrast, Forwardflow never re-executes

true-path instructions.

Forwardflow also draws inspiration from dataflow architectures, including TRIPS [25], WaveScalar [31], and the

MIT Tagged-Token machine [2]. However, Forwardflow focuses on binary compatibility with existing ISAs.

3 Forwardflow Architecture

DQ

Decode

L1-I

Fetch

RCTRCTRCTBP
re
d

UUUUCtrl

Issue Execute CommitDispatch
Figure 3. Pipeline diagram of the Forwardflow architecture. Forwardflow-specific structures are shaded.

ARF

At the highest level, the Forwardflow pipeline (Figure 3) is not unlike traditional out-of-order microarchitec-

tures. Fetch fetches instructions on a predicted execution path and Decode detects and handles potential data depen-

dences, analogous to traditional renaming. Dispatch inserts instructions into the Dataflow Queue (DQ) and

instructions issue when their operands become available. When instructions complete, scheduling logic wakes and

selects dependent instructions for execution. Instructions commit in-order from the DQ. To simplify discussion, we

describe these operations as single-cycle, but most are pipelined multicycle operations in the simulation model.

3.1 Fetch and Decode
In Forwardflow, Fetch proceeds no differently than other high-performance microarchitectures; Section 4 sum-

marizes the specific design assumptions. Decode produces all information needed for Dispatch, which inserts the

instruction into the DQ and updates the forward pointer chains. Decode must determine which pointer chains, if any,

each instruction belongs to. It does this using the Register Consumer Table (RCT), which tracks the tails of all active

pointer chains in the DQ. Indexed by the architectural register name, the RCT looks much like a traditional rename

table except that it records the most-recent instruction (and operand slot) to reference a given architectural register.

Each instruction that writes a register begins a new value chain, but instructions that read registers also update the

RCT to maintain the forward pointer chain for subsequent successors. The RCT also identifies registers last written

by a committed instruction and thus whose values reside in the Architectural Register File (ARF).

The RCT is implemented as a RAM-based structure. Since the port requirements of the RCT are significant (up

to two reads and three writes per decoded instruction per cycle), we expect it to be implemented aggressively and with
4

some duplication. Fortunately, the RCT is a small structure: each entry consists only 2 N2 DQEntrieslog⋅ 4+ bits, and

the number of entries is determined by the number of architectural registers in the target architecture (e.g., an ISA

with 72 architected registers requires only 1584 bits of storage with a 512-entry DQ).

3.2 Dispatch
The Dataflow Queue (DQ) is the heart of the Forwardflow architecture, and is involved in instruction dispatch,

issue, completion, and commit. The DQ is essentially a CAM-free Register Update Unit [29], in that it schedules and

orders instructions, but also maintains operand values. Each DQ entry holds an instruction’s metadata (e.g., opcode,

ALU control signals, destination architectural register name), three data values, and three forward data pointers, rep-

resenting up to two source operands and one destination operand per instruction. Value and pointer fields have

empty/full and valid bits, respectively, to indicate whether they contain valid information. Dispatching an instruction

allocates a DQ entry, but updates the pointer fields of previously dispatched instructions. Specifically, an instruction’s

DQ insertion will update zero, one, or two pointers belonging to previous instructions in the DQ to establish correct for-

ward dependences. To reduce port requirements, each DQ field is implemented as an individually addressed RAM.

Figure 4 illustrates the dispatch process for a simple code sequence, highlighting both the common case of a sin-

gle successor (the R4 chain) and the uncommon case of multiple successors (the R3 chain). Fields read are bordered

with thick lines; fields written are shaded. The bottom symbol (⊥) is used to indicate NULL pointers (i.e., cleared

pointer valid bits) and cleared empty/full bits.

In the example, Decode determines that the ld instruction is ready to issue at Dispatch because both source

operands are available (R1’s value, 88, is available in the ARF, since its busy bit in the RCT is zero, and the immediate

operand, 44, is extracted from the instruction). Decode updates the RCT to indicate that ld produces R3 (but does

not add the ld to R1’s value chain, as R1 remains available in the ARF). Dispatch reads the ARF to obtain R1’s value,

writes both operands into the DQ, and issues the ld immediately. When the add is decoded, it consults the RCT and

finds that R3’s previous use was at the ld’s destination field, and thus Dispatch updates the pointer from ld’s desti-

nation to the add’s first source operand. Like the ld, the add’s immediate operand (55) is written into the DQ at

dispatch. Dispatching the add also reads the ld’s result empty/full bit. Had the ld’s value been present in the DQ,

the dispatch of the add would stall while reading the value array.
5

The mult’s decode consults the RCT, and discov-

ers that both operands, R3 and R4, are not yet available

and were last referenced by the add’s source 1 operand

and the add’s destination operand, respectively. Dis-

patch of the mult therefore checks for available results

in both the add’s source 1 value array and destination

value array, and appends the mult to R3’s and R4’s

pointer chains. Finally, like the add, the sub appends

itself to the R3 pointer chain, and writes its dispatch-

time ready operand (66) into the DQ.

��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����
����
����

���
����

#

	

�

%
�
&�

#

	

�

'
��
�

(
�
	
)

����

������������������ ���������
����������������������� �����
	�
��������������������� �����
���������������		 !��"��#��

��� ���� ���	

�
�
�
�

������

������	�
�
�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����
����
����

���
���

#

	

�

%
�
&�

#

	

�

'
��
�

(
�
	
)

����

������������������ ���������
����������������������� �����

��������������� !��"��#��
��� �� �� ��

��� ���� ���	

�
�
�
�

������

������

���������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

���
����
����

���
���

#

	

�

%
�
&�

#

	

�

'
��
�

(
�
	
)

����

������������������ ���������
��������������� !��"��#��
	�
��������������
��� �� �� ��

��������	
����
��� ���� ���	

�
�
�
�

������

������

������

��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

��

���
���

����
���
���

#

	

�

%
�
&�

#

	

�

'
��
�

(
�
	
)

����

������������������ !��"��#��$���������
����������������
	�
��������������
��� �� �� ��

Figure 4. Dispatch Example

Values for instruction operands may be obtained in

four ways, each of which are handled differently in For-

wardflow:

• Immediate operands, extracted from the instruction

itself, are written into the instruction’s appropriate

operand value array in Dispatch (e.g., the add’s

second operand, 55).

•The Architectural Register File (ARF) is read in

Dispatch to provide committed values to dispatch-

ing instructions (e.g, the ld’s first source operand,

R1). Values from the ARF are written into the

instruction’s operand value array, to ensure that val-

ues are local to instructions and can be accessed at

issue-time without consulting potentially distant

structures (e.g., a register file).

•Values produced by earlier in-flight instructions

that have not yet executed (i.e., values not available

at the consumer’s dispatch) will be delivered to the

instruction by the pointer chasing hardware (this

will be the case for the add, mult, and sub

instructions in the example).
6

•Values from earlier in-flight instructions that have

already executed (identified via empty/full bits on

value arrays) are read from the previous succes-

sor’s (or producer’s) value array and written into

the dispatching instruction’s value array (does not

appear in the example). Obtaining a value in this

manner can cause a single-cycle dispatch stall,

depending on DQ bank conflicts.

��� ���� ���	

�
�
�
�

����������
�����	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������� %��"�&�'����
	�
��������������������� �����
������������������������ �����

��
����

�
�

�����

���!(�*�����

��� ���� ���	

�
�
�
�

����������
������	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������������������������

��������������� %��"�)���*��'����+
������������������������ �����

��
����

�
�

��� ���� ���	

�
�
�
�

�����������
������	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������������������������
	�
��������������������� �����
���������������		 %��"�&�'����

��
����

�
�

�����

����!(�*��,��

Figure 5. Wakeup Example

��������	
����
��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
����������������������� �����
	�
��������������������� �����
������������������������ �����

��
����

�
�

������	��

3.3 Wakeup, Selection, and Issue
Once an instruction has been inserted into the

DQ, it waits until its unavailable source operands are

delivered by the execution management logic. Each

instruction’s DQ entry number (i.e., its address in the

RAM) accompanies the instruction though the execu-

tion pipeline. When an instruction nears completion

in its functional pipeline, pointer chasing hardware

reads the instruction’s destination value pointer. This

pointer defines the value chain for the result value,

and, in a distributed manner, locations of all succes-

sors through transitive pointer chasing. The complete

traversal of a chain is a multicycle operation, and suc-

cessors beyond the first will wakeup (and potentially

issue) with delay linearly proportional to their position

in the chain.

The wakeup process is illustrated in Figure 5. For

simplicity, the example assumes chains are followed

only after values are available, though for performance,

wakeup is initiated in advance of actual instruction

completion in a pipelined manner.

Upon completion of the ld, the memory value

(99) is written into the DQ, and the ld’s destination

pointer is followed to the first successor, the add.

Whenever a pointer is followed to a new DQ entry,

available source operands and instruction metadata

are read speculatively, anticipating that the arriving

value will enable the current instruction to issue (a
7

common case [16]). Thus, in the next cycle, the add’s metadata and source 2 value are read, and, coupled with the

arriving value of 99, the add may now be issued. Concurrently, the update hardware reads the add’s source 1

pointer, discovering the mult as the next successor.

As with the add, the mult’s metadata, other source operand, and next pointer field are read. In this case, the

source 1 operand is unavailable, and the mult will issue at a later time (when the add’s destination pointer chain is

walked). Finally, following the mult’s source 2 pointer to the sub delivers 99 to the sub’s first operand, enabling

the sub to issue. At this point, a NULL pointer is discovered at the sub instruction, indicating the end of the value

chain.

In cases where all instruction operands are available at dispatch-time (e.g., the ld), the instruction will not be

visited by pointer-walking hardware, and wakeup cannot occur as part of the walk of an earlier producer’s wakeup

chain. To handle this case, an alternate issue path exists from the dispatch logic directly to the issue arbiters, bypass-

ing the DQ. Dispatch stalls if issue resources are unavailable. This case is sufficiently rare (a dispatch-time ready

instruction coupled with momentary unavailability of functional pipelines) that front-end stalls of this nature do not

significantly affect performance. For fairness of evaluation, we augment our baseline CAM-based out-of-order design

to also leverage the dispatch-time-ready optimization. Other instructions behind the stalling instruction need not

wait, as program order is maintained by the DQ, and operand availability indicates correct dataflow order.

Table 1. Potential DQ Field Access Types by Operation. (Read/Write Self/Other)

Operation

M
et

ad
at

a

So
ur

ce
 1

 V
al

ue

E
m

pt
y/

Fu
ll

B
it

So
ur

ce
 1

 V
al

ue

So
ur

ce
 1

 P
oi

nt
er

So
ur

ce
 2

 V
al

ue

E
m

pt
y/

Fu
ll

B
it

So
ur

ce
 2

 V
al

ue

So
ur

ce
 2

 P
oi

nt
er

D
es

tin
at

io
n

Va
lu

e
E

m
pt

y/
Fu

ll
B

it

D
es

tin
at

io
n

Va
lu

e

D
es

tin
at

io
n

Po
in

te
r

Dispatch* WS WS RO/WS WO WS RO/WS WO RO RO WO

S1Update RS WS WS RS RS RS

S2Update RS RS RS WS WS RS

Complete WS WS RS

Commit RS WS+ WS+ WS RS WS+

*Dispatch may read other entries in the DQ prior to writing available values into the DQ. Most dispatch-time oper-
ations are conditional, depending on decoded instruction state.
+Pointer valid bits are cleared at commit. The pointer itself is not accessed. Alternatively, this action may be rele-
gated to the dispatch logic..

Instructions are removed from the head of the DQ and committed once they have been executed (nominally,

when the empty/full bit on the destination operand’s value field has been set). Commit logic removes the head

instruction from the DQ by updating the queue’s head pointer and writes to the Architectural Register File where

applicable. If the RCT’s last writer field matches the committing DQ entry, the RCT’s busy bit is cleared and subse-

quent successors may read the value directly from the ARF. The commit logic is not on the critical path of instruction

execution, and the write to the ARF is not timing critical as long as space is not needed in the DQ for instruction dis-

patch. A summary of DQ operations (read/write self/other) and accessed fields is given in Table 1. It should be noted
8

that the table designates which access may occur, it does not imply that all accesses are performed for each instruc-

tion, nor that the accesses are performed atomically with respect to other accesses.

As stated above, the pointer-walking hardware is responsible for issuing instructions to functional units during

traversal. Should a particular instruction be unable to issue because of a control hazard (i.e. all functional units are

busy), the pointer walk must stall until the instruction can issue normally. Nominally, this condition is only a minor

performance overhead. Rarely, a second control hazard can arise when pointer chain that would normally begin its

walk requires the use of stalled pointer-walking control circuitry. This forms a circular dependence, as the functional

unit cannot accept a new operation (i.e., the current result must first be collected from the functional unit) and the

pointer-walking hardware must stall until it can issue the current instruction, resulting in deadlock. The intersection

of these two control hazards is rare (one observed occurrence per 33 billion committed instructions), and can be ame-

liorated by modest buffering. Should deadlock still arise, the circular dependence is easily detected (i.e., all functional

units are stalled and the update hardware is stalled), and can be resolved with a pipeline flush.

3.4 Banked Design and Port Requirements
The number of value chains that may be followed con-

currently in a given cycle is bounded by the number of

banks (and ports) on the DQ. Pointers that designate

operands in a distant bank must traverse a significant

chip area. Figure 6

CTL

DQ B0

CTL

DQ B1

CTL

DQ B2

CTL

DQ B3

CTL

DQ B4

CTL

DQ B5

CTL

DQ B6

CTL

DQ B7

Figure 6. Hypothetical Eight-Bank Hierarchical
DQ Floorplan

 illustrates a Forwardflow floorplan

that arranges eight DQ banks in groups of four; pointers

that cross bank groups incur additional latency.

Forwardflow’s DQ has been designed to deliver adequate

performance with only modest port requirements. While performance can be improved by the allocation of addi-

tional ports, DQ scalability would be sacrificed. To this end, we have designed Forwardflow to require only two ports

per bank of the DQ. One port is dedicated to pointer-chasing hardware; the port type varies depending on which DQ

field is referenced (e.g. read-only on pointer arrays, read/write on value arrays). Dispatch and commit logic share a

second port on the DQ, and the dispatch logic is given priority access to the port. Contention for the shared port is

rare, as the DQ is banked on at least one high-order bit of the DQ entry number (i.e., contention arises only when the

DQ is nearly empty or nearly full). The DQ is also banked on low-order bits of the entry number, to provide sufficient

bandwidth for multiple dispatches and/or commits per cycle.

Since the DQ is built entirely of banked RAMs, it can scale to much larger sizes than a traditional CAM-based

instruction scheduler. Each instruction slot in the DQ requires an estimated 200 3 N2 DQEntrieslog⋅+ bits of storage

(the amount of metadata per instruction varies by architecture), not including optional parity bits (one bit per entry

per RAM). Thus, a 512-entry Dataflow Queue requires approximately 14KB of storage (about half the size of typical

L1 cache).
9

3.5 Pointer-Chasing Hardware
In our design, each bank of the DQ is serviced by an inde-

pendent instance of the pointer-chasing hardware shown in Fig-

ure 7, consisting of a next pointer register, a current value

register, a pending queue of pointer/value pairs, and (possibly

buffered) ports to the interconnect between the banks of the

DQ

Figure 7. Pointer-Chasing Hardware and
Algorithm

pt
r

va
l

pt
r

va
l

pt
r

va
l

ptr
val

ptr
val

next

value Pending Queue

Bank Transfer Queue

To
/F

ro
m

DQ

1 // Handle pending queue
2 if next == NULL:
3 next = in.ptr
4 value = in.val
5 in.pop()
6
7 if next == NULL:
8 return // No work to do
9
10 // Try to issue, if possible
11 if type(next) != Dest &&
12 dq[next].otherval.isPresent:
13 val2 = dq[next].otherval
14 opcode = dq[next].meta
15 if !Issue(opcode, val, val2):
16 return // Stall
17
18 dq[next].val = value
19 next = dq[next].ptr
20
21 // Handle DQ bank transfer
22 if bank(next) != bank(this):
23 out.push(next,value)
24 next = NULL

. The logical behavior is described in the accompanying

algorithm. Since DQ entry numbers accompany instructions

through functional pipelines, pointers to destination fields can

be inferred as instructions complete execution.

During a given cycle, the update hardware for a particular

bank will attempt to follow exactly one pointer. If no pointer is

available (line 8), the DQ is not accessed by the update hard-

ware, thereby conserving power. Otherwise, if next designates

a non-destination field (i.e. one of the two source operands), the

remaining source operand (if present) and instruction opcode

are read from the DQ, and the instruction is passed to issue arbi-

tration (line 15). If arbitration for issue fails, the update hard-

ware stalls on the current next pointer and will attempt to issue

again on the following cycle.

The update hardware writes the arriving value into the DQ

(line 18) and reads the pointer at next (line 19), following the

list to the next successor. If the pointer designates a DQ entry

assigned to a different bank, the pair <next,value> is placed

in the bank transfer queue (line 23), and will traverse the inter-

connect in the next cycle.

The pending and bank transfer queues should be provisioned with sufficient space to make interconnect stalls

rare. In practice, small queues suffice; we have empirically observed that a five-entry pending queue and a two-entry

bank transfer queue are sufficient to tolerate interconnect congestion during busy periods.

The inter-DQ-bank interconnect itself is comprised of a first-level crossbar between neighboring banks (refer to

Figure 6) for fast communication between logically adjacent DQ entries. A second-level crossbar connects each bank

group, with additional communication delay. For maximum performance, the update hardware optimizes the case

where next is initially NULL, the pending queue is empty, and a new pointer/value pair arrives from the intercon-

nect. This constitutes the most critical path in the case of a DQ bank transfer (i.e., a pointer chain crosses a bank

boundary and arrives at an otherwise unutilized bank).
10

3.6 Control Speculation
Like other out-of-order machines, Forwardflow relies on dynamic branch and target prediction to improve ILP

and increase utilization of key structures. Branch recovery mechanisms must restore the RCT’s state as it was before

the instructions following the branch were decoded, and invalidate all false-path instructions. The former is accom-

plished by checkpointing the RCT on predicted branches, a technique identical to the checkpointing of a register

rename table. To accomplish the latter, we augment the pointer fields with valid bits, which are checkpointed with

RCTs on branch predictions and restored on misprediction events, as in [24]. Neither checkpointing or checkpoint-

restore are critical-path operations (a handful of cycles), since branch resolution latency can be effectively overlapped

with front-end pipeline latency. The hardware for implementing RCT (and pointer valid bit) checkpoints is similar in

nature to the Working/Architectural Register File in the UltraSPARC-III+ [9], though our porting requirements are

less and our timing requirements are greatly reduced (e.g. one RCT checkpoint per cycle would be an acceptable

upper bound).

4 Conclusions
This paper describes and evaluates the Forwardflow core microarchitecture, a scalable, RAM-based implementa-

tion of out-of-order execution leveraging forward data pointers to implement instruction wakeup and selection. For-

wardflow replaces CAM-or matrix-based broadcast scheduling logic and the physical register file with an efficient,

RAM-based Dataflow Queue (DQ), thereby reducing power consumption. Forwardflow’s multi-banked DQ scales

gracefully from small to large instruction windows, allowing the system or designer to trade-off power and perfor-

mance depending upon how many DQ banks a specific core provisions, enables, and uses. Forwardflow’s scalability

makes it an attractive microarchitecture for future statically or dynamically heterogeneous CMPs.

REFERENCES

[1] AMD Corporation. AMD Introduces the World’s Most Advanced x86 Processor, Designed for the Demanding
Datacenter. http://www.amd.com/us-en/Corporate/VirtualPressRoom/0,,51_104_543_15008 1197% 68,00.html,
Sept. 2007.

[2] K. Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Architecture. IEEE Trans-
actions on Computers, pages 300–318, Mar. 1990.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of Parallel Computing Research: A View from Berke-
ley. Technical Report Technical Report No. UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, 2006.

[4] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation Spreading: Employing Hardware Migration to Spe-
cialize CMP Cores On-the-fly. In ASPLOS 12, Oct. 2006.

[5] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture Optimizations for Exploiting Memory-Level Parallelism.
In ISCA 31, pages 76–87, June 2004.

[6] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss.
In Proceedings of the 1997 International Conference on Supercomputing, pages 68–75, July 1997.

[7] I. T. R. for Semiconductors. ITRS 2006 Update. Semiconductor Industry Association, 2006.
http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm.

[8] A. Glew. MLP yes! ILP no! Memory Level Parallelism, or, why I no longer worry about IPC, Oct. 1998.
[9] R. Heald et al. A Third-generation SPARC V9 64-b Microprocessor. IEEE Journal of Solid-State Circuits,

35(11):1526–1538, Nov. 2000.
[10] A. Henstrom. US Patent #6,557,095: Scheduling operations using a dependency matrix, Dec. 1999.
[11] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer, pages 33–38, July 2008.
[12] Intel. First the Tick, Now the Tock: Next Generation IntelÆ Microarchitecture (Nehalem). http://www.in-

tel.com/technology/architecture-silicon/next-gen/whitepaper.pd% f, 2008.
[13] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Accomodating Software Diversity in Chip Mul-

tiprocessors. In ISCA 34, June 2007.
11

[14] N. Jouppi. The Future Evolution of High-Performance Microprocessors. MICRO-38 Keynote Address, Nov.
2005.

[15] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati, D. Burger, and S. W. Keckler. Compos-
able Lightweight Processors. In MICRO 40, Dec. 2007.

[16] I. Kim and M. H. Lipasti. Half-price architecture. In ISCA 30, pages 28–38, June 2003.
[17] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA Heterogeneous Multi-Core

Architectures: The Potential for Processor Power Reduction. In Proceedings of the 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, Dec. 2003.

[18] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas. Single-ISA Heterogeneous Multi-core Archi-
tectures for Multithreaded Workload Performance. In ISCA 31, pages 64–75, June 2004.

[19] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for heterogeneous chip multiproces-
sors. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques, Sept.
2006.

[20] A. R. Lebeck, T. Li, E. Rotenberg, J. Koppanalil, and J. P. Patwardhan. A Large, Fast Instruction Window for
Tolerating Cache Misses. In ISCA 29, May 2002.

[21] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Effective Alternative to Large Instruc-
tion Windows. IEEE Micro, 23(6):20–25, Nov/Dec 2003.

[22] S. Palacharla and J. E. Smith. Complexity-Effective Superscalar Processors. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 206–218, June 1997.

[23] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction queue design using dependence chains.
In ISCA 29, pages 318–329, May 2002.

[24] M. A. Ramirez, A. Cristal, A. V. Veidenbaum, L. Villa, and M. Valero. Direct Instruction Wakeup for Out-of-
Order Processors. In IWIA ’04: Proceedings of the Innovative Architecture for Future Generation High-Perfor-
mance Processors and Systems (IWIA’04), pages 2–9, Washington, DC, USA, 2004. IEEE Computer Society.

[25] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. Moore. Exploiting
ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, pages 422–433, June 2003.

[26] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. ReSlice: Selective Re-Execution of Long-Retired Misspeculated
Instructions Using Forward Slicing. In Proceedings of the 38th Annual IEEE/ACM International Symposium on
Microarchitecture, Nov. 2005.

[27] P. Sassone, J. R. II, E. Brekelbaum, G. Loh, and B. Black. Matrix Scheduler Reloaded. In ISCA 34, pages
335–346, June 2007.

[28] G. S. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit, Pipelined
Computers. IEEE Transactions on Computers, pages 349–359, Mar. 1990.

[29] G. S. Sohi and S. Vajapeyam. Instruction Issue Logic for High-Performance Interruptable Pipelined Processors.
In Proceedings of the 14th Annual International Symposium on Computer Architecture, pages 27–34, June 1987.

[30] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow Pipelines. In ASPLOS 11, Oct.
2004.

[31] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 228–241, Dec. 2003.

[32] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-Core 32-Thread Plus 32-Scout-Thread CMT
SPARC Processor. In ISSCC Conference Proceedings, 2008.

[33] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multithreading Processor. In Proceedings of the 23th Annual
International Symposium on Computer Architecture, pages 191–202, May 1996.

[34] R. Vivekanandham, B. Amrutur, and R. Govindarajan. A scalable low power issue queue for large instruction
window processors. In Proc. of the 20th Intnl. Conf. on Supercomputing, pages 167–176, June 2006.

[35] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40, Apr. 1996.
12

	Forwardflow: Scalable, RAM-Based Dataflow Execution
	Dan Gibson and David Wood
	{gibson,david}@cs.wisc.edu

	University of Wisconsin-Madison
	1 Introduction
	Figure 1. Dataflow Queue example

	2 Background and Related Work
	Figure 2. Cumulative Distribution Function of Consumers per Value in 128-entry and 512-entry Windows

	3 Forwardflow Architecture
	Figure 3. Pipeline diagram of the Forwardflow architecture. Forwardflow-specific structures are shaded.
	3.1 Fetch and Decode
	3.2 Dispatch
	Figure 4. Dispatch Example
	Figure 5. Wakeup Example

	3.3 Wakeup, Selection, and Issue
	Table 1. Potential DQ Field Access Types by Operation. (Read/Write Self/Other)

	3.4 Banked Design and Port Requirements
	Figure 6. Hypothetical Eight-Bank Hierarchical DQ Floorplan

	3.5 Pointer-Chasing Hardware
	Figure 7. Pointer-Chasing Hardware and Algorithm

	3.6 Control Speculation

	4 Conclusions
	REFERENCES

