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Abstract

Power (and thermal) limits have forced an industry-wide shift from increasingly complex uniprocessors 
to multicore chips with 4, 8, and even 16 simpler processor cores. Yet Amdahl’s Law suggests that these cores 
should not be too simple, lest they exacerbate even a parallel application’s sequential bottlenecks. Further-
more, running all cores at full speed will soon exceed the chip’s power envelope. Ideally, future CMPs should 
use cores that trade-off power and performance, allowing the system to scale up a core’s instruction-level par-
allelism (ILP) and memory-level parallelism (MLP) to improve sequential performance. 

This work presents the Forwardflow microarchitecture, which executes instructions out-of-order using 
RAM-based structures in lieu of non-scalable CAM- or matrix-based mechanisms. Forwardflow dynamically 
builds an explicit internal dataflow representation from a conventional ISA, using forward dependence point-
ers to guide instruction wakeup, selection, and issue. Because all of Forwardflow’s major data structures are 
RAM-based, the instruction window scales large enough to tolerate long memory access times. 

1  Introduction
The last several years have witnessed a paradigm shift in the microprocessor industry, from chips holding one 

increasingly complex out-of-order core to chips holding 4, 8, and even 16 simpler cores [1, 12, 32]. While Moore’s law 

continues to promise more transistors [7], power and thermal concerns have driven the industry to focus on more 

power-efficient multicore designs [14]. By focussing on thread-level parallelism (TLP), rather than primarily instruc-

tion-level parallelism (ILP) within a single thread, microarchitects hope to improve applications’ overall power effi-

ciency. Some researchers project that this trend will continue until chips have a thousand cores [3].

But at least two fundamental problems undermine this vision. First, limiting power dissipation to fit the chip’s 

target power envelope means limiting transistor switching (and leakage). Chakraborty, et al. show that the Simultane-

ously Active Fraction (SAF)—i.e., the fraction of active transistors—decreases with each technology generation [4]. 

This implies that on future chips (if not current ones), all cores cannot be simultaneously computing at full speed.

Second, Amdahl’s Law still applies. Even well-parallelized applications have sequential bottlenecks that limit 

their parallel speedup (and most applications are not currently parallel at all). A thousand simple cores may maximize 

performance in an application’s parallel section, but simple cores exacerbate the sequential bottleneck by providing 

limited ILP. Hill and Marty’s multicore model [11] leads to the conclusion that “researchers should seek methods of 

increasing core performance even at high cost.” In other words, rather than simply double the number of simple cores 

when the transistor count doubles, architects should use some of the additional transistors to increase core complex-

ity and thus single-thread performance instead.

Together, these two problems suggest that future CMPs will need scalable cores, that is, cores that can trade off 

power and performance. Heterogeneous CMPs scale cores statically, provisioning some cores with more resources 

and some with less [19]. Composable core designs scale power and performance by dynamically merging two or more 
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cores into a larger core [15, 13]. By appropriately mapping threads and enabling cores, both approaches represent ini-

tial steps towards a truly scalable core design.

Scaling core performance means scaling core resources to extract additional ILP, either by statically provisioning 

cores differently or by dynamically (de-)allocating core resources. And as memory latencies continue to dominate 

performance, it also means scaling memory-level parallelism (MLP) to service multiple cache misses concurrently [8]. 

Scaling MLP requires increasing a core’s lookahead, the number of instructions it examines for independent memory 

operations [5]. Conventional core microarchitectures do not scale well because latency, complexity, and power limit 

their instruction windows and hence their lookahead. Alternative microarchitectures such as runahead microarchi-

tectures achieve significant MLP, but at the expense of sacrificing ILP [5, 21].

Achieving both scalable ILP and MLP requires a novel core microarchitecture. To achieve sufficient lookahead, 

the core must avoid using a conventional broadcast-based instruction scheduler—where each instruction’s comple-

tion wakes up all dependent instructions in a single cycle. Broadcast-based instruction schedulers waste power 

because over 80% of results wakeup zero or one dependent instructions [24, 27]. Instead, scalable core microarchitec-

tures should leverage explicit successor representations [23, 24, 34], that explicitly identify dependent instructions and 

enable directed wakeup. 

This work presents the Forwardflow core micro-

architecture, which exploits the synergy between 

explicit successor representation and single-successor 

dominance to build a highly-scalable instruction win-

dow. As illustrated in Figure 1, Forwardflow
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Figure 1. Dataflow Queue example

 repre-

sents inter-instruction dependences via forward 

pointers. Instructions directly identify the first succes-

sor; subsequent successors are represented via a linked list distributed throughout the Dataflow Queue (DQ). For-

ward pointers order instruction wakeup by true data dependence first and program order second, allowing data-

independent operations to execute out-of-order. Forwardflow pipelines pointer accesses, yielding no performance 

loss when issuing the first consumer of a particular value, and delaying subsequent successors (if any) proportional to 

their position in the value chain. This optimizes the common case of singleton successor instructions, but adds some 

overhead for high fan-out values. Forwardflow co-locates operand values and scheduling data in the DQ, but splits 

the DQ into multiple banks to limit wire length and increase execution parallelism using limited ports. Forwardflow 

naturally scales power and performance depending upon how many DQ banks a specific core provisions, enables, and 

utilizes.

2  Background and Related Work 
Forwardflow is motivated by earlier work on static and dynamic heterogeneous CMPs. Kumar et al. demonstrate 

that dynamically mapping threads to statically scaled cores can reduce power consumption [17] and improve perfor-

mance of multiprogrammed workloads [18]. Core Fusion [13] dynamically fuses largely conventional cores, but relies 

on non-scalable result broadcast between cores. Like Forwardflow, TFlex eliminates broadcast using forward point-
2 



ers, but requires a novel ISA and compiler to produce them [15], while Forwardflow generates pointers dynamically 

from a conventional ISA.

Forwardflow builds on earlier research on exploiting ILP and MLP to improve (processor) core performance [6, 

10, 21, 22, 24, 27, 28, 30, 34, 35]. Briefly, these systems examine a predicted future instruction stream—the instruction 

window—to locate independent operations and memory accesses to execute in parallel. The instruction scheduler

determines when an instruction is ready to execute (wakeup) and when to actually execute it (selection). In general, 

instruction windows are scalable because they are RAM-based, while most instruction schedulers are not because 

they rely on CAM-based [35] or matrix-based [10, 27] broadcast for wakeup and priority encoders for selection.

A non-scalable instruction scheduler limits how much ILP a core can exploit, due to a phenomenon called IQ

(scheduler) Clog [33] where the scheduler fills with instructions dependent on a long-latency operation such as a 

cache miss. Various optimizations attack this problem by steering dependent instructions into queues [22], moving 

dependent instructions to a separate buffer [20, 26, 30], and tracking dependences on only one source operand [16]. 

These proposals ameliorate, but do not eliminate, the poor scalability of traditional instruction schedulers. 

Figure 2. Cumulative Distribution Function of Consumers per Value in 128-entry and 512-entry Windows
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Fundamentally, broadcast-based instruction schedulers waste power because most instructions have few succes-

sors [24, 27]. Figure 2 plots the CDF of the average number of dependent instructions for 128-entry and 512-entry 

CAM-based schedulers, averaged over the SPEC CPU 2006 benchmarks. The figure also shows the CDF of the 

libquantum (leslie3d) benchmark, which have the greatest (least) average value fanout. Notably, for essentially 

all workloads, more than 80% of all produced values wakeup zero or one dependent instructions. This single-con-

sumer dominance argues against broadcast-based schedulers for power-constrained systems like future CMPs. 

Forwardflow builds upon previous pointer-based scheduling approaches [23, 24, 34]. Forwardflow is most 

closely related to Direct Wakeup [24], which uses pointers to optimize the single successor case but falls back to a 

matrix-like approach for instructions with multiple successors. Forwardflow takes a holistic approach and uses point-

ers to represent all dependences. Furthermore, by replacing the physical register file with the highly-banked DQ, For-

wardflow enables highly scalable very-large-window designs. 
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Other microarchitectures eliminate the scheduler scalability problem by focusing on MLP, at the expense of ILP. 

Runahead Execution [6, 5, 21] uses a checkpoint/restore mechanism to speculatively commit instructions dependent 

on a long-latency cache miss and speculatively execute independent instructions, discarding all speculative state when 

the miss completes. Runahead dramatically increases lookahead, and thus memory-level parallelism, but wastes sig-

nificant power by re-executing true-path instructions multiple times. In contrast, Forwardflow never re-executes 

true-path instructions.

Forwardflow also draws inspiration from dataflow architectures, including TRIPS [25], WaveScalar [31], and the 

MIT Tagged-Token machine [2]. However, Forwardflow focuses on binary compatibility with existing ISAs.

3  Forwardflow Architecture

DQ

Decode

L1-I

Fetch

RCTRCTRCTBP
re
d

UUUUCtrl

Issue Execute CommitDispatch
Figure 3. Pipeline diagram of the Forwardflow architecture. Forwardflow-specific structures are shaded.

ARF

At the highest level, the Forwardflow pipeline (Figure 3) is not unlike traditional out-of-order microarchitec-

tures. Fetch fetches instructions on a predicted execution path and Decode detects and handles potential data depen-

dences, analogous to traditional renaming. Dispatch inserts instructions into the Dataflow Queue (DQ) and 

instructions issue when their operands become available. When instructions complete, scheduling logic wakes and 

selects dependent instructions for execution. Instructions commit in-order from the DQ. To simplify discussion, we 

describe these operations as single-cycle, but most are pipelined multicycle operations in the simulation model.

3.1  Fetch and Decode
In Forwardflow, Fetch proceeds no differently than other high-performance microarchitectures; Section 4 sum-

marizes the specific design assumptions. Decode produces all information needed for Dispatch, which inserts the 

instruction into the DQ and updates the forward pointer chains. Decode must determine which pointer chains, if any, 

each instruction belongs to. It does this using the Register Consumer Table (RCT), which tracks the tails of all active 

pointer chains in the DQ. Indexed by the architectural register name, the RCT looks much like a traditional rename 

table except that it records the most-recent instruction (and operand slot) to reference a given architectural register. 

Each instruction that writes a register begins a new value chain, but instructions that read registers also update the 

RCT to maintain the forward pointer chain for subsequent successors. The RCT also identifies registers last written 

by a committed instruction and thus whose values reside in the Architectural Register File (ARF).

The RCT is implemented as a RAM-based structure. Since the port requirements of the RCT are significant (up 

to two reads and three writes per decoded instruction per cycle), we expect it to be implemented aggressively and with 
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some duplication. Fortunately, the RCT is a small structure: each entry consists only 2 N2 DQEntrieslog⋅ 4+  bits, and 

the number of entries is determined by the number of architectural registers in the target architecture (e.g., an ISA 

with 72 architected registers requires only 1584 bits of storage with a 512-entry DQ).

3.2  Dispatch
The Dataflow Queue (DQ) is the heart of the Forwardflow architecture, and is involved in instruction dispatch, 

issue, completion, and commit. The DQ is essentially a CAM-free Register Update Unit [29], in that it schedules and 

orders instructions, but also maintains operand values. Each DQ entry holds an instruction’s metadata (e.g., opcode, 

ALU control signals, destination architectural register name), three data values, and three forward data pointers, rep-

resenting up to two source operands and one destination operand per instruction. Value and pointer fields have 

empty/full and valid bits, respectively, to indicate whether they contain valid information. Dispatching an instruction 

allocates a DQ entry, but updates the pointer fields of previously dispatched instructions. Specifically, an instruction’s 

DQ insertion will update zero, one, or two pointers belonging to previous instructions in the DQ to establish correct for-

ward dependences. To reduce port requirements, each DQ field is implemented as an individually addressed RAM. 

Figure 4 illustrates the dispatch process for a simple code sequence, highlighting both the common case of a sin-

gle successor (the R4 chain) and the uncommon case of multiple successors (the R3 chain). Fields read are bordered 

with thick lines; fields written are shaded. The bottom symbol (⊥) is used to indicate NULL pointers (i.e., cleared 

pointer valid bits) and cleared empty/full bits. 

In the example, Decode determines that the ld instruction is ready to issue at Dispatch because both source 

operands are available (R1’s value, 88, is available in the ARF, since its busy bit in the RCT is zero, and the immediate 

operand, 44, is extracted from the instruction). Decode updates the RCT to indicate that ld produces R3 (but does 

not add the ld to R1’s value chain, as R1 remains available in the ARF). Dispatch reads the ARF to obtain R1’s value, 

writes both operands into the DQ, and issues the ld immediately. When the add is decoded, it consults the RCT and 

finds that R3’s previous use was at the ld’s destination field, and thus Dispatch updates the pointer from ld’s desti-

nation to the add’s first source operand. Like the ld, the add’s immediate operand (55) is written into the DQ at 

dispatch. Dispatching the add also reads the ld’s result empty/full bit. Had the ld’s value been present in the DQ, 

the dispatch of the add would stall while reading the value array.
5 



The mult’s decode consults the RCT, and discov-

ers that both operands, R3 and R4, are not yet available 

and were last referenced by the add’s source 1 operand 

and the add’s destination operand, respectively. Dis-

patch of the mult therefore checks for available results 

in both the add’s source 1 value array and destination 

value array, and appends the mult to R3’s and R4’s 

pointer chains. Finally, like the add, the sub appends 

itself to the R3 pointer chain, and writes its dispatch-

time ready operand (66) into the DQ. 
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Figure 4. Dispatch Example

Values for instruction operands may be obtained in 

four ways, each of which are handled differently in For-

wardflow: 

• Immediate operands, extracted from the instruction 

itself, are written into the instruction’s appropriate 

operand value array in Dispatch (e.g., the add’s 

second operand, 55). 

•The Architectural Register File (ARF) is read in 

Dispatch to provide committed values to dispatch-

ing instructions (e.g, the ld’s first source operand, 

R1). Values from the ARF are written into the 

instruction’s operand value array, to ensure that val-

ues are local to instructions and can be accessed at 

issue-time without consulting potentially distant 

structures (e.g., a register file).

•Values produced by earlier in-flight instructions 

that have not yet executed (i.e., values not available 

at the consumer’s dispatch) will be delivered to the 

instruction by the pointer chasing hardware (this 

will be the case for the add, mult, and sub

instructions in the example).
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•Values from earlier in-flight instructions that have 

already executed (identified via empty/full bits on 

value arrays) are read from the previous succes-

sor’s (or producer’s) value array and written into 

the dispatching instruction’s value array (does not 

appear in the example). Obtaining a value in this 

manner can cause a single-cycle dispatch stall, 

depending on DQ bank conflicts. 
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Figure 5. Wakeup Example
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3.3  Wakeup, Selection, and Issue
Once an instruction has been inserted into the 

DQ, it waits until its unavailable source operands are 

delivered by the execution management logic. Each 

instruction’s DQ entry number (i.e., its address in the 

RAM) accompanies the instruction though the execu-

tion pipeline. When an instruction nears completion 

in its functional pipeline, pointer chasing hardware 

reads the instruction’s destination value pointer. This 

pointer defines the value chain for the result value, 

and, in a distributed manner, locations of all succes-

sors through transitive pointer chasing. The complete 

traversal of a chain is a multicycle operation, and suc-

cessors beyond the first will wakeup (and potentially 

issue) with delay linearly proportional to their position 

in the chain.

The wakeup process is illustrated in Figure 5. For 

simplicity, the example assumes chains are followed 

only after values are available, though for performance, 

wakeup is initiated in advance of actual instruction 

completion in a pipelined manner. 

Upon completion of the ld, the memory value 

(99) is written into the DQ, and the ld’s destination 

pointer is followed to the first successor, the add. 

Whenever a pointer is followed to a new DQ entry, 

available source operands and instruction metadata 

are read speculatively, anticipating that the arriving 

value will enable the current instruction to issue (a 
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common case [16]). Thus, in the next cycle, the add’s metadata and source 2 value are read, and, coupled with the 

arriving value of 99, the add may now be issued. Concurrently, the update hardware reads the add’s source 1 

pointer, discovering the mult as the next successor.

As with the add, the mult’s metadata, other source operand, and next pointer field are read. In this case, the 

source 1 operand is unavailable, and the mult will issue at a later time (when the add’s destination pointer chain is 

walked). Finally, following the mult’s source 2 pointer to the sub delivers 99 to the sub’s first operand, enabling 

the sub to issue. At this point, a NULL pointer is discovered at the sub instruction, indicating the end of the value 

chain.

In cases where all instruction operands are available at dispatch-time (e.g., the ld), the instruction will not be 

visited by pointer-walking hardware, and wakeup cannot occur as part of the walk of an earlier producer’s wakeup 

chain. To handle this case, an alternate issue path exists from the dispatch logic directly to the issue arbiters, bypass-

ing the DQ. Dispatch stalls if issue resources are unavailable. This case is sufficiently rare (a dispatch-time ready 

instruction coupled with momentary unavailability of functional pipelines) that front-end stalls of this nature do not 

significantly affect performance. For fairness of evaluation, we augment our baseline CAM-based out-of-order design 

to also leverage the dispatch-time-ready optimization. Other instructions behind the stalling instruction need not 

wait, as program order is maintained by the DQ, and operand availability indicates correct dataflow order. 

Table 1. Potential DQ Field Access Types by Operation. (Read/Write Self/Other)
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Dispatch* WS WS RO/WS WO WS RO/WS WO RO RO WO

S1Update RS WS WS RS RS RS

S2Update RS RS RS WS WS RS

Complete WS WS RS

Commit RS WS+ WS+ WS RS WS+

*Dispatch may read other entries in the DQ prior to writing available values into the DQ. Most dispatch-time oper-
ations are conditional, depending on decoded instruction state.
+Pointer valid bits are cleared at commit. The pointer itself is not accessed. Alternatively, this action may be rele-
gated to the dispatch logic..

Instructions are removed from the head of the DQ and committed once they have been executed (nominally, 

when the empty/full bit on the destination operand’s value field has been set). Commit logic removes the head 

instruction from the DQ by updating the queue’s head pointer and writes to the Architectural Register File where 

applicable. If the RCT’s last writer field matches the committing DQ entry, the RCT’s busy bit is cleared and subse-

quent successors may read the value directly from the ARF. The commit logic is not on the critical path of instruction 

execution, and the write to the ARF is not timing critical as long as space is not needed in the DQ for instruction dis-

patch. A summary of DQ operations (read/write self/other) and accessed fields is given in Table 1. It should be noted 
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that the table designates which access may occur, it does not imply that all accesses are performed for each instruc-

tion, nor that the accesses are performed atomically with respect to other accesses.

As stated above, the pointer-walking hardware is responsible for issuing instructions to functional units during 

traversal. Should a particular instruction be unable to issue because of a control hazard (i.e. all functional units are 

busy), the pointer walk must stall until the instruction can issue normally. Nominally, this condition is only a minor 

performance overhead. Rarely, a second control hazard can arise when pointer chain that would normally begin its 

walk requires the use of stalled pointer-walking control circuitry. This forms a circular dependence, as the functional 

unit cannot accept a new operation (i.e., the current result must first be collected from the functional unit) and the 

pointer-walking hardware must stall until it can issue the current instruction, resulting in deadlock. The intersection 

of these two control hazards is rare (one observed occurrence per 33 billion committed instructions), and can be ame-

liorated by modest buffering. Should deadlock still arise, the circular dependence is easily detected (i.e., all functional 

units are stalled and the update hardware is stalled), and can be resolved with a pipeline flush.

3.4  Banked Design and Port Requirements
The number of value chains that may be followed con-

currently in a given cycle is bounded by the number of 

banks (and ports) on the DQ. Pointers that designate 

operands in a distant bank must traverse a significant 

chip area. Figure 6

CTL

DQ B0

CTL

DQ B1

CTL

DQ B2

CTL

DQ B3

CTL

DQ B4

CTL

DQ B5

CTL

DQ B6

CTL

DQ B7

Figure 6. Hypothetical Eight-Bank Hierarchical 
DQ Floorplan

 illustrates a Forwardflow floorplan 

that arranges eight DQ banks in groups of four; pointers 

that cross bank groups incur additional latency.

Forwardflow’s DQ has been designed to deliver adequate 

performance with only modest port requirements. While performance can be improved by the allocation of addi-

tional ports, DQ scalability would be sacrificed. To this end, we have designed Forwardflow to require only two ports 

per bank of the DQ. One port is dedicated to pointer-chasing hardware; the port type varies depending on which DQ 

field is referenced (e.g. read-only on pointer arrays, read/write on value arrays). Dispatch and commit logic share a 

second port on the DQ, and the dispatch logic is given priority access to the port. Contention for the shared port is 

rare, as the DQ is banked on at least one high-order bit of the DQ entry number (i.e., contention arises only when the 

DQ is nearly empty or nearly full). The DQ is also banked on low-order bits of the entry number, to provide sufficient 

bandwidth for multiple dispatches and/or commits per cycle.

Since the DQ is built entirely of banked RAMs, it can scale to much larger sizes than a traditional CAM-based 

instruction scheduler. Each instruction slot in the DQ requires an estimated 200 3 N2 DQEntrieslog⋅+  bits of storage 

(the amount of metadata per instruction varies by architecture), not including optional parity bits (one bit per entry 

per RAM). Thus, a 512-entry Dataflow Queue requires approximately 14KB of storage (about half the size of typical 

L1 cache). 
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3.5  Pointer-Chasing Hardware
In our design, each bank of the DQ is serviced by an inde-

pendent instance of the pointer-chasing hardware shown in Fig-

ure 7, consisting of a next pointer register, a current value

register, a pending queue of pointer/value pairs, and (possibly 

buffered) ports to the interconnect between the banks of the 

DQ

Figure 7. Pointer-Chasing Hardware and 
Algorithm
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1 // Handle pending queue
2 if next == NULL:
3 next = in.ptr
4 value = in.val
5 in.pop()
6
7 if next == NULL:
8 return // No work to do
9
10 // Try to issue, if possible
11 if type(next) != Dest &&
12 dq[next].otherval.isPresent:
13 val2 = dq[next].otherval
14 opcode = dq[next].meta
15 if !Issue(opcode, val, val2):
16 return // Stall
17
18 dq[next].val = value
19 next = dq[next].ptr
20
21 // Handle DQ bank transfer
22 if bank(next) != bank(this):
23 out.push(next,value)
24 next = NULL

. The logical behavior is described in the accompanying 

algorithm. Since DQ entry numbers accompany instructions 

through functional pipelines, pointers to destination fields can 

be inferred as instructions complete execution.

During a given cycle, the update hardware for a particular 

bank will attempt to follow exactly one pointer. If no pointer is 

available (line 8), the DQ is not accessed by the update hard-

ware, thereby conserving power. Otherwise, if next designates 

a non-destination field (i.e. one of the two source operands), the 

remaining source operand (if present) and instruction opcode 

are read from the DQ, and the instruction is passed to issue arbi-

tration (line 15). If arbitration for issue fails, the update hard-

ware stalls on the current next pointer and will attempt to issue 

again on the following cycle.

The update hardware writes the arriving value into the DQ 

(line 18) and reads the pointer at next (line 19), following the 

list to the next successor. If the pointer designates a DQ entry 

assigned to a different bank, the pair <next,value> is placed 

in the bank transfer queue (line 23), and will traverse the inter-

connect in the next cycle.

The pending and bank transfer queues should be provisioned with sufficient space to make interconnect stalls 

rare. In practice, small queues suffice; we have empirically observed that a five-entry pending queue and a two-entry 

bank transfer queue are sufficient to tolerate interconnect congestion during busy periods. 

The inter-DQ-bank interconnect itself is comprised of a first-level crossbar between neighboring banks (refer to 

Figure 6) for fast communication between logically adjacent DQ entries. A second-level crossbar connects each bank 

group, with additional communication delay. For maximum performance, the update hardware optimizes the case 

where next is initially NULL, the pending queue is empty, and a new pointer/value pair arrives from the intercon-

nect. This constitutes the most critical path in the case of a DQ bank transfer (i.e., a pointer chain crosses a bank 

boundary and arrives at an otherwise unutilized bank).
10 



3.6  Control Speculation
Like other out-of-order machines, Forwardflow relies on dynamic branch and target prediction to improve ILP 

and increase utilization of key structures. Branch recovery mechanisms must restore the RCT’s state as it was before 

the instructions following the branch were decoded, and invalidate all false-path instructions. The former is accom-

plished by checkpointing the RCT on predicted branches, a technique identical to the checkpointing of a register 

rename table. To accomplish the latter, we augment the pointer fields with valid bits, which are checkpointed with 

RCTs on branch predictions and restored on misprediction events, as in [24]. Neither checkpointing or checkpoint-

restore are critical-path operations (a handful of cycles), since branch resolution latency can be effectively overlapped 

with front-end pipeline latency. The hardware for implementing RCT (and pointer valid bit) checkpoints is similar in 

nature to the Working/Architectural Register File in the UltraSPARC-III+ [9], though our porting requirements are 

less and our timing requirements are greatly reduced (e.g. one RCT checkpoint per cycle would be an acceptable 

upper bound).

4  Conclusions
This paper describes and evaluates the Forwardflow core microarchitecture, a scalable, RAM-based implementa-

tion of out-of-order execution leveraging forward data pointers to implement instruction wakeup and selection. For-

wardflow replaces CAM-or matrix-based broadcast scheduling logic and the physical register file with an efficient, 

RAM-based Dataflow Queue (DQ), thereby reducing power consumption. Forwardflow’s multi-banked DQ scales 

gracefully from small to large instruction windows, allowing the system or designer to trade-off power and perfor-

mance depending upon how many DQ banks a specific core provisions, enables, and uses. Forwardflow’s scalability 

makes it an attractive microarchitecture for future statically or dynamically heterogeneous CMPs.
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